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Chapter 1

Introduction

1.1 Introduction

The purpose of this thesis is to construct and discuss a framework for specifying and

implementing certifiably-correct software based on L-fuzzy relations in the context of

Dedekind and Arrow categories. The motivation for this work is to have a proof-of-

concept that algebraically-described programs based on L-fuzzy relations can be straight-

forward to implement and reason about using proof assistants based on higher-order logic

(HOL) and functional programming featuring dependent types.

There are many applications of relational methods in computer science for which cor-

rectness is an important consideration. To this end, we sought to construct a framework

for L-fuzzy relations in the category theoretical context using a proof assistant. This

framework can be used to specify and correctly implement programs based on L-fuzzy

relations, such as fuzzy controllers.

Aside from the practical applications, it is interesting to discuss the relationship between

abstract mathematics, type theory, and programming languages. We will discuss the

theoretical basis for many of the choices taken during the planning and development of

this work, especially those which have an impact on logical consistency or affect the ease

of completing proofs.

It is important to realize that program verification is generally difficult, and that stan-

dard general-purpose programming languages are not well-suited for reasoning. In fact,

standard programming paradigms usually do not support reasoning. Functional pro-

gramming together with HOL offer an alternative paradigm which combines program-

ming with reasoning. Many proof assistants based on this feature natural deduction

style reasoning, which is familiar to many mathematicians and computer scientists.

1



Chapter 1. Introduction 2

In order to implement programs based on mathematical constructions, a suitable en-

vironment should be chosen for programming and proving. These are usually separate

tasks, but in order to define types which are faithful to their mathematical definitions

and use them in programs, they should be done together. To this end, our work uses

Coq - a French-developed proof assistant implementing a functional programming lan-

guage and tactics-based theorem proving [8]. The key advantage Coq affords over other

systems is that programming and proving are possible using the same language while

avoiding logical inconsistencies in the type theory [7].

Prior to discussing our implementation, an overview of mathematical preliminaries is

given in Chapter 2 before recalling the definitions of Heyting, Dedekind and Arrow

categories, the abstract framework for L-fuzzy relations as described in [31], in Chapter

3. We then discuss in Chapters 4 and 5 important theoretical considerations for selecting

Coq and detail the subset of features of Coq which are relevant to our implementation.

A discussion of the implementation follows in Chapters 6 and 7 with details about

types, functions and selected proofs. The implementation itself is included as a digital

appendix. We give some examples of programming with L-fuzzy relations in Chapter 8

and give concluding remarks and an outline of future work in Chapter 9.



Chapter 2

Preliminaries

In this section we give an overview of classical relations, fuzzy relations and L-fuzzy

relations in particular.

2.1 Classical Relations

Classical relations are defined as sets of ordered pairs. We use the usual notation for

sets, pairs and set operators. Given a source set A and a target set B, a classical relation

R is a subset of A×B, denoted R ⊆ A×B. The inclusion of a pair (a, b) ∈ R denotes

that a ∈ A is in relation to b ∈ B via R. For convenience, we denote a relation R with

source A and target B as R : A→ B.

Another representation of classical relations uses the characteristic function, which maps

pairs of elements from A and B to a Boolean value. In other terms, a classical relation

R with source A and target B is a binary function R : A×B → B.

2.1.1 Example

Let us consider a relation representing the popularity of various sports in the set of

continents. We have a source set SPRT = {curling, hockey, soccer, tennis} and a

target set CONT = {Africa, Antarctica, Asia, Australia, Europe, North America, South

America}. A classical relation S1 : SPRT → CONT then denotes only whether a sport

is popular on a given continent:

S1 = {(curling, North America), (curling, Europe), (hockey, North America), (hockey,

Europe), (soccer, Africa), (soccer, Asia), (soccer, Europe), (soccer, South America),

(tennis, Australia), (tennis, Europe)}

3
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The above representation enumerates only the pairs which are related. Other formats

exist to visualize relations, such as directed graphs or matrices.

2.1.2 Matrix Representation

Matrix representations for relations provide a convenient way to quickly visualize rela-

tions. We follow the format detailed in [26], where matrix rows and columns correspond

to the enumerated elements of the source and target sets, respectively, and the matrix

entries are either 0 or 1 for denoting exclusion and inclusion in the relation, respectively.

For example, the relation S1 can be visualized by:

S1 =



Afr. Ant. Asia Aus. Eur. N.A. S.A.

curling 0 0 0 0 1 1 0

hockey 0 0 0 0 1 1 0

soccer 1 0 1 0 1 0 1

tennis 0 0 0 1 1 0 0


When an appropriate order is available and obvious from the context, we often drop the

labels from the matrix representation. S1 can be visualized by:

S1 =


0 0 0 0 1 1 0

0 0 0 0 1 1 0

1 0 1 0 1 0 1

0 0 0 1 1 0 0


where the elements from SPRT and CONT are ordered alphabetically from top to

bottom and left to right, respectively.

This representation is convenient for visualization and computation, but only when the

source and target sets are finite, reasonably small and are enumerable in a convenient

way. Contrary to the subset-of-pairs representation, we have to display a value for each

pair in SPRT × CONT to represent inclusion or exclusion, which is somewhat clumsy

when inclusion in the relation is sparse. But for many of the relations and operations

we will discuss, this representation works well.
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2.2 Fuzzy Relations

Fuzzy relations are based on fuzzy sets, introduced by Zadeh in [37]. Fuzzy relations,

like fuzzy sets, attribute a membership value to each element, or to each pair in the

relation. As mentioned earlier, a classical relation R : A → B can be viewed as a

function A×B → B. This notion is extended to use fuzzy values for membership, rather

than being limited to inclusion or exclusion.

Fuzzy membership values are usually taken from the unit interval, i.e. [0 . . . 1] = {x ∈
R|0 ≤ x ≤ 1}, a totally-ordered subset of the real numbers. We distinguish fuzzy rela-

tions which use the unit interval for membership degrees as real-valued fuzzy relations.

A real-valued fuzzy relation S : A→ B can be defined as a function A×B → [0 . . . 1].

Classical relations are embedded in fuzzy relations when the membership function eval-

uates to only 0 or 1, representing false and true respectively. These are called crisp

relations in the fuzzy world.

2.2.1 Example

Popularity illustrates a type of relation which is difficult to define classically. The notion

of popularity is probably not accurately representable using absolute inclusion or exclu-

sion. Its meaning depends on context or interpretation. Such a notion, as it stands, is

imprecise.

We can express a more accurate notion of sports popularity using fuzzy relations. As

mentioned earlier, a relation describing the popularity of a sport is an imprecise notion.

By using a fuzzy relation, we can express a richer notion of popularity without any

additional context. For example we can define a real-valued (unit) fuzzy relation S2 :

SPRT → CONT

S2 =



Afr. Ant. Asia Aus. Eur. N.A. S.A.

curling 0.01 0 0.2 0.03 0.85 0.9 0.02

hockey 0.03 0 0.4 0.05 0.9 0.95 0.04

soccer 0.98 0 0.9 0.4 0.95 0.2 0.99

tennis 0.4 0 0.3 0.8 0.85 0.3 0.2


We could infer from S2 that higher membership degrees in the relation imply a higher

degree of popularity. Unlike the classical relation S1 from Section 2.1.1, notions of partial

and relative popularity can now be inferred. For example, we can deduce from S2 that
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hockey is more popular in North America than it is in Europe, or that soccer is not

completely unpopular in North America.

However the semantics of membership degrees is not clear without further explanation.

If the relation S2, for example, is just meant to describe the relative popularity of sports,

then we could arbitrarily choose sufficient membership values from a very narrow range

of the unit interval to describe this notion. Why is soccer popular in Europe with degree

0.95 and not 0.94 or 0.96? When membership values are taken from the unit interval

there isn’t necessarily any associated meaning other than the ordering of the reals.

2.3 Mathematical Constructions for L-Fuzziness

In our work we move to L-fuzzy relations, where membership degrees are selected from

a lattice of values. This allows us to introduce membership values which are partially

ordered. This means that relations can be described using membership degrees which

relate elements under different kinds of criteria. By using a lattice, we can introduce

membership values which are based on arbitrary phrases of everyday language to give

them abstract semantic meaning. As we will see, such relations are much more expressive

and can describe situations in greater detail.

Before further discussing of L-fuzzy relations, we recall definitions for partially-ordered

sets, lattices and in particular complete Heyting algebras, with important operations

and properties.

2.3.1 Partially-Ordered Sets and Hasse Diagrams

Partially-ordered sets (posets) provide the ordering of elements which we will later use

to define lattices of membership values, as well as lattices of relations.

Definition 2.1. (A,≤) is a poset if and only if for all x, y and z in A,

x ≤ x (reflexive)

if x ≤ y and y ≤ x then x = y (antisymmetric)

if x ≤ y and y ≤ z then x ≤ z (transitive)

We can visualize posets using Hasse diagrams. Though there is a formal definition for

Hasse diagrams, we only use them informally to visualise the order relation. Consider

the following example of a poset.
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Take P = (A,≤) to be a poset over a 5-element set A = {a, b, c, d, e}, where the order

relation ≤ is given by

P =



a b c d e

a 1 1 1 0 1

b 0 1 0 1 0

c 0 0 1 1 1

d 0 0 0 1 0

e 0 0 0 0 1


The poset P can be visualised by:

P =

ed

b c

a

We use this example to help define important operations.

2.3.1.1 Upper and Lower Bounds

For a subset S of elements of A, the upper bounds are those elements a ∈ A such that

for all x ∈ S, x ≤ a. For example the upper bounds of {a} are {a, b, c, d, e} while the

upper bound of {b, c} is just {d}.

Lower bounds are defined dually with respect to the poset ordering. For example, the

lower bounds of {d} are {a, b, c} and the lower bound of {b, c} is just {a}.

2.3.1.2 Least and Greatest Elements

Next, we consider the least and greatest elements of subsets. Given a subset S of

elements from A, the least element of S is a single s′ ∈ S such that for all x ∈ S, s′ ≤ x.

In other words, s′ is a lower bound of S that belongs to S. For example the least element

of the subset {c, d, e} is c, and the least element of the subset {b, c} does not exist. The

least element of the poset P is a.

Greatest elements are also defined dually. For example, the greatest element of {b, c, d}
is d, and the greatest element of the poset P does not exist.
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2.3.1.3 Join and Meet

We also have the join or least upper bound (LUB) and the meet or greatest lower bound

(GLB) of subsets of a poset. The join of a subset S of elements from A, if it exists, is a

single element from A which is the least element of the upper bounds of S. For example

the join of {b, c} is d, and the join of the empty subset is the least element of the poset.

If the greatest element of a poset exists, then it is the least upper bound of the entire

poset.

The meet is defined dually. For example, the meet of {a, b, c} is a, and the meet of {b, e}
is also a. We often need to compute the meet or join for pairs of elements rather than

arbitrary subsets. If we are only considering two elements, the meet z of two elements

x and y in A, denoted by x u y, is given by:

z ≤ x and z ≤ y (z is a lower bound)

for all w ∈ A, if w ≤ x and w ≤ y then w ≤ z (z is the greatest lower bound).

Similarly the join of two elements x and y in A, denoted by xt y, is defined dually with

respect to the ordering.

2.3.2 Lattices

Lattices can be defined equivalently in order theory or universal algebra.

In order theory, a lattice is defined as a poset (L,≤) for which each pair of elements in

L has a join and a meet.

The algebraic definition of a lattice is as follows.

Definition 2.2. A lattice L is a triple (L,t,u) where L is a set and t and u denote

binary join and meet operations such that

1. x u y = y u x x t y = y t x (commutativity)

2. (x u y) u z = x u (y u z) (x t y) t z = x t (y t z) (associativity)

3. x u (x t y) = x x t (x u y) = x (absorption)

Again, it is important to note that the two definitions are equivalent[6]. This allows one

to use whichever definition is most convenient in an interchangeable fashion. The order

relation can be described from the algebraic definition by for all x, y ∈ L, x ≤ y ⇐⇒
x u y = x.
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In order to capture the notion of crispness in fuzzy relations, we need to enforce that

the lattice of membership values we use always has a least and a greatest element. This

is given by a bounded lattice.

Definition 2.3. A bounded lattice (L, 0, 1) is a lattice L where 0 and 1 respectively are

least and greatest elements such that for all x ∈ L, x t 0 = x and x u 1 = x.

For some further constructions, we need to define distributive lattices.

Definition 2.4. A lattice L is distributive iff its meet and join operations distribute

over each other such that for all x, y, z ∈ L, x u (y t z) = (x u y) t (x u z).

A distributive lattice can also be axiomatized by the dual distributive property, i.e.

where the join operation distributes over the meet operation. Both definitions are equiv-

alent as one property follows from the other, as we have implemented in our framework.

2.3.3 Heyting Algebras

In this section we focus on a special class of lattices called Heyting algebras.

A Heyting algebra is a bounded lattice with an additional binary implication operation

denoted by →. The implication operation provides a means to describe a weaker form

of complementation called the relative pseudo-complement. The formal definition of a

Heyting algebra is as follows.

Definition 2.5. A Heyting algebra H = (L,→) is a bounded lattice L together with

an implication operation → such that

1. x→ x = 1

2. x u (x→ y) = x u y

3. y u (x→ y) = y

4. x u (y → z) = (x→ y) u (x→ z)

In [31], the implication operation of a Heyting algebra is equivalently axiomatized by

for all x, y and z in L,

z ≤ x→ y ⇐⇒ x u z ≤ y

As lattices, Heyting algebras are always distributive. In the case of of a complete Heyting

algebra, which is a Heyting algebra and complete as a lattice the first infinite distributive

law holds, which states that the binary meet distributes over the subset join operation
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for any subset. Precisely, given a complete Heyting algebra H, for any element x ∈ H
and for any subset Y ⊆ H,

x u
⊔
Y =

⊔
{x u y|y ∈ Y }.

where
⊔

denotes the general LUB operation, as opposed to a binary join.

Though we do not use complete Heyting algebras in the implementation, they are an im-

portant component of Dedekind categories - the theoretical basis for the work discussed

later.

A simple example of a complete Heyting algebra characterizes a three-valued lattice

of possible membership degrees for L-fuzzy relations. This represents a lattice where

elements are completely related, completely unrelated or are related by an intermediate

degree. We can visualize this as follows:

L :=

1

m

0

The use of a diagram makes the ordering easy to see. It is easy to verify that L forms

a complete Heyting algebra. It is easy to see that L is a complete lattice and we can

define a relative pseudo-complement as a function (L × L)→ L:

x→ y :=


1 m 0

1 1 m 0

m 1 1 0

0 1 1 1


In the implementation we will have to prove that L is complete and that → is indeed a

relative pseudo-complement in order to build a complete Heyting algebra.

2.4 L-Fuzzy Relations

We use the same notation for L-fuzzy relations as for classical relations. For a complete

Heyting algebra L, an L-fuzzy relation between two sets A and B is a function from

A×B to L. Such a relation R is denoted R : A→ B. Again, classical relations can be
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described as L-fuzzy relations where L = B, and all of what follows applies equally to

classical relations in that setting.

In the following definitions we define important operations on L-fuzzy relations, rela-

tional inclusion, the identity relation and the least and greatest relations.

Definition 2.6. Given L-fuzzy relations Q,R : A→ B and S : B → C

(Q uR)(x, y) := Q(x, y) uR(x, y), (meet)

(Q tR)(x, y) := Q(x, y) tR(x, y), (join)

Q`(x, y) := Q(y, x), (converse)

(Q;S)(x, z) :=
⊔
y∈B

(Q(x, y) u S(y, z)) (composition)

Definition 2.7. For Q,R : A → B, the relational inclusion operator, denoted by v is

defined by

Q v R ⇐⇒ ∀x ∈ A, y ∈ B : Q(x, y) ≤ R(x, y)

Definition 2.8. For any set A, the identity relation on A is defined by

IA(x, y) :=

1 iff x = y

0 otherwise.

Definition 2.9. For all source and target sets A and B, the least and greatest relations

are respectively defined by

⊥⊥AB(x, y) := 0 >>AB(x, y) := 1

Later we will use the fact that the set of all L-fuzzy relations between sets A and B

is itself a complete Heyting algebra [31], with least and greatest elements defined as

follows.

In order to define further constructions, we note some of the properties of these opera-

tions.
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Lemma 2.10. For Q,Q2 : A→ B, R : B → C, S : C → D and T : A→ C we have

Q; IB = Q and IB;R = R (identity laws)

Q; (R;S) = (Q;R);S (associativity of composition)

(Q uQ2)
` = Q` uQ`

2

(Q;R)` = R`;Q`

(Q`)` = Q (converse laws)

Q;R u T v Q; (R uQ`;T ) (modular law)

Q;⊥⊥BC = ⊥⊥AC (composition with least relation)

Proofs of these properties can be found in [31], and we discuss them again in the im-

plementation section. In the remainder of this section we discuss useful operations on

relations and continue with our example.

2.4.1 Crispness, Scalars and Alpha Cuts

In many applications of fuzzy relations, we need to have a notion of crispness. Crisp

relations are those which only use membership degrees of 0 or 1 - the least and greatest

elements of the lattice in the case of L-fuzzy relations. In other terms, a relation R is

crisp iff for all x and y, R(x, y) = 0 or R(x, y) = 1.

Scalar relations form another important class. These are relations which are used to

abstractly identify classes of L-fuzzy relations with the lattice L. Scalar relations, intro-

duced by Furusawa and Kawahara [20], are equivalent to the notion of ideals introduced

by Jónsson and Tarski [17], which are relations R : A→ B satisfying >>AA;R;>>BB = R.

Definition 2.11. A relation α : A→ A is called a scalar on A iff α v IA and

>>AA;α = α;>>AA.

Scalar relations are partial identity relations. For example if A is a 3-element set, the

relation

α : A→ A =


a 0 0

0 a 0

0 0 a


where a is any element from L is a scalar on A.

An alpha cut is an operation on an L-fuzzy relation which produces a crisp relation

based on a threshold element from L.
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Definition 2.12. Given a relation R and an element α ∈ L, an alpha-cut Rα is defined

by

Rα =

{
1 iff R(x, y) ≥ α
0 otherwise.

As we can see, this operation generates a crisp relation where pairs which were related

by a degree of at least a in the original relation are set to 1. Those which were related

to a degree less than a are set to 0. Again, this can be thought of as a threshold or a

high-pass operation. The alpha cut can also be defined in terms of scalars and other

operations which are introduced later.

2.4.2 Arrow Operations

Arrow operations provide additional functionality for working with crisp relations in the

fuzzy world. We use two such operations.

Given an L-fuzzy relation R we define two unary operations ↑ and ↓ which when applied

to R produce crisp relations. R↑ maps R to the least crisp relation that contains R, and

R↓ maps R to the greatest crisp relation contained in R. Such relations are sometimes

called the support and kernel of R, respectively.

Definition 2.13. Given an L-fuzzy relation R we define the arrow operations by

R↑(x, y) =

{
0 iff R(x, y) = 0

1 otherwise
R↓(x, y) =

{
1 iff R(x, y) = 1

0 otherwise.

In other words, R↑ lifts any membership degrees which are greater than 0 in R to 1.

Conversely, R↓ cuts membership degrees which are less than 1 in R to 0. The ↓ operation

is equivalent to a 1-cut or R1.

Using these operations, we can assert that a relation R is crisp iff R↑ = R and, equiva-

lently, R↓ = R.

2.4.3 Example

We continue our example on popularity of sports moving to an L-fuzzy relation. Rather

than using the unit interval for membership degrees, we use the following lattice.



Chapter 2. Preliminaries 14

L :=

1

p+

p

p(m) p(w)

p̃

p−

0

Recall that the relations S1 and S2 are meant to describe the popularity of sports on

certain continents. By using the lattice L for membership degrees, the semantics of the

relation is clearer. Here we use 0, p−, p̃, p(m), p(w), p, p+ and 1 to respectively denote

“totally unpopular”, “mostly unpopular”, “somewhat popular”, “popular with men”,

“popular with women”, “popular”, “very popular”, and “totally popular”.

We can now define an L-fuzzy relation S3 : SPRT → CONT

S3 :=



Afr. Ant. Asia Aus. Eur. N.A. S.A.

curling p− 0 p̃ p− p(m) p+ p−

hockey p− 0 p̃ 0 p p+ p−

soccer p+ 0 p p̃ p+ p(w) 1

tennis p(w) 0 p̃ p p p(m) p̃



The relation S3 combined with the lattice L is both richer in information and simpler to

interpret. Unlike in the previous example, there is no need to select arbitrary elements

from the unit interval for membership degrees. The lattice can be refined or extended

as needed and provides a means for indicating membership degrees based on separate,

unordered criteria, such as the notion of popularity based on gender.

Next we show examples of important operations on relations. For some examples, we

use another relation S4 : SPRT → CONT to provide an alternative description of the
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popularity of sports on each continent.

S4 :=



Afr. Ant. Asia Aus. Eur. N.A. S.A.

curling p− 0 p− p− p+ p+ p−

hockey p− 0 p− p− p+ p+ p−

soccer p+ 0 p+ p+ p+ p− p+

tennis p− 0 p− p− p+ p− p+



Note that after the initial definition of a relation, the row and column labels are omitted,

but the order of the source and target elements is maintained.

2.4.3.1 Meet and Join of Relations

The meet and join of two relations is defined component-wise using the corresponding

binary operations on lattice elements discussed earlier.

S3 u S4 =


p− 0 p− p− p(m) p+ p−

p− 0 p− 0 p+ p+ p−

p+ 0 p p̃ p+ p− p+

p− 0 p− p p p− p̃


The meet of two relations results in a new relation where pairs are related by degrees

smaller than or equal to those in both the originals, i.e. S3 u S4 v S3 and S3 u S4 v S4.

Conversely, the join of two relations results in pairs which are related by degrees greater

than or equal than originally, i.e. S3 v S3 t S4 and S4 v S3 t S4.

S3 t S4 =


p− 0 p̃ p− p+ p+ p−

p− 0 p̃ p− p+ p+ p−

p+ 0 p+ p+ p+ p+ 1

p(w) 0 p̃ p+ p+ p+ p+



2.4.3.2 Alpha Cuts and Arrow Operations

An alpha cut S3p, for example, is a crisp relation identifying pairs which were in the

relation S3 to a degree of at least p. These pairs are lifted to degree 1, while the others
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are cut down to 0.

S3p =


0 0 0 0 0 1 0

0 0 0 0 1 1 0

1 0 1 0 1 0 1

0 0 0 1 1 0 0


Arrow operations also produce crisp relations. For example, the relation S↓3 cuts all

values in S3 smaller than 1 to 0,

S↓3 =


0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0


and the relation S↑4 lifts all values in S4 greater than 0 to 1.

S↑4 =


1 0 1 1 1 1 1

1 0 1 1 1 1 1

1 0 1 1 1 1 1

1 0 1 1 1 1 1



2.4.3.3 Converse and Composition

Let us consider an example combining converse and composition. Suppose that in addi-

tion to S4, we have a set of music genres, MUS = {country, electronic,metal, pop, rock},
and a relation M1 : MUS → CONT ,

M1 :=



Afr. Ant. Asia Aus. Eur. N.A. S.A.

ctry. 0 0 0 p− p− p+ 0

elec. p− 0 p p̃ p+ p̃ p−

metal p− 0 p− p(m) p+ p(m) p+

pop p 0 p p p p p

rock p̃ 0 p̃ p+ p+ p+ p+


.

Now suppose we wish to relate the popularity of sports to the popularity of music.

Using the converse and composition operations, we can compute a new relation to tell
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us to what degree pairs of sports and music genres are most commonly popular on some

continent.

We have so far S4 : SPRT → CONT and M1 : MUS → CONT , which cannot be

composed directly. Recall that composition requires that the target of the left operand

is the same as the source of the right operand.

Instead we can compose S4 with M`
1 : CONT →MUS,

S4;M
`
1 =


p− 0 p− p− p+ p+ p−

p− 0 p− p− p+ p+ p−

p+ 0 p+ p+ p+ p− p+

p− 0 p− p− p+ p− p+

;



0 p− p− p p̃

0 0 0 0 0

0 p p− p p̃

p− p̃ p(m) p p+

p− p+ p+ p p+

p+ p̃ p(m) p p+

0 p− p+ p p+


Notice here that the matrix representation of M`

1 is the transpose of M1. To compute

the result of this composition, we can take even more intuition from matrix operations.

S4;M
`
1 (x, z) has to be computed by taking the join of pairwise meets (x, y) u (y, z) for

all y ∈ CONT . We can compute the composition the same way we perform matrix

multiplication in linear algebra, except that instead of taking the sum of pairwise mul-

tiplications, we take the join of pairwise meets. The resulting relation is then given

by

S4;M
`
1 =



ctry. elec. metal pop rock

curling p+ p+ p+ p p+

hockey p+ p+ p+ p p+

soccer p− p+ p+ p p+

tennis p− p+ p+ p p+

.

This relation contains information that was not available earlier. In the context of this

example, it tells us that soccer and country music are not very popular on any common

continent.

Composition is a very useful operation for computing new relations. It can even be

extended to use other operations than meet and join, which is useful in applications,

and will be discussed later.
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Categories of Relations

3.1 Category Theory

In this chapter we will discuss a basic algebraic representation for L-fuzzy relations. We

want to frame this in the setting of a formal algebraic theory well-suited to typing in a

functional programming language. To this end we use category theory.

3.1.1 Categories

A category is a mathematical construction which abstractly describes objects and mor-

phisms between objects. For computer scientists, they are interesting because they

provide a formalized language for specifying and reasoning abstractly about data types

and programs. We use an enriched category to serve as our basic theory of L-fuzzy

relations.

Definition 3.1. A category C is

1. A collection of objects ObC ,

2. A collection of morphisms C[A,B], for every pair of objects A and B,

3. An associative, binary composition operation ; which maps morphisms f in C[A,B]

and g in C[B,C] to a morphism f ; g in C[A,C],

4. An identity morphism denoted by IA for all objects A. For all f in C[A,B] and g

in C[B,A] we have that IA; f = f and g; IA = g.

18
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We denote a morphism f from A to B by f : A → B. Notice that we use the same

notation here as we do for relations, which is appropriate since in the next section we

will introduce relations as the morphisms of a particular category.

Computer scientists and mathematicians should already be familiar with several cate-

gories. Take for example the category Set of sets and functions, or the category Vect of

vector spaces and linear transformations. Category theory abstracts these constructions

and provides an algebraic framework for reasoning about them.

There are several categories which serve as a framework for relations. The category Rel

has sets for objects and classical relations for morphisms, while L-Rel substitutes the

morphisms with L-fuzzy relations. Both of these are shown indeed to be categories by

the properties in Lemma 2.3, namely those showing the satisfaction of the identity laws

and the associativity of composition. Interestingly, L-Rel is too weak to algebraically

express the notion of crispness, and so for our work, a stronger category is required

which is introduced in the next section.

Furthermore, we mention the class of Cartesian closed categories (CCCs), which provides

an interpretation for the simply-typed lambda calculus, the fundamental theory on which

Coq and other functional programming languages are based. To define CCCs we need

to recall some other definitions from category theory.

Note that we sometimes use commuting diagrams to express properties in category

theory, i.e. diagrams where morphisms compose in the direction of the arrows and

composed paths must be equal.

Definition 3.2. A terminal object T of a category C is one such that for all objects X

in C, there exists a unique morphism X → T .

In the categories Set the terminal object is any singleton set, in Rel it is the empty set.

A product A × B of objects A and B in C is the categorical generalization for the

Cartesian product of sets, and for other constructions. Products are equipped with two

projection morphisms which abstractly identify its constituent objects.

Definition 3.3. A product of objects A and B in C is an object A × B together with

projection morphisms π1 : A×B → A and π2 : A×B → B such that for any f1 ∈ C[C,A]

and f2 ∈ C[C,B], there exists a unique F ∈ C[C,A×B] for which the following commutes:
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C

A A×B B

Ff1 f2

π1 π2

e.g. In Set the product A×B of objects A and B is simply the Cartesian product of A

and B.

As a theory of functional programming, the product alone is insufficient to express

higher-order functions. Instead we need an object that represents sets of morphisms. In

set theory, this corresponds to an object representing a function space. To express this

in category theory, the notion of exponents was introduced.

Definition 3.4. An exponent of objects A and B in C is an object BA along with an

evaluation morphism eval : BA ×A→ B such that for every morphism f : C ×A→ B,

there exists a unique morphism h : C → BA for which the following commutes:

C C ×A B

BA BA ×A

h h× IA

f

eval

e.g. In Set the exponent BA of objects A and B is the collection of all functions A→ B.

Finally, we define the class of Cartesian closed categories as follows:

Definition 3.5. A category C is Cartesian closed iff

1. C has a terminal object T ,

2. For all objects X and Y in C, there exists a product X × Y in C,

3. For all objects Y and Z in C, there exists an exponent ZY in C.

CCCs are part of a very important isomorphism along with intuitionistic propositional

logic and typed combinatory logic known as the Curry-Howard-Lambek isomorphism.

This isomorphism provides a sound foundation for proof assistants such as Coq, which

is discussed later.



Chapter 3. Categories of Relations 21

3.2 Heyting, Dedekind and Arrow Categories

In this section we discuss Heyting categories as our basic theory of relations. Our

implementation uses a variation of the original theory of Dedekind categories from [31].

3.2.1 Heyting and Dedekind Categories

We use the theory of Dedekind categories [21, 22] as the basic theory of relations through-

out this work. These categories are called locally complete division allegories in [10].

As mentioned in the introduction, the motivation for doing this is to establish a frame-

work for abstract algebraic reasoning about L-fuzzy relations. We introduce Heyting

categories as an adaptation of Dedekind categories more suitable for working with pro-

gramming language constructions.

Definition 3.6. A Heyting category R is a category satisfying the following:

1. For all objects A and B the collection R[A,B] is a Heyting algebra. Meet, join,

the induced ordering, the least and the greatest element are denoted by u, t, v,

⊥⊥AB and >>AB respectively.

2. There is a monotone converse operation ` mapping a relation Q : A → B to

Q` : B → A such that for all relations Q : A → B and R : B → C we have

(Q;R)` = R`;Q` and (Q`)
`

= Q.

3. For all relations Q : A → B,R : B → C and S : A → C the modular law

(Q;R) u S v Q; (R u (Q`;S)) holds.

4. There is a residual operation / such that for all objects A, B and C and for all

R,R′ : A→ C, S : B → C and T : A→ B,

(a) (R uR′)/S v R/S uR′/S

(b) T v (T ;S)/S

(c) (R/S);R v R

A Dedekind category is a Heyting category in which the collection of morphisms must

be a complete Heyting algebra.

The axiomatization of the residual operation used here is equivalent to one more com-

monly used in several other sources ([21],[20], [31], etc.) which states that for all relations

R : B → C and S : A → C the residual operation / is defined by S/R : A → B such

that for all X : A→ B, X;R v S ⇐⇒ X v S/R. [11]
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Heyting categories extend allegories, which are a more general category of relations, by

adding the join operation and the requirement of a complete lattice of morphisms. The

category L-Rel of L-fuzzy relations indeed forms a Dedekind category, as shown in [31]

using the properties of Lemma 2.3.

In Section 2.4 we introduced the notion of scalar relations with examples. In Heyting

categories, these are used to abstractly identify the membership values used by relations.

This is important for many applications, such as fuzzy controllers, where operations

involving partial identities are required.

In our implementation we decided to restrict all lattices to being Heyting algebras -

with no completeness requirement. Since we are interested in using this framework to

implement programs, we try to use only programming constructions which are easy to

work with. In that respect, we use finite lists to model subsets of lattice elements and

exclude the completeness property required to form a Dedekind category.

3.2.2 Arrow Categories

In some applications, we require an abstract mechanism for working with crisp rela-

tions. This is particularly important in fuzzy controllers, as many of the operations

require crisp relations. As mentioned earlier, an L-fuzzy relation is called crisp iff it

contains membership degrees of only 0 or 1. It was shown in [31] that the notion of

crispness cannot be abstractly expressed using Dedekind categories. To address this,

arrow categories were also introduced there.

Arrow categories add two new operations ↑ and ↓ which can be understood here just as

they were presented in section 2.4. In [31], arrow categories were introduced based on

Dedekind categories. For the purpose of this thesis, we allow an arrow category to be

based on either a Heyting category or a Dedekind category.

Definition 3.7. An arrow category A is a Heyting category (or Dedekind category)

with >>AB 6= ⊥⊥AB for all A, B and two operations ↑ and ↓ satisfying:

1. R↑, R↓ : A→ B for all R : A→ B

2. (↑, ↓) is a Galois correspondence, i.e., Q↑ v R iff Q v R↓ for all Q,R : A→ B.

3. (R`;S↓)↑ = R↑
`

;S↓ for all R : B → A and S : B → C

4. (Q uR↓)↑ = Q↑ uR↓ for all Q,R : A→ B

5. If αA 6= ⊥⊥AA is a non-zero scalar then α↑A = IA.
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Arrow categories provide a sufficient theory of L-fuzzy relations, providing the algebraic

mechanisms we need to specify and reason about their applications in abstract and con-

crete terms. And because we are interested in using them as a framework for programs,

we define an alternative category which again omits the requirement for completeness.

For the remainder of this thesis all references to arrow categories should be understood

as arrow categories extending a Heyting category rather than a Dedekind category.
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Depedent Type Theory

4.1 Dependent Types

Dependent types are types dependent on terms. This is an important notion that forms

the cornerstone of the type system used by Coq and some other functional programming

languages. The best way to introduce dependent types is by example.

4.1.1 Dependent Type Structures

In Coq, like in other programming languages, we can use structures or records to define

new types. In most languages, these types are static, meaning that the type of the type

itself is immutable. For example, consider the type of matrices. In some cases, we may

wish to distinguish between different sizes of matrices at the type level.

In Java for example, there is no convenient way to use a single class to define the type

of n by m matrices such that each size constitutes a different type. Instead, all such

matrices would have the same type, or we would need to explicitly write other classes

to define matrices with specific sizes.

In Coq, we use dependent type structures. Here we briefly explain some basic Coq

syntax on the fly before a detailed overview in the next section.

Example 4.1.1. The following code defines the type of n by m Boolean-valued matrices

dependent on the values of n and m as a partial map from indices to matrix entry:

Structure BMatrix (n m : nat) := {

matrix_map (i j : nat) : i < n -> j < m -> bool

}.

24
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The above can be understood as follows. In the first line, we are telling Coq that we

want to define BMatrices as a new type defined by the constituent fields of a Structure,

which is synonymous with Record. This type should be dependent on parameters n and

m of type nat, which defines the set of natural numbers.

The next line defines the single constituent field of this type, but there could be many

which must be separated by ;. The field matrix map defines the matrix as a partial map

from the matrix indices to a Boolean value. It is parametrized on the matrix indices i

and j, which both must be of type nat. Then, the type of the field given by i < n -> j

< m -> bool is a function requiring as input an object of type i<n and an object of type

j<m returning a Boolean value. These function parameters are actually requirements for

proofs that the indices are in the range of the matrix. This notion will be discussed at

length later.

With this definition we can now use BMatrix as a type in programs and proofs. In

Section 4.3 we will return to this example and use Coq’s type checking system to show

where this dependent type fits into the overall type hierarchy.

4.1.2 The Calculus of Constructions

Coq’s logic is based on the Calculus of Constructions (CoC), which is deeply integrated

into the type system in order to provide a sound foundation for reasoning.

It is important to understand this theory in order to understand Coq. The CoC is

a higher-order typed lambda calculus, and it extends the Curry-Howard isomorphism

between programs and proofs in intuitionistic propositional logic. As a programming

language foundation, this is important because it admits logical propositions (Prop) as

one of the fundamental types. By extension, mathematical constructions can be correctly

defined by their formal definitions, as expressed in terms of propositions. Furthermore,

proofs of propositions can be completed by demonstrating type inhabitance.

4.1.2.1 Type Inhabitance

In Coq, the notion of type inhabitance is used to prove propositions by providing a

witness to a type which expresses it. In the CoC if a type encoding a proposition has

a witness, then the proposition must be true. The richness of Coq’s type system allows

this in a very natural way. Furthermore, propositions can also be dependently typed.

We demonstrate this using a simple example.

Example 4.1.2. Consider the trivial proposition: forall A, A → A, where A is any

proposition. We can use the natural-deduction style proof language prove it.
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Lemma P1 : forall (A : Prop) , A -> A.

intro A. intro x. apply x. Qed.

This proposition is proven by applying intro to assume A:Prop and x:A, the witness

to A. We then apply x to show that indeed, given any A:Prop, A implies A. More details

about proofs and tactics including intro will be given in the next chapter. Next, let us

define a function with the same signature.

Definition PFun : forall (A : Prop), A -> A := fun A x => x.

This can be read as the lambda expression λ(A:Prop)(x:A).x and it provides a witness to

the type forall (A : Prop), A -> A which can be used directly in proofs as follows:

Lemma P2 : forall (A : Prop), A -> A.

apply PFun. Qed.

The existence of PFun proves that the type forall (A : Prop), A -> A is indeed

inhabited, which is sufficient to show that the proposition is true. P1 and P2 are now

equivalent proofs of the same proposition.

4.2 Russel’s and Girard’s Paradoxes

A system which is suitable for programming and proving should provide its users with an

assuredness that the underlying logic is consistent. In a consistent logic it is not possible

to prove contradictory formulae or paradoxes. This should be a crucial requirement for

the reasoning component of any project employing formal methods. And since this

project derives implementation from specification, it is crucial that all constructions are

consistent.

Not all proof assistants satisfy this requirement, and some suffer from inconsistency

by Girard’s Paradox. This can be interpreted in a way which compares it to Russel’s

Paradox, which famously demonstrates the inconsistency of naive set theory. It uses

naive set theory to construct the set of all sets that do not contain themselves as elements,

which is inconsistent. The paradox can be summarized symbolically:

if R = {x|x /∈ x} then R ∈ R ⇐⇒ R /∈ R.

To address this inconsistency, axiomatic set theory was introduced and formalized as

Zermelo-Fraenkel set theory (ZFC), which restricts set comprehension by distinguishing

between elements which are themselves sets and those which are not.
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Russel’s paradox is an example of an impredicative construction. An impredicative type

system is one in which types are quantified over themselves. In other words, they allow

types to contain the constructions they are supposed to define, which often leads to

logical inconsistency.

Investigations of consistency in type systems have been inspired by Russel’s paradox

and the formalization of ZFC. It has been shown that constructive type systems such as

U and U−, where both Type and Prop are impredicative, suffer from inconsistency. In

other words, in such type systems it is possible to build proof terms of type ⊥, or the

canonical representation of false, which is certainly not a desirable property.

Considerable work has been done by Coquand et. al. to understand this and, in practice,

is resolved by the inclusion of type predicativity in Coq. Predicative type systems

do not allow types to be defined in terms of themselves. In practice, however, this

can be obscured from the user and managed by the type system, which Coq handles

automatically. For more details, we refer to [15].

4.3 Predicative Types and Universe Variables

Coq uses the notion of distinct universe levels to avoid circular type dependency. It

achieves this by assigning universe variables to types which classify other types as part

of a theoretically infinite hierarchy of types. If we think of sets, for example, the in-

consistent construction described in Russel’s paradox would no longer be inconsistent

because Coq would enforce that two distinct levels of sets are used in the definition.

Conveniently, all type level inferences are done automatically, so there is no need to

manage this manually. This is due to Coq’s predicative type system, which is actively

enforcing that no quantified type object has its quantifiers instantiated with the object

itself. For more details we refer to [7].

In practice this ensures that types derived from other types are classified properly. In

addition to avoiding inconsistent constructions, this also ensures that type hierarchies

reflect their intended definitions and that implementation is distinct from specification.

We demonstrate this with a continued example.

Example 4.3.1. In Section 4.1 we introduced the type BMatrices. We will use Coq’s

type checker to see where this fits in the type hierarchy.

First we need a variable with appropriate label and type:

Variable (M1 : BMatrix 3 2).
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Using the Check command, we can check its type:

Check M1.

M1 : BMatrix 3 2

Coq’s response to this query is that M1 indeed has type BMatrix 3 2, which does not

require any further classification. We can proceed by checking the type of BMatrix 3 2

itself.

Check BMatrix 3 2.

BMatrix 3 2 : Set

Coq classifies BMatrix 3 2 as a Set, namely the set of all 3 by 2 BMatrices. Let us

consider two more type queries:

Check Set.

Set : Type (* (Set)+1 *)

Check Type.

Type (* Top.4 *) : Type (* (Top.4)+1 *)

With these two queries, we begin to see Coq adding universe variables to type classifica-

tions. The classification of Set requires a universe variable which is greater than that of

Set itself. This is given by (* (Set)+1 *), which tells us that Coq assigned a universe

variable one level higher than Set’s. This explicit classification of Set exemplifies the

predicativity of the type system.

Finally the last query shows that Type itself must be classified by a higher type in the

hierarchy. The universe variables Top.4 and Top.4+1 are automatically computed and

assigned by the type system.
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The Coq Proof Assistant

In this section we give by example an informal overview of Coq for the purpose of de-

scribing the basic features used in the implementation. Some features which we used

only infrequently will be discussed in the following chapters as needed. There are many

features of Coq which were not used and are therefore not discussed. For more informa-

tion about Coq, we refer to [8].

5.1 Set, Prop and Type

Coq has three fundamental type classifications called sorts. These are Set, Type and

Prop. Set is the universe of all possible program types and specifications, while Prop

is the universe of logical propositions. As mentioned earlier, propositions represent the

types of proof terms. A proposition is only proved when the type representing it is

inhabited. Type encompasses both Set and Prop.

Every term has exactly one type which can be checked by the user at any time during

an interactive session using the command Check.

Check 3.

3 : nat

Check nat.

nat : Set

Check plus.

plus : nat -> nat -> nat

Every program statement must be terminated by a period. As mentioned, every proof

specification is a Prop,

29
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Check forall a b, a + b = b + a.

forall a b, a + b = b + a : Prop

while a proof of a Prop is a witness to its type. Remark that here the types of a and b are

inferred by the types of the function they appear in, as they sometimes are. Generally

it is necessary to specify the types of variables, i.e. replacing forall a b with forall

(a b : nat).

We provide a witness to this proof type by identifying the proposition as a Lemma and

switching to the proof language and providing a completed, saved proof.

5.2 Proofs and Tactics

As mentioned above, propositions in Coq are proved by using tactics and applying other

proved facts. In this work, most of the proofs are completed methods commonly used

in the literature. We make extensive use of induction and substitution rules.

It should be noted that in many proofs, use of the tactic induction does not necessarily

mean that we are proving a goal by induction. In Coq, this tactic is in some cases

synonymous with destruct or elim, which all break down an inductively defined object

into its distinct cases. Sometimes this is needed to prove by case analysis. In other

cases, we really mean to prove by induction, for example where lists are involved.

In many proofs, substitution rules are required to make progress towards proving a goal.

This means that associative, distributive, commutative and other laws are explicitly

encoded and applied when needed. Let us consider a simple example by proving the

commutativity of + over natural numbers using Coq’s interactive command line mode.

Coq < Lemma Plus_Commutative : forall (a b : nat), a + b = b + a.

1 subgoal

============================

forall a b : nat, a + b = b + a

The first line is typed by the user. We wish to show that + is a commutative operator.

Coq generates the proof goal, as shown beneath the horizontal line. We will begin the

proof by applying an introduction intros rule to create variables for a and b.

Plus_Commutative < intros.

1 subgoal
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a : nat

b : nat

============================

a + b = b + a

The tactic intros creates and names variables, placing them into the local context -

the set of assumptions available for proving the current goal. It does this for a variety

of formulae, including universally quantified expressions as seen here. It also acts as an

implication introduction rule, where a goal’s antecedent is added to the local context

and a name is given.

We proceed by inductive reasoning on a.

Plus_Commutative < induction a.

2 subgoals

b : nat

============================

0 + b = b + 0

subgoal 2 is:

S a + b = b + S a

The tactic induction a generates a subgoal for each of the cases in the inductive defi-

nition of nat - 0 and S for the successor function.

Plus_Commutative < auto.

1 subgoal

a : nat

b : nat

IHa : a + b = b + a

============================

S a + b = b + S a

A call to auto combines assumption tactics and introduction/reduction rules to attempt

to solve the current goal. It is able to solve the base case of this proof automatically.

Plus_Commutative < simpl.

1 subgoal

a : nat
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b : nat

IHa : a + b = b + a

============================

S (a + b) = b + S a

The tactic simpl combines recursively applied expansion and reduction tactics to pro-

duce a simplified expression. With the now simplified expression, we can apply the

induction hypothesis IHa to the goal.

Plus_Commutative < rewrite IHa.

1 subgoal

a : nat

b : nat

IHa : a + b = b + a

============================

S (b + a) = b + S a

Notice the use of a rewrite rule. We can substitute equal terms of an expression to

make progress towards a goal. If an assumed equation matches the current goal we

would call apply rather than rewrite.

A call to auto manages to solve the goal, and the keyword Qed closes the proof. A

summary of the applied tactics is given followed by confirmation that the lemma has

been successfully defined.

Plus_Commutative < auto.

No more subgoals.

Plus_Commutative < Qed.

intros.

induction a.

auto.

simpl.

rewrite IHa.

auto.

Plus_Commutative is defined

An understanding of the tactics discussed so far is sufficient to understand most of the

proofs in this work, which are heavily based on applying or substituting proven lemmas.
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For example, having already defined a lemma for the commutativity of plus, we may

wish to apply it in other proofs.

Coq < Lemma Plus_C : forall a b c, a + b + c = c + b + a.

1 subgoal

============================

forall a b c : nat, a + b + c = c + b + a

Plus_C < intros.

1 subgoal

a : nat

b : nat

c : nat

============================

a + b + c = c + b + a

To prove this goal, we use the previous lemma as a rewrite rule. That is, for all a

and b, occurrences matching a + b may be substituted by b + a. There are generally

three different ways to apply rewrite rules - without term matching, with partial term

matching and with full term matching.

Plus_C < rewrite (Plus_Commutative a _).

1 subgoal

a : nat

b : nat

c : nat

============================

b + a + c = c + b + a

Here we are applying partial term matching. rewrite (Plus Commutative a ) will

substitute the first occurrence of a + with + a, where is a wildcard. This is

necessary because a rewrite rule may apply in more than one term of an expression, as

is the case here.

Next we will tell Coq that only an occurrence of (b + a) + c should be substituted by

c + (b + a).

Plus_C < rewrite (Plus_Commutative (b+a) c).

1 subgoal
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a : nat

b : nat

c : nat

============================

c + (b + a) = c + b + a

A call to auto is insufficient to complete this proof automatically. It may be obvious

that + is an associative operator, but we need to convince Coq that this is true. Luckily,

this fact is built into the arithmetic library and the proof is easily completed.

Plus_C < apply plus_assoc.

No more subgoals.

Plus_C < Qed.

intros.

rewrite (Plus_Commutative a _).

rewrite (Plus_Commutative (b + a) _).

rewrite plus_assoc.

Plus_C is defined

From this point on, we will denote omitted proofs, proof steps or program statements by

(***). All implementation programs and proofs can be found unedited in the appendix.

5.3 Structures

Now that we have seen some details about proofs in Coq, we turn our attention to

program constructions. As mentioned earlier, we can define new types using structures.

We are mainly interested in creating types which are a combination of objects, operations

and properties. Consider the type of non-empty lists.

Structure NEList A := {

ls : list A;

ls_not_empty : [] <> ls

}.

This structure simply combines a list containing elements of any fixed type and a proof

that the list is not empty. To build an instance of NEList we need to provide a value

for ls and a proof of the proposition ls not empty.
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We can define a list using notation similar to other functional programming languages.

We define xs to be a singleton list containing a single element 1.

Definition xs := [1].

We then use a basic rule about lists from Coq’s List module to show that [1] is not

empty,

Lemma xs_ne : [] <> xs.

apply nil_cons.

Qed.

where nil cons is a proof of the fact that any list which has a head and a tail cannot

be empty, and since [1] is a shorthand for 1 :: nil, the rule applies.

Now, in any situation where we must use or reason with non-empty lists, we can use the

type NEList to make available as an assumption the fact the embedded list is certainly

not empty.

The fields of a structure can be accessed via their projection functions. Given a type A,

and a non-empty list nelA : NEList A, we access its fields as follows:

Check (ls _ nelA).

: list A

Check (ls_not_empty _ nelA).

: [] <> ls A nelA

Here the middle argument indicates that we wish the parameter A to be inferred, if

possible.

5.4 Functions

Functions are, of course, the bedrock of any functional programming language, and Coq

allows users to work with them in a familiar way to other languages. In Coq functions

are specified in curried form, i.e. a function f : (x, y) → z is specified by f : x -> y

-> z, and may be specified and passed as parameters. Consider the following example.

Definition Ap : (nat -> nat -> nat) -> nat -> nat -> nat :=

fun Op a b => (Op a b).

The function Ap takes a binary operator over nat and two more arguments of type nat.

The keyword fun followed by the variable names Op a b binds them to the corresponding

types in the function body where the operator Op is applied to a and b.
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There are other ways to define and label function arguments. We can define Ap equiva-

lently by

Definition Ap (Op : nat -> nat -> nat) (a : nat) (b : nat) : nat :=

Op a b.

5.4.1 Fixpoint

Coq uses the keyword Fixpoint to denote the definition of a recursive function. Recur-

sive functions must be decreasing on some argument and Coq enforces this to ensure

termination. Let us consider an example which also demonstrates inductive pattern

matching.

Fixpoint fac (n : nat) :=

match n with

| 0 => 1

| S x => S x * fac x

end.

The factorial of a natural number is defined recursively. We define the function by

matching the argument with one of the two clauses for natural numbers - either 0 or

the successor of some number. In the base case, corresponding to the basis definition

for natural numbers, 1 is returned. In the inductive case, a recursive call is made to fac

which is decreasing in its argument. Induction and recursion are used extensively in this

work, especially where lists are involved.

5.4.2 Lambda Expressions

Lambda expressions are used to define anonymous functions. This is especially useful

for writing bounded expressions where variables are not necessarily assumed in advance.

For example we can use a lambda expression to directly write an anonymous function

for another function’s parameter.

Check Ap (fun a b : nat => fac a + fac b).

Ap (fun a b : nat => fac a + fac b) : nat -> nat -> nat
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5.5 Infix Operators, ‘Notation’

For expressing properties and completing proofs, it is often very helpful to use operator

symbols instead of function names. Infix operators are defined as follows.

Infix "+" := plus (at level 50).

This defines + to be a left-associative operator for plus, at a precedence level of 50. In

Coq a lower level has higher precedence. Operators can be assigned right associativity

by appending “,right associativity” after the level declaration.

Postfix operators are defined as follows.

Notation "n !" := (fac n) (at level 50).

Here n is assumed to be a variable of the appropriate type for the function it appears

in on the right hand side of the notation declaration. Precedence and associativity are

assigned as they are for infix operators.

5.6 Prop vs. bool

Prop is the type of logical propositions. They are used to express properties and rea-

son about program constructions. It is generally not the case that a Prop necessarily

evaluates or computes to true or false.

For example, the following proposition about Prop can not be proven without making

additional assumptions about Prop

Lemma P : forall (p q : Prop), p = q \/ p <> q.

which states that for all propositions p and q, either p = q or p 6= q.

Because Prop is not inductively defined, there are no tools for reasoning by case analysis.

Furthermore some propositions can neither be proven true nor false. This is due to Coq’s

implementation of constructive logic, which as a consequence does not assume the law of

excluded middle holds. That is, Coq does not assume by default that, for all propositions

p, p ∨ ¬p.

This is in stark contrast to bool, the type of Boolean values. The following proposition

is easily proven by case analysis on the Boolean values.

Lemma B : forall (b c : bool), b = c \/ b <> c. (***)
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This relationship has to be understood and applied to define new types which are in-

volved in computation. More on this will be discussed in the next chapter.



Chapter 6

L-Fuzzy Relations in Coq

In this chapter we present our implementation of concrete, finite L-fuzzy relations with

an emphasis on operations. Then we specify and prove properties about L-fuzzy rela-

tions. Because we are using three different levels of categories, we have separated the

proofs of required properties accordingly. In the next chapter we will apply these to for-

malize an algebraic theory of L-fuzzy relations. The complete source code with proofs

can be found in the online / digital appendix. We omit the bodies of most proofs in this

document.

We begin by discussing type structures which are necessary for defining L-fuzzy relations

and operations on them. Though type classes are available in Coq, we opted not to use

them as they are still an experimental feature. Instead, we often define structures for

combining types and use their projection functions.

6.1 Types

We have made an effort to define objects and operations using the most general type

available, but sometimes constraints on types must be made, for example to ensure

decidability so that operations are computable. We use the following type constructions

as needed.

6.1.1 Decidable Types

Because we need to have computable if-then-else constructions for certain operations,

we need to have decidable types and a computable equality function. A type is decidable

39
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if for any pair of elements, they are either equal or not equal. But computable equality

is only possible via a Boolean-valued function.

Consider the identity relation as defined Definition 2.8. It may seem possible to imple-

ment it using a Prop such as

(x=y -> IdRel x y = Top ) /\ (x<>y -> IdRel x y = Bot)

however for reasons discussed in Section 5.6, this is not generally computable. Instead,

we would like to define the identity using an if-then-else construction. To make this

possible, we define DType for decidable types as follows:

Structure DType := {

DT : Type;

Deq : forall x y : DT, {x = y} + {x <> y};

CDeq x y := if Deq x y then true else false

}.

where DT is the carrier type, Deq is a proof of the type being decidable, and CDeq trans-

forms this property into a Boolean-valued function. Remark that fields of a structure

using the assignment operator := are just pseudonyms for other objects or functions,

not additional requirements.

The property Deq can be understood as follows. For an arbitrary type, it is not generally

true that the equality of two elements is decidable. This extends from the fact discussed

in the last chapter, namely that propositions do not necessarily evaluate to true or false.

The notation x = y + x <> y is a type construction indicating that its elements must

be proven to satisfy one property or the other, that two elements are decidably either

equal or not. This is an example of a coproduct in category theory, specifically of the

disjoint union of sets.

The function CDeq exploits the decidability property to provide a computable equality

function, which is exactly what we need to define certain operations, as we will see later.

In addition to the above property, we define an infix operator and prove two lemmas

which are useful in later proofs.

Infix "===" := (CDeq) (at level 69, right associativity).

Lemma CDeqProp (A : DType) :

forall (x y : DT A), x = y <-> x === y = true. (***)

Lemma CDeqPropFalse (A : DType) :

forall (x y : DT A), x <> y <-> x === y = false. (***)
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CDeqProp states that elements are equal if and only if they are deemed equal under the

decidable equality property Deq. This is because Deq states that for all pairs of elements

we have a proof either of type x=y or x<>y. That allows us to do a case distinction on

the proof type for a pair of elements. The converse property CDeqPropFalse follows

from similar reasoning.

6.1.2 Finite Decidable Non-Empty Types

Finite decidable non-empty types (FTypes) are used to build non-empty finite source

and target sets for relations. Without them, we would not be able to define certain

operations which consider all the elements of a type, such as composition. We define

FTypes as being decidable types together with an enumeration of elements in the form

of a list, a proof that this list is complete, and a proof that the list is not empty.

Structure FType := {

D : DType;

FT := DT D;

Elements : list FT;

Prf_All_Elements : forall (a : FT), In a Elements;

Prf_Elements_Not_Empty : Elements <> []

}.

6.2 Heyting Algebras

In this framework lattices are used for two purposes. We have a lattice of membership

values for relations, and we have the lattice of relations themselves as is required to

form a Heyting category. To be more precise, the lattices we use are Heyting algebras

(HeytA). First we define the operations.

6.2.1 Operations

We define a Heyting algebra (Definition 2.5) in two parts. First we have the HeytA

operations.

Structure HeytAOps (LA : Type) := {

Carrier := LA;

Meet : LA -> LA -> LA;

Join : LA -> LA -> LA;
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PsComp : LA -> LA -> LA;

Bot : LA;

Top : LA;

LUB : list LA -> LA := fun ls => fold_right Join Bot ls;

GLB : list LA -> LA := fun ls => fold_right Meet Top ls;

Order : LA -> LA -> Prop := fun x y => Meet x y = x

}.

HeytAOps is parametric on LA, the underlying type of lattice elements. We need to have

a type-parametric definition to be able to work with lattices of relations having variable

source and target types. Then for operations we have respectively the binary meet, join

and relative pseudo-complement operations, the bottom and top elements, and finally

subset LUB and GLB operations and the order relation.

Notice that LUB and GLB are defined in terms of their binary counterparts using fold

functions over lists. Because of this definition, there is no need to prove either com-

pleteness property - which state that there must exist a least upper bound and greatest

lower bound for every subset of lattice elements.

Notice also that the order relation between elements is defined algebraically in terms of

the meet operation, as opposed to order-theoretically.

6.2.2 Axioms

We define infix operators and shorthands for HeytA operations which are consistently

used throughout the rest of this work before defining the collection of axioms.

Infix "&&&" := (Meet Ops) (at level 60, right associativity).

Infix "|||" := (Join Ops) (at level 61, right associativity).

Infix "-->" := (PsComp Ops) (at level 62, right associativity).

Infix "<<<" := (Order (Ops L’)) (at level 63, right associativity).

Definition Top’ := Top Ops.

Definition Bot’ := Bot Ops.

Structure HeytAProps := {

(* Algebraic Lattice Laws *)

Join_Assoc : forall (a b c : LA), (a ||| b) ||| c = a ||| (b ||| c);

Meet_Assoc : forall (a b c : LA), (a &&& b) &&& c = a &&& (b &&& c);

Join_Absorp: forall (a b : LA), a ||| a &&& b = a;
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Meet_Absorp: forall (a b : LA), a &&& (a ||| b) = a;

Join_Distr : forall (a b c : LA), a ||| (b &&& c)

= (a ||| b) &&& (a ||| c);

Join_Comm : forall (a b : LA), a ||| b = b ||| a;

Meet_Comm : forall (a b : LA), a &&& b = b &&& a;

(* Bounded Lattice Laws *)

Join_Bot : forall (a : LA), a ||| Bot’ = a;

Meet_Top : forall (a : LA), a &&& Top’ = a;

(* Heyting Algebra Properties *)

p1 : forall (a : LA), a --> a = Top’;

p2 : forall (a b : LA), a &&& (a --> b) = a &&& b;

p3 : forall (a b : LA), b &&& (a --> b) = b;

p4 : forall (a b c : LA), a --> (b &&& c) = (a --> b) &&& (a --> c)

}.

The use of infix operators makes it very convenient to work with HeytAs in proofs and

in programming.

We combine the operations and axioms into a third structure:

Structure HeytA (LA : Type) := {

Ops : HeytAOps LA;

Props : HeytAProps Ops

}.

In addition to the above axioms, there are many properties about HeytA operations

which follow from the axioms. We specified and proved almost 40 lemmas about HeytA

operations which are applied in later proofs about relations. These can be found in the

digital appendix in LatticeProperties.v.

6.3 L-Powersets

Before defining the type of L-fuzzy relations, we first define the type of L-powersets.

These are modelled on the exponential objects of a Cartesian closed category. Recall

that in the category of sets, the exponential object of two objects Z and Y is ZY , the

function space Y → Z.

The motivation for this definition is to prove a mapping property about HeytAs and

HeytA-valued functions. Namely, we want to show that for some type A given L :
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HeytA, the collection of all functions A -> L also forms a HeytA. This fact will allow us

to easily construct the HeytA of relations for a Heyting category.

6.3.1 Operations

We define LPow as follows.

Definition LPow L A := A -> L.

Next we define the operations of an LPow-valued HeytA. Note that we consistently use

L’ as a variable HeytA and LA as its carrier type in every possible context.

Definition Meet’ : LPow LA A -> LPow LA A -> LPow LA A :=

fun f g x => (f x) &&& (g x).

Definition Join’ : LPow LA A -> LPow LA A -> LPow LA A :=

fun f g x => (f x) ||| (g x).

Definition PsComp’ : LPow LA A -> LPow LA A -> LPow LA A :=

fun f g x => (f x) --> (g x).

Definition Top’ : LPow LA A :=

fun x => Top.

Definition Bot’ : LPow LA A :=

fun x => Bot.

6.3.2 Properties

With LPow operations defined, we must now prove that they satisfy the axioms of a

HeytA. This is a very straightforward task with the help of an extensionality property

on LPow functions.

Lemma Eq_LPow (f g : LPow LA A) : (f = g) <-> (forall x, f x = g x).

This is easily proved by applying a generic rule for functional extensionality. We proceed

with the axioms,

Lemma Join_Assoc : forall (f g h : LPow LA A),

(f ||| g) ||| h = f ||| (g ||| h).

Lemma Meet_Assoc : forall (f g h : LPow LA A),

(f &&& g) &&& h = f &&& (g &&& h).

Lemma Join_Absorp: forall (f g : LPow LA A), f ||| f &&& g = f.

Lemma Meet_Absorp: forall (f g : LPow LA A), f &&& (f ||| g) = f.

Lemma Join_Distr : forall (f g h : LPow LA A),
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f ||| (g &&& h) = (f ||| g) &&& (f ||| h).

Lemma Join_Comm : forall (f g : LPow LA A), f ||| g = g ||| f.

Lemma Meet_Comm : forall (f g : LPow LA A), f &&& g = g &&& f.

Lemma Join_Bot : forall (f : LPow LA A), f ||| Bot’ = f.

Lemma Meet_Top : forall (f : LPow LA A), f &&& Top’ = f.

Lemma p1 : forall (f : LPow LA A), f --> f = Top’.

Lemma p2 : forall (f g : LPow LA A), f &&& (f --> g) = f &&& g.

Lemma p3 : forall (f g : LPow LA A), g &&& (f --> g) = g.

Lemma p4 : forall (f g h : LPow LA A),

f --> (g &&& h) = (f --> g) &&& (f --> h).

and build the HeytA of LPows

Definition LPowOps :=

Build_HeytAOps (LA:=LPow LA A) (Meet’ L’)

(Join’ L’) (PsComp’ L’) Bot’ Top’.

Definition LPowProps :=

Build_HeytAProps (LA:=LPow LA A) (Ops := LPowOps)

Join_Assoc Meet_Assoc Join_Absorp Meet_Absorp

Join_Distr Join_Comm Meet_Comm Join_Bot Meet_Top p1 p2 p3 p4.

Definition LPowHeytA := Build_HeytA LPowProps.

6.4 L-Fuzzy Relations

In this section, we first define the type of L-fuzzy relations and their operations. Then

we prove the properties about those operations necessary for formalizing them as an

algebraic theory in the next chapter.

6.4.1 Operations

First we define the type of L-fuzzy relations as LRel.

Definition LRel L A B := LPow (LPow L B) A.

These are simply functions A -> B -> L for arbitrary types. We impose restrictions on

the types of A, B and L in the definitions of operations.
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Before defining the operations, we need to declare a variable HeytA of membership values.

In this implementation we are assuming a fixed-basis, meaning that all relations share

a common HeytA of membership values. We declare

Variables (DLA : DType) (L’ : HeytA (DT DLA)).

Definition LA := (DT DLA).

Now we have to show that the collection of LRels between arbitrary source and target

sets forms a HeytA. This will be required to instantiate a Heyting category. Since LRels

are defined in terms of LPows, we define the HeytA of LRels by directly applying the

mapping property proven about LPows in the last section.

Definition LRel_Lat A B := LPowHeytA A (LPowHeytA B L’).

Next, we define the various operations on LRels as found in Section 2.4.

First we define the composition of LRels. As described in earlier examples, this can

be understood as taking the LUB of point-wise meets in the matrix representation of a

relation in a similar fashion to matrix multiplication.

Definition Comp (A B C : FType) :

LRel LA (FT A) (FT B) -> LRel LA (FT B) (FT C) -> LRel LA (FT A) (FT C) :=

fun Q R x z => (LUB (map (fun y => (Q x y) &&& (R y z)) (Elements B))).

We assign an infix operator to composition.

Infix ">.>" := (Comp) (at level 64, right associativity).

The identity LRel over a type A is defined as having Top on the diagonal and Bot

otherwise.

Definition IdRel (A : FType) : LRel LA (FT A) (FT A) :=

fun x y => if x === y then Top else Bot.

The converse operation simply transposes source and target.

Definition Conv (A B : FType) :

LRel LA (FT A) (FT B) -> LRel LA (FT B) (FT A) :=

fun R y x => (R x y).

The left residual is defined similarly to composition, except that we take the GLB of

point-wise relative pseudo-complements.

Definition LeftRes (A B C : FType) :

LRel LA (FT A) (FT C) -> LRel LA (FT B) (FT C) -> LRel LA (FT A) (FT B) :=

fun S R x y => GLB (map (fun z => R y z --> S x z) (Elements C)).
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The arrow operations on LRels are defined component wise.

Definition Up’ x := if x === Bot then Bot else Top.

Definition Down’ x := if x === Top then Top else Bot.

Definition Up (A B : FType) :

LRel LA (FT A) (FT B) -> LRel LA (FT A) (FT B) :=

fun R x y => Up’ L’ (R x y).

Definition Down (A B : FType) :

LRel LA (FT A) (FT B) -> LRel LA (FT A) (FT B) :=

fun R x y => Down’ L’ (R x y).

The greatest and least relations map every pair to Top and Bot respectively.

Definition RTop (A B : FType) : LRel LA (FT A) (FT B) :=

fun x y => Top.

Definition RBot (A B : FType) : LRel LA (FT A) (FT B) :=

fun x y => Bot.

And finally, scalar relations (partial identities) are formed by setting all entries on the

diagonal to a single HeytA element a and setting all other entries to Bot.

Definition RScalar (A : FType) (a : LA) : LRel LA (FT A) (FT A) :=

fun x y => if x === y then a else Bot.

6.4.2 Properties

As mentioned earlier, we separate the various properties which must be proven about

LRels by their corresponding categorical construction. The following lemmas are about

concrete LRels. Their labels co-incide with the properties of Theorem 3.1 (category and

Dedekind properties) and Lemma 3.3 (arrow properties) in [31] and are summarized in

Lemma 2.10 of this thesis.

In the next chapter, we will use these lemmas about concrete LRels to show that they

form an instance of an abstract category, Dedekind category and finally an arrow cate-

gory.
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6.4.2.1 Category Properties

To form a category, we will need to show two basic properties; namely that the identity

laws are satisfied and that composition is associative. In terms of LRels this means that

we need to show the following.

Lemma P1_R : forall (A B : FType) (Q : LRel LA (FT A) (FT B)),

Q >.> (IdRel (A:=B) L’) = Q.

Lemma P1_L : forall (A B : FType) (Q : LRel LA (FT A) (FT B)),

(IdRel (A:=A) L’) >.> Q = Q.

Lemma P2 : forall (A B C D: FType) (Q : LRel LA (FT A) (FT B))

(R : LRel LA (FT B) (FT C)) (S : LRel LA (FT C) (FT D)),

(Q >.> R) >.> S = Q >.> (R >.> S)

6.4.2.2 Dedekind Properties

Heyting categories extend the base category by adding the converse and residual opera-

tions as well as an interpretation for scalar relations. The properties of these operations

are the same for a Dedekind or a Heyting category.

We define infix operators for the meet, order and left residual operations on relations.

Infix "&R&" := (RMeet L’) (at level 64, right associativity).

Infix "<R<" := (ROrder L’) (at level 68, right associativity).

Infix "/R/" := (LeftRes L’) (at level 67, right associativity).

We proceed by proving the following properties about LRels.

Lemma P3 : forall (A B : FType) (Q1 Q2 : LRel LA (FT A) (FT B)),

Conv (Q1 &R& Q2) = (Conv Q1) &R& (Conv Q2).

Lemma P4 : forall (A B C : FType) (Q : LRel LA (FT A) (FT B))

(R : LRel LA (FT B) (FT C)),

Conv (Q >.> R) = (Conv R) >.> (Conv Q).

Lemma P5 : forall (A B : FType) (Q : LRel LA (FT A) (FT B)),

Conv (Conv Q) = Q.

Lemma P7 : forall (A B C : FType) (Q : LRel LA (FT A) (FT B))

(R : LRel LA (FT B) (FT C)) (T : LRel LA (FT A) (FT C)),

Q >.> R &R& T <R< Q >.> (R &R& (Conv Q) >.> T).

Lemma ResP1 : forall (A B C : FType) (R1 R2 : LRel LA (FT A) (FT C))
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(S : LRel LA (FT B) (FT C)),

(R1 &R& R2) /R/ S <R< (R1 /R/ S) &R& (R2 /R/ S).

Lemma ResP2 : forall (A B C : FType) (T : LRel LA (FT A) (FT B))

(S : LRel LA (FT B) (FT C)),

T <R< (T >.> S) /R/ S.

Lemma ResP3 : forall (A B C : FType) (R : LRel LA (FT A) (FT C))

(S : LRel LA (FT B) (FT C)),

(R /R/ S) >.> S <R< R.

Lemma ScalarProp : forall (A : FType) (R : LRel LA (FT A) (FT A)),

(R <R< IdRel(A:=A) L’ /\

RTop (A:=A)(B:=A) L’ >.> R = R >.> RTop (A:=A)(B:=A) L’)

-> (forall x y, R x x = R y y).

6.4.2.3 Arrow Properties

Arrow categories extend Dedekind/Heyting categories by adding the arrow operations.

We prove the following properties about the arrow operations. These correspond to the

requirements of Definition 2.13.

Lemma AP1_1 : forall (A B : FType) (Q R : LRel LA (FT A) (FT B)),

Up L’ Q <R< R -> Q <R< Down L’ R.

Lemma AP1_2 : forall (A B : FType) (Q R : LRel LA (FT A) (FT B)),

Q <R< Down L’ R -> Up L’ Q <R< R.

Lemma AP2 : forall (A B C : FType) (R : LRel LA (FT B) (FT A))

(S : LRel LA (FT B) (FT C)),

Up L’ ((Conv R) >.> (Down L’ S)) = (Conv (Up L’ R)) >.> (Down L’ S).

Lemma AP3 : forall (A B : FType) (Q R : LRel LA (FT A) (FT B)),

(Up L’ (Q &R& (Down L’ R))) = ((Up L’ Q) &R& (Down L’ R)).

Lemma AP4 : forall (A : FType) (R : LRel LA (FT A) (FT A)),

R <R< IdRel(A:=A) L’ /\

RTop (A:=A)(B:=A) L’ >.> R = R >.> RTop (A:=A)(B:=A) L’ /\

R <> RBot (A:=A)(B:=A) L’ -> Up L’ R = IdRel (A:=A) L’.



Chapter 7

Arrow Categories in Coq

In this chapter we first define the types of categories, Heyting categories and arrow cate-

gories. We then construct an instance of an arrow category having FTypes as objects and

LRels between FTypes as the morphisms by applying the proofs about LRels discussed

in the previous chapter.

7.1 Categories

7.1.1 Category

We begin by defining a type for a base category. The following definition is based on

the type Category in ConCaT - a freely-available package for constructive category

theory in Coq [14]. The main difference here is that we chose not to use setoids for the

collection of morphisms. Instead we simply use an arbitrary type. The advantage of

using setoids is that they allow any equivalence relation to be used to define equivalent

morphisms. In our implementation, morphisms are equivalent only when equal. The

following implements Definition 3.1.

Structure Category : Type := {

Ob : Type;

Hom : Ob -> Ob -> Type;

CComp : forall a b c : Ob, (Hom a b) -> (Hom b c) -> (Hom a c);

Id : forall a : Ob, Hom a a;

Comp_Assoc : forall (a b c d : Ob)

(f : Hom a b) (g : Hom b c) (h : Hom c d),

CComp (CComp f g) h = CComp f (CComp g h);

Idl_law : forall (a b : Ob) (f : Hom a b), CComp (Id _) f = f;
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Idr_law : forall (a b : Ob) (f : Hom a b), CComp f (Id _) = f

}.

A category consists of a type for the objects, the Hom-set of morphisms, a composition

operation, an identity morphism, and proofs of the associativity of composition and of

the two identity laws.

Finally, we define an infix operator for morphisms.

Infix "-->" := Hom (at level 95, right associativity).

7.1.2 Category LREL

Now we want to construct LREL - the category with FTypes as objects and LRels as

morphisms. Since we have already proven all the required properties about concrete

LRels, this is a simple task.

Since LRels are parametric on a single HeytA of membership values, we declare this as

a variable.

Variables (DLA : DType) (L’ : HeytA (DT DLA)).

We then build a Category by applying the required proofs.

Definition LREL := Build_Category (P2 L’) (P1_L L’) (P1_R L’).

7.2 Heyting Categories

Our next step is to define the type of Heyting categories and show that LREL together

with additional operations and properties forms a Heyting category. Since our imple-

mentation is geared towards modelling only finite relations, we use the HeytA defined

earlier for the lattice of relations.

From a theoretical point of view, the following construction loses generality over infinite

relations, but since we are interested in computing with relations, this concession does

not have any serious impact aside from assuming that lists, and not a more general

collection type, are used to model subsets of elements.
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7.2.1 Heyting Category

A HeytingCategory extends a base Category by requiring that the collection of mor-

phisms forms a HeytA, adds the converse and residual operations and requires that they

satisfy the axioms of a Heyting category. The following implements Definition 3.6.

Structure HeytingCategory : Type := {

FC : Category;

HomLattice (A B : Ob FC) : HeytA (A-->B);

OpConv (A B : Ob FC) : (A-->B) -> (B-->A);

ConvP0 : forall (A B : Ob FC) (Q R : A-->B),

OpConv ((Meet(Ops (HomLattice A B))) Q R) =

(Meet(Ops (HomLattice B A))) (OpConv Q) (OpConv R);

ConvP1 : forall (A B C : Ob FC) (Q : A-->B) (R : B-->C),

OpConv (Q >.> R) = (OpConv R) >.> (OpConv Q);

ConvP2 : forall (A B : Ob FC) (Q : A-->B),

OpConv (OpConv Q) = Q;

ModularLaw : forall (A B C : Ob FC)

(Q : A-->B) (R : B-->C) (S : A-->C),

(Order(Ops (HomLattice A C)))

(Meet (Ops (HomLattice A C)))

(Q >.> R) S)

(Q >.> (Meet(Ops (HomLattice B C)) R ((OpConv Q) >.> S)));

OpLRes : forall (A B C : Ob FC),

(A-->C)-> (B-->C) -> (A-->B);

ResP1 : forall (A B C : Ob FC) (R1 R2 :A -->C) (S : B-->C),

Order(Ops(HomLattice A B))

(OpLRes (Meet(Ops (HomLattice A C)) R1 R2) S)

(Meet(Ops (HomLattice A B)) (OpLRes R1 S) (OpLRes R2 S));

ResP2 : forall (A B C : Ob FC) (T : A-->B) (S : B-->C),

Order(Ops(HomLattice A B)) T (OpLRes (T >.> S) S);

ResP3 : forall (A B C : Ob FC) (R : A-->C) (S : B-->C),

Order(Ops(HomLattice A C)) ((OpLRes R S) >.> S) R

}.

Notice that we use the notation A-->B to denote a morphism from A to B, i.e. Hom A B,

in the category C. Also, since Meet and Order are parametric on their HeytA, we cannot

conveniently define infix operators for them in the definition.
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7.2.2 HeytingCategory HLREL

Now we proceed by constructing HLREL by extending LREL. Once again, we first declare a

variable HeytA of membership values and then construct HLREL by providing the required

objects, operations and proofs from the concrete level.

Variables (DLA : DType) (L’ : HeytA (DT DLA)).

Definition LA := DT DLA.

Definition HLREL :=

Build_HeytingCategory

(FC:=LREL L’)

(HomLattice := fun (A B : FType) => LRel_Lat L’ (FT A) (FT B))

(OpConv := Conv (DLA:=DLA))

(P3 L’) (P4 L’) (P5 (DLA:=DLA)) (P7 L’)

(ResP1 L’) (ResP2 L’) (ResP3 L’).

7.3 Arrow Categories

We define the type ArrowCategory. This definition corresponds almost directly to Def-

inition 3.7, except that the Galois correspondence axiom is split into two implications.

7.3.1 ArrowCategory

We implement ArrowCategory as an extension of a Heyting category.

Structure ArrowCategory : Type := {

FD : HeytingCategory;

OpUp (A B : Ob (FC FD)) : (A --> B) -> (A --> B);

OpDown (A B : Ob (FC FD)) : (A --> B) -> (A --> B);

arrow_1_1 : forall (A B : Ob (FC FD)) (Q R : A --> B),

(OpUp Q) <<< R -> Q <<< (OpDown R);

arrow_1_2 : forall (A B : Ob (FC FD)) (Q R : A --> B),

Q <<< (OpDown R) -> (OpUp Q) <<< R ;

arrow_2 : forall (A B C : Ob (FC FD)) (R : B --> A) (S : B --> C),

OpUp ((OpConv R) >.> (OpDown S)) = (OpConv (OpUp R)) >.> (OpDown S);

arrow_3 : forall (A B : Ob (FC FD)) (Q R : A --> B),

OpUp (Q &&& OpDown R) = (OpUp Q &&& (OpDown R));



Chapter 7. Arrow Categories in Coq 54

arrow_4 : forall (A : Ob (FC FD)) (R : A-->A),

(Order (Ops(HomLattice A A))) R (Id A) /\

(ATop A A) >.> R = R >.> (ATop A A) /\ ~(R = ABot A A) ->

(OpUp R) = Id A

}.

7.3.2 Arrow Category ALREL

Finally, we show that HLREL along with the arrow operations and properties defined and

proven on LRels forms an arrow category.

Variables (DLA : DType) (L’ : HeytA (DT DLA)).

Definition LA := DT DLA.

Definition ALREL :=

Build_ArrowCategory

(FD:=HLREL L’)

(OpUp := Up L’)

(OpDown := Down L’)

(AP1_1 (L’:=L’)) (AP1_2 (L’:=L’))

(AP2 L’) (AP3 L’) (AP4 (L’:=L’)).



Chapter 8

Computing with LRels

In this chapter we show how to build instances of all the components required to work

with LRels as an instance of an arrow category.

8.1 Heyting Algebra

In this section we demonstrate how to define a Heyting algebra of membership values.

For this example, we define a Heyting algebra for three possible membership values, T,

M, and F. We start by defining the carrier type L3, which is simply an enumeration of

the three values.

Inductive L3 : Type := F | M | T.

Next, we have to show that this is a decidable type. This follows from the fact that it is

an enumeration type, and is proven automatically by the tactic decide equality. We

define DL3 as follows.

Lemma L3_Deq : forall (x y : L3), {x = y} + {x <> y}.

decide equality.

Defined.

Definition DL3 : DType := Build_DType L3_Deq.

Notice the use of the keyword Defined rather than Qed in the above lemma. This ensures

that the entire proof term is retained in an executable form. We proceed by defining

Heyting algebra operations for L3. Here we define them explicitly by case distinction

and collect them into L3 Ops
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Definition Meet : L3 -> L3 -> L3 :=

fun a b => match a with

| T => match b with | T => T | M => M | F => F end

| M => match b with | T => M | M => M | F => F end

| F => match b with | T => F | M => F | F => F end

end.

Definition Join : L3 -> L3 -> L3 :=

fun a b => match a with

| T => match b with | T => T | M => T | F => T end

| M => match b with | T => T | M => M | F => M end

| F => match b with | T => T | M => M | F => F end

end.

Definition PsComp : L3 -> L3 -> L3 :=

fun a b => match a with

| T => match b with | T => T | M => M | F => F end

| M => match b with | T => T | M => T | F => F end

| F => match b with | T => T | M => T | F => T end

end.

Definition Bot : L3 := F.

Definition Top : L3 := T.

Definition L3_Ops := Build_HeytAOps Meet Join PsComp Bot Top.

Next we prove that these operations indeed form a Heyting algebra. This is an easy

task for Coq and can be completed by computation. For instance, the first of the 13

properties we need to prove is the associativity of Join, and it is proven as shown below.

Definition L3_Props : HeytAProps L3_Ops.

apply Build_HeytAProps.

intros; elim a; elim b; elim c; compute; auto.

(***)

Qed.

The rest of the properties are proven similarly, though with the appropriate number of

operand eliminations. Lastly we use L3 Props to build a Heyting algebra.

Definition L3_Lat := Build_HeytA (LA:=DT DL3) L3_Props.
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8.2 Source and Target Types

With our Heyting algebra of membership values defined, we must now construct FTypes

for source and target sets. As an example, we will define an FType containing 4 elements.

Since an FType extends a DType we begin by following the same steps as in the previous

section.

Inductive E4 : Type := A4 | B4 | C4 | D4.

Definition E4_Deq : forall (x y : E4), {x = y} + {x <> y}.

decide equality.

Defined.

Definition DE4 : DType := Build_DType E4_Deq.

Next we have to provide a list of E4 elements and prove that this list contains every

element of that type. Additionally, we must prove that the list is not empty. These are

also very easy proofs which Coq can complete by computation. This will give us FE4,

the FType over E4.

Definition E4Elements := [A4;B4;C4;D4].

Lemma E4PrfElements : forall (a : DT DE4), In a E4Elements. (***)

Lemma ElemNE : E4Elements <> []. (***)

Definition FE4 : FType := Build_FType E4PrfElements ElemNE.

We similarly define other source and target types FE3, a 3 element type, and FBool, the

FType over bool.

8.3 Relations and Operations

In this section we are interested in computing with relations as the morphisms in an

instance of an arrow category. The point of this is to guarantee that the behaviour of

the operations is consistent with the algebraic theory.

We start by declaring an instance of an arrow category using L3 Lat - the Heyting

algebra of membership values defined in the last section.

Definition L3_ALREL : ArrowCategory := ALREL L3_Lat.
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Now we can define some examples of relations. Consider the relations R : FBool -->

FE3 and Q : FE3 --> FE4 expressed first as matrices.

R :=

( A3 B3 C3

true T M F

false M M F

)
Q :=


A4 B4 C4 D4

A3 T M F F

B3 T M F F

C3 T M F F


We can define these in Coq as follows.

Definition R : FBool --> FE3 :=

fun x y => match x with

| true => match y with | A3 => T | B3 => M | C3 => F end

| false => match y with | A3 => M | B3 => M | C3 => F end

end.

Definition Q : LRel L3 (FT FE3) (FT FE4) :=

fun x y => match x with

| A3 => match y with | A4 => T | B4 => M | C4 => F | D4 => F end

| B3 => match y with | A4 => T | B4 => M | C4 => F | D4 => F end

| C3 => match y with | A4 => T | B4 => M | C4 => F | D4 => F end

end.

Notice that the type of R is written using the notation for morphism while Q uses the

notation for concrete L-relations. At this level the notations are interchangeable.

We can now apply various operations and compute results. A function RelApp is defined

to print a relation in row-major order. We use it to look at the relation R and the identity

relation on FE3.

Eval compute in RelApp R.

= [[T; M; F]; [M; M; F]]

Eval compute in RelApp (Id (c:=C’) FE3).

= [[T; F; F]; [F; T; F]; [F; F; T]]

Now, for example, we can compute the result of applying the operation up arrow op-

eration R followed by composition with the identity relation. We first compute this

operation ‘by hand’, and then show the computation performed in Coq.

R↑; IFE3 =

(
T M F

M M F

)↑
;


T F F

F T F

F F T

 =

(
T T F

T T F

)
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Eval compute in RelApp (OpUp R >.> (Id (c:=C’) FE3)).

= [[T; T; F]; [T; T; F]]

Or as final example, we can combine other operations as desired. Consider the following

computation first ‘by hand’ and then by using Coq.

Q`↓;R` =


T M F F

T M F F

T M F F


`↓

;


T M F F

T M F F

T M F F

 =


T T T

F F F

F F F

F F F

 ;


T M

M M

F F

 =


T M

F F

F F

F F


Eval compute in RelApp ((OpDown (OpConv Q) >.> OpConv R)).

= [[T; M]; [F; F]; [F; F]; [F; F]]
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Conclusion and Future Work

In this thesis we have presented a framework for reasoning and computing with L-fuzzy

relations in categorical constructions based on Dedekind and arrow categories. This

can be used to specify, reason about, and implement applications based on L-fuzzy

relations such as fuzzy controllers or fuzzy databases. For this all to be possible in the

same language bridges a gap between specification and implementation. We hope that

projects like this will help increase the adoption of functional programming languages

and interactive proof assistants for formal software development and verification.

In future work, we will construct detailed examples of programs specified and developed

in Coq using our framework. Furthermore, for the sake of formalizing the algebraic

theory, we would like to implement the original definition of Dedekind categories and

complete Heyting algebras, which would not require that subsets of lattice elements are

modelled by finite lists. This would be useful in mathematical applications, but is not

required for specifying and developing programs.

Furthermore, it would be very useful to integrate properties such as the Heyting algebra

axioms into Coq’s automation tactics so that additional properties can be proven more

easily. Most of the proofs in our work consist of applying a small set of tactics to axioms

and other auxiliary properties, and this seems to present an opportunity for a significant

degree of automation.
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Appendix

The source code for the framework implemented in Coq can be downloaded at the

following URL:

http://www.cosc.brocku.ca/~mwinter/LRelationsInCoq.zip
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