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Abstract 
 

 

Research into the evolutionary origins of sociality in insect colonies is changing 

emphasis from understanding how eusociality is maintained to how insects transition 

from solitary to social lifestyles. The pygmy carpenter bees (Ceratina spp.) offer an 

excellent model for investigating such factors as they have been historically thought of as 

solitary but have recently been shown to be socially polymorphic, which may indicate 

that they are currently in a transitive phase. By utilizing behavioural observation and 

experimental removal protocols, I show that extended parental care, as well as sibling 

care in Ceratina calcarata plays an important role in offspring development. I found, 

upon removal of the mother, that specifically produced ‘dwarf’ female offspring take 

over parental care roles in the nest. The existence of alloparental care and generational 

overlap suggests that although they are classified as solitary bees, C. calcarata possess 

the prerequisite behavioural repertoire for sociality.   
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Introduction 

Parental care in insects 

 

Parental care is broadly defined as any investment in offspring following 

fertilization of the female gamete (Trivers, 1972; Royle et al., 2012). Trivers (1972) first 

defined parental care in terms of the reproductive investment of the parent. That is, 

parental investment is any energy spent to increase the quality or future fitness of an 

offspring, at the cost of future reproductive success of the breeder (Trivers, 1972). Thus, 

the amount of investment a parent gives an offspring is modified by the cost to future 

reproductive success, be it in the form of reduced condition of the parent, or loss of 

mating opportunity (Trivers, 1972). This inequality between the resource demands of the 

offspring and the fitness demands of the parent results in conflict (Trivers, 1974). Given 

the inherent tradeoffs between parental care and future reproductive success, many forms 

of parental care exist which act to maximize, or at least balance, the needs of the parent 

and the offspring.   

There are many forms of parental care behaviours in insects, and even though 

patterns of parental care behaviours are generally species specific, it is helpful to loosely 

categorize them chronologically by offspring development. Parental care behaviours can 

be divided broadly into three stages: pre-oviposition care, offspring development care, 

and adult brood care. Prior to oviposition the two main parental care forms are 

oviposition site selection and nest creation (Royle et al, 2012). During offspring 

development, from egg until the emergence of the adult, the main parental care 

behaviours are guarding, maintenance, and food provisioning of the developing offspring. 



2 

 

Once the offspring emerge as adults, parental care behaviours are still generally brood 

guarding and food provisioning.  

  Oviposition site selection simply refers to non-randomly depositing a clutch of 

eggs (Royle et al., 2012). Such site selection reduces the probability of predation and 

allows for the control of the microclimate in which the offspring develop. In some species 

of insect, oviposition site selection is accompanied by nest creation behaviour. Nest 

creation can range from simple burrows dug into soil by lone gravid females like some 

Gryllidae species (West and Alexander, 1963), to complex structures built by many 

individuals of a social group like paper wasp hives. The creation of a nest acts to limit 

predation risk further and better manage the microclimate in which the offspring develop 

(Royle et al., 2012).  

Once oviposition occurs, the next group of parental care behaviours include 

offspring attendance and mass or progressive provisioning (Royle et al., 2012). 

Attendance refers to any guarding or maintenance of offspring by the parent. For example 

male Giant Water Bugs of the family Belostomatidae, rear offspring by attaching a clutch 

of eggs to their backs (Lauck, and Menke, 1961). The male protects the clutch and aerates 

the eggs until they hatch. Provisioning refers to the act of providing food for the 

developing offspring, and is separated into two categories: mass provisioning and 

progressive provisioning (Royle et al., 2012). Mass provisioning insects provide a one-

time store of food to the newly laid eggs, which will be all the food the offspring will 

have access to until emerging as adults. Progressive provisioning is providing food 

continually during the offspring’s development. Sand wasps, especially in the tribe 

Alyssontini, lay their eggs on live, incapacitated, prey items, and then seal the egg 
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chamber (Evans, 2007). These prey items act as the only source of food until the 

offspring emerge as adults. Alternatively, the burying beetles, genus Nicrophorus, 

continually feed their developing larvae by regurgitation (Smiseth and Parker, 2008).  

Parental care of adult brood generally refers to offspring attendance and provisioning. 

Parental care in the primitive cockroach, Cryptocercus punctulatus, lasts from oviposition 

until well into offspring adulthood (Nalepa, 1988). Aside from offspring attendance and 

progressive provisioning during development, parents of this species provide sustenance 

for adult offspring through specialized anal secretions and produce only one brood in 

their life time. Generally, guarding and feeding mature brood rarely occurs in insects 

(Royle et al., 2012). 

A parental care strategy employed by a few insect species is alloparental care. 

Alloparental care is simply defined as the parental investment given by an individual 

conspecific that is not the genetic parent (Wilson, 1975). The alloparent can assist in all 

of the parental care behaviours discussed above (except oviposition site selection), and 

generally, the alloparent tends to be a relative, a sibling or a past offspring of the breeder 

(West-Eberhard, 1975). For example, in the African Allodapine bee, Allodapula dichroa, 

communally nesting sisters arrange themselves by size and form a reproductive queue 

(Tierney, and Schwarz, 2009). While the larger sister breeds, the smaller ones help care 

for the brood.  

The level of investment of an alloparent can vary greatly, from ephemeral, low-

investment maintenance behaviours to life-long morphological and behavioural 

specialization. For example, in the Passalid beetles, adult offspring help care for 

developing siblings by repairing pupal cases (Schuster and Schuster, 1997). However, 
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this behaviour only lasts until the adult offspring have dispersed. Alternatively, in all the 

highly eusocial termites, rigid social castes exist in which some individuals become 

specialized for long-term brood care (Wilson, 1971).  

Alloparental care behaviour is interesting because it is considered an altruistic 

behaviour and represents a costly investment on the part of the alloparent (Alonzo-

Alvarez and Velando, 2012). While alloparental behaviour can be very beneficial by 

increasing brood fitness and the reproductive output of the breeder, the potential costs to 

the fecundity and fitness of the alloparent can be substantial. Although the alloparental 

fitness costs may be minimal in a species like the aforementioned Passalid beetle, 

individuals in a colony of eusocial wasps may lose all future reproductive potential by 

taking on the role of alloparent (Queller and Strassmann, 1998).   

Hamilton (1964) initially proposed a solution to the problem of such altruistic 

behaviour. He asserted that altruism can appear when the indirect reproductive benefits to 

the altruist outweigh the direct fitness costs of such behaviour, and that the ratio of costs 

to benefits is modified by the relatedness between the altruist and the recipient. For 

example, in a eusocial wasp colony where reproduction is dominated by a single female, 

the alloparent sisters of the queen may benefit more by helping their highly related sister 

to rear offspring rather than producing their own (Queller and Strassmann, 1998).  

The idea that altruistic behaviour arises due to the reproductive advantage of a 

species genotype, and the relatedness of the individuals was termed inclusive fitness by 

Hamilton (1964). Inclusive fitness refers to the net fitness garnered from both direct and 

indirect reproductive routes. As mentioned above, indirect fitness benefits are based on 

the relatedness of the altruist to the recipient, whereas the direct benefits of altruism can 
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come in the form of extended parental learning, inheritance of territory, or becoming the 

dominant breeder (Alonzo-Alvarez and Velando, 2012). An excellent example of both 

indirect and direct fitness benefits of alloparenting comes from the European paper wasp, 

Polistes exclamans. P. exclamans sisters nest together and create a reproductive hierarchy 

where reproduction is left solely to the dominant female (Strassmann, 1998). Cooperative 

brood care is thought to exist in this group because of the high benefits of inheriting nest 

substrate and reproductive dominance. Once the dominant queen is lost, the next sister in 

line has a chance to be the dominant breeder. Hence, not only do females gain indirect 

fitness benefits from increasing the fitness of their sister’s brood, but they also have a 

chance to gain direct fitness benefits through inheritance of social position.   

Social categories in insects  

Solitary  

 

A solitary life history generally refers to the behaviour displayed by a species 

whose females do not share breeding sites and show no parental care toward offspring 

(Tallamy, 1984; Wilson, 1971). For example, females in the order Ephemeroptera, all of 

which are solitary, deposit eggs randomly into a source of water, such as a lake or stream, 

and then die (Allen, 1965). Subsociality is a subcategory of solitary behaviour, and 

denotes the presence of prolonged parental care (Tallamy, 1984). According to Michener 

(1964), the mother in a subsocial species guards and progressively feeds her offspring 

until they reach maturity and leaves thereafter. This definition was further refined by 

Wilson (1971) who divided subsociality into two intermediate stages which differed in 

the presence of cooperative brood care behaviour. Currently, a subsocial species is 

generally accepted as one where a single female deposits her eggs all together in a non-
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random area, guards and maintains the nest site and either mass provisions or 

progressively feeds the developing offspring (Tallamy, 1984; Plateaux-Quenu, 2008; 

Crespi and Yanega, 1995).  

Parasociality 

 
Parasociality is a broad category which is defined based on the communal nesting 

of two or more same-generation females, and is further divided into three subgroups 

based on the presence of cooperative brood care and division of reproductive labor 

(Wilson, 1971; Crespi and Yanega, 1995). Communal nesting is the first parasocial 

category and is defined simply by the sharing, amongst conspecifics, of a common 

nesting substrate. If cohabitating females are found to cooperate in caring for each other’s 

brood, than the group is termed quasisocial. Finally, if reproductive division of labor is 

present in a cohabitation of same-generation females, then it is considered to be a 

semisocial group. Generally, a semisocial species consists of a group of nesting females 

where only one is reproductively active and the rest cooperate in nest construction and 

brood care. 

Eusociality 

 

Eusocial insects are defined as those that show cohabitation by multiple 

generations of individuals, cooperative brood care, and reproductive caste specialization 

(Andersson, 1984; Wilson, 1971; Crespi and Yanega, 1995). A typical eusocial colony 

like that of the honey bee, Apis mellifera, consists of a reproductive queen, specialized 

simply to reproduce, while the rest of the colony consists of workers that may be a mix of 

many generations of offspring, all of them specialized for specific tasks based on colony 
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maintenance or defense (Wilson, 1971). Through either behavioural or physiological 

means, queens control the reproductive potential of the colony, preventing reproduction 

by workers. The two classes of eusociality, primitively and complex, differ in that castes 

are morphologically distinct in complex eusociality, but similar in primitive eusociality.  

Presocial 

 

 Presociality was originally a category of social behaviour which represented 

subsociality and parasociality combined (Wilson 1971; Crespi and Yanega, 1995). 

Essentially, presocial is a catch-all term for any species that exhibits social behaviour that 

falls short of the eusocial prerequisites. Choe and Crespi (1997) note, however, that the 

term presocial is an inappropriate classification as it implies that presocial species are not 

yet social. They argue that defining species as presocial underappreciates the complexity 

of behaviour in non-social species by defining them based on their relation to sociality. 

Given the difficulties with the term “presocial”, and the lack of utility of such a broad 

category, I propose using “presocial” to refer to any species that exhibits social behaviour 

but shows no parental care. 

Routes to eusociality  

 

The evolution of eusociality is generally thought to progress by two alternate 

routes: the subsocial route and the parasocial route (Wilson, 1975; Costa, 1997; Fig. 1). 

The essential defining characteristic which separates them is the order in which eusocial 

characteristics are developed. The subsocial route is thought to progress through three 

stages of development. Wilson (1971) summarized the subsocial route to eusociality by 

separating subsociality into three subcategories. Primitive subsociality is the first step, 
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where only simple parental care exists (see Solitary above). From here overlap of 

generations develops (intermediate subsocial I) and then cooperative brood care occurs 

(intermediate subsocial II). Finally the route ends at the eusocial stage with the 

development of reproductive castes. Each step in the subsocial route has been 

hypothesized to have a specific driver. First, group living and parental care become 

advantageous if predation or parasitism is high or if food quality is low (Gadagkar, 1990). 

Second, manipulation of offspring to stay in the nest as helpers leads to cooperative 

behaviour. Finally, eusociality is reached when genetic asymmetries are exploited by kin 

recognition, resulting in sterility of helper castes (Gadagkar, 1990).  

The parasocial route focuses on increasing degrees of cooperative brood care by 

same-generation females. The parasocial route begins with communal nesting by same-

generation females, and then progresses to quasisociality with the advent of cooperative 

brood care (Ross, 1983). Next, semisociality develops when a single female starts to 

dominate reproduction. Finally, if the colony lasts, overlap between generations develops, 

and eusociality is reached.  
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Number of 

cohabiting 

females

Parental care strategy 

No maternal care Maternal care Maternal and 

alloparental care

1 Solitary Subsocial Not relevant

2+ Presocial Communal Semisocial/ Eusocial

Figure 1: Behavioural categories pertaining to sociality and maternal care in bees. 

Solid arrows denote the hypothesized subsocial route to eusociality. Dashed arrows 

denote the parasocial route to eusociality.
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General description of nesting biology in the genus Ceratina  

 

The genus Ceratina are twig nesting carpenter bees that can be found throughout 

the world, barring only the polar regions (Sakagami and Maeta, 1984; Michener, 1990; 

Rehan, Richards, and Schwarz, 2009). Most temperate Ceratina species are univoltine, 

producing a single brood during the warmer months of the year, but bivoltinism is known 

in some tropical species. Nesting phenology in Ceratina begins with the emergence of 

overwintering adults in the early spring. Newly emerged females forage, mate, and then 

begin looking for suitable nest sites. The preferred nesting substrate varies by species and 

region; however, all nest types share the quality of having a soft pithy centre.  

Nest creation in Ceratina consists of a single female excavating a linear burrow in the 

pithy center of a twig, within which individual brood cells are constructed (Sakagami and 

Maeta, 1984; Michener, 1990; Fig. 2). Eggs are laid serially within brood cells, and once 

an egg is laid the brood cell is closed with a partition molded from the removed pith. 

Ceratina are mass provisioners, which means that each egg laid is provided with a loaf of 

pollen and nectar that comprises the larva’s entire food supply (Fig. 2). Foraging for the 

pollen loaf is performed by the mother concurrently with brood cell construction. 

Offspring development generally last for about six weeks, and following eclosion, adults 

either disperse or remain and overwinter in the natal nest until the next spring. 
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Pollen provision

Brood cell maintenance

Guarding Mother

Figure 2: Schematic of generalized C. calcarata nests, with maternal care 

behaviours highlighted. Modified from Rehan, Richards & Schwarz 2009.
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Parental care in Ceratina 

 

Parental care in the genus Ceratina includes mainly nest creation, food 

provisioning, and offspring attendance (Sakagami and Maeta, 1984; Michener, 1990). As 

stated above, all known Ceratina lay their eggs in excavated twigs, and mothers remain 

with their brood at least until they emerge as adults. Mass provisioning is the only form 

of juvenile food provisioning observed in Ceratina. Offspring attendance is separated 

into two behaviours, brood maintenance and nest defense. Once a female has finished 

nest construction (including all oviposition and provisioning behaviour), she remains in 

the nest during offspring development. During the period from oviposition to emergence 

of the adult offspring, mothers periodically inspect brood cells to remove fecal debris and 

parasites. They also guard the nest entrance from intruders during this time (Fig 2). 

 Although the above parental care behaviours are common throughout the genus 

Ceratina, the relative expression of each varies. For example, in C. megastigmata, the 

mother tears down cell walls once and progressively removes debris (Sakagami and 

Maeta, 1977). Cell walls are never reconstructed, so after a certain larval stage all 

offspring are raised in a common chamber. In C. iwatai brood maintenance is altogether 

absent, since mothers do not inspect brood cells at all. Instead, brood cell debris is 

removed en masse once offspring have eclosed (Sakagami and Maeta, 1977). 

 Brood care in the genus Ceratina generally concludes with the eclosion of the 

brood. Even in species which exhibit bivoltinism, adult parental care is very rare, and 

adult attendance has only been observed in two Ceratina species. In C. japonica and C. 

flavipes mothers have been observed to forage for adult offspring once they have eclosed 

as adults (Sakagami and Maeta, 1977). Although the adult offspring were never observed 
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consuming pollen brought by the mother, this was inferred from the fact that pollen was 

found in the crops of individuals that were never observed to forage themselves.  

 Ceratina japonica and C. flavipes also represent the only Ceratina species that 

may show alloparental care (Sakagami and Fukuda, 1973; Sakagami and Maeta, 1977).  

In a few C. japonica and C. flavipes nests, the first female offspring to emerge were 

found to forage at the same time as their mother. Sakagami and Maeta (1977) were able 

to infer that these daughters were feeding siblings in C. japonica and C. flavipes nests. 

The authors observed female offspring bringing back pollen loads to their nests, and 

when the nest occupants were later dissected, pollen was found in their crops. However, 

specific information regarding exact methodology and sample sizes was not included in 

the report. Sakagami and Laroca (1971) also observed foraging daughters in the Brazilian 

Ceratina, C. asuncionis and C. oxalidis; however, sample sizes were very low (<5) and 

feeding of siblings was never recorded. 

 

Social variation in the genus Ceratina 

 

The genus Ceratina, as a whole, is considered to be solitary. Given the 

widespread incidence of parental care behaviours like nest loyalty, offspring attendance, 

and nest guarding, the genus is generally further classified as subsocial (Michener, 1962; 

Tallamy, 1986). However, many examples of social behaviour exist throughout the 

genus, indicating that Ceratina are a socially polymorphic group of bees. In most cases 

social associations are found between females of the same generation, even though some 

examples of cross generation associations do exist. Ultimately, of the social categories 
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discussed above, examples of quasisociality, semisociality, and even primitive eusociality 

have all been found in the Ceratina. 

Semisocial interactions have been observed in the temperate Asian species, 

Ceratina okinawana, C. japonica, and C. flavipes, and also in the tropical species 

Ceratina megastigmata, C. smaragdula, C. dentipes, C. australensis, and C. 

nigrolateralis (Rehan, et al., 2009; Sakagami and Maeta, 1977). Sakagami and Maeta 

(1984; 1977) showed that roughly 20% of C. japonica nests were occupied by same-

generation females. Cohabitating C. japonica tend to form a reproductive hierarchy 

where size appears to dictate dominance. Generally, the larger of the two cohabitating 

females acts as the primary egg-layer and nest guard, while the smaller female acts as the 

forager. Even though the small female is reproductive, the larger female controls 

reproductive output by eating the small female’s eggs.  Similarly, in C. okinawana 

semisocial nests could be created by artificially introducing multiple breeding females 

into a single nest (Sakagami and Maeta, 1984). In C. flavipes very rare instances of 

cohabitation by same generation females were found to result in semisocial associations 

with reproductive hierarchies similar to those of C. japonica; however, the division of 

labor was very unstable, with task allocation tending to break down. Ultimately, it was 

problematic to define a C. flavipes nests as quasisocial or semisocial since division of 

labor appeared to fluctuate (Sakagami and Maeta, 1987).  

In a few cases, quasisociality has been seen in Ceratina iwatai, C. megastigmata, 

(Sakagami and Maeta, 1977) and C. australensis (Rehan et. al., 2009), but the rarest 

social structure found in Ceratina is primitive eusociality. To date only C. megastigmata 

(Katayama and Maeta, 1979), C. japonica, and C. okinawana (Sakagami and Maeta, 
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1977; Sakagami and Maeta, 1984) have been suggested to nest eusocially in very rare 

circumstances. One instance of cohabitation was found between two C. japonica females 

of different generations with reproductive dominance by the older larger female, 

indicating a primitively eusocial association. However, Sakagami and Maeta (1977) were 

unable to conclude that this was mother-daughter association, as opposed to two 

unrelated individuals. Similarly, eusocial nests were found to be inducible in C. 

okinawana, and interestingly, relatedness appeared to dictate reproductive role (Sakagami 

and Maeta, 1984). When kin cohabitation nests were induced, that is, when a previous 

daughter was added to her mother’s second brood, the mother was found to take on the 

role of ’queen’. Conversely, in non-kin nests where an unrelated newly eclosed female 

was introduced to a breeding female’s nest, the young female tended to take on the 

‘queen’ role.  

Current state of sociobiological understanding in Ceratina calcarata 

 

Ceratina calcarata is a univoltine, mass-provisioning species of small carpenter 

bees (Vickruck and Richards, 2012; Rehan and Richards, 2010b). In early spring, 

generally around the end of April, C. calcarata emerge from overwintering nests, termed 

hibernacula (Fig. 3). Generally, the hibernacula are the natal nests of offspring that 

emerged the previous summer. Newly overwintered females forage and mate and begin to 

found new nests by the beginning of May (Fig. 3). Ceratina calcarata’s preferred nesting 

substrate is raspberry canes; however, they will also nest in teasel and sumac (Vickruck 

and Richards, 2012). New nest creation consists of excavating a linear tunnel through the 

pithy centre of a twig. Once a suitable length of tunnel is completed, reproductive 

behaviour begins and consists of oviposition, brood cell construction, and brood 
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provisioning. Reproductive behaviour generally lasts from late May until the middle of 

June (Vickruck and Richards, 2012; Rehan and Richards, 2010b). During this time the 

foundress forages for pollen and nectar which she provides to her eggs as she lays them. 

Brood cells are arranged serially in the nests, with the first cell positioned at the bottom 

of the burrow. The arrangement of the brood cells dictates sequential construction as well 

as oviposition; that is, one brood cell is completed before construction of the next begins. 

Once a brood cell is finished, it is capped with a partition molded from pith scraped from 

the nest’s walls. This process is repeated until 7 to 14 brood cells are finished.  

Mid-May

Emergence

Late May

Nest creation and Oviposition

Late Aug- Sep

Dispersal and Overwintering

Early August

Brood emergence

Mid-July

Nest guarding, 

maintenance

Mid-August

Late-season foraging

Mid-June

Foraging,  Provisioning

Figure 3: C. calcarata nest cycle in southern Ontario.

  

Once oviposition behaviour is complete, mother bees cease foraging activity and 

remain at the nest while their offspring develop (Vickruck and Richards, 2012; Rehan 

and Richards, 2010b). During offspring development, a mother periodically inspects her 
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brood while guarding the nest from intruders, and this behaviour lasts until her brood 

emerges in early August. Offspring emergence coincides with a second bout of foraging 

activity. The precise purpose of this phase of foraging activity is unknown, but both 

mothers and newly emerged daughters are active (Rehan and Richards, 2010b). Activity 

tapers off during August until early September, at which point one last small peak is seen 

in activity, considered to be a bout of overwintering dispersal, and then all activity ceases 

as overwintering behaviour begins (Rehan and Richards, 2010b). 

 Like all its Ceratina congeners, C. calcarata is considered to be subsocial (Rehan 

and Richards, 2010b). Females are long-lived, nest-loyal mass provisioners who 

periodically inspect brood cells and guard the nest from intruders. In terms of parental 

care strategies, C. calcarata appears unremarkable. To date no examples of cooperation 

among adults have been observed in C. calcarata. However, Rehan and Richards (2010a) 

noted that in many C. calcarata nests, the first two brood cells usually produced female 

offspring, and these first two daughters tended to be smaller than their siblings. 

Like many hymenopterans, breeding females have precise control not only over 

the sex of their offspring, but also their size (Michener, 1974). Haplodiploid sex 

determination allows females to choose offspring sex by controlling fertilization. Mass 

provisioning allows a mother to manipulate how much pollen and nectar is provided to 

her eggs. With respect to C. calcarata, Rehan and Richards (2010a) found that brood sex 

ratios and body sizes were a function of female size. That is, large, robust, females tended 

to produce larger offspring with a heavily female-skewed sex ratio, whereas small 

females tended toward male-biased broods. Ultimately, they found that C. calcarata 
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females are able to adjust reproductive investment in response to ecological and 

biological factors such as somatic quality and resource availability.  

In C. calcarata, female offspring are larger than males and consequently represent 

a greater reproductive investment (Rehan and Richards, 2010b). Moreover, overwintering 

survival, at least of females, is dictated in part by body weight (Rehan and Richards, 

2010b). Thus, in the event that either the mother is of reduced quality or resource 

availability is low, a C. calcarata mother is expected to produce proportionally more 

males. The production of extremely small daughters represents a puzzle, since it is 

counterintuitive that a mother would produce an offspring which has less of a chance to 

survive overwintering and reproduce. Instead, a mother would be expected to produce a 

large robust daughter early when she is still unworn and in her best condition. 

Rehan and Richards (2010a) suggested that mothers produce one small daughter 

in C. calcarata to help with brood care. This hypothesis is supported by observations that 

C. japonica and C. okinawana both produce early small daughters (Sakagami & Maeta, 

1984; Sakagami & Maeta, 1995), and that small daughters feeding siblings is common in 

Allodapine bees, which are a sister tribe to Ceratinini (Aenmey, et. al., 2006; Tierney, et. 

al., 2002). Furthermore, Michener (1990) notes that some species of Xylocopa and 

Ceratina require a bout of feeding prior to overwintering. If this is true for C. calcarata, 

then the late summer foraging activity noted by Rehan and Richards (2010a) after brood 

emergence, suggests that the mothers feed adult offspring. Furthermore, the fact that 

approximately 75% of C. calcarata mothers either disperse or die off once their brood 

has emerged (Rehan and Richards, 2010b), suggests that a survival strategy may exist to 

overcome the cost of nest orphaning. Ultimately, the production of a small daughter may 
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be a strategy to allow for progressive provisioning of adult offspring in the event of nest 

orphaning. Testing this hypothesis is the main objective of this thesis. 

Hypotheses  

 

The overarching goal of this thesis is to investigate whether C. calcarata 

daughters can be induced to care for their siblings. As alloparental care is the hallmark of 

caste-based sociality in bees, demonstrating alloparental care would suggest that C. 

calcarata is facultatively social. In order to determine if such social plasticity exists, I 

have separated this thesis into two parts, each dealing with a different fundamental 

question. In the first section I ask what the normal reproductive behaviour of an average 

C. calcarata mother is, and then describe such behaviour across a full reproductive 

season. This step is inherently important as it serves as a baseline for normal C. calcarata 

behaviour, with which to compare alternate social strategies. My first hypothesis is that 

C. calcarata require a second bout of provisioning in order to survive overwintering. 

In the second section I ask how offspring respond to being orphaned and then artificially 

create such a scenario. In this way, I would be able to induce behaviour which may be 

rarely expressed in the population; that is, alloparental care behaviour. My second 

hypothesis is that a dwarf female is the first offspring to be produced in order to 

take over brood care in the event of orphaning.  
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Objectives and predictions 

 

Section 1: Baseline foraging behaviour and overwintering survival 

 

The first objective is to characterize the foraging effort of Ceratina calcarata 

mothers across both spring and summer activity phases.  I predict that summer phase 

activity is a second bout of foraging behaviour. The second objective is to show that 

newly eclosed brood need feeding during the summer phase in order to survive 

overwintering by food depriving a group and measuring overwintering mortality. I 

predict that significantly higher mortality rates will be seen in brood which are food-

deprived compared to brood which are fed before overwintering. If C. calcarata offspring 

depend on a second bout of provisioning to survive overwintering, then it follows that an 

alternate parental care behaviour may exist to overcome orphaning.   

Section 2: Offspring response to orphaning 

 

The third objective is to investigate the response of C. calcarata offspring to 

orphaning by artificially removing mothers prior to summer phase activity. I predict that 

in the event of orphaning, a single female daughter will take over brood care behaviours. 

Furthermore, the foraging daughter will predominantly be a dwarf. The fourth objective 

is to show that mothers and alloparents are feeding brood. I predict that all brood in nests 

with a forager will show signs of both pollen ingestion and fat body growth. The fifth 

objective will be to quantify and compare foraging effort between C. calcarata mothers 

and alloparent daughters foraging in the summer phase. I predict that foraging effort will 

be comparable between the two groups. If foraging rates are similar between mothers and 

alloparent daughters, than alloparental care is a sufficient strategy for overcoming 
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orphaning. Furthermore, the presence of alloparental care in C. calcarata suggests that 

this species possesses the social plasticity to be consider facultatively social. 
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Methods   

Site location  

Collection and observation sites during both the 2012 and 2013 field seasons were 

localized to various forest edges on the periphery of the Brock University campus in St. 

Catharines, Ontario, Canada (latitude 43.12, longitude -79.25; Fig. 4).  Sunny, edge 

environments bordering wooded areas with large patches of raspberry growth were 

chosen based on known Ceratina calcarata nesting site preferences (Vickruck and 

Richards, 2011). Field sites used in 2012 were destroyed due to maintenance activity by 

the University; hence, 2013 field sites differ from 2012 sites in location. 

Field season timeline 

The breeding season of Ceratina calcarata comprises three distinct phases: spring 

foraging, mid-summer guarding, and summer foraging. In 2012, the spring foraging 

phase began on 30 May and ran to 14 July,  the mid-summer guarding phase ran from 15 

July to 1 August, and the summer foraging phase ran from 1 August to 5 September
 

(Table 1). In 2013, spring phase foraging observations did not commence until mid-June 

due to inclement weather. The spring foraging phase was shorter in 2013, lasting from 17 

June until 6 July
 
(Table 1). Mid-summer guarding began on 7 July and lasted until 

approximately 7 August, at which point summer phase foraging began. Summer foraging 

in 2013 observation nests was stopped before foraging behaviour ceased so that I could 

collect nests prior to pre-overwintering dispersal. Thus, the timeline for the 2013 summer 

foraging phase observations lasted from 7 August until 28 August
 
(Table 1).   
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2012

2013

Figure 4: Aerial map of the University of Brock campus. Red boxes denote 

collection and observation sites for both field seasons.
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252820362938Number of 

days in phase

Activity phase

21NA1229NA24Possible 

foraging days

Field work 2012 2013

Spring foraging 30 

May-

6 July

Guarding

7 July –

4 August 

Summer

6 August –

10 September 

Spring

17 June –

6 July

Guarding

7 July –

3 August

Summer

5 August –

29 August

Observation 

days

18 NA 20 12 NA 20

Non-

observation 

days

20 NA 16 8 NA 5

Table 1: Date range of C. calcarata nest cycle phases with associated number of data collection days.  

Total number of days in the phase represents all days from first day foraging was observed until last 

day foraging was observed. Observation days represent actual data collection , while non-observation 

days represent  days skipped or days missed due to poor weather. Total possible foraging days were 

defined as the number of days foraging behaviour was observed plus the number of missed 

observation days that foraging was likely to have occurred given mild weather.  
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Preparation of nesting substrates 

During the 2012 and 2013 field seasons, 105 and 100 raspberry twigs, 

respectively, averaging 40 cm in length, were collected from the forest edges surrounding 

Brock campus (Fig 5a; Fig 5b). Twigs were selected if they were dead but still in a 

natural position on the shrub (i.e. not trampled and broken on the ground). Upon 

collection of twigs, the ends were clipped perpendicular to the long axis of the twig so as 

to expose the pith (Fig. 6). Twigs were zip-tied to a 1m long bamboo stick, so that 

approximately half of the twig length extended out from one end (Fig. 7). Twig/bamboo 

combinations were placed within raspberry bushes growing along the forest edge near the 

observation sites, then left to attract nesting females. Nest founding progress was checked 

daily, and a twig was marked as founded if a burrowed hole was found in the pithy center 

of the exposed, clipped surface of the twig (Fig. 6). By mid-June, founding of new nests 

in the prepared raspberry twigs had finished. All founded nests not used for spring phase 

observations were left undisturbed at the field site until I initiated summer phase 

methodology.  
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SPRING 2012

SUMMER 2012

Set out 100 twigs

95 nests founded

40 nests selected for spring 

foraging observations

33 nests successful 

(Produced a brood)

7 nests failed 

(no brood)

55 nests available

33 previously observed 87 nests (50 available nests plus 37 

newly collected nests)

70 nests (all 33 previously observed and 37 nests)

40 Mother-removed nests30 Mother-present nests

28 observed 12 vandalized25 observed 5 vandalized

50 nests for 

overwintering exp.

20 unmanipulated 30 food-deprivedWINTER 2012
Fig 5a: Flowchart of nest use during 2012. A nest was considered successful if it produced a brood. Mother-
present nests refer to nests with a mother present and Mother-removed refers to nests without a mother.

5 nests destroyed by 

ants
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SPRING 2013

SUMMER 2013

Set out 100 twigs

94 nests founded

15 nests selected for spring 

foraging observations

15 nests successful 

(Produced a brood)

0 nests failed 

(no brood)

79 nests available

87 nests

30 nests selected for summer 

foraging observations

20 Mother-removed nests10 Mother-present nests

5 nests 

successful

5 nests failed 5 nests failed15 nests 

successful

Fig 5b: Flowchart of nest use during 2013. A nest was considered successful if it produced a 

brood. Mother-present nests refer to nests with a mother present and Mother-removed refers to 
nests without a mother.

57 nests discarded
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Figure 6:  Field pictures of observation nests. A:  active nest entrance with attached lid 

apparatus.  B: Ejection of pith in a newly founded nest, with full cup/lid apparatus.  C: Fine 

gauge mesh-covering  over a nest entrance. D: Fresh cut raspberry twig, with exposed pithy 

center.

A B

C D
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Bamboo peg

Raspberry twig

Cup/lid apparatus

Figure 7:  Schematic diagram of generalized observation nest . 

Ground
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Preparation of observation nests  

Spring phase  

One week prior to the estimated time of spring phase foraging initiation in each 

field year, a random subset of the founded raspberry twigs was moved to the observation 

site (Fig. 5a; Fig. 5b). The nests were moved between 07·00 h and 08·00 h to ensure that 

the foundress was inside. Nests were set up in blocks of 10 in order to facilitate efficient 

observation, because with more than ten nests there is a greater chance of overlooking an 

attempted bee departure or arrival (Fig. 8). During the 2012 field season, 40 nests were 

selected and placed into 4 blocks of 10 each, whereas in 2013, 15 nests were selected and 

placed into a single block (see Behavioural Observations; Fig. 8)  

The nest blocks were set up with each bamboo/twig combination placed into the 

ground at approximately a 65 degree angle so that the nest entrance was directed towards 

the spot where I would be seated (Fig. 8). In 2012, nests were placed in a 5 x 2 

rectangular grid pattern, with a 25 cm separation between twigs, whereas 2013 nests were 

placed in a 2 x 8 grid pattern (Fig. 8). I sat approximately 1 m from the centre of the 

block of nests, perpendicular to its long axis (Fig. 8), which allowed a full view of all nest 

entrances without the need to rotate my head. Bee departures and arrivals from the nest 

entrance, as well as other behaviours, could be observed as the individual events 

happened.  
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~65∘

B
25cm

25cm

1 m

A

Figure 8: Observation nest block schematic.  A:  Diagram of typical nest observation 

block. Circles represent nests, and rectangle represents  observation point. B: Diagram of 

individual nest’s orientation. Nest entrances angled toward observation point.
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In order to accurately time the departures and arrivals of foraging bees, nest 

entrances were enclosed using a plastic cup with a detachable lid to prevent bees from 

exiting or entering unobserved (Fig. 6; Fig. 7). Preparation of the detachable lid consisted 

of cutting a hole in its centre, placing it in an inverted position over the raspberry twig, 

and sliding it down the twig so that it would sit just below the level of the nest entrance. 

This placement of the lid allowed the companion plastic cup, also inverted, to be placed 

over the nest entrance, resulting in the creation of a small volume of confined space 

above the nest entrance. Thus, bees could exit the nest but were prevented from leaving 

until I removed the cup. After the bee departed, the cup was replaced, blocking re-entry. 

Once the bee returned to the nest, the cup was lifted again, allowing re-entry into the nest. 

Lids were set as a permanent fixture on observation nests, but the accompanying cup was 

only in place during observation periods. This setup allowed for quick and easy removal 

of the cup, which thus facilitated accurate scoring of departure and arrival times. 

 

Summer phase  

Nests selected for 2012 summer phase observations were taken from the pool of 

spring observation nests and from the unused founding nests group (Fig. 5a). In 2013, 

summer phase observation nests were taken only from the unused founding nest pool 

because all 2013 spring phase observation nests were collected following spring phase 

observations. (see Nest Survival; Fig. 5b). 

Nests selected for summer phase observation were collected between 07·30 h and 

08·00 h to ensure that mothers were present. Prior to collection, but on the collection day, 
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each nest was covered with a fine gauge mesh to prevent unwanted departures (Fig. 6), 

then brought to the lab.  

To ensure that nests used for the summer phase observations were not already 

abandoned or occupied by transient males, each nest was checked for the presence of a 

female. C. calcarata females, when disturbed, emit a buzzing sound and/or a lemon-like 

odour. To check whether females were present in nests, a long stem of grass was inserted 

into a nest entrance and slowly pushed inside until the female reacted or the stem could 

go no further. Nests were only selected for summer phase observations if I was able to 

elicit the olfactory cue. The timing of mother removal was selected to allow for mothers 

to maintain offspring until they had developed at least into late stage pupae. 

Once in the lab all nests were randomly separated into a mother-present group 

(control) and a mother-removed group (treatment). Females in the control group were left 

un-manipulated while treatment females were removed. Since the predominant activity 

during the nest guarding phase of the colony cycle is sitting at the nest entrance 

(Vickruck, 2010), clipping off the top inch of the nests allowed for the efficient removal 

of the entrance guarding mother. Nests in both groups were placed back in the 

observation site after the mother was removed from the treatment group. 

Once the presence of a female had been established and mothers were removed 

from treatment nests, all nests were separated into blocks of ten each. Mother-present and 

mother-removed groups were placed in their respective summer phase observation sites 

on the same date. In mother-present nests the mesh was removed when the nest was 

placed back in the field since the mother was present and able to guard the nest. 
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However, in order to prevent intruders or parasites from entering the nests, treatment 

group nests were left in the field with the fine gauge mesh intact. Once summer foraging 

had ceased, all nests were capped with masking tape, brought into the lab, and stored in a 

-20
o
C freezer until nest dissections began (see below).  

Marking of foragers 

In order to reliably identify individuals within a nest and to differentiate nest 

residents from usurpers or transients, each resident foundress was marked with a spot of 

non-toxic, enamel-based model paint on the dorsal surface of the abdomen. Bees were 

marked over a two day period, at the beginning of foraging observations of both the 

spring and summer phases.  

Females were marked on their first observed departure from the nest by removing 

the entire cup/lid enclosure as a unit, and placing it on ice for 30 min. This functionally 

paralyzes the bee but does no damage, and within minutes the individual is fully motile 

again. Bees were never in direct contact with the ice. After 30 minutes a cooled bee was 

removed from the ice and held gently by the thorax, with the wings pushed down, away 

from the abdomen. Testors
©

 enamel-based model paint was applied to the abdomen with 

a size 0/4 acrylic tipped paint brush. Once the paint was applied, the bee was held near 

the ice for approximately 15 minutes in order to let the paint dry and to prevent the wings 

from becoming adhered to the drying paint, a scenario which usually results in severe 

damage or loss of the wings. Once the paint had dried, the bee was returned to the plastic 

cup, and the cup was placed back over the nest entrance to allow the bee to retreat back 

into the nest.  
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The location of the paint mark on the anterior-dorsal surface of the abdomen was 

selected to increase the time needed to remove the paint by the individual bee’s 

grooming, as the anterior-dorsal section of the abdomen is least accessible to the middle 

appendages. Most individuals were eventually able to remove most, if not all, of the 

paint. Hence, paint was applied repeatedly throughout the season. During initial marking 

and re-application of the paint, newly painted bees tended to cease all activity until the 

following day, irrespective of how early in the day painting was done. Hence, no foraging 

observations were made during marking days.  

 In the event that a paint mark was lost from a bee, or marking never took place (as 

in the overwintering survival experiment), wing wear scores were also recorded. The 

presence of damage on the margins of the wings is an indication that the bee has been 

active outside the nest, and hence, foraging. Wing wear scoring was based on a scale of 0 

to 5, with 0 representing no damage and 5 representing complete obliteration of wing 

margins (Vickruck, 2010). 

Behavioural observations 

Daily activity schedule 

During the 2012 spring and summer foraging phases, one block of nests was 

observed each day; since there were four blocks of nests, this resulted in a 4 day 

observation cycle. In 2013, one block of 15 nests was observed continually throughout 

the spring phase.  

In both 2012 and 2013, an observation day consisted of 5 to 6 hours of 

behavioural observations, beginning at 09·00 h - 10·00 h and ending 14·00 h - 17·00 h. 

The 09·00 h start time was determined by observing 3 nest blocks over the course of 
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three days, from 07·30 h until one hour after all activity ceased. Foraging activity was 

found to start between 09·00 h and 10·00 h, vary rarely was an individual observed 

foraging before 09·00 h and foraging was never observed before 08·30 h. In the event of 

bad weather (rain, low temperatures), when C. calcarata generally do not forage 

(personal observations), the observation day was skipped, but the next nest block in line 

for observation was not changed.  

Each full day of behavioural observations on a single bee was recorded as a single 

bee day. A bee day is defined as the observed behavioural activity of a single individual 

over the course of a full day. During each observation day, from the beginning of the 

observation period to the cessation of activity, the nest blocks were observed constantly. 

Therefore, all departures and arrivals were recorded. In the 2012 spring foraging phase, 

each of the 33 nests was observed for 2 to 5 non-consecutive days, resulting in a total of 

140 bee-days of observations (Table 3). In the 2012 summer foraging phase, 4 blocks of 

nests were observed (2 mother-present blocks and 2 mother-removed blocks), resulting in 

a total of 31 nests observed over 163 bee days (Table 3).  During the spring phase of 

2013, 15 nests were observed continually for 10 days, resulting in 154 bee-days of 

observation (Table 3). In the summer phase of 2013 only 2 blocks of nests were observed, 

one mother-present block and one mother-removed block. This resulted in a total of 15 

nests being observed over 115 bee days (Table 3).  

Quantifying foraging effort 

In order to quantify foraging effort, a watch was used to record the departure and 

arrival times of each flight. Accurate scoring of these times was facilitated by the use of 

the cup apparatus. When a female bee attempted to leave her nest, the cup was removed 
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from the entrance by hand, and once she had departed, the cup was returned and the time 

was recorded. During a return trip, the bee approached the nest and hovered near the cup 

until it was removed, at which point she entered the nest. The time was recorded once the 

cup was replaced. This pattern was repeated for all nest departures and arrivals, in both 

spring and summer foraging phases.  

The initial presence of the cup barrier was novel, and as such, many individuals 

were distracted by the cup itself and by the subsequent manipulation of the cup. This 

resulted in delayed nest returns as the individual would retreat when the cup removal 

action was initiated. However, once an individual had experienced these events once or 

twice, she no longer retreated, but would hover near the nest entrance until the cup was 

removed. Once an individual had become accustomed to the cup removal protocol, any 

departure from the normative sequence of the action sometimes resulted in the individual 

leaving the nest entrance area and attempting to enter a different nest. In order to prevent 

this, the cup was removed immediately upon arrival of the individual, which meant that 

sometimes I did not have time to notice the presence of a pollen load. 

 Foraging effort was quantified using five variables: average number of trips per 

day per bee, average flight time per day per bee, average flight duration per day per bee, 

average handling time (time spent in the nest between foraging bouts) per day per bee, 

and proportion of foraging days on which an individual was active. Proportion of 

foraging days active represents an estimate of the number of days that an individual was 

active over the full season (spring and summer phases) based on the proportion of active 

days actually observed (no bee observed was active on every day). These variables 

allowed for the calculation of total flight time and total handling time per bee for the 
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whole season, which in turn allowed me to estimate total provisioning time per bee for 

the season. To calculate total provisioning time, the total flight time and total handling 

time were summed and then multiplied by the proportion of total days active. All the 

preceding variables and estimates were compared between the spring and summer phases, 

as well as across the two field seasons. 

Types of foraging trips 

 

The presence or absence of pollen carried on a bee’s hind femora allowed me to 

differentiate between pollen-foraging trips and nectar-foraging trips, since nectar is 

carried internally. Accurate scoring of small pollen loads was difficult due to C. 

calcarata’s small size, flight velocity, and speed of nest entering. On most occasions, once 

the cup was removed the individual would immediately enter the nest and would be lost 

from view. Very rarely did an individual stop on the entrance long enough for me to see a 

pollen load. As a result, foraging observations are biased towards those with large pollen 

loads, as these were the most obvious on an individual in flight.  

Brood survival 

In order to determine brood survival rates, all nests observed during the 2012 and 

2013 summer observation phase were collected once summer foraging activity had 

ceased. Nests were opened using an old, blunt scalpel to split the nest length-wise, 

removing a section of the twig from one side of the nest while leaving the contents of the 

nest relatively undisturbed. A general qualitative description of each nest was recorded, 

as well as the order of individuals in brood cells, the sex of all individuals, the presence 
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of parasites and dead individuals, uneaten pollen loaves, and empty cells. Each individual 

was stored in a 0.2 ml PCR tube with 70% ethanol.  

 

Assessing gut contents  

In order to assess gut contents and ovarian development, all collected bees were 

dissected.  To prevent digestion, and thus loss of gut content data, all collected nests were 

immediately stored in a -20ºC freezer until the nest occupants could be removed; this 

acted to quickly euthanize all nest occupants. Once individuals were removed from their 

nests, they were stored in 70% ethanol until dissected.  

Dissections were performed on bees that were immersed in ethanol in a petri dish, 

using Micro Spring scissors. Fat body presence was noted, and for females, ovaries were 

removed. The degree of inflation and colour of the crop (stomach) were noted, and then 

crop, midgut, and hindgut were dissected to ascertain whether they contained pollen (Fig. 

9). It is possible to discern whether or not nectar is in the crop because when the crop is 

punctured, the mixing of the nectar and ethanol is quite apparent due to their differing 

viscosities; the effect resembles honey being mixed into water. Dissection of the whole 

alimentary canal was done to increase the chance of seeing evidence of feeding, since the 

elapsed time between feedings may allow for full digestion.  
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Figure 9: Diagram of generalized apid internal anatomy, and a photograph of the 

relevant internal abdominal structures in a C. calcarata female.
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Overwintering survival experiment 

In order to assess whether or not summer phase provisioning of newly eclosed 

brood is necessary for offspring overwintering survival, broods from 20 founding nests 

not used in previous experiments were food-deprived during the 2012 summer foraging 

phase. Prevention of foraging was accomplished by attaching the observation cup to the 

lid with adhesive tape, preventing individuals from foraging, but allowing ejection of nest 

debris from the removal of brood cell walls. Debris was periodically removed from the 

cup enclosure. Immediately following the end of summer phase observations on 7 

September 2012 (indicating the beginning of overwinter behaviour), the cup apparatus 

was removed, two layers of fine mesh material were adhered to the nest entrance, and the 

cup was replaced. This prevented individuals from exiting the nest and intruders from 

entering during the winter. The cup was left on to prevent moisture accumulation in the 

mesh.  

Overwintering survival nests were placed together within the forest interior near 

the observation sites to prevent wildlife trampling, and were left until spring temperatures 

had reached 10 degrees for the first time (April 2013). The nests were brought into the lab 

on 25 April 2013 and immediately dissected in order to record surviving individuals. 

Once nest dissection was done, individuals were stored in ethanol.  

To control for food deprivation prior to over-wintering, and to assess baseline 

levels of offspring overwintering survival, a group of wild nests were collected during the 

same period as the deprivation treatment nests (27 April, 2013). As with the treatment 

nests, the control nests were brought into the lab and dissected, and the number of living 

individuals was recorded. 
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Data analysis 

All statistical analysis was accomplished using R, package version 1.5.2. All 

numerical variables were tested for normality using the Kolmogorov-Smirnov test. 

Subsequently, normal data were analyzed using parametric tests (Chi-square and 

ANOVA), or non-parametric tests (Kruskal-wallis and the Fisher’s exact test). All results 

were assessed with a confidence interval of 95%.  
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Results 
 

Section 1: Foraging patterns of Ceratina calcarata mothers  

Rates of nest founding 

 

During the last week of April in both 2012 and 2013, 100 raspberry twigs were set 

out to attract nesting Ceratina calcarata females. In 2012, nest founding began the first 

week of May and lasted until the first week of June. Females founded nests in 95 of 100 

twigs (Fig. 5a). In 2013, nest founding began in the second week of May and ceased on 

30 May. In the initial block of 100 twigs set out to attract females in 2013, 94 nests were 

founded (Fig. 5b).  

 

Daily patterns of foraging activity by C. calcarata mothers  

 

During the spring phase of 2012, mothers began foraging anywhere from 09·00 

until 14·00 h, but peak first departure time generally fell between 10·30 and 11·45 h 

daily. Foraging activity ranged from 09·00 to 15·00 h, and individual mothers averaged a 

total 4-5 hours of activity daily, with peak activity (most bees out of the nest) around 

12·00 h (Fig. 10). In 2013, spring phase mothers started daily foraging between 09·00 

and 13·30 h, with peak activity time ranging from 11·00 to 13·30 h. Spring mothers never 

foraged before 09·00 h or after 16·30 h during the spring. During an average day, the 

most active period was between 11·30 - 12·00 h (Fig. 10). Interestingly, 2013 mothers 

also showed a second activity peak in early afternoon from 13·00 to 14·30 h, as 

compared to 2012 mothers (Fig. 10). 
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In the summer phase of 2012, mothers began foraging between 09·15 and 14·30 h 

with peak first departures falling between 10·00 and 11·30 h. All daily foraging fell 

between 09·00 and 15·30 h but peak foraging activity occurred between 11·30 h and 

13·00 h (Fig. 11) with mothers averaging roughly 4.5-5.5 hours of activity daily. In the 

summer of 2013, mothers began a foraging day anytime between 09·00 and 15·00 h, with 

peak first departure time falling between 10·45 - 11·45 h. Similar to the activity ranges in 

spring, summer mothers never began foraging before 09·00 h; however, summer mothers 

foraged longer into the afternoon, generally ceasing activity by 15·30 h (Fig. 11). Daily 

foraging in the summer of 2013 was found to be multi-modally distributed, with mothers 

showing two distinct peaks of activity throughout the day, whereas 2012 summer 

foraging was found to be unimodally distributed (Fig. 11).  
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Figure 10: Differences between 2012 and 2013 in the time distribution of foraging trips observed 

in C. calcarata mothers during the spring phase. Each point represents the number of forging 

trips observed within the indicated period, pooled across all observed bee days, divided by the 

number of bees observed.
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Figure 11: Variation in the time distribution of foraging trips observed in C. calcarata

mothers and foraging daughters during the summer phase compared across 2012 and 2013. 

Each point represents the number of foraging trips observed within the indicated period, 

pooled across all observed bee days, divided by the number of bees observed.
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Spring foraging patterns of C. calcarata mothers 

 

In 2012, spring foraging began on 31 May, peaked during the first and third 

weeks of June, and then began to taper off, until all activity had ceased by the first week 

of July (Fig. 12). In 2013, spring foraging was delayed until 17 June due to poor weather, 

but activity ceased during the first week of July, similar to 2012 (Fig. 12). Summer phase 

foraging began the first week of August in both 2012 and 2013 (Fig. 13). Summer 

activity in 2012 peaked during the third week of August and then ceased fully by 5 

September. In 2013 a similar pattern was observed; however, foraging activity was 

stopped on 28 August, when I collected the nests (Fig. 13; see methods). The substantial 

increase in foraging activity from 2012 to 2013 is discussed below (see ‘Activity rate of 

C. calcarata mothers’). 
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Figure 12: Variation in spring phase foraging activity by date by C. calcarata mothers, 

comparing 2012 and 2013. Mothers in 2013 did not begin to forage until 17 June due to 

poor weather conditions. Each point represents the number of forging trips observed on the 

indicated date, divided by the number of bees observed.
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Figure 13: Variation in summer phase foraging activity by date by C. calcarata mothers 

and daughters, comparing 2012 and 2013. In 2013, data collection was ended on 28 

August (see methods). Each point represents the number of forging trips observed on 

the indicated date, divided by the number of bees observed. Note the difference in scale 

compared to figure 12.
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During the 2012 spring phase, 40 newly founded C. calcarata nests were selected 

for observation from the original pool of 95 founded nests (Fig. 5a). A nest was 

considered to be successful if a foraging individual was observed on at least one 

observation day; if not the nest was scored as failed. Of the 40 observation nests, 33 

(83%) contained a foraging mother and were considered to be successful, while the rest 

showed no activity and were scored as failed (Fig. 14; Fig. 5a). Daily observation of the 

33 successful nests revealed that spring mothers foraged on about two out of every three 

days (Table 2). Roughly 60% of flights during the spring phase were pollen trips, while 

40% were for nectar (Table 2). In 2013, 15 founding nests were selected from the pool of 

100 for spring observations and all nests contained a foraging mother (Fig. 14; Fig. 5b). 

Bees were active in the spring of 2013 about 80% of the time, and approximately 87% of 

flights were pollen trips (Table 2).  Overall, mothers were more active and were able to 

collected pollen and nectar faster in 2013 compared to 2012 (Chi-square: x2=6.18, df=2, 

p=0.001; Table 2). Furthermore, the ratio of pollen to nectar trips was lower in 2012 

compared to 2013 (Chi-square: x2= 9.29, df=2, p<0.0001; Table 2). 
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161 (13%)1041 (87%)120227 (18%)127 (82%)15415Spring 

mothers

2013

Year Bee type No. of 

bees 

observed

Total 

bee 

days

Active bee 

days

Non-

active 

bee days

Total 

foraging 

trips

Pollen trips Nectar trips

2012 Spring 

mothers

33 140 94 (67%) 46 (33%) 428 258 (60%) 170 (40%)

Comparison Chi-Square: x2= 6.18, 

df=1, p = 0.001

Chi-Square: x2= 9.29, 

df=1, p<0.0001

Table 2: Comparison of spring mother activity rates and pollen vs. nectar foraging trips 

between phases. An active bee day is defined as an observation day where the focal bee was 

observed to forage at least once. 2013 mothers spent more time active compared to 2012 

mothers. The ratio of pollen to nectar trips was lower in 2012 compared to 2013.
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Figure 14: Nest survival rates during spring phase in both 2012 (n=40) and 2013 

(n=15) field years.  Bars represent the number of nests that survived until the end 

of the spring phase vs. those that died based on the presence of the foraging mother 

(Fisher’s exact probability test: Phi = 0.23, df = 2, p =0.2). 

33 (83%)

7 (17%)

15 (100%)

0 (0%)

 

 

 

 

 

 

 

 

 

 

 



53 

 

Summer foraging patterns of C. calcarata mothers 

 

The blocks of nests used for summer phase observations were those in the control 

group of nests in which the mothers were present (Fig. 5a). During the summer phase in 

both 2012 and 2013, only one female was observed to forage per nest. High wing wear 

and paint marks confirmed that these females were the original nest foundresses (see 

methods; Fig. 15). Surviving 2012 mothers foraged on about 2 out of every 3 days 

observed, and roughly 33% of flights were pollen trips (Table 3). Of the 25 control nests 

selected in 2012, 16 (64%) contained a foraging mother during the summer phase, 

whereas 36% of nests had failed and contained no occupants (Table 4). In 2013, 10 

founding nests were selected for summer phase observations, with 5 (50%) nests 

containing a foraging mother while the other 5 were empty (Table 4). Surviving 2013 

mothers foraged on about 88% of days observed, and 90% of flights were pollen trips 

(Table 3). Overall, summer mothers were more active in 2013 compared to 2012 (Chi-

square: x2= 8.68, df=1, p=0.003; Table 3). 
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Year Bee type # of 

bees

Total 

bee 

days

Active bee 

days

Non-

active 

bee days

Total 

foraging 

trips

Pollen trips Nectar trips

2012 Mother 

(control)

16 88 54 (61%) 34 (39%) 103 34 (33%) 69 (67%)

Foraging 

daughter 

(treatment)

15 75 51 (68%) 24 (32%) 96 37 (39%) 59 (61%)

2013 Mother 

(control)

5 35 31 (88%) 4 (11%) 154 139 (90%) 16 (10%)

Foraging 

daughter 

(treatment)

10 80 47 (59%) 33 (41%) 182 166 (91%) 16 (9%)

Table 3: Comparison of summer mother and summer daughter activity rates and pollen vs. 

nectar foraging trips between phases. An active bee day is defined as an observation day 

where the focal bee is observed to forage at least once. Control and treatment refer to nests 

with a mother present and nests where the mother has been removed, respectively. Mothers 

were found to be more active in 2013 than 2012, whereas daughters were not (Chi-Square: 

Mothers: x2 = 8.68, df = 1, p=0.003; Daughters: x2 = 1.42, df = 1, p=0.1)
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10

5

9

8

Surviving 

nests with 

brood at 

collection

Survived 10 

(66%)

Survived 5 

(50%)

Survived 15 

(54%)

Survived 16 

(64%)

Nest fate

0

0

6

8

Surviving 

nests without 

brood at 

collection

Single 

daughters

Failed 5 

(33%)

15Treatment

All mothersFailed 9 

(36%)

25Control2012

Year Type of 

nest

Total 

nests

Forager 

identity in 

the summer 

phase

Treatment 28 Failed 13 

(46%)

Single 

daughters

2013 Control 10 Failed 5 

(50%)

All mothers

Table 4: The number of nests with a forager and the identification of the forager. When a mother was 

present she was the only forager observed. Conversely, when the mother was artificially removed a single 

female offspring was the only individual to be observed foraging. Control refers to mother-present nests 

and Treatment refers to mother-removed nests. Nest fate refers to nests which produced a brood 

(Survived nests) vs. nests which did not (Failed nests; see fig 5b). Rate of mother replacement in 

treatment group between 2012 and 2013 is comparable (Fisher Exact Probability Test: Phi= 0.5, df=2, 

p>0.7). 
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Activity rates of C. calcarata mothers  

The average number of flights per bee per day was assessed for both the spring 

and summer foraging phases during 2012 and 2013. In 2012, spring mothers averaged 4.2 

±2.6 foraging trips per day, while summer mothers showed a significantly lower number 

of foraging flights at 1.8 ±0.5 per day (Man-Whitney U: z= 3.04, p= 0.002; Fig. 16). In 

2013, mothers also foraged more in spring (8.3 ±2.1 foraging flights per day) than in the 

summer phase (4.8 ±1.3; Mann-Whitney U: z= 2.57, p= 0.01; Fig. 16). Ultimately, 

foraging mothers made fewer flights during the summer in both 2012 and 2013, even 

though overall number of flights increased from 2012 to 2013 (Kruskal-Wallis: H=36.2, 

df=3, p < 0.0001; Fig. 16). 

The average duration of foraging flights per day per bee was assessed for both the 

spring and summer foraging phases during 2012 and 2013. 2012 spring mothers were 

found to fly an average of 13.4 ±5.3 minutes per foraging trip, whereas summer mothers 

showed significantly higher trip times at an average of 32.2 ±10.4 minutes per trip 

(Mann-Whitney U: z= -5.24, p<0.001; Fig. 17). In 2013, the relative increase in average 

flight duration from spring to summer was found to be similar to 2012 levels, with spring 

mothers spending 10.5 ±1.6 minutes per flight and summer mothers spending 

significantly more time foraging at 22.9 ±3.1 minutes per flight (Mann-Whitney U: z= -

3.32, p<0.001; Fig. 17). Overall flight duration increased in both spring and summer from 

2012 to 2013 (Kruskal-Wallis: H=42.94, df=3, p < 0.0001; Fig. 17) 

The time spent in the nest by foragers, between foraging trips, was compared 

between spring and summer. In 2012, summer mothers invested an average of 19.7 ±15.8 

minutes of handling time between foraging trips, while summer mothers were found to 
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have significantly more handling time at 37.5 ±22.3 minutes between trips (Mann-

Whitney U: z= -2.87, p<0.005; Fig. 18) . In 2013, spring and summer mothers were 

shown not to have a statistically different average handling time, at 18.3 ±8.0 minutes and 

19.5 ±9.1 minutes, respectively (Man-Whitney U: z= -0.04, p=0.96; Fig. 18). Overall, 

handling time decreased from 2012 to 2013 (Kruskal-Wallis: H=12.1, df=3, p = 0.007; 

Fig. 18). 

In general, spring mothers completed many short foraging trips with 

comparatively short handling times in between. In contrast, summer mothers completed 

only half as many trips with trip durations and handling times being twice as long.  

 

Figure 16: Comparison of spring and summer foraging rates in C. calcarata mothers, across 2012 and 

2013.  Boxes represent the mean, 1st and 3rd quartile, and maximum and minimum values of the 

average flight number distribution. Numbers above boxes represent nest sample sizes. Asterisk 

indicates significant difference (Mann-Whitney U: 2012,  z= 3.04, p= 0.002; 2013: z= 2.57, p=0.01). 

Overall number of flights increased from 2012 to 2013 (Kruskal-Wallis: H=36.2, df=3, p < 0.0001)
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Figure 17: Comparison of spring and summer average flight duration in C. calcarata mothers, 

across 2012 and 2013.  Boxes represent the mean, 1st and 3rd quartile, and maximum and 

minimum values of the average flight duration distribution. Numbers above boxes represent nest 

sample sizes  and asterisk signifies significant difference (Mann-Whitney U: 2012:, z= -5.24, 

p=<0.001; 2013, z= -3.32, p= <0.001). Overall flight duration decreased from 2012 to 2013 

(Kruskal-Wallis: H=42.94, df=3, p < 0.0001 ). 
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Figure 18: Comparison of spring and summer average handling time in C. calcarata mothers, across 

2012 and 2013.  Boxes represent the mean, 1st and 3rd quartile, and maximum and minimum values 

of the average handling duration distribution. Numbers above boxes represent nest sample sizes and 

asterisk signifies significant difference .( Mann-Whitney U: 2012: z= -2.87, p= <0.05; 2013: z= -0.04, 

p>0.05). Overall handling time decreased from 2012 to 2013 (Kruskal-Wallis: H=12.1, df=3, p = 

0.007)
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Section 2: Offspring response to brood orphaning 

 

In order to assess the response of offspring to orphaning, a block of nests was 

selected from the original group of founded nests and then separated into two groups. In 

the mother-present group (control), the nests were un-manipulated (Fig. 5a). In the 

mother-removed nests (treatment), the mother was removed prior to brood eclosion (see 

methods; Fig. 5a). Combining data from both years, pooled across 2012 and 2013, a total 

of 78 nests were monitored during the summer phase (Fig. 5a). Of these 78 nests, 32 

(59%) nests did not produce a foraging individual or contained no occupants when the 

nest was opened. Of 35 mother-present nests, 21 (60%) were observed with the mother as 

the sole forager during the summer phase (Table 4). Of 43 mother-removed nests, 25 

(58%) had a single female offspring completing foraging trips (Table 4).  The rates of 

mother replacement in 2012 and 2013 were similar (Fisher’s exact probability test: 

Phi=0.5, df=2, p>0.7; Table 4) 

Brood survival  

 

In both mother-present and mother-removed groups, a nest was considered to be 

successful if an individual was observed to forage on at least one day during the summer 

foraging phase and if live bees were collected from the nests at the end of the phase. 

Successful nests generally yielded live individuals upon nest collection at the end of the 

summer phase; however, half of nests from 2012 were empty when opened. As these 

nests were unparasitized and cleaned of debris, I assumed the brood had dispersed and 

deemed the nests to be successful. If no foraging activity was observed in a nest and it 

was found to be parasitized, it was scored as failed. In 2012, only 8 of 16 mother-present 

nests contained live bees, and only 9 of 15 orphaned nests contained live bees (Table 4). 
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In 2013, all nests scored as successful in both mother-present and mother-removed 

groups contained bees when collected (Table 4). 

Identity of foraging daughter 

 

Head width was measured in all foraging daughters in order to investigate the 

hypothesis that the smallest daughter would become the forager. Pooled across 2012 and 

2013, of 25 foraging daughters observed, 16 were collected. In 6 nests the foraging 

daughter was the smallest female in the nest, and in 4 nests she was the second smallest 

female (Fig. 19). In 2 nests a single female offspring was found, and they were both 

considered the smallest female in their respective nests (Fig. 19). Lastly, in 4 nests the 

foraging daughter was the third smallest female (Fig. 19). Overall, foraging daughters in 

orphaned nests tended to be the smallest female offspring (Kruskal-Wallis: H= 27.01, df 

= 3, p = 0.0001; Fig. 19).  
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2012 2013

Figure 19: Comparison of body size between foraging daughter and female siblings 

across 16 treatment nests. On average, foraging daughters had significantly smaller 

head widths than female siblings (Kruskal-Wallis: H= 27.01, df = 3, p = 0.0001.) 
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Comparison of foraging mothers vs. foraging daughters 

Seasonal foraging patterns of foraging daughters 

 

 Foraging daughters began collecting pollen and nectar during the first week of 

August in both 2012 and 2013. In 2012, foraging activity reached a peak during the 

second week of August and then tapered off until all activity ceased by the first week of 

September (Fig. 13). The same pattern was observed in 2013; however, observations 

were stopped on 28 August due to early collection of nests (Fig. 13).  

In 2012, 28 orphaned nests were created from the original pool of 100 founded 

nests and used for summer phase observations (Fig. 5a). Out of these 28 nests, a daughter 

was observed to forage in each of 15 (54%) of them (Table 4). Foraging daughters were 

subsequently observed to forage on 2 out of every 3 days in 2012, with the majority of 

foraging flights (61%) being nectar collection trips (Table 3). In 2013, 15 mother-

removed nests were created for summer phase observations, and a foraging daughter was 

observed in 10 (~66%) of them (Table 4; Fig. 5b). Foraging daughters in 2013 foraged 

during approximetly 60% of days observed, and most of their foraging flights (90%) were 

pollen trips (Table 3). Overall, foraging daughters were equally as active in 2013 

compared to 2012 (Chi-square: x
2
 = 1.42, df = 1, p=0.1; Table 3) 

Daily foraging patterns of foraging daughters 

 

In 2012, foraging daughters (mother-removed nests) averaged 1.9 ±0.6 flights per 

day, which was not significantly different from the summer mother (mother present nests) 

flight number average of 1.8 ±0.4 flights per day (Mann-Whitney u: z= -0.02, p=0.98; 

Fig. 20). The same pattern was found in 2013; foraging daughters averaged 3.8 ±0.9 

flights per day, whereas summer mothers averaged a similar 4.8 ±1.3 flights per day 
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(Mann-Whitney U: z= -1.35, p=0.09; Fig. 20). The overall number of flights per day 

increased from 2012 to 2013 (Kruskal-Wallis: H= 27.41, df = 3, p < 0.0001; Fig. 20); 

however, this increase was similar between mothers and foraging daughters.  

The average duration of foraging flights was compared between mothers and 

foraging daughters in both 2012 and 2013. In 2012, foraging daughters were found to 

average 30.8 ±8.1 minutes per flight, and summer mothers had a similar average of 32.1 

±10.4 minutes per flight (Mann-Whitney U: z= 0.26, p=0.8; Fig. 21). Again, the same 

pattern was seen in 2013, with summer mothers and foraging daughters averaging 22.9 

±3.1 minutes per trip and 23.1 ±4.5 minutes per trip, respectively (Mann-Whitney U: z= 

0.18, p=0.9; Fig. 21). Average flight duration was lower overall in 2013 (Kruskal-Wallis: 

H= 9.7, df = 3, p = 0.02; Fig. 21); however, both mothers and foraging daughters showed 

the same decrease.  

Lastly, average handling time durations were compared between summer mothers 

and foraging daughters in both 2012 and 2013. In 2012, foraging daughters averaged 26.8 

±20.8 minutes per handling event, and mothers were found to average a similar 37.5 

±22.3 minutes per event (Mann-Whitney U: z= 1.56, p=0.11; Fig. 22). In 2013, average 

handling time durations were also similar between mothers and foraging daughters, with 

16.7 ±8.0 minute per event and 19.5 ±9.1 minutes per event, respectively (Mann-Whitney 

U: z= -0.18, p=0.85; Fig. 22). Average handling time was found to decrease from 2012 to 

2013 (Kruskal-Wallis: H= 10.12, df = 3, p = 0.01; Fig. 22). 

In general, foraging daughters completed relatively few, but quite long, foraging 

trips with comparatively long handling times in between. Furthermore, foraging activity 

rates between summer mothers and foraging daughters was not significantly different. 
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Figure 20: Similarity in foraging rates between mothers (in mother-present nests) and orphaned 

daughters (in mother-removed nests) during the summer phase in 2012 and 2013.  Boxes represent 

the mean, 1st and 3rd quartile, and maximum and minimum values of the average foraging rate 

distribution. Numbers above boxes represent nest sample sizes. Foraging rates between mothers and 

daughters are not significant within years (Mann-Whitney U: 2012: z= -0.02, p= 1.0; 2013: z= -

1.27, p=0.2). The overall number of flights per day were found to increase from 2012 to 2013

(Kruskal-Wallis: H= 27.41, df = 3, p < 0.0001). 
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Figure 21: Similarity in average flight duration between mothers (in mother-present nests) and 

orphaned daughters (in mother-removed nests) during the summer phase in 2012 and 2013. Boxes 

represent the mean, 1st and 3rd quartile, and maximum and minimum values of the average foraging 

duration distribution. Numbers above boxes represent nest sample sizes. Average foraging duration 

between mothers and daughters are not significant within years (Mann-Whitney U: 2012: z= 0.26, p= 

0.8; 2013: z= 0.18, p=0.8). Overall flight duration decreased from 2012 to 2013 (Kruskal-Wallis: H= 

9.7, df = 3, p = 0.02) 
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Figure 22: Similarity in average handling time between mothers (in mother-present nests) and 

orphaned daughters (in mother-removed nests) during the summer phase in 2012 and 2013. 

Boxes represent the mean, 1st and 3rd quartile, and maximum and minimum values of the 

average handling duration distribution. Numbers above boxes represent nest sample sizes. 

Average handling duration between mothers and daughters are significantly similar within years 

(Mann-Whitney U: 2012: z= -2.87, p= <0.05; 2013: z= -0.04, p>0.05. Average handling time was 

found to be slightly decrease from 2012 to 2013 (Kruskal-Wallis: H= 10.12, df = 3, p = 0.01)
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Brood feeding by the forager 

Feeding of C. calcarata offspring was not observed directly due to the behaviour 

happening inside the nest. Instead, feeding was inferred by dissecting offspring and 

noting the presence of pollen in the offspring’s digestive system and fat-body 

accumulation in the abdomen at the end of summer. No nests that lacked a foraging 

individual contained adult bees (dead or alive) when opened. These nests were found to 

be either unfinished or to contain parasitized larvae and pupae. Thus, the reported 

dissections necessarily came from successful nests only. 

In 2012, 22 of 23 (96%) brood in the mother-present (control) group had pollen in 

their crops, and all of them showed stored fat-bodies (Table 5). Similarly, all mothers 

dissected from the same group showed pollen in their crops and fat-body storage (Table 

5). In the 2013 mother-present group, pollen was found in 20 of 24 (84%) dissected 

offspring, and all of them had fat-bodies (Table 5). Similarly, pollen was found in 6 of 8 

(75%) dissected mothers from this group as well as fat-bodies in all of them (Table 5).   

In 2012, 20 of 26 (77%) offspring that were dissected in the mother-removed 

group (treatment) had pollen in their crops, and all of them showed stored fat-bodies 

(Table 5). Similarly, 6 of 8 (75%) foraging daughters dissected from the mother-removed 

group showed pollen in theirs crops and fat-body storage was found in all of them (Table 

5). In the 2013 mother removed group, pollen was found in 50 of 58 (86%) dissected 

offspring, and all of them had fat-bodies (Table 5). Similarly, pollen was found in 6 of 8 

(75%) dissected foraging daughters from this group as well as fat-bodies in all of them 

(Table 5).  Ultimately, even though only one individual per nest was ever observed to 

forage, all offspring were fed. Furthermore, brood feeding rates were similar between 
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control and treatment groups in both years (Chi-square: 2012 Phi = -0.27, df=2, p = 0.1; 

2013 Phi = 0.04, df = 2, p = 0.99; Table 5). 

Table 5: Presence of crop pollen and fat-bodies in summer phase nest occupants across 2012 

and 2013.  All bees, nest forager and brood included, collected at the end of the summer 

phase showed the presence of fat-bodies, with 75%-100% of those individuals found with 

crop pollen. Control refers to mother-present nests and Treatment refers to mother-removed 

nests. Brood feeding rates were not significantly different between control and treatment 

groups (Chi-square: 2012 Phi = -0.27, df=2, p = 0.1; 2013 Phi = 0.04, df = 2, p = 0.99)

Control Treatment

Type of bee Year Total 

individuals

Individuals 

with pollen 

in crop

Individuals 

with fat-

bodies

Total 

individuals

Individuals 

with pollen in 

crop

Individuals 

with fat-

bodies

Foragers 2012 9 9 (100%) 9 (100%) 8 6 (75%) 8 (100%)

2013 8 6 (75%) 8 (100%) 8 6 (75%) 8 (100%)

Brood 2012 23 22 (96%) 23 (100%) 26 20 (77%) 26 (100%)

2013 24 20 (83%) 24 (100%) 58 50 (86%) 58 (100%)
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Necessity of summer phase brood provisioning 

In order to assess the importance of brood provisioning prior to overwintering, the 

overwintering survival of a group of food deprived C. calcarata was compared against an 

un-manipulated control group. At the beginning of August 2012, 20 un-manipulated nests 

(control) and 25 nests which were capped with mesh to deprive them of food (treatment) 

were placed outside at the study site (see methods) and were left until early spring. A 

total of the 76 individuals from un-manipulated nests were collected at the beginning of 

spring, of which 53 offspring and 9 mothers survived (Table 6; Fig. 23). Dissection of all 

76 individuals revealed fat-bodies in all 62 surviving bees as well as the 4 dead offspring 

and 2 of the dead mothers. In the food-deprived group, a total of 103 individuals were 

collected (25 mothers and 78 offspring), but none survived and no fat-bodies were found 

in any individual upon dissection (Table 6; Fig. 23).  
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Figure 23: Overwintering survival of fed (n=57) and unfed (n=78) Ceratina calcarata brood. Each 

stacked bar represent the number of individuals surviving or not surviving the winter.  Unfed 

treatment represent the block of nests prevented from foraging prior to overwintering. Only 

offspring numbers are included in graph, brood mother survival has been omitted since age may 

confound the results. The Fed bar represents the un-manipulated control. (Fisher’s exact 

probability test: Phi = -0.93, p < 0.001).  
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Table 6: Survival rates and fat-body presence following winter diapause in Ceratina 

calcarata. Only bees which were fed prior to overwintering diapause show fat-body 

accumulation and were able to survive until spring. The forager in each nest was identified 

by wing wear (see Methods). Significantly more individuals survived in the fed treatment.

25 (83%)5 (25%)Number of 

nests with all 

dead occupants

Fed (n = 20 nests) Food deprived (n = 25 nests)

Forager Brood Forager Brood

Number of 

nests with live 

occupants

15 (75%) 0 (0%)

Number of 

individuals

19 57 25 78

Individuals

surviving

9 (47%) 53 (93%) 0 (0%) 0 (0%)

Individuals 

with fat-bodies

11 (58%) 47 (82%) 0 (0%) 0 (0%)
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Discussion  

Section 1: Baseline reproductive behaviour in Ceratina calcarata females 

 

The first objective of this thesis was to characterize foraging effort behaviourally 

across a full reproductive season in C. calcarata. Quantifying the foraging effort would 

provide a description of parental care behaviours and, thus, act as a comparison when 

characterizing alloparental care strategies. Recent work looking at the phenology of 

Niagara region Ceratina described three peak activity periods during the reproductive 

season (Rehan and Richards, 2010). The first two were identified as emergence of 

overwintering individuals and ovipositional food provisioning behaviour, but the third 

peak was uncharacterized. Based on the previous findings I hypothesized that the third 

peak of activity, observed during late summer, was a second round of brood provisioning. 

Furthermore, I hypothesized that this second bout of provisioning is required for 

overwintering survival.  

Seasonality in foraging activity 

 

Foraging C. calcarata mothers showed two distinct peaks of foraging activity 

during their reproductive phase. The first peak was originally characterized by Rehan and 

Richards (2010), and was determined to be brood provisioning behaviour. The second 

peak of foraging activity occurring after offspring emerged as adults in late summer, was 

determined in the present study to be a second bout of brood provisioning. Ceratina 

calcarata mothers were found to provision food for adult brood in the summer phase. Not 

only does this result support my original hypothesis, but it is interesting because C. 

calcarata offspring become fully independent once they emerge and some actually 

disperse from the natal nest (Rehan and Richards, 2010). However, many offspring 
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remain within the natal nest until the following spring, and the mother feeds them in late 

summer. Such behaviour constitutes extended parental care, given that the offspring are 

independent by this time. Extended parental care is relatively rare, especially in solitary 

bees. Generally, parental care behaviour ends once the offspring are nutritionally 

independent, and are able to fend for themselves (Choe and Crespi, 1997).   

Contrary to my original hypothesis, foraging behaviour by C. calcarata mothers 

was found to be very different in spring and summer (Fig. 16-18). Spring foraging 

consisted of a high number of short duration flights with correspondingly short handling 

times. Conversely, summer foraging consisted of a reduced number, but longer flights, 

with longer handling durations in between. However, the number of days individual bees 

were active out of the season was found to be comparable between spring mothers and 

summer mothers in both 2012 and 2013 (Table 2). Seasonal differences can be attributed 

to the dominant parental care behaviours being employed by the mother and to 

environmental variation between the spring and summer foraging phases.  

Parental care and foraging activity 

 

 The difference in foraging activity from spring to summer can be explained partly 

by the parental care behaviours being employed. Spring phase foraging is dominated by 

brood cell construction and mass provisioning behaviours. That is, a C. calcarata female 

during the spring phase is foraging for pollen and nectar in order to create the provisions 

for each brood cell. Concurrently, during foraging the female is also ovipositing and 

constructing cell partitions. This contrasts with summer phase foraging activity, which 

consists solely of progressive provisioning of adult brood.  
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 Mass provisioning during the spring phase means that foraging is dependent on 

the number of eggs being laid. Even though a mother has the ability to control birth 

weight by manipulating the size of the pollen provisions (Richards and Rehan, 2010), 

there is still a minimum amount of pollen that must be provided. This means that for 

every egg there is a compulsory minimum investment, which is independent of the 

survival of the egg. Thus, the minimum amount of maternal investment is dependent 

upon the quantity of eggs, and independent of how many actually survive. Conversely, 

the summer phase foraging peak is focused on providing for adult brood that have 

survived. What this suggests is that not only will summer provisioning rates be reduced 

simply as a function of offspring mortality, but we may also assume that since summer 

phase foraging is for adult offspring provisioning, the mother will only forage when the 

offspring need feeding. This agrees with findings in other bees where the parent will only 

forage when the brood signals her to do so (Blom, and Velthuis, 1988; Sommeijer et. al., 

1982). Ultimately, foraging effort is reduced during the summer phase because mothers 

are progressively provisioning for surviving adult offspring as opposed to mass 

provisioning for a full clutch of eggs.  

Resource abundance and foraging activity 

 

Aside from the differences in activity patterns between the spring and summer 

foraging phases of the C. calcarata reproductive cycle, environmental variation appears 

to have a direct effect on activity. During the spring foraging phase, the weather is 

generally wetter and cooler than during the following summer foraging phase 

(Environment Canada, 2014). Such a marked difference must affect resource availability, 

and consequently, foraging activity rates (Aldridge et al., 2011). We can expect floral 
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resources during spring to be high, which leads to a high number of short foraging trips, 

as more resources can be gathered in a shorter amount of time. Conversely, in the 

summer we can expect fewer floral resources than in spring, due to a rise in temperature 

(Aldridge et al., 2011). The heat and dryness of summer acts to lower floral resources, 

and increase the time a flower needs to refill its complement of pollen and nectar. This 

results in floral resources being limited, and leads to bees needing to forage longer, and 

thus fewer trips can be accomplished per day. Thus, over the same amount of foraging 

time during a day, a bee will collect fewer resources.  

Seasonal effects on C. calcarata mother foraging rates are further evidenced by 

the changes in activity found between 2012 and 2013 (Fig. 16-18; Fig. 20-22). The 

temperature and precipitation recorded from 2012 indicate that it was a drought year 

(Environment Canada, 2012). As such, we can expect seasonal differences in activity 

patterns to be greater than in a year with relatively normal rainfall and temperatures, such 

as 2013. Mothers were found to make fewer foraging trips in both activity phases in 2012 

compared to 2013, indicating limited floral resources. Furthermore, foraging for nectar in 

2012 was much lower than in 2013, indicating that nectar was limited (Table 2 & 3). 

Since nectar production is highly dependent upon moisture availability to flowers 

(Zimmerman, 1998), drought conditions must lead to a decrease in nectar collection.  

Taken together, the above information suggests that yearly and seasonal 

variability in floral resource likely contributed greatly to variation in foraging rates of C. 

calcarata mothers. Furthermore, foraging activity was further modified between seasonal 

phase due to the change in brood provisioning behaviour (mass provisioning vs. 

progressive provisioning). Cool and wet conditions in spring leads to many foraging trips 
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of short duration, given the abundance of resources, and mass provisioning dictates a 

minimum investment per egg laid. Dry and hot conditions in summer limit resources and 

result in foraging trips taking longer to accomplish, leading to fewer trips per unit time. 

Progressive provisioning of adult brood means that foraging rates are dictated by both the 

number of offspring that survive to adulthood, and individual offspring resource needs. 

Hence, the reduction in foraging rates between spring and summer foraging phases in 

both 2012 and 2013 makes sense within the context of seasonal resource availability and 

the changing resource needs of the offspring.   

 Foraging rates in Ceratina calcarata are highly variable both by individual and by 

season. Seasonal and yearly variation in foraging activity is ultimately a function of 

resource availability, in that resource availability drives reproductive decisions made by 

C. calcarata mothers. Also, extended brood care is prevalent in C. calcarata. 

Independent, adult brood are progressively provisioned by the nest mother, which 

suggests that not only is such provisioning necessary for survival, but also that such 

foraging behaviour by the brood must be costly. In the next section I will explore why 

extended brood care is necessary and also what follows when the parental care system 

breaks down as a result of orphaning.  

Necessity for summer phase brood provisioning  

 

The second objective of this thesis was to show that Ceratina calcarata offspring 

require a second bout of provisioning to survive overwintering. The observation that 

mothers forage for the brood once it has emerged suggests that newly emerged offspring 

require a store of energy in order to survive the winter. Summer phase foraging was 

hypothesized to be necessary for offspring to store enough energy to sustain the 
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metabolic costs of overwintering diapause. Food deprivation of a group of C. calcarata 

nests prior to overwintering behaviour resulted in 100% mortality of the nest occupants 

(Fig. 23). Hence, summer phase foraging is a necessary behaviour.   

Generally, in insects that must survive a prolonged period of inclement weather, 

such as a winter season, a resource reserve must be accumulated before any diapause or 

quiescent behaviour is initiated. This reserve is essential not only for repair functions 

relating to damage from the cold, but also to power post-overwintering behaviours like 

dispersal (Hahn and Denlinger, 2007). The negative effect of low winter temperatures on 

diapausing bees has only been studied in a few bee species, but the majority of studies 

agree that diapause during low temperature is associated with weight loss (Hahn and 

Denlinger, 2007, and references therein). This result agrees with the findings of Rehan 

and Richards’ (2010) that overwintered populations of C. calcarata are on average lighter 

than pre-overwintered populations. Furthermore, many temperate bee species which must 

endure a low temperature season show a feeding period prior to overwintering diapause 

(Michener, 1974). It is therefore safe to conclude that summer food provisioning is 

necessary for overwintering survival. 

Section 2: Ceratina calcarata’s response to brood orphaning 

 

 The purpose of the second section of this thesis was to investigate how C. 

calcarata offspring would respond to orphaning. Brood mothers were removed prior to 

summer phase foraging behaviour, and any subsequent activity by the offspring was 

recorded. Substitution of the removed mother by a dwarf female was predicted. Summer 

phase foraging observations of orphaned nests showed that not only will a single female 

take over brood care behaviour in the event of nest orphaning, but also that this female is 
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predominantly the smallest female in the nest (Fig. 19). The significance of such 

alloparental care behaviour is discussed below. 

Foraging rates in mothers vs. alloparents 

 

 Across 2012 and 2013 a total of 43 orphaned nests produced a brood, with each 

being accompanied by a foraging daughter (Table 4). The foraging rates of these 

alloparents were quantified and compared against foraging rates in summer mothers in 

order to determine if the parental care behaviour was comparable. Alloparents were found 

to forage at the same average rates as mothers from non-orphaned nests (Fig. 20-22). This 

suggests that newly emerged daughters are able to provide the necessary amount of brood 

care in the event of orphaning, and thus represent a stable, adaptive response to maternal 

mortality. Furthermore, this also indicates that not only is alloparental care an adaptive 

behaviour in the event of nest orphaning, but that it represents a great enough benefit to 

brood to prevent dispersal following nest orphaning. 

The existence of alloparental care in C. calcarata represents a puzzle. Such 

behaviour is not displayed until the brood begin to emerge as adults and this means that 

brood are being cared for that are able to feed themselves. Generally, in species that show 

alloparental care, the alloparent is much older than her siblings. In Exoneurella 

eremophia, females lay eggs constantly throughout the summer and end up with adult 

brood alongside larvae and pupae (Hogendoorn et. al., 2001). Even though the alloparent 

and her siblings are roughly of the same generation, only immature siblings are cared for. 

Similarly in the allodapine bee, Exoneura bicolor, alloparents take care of immature 

siblings; however, the siblings are produced as a second clutch later in the summer (Bull 

and Schwarz, 1997). The point is that C. calcarata alloparents care for independent adult 
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brood at the same rate as a mother would. This suggests that newly emerged adult brood 

feeding themselves somehow represents a cost.  

Benefits of extended parental care 

 

If orphaned C. calcarata are able to forage for themselves, why is it adaptive to 

forego feeding themselves and rely on a parent during the summer foraging phase?  It 

seems much simpler for the offspring to feed themselves than to rely on the development 

of a complex behaviour such as alloparental care. In order to answer this question, we 

must look at the inherent costs and benefits associated with summer phase foraging. 

The main costs inherent to brood provisioning are predation and loss of maternal 

quality (decreasing maternal condition). Foraging is physically demanding for bees, in 

that the longer an individual flies, the more accumulated damage will be suffered by the 

wings (Higginson and Barnard, 2004; Higginson and Gilber, 2004). Such damage has the 

effect of reducing flight efficiency, and thus, foraging efficiency. Also, foraging increases 

predation risk as the forager must traverse the environment for food. As such, mortality is 

necessarily higher in foraging individuals than those that stay in the safety of the nest. 

Predation and flight damage during foraging could be very costly for a newly 

emerged adult C. calcarata. Females that are orphaned and forage for themselves likely 

incur increased total flight times compared to females which were fed by a mother or 

sister. Hence, these females will already experience a higher mortality rate, as well as 

accumulated flight damage, before they begin their breeding season.  

Costs such as accumulated damage and increased mortality represent an adaptive 

pressure favoring extended parental care. A mother in the summer phase is nearing the 

end of her life. Thus, there is no reproductive cost for her to risk further foraging 
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behaviour; there is only a benefit for her offspring. However, in the event that the mother 

is lost, what drives the expression of parental care behaviour in an alloparent which will 

incur such reproductive risks?  

Ultimate mechanisms driving alloparental care behaviour 

 

Queller (1989) asserted that worker behaviour (i.e. alloparental care) can be an 

advantage when offspring require extended care and when adult mortality is high. In C. 

calcarata, extended brood care is needed because the mortality of mothers during 

summer ranges from 36% to 50% (Table 4). Thus, worker behaviour may represent an 

adaptive benefit in this species. The most interesting question is what underlying 

mechanisms drive alloparental care behaviour in C. calcarata daughters?  The most 

obvious answer is haplodiploid sex determination, as this mechanism is well established 

in hymenopteran literature (for a review see Heimpel and de Boer, 2008). Haplodiploid 

sex determination in C. calcarata means that caring for a sibling is equivalent to raising 

one’s own offspring, due to the relatedness between siblings (Hamilton, 1964). In the 

event of brood orphaning, alloparental behaviour can thus be beneficial because the 

alloparent (a female sibling) receives indirect fitness benefits from caring for her siblings. 

This mechanism, however, does not explain why C. calcarata alloparents tend to be 

dwarf daughters; if it was sufficient to produce altruistic behaviour, then there would be 

no need for the production of a specialized alloparent. Thus, I would argue that other 

mechanisms are helping drive the expression of alloparental behaviour. 
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Nest mate manipulation 

 

One mechanism that can drive the development of alloparental care is nest mate 

manipulation (Bull and Schwarz, 1997). Dominance interactions, such as manipulation by 

the brood mother, have been suggested as a mechanism to drive altruistic behaviour. That 

is, nest mate coercion may be an avenue for the expression of worker-like behaviour. In 

this study C. calcarata females were removed before the emergence of offspring. This 

timing prevented interaction between the mother and her brood, thus preventing direct 

coercive behaviour. Since alloparental care behaviour was observed only in orphaned 

nests, we can conclude that direct coercion is not necessary. However, this does not 

preclude pre-emergence manipulation. Two methods of coercion that do not depend on 

the interaction between the adult offspring and the parent are protogyny and the 

production of subfertile females. Taken together, these two methods of coercion can drive 

worker behaviour by reducing the costs of altruism to the altruist. 

Insurance of protogyny 

 

Bull and Schwarz (2001) defined protogyny as the production of a female-biased 

early brood to serve as workers in the event of orphaning, and asserted that in any species 

in which alloparental care is present, protogyny should also be found. Protogyny is the 

result of what Bull and Schwarz (2001) call the ‘insurance model’ of sex allocation. The 

model states that a reproductive mother that experiences high adult mortality and 

produces offspring with a prolonged period of dependence will ensure the survival of her 

brood by producing the alloparent sex first. Thus, such a species will show a time-

dependent female sex bias. As stated above, Richards and Rehan (2010) were the first to 
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show a female bias for early brood in C. calcarata (the first two offspring produced) and 

furthermore, found that after the first two offspring, the rest of the brood was unbiased. 

As Bull and Schwarz (2001) suggested, protogyny has been seen in a number of solitary 

species which show alloparental behaviour (Aenmey, et al., 2006; Tierney, et al., 2002). 

Dwarf daughter production 

 

In both 2012 and 2013, a proportion of orphaned nests were observed with 

alloparents that were the smallest female in the nest (Fig. 19). The production of the small 

daughter could represent a bet-hedging strategy that minimizes the cost of alloparental 

care. If we assume that foraging is inherently damaging, and thus acts to lower 

reproductive output, then a small daughter represents less of a reproductive cost than a 

large female. That is to say, the cost to future reproductive success due to accumulated 

damage from foraging activity is much greater for a large daughter than a small daughter 

(Rehan and Richards, 2010). Furthermore, large females preferentially produce large 

daughters, whereas small females produce more male offspring, and since females 

represent a greater reproductive investment than males, the loss of a large female 

offspring represents a greater cost to fecundity than the loss of a small female to a 

brooding mother.  

Rehan and Richards (2010) suggested that only large robust mothers were able to 

produce a small daughter. The authors argue that this is interesting, but also 

counterintuitive since an offspring produced specifically to be a worker would benefit a 

small mother much more than a large one, given that small mothers have lower 

reproductive potential. I would argue that the solution is simply that large mothers have 

enough of a reproductive advantage (due to their size) to be able to afford to produce a 
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subfertile daughter, whereas a small mother cannot afford the possible reproductive 

waste. Furthermore, a large mother may have a higher rate of motility due to wearing 

herself out attempting to produce a high quality brood. This, thus, increases the utility of 

producing a dwarf daughter. Simply put, a large mother has the resources to bet-hedge 

against her own mortality, whereas a small mother cannot take the chance.   

The Head Start and Assured Fitness Returns models 

 

Two more related mechanisms which can drive the expression of alloparental care 

are the Reproductive Head Start’ and ‘Assured Fitness Returns’ models.  These models 

differ from nest mate manipulation in that they describe how alloparental care can benefit 

the alloparent instead of how the mother can force worker behaviour. Queller’s (1989) 

‘Reproductive Head Start’ model describes how a worker caste can be selected for in a 

solitary species. This model states that alloparents can gain fitness by helping to raise 

siblings that have already been invested in by the genetic parent, whereas a future mother 

must wait until her reproductive period to gain any fitness. This means that the alloparent 

is able to increase its indirect reproductive output by inheriting partially developed brood. 

Queller (1989) argues that the alloparents gain reproductive output equal to the average 

gain from raising their own offspring, but at half the reproductive investment. 

Furthermore, whereas pre-reproductive mortality results in zero fitness for a non-

alloparent, a successful alloparent has positive fitness irrespective of future mortality.  

Gadagkar (1990) argued that Queller (1989) overestimated the benefit of the 

head-start model, but ultimately agreed that such a model does produce a fitness 

advantage comparable to haplodiploidy, but without the relatedness requirements. 

Gadagkar (1990) asserted that the alloparent does not gain the same fitness benefits as the 
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genetic parent for raising its siblings, but the alloparent does receive an ‘assured fitness 

return’ for its work. This ‘assured fitness returns’ model relies on the salvaging of energy 

that would have been lost due to orphaning, instead of giving full credit of rearing to the 

alloparent. In the context of orphaned C. calcarata, the alloparent daughter receives 

fitness gains months before she will be ready to reproduce. Thus, increased mortality and 

foraging damage will be less costly to her life-time reproductive fitness if she helps to 

raise siblings.  

Normal alloparent vs. subfertile alloparent 

 

I have shown that in the event of nest orphaning, a female C. calcarata offspring 

takes over brood care behaviour. Furthermore, I have shown that in a proportion of nests, 

a dwarf daughter carries out this role; however, normal sized daughters are also able to 

fulfill brood care needs. It is thus puzzling why both alloparental types are conserved in 

the population.  

In the event of nest orphaning the potential alloparent can either forage for 

herself, and let her siblings do the same, or she can feed her siblings. Either choice will 

result in incurring the costs of foraging; however, alloparental care also includes indirect 

fitness benefits. Queller (1994) suggested that a normal sized daughter may become an 

alloparent because she will receive a guaranteed fitness advantage irrespective of the 

probability of adult mortality, whereas her sisters have zero fitness if they die anytime 

before nest creation. As discussed, there is a certain probability of mortality associated 

with both overwintering and post-overwintering flight activity. However, if the female is 

an alloparent, she will already have generated a contribution to the next generation by the 
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time she begins overwintering behaviour; thus, future mortality will have less of an 

impact on total reproductive output (Queller 1994).   

One final issue is why some C. calcarata mothers produce dwarf daughters at all 

if alloparental care is found in normal sized daughters. Queller (1994) noted that there is 

still the problem of how it can be adaptive for an individual (worker caste/alloparent) to 

give more to the genetic parent than to herself. One possible explanation is subfertility; if 

the helper is physiologically unable or unlikely to become reproductive (West-Eberhard, 

1978), then altruistic behaviour is favored because the opportunities for direct fitness 

gains are limited (Bull and Schwarz, 1997). Furthermore, given the fact that foraging is 

inherently damaging, producing a normal sized daughter alloparent may represent a waste 

of reproductive energy. Thus, the dwarf daughter not only has more incentive to care for 

siblings, but she is also less of a reproductive cost to the mother if she does not survive to 

reproduce herself. 

General conclusions 

 

The major objective of this thesis was to argue that C. calcarata are facultatively 

social, and indeed the results support this. Even though C. calcarata exhibits all the 

characteristics of subsociality, given the right context, eusocial characteristics can be 

expressed. In order to be considered primitively eusocial, a species needs to have 

overlapping generations, cooperative brood care and reproductive division of labor 

(Andersson, 1984; Wilson, 1971; Crespi and Yanega, 1995). Previous work on C. 

calcarata phenology has shown that mothers live long enough to interact with their 

offspring (Rehan and Richards, 2010), and my work adds the finding that this species is 

also able to produce a worker class. Specifically, the production of a dwarf female 
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represents a primitive version of a worker class. Furthermore, the dwarf female, given her 

reduced size, is at a reproductive disadvantage, and is thus manipulated by the brood 

mother to be a nest helper. This indicates simple reproductive division of labor. Lastly, in 

the event of nest orphaning the dwarf daughter usually takes over brood care. Thus, given 

the above findings, we must conclude that C. calcarata is not only social polymorphic, 

but facultatively, primitively eusocial.  
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