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Abstract

DNA assembly is among the most fundamental and difficult problems in

bioinformatics. Near optimal assembly solutions are available for bacterial

and small genomes, however assembling large and complex genomes especially

the human genome using Next-Generation-Sequencing (NGS) technologies is

shown to be very difficult because of the highly repetitive and complex nature

of the human genome, short read lengths, uneven data coverage and tools that

are not specifically built for human genomes. Moreover, many algorithms are

not even scalable to human genome datasets containing hundreds of millions

of short reads. The DNA assembly problem is usually divided into several sub-

problems including DNA data error detection and correction, contig creation,

scaffolding and contigs orientation; each can be seen as a distinct research area.

This thesis specifically focuses on creating contigs from the short reads and

combining them with outputs from other tools in order to obtain better results.

Three different assemblers including SOAPdenovo [Li09], Velvet [ZB08] and

Meraculous [CHS+11] are selected for comparative purposes in this thesis.

Obtained results show that this thesis’ work produces comparable results

to other assemblers and combining our contigs to outputs from other tools,

produces the best results outperforming all other investigated assemblers.
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Chapter 1
Introduction to Genomes and Genome

Assembly

1.1 DNA Molecule and Structure

Functions, activities and development of all living organisms are defined by

a chemical molecule in their body called DNA. DNA is a macro molecule

that consists of other simpler chemical units that encodes important genetic

instructions defining how a living organism functions. Finding and analysing

the sequence of chemical units in a DNA molecule is considered to be a key to

understanding how living organisms work and finding cures for many genetic-

related diseases. The importance of genetics and DNA analysis has created

vast research areas in biology to find DNA structure and also in computer

science to analyse massive amount of data generated in biology labs in order
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1.1 DNA Molecule and Structure 1

to reveal important information about genetic codes. Bioinformatics is the

general area of research that targets biology problems from the computer sci-

ence point of view. This thesis focuses on solving one of the most fundamental

problems in bioinformatics, the “de novo DNA assembly problem”. Before

going deep in to the main problem, an introduction about DNA structure,

DNA sequencing technologies and genome assembly are presented in this

chapter.

DNA consists of two long biopolymers made of simpler chemical units

called nucleotides. These two long chains of nucleotides are connected to each

other at every nucleotide location and can be imagined as a ladder. Each

long chain is called a strand. There are four different nucleotides that are the

basic blocks of the DNA molecule: Adenine, Cytosine, Guanine and Thymine

which are abbreviated by the letters A, C, G and T respectively. Figure 1.1

shows the chemical structure of these nucleotides. Each pair of nucleotides

in the DNA is called a base. Generally there is no preference for two bases

to connect to each other in one strand but bases in equivalent locations

in opposite strands must be complementary to each other. “A” is always

complemented by “T” and “C” is always complemented by “G” and vice-versa

[WC+53]. Figure 1.2 shows a very simple view of DNA molecule structure.

For more detailed information about DNA molecule and its structure refer to

[Nai07].
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1.1 DNA Molecule and Structure 1

Figure 1.1: Chemical structure of nucleotides. (A): Adenine, (B): Cytosine,
(C): Guanine, (D): Thymine. (Images source: http://en.wikipedia.org /wik-
i/Adenine, http://en.wikipedia.org /wiki/Cytosine, http://en.wikipedia.org
/wiki/Guanine, http://en.wikipedia.org /wiki/Thymine)
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1.1 DNA Molecule and Structure 1

Figure 1.2: DNA structure (Image source: http://www.chemguide.co.uk/-
organicprops/aminoacids/doublehelix.gif)

4



1.2 DNA Sequencing Technologies 1

1.2 DNA Sequencing Technologies

Finding the sequence of base-pairs in a given DNA molecule is not an easy

task. There has not been any approach to provide the complete sequence of

DNA in a chromosome or a genome in a continuous form. This is mainly

because DNA molecules are extremely large. For example, they consist of

hundreds of millions of base-pairs in the case of mammalian genomes including

the human genome. However, having knowledge of the DNA sequence of a

genome is fundamental for other research areas in biology to progress. The

first method to detect the precise order of base-pairs in a DNA molecule was

devised by Fredrick Sanger in 1977 [SNC77] and this is still the most accurate

method for DNA sequencing. Sanger-based sequencing technologies are able

to extract base-pairs from fragments of the whole chromosomal DNA with a

maximum length of around 1000 bp. DNA sequencing is an error prone process

which may result in detecting wrong base-pairs from the DNA molecule. Two

important problems around Sanger technology are its slow run time for large

genomes and its cost. These limitations led to new technologies being devised

addressing speed and price challenges. Next-Generation-Sequencing (NGS)

technologies [DSC+10, MPC+09, HBB+08] were proposed from 1996 with the

aim of reducing the cost and increasing the speed of the DNA sequencing

process. From their time of invention until now, there have been numerous

improvements in NGS technology and currently it is feasible to determine

the DNA sequence of a genome comparatively quickly and cost effectively.

5



1.2 DNA Sequencing Technologies 1

However NGS techrnologies also have several draw-backs:

• They produce even shorter sequence reads compared to Sanger sequenc-

ing. Currently the maximum length of DNA fragments produced by

most NGS technologies is below 400 bps.

• They are more error prone than Sanger-based sequencing, especially in

the starting and ending locations of fragments.

Illumina Genome Analyzer [DSC+10], Applied Biosystems SOLiD Sys-

tem [MPC+09], Helicos BioScience HeliScope [HBB+08], 454 Life Sciences

[MEA+05] and Ion Torrent [RHR+11] are current leaders of Next-Generation-

Sequencing technology.

Because it is not possible to sequence an entire DNA molecule in one

attempt, researchers divide the large DNA molecule into chunks with lots

of copies and perform the sequencing separately on every chunk in parallel,

therefore obtaining sequences for all parts of the genome. The obtained

sequences should be merged at the end to produce one continuous sequence

of base-pairs for the base DNA molecule. Shotgun Sequencing [Pop04] is the

technology that divides the DNA molecule into smaller parts in order to make

the whole genome sequencing possible. Smaller DNA chunks produced by

shotgun sequencing technology from random locations are called “Reads”.

Shotgun sequencing tries to produce random reads from all over the genome

with even distribution, thus being able to produce the whole DNA sequence

at the end. Figure 1.3 shows how reads are generated by shotgun sequencing

6



1.2 DNA Sequencing Technologies 1

Figure 1.3: Shotgun sequencing. Small reads are created from random
locations in the genome. Reads have overlap with each other making it
possible to assemble them later, creating one contiguous sequence called
“Assembly”. (Image source: https://wiki.cebitec.uni-bielefeld.de/brf-software/
images/2/2e/WholeGenomeShotgun.png)

for a genomic DNA.

Sequences obtained from random locations of the genome need to be

processed in order to create one unique and continuous sequence expressing

the base DNA sequence. Finding overlaps between the reads, merging the

correct links together and expanding the reads to achieve larger sequences is

the main task of “DNA Assembly” algorithms. This process is called “de novo”

when there is not any other DNA sequence information about the species being

sequenced. Sanger sequencing technology creates sufficiently high quality

reads with enough length for DNA assembly algorithms to perform and extract

the final assembly, but using NGS technologies imposes drastically different

strategies in DNA sequence assembly. The DNA assembly problem can be

solved if there are enough high quality reads from all over the genome that

can resolve all complex repeating structures through the genome. Having

larger reads helps to find better correct overlaps and lead to better results.

7



1.2 DNA Sequencing Technologies 1

Coverage (read depth) is the average number of reads representing a

given nucleotide in the genome. It can be calculated from the length of

the original genome (G), the number of reads (N), and the average read

length (L) as (N ∗ L)/G [MGG10].

Currently, shotgun sequencing is used along with NGS technologies to

sequence new species with large genomes. This produces hundreds of millions

of reads that need to be processed. Dealing with this huge amount of

data needs careful considerations and algorithms, thus conventional DNA

assembly algorithms designed for Sanger sequencing data cannot be used any

more. Currently assembling DNA sequences of large genomes with complex

repeating patterns like the human genome is not completely possible using

NGS technologies. Assembly results obtained from NGS data are far less

accurate than Sanger sequencing assemblies, even though the algorithms are

more complex and better developed. Besides, by rapid improvements in NGS

technologies, there has been much interest in sequencing DNA molecules of

new species, however there is no perfect DNA Assembly algorithm to produce

high quality results especially in the case of being de novo working on new

species without having any knowledge about the resulting DNA sequence.

Therefore, there has been much demand for new DNA assembly algorithms,

fast techniques and methods to check the quality of DNA assemblers.

8
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1.3 Summary

This chapter covered basic information about the DNA molecule, its structure

and basic blocks as well as a brief introduction to DNA sequencing tech-

nologies and two types of currently available sequencing methods: Sanger

Sequencing and Next-Generation-Sequencing. Each method’s specifications

and limitations are presented and the shotgun sequencing technique used

to create datasets for DNA assembly problem is explained. The next chap-

ter specifically presents the DNA assembly problem and introduces current

approaches to solve it.

1.4 Organization of Thesis

The remainder of the thesis is organized as follows:

In chapter 2, different approaches to the Genome Assembly Problem

including OLC, de Bruijn and Greedy methods are introduced.

Chapter 3 discusses the details about our new algorithm to solve the

Genome Assembly Problem and introduces the new methods that we use

compared to other assembly tools investigated in this thesis.

Chapter 4 includes the experimental results for running our new algorithm

on several datasets and compares the performance of our algorithm to other

DNA assemblers.

And finally, chapter 5 concludes the work that is done in the thesis and

introduces the next steps and future work for this research.

9



Chapter 2
Review of de novo Genome Assembly

Algorithms

Genome assembly is the process of finding the unique single and contiguous

sequence of a DNA molecule by using its set of reads containing smaller

sequences from random locations of the genome. For better understanding,

DNA assembly can be compared to having many copies of a book which is

only written with four characters (A, C, G, T), each of them passed through

a shredder with different cutters, and aiming to obtain one clean copy of

the book from the shredded parts [NSW+13]. Besides the obvious difficulties

of the problem, more hidden issues should also be considered: the original

book may contain repeated paragraphs, some shreds are modified through

out the shredding process therefore having typos and shredded parts may

be read from left-to-right or right-to-left (this is only specific to DNA reads

10



2 Review of de novo Genome Assembly Algorithms 2

not the book example). Having a full DNA assembler capable of solving the

problem for any input dataset is demanded by researchers, however based on

our knowledge, such a system has not been created yet. This inability stems

from several reasons:

• Different sequencing technologies have different characteristics [SJ08].

Some produce longer reads, making it easier for assemblers to detect

overlaps, while some produce shorter reads with considerably high

coverage, making the assemblers’ work more difficult since they must deal

with massive inputs with short lengths. Moreover, noise distributions are

different among sequencing technologies [KSS+10]. Some technologies

tend to produce noise at the starting and ending locations of reads, and

some tend to generate noise in regions containing special sequences, such

as long runs of homopolymers. Currently, creating a framework capable

of addressing all of the mentioned situations and having significant

performance for any sequencing technology seems impossible.

• Different species or even different individuals in the same species have

different genomes. Genomes can be straight forward to assemble or

can be extremely complex. Repeating patterns are the most important

factor defining the complexity of genomes. If repeat lengths are less

than reads size, there is a good chance of obtaining DNA fragments by

resolving the repeat, however complex genomes have repeats of length

far greater than actual read size, making them very difficult to solve

11



2 Review of de novo Genome Assembly Algorithms 2

Figure 2.1: Two types of repeats in genome. Sequence ATCGTGTGC marked
as R1 is repeated four times through out the genome and it is resided in a
bigger repeat pattern GTTATCGTGTGCGGTTGATCGTGTGCGCCCAT
marked as R2

[MKS10]. Moreover, repeats can happen in the middle of one another.

Figure 2.1 shows two different types of repeating patterns in a genome.

Assemblers are usually tuned heuristically to target special types of

genomes with some definite repeating patterns, making them incapable

of solving the DNA assembly problem for any newly sequenced genome

and also being “de novo”, not having any information about the genome.

• Some assembly methods that work for small sequencing projects are not

scalable to large sequencing project dealing with very large genomes,

having hundreds of millions of reads [LLS+11, LZR+10].

Conventional DNA Assembly algorithms were designed to work with

Sanger-based sequencing reads. Sanger reads are more accurate compared to

NGS reads and are long enough to ease the assembly process. Many assembly

algorithms dealing with Sanger reads use the Overlap-Layout-Consensus

(OLC) approach which will be explained thoroughly in section 2.1. However

by invention of NGS technologies, sequencing new species becomes available

while DNA assembly problem becomes more complicated. This is because

NGS reads are not long enough to cover complex repeat structures in the

12



2.1 Overlap-Layout-Consensus (OLC) Methods 2

genome and are not very accurate compared to Sanger reads. New methods

have been devised to specifically address assembly of NGS reads. Using de

Bruijn graphs as a data structure is the most commonly used technique to

tackle the DNA assembly problem and was first proposed by Pavel Pevzner

in 2001 [PTW01]. This chapter covers three general techniques for solving

DNA assembly problem. Section 2.1 describes the Overlap-Layout-Consensus

(OLC) approach, section 2.2 explains the de Bruijn graph approach and

section 2.3 presents greedy graph algorithms to solve the DNA assembly

problem.

2.1 Overlap-Layout-Consensus (OLC) Meth-

ods

The Overlap-Layout-Consensus method is considered as the first approach

proposed to solve the de novo DNA assembly problem. It was widely used

in the Sanger reads era and it was proposed by having Sanger sequencing

characteristics in mind. Celera Assembler [MSD+00], Arachne [BJS+02,

JBG+03], CAP and PCAP [HY05] are among the most used OLC DNA

assemblers. It is argued in [Pop09] that the OLC approach may not be

scalable to be used for NGS data mainly because of being very time and

memory intensive in the overlapping phase.

Three general steps should be performed in every OLC based assembler:

13



2.1 Overlap-Layout-Consensus (OLC) Methods 2

Figure 2.2: Two different scenarios are conceivable when two reads have over-
lap: (i) overlap is true, denoting a correct connection between the reads. (ii)
overlap is denoting a repeating pattern and not expressing a direct connection
between the reads. Detecting which condition the overlap denotes is usually
not possible. (Image source: [MSD+00])

• Overlap: Find overlaps between all pairs of reads in input dataset.

These overlaps make the main graph data structure to work on. Graph

nodes represent reads and edges represent the overlap between reads.

Overlapping criteria can vary in length and similarity percentage in

different assemblers. Overlaps computation is the most time-intensive

phase of the OLC approaches, requiring time proportional to the square

of the number of reads, in the worst case (each read must be compared

to all other reads, leading to
(

n
2

)
operations)[Pop09]. However there are

techniques to reduce the running time by parallelizing the computation

and using multi-processor machines [Pop09]. Figure 2.2 shows two

different scenarios in which two reads can have overlap and Figure 2.3

shows a simple overlap graph for a set of reads.

• Layout: The overlap graph usually becomes extremely large and com-

plex. Thus a simplification phase should be done after the overlap phase

14



2.1 Overlap-Layout-Consensus (OLC) Methods 2

Figure 2.3: (A): set of reads with indentions showing overlaps between them.
(B): overlap graph created for the read set which is usually used by OLC
methods (Image source: http://genome.cshlp .org/content/20/9/1165)

to merge nodes that have unique overlaps, therefore the graph becomes

smaller without losing any information. This phase is called Layout. By

performing Layout algorithms, some graph nodes are merged together

and unique sequences from the genome called Contigs are created. The

output graph still can be seen as an overlap graph but between the

contigs. Figure 2.4 shows a Layout scenario and formation of contigs.

• Consensus: The consensus phase aims to convert the whole graph to

a single continuous sequence called a Scaffold representing the sequence

of base-pairs that the input set expresses. This task can be done by

finding a Hamiltonian path which traverses all nodes in the graph. A

Hamiltonian path in an undirected graph is a path that visits every

vertex (node) in the graph exactly once. Finding if a Hamiltonian

path exists in a graph is NP-Complete [GJT76] which is a draw-back of

using OLC methods for DNA assembly. Scaffolds can contain gap base-

pairs and they connect contigs together by using mate-pair information.

15
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Figure 2.4: Layout scenario. Reads that have their connections deter-
mined are merged together and only nodes facing fork situations are
left. Contigs are created by merging the nodes together. (Image source:
http://gcat.davidson.edu/phast/olc.html)

16



2.2 De Bruijn Graph (DBG) Methods 2

Locations between the contigs are filled by gaps representing unknown

bases, if they cannot be determined. Therefore, if there is not enough

mate-pair information it is not possible to obtain one single scaffold.

The Overlap-Layout-Consensus technique is described in more depth in

[MKS10, Bat05, PPDS04]

2.2 De Bruijn Graph (DBG) Methods

Generally the de Bruijn graph is a directed graph representing overlaps

between sequences of symbols. The idea of using de Bruijn graphs to solve the

DNA assembly problem was first proposed by Pavel Pevzner in 2001 [PTW01].

Currently de Bruijn graphs are the most commonly used technique to solve

the DNA assembly problem for NGS data. There are various implementations

and several DNA assemblers that are designed based on de Bruijn graph

structure.

17



2.2 De Bruijn Graph (DBG) Methods 2

Pevzner [PTW01] defines the de Bruijn graph used for DNA assembly

problem as follows: Given a set of reads S = {s1, s2, ..., sn}, the de

Bruijn graph G(Sl) with vertex set Sl−1 (the set of all (l − 1)-tuples

from S) is defined as follows. An (l − 1)-tuple v ∈ Sl−1 is joined by

a directed edge with an (l − 1)-tuple w ∈ Sl−1, if Sl contains an l-

tuple for which the first l − 1 nucleotides coincides with v and the last

l − 1 nucleotides coincides with w. With this definition, if S contains

only one sequence s1, then the assembly is obtained by a path visiting

each edge of the de Bruijn graph , a Chinese Postman Path [Fle90].

The Chinese Postman Path then can be translated to finding a path

visiting every edge of a graph exactly once, an Eulerian Path Problem

[Pev00]. This transformation happens by introducing multiplicities

of edges in the de Bruijn graph. For example, every edge in the de

Bruijn graph can be substituted by k parallel edges for every l-tuple

repeating k times in s1 [PTW01]. For real situations, the de Bruijn

graph becomes very large and having errors in sequenced reads make

the graph even more complicated. Even with error-free cases, the graph

becomes very complicated. Thus the information about which l-tuples

belong to the same reads is being used again to define Read-Paths and

Eulerian SuperPaths introduced by [PTW01]. More information about

the theories and detail specification of de Bruijn graphs used for DNA

assembly problem can be found in [PTW01].

18



2.2 De Bruijn Graph (DBG) Methods 2

There are two significant advantages of de Bruijn graphs compared to the

OLC technique that makes them practical for large genome projects:

• No need to precisely calculate overlaps between all reads.

• The idea proposed by Pavel Pevzner [PTW01] to use the Eulerian path

to solve the DNA assembly problem instead of using the Hamiltonian

path. An Eulerian path is a path that visits every edge in a graph

exactly once. This makes a huge impact on DNA assembly problem

as efficient algorithms in polynomial times exist to calculate Eulerian

paths in graphs [AIS84, AV84, UTK88].

De Bruijn graph assemblies do not explicitly calculate every single overlap

between all pairs of reads in the input dataset. They work based on k-mer

calculation instead of read overlaps. All reads are first processed to find all

overlapping substrings of length k. These substrings are called k-mers. All

k-mers from all reads in the dataset are extracted and each k-mer is stored

in memory only once, although it can be repeated in several reads. Fast

data structures e.g. hash tables can be used to store and retrieve k-mers. A

de Bruijn graph is created based on the k-mers set. Graph edges are the

actual k-mers which are substrings of size k within the reads and graph nodes

represent substrings of length (k-1) within the reads. Edges are established

between any two nodes that have their (k-2) prefix and suffix in common.

Figure 2.5 shows a de Bruijn graph for a sample consensus sequence with

k = 4.

19



2.2 De Bruijn Graph (DBG) Methods 2

Figure 2.5: Simple de Bruijn graph with k = 4 for a set of reads
that creates the consensus sequence “ACCCAACCAC” (Image source:
http://gcat.davidson.edu/phast/debruijn.html)

The above definition creates the basic de Bruijn graph for DNA assembly,

however different assemblers may have slightly different structures, definitions

and assumptions to build the graph.

As reads are not considered as nodes in the de Bruijn graph and each

unique k-mer is only stored once in the graph, de Bruijn graphs grow linearly

with the input dataset size, making the DNA assembly problem solvable for

large genomes. K-mers are usually stored in fast hash table structures in

order to make the graph creation process as fast as possible. Moreover, k-mers

are presented by graph edges and not nodes, therefore the final sequence can

be extracted by finding an Eulerian path in the graph traversing all edges

and not Hamiltonian paths traversing all nodes. This makes a huge impact

on DNA assembly problem as efficient algorithms exist to calculate Eulerian

paths in graphs [AIS84, AV84, UTK88].

20
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Figure 2.6: Tips and bulges in de Bruijn assembly graphs shown in red. Tips
are branches in the graph that end without connecting to other parts of the
graph. Bulges are branches from a node that come back to the main path
after passing several edges. Bulges can be small, large or complex containing
other bulges. (Image source: http://www.homolog.us/)

21



2.2 De Bruijn Graph (DBG) Methods 2

As for overlap graphs in OLC methods, de Bruijn graphs also become

very large with millions of nodes for large genome assemblies. As de Bruijn

graphs are based on k-mers, errors and noisy base-pairs in the dataset have

significant influence on the graph as they produce different k-mers. In other

words, de Bruijn graphs are more sensitive to sequencing errors than the

overlap graphs. This makes the error detection procedure very important.

One should also keep in mind that DBG methods are usually used with

data generated from NGS technologies which are normally more error-prone.

Assemblers usually define different types of errors and try to detect them

after creating the graph. Errors are of different types including base insertion,

base deletion and base replacement. Errors that occur at the end of the

reads usually create tips in the de Bruijn graphs that are branches that end

in a dead-end situation. Errors which occur in the middle of reads usually

create bulges in the graph. These two types of graph structures are detected

by assemblers and resolved before finding the Eulerian path in the graph.

Differentiating between errors and repeat structures is usually not possible

in most cases, therefore assemblers try to detect noisy parts by heuristics.

Figure 2.6 shows tips and bulges in a de Bruijn graph.

After the graph simplification phase, an Eulerian path in the graph defines

the result sequence for the assembly. However, there are fork situations in the

graph which are nodes with out-degree of more than one which may create

more than one Eulerian path in the graph. Not all Eulerian paths in the

graph points to correct assembly. Assemblers use heuristics in order to find

22



2.2 De Bruijn Graph (DBG) Methods 2

Figure 2.7: Two different Eulerian paths are conceivable for one set
of reads. (Image source: http://sourceforge.net/apps/mediawiki/contrail-
bio/index.php?title=Contrail)

the path which expresses the correct assembly. Heuristics used by different

assemblers vary in this phase which makes every assembler somehow unique.

Figure 2.7 shows two possible Eulerian paths in a de Bruijn graph, created

for one unique set of reads. This is happening because some nodes in the

graph can have more than one out-going edge that may not converge later

(see node labeled CTG in figure 2.7). Having these type of nodes causes more

than one Eulerian path to exist in the graph, however only one Eulerian path

correctly represents the genome. For more information about the de Bruijn

graph techniques refer to [PTW01, MKS10, Pop09].
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2.3 Greedy Graph Methods

Greedy methods for the DNA assembly problem are based on one objective

which is to choose the best overlap match at the current state of the algorithm.

Reads with the highest overlap score are selected and merged together [Pop09].

The process continues until no more overlaps can be found. Large genomes

sequenced using NGS technologies like the human genome are shown to be

very complex to assemble, therefore it is not possible to solve them with greedy

algorithms. Greedy algorithms usually get stuck in local maxima and are

not be able to provide complete assemblies when dealing with sophisticated

situations. However, they do not have any overhead in computation and time

and are usually very fast. TIGR [SWAK95] and CAP3 [HM99] are among

the first assemblers using greedy methods and SSAKE [WSJH07], SHARCGS

[DLBH07] and VCAKE [JRB+07] are among the newer attempts to solve the

DNA assembly problem with a greedy approach.

Recently there has been a renewed interest in using greedy methods in

different parts of the DNA assembly problem and it is making significant

progress. For example, Chikhi et al. [CL11] use a greedy based algorithm

for their localized assembly algorithm to create scaffolds directly from reads.

They unified the process of contig creation from reads and scaffold creation

from contigs to one phase of creating scaffolds from reads. The Meraculous

[CHS+11] assembler also uses a greedy approach to create contigs from input

reads with newer techniques that leads to comparable results without having
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huge computational overheads. This thesis also tries to improve assembly

results by having a greedy view to the problem which will be explained

thoroughly in chapter 3.

2.4 Summary

This chapter covered a literature review of the de novo DNA assembly problem.

It first introduced the DNA assembly problem, its specifications and current

limitations that assemblers deal with. Three different approaches to solve

DNA assembly problem including Overlap-Layout-Consensus (OLC), de-

Bruijn Graph (DBG) and Greedy methods are described. Specifications and

limitations of each method are also presented for the two major types of

DNA sequencing technologies. The next chapter presents our contig creation

algorithm for NGS technology reads.
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Chapter 3
New Contig Creation Algorithm

As already discussed in the previous chapter, the DNA assembly problem

is generally solved with heuristics in mind. These include de Bruijn graph

simplification or greedy-based techniques that decide on the correctness of

graph edges heuristically. Different heuristics result in fragmented assemblies

from different locations of the genome. By applying different heuristic and

simplification methods, various assemblies can be generated for one genome

and the problem becomes worse when it is infeasible to accurately select the

best result. This is mainly because in de novo assembly there is no reference

genome to match the results against. Results with higher length-based metric

values such as the N50 parameter are currently considered better assemblies,

because they are producing larger fragments from the genome.

26



3.1 Objectives 3

N50 value is a statistical measure of a set of numbers in which all

elements of greater than or equal to N50 value are covering at least half

of the total addition of all set elements [MKS10]. N50 is used in DNA

assembly as a metric to measure quality of results. Larger N50 values

express on having larger contigs.

However there are experimental results [MPC+13, BFA+] that show larger

contigs do not necessarily mean improved results and can be misleading when

not correctly assembled. For instance, a new technique for evaluating genome

assemblers [MPC+13] first splits the contigs/scaffolds on locations for which

left and right pieces map onto distant locations in the base genome and

then calculate the N50 based on the split contigs, leading to more accurate

calculations by skipping false positive links in assemblies. Such techniques

essentially prevent the results from becoming biased by heuristics that accept

many false positives during the assembly process. In this thesis, we also use

a similar technique to first split the contigs from the locations that are not

mapped to close locations in the test reference genome and then calculate

the N50 values.

3.1 Objectives

There are three main objectives in this thesis:

(1) Assemble fragments of the genome with the highest probability of

correctness by avoiding the use of aggressive heuristics. Whenever there
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is more than one way to extend contigs based on the k-mers, instead

of selecting one direction and continuing the process, we terminate

the contig creation procedure to be sure about contigs’ quality and

correctness. By having such a behaviour, we end up having smaller

contigs in some datasets compared to other assemblers, but we can be

certain that our contigs are perfectly matched with the target genome.

We compensate for the small size in contigs by running the algorithm

in parallel for multiple k values and combine the results from different

runs at the end in order to obtain better lengths.

This objective is thoroughly explained in section 3.2.

(2) Provide the ability to run the algorithm with different k parameters. As

described in chapter 2, reads are split into overlapping segments of length

k to create k-mers which are the main inputs of the assembly algorithm.

The k parameter has significant influence on assembly results and due

to a variety of reasons including uneven data coverage, noisy data and

varying repeat structures in different genome locations, a single value for

parameter k does not necessarily give the optimal result for all locations

in the genome. Having a very large value for k results in false positive

links in fragments, while a small value for k results in tangled graphs

which makes the problem impractical to solve [BNA+12]. Running the

algorithm with different k values helps in generating considerably large

and correct contigs from all locations of the genome. However, assembly
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algorithms are very time- and space-consuming and it is not feasible

to run multiple instances of the algorithm with dedicated memories

in parallel. Trying to devise structures for multi k-mer assembly is a

possible key to solving this problem.

This objective is thoroughly explained in section 3.3, and experimental

results in chapter 4 shows the influence of using multiple values for k

on the quality of results.

(3) By generating contigs with different k values from the genome locations

that are usually left by other assemblers (because of using only one k

value), there is a good chance of expanding contigs that are generated by

other tools in order to obtain better results. Investigating the possibility

of linking other tools’ contigs to generate high quality contigs is the

main target for this section.

This objective is thoroughly explained in section 3.3.1 and results from

merging contig sets together are presented in section 4.3.

3.2 Producing Contigs

One of the most challenging problems in de novo DNA assembly is to find a

good metric to measure the quality of created contigs. For new species that

have not been sequenced before, there is not any reference sequence available

to be used for verification purposes. In the absence of the reference genome,

29



3.2 Producing Contigs 3

there are length-based metrics such as the N50 value which is widely used by

assemblers to express the quality of results.

It is worth noting the critique in [MPC+13, BFA+] that larger contigs

which lead to better N50 values do not necessarily mean better results in

terms of accuracy and also that there can be many false positive links in

generated contigs.

We are also using the N50 value in order to measure our quality of results.

The detailed explanation on how to calculate more realistic N50 values is

presented in chapter 4.

This thesis focuses on using methods which are more conservative in

expanding contigs and do not attempt to create larger contigs by lowering

the certainty of contigs. The same idea is also proposed by [CHS+11]. Our

approach is based on the method first proposed in [CHS+11] and it improves

the results significantly by performing some changes to the algorithm flow and

a new implementation which are all described in this chapter and appendices.

Moreover, we use our generated contigs in order to improve results from other

tools by importing their outputs to our system.

The assembly process can be described as follows:

(1) Stream the input data files to memory, store reads and pairing infor-

mation. Fill in data structures for reads and k-mers and load the

configuration files provided by the user. This part is explained in more

detail in section 3.2.1.
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Figure 3.1: Reverse-complemented reads are generated by processing the
original read backwards and changing any base character to its complementary
base. (A ↔ T , C ↔ G)

(2) Extract k-mers while processing each read from the input files by

having a pre-defined k value. Use hash-tables to store k-mers and

their occurrence positions in the read set. Because it is not possible

to determine which DNA strand the reads and corresponding k-mers

belong to, all reads are processed to generate their reverse-complement

as well. This doubles the input data space but boosts the quality of the

results significantly. Contigs that are the reverse-complement of each

other are filtered at the end of the assembly process by assuming that

they are expressing the same location in the genome. Figure 3.1 depicts

an example read and its reverse-complement.

(3) Detecting “noisy” k-mers, which are hash-table entries that occur less

often than a fixed threshold number in the whole set of reads. The

assumption behind this noise detection technique is that the input

reads are randomly distributed through the genome with roughly even
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Figure 3.2: For a read of length n, the right overlap (postfix) is a read for
which its base-pairs positions 1 to n− 1 are matched to the original read’s
base-pairs from positions 2 to n. Also, its left overlap (prefix) is a read for
which its base-pairs from positions 2 to n are matched to the original read’s
base-pairs from positions 1 to n− 1.

coverage, therefore all k-mers should be seen at least some minimum

number of times, and entries that are seen less often than the threshold

value can be assumed to be noise. This threshold value can be estimated

to be lower but close to equal to the genome coverage depth of the

input dataset, because it is assumed that each base-pair in the genome

is roughly seen C times where C is the coverage depth. This part is

explained in more detail in section 3.2.2.

(4) Find (k-1) length overlaps between all k-mers and link k-mers that

can be the prefix or postfix of each other. An example of prefix and

postfix k-mers (left and right links) are shown in figure 3.2. This part

is explained in more detail in section 3.2.3.

(5) Extract k-mers that are expressing on unique base pair extensions

either on their right or left links. These unique extensions become the
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base information to create contigs based on k-mers. This part is also

explained in more detail in section 3.2.3.

(6) Create contigs based on qualified k-mers with unique extensions until

reaching dead-end or fork situations. This part is explained in more

details in section 3.2.4.

(7) Analyse generated contigs from different k values (which can be run

in parallel) to find any promising overlap between them. Because of

having sequences from both DNA strands in the input set, contigs are

made from both strands in this step. Therefore reverse-complement

contigs should be detected and only one of them should be kept. This

part is explained in more details in section 3.3.

(8) Import external contigs from other tools and analyse them, aiming to

expand them even more by finding if they overlap with our generated

contigs. This part is explained in more detail in section 3.4.

Figure 3.3 depicts a high level view of the proposed assembly algorithm.

One of the most important aspects of our algorithm is the extensive use

of quality scores during the assembly process. Also, this algorithm does

not rely on external error detection and correction tools. Many DNA error

detection tools are using these quality scores to prune the data and detect

noise before starting the assembly algorithm. However there are also some

tools (e.g. [CHS+11]) that do not rely on external error detection tools. We
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Figure 3.3: Assembly High Level Procedure
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Figure 3.4: One unique k-mer may appear in more than one read. k-mers
that are seen less than a pre-defined threshold amount can be treated as noise
and filtered out.

use a method first described in [CHS+11] that handles the noisy parts of data

based on the occurrence frequency of k-mers in input reads. We believe that in

addition to saving reasonable time and space by avoiding the running of error

detection tools, this approach also leads to better and more accurate results

which experiments also support in section 4.2.1. The minimum acceptable

frequency of k-mers in reads can be adjusted by the user. Figure 3.4 shows

how k-mers may appear in more than one read.

Our algorithm obtained its basic idea from the research in [CHS+11] and

works to improve the quality of results. The differences between our algorithm

(and implementation) and [CHS+11] can be summarized as follows:

• The Meraculous assembler [CHS+11] only considers k-mers which have
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unique extensions in the contig creation process. Although this is correct

and generates very high quality contigs, it can be improved by adding

contigs that are expressing on unique extensions with the probability

of more than a threshold value; therefore we can use majority vote

on the unique base-pair extensions and the number of trusted k-mers

increases. This consequently leads to larger contigs while keeping the

quality of contigs very high. There are also situations in which one

end of a k-mer expresses a “harsh fork” situation in which it cannot be

resolved even by majority voting but the other end is resolved. This

will be discussed further in section 3.2.3. These k-mers are also not

being used by the Meraculous package but can be added to the trusted

k-mers list in our implementation because they help to create larger

contigs with comparatively high quality to other tools.

• Different data structures and hash functions are used in our tool to

produce better results in comparison to the Meraculous assembler’s

implementation. Section 4.2.2 shows our tool’s improvements in com-

parison to the Meraculous package.

• The Meraculous assembler is not capable of running the algorithm for

different k values in parallel, thus it has difficulties creating enough large

contigs from all genome locations on the datasets in our experiments.

Our tool is capable of working with different k values in parallel and

does create comparably large contigs from all locations of the genome.
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Experimental results support this idea and show the improvement when

using multiple k values.

• Our tool is also designed to accept other assemblers’ contigs in order

to analyse and expand them. There is no feature similar to this in the

Meraculous package.

3.2.1 Input Data Loading and Reads/K-Mer Class Struc-

tures

All assemblers should be able to deal with large input files. It is assumed in

this thesis that inputs are coming with pair information showing which two

reads are connected as pairs. Algorithms are designed for Illumina technology

reads and input sequence data must be in .fastq file format, however other file

formats can also be easily supported by adding appropriate parser code for

them. In the case of .fastq file format, there are an even number of files each

including read information for one set of pairs. Two files that are presenting

pair information must have an equal number of reads. Figure 3.5 shows a

sample configuration file that includes addresses for .fastq files and Appendix

A shows a sample set of input files in .fastq format.

Read objects are created by processing the input data. Quality scores are

also stored and pairing information is set for all reads. The main algorithm

does not work directly with these sequences and they are only used once to

create k-mer sets, therefore reads can be removed from the memory after
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Figure 3.5: A sample configuration file for DNA assembly algorithm.
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Figure 3.6: Class diagram showing Read and K-mer class structures. Each
K-mer has list of Read objects in which it is belonged to. K-mer ending
labels are also presented with an Enumeration class.

the k-mer creation process. Figure 3.6 shows the class diagram for the Read

and K-mer classes. Appendix B provides complete information regarding the

class hierarchies, structures and implementation details.

The main algorithm can work with multiple k values. Each k value has its

own k-mer set which is created based on the input reads. .NET framework

hash-table structures are used to store k-mer sets. The hash function used in

our tool is the algorithm presented by Jon Skeet [Ske13] for generating hash

codes for byte arrays presented in algorithm 1. By one-time processing of

reads all k-mers and their occurrence counts are extracted and stored in the

hash-table. Each k-mer also keeps track of the reads that contain it. This

information is used in the next steps to remove noisy k-mers.
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hash = 17;
//Cycle through each element in the array.
foreach (byte b in bytes)
{

//Update the hash.
hash = hash * 23 + b.GetHashCode();

}
return hash;

Algorithm 1: Jon Skeet’s hashing algorithm used in this thesis.

Figure 3.7: Paired k-mers are two k-mers in two paired reads. k-mers pairing
relation is not unique. k-mers CGTTG is assumed to be paired with k-mers
GTACC considering the left read pair but k-mers CGTTG can be seen in
another read like the right read pair and it is assumed to be paired with
k-mers TTTAA as well. (k = 5 in this example)
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In the same way that reads keep the pairing information, k-mers also

keep pair information with other k-mers, but with a slight difference. All

pairing information between reads are unique but one single k-mer may have

more than one pair k-mer because k-mers occur in more than one location

in different reads. Basically it is assumed that if read A has a pair read of

B then the first k-mer of read A pairs with the first k-mer of read B, and

so on. As it is also depicted in Figure 3.7, this relationship is generally not

unique. This type of information is also stored in data structures (described

in Appendix B) and it may be useful for further analyses to use mate-pair

information for the scaffolding problem which is briefly presented in 2.1.

In order to reduce memory usage, we store reads and k-mers information

as compactly as possible. This is achieved by reserving only 2 bits for each

base-pair in sequences as there are only four possible base-pair characters. “A”

base-pairs are stored as 00, “C” base-pairs are stored as 10, “G” base-pairs

are stored as 01 and “T” base-pairs are stored as 11. Therefore, each byte

which normally should keep only one base-pair, actually stores four base-pairs

in our program, resulting in reduction of memory usage by 75%. A library

including encoding, decoding and other useful functions for compressing the

DNA sequences is implemented in our tool which is presented in Appendix B.

3.2.2 Removing Less Frequent k-mers

Many assemblers use error detection/correction techniques to find and resolve

noise in input data, and then run the assembly algorithm on the corrected
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data. It is shown (e.g. in [KSS+10]) that using error detection/correction

techniques improves the assembly results, however there are some problems

using these methods:

• Error detection/correction tools may filter our correct data because of

having lower coverage or any other complexity in the data. However this

is inevitable and currently there is no other approach in our knowledge

to address this problem.

• Error detection/correction tools are time demanding and their run time

increases drastically when working with large inputs e.g. human genome,

even though they just need to be run once.

Therefore in this research, we follow the idea from [CHS+11] to not use any

error detection/correction tool beforehand and instead handle the noisy data

in the middle of the assembly algorithm when creating contigs. In addition

to having faster running time, it is also shown that this approach can lead to

better and more accurate results [CHS+11].

By creating the k-mer set, the occurrence number of every single k-mer

in the read set is counted and stored in the hash-table structure. A minimum

threshold can also be set by the user that defines the minimum occurrence

number of k-mers in the input set. All entries that have fewer occurrences

will be removed.
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Figure 3.8: Each node represents a k-mer and each edge defines overlap
between two k-mers. Nodes that have only one edge going in/out of them
are considered qualified and will be detected by our algorithm. Some nodes
such as the one labelled in red are in fork situations, meaning the algorithm
cannot decide which k-mer succeeds it without using heuristics. Heuristics
used to resolve these fork situations have drastic influence on assemblers’
performance. These fork situations are the ones that could not be resolved
by majority voting or other techniques.

3.2.3 Finding k-mer Overlaps

As described in the previous chapter, de Bruijn graph-based assembly methods

create overlap graphs with each node containing a k-mer and each edge

defining overlap between two k-mer nodes, thus defining sequences of length

(k+1). Using the whole k-mer set, this creates a very large and memory

intensive de Bruijn graph which has many nodes and edges that prevent the

algorithms from effectively simplifying the graph if it happens by using an

inappropriate k value. The effect of using inappropriate k values in large de

Bruijn graphs is explained in the previous chapter. In this research we follow

the idea of not using the whole k-mer set to create the de Bruijn graph (as

in [CHS+11, CL11] and only consider k-mers which are not involved in fork

locations. Figure 3.8 shows qualifying k-mers and a k-mer in a fork situation

which is not considered for the first round.
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Figure 3.9: Overlapping k-mers connect together and create larger fragments
from DNA. This simple example only shows how k-mers can have right and
left overlaps and does not show repeat structures in the genome, therefore in
this example one final unique sequence can be achieved.

In order to find qualifying k-mers, first all overlaps should be detected.

The basic idea of detecting the overlaps is to find which two k-mers have

similar prefix and suffix sub-strings of length (k-1). If k-mer A has a prefix

(sub-string from the first element to the one before the last element) equal to

k-mer B’s suffix (sub-string from the second element to the last element), then

k-mer B can connect to k-mer A on the right in order to make a (k+1)-mer.

This extension can be checked from both ends to create left and right overlaps

for all k-mers in the set. Only overlaps that have a quality score of more than

a defined threshold in the overlapping base-pairs are considered in this step,

which ensures skipping noisy data. Figure 3.9 shows how k-mers connect

together.

By having all overlaps for every single k-mer, qualified k-mers must be

detected. For this reason, k-mer ends are first labelled as follows:
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• (Resolved): All left/right overlapped k-mers express on a unique

extension base pair. Figure 3.10 shows a Resolved state scenario.

Figure 3.10: Resolve State. All high quality extensions express on base-pair
A, selecting it as a true extension for the k-mer.

• (Dead-End) There is not any left/right overlap.

• (Majority Voted) Overlapped k-mers do not all express on a unique

extension base-pair but the majority of entries vote for a unique exten-

sion with probability of higher than a defined threshold. Figure 3.11

shows a Majority-Voted state scenario.

• (Unresolved) If none of the above labels apply, the k-mer ’s end is

labelled as “unresolved” which shows a fork situation. Figure 3.12 shows

an Unresolved state scenario.

k-mers that are considered to express on unique extensions in both their

right and left overlaps (“Resolved” or “Majority-Voted” labels) are considered

“qualified”.

The idea of having labels including “Resolved”, “Dead-End” and “Unre-

solved” for k-mer ends were first proposed by [CHS+11] but the “Majoriy-
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Figure 3.11: Majority-Voted State. Not all high quality extensions express
on a unique base-pair but most of them express on base-pair A selecting it as
a unique base-pair extension. Minimum probability for Majority-Vote can be
set by the user.

Figure 3.12: Unresolved State. Not all high quality extensions express on a
unique base-pair and none can be selected as a majority.

Voted” label is a contribution of this research to the community.

Qualified k-mers can build unique and uncrossed paths through the large

de Bruijn graph that do not have any forking nodes, therefore the algorithm

does not need much time and memory space in comparison to other tools

that create the full de Bruijn graph at the first step. In this way the most

important information is obtained from the de Bruijn graph without any need

to build the whole memory-intensive graph which is not possible for large
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datasets like the human genome.

3.2.4 Contig Creation

Qualified k-mers are the base information used in the contig creation process.

Each qualified k-mer is expressing on a unique single-base extension in both

its right and left links. Thus, two overlapping k-mers can be created by having

one starting k-mer. Newly created k-mers are checked in the qualified k-mer

set and if they exist, the base k-mer is extended by one base-pair (k-mers

merged) and the process continues by following the extensions for the new

added k-mer. The contig creation process terminates when both ends of the

contig reach a dead-end or unresolved situation with nothing to match from

the qualified k-mer set. Selecting the base k-mer to start is not important

and can be done randomly. New contigs are generated until the qualified

k-mer set runs out of elements. Algorithm 2 shows the procedure of creating

contigs from qualified k-mers.

3.3 Multi k-mer Assembly Solution

Many current assembly algorithms consider a fixed value for k and this

parameter has a significant role in obtaining the best results. There are

methods to analyse the input data and find the most appropriate k value for

the given input[SWJ+09, BMK+08], however, to the best of our knowledge,

many of the proposed methods assume an even coverage through the input
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while qualifiedKmers is not empty do
cntg ← instantiate a new contig object
firstKmer ← pick and remove first element from qualifiedKmers
rightExtension← firstKmer’s rightExtension
leftExtnesion← firstKmers’s leftExtension
cntg ← firstKmer
rightTruncated← false
leftTruncated← false
finish← false
while finish is not true do

finish← true
rightOverlapKmer ← cntg[n− k : n] + rightExtension
leftOverlapKmer ← leftExtension + cntg[0 : k]
if rightTruncated 6= true then

if qualifiedKmers contains rightOverlapKmer then
cntg ← cntg + rightExtension
rightExtension← rightOverlapKmer’s rightExtension
remove rightOverlapKmer from qualifiedKmers
finish← false

else
rightTruncated← true

end if
end if
if leftTruncated 6= true then

if qualifiedKmers contains leftOverlapKmer then
cntg ← leftExtension + cntg
leftExtension← leftOverlapKmer’s leftExtension
remove leftOverlapKmer from qualifiedKmers
finish← false

else
leftTruncated← true

end if
end if

end while
add cntg to contigs

end while
return contigs

Algorithm 2: Contig creation algorithm.
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data and calculate a single k value for the data set; this is not always correct

especially for human genome data because of its size and complexity in

repeat patterns. Moreover, repeating patterns in the genome have different

characteristics and they play the most important role in the quality of assembly

results. Different k values result in either resolving repeat structures, or being

stuck in the middle of the contig creation process, and there is not any unique

k value that can work for all locations of the genome. Small k values make

the de Bruijn graph very tangled and messy, thus the paths are not fully

detectable and the quality of results decreases. On the other hand, large k

values may resolve repeat patterns with length of less than k but may fail to

detect overlaps between reads, particularly in low coverage regions, making

the graph more fragmented [BNA+12].

There have been attempts in assemblers like [ZB08] to find the most

appropriate k value and run the algorithms for multiple ks but the assemblers

themselves do not try to improve the overall results based on outputs from

multiple k values.

In this research, the most important goal is to produce qualified contigs

from all over the genome using different k values. The idea of using multiple

k values in order to build contigs is also proposed by other assembly tools (e.g.

in [BNA+12, MPC+11]) but we claim to have a very simple way of doing this

without any complicated mathematics and complex structures that brings

overhead.

By having results for different k values, it is more likely that the best
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contigs from all locations of the genome are being created even though they

are from different runs. Therefore it is feasible to obtain larger contigs by

analysing the results from different runs and trying to merge the overlapping

parts. However, a significant portion of contigs from different k values are

expressing on the same locations in the genome, therefore repeating parts

should be detected and removed at the end.

3.3.1 Contigs Merging

Contigs are contiguous portions of the genome that the assembler successfully

constructs. Because there is not any information regarding which strand the

base reads belong to, contigs are created on both strands which brings two

versions of each contig (the contig itself and its reverse-complement) to the

contig set. However, contigs do not have any overlap of length more than k

with each other, because if they had it would be detected in previous steps of

the assembly algorithm, unless they come from different k runs. Therefore

attempting to merge contigs all generated from one fixed k value does not

improve the results, but the idea of merging works when dealing with contigs

generated from different k values.

Different k values generate different contigs with different lengths through

the genome. In some assemblies, more repeats may be resolved and different

locations of the genome may be constructed. The main reason behind this

is already discussed in section 3.3. Some locations of the genomes which do

not have very complex repeat structures tend to be constructed with almost
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List<Contig> oldContigs;
List<Contig> newContigs
for all cntg in oldContigs do

newCntg ← instantiate new contig object
for i = n− 1 downto 0 do

newCntg[n− i− 1]← complementBP (cntg[i])
end for
add cntg to newContigs
add newCntg to newContigs

end for
return newContigs

Algorithm 3: Creating Reverse-Complement Contigs.

every reasonable k value. Thus, contigs from different assembly runs do have

overlaps and applying a merging technique should improve the results.

The first step to merge contigs is to find overlaps between all of the

input contigs. As contigs can belong to each of the genome strands, reverse-

complements are generated for all of them at the first step. By actually

doubling the dataset, we can be sure to find overlap between two contigs

that construct the same location in the genome but from different strands.

Algorithm 3 shows how the contig set doubles in size when creating Reverse-

Complement versions. In order to find extensions for the contigs, an algorithm

is needed to check if there is any overlap between two input contigs or not.

There are three situations in which two contigs can be linked together:

• (1): The first contig’s ending base-pairs are matched with the second

contig’s starting base-pairs, thus the first contig can be linked to the

second contig from the left. The Algorithm to check this condition is
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p← L1− 1
while p ≥ CONTIGS_MIN_OV ERLAP do

match← true
for i = 0 to p− 1 do

if cntg1[L1− p + i] 6= cntg2[i] then
match← false
break

end if
end for
if match then

return cntg1 + cntg2.substr(p)
end if
p← p− 1

end while
return null

Algorithm 4: Contigs left link check algorithm

p← 0
while p + L1 ≤ L2 do

match← false
for i = 0 to L1− 1 do

if cntg1[i] 6= cntg2[i + p] then
match← true
break

end if
end for
if match then

return cntg2
end if
p← p + 1

end while
return null

Algorithm 5: Contigs substring check algorithm
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p← L1− 1
while p ≥ CONTIGS_MIN_OV ERLAP do

match← true
for i = 0 to p− 1 do

if cntg1[i] 6= cntg2[L1− p + i] then
match← false
break

end if
end for
if match then

return cntg2 + cntg1.substr(p)
end if
p← p− 1

end while
return null

Algorithm 6: Contigs right link check algorithm

Contig cntg1;//cntg 1 is always the smaller contig
Contig cntg2;
L1← length(cntg1)
L2← length(cntg2)
consensus← RightLinkCheck(cntg1, cntg2)
if consensus 6= null then

return consensus
end if
consensus← LeftLinkCheck(cntg1, cntg2)
if consensus 6= null then

return consensus
end if
consensus← SubStringCheck(cntg1, cntg2)
if consensus 6= null then

return consensus
end if
return null

Algorithm 7: Finding contigs overlap
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presented as Algorithm 4.

• (2): The first contig is completely repeated in the second contig, thus

the second contig expresses the merging result. The Algorithm to check

this condition is presented as Algorithm 5.

• (3): The first contig’s starting base-pairs are matched with the second

contig’s ending base-pairs, thus the first contig can be linked to the

second contig from right. The Algorithm to check this condition is

presented as Algorithm 6.

Algorithm 7 shows the procedure of finding the overlap between two

input contigs (consensus sequence). It calls other procedures presented in

Algorithm 4, Algorithm 6 and Algorithm 5 to check for all conditions in which

two contigs can generate a consensus sequence. The maximum overlap length

between contigs can be set in the assembler’s configuration file and is usually

equal to the minimum k value considered. By being able to merge any two

input contigs, an iterative procedure can be devised to merge and extend

contigs until no more extension is possible. Algorithm 8 shows this procedure.

3.4 External Contigs Expansion

Contigs created using the approach described in this thesis are assumed to

express certain fragments in the genome with high probability. Running

the assembly algorithm for different k values and merging the results from
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while contigs > 1 do
baseContig ← contigs[0]
remove baseContig from contigs
overlapFound← false
List < Contig > newlyAddedContigs
for all cntg in contigs do

consensus← ContigsOverlaped(baseContig, cntg)
if consensus 6= null then

remove cntg from contigs
add consensus to newlyAddedContigs
overlapFound← true
if consensus == cntg then

break
end if

end if
end for
add newlyAddedContigs to contigs
if overlapFound == false then

addbaseContigtofinalContigs
end if

end while
return finalContigs

Algorithm 8: Contigs expansion algorithm.
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different runs usually leads to better results. While merging results from

different runs of our own assembly algorithm is useful, importing contigs from

other tools can also be very beneficial. The same set of expansion and merging

algorithms can be performed on imported contigs too. However, this also

creates false positive links between the contigs due to sequences in repeating

regions. Currently, we detect the false links after the contig creation process

by aligning and comparing the fragments to the human reference genome, and

only consider the correctly aligned fragments for evaluating the algorithm.

Devising techniques to prevent false positives during the merging algorithm

is part of our future work for this research.

There are definitely some areas in the genome that are covered by other

assemblers. Also different assemblers can construct different locations of one

genome because of using different heuristics and assumptions. Therefore

merging results from different assemblies should lead to better contigs. By

having all contigs which are built from different k values, there is a better

chance of creating larger contigs from state of the art algorithms while

not reducing the contigs’ correctness. The procedure of merging external

contigs with our generated result is the same as the algorithm described in

section 3.2.4. The experimental results in section 4.2.2 show that importing

other tools’ contigs to our system and performing the expansion algorithm

can help obtain significantly better results.
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3.5 Summary

This chapter described the main algorithms used in this thesis in order to create

contigs from input short reads. Methods to load input data to the memory,

storing them in the designed data structures and performing algorithms to

create contigs are presented in this chapter. Moreover, running the assembly

algorithm for multiple k values in parallel is described in section 3.3. Finally,

we proposed a method to merge contigs from different assembly runs and the

ability to utilize external contigs from other tools in order to improve their

quality of results.
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Chapter 4
Experimental Results

4.1 Experimental Results Terminology

To the best of our knowledge, the de novo DNA assembly problem for the

human genome is still an open problem. It is discussed in [MPC+13] that

when dealing with complex genomes, using different available assemblers may

not help to obtain better results unless there is better input data with less

noise, better coverage, longer reads, and etc. Therefore, it is believed that

currently the most important problem is the data and not the algorithms.

However algorithms also vary significantly: some are not even scalable to

human genomes and others that are capable, obtain limited results compared

to results from Sanger data.

The most widely used method to distinguish different assemblers is to

measure their performance using length-based metrics such as N50 described
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in chapter 2. Larger N50 value shows that larger contigs are created, which

can primarily be considered as a better result. However, sometimes N50

values can become misleading, when the generated contigs are not accurate.

Unfortunately deciding if a contig is correct or not is currently impossible in

de novo DNA assembly as there is no reference genome available to compare

to.

For comparisons, we select our datasets in this thesis from the human

genome, therefore we can use the human reference genome (hg19) in order

to estimate the accuracy of the contigs and detect the false links between

the final contigs. In order to detect the false links in the contigs, we split

each contig from all locations that the left and right fragments are aligned to

distant locations in the reference genome, meaning the contig is not built in

a correct way and should split. In other words, we consider alignment blocks

from the BLAT tool as the correctly mapped fragments and the maximum

allowable gap between the alignment blocks is set to 50 bases. From now on,

whenever we refer to the N50 value, we mean the calculated value based on

the fragments generated by splitting contigs in described locations, and not

the base contigs which are the outputs of the assemblers.

There are two main sections in this chapter for our experimental results:

(1) N50 comparisons: These measure the quality of results based on

contigs’ length. Calculating the N50 parameter is done by the formula

given in chapter 3 page 27 and can be accomplished by only having the

contigs’ size and the targeting genome’s size. Before calculating N50
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values, contigs are split into several fragments as described above.

(2) External contigs expansion results: These show the quality of

results when external contigs are added to our generated contigs and

the expansion algorithm is performed on the dataset.

4.1.1 Datasets

Different locations of the human genome with different sizes are selected in 9

different datasets in order to perform experiments. The datasets used in this

thesis are described in table 4.1.

Table 4.1: Experimental data sets.

Dataset Genome Length Location Chromosome Reads Count
1 1Kb 100K-101K 1 190
2 10Kb 100K-110K 1 3452
3 10Kb 60K-70K 10 1296
4 100Kb 100K-200K 1 19246
5 100Kb 60K-160K 10 17178
6 1Mb 100K-1100K 1 190030
7 1Mb 60K-1060K 10 182370
8 10Mb 100K-10100K 1 1766556
9 10Mb 60K-10060K 10 1825054

In order to find contigs’ accuracy, all contigs are aligned to the hg19

reference genome using the BLAT tool [Ken02]. Among all possible alignments

for each contig, the alignment which builds more unique fragments in the

genome in the specific locations is selected. Alignments which are not in the
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selected region or do not express on any new fragments that are not already

filled by other contigs are filtered out.

4.2 Results

Three assemblers are selected to run on proposed datasets. Assemblers are:

• Meraculous [CHS+11]

• SOAPdenovo [Li09]

• Velvet [ZB08]

These assemblers are selected because of their popular use among re-

searchers and their stability. The Meraculous [CHS+11] tool is specifically

selected because of having a very close algorithm to our technique presented

in this thesis.

Our tool is capable of running the assembly process for multiple k values

in parallel with any k value set provided. Other tools either do not have this

feature or have it implemented in a way that cannot accept all k combinations

in one run, therefore we ran each assembler for each k value individually

and get the average between the runs. The k values that are used in our

experiments are fixed for all datasets, and cover a range of small and large

values. These values are: k: 19, 31 and 41. It should be noted that small

changes in the value of k do not have very much effect on the results obtained.

These are typical values for k as used in other research when the read length
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is 100 as in our case. We chose a range of values in our experiments to show

how our algorithm works for different values. Note that if the read length

changes, the k values should also be adjusted.

4.2.1 N50 Results

This section presents the N50 values obtained for each assembler’s run on

the datasets. The values for other assemblers are the averages obtained from

three different runs for selected k values. Tables 4.2 and 4.3 show comparisons

between the N50 results of assemblers for all datasets.

The Meraculous assembler is the closest assembler to our method in terms

of the algorithms and heuristics. One of our main objectives was to outperform

the tool that has the closest algorithm to our method. Results show that

our tool has better performance than Meraculous in all of the experimented

datasets. The reason why our tool out-performs Meraculous in all test-cases,

and why it has the best performance in some of the datasets, can be explained

as a result of using multiple k values in the assembly process. Different

k values are producing reasonably large contigs from different locations in

the genome and merging the results from various k runs, helps to obtain

significantly better results in some cases. However this directly depends on

the datasets’ characteristics and repeat patterns which are not known before

hand. In two of the datasets the Meraculous assembler has the N50 value of

zero which means the total length of all fragments is not more than half of

the targeted genome, while our tool obtains N50 values of 86 and 573. By
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Table 4.2: N50 Results for Datasets #1 to #5. Best result for each dataset is
bold

Assembler N50 Largest Fragment
Data Set 1: 1K_Chr1_100-101K

Our tool 772 772
Meraculous 208 288.6
SOAPdenovo 889.6 889.6
Velvet 540.6 540.6

Data Set 2: 10K_Chr1_100-110K
Our tool 1434 2679
Meraculous 311.6 1275.6
SOAPdenovo 677.3 1655
Velvet 770.6 1733.3

Data Set 3: 10K_Chr10_60-70K
Our tool 86 355
Meraculous 0 248.6
SOAPdenovo 1138.6 1762
Velvet 761.3 1719

Data Set 4: 100K_Chr1_100-200K
Our tool 285 4438
Meraculous 54.6 1782.3
SOAPdenovo 676.3 3752
Velvet 509 3434.33

Data Set 5: 100K_Chr10_60-160K
Our tool 269 2117
Meraculous 59.6 713.3
SOAPdenovo 1447.3 3411
Velvet 1074.6 4053.3
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Table 4.3: N50 Results for Datasets #6 to #9. Best result for each dataset is
bold

Assembler N50 Largest Fragment
Data Set 6: 1M_Chr1_100-1100K

Our tool 573 2584
Meraculous 0 3333
SOAPdenovo 117 6444.6
Velvet 109.6 5215.6

Data Set 7: 1M_Chr10_60-1060K
Our tool 341 3077
Meraculous 64.3 1661
SOAPdenovo 1429.6 9121.3
Velvet 1135.3 6648.6

Data Set 8: 10M_Chr1_100-10100K
Our tool 300 3255
Meraculous 21.3 3333
SOAPdenovo 1002.6 9885
Velvet 705 8882.6

Data Set 9: 10M_Chr10_60-10060K
Our tool 387 3869
Meraculous 68.3 1810.6
SOAPdenovo 1504.6 14139.3
Velvet 1020 8290.6
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considering the remaining 7 datasets, our tool is creating 6.15 times larger

contigs compared to Meraculous. It should be noted that all of the input

reads in our datasets are 100 bps in length but we define contig’s minimum

acceptable length as the k value and do not include the actual reads in

assembly process and also N50 calculation, therefore in some of the datasets

we obtain N50 values of less than the actual read sizes.

Comparisons to SOAPdenovo and Velvet show our tool has the best

performance in two of the datasets namely datasets 2 and 6 but is behind in

other datasets. For datasets from chromosome 10, our tool comes behind the

Velvet and SOAPdenovo which can be explained by our different heuristic

methods. In two datasets from chromosome 1, our tool outperforms all other

assemblers which can again be explained by using multiple k values. It also

looks like our tool performs better on small datasets and comes behind the

Velvet and SOAPdenovo in large datasets (10M base dataset). Figure 4.1

shows the comparisons in a chart and figure 4.2 shows the largest correct and

completely aligned fragment which is built by the assemblers. Fragments are

computed by splitting the contigs in locations that have different alignment

blocks in their right and left sequences. Based on figure 4.2 our tool has

created the best fragment in two of the 9 datasets and falls behind the Velvet

and SOAPdenovo for the remaining datasets while always getting better

results than Meraculous.
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Figure 4.1: N50 results for four assemblers on nine experimented datasets.

Figure 4.2: Largest fragment produced by four assemblers on nine experi-
mented datasets.

4.2.2 External Contigs Expansion Results

This section presents results for performing the “contigs merging” algorithm

described in Algorithm 8 when external contigs from other tools are imported

to our system. For each assembler, the best run having the highest N50 value
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Figure 4.3: Improvements made to Velvet results by combining our tool’s
result to Velvet contigs. N50 value is by on avarage a factor of 3.2.

is selected.

Table 4.4 presents experimental results for integration of our tool with

the Velvet assembler. Results show that combining our contigs to contigs

generated by Velvet significantly increases the quality of results leading to

larger fragments from the genome and thus, better N50 values. All datasets

show improvements in results and the N50 value is increased by on average a

factor of 3.2. Figure 4.3 shows the improvements made by this combination

for each dataset.

Table 4.5 presents results for integration of our tool with the Meraculous

assembler. Results show significant improvement in N50 values by merging

our tool’s contigs with contigs generated by Meraculous assembler. The N50

value is increased by on average a factor of 3.5. In two datasets Meraculous

has an N50 value of zero which means the total sum of all generated contigs’
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Table 4.4: Expansion Results for Velvet integration

Assembler N50 Largest Fragment
Data Set 1: 1K_Chr1_100-101K

Velvet 547 547
Our tool + Velvet 1086 1086

Data Set 2: 10K_Chr1_100-110K
Velvet 1033 2014
Our tool + Velvet 3543 2030

Data Set 3: 10K_Chr10_60-70K
Velvet 897 1948
Our tool + Velvet 1117 1948

Data Set 4: 100K_Chr1_100-200K
Velvet 806 2867
Our tool + Velvet 1904 5355

Data Set 5: 100K_Chr10_60-160K
Velvet 1603 6797
Our tool + Velvet 4255 9014

Data Set 6: 1M_Chr1_100-1100K
Velvet 104 5322
Our tool + Velvet 936 10230

Data Set 7: 1M_Chr10_60-1060K
Velvet 1852 11084
Our tool + Velvet 3239 13161

Data Set 8: 10M_Chr1_100-10100K
Velvet 1167 13690
Our tool + Velvet 1999 18991

Data Set 9: 10M_Chr10_60-10060K
Velvet 1750 13964
Our tool + Velvet 2632 14018
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Table 4.5: Expansion Results for Meraculous integration

Assembler N50 Largest Fragment
Data Set 1: 1K_Chr1_100-101K

Meraculous 324 327
Our tool + Meraculous 772 772

Data Set 2: 10K_Chr1_100-110K
Meraculous 371 1041
Our tool + Meraculous 1801 2679

Data Set 3: 10K_Chr10_60-70K
Meraculous 0 355
Our tool + Meraculous 86 355

Data Set 4: 100K_Chr1_100-200K
Meraculous 84 2157
Our tool + Meraculous 314 4438

Data Set 5: 100K_Chr10_60-160K
Meraculous 109 1257
Our tool + Meraculous 380 4382

Data Set 6: 1M_Chr1_100-1100K
Meraculous 0 3333
Our tool + Meraculous 112 3333

Data Set 7: 1M_Chr10_60-1060K
Meraculous 117 1723
Our tool + Meraculous 360 3077

Data Set 8: 10M_Chr1_100-10100K
Meraculous 64 3333
Our tool + Meraculous 327 3333

Data Set 9: 10M_Chr10_60-10060K
Meraculous 120 2172
Our tool + Meraculous 187 4038

69



4.2 Results 4

Figure 4.4: Combining our tool’s contigs to contigs generated by Meraculous
results in significant improvement in assembly results increasing N50 value
by on average a factor of 3.5.

sizes is less than half of the genome length targeted by the dataset, therefore

these entries are excluded when calculating the average. Figure 4.4 shows all

of the comparisons in a chart.

Table 4.6 presents results for integration of our tool with the SOAPdenovo

assembler. Results show that combining our tool’s contigs with contigs

generated by the SOAPdenovo package also generates better results having

larger fragments and N50 values. The N50 value is increased by on average

a factor of 3.06. Figure 4.5 shows all of the comparisons in a chart.

Results from combining our tool results to outputs from other assemblers

supports the idea that it is possible to obtain improved results by merging

them to the contigs that are created with different k values in the assembly

process. This in fact shows that some of our generated contigs are from the

locations that are left over by other assemblers, therefore overlaps can be
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Table 4.6: Expansion Results for SOAPdenovo integration

Assembler N50 Largest Fragment
Data Set 1: 1K_Chr1_100-101K

SOAPdenovo 1069 1069
Our tool + SOAPdenovo 1069 1069

Data Set 2: 10K_Chr1_100-110K
SOAPdenovo 877 1970
Our tool + SOAPdenovo 3527 4169

Data Set 3: 10K_Chr10_60-70K
SOAPdenovo 1780 1946
Our tool + SOAPdenovo 1946 2353

Data Set 4: 100K_Chr1_100-200K
SOAPdenovo 1165 5476
Our tool + SOAPdenovo 2346 7994

Data Set 5: 100K_Chr10_60-160K
SOAPdenovo 2376 5651
Our tool + SOAPdenovo 4550 9460

Data Set 6: 1M_Chr1_100-1100K
SOAPdenovo 173 10454
Our tool + SOAPdenovo 1677 12823

Data Set 7: 1M_Chr10_60-1060K
SOAPdenovo 2545 16614
Our tool + SOAPdenovo 4460 19958

Data Set 8: 10M_Chr1_100-10100K
SOAPdenovo 1790 18684
Our tool + SOAPdenovo 2682 19169

Data Set 9: 10M_Chr10_60-10060K
SOAPdenovo 2732 27058
Our tool + SOAPdenovo 3761 27089
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Figure 4.5: Combining our tool’s contigs to contigs generated by SOAPdenovo
obtain better results having more N50 values. The N50 value is increased by
on average a factor of 3.06.

found between the results in order to obtain larger fragments. However, there

are also false positive links between the merged contigs, thus creating wrong

contigs in the results. Currently, we avoid the influence of the false contigs in

our results by splitting them from the wrong locations using BLAT and the

human reference genome.

4.2.3 Computation Time Results

DNA assemblers usually take a long time to perform especially for large

datasets because of loading massive amount of information to memory and

processing the information to find overlaps and assemble the fragments. Input

data can become massively large making the whole process very slow. Our

tool is also not exempted from this fact. Moreover, our tool is designed to
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run different k values in parallel which takes more memory usage and requires

more time to perform. The contigs merging phase, which is the final phase

of our tool, is also time demanding because of using many string matching

algorithms on significantly large contigs which is generally considered as a

slow process. Figure 4.6 shows detailed information about our tool’s run

times for different datasets.

Figure 4.6: Run times of our algorithm for the experimented datasets.

We cannot directly compare our run times to other assemblers, as our tool

currently only performs contig creation stage of the assembly process and

does not perform the other stages including scaffolding. Other assemblers

mainly perform all stages and does not specify a time specifically for contig

creation process.
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4.3 Summary

This chapter covered our experimental results to investigate our tool’s per-

formance on various datasets and compared our results to other assemblers.

We chose 9 datasets all extracted from real datasets sequenced by Illumina

sequencing technology and we use the human reference gnome version 19

(hg19) in order to align the resulting contigs to the genome and find the

accuracy and false links in generated contigs. Results are compared based on

the N50 values and the largest fragments built by the assemblers. We also

presented results for the integration of our tool with other assemblers in order

to obtain better N50 values, which is shown to be effective. Experimental

results show that our tool can obtain the best results in some datasets based

on the repeating patterns and k values selected and is capable of improving

the results from other tools by merging them with our generated contigs.
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Chapter 5
Conclusion and Future Work

5.1 Conclusion

The de novo DNA assembly problem is still an open problem to solve, specifi-

cally for large genomes including the human genome. This thesis focuses on

creating contigs from short reads generated by Next-Generation-Sequencing

technology and merging other assemblers’ contigs with those generated by

our tool in order to obtain improved results. Our algorithm is based on first

finding all k-mers from the input read set and then filtering the noisy entries

by counting the number of occurrences. The k-mers are then processed in

order to find overlaps, and overlaps that are uniquely expressing on single

base-pair extensions are extracted. By having a data structure containing all

single base-pair extensions, contigs are created by merging k-mers from both

directions.
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Our algorithm is capable of running the assembly process with several

k values in parallel and merging the results from different runs at the end

of the assembly. Experimental results show considerable improvements in

results when using multiple k values. Our tool is also capable of importing

contigs from other assemblers and analyzing them in order to improve results

by achieving higher N50 values.

Our tool is developed in C# and C++ programming langauges and can

run in both Windows and Linux machines. It has one main configuration file

to load the datasets and assembly parameters. Input files are accepted in

.fastq file format and output contigs are generated in .fasta file format. A

sample configuration file is presented in figure 3.5 and a sample input .fastq

input files is presented in Appendix A.

5.2 Future Work

The de novo DNA assembly is a large problem consisting of several parts.

Pruning input data sets in order to remove noisy parts, creating contigs

based on the short reads, orienting contigs by using mate-pair information

and creating scaffolds based on contigs are all different stages of a DNA

assembly process. This thesis focuses specifically on creating contigs from

short reads, therefore completing other parts in order to have a full de novo

DNA assembler is a major part of future work.

Finding the correctness of the generated contigs is a difficult problem
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in de novo assembly because there is no reference genome to compare to.

Contigs may be created because of the overlaps that are expressing repeat

patterns and not correct extensions. Using pair read information during the

contig creation algorithm is one idea that we want to investigate in future.

By having the estimated distance between the pair reads in the genome, we

want to investigate new ways to create contigs that have less false positive

links, leading to more accurate results. Having read pairs can also be useful

to generate scaffolds from the contigs. There are also situations that the

reference genome is available for the genome and the problem is not de novo.

We want to add the support for matching the contigs to the available reference

genome automatically in order to find their accuracy. This will add a degree

of confidence in the accuracy even when applied to de novo problems.

Merging results from different assembly runs or external tools generates a

number of false positive links between the contigs, leading to having incorrect

contigs beside the correct overlaps. This reduces the accuracy of the final

results and raises the problem of verifying if the generated final contigs are

correct or not. Currently, in our experimental results, we avoid using the

wrong contigs to influence the N50 value by splitting the contigs from the

points that left and right alignments are distant as described in chapter 3.5

page 38. New algorithms can be devised as a future work to either detect

the false positive links after contigs merging or consider information such as

read-pair to reject the false links during the contigs merging algorithm.

Supporting different input file formats is also valuable. Currently only
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input files in .fastq file format are supported and all outputs are in .fasta

format.
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Appendix A

Sample .FastQ file which is the input to our assembly tool. First line contains

the ID for the sequence, second line is the actual sequence, third line contains

only a plus character and the fourth line contains the quality scores for every

base-pair of the sequence.

1 FCD19T7ACXX:1 : 2313 : 16262 : 81103#

AACACGGACAGCTCCCTGAACTCCAGGAAACATCCTGATTTAGTGTTTTGAGTATTGT

3 GAAGCACAGTTAGAGCAGAAACATGGAGAATCACCTTAAATG

+

5 _ b b e e e e e g f g g f h i i i i h h h i i d h h h i h b g d f f h i i ^ ag f f hac ^ e f h f Z e b g g g i f

hiihhhhcddgdf__a^_dd ] bbdcbb_ ‘ acccccccbb_bd

7 FCD19T7ACXX: 1 : 1 1 0 5 : 2 3 3 0 : 8 9 4 5 0#

TAATGTCTAGAATCTGAGTGCCATGTTATCAAATTGTACTGAGACTCTTGCAGTCACA

9 CAGGCTGACATGTAAGCATCGCCATGCCTAGTACAGACTCTC

+

11 ___eceeecggggdfh [ ebgh fdh f f f f h cgdgg fS [ b f f aa fghecg fae f ghhh ‘_

efdge f fZbbfgeZegfcdgfgggecbcdbddcd ‘ b_abbbb

13 FCC0YLPACXX:1 : 2114 : 18570 : 19681#

AGCACACAGAGAATAATGTCTAGAATCTGAGTGCCATATTATCAAATTGTACTGAGAC

15 TCTTGCAGTCACACAGGCTGACATGTAAGCATCGCCATGCCT

+

17 _ _ b e e e e e g g g g g i i i i i i i i i i i i i i i i h i g h i i i i h h i i i h i i i i i i h i i h i f g c e

g h i i i g h i h i i h i i h h f d d g g g f g g e e d e d e e d c c c c c c c c c

19 FCC0YLPACXX:2 : 1209 : 18161 : 19463#

CATGTTATCAAATTGTACTGAGACTCTTGCAGTCACACAGGCTGACATGTAAGCATCG

21 CCATGCCTAGTACAGACTCTCCCTGCAGATGAAATTATATGG
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+

23 b b _ e c e e e c g g f g h i d g h h h f f d g h i i i i i i i c ‘ f f b g h i c h i f g h i i i i i f g ] a g f f

g fhh i ih ihh_df f f cgbbdeebeecbdcbdccccbbccccc

25 FCC0YLPACXX: 2 : 1 1 1 1 : 2 6 4 8 : 5 7 7 8 7#

TGTGTTGCTGAGAACTGCTCAGTAACACGGACAGCTCCCTGAACTCCAGGAAACATCC

27 TGATTTAGTGTTTTGAGTATTGTGAAGCACAGTTAGAGCAGA

+

Appendix B

Main class definitions and codes are described in this appendix.

• K-mer Class

pub l i c c l a s s Kmer {

2 pub l i c L i s t <byte> PrimaryLeftExtens ions = new List <byte >()

;

pub l i c L i s t <byte> Fina lRightExtens ions = new List <byte

>() ;

4 pub l i c L i s t <byte> Fina lLe f tExtens i ons = new List <byte >()

;

pub l i c byte [ ] RightCounts = new byte [ 4 ] { 0 , 0 , 0 , 0 } ;

//0 :A, 1 : C, 2 : G, 3 : T

6 pub l i c byte [ ] LeftCounts = new byte [ 4 ] { 0 , 0 , 0 , 0 } ;

//0 : A, 1 : C, 2 : G, 3 : T

pub l i c byte RepeatsInReads ;
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8 pub l i c Extens ionLabel Le f tExtens ion ;

pub l i c Extens ionLabel RightExtension ;

10

pub l i c Kmer( ) {}

12 }

14 pub l i c enum Extens ionLabel {

DEAD_END = 0 ,

16 RESOLVED = 1 ,

MAJORITY_VOTED = 2 ,

18 UNRESOLVED = 3

}

20

pub l i c enum KmerOverlapDirection {

22 L = 0 ,

R = 1

24 }

• Read Class

pub l i c c l a s s Read {

2 pr i va t e byte [ ] seq ;

p r i va t e byte [ ] q u a l i t y S t r i n g = new byte [ 1 0 0 ] ;

4 pub l i c byte [ ] Seq {

get { re turn seq ; }

6 s e t { seq = value ; }

}
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8 pub l i c byte [ ] Qua l i tySt r ing {

get { re turn q u a l i t y S t r i n g ; }

10 s e t { q u a l i t y S t r i n g = value ; }

}

12 pub l i c i n t GetQualityValue ( i n t index ) {

return ( ( i n t ) q u a l i t y S t r i n g [ index ] ) − Parameters .

BaseQualityValue ;

14 }

pub l i c Read ( byte [ ] seq , i n t pair_idx ) {

16 t h i s . seq = seq ;

}

18 }

• IOHandler Class: Responsible for parsing/loading input data and con-

figuration file

pub l i c c l a s s IOHandler

2 {

#reg i on Publ ic Methods

4

pub l i c IOHandler ( AssemblyCore assemblyCore )

6 {

t h i s . assemblyCore = assemblyCore ;

8 }

10 pr i va t e s t a t i c s t r i n g ReadXMLValue( XmlNodeList nodes ,

s t r i n g key )
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{

12 f o r each (XmlNode node in nodes )

{

14 i f ( node . At t r ibute s [ " key " ] . Value . Equals ( key ) )

re turn node . At t r ibu te s [ " va lue " ] . Value ;

16 }

return s t r i n g . Empty ;

18 }

20

pub l i c s t a t i c void LoadConf igurat ionFi l e ( s t r i n g

f i l e A d d r e s s )

22 {

XmlDocument doc = new XmlDocument ( ) ;

24 doc . Load ( f i l e A d d r e s s ) ;

XmlNodeList nodes = doc . Se lectNodes ( "

AssemblyParameters/AssemblyParameter " ) ;

26

Parameters . ReadSet1Address = ReadXMLValue( nodes , "

ReadSet1Address " ) ;

28 Parameters . ReadSet2Address = ReadXMLValue( nodes , "

ReadSet2Address " ) ;

Parameters . ReferenceGenomeAddress = ReadXMLValue(

nodes , " RefrenceGenomeAddress " ) ;

30 /∗ i f ( Parameters . ReferenceGenomeAddress != s t r i n g .

Empty)

IOHandler . ReadReferenceGenome ( ) ;∗/
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32 Parameters . ContigsOutputAddress = ReadXMLValue( nodes

, " ContigsOutputAddress " ) ;

34 Parameters . ConsiderPairReads = bool . Parse (

ReadXMLValue( nodes , " ConsiderPairReads " ) ) ;

Parameters . mult ip leKs = bool . Parse (ReadXMLValue(

nodes , " MultipleKs " ) ) ;

36

s t r i n g KValues = ReadXMLValue( nodes , "Ks" ) ;

38 s t r i n g [ ] s p l i t s = KValues . S p l i t ( ’ , ’ ) ;

f o r each ( s t r i n g k in s p l i t s )

40 Parameters . KList . Add( i n t . Parse ( k ) ) ;

Parameters . ContigsMinLength = i n t . Parse (ReadXMLValue

( nodes , " ContigsMinLength " ) ) ;

42

Parameters . Mul t ip l i c i tyMinThresho ld = i n t . Parse (

ReadXMLValue( nodes , " Mult ip l i c i tyMinThresho ld " ) ) ;

44 Parameters . HighQualityMinThreshold = i n t . Parse (

ReadXMLValue( nodes , " HighQualityMinThreshold " ) ) ;

Parameters . ContigsOverlapValue = i n t . Parse (

ReadXMLValue( nodes , " ContigsOverlapValue " ) ) ;

46

Parameters . ResolveNotUUExtensions = bool . Parse (

ReadXMLValue( nodes , " ResolveNotUUExtensions " ) ) ;

48 Parameters . Major ityVotingThreshold = double . Parse (

ReadXMLValue( nodes , " Major ityVotingThreshold " ) ) ;
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50 Parameters . BaseQualityValue = i n t . Parse (ReadXMLValue

( nodes , " BaseQualityValue " ) ) ;

52 Console . WriteLine ( " Con f i gura t i ons are loaded . . . " ) ;

}

54

56 pub l i c s t a t i c void LoadReads ( )

{

58 StreamReader s r1 = nul l , s r2 = n u l l ;

s r1 = new StreamReader ( Parameters . ReadSet1Address ) ;

60 i f ( Parameters . ConsiderPairReads )

s r2 = new StreamReader ( Parameters .

ReadSet2Address ) ;

62

i n t l i d x = 2 ;

64 i n t idx = 0 ;

whi l e ( ! s r1 . EndOfStream )

66 {

s r1 . ReadLine ( ) ;

68 s t r i n g r1_seq = sr1 . ReadLine ( ) ;

s r1 . ReadLine ( ) ;

70 s t r i n g r1_qual = sr1 . ReadLine ( ) ;

72 s t r i n g r2_seq = s t r i n g . Empty ;

s t r i n g r2_qual = s t r i n g . Empty ;

74
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i f ( Parameters . ConsiderPairReads )

76 {

s r2 . ReadLine ( ) ;

78 r2_seq = sr2 . ReadLine ( ) ;

s r2 . ReadLine ( ) ;

80 r2_qual = sr2 . ReadLine ( ) ;

}

82

Read r1 , r 1 r c ;

84 Read r2 , r 2 r c ;

86 byte [ ] r1_seq_bytes = U t i l i t i e s . BitEncode ( r1_seq

) ;

88

90 r1 = new Read( r1_seq_bytes , 0) ;

f o r ( i n t i = 0 ; i < r1_qual . Length ; i++)

92 r1 . Qua l i tySt r ing [ i ] = ( byte ) r1_qual [ i ] ;

94 s t r i n g r1_seq_rc = U t i l i t i e s . GetRC( r1_seq ) ;

byte [ ] r1_seq_rc_bytes = U t i l i t i e s . BitEncode (

r1_seq_rc ) ;

96 r 1 r c = new Read( r1_seq_rc_bytes , 0) ;

Array . Copy( r1 . Qua l i tyStr ing , 0 , r 1 r c .

Qua l i tyStr ing , 0 , r1 . Qua l i tySt r ing . Length ) ;

98 Array . Reverse ( r1 r c . Qua l i tySt r ing ) ;
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100 i f ( Parameters . ConsiderPairReads )

{

102 byte [ ] r2_seq_bytes = U t i l i t i e s . BitEncode (

r2_seq ) ;

r2 = new Read( r2_seq_bytes , 1) ;

104 f o r ( i n t i = 0 ; i < r2_qual . Length ; i++)

r2 . Qua l i tySt r ing [ i ] = ( byte ) r2_qual [ i ] ;

106

s t r i n g r2_seq_rc = U t i l i t i e s . GetRC( r2_seq ) ;

108 byte [ ] r2_seq_rc_bytes = U t i l i t i e s . BitEncode

( r2_seq_rc ) ;

110 r 2 r c = new Read( r2_seq_rc_bytes , 0) ;

Array . Copy( r2 . Qua l i tyStr ing , 0 , r 2 r c .

Qua l i tyStr ing , 0 , r2 . Qua l i tySt r ing . Length ) ;

112 Array . Reverse ( r2 r c . Qua l i tySt r ing ) ;

114 AssemblyGlobal . Reads . Add( r1 ) ;

AssemblyGlobal . Reads . Add( r1 r c ) ;

116

AssemblyGlobal . Reads . Add( r2 ) ;

118 AssemblyGlobal . Reads . Add( r2 r c ) ;

}

120 e l s e

{

122
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AssemblyGlobal . Reads . Add( r1 ) ;

124

AssemblyGlobal . Reads . Add( r1 r c ) ;

126 }

}

128 s r1 . Close ( ) ;

i f ( Parameters . ConsiderPairReads )

130 s r2 . Close ( ) ;

}

132

pub l i c s t a t i c void ReadReferenceGenome ( )

134 {

i f ( AssemblyGlobal . ReferenceGenomeData != s t r i n g .

Empty)

136 re turn ;// t h i s " s t a t i c " method must be c a l l e d

only once

138 StreamReader s r = new StreamReader ( Parameters .

ReferenceGenomeAddress ) ;

s t r i n g genome = s t r i n g . Empty ;

140 whi le ( ! s r . EndOfStream )

genome += sr . ReadLine ( ) ;

142 AssemblyGlobal . ReferenceGenomeData = genome ;

Parameters . RefGenomeAvailable = true ;

144 s r . Close ( ) ;

}

146
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pub l i c void Pr intCont igs ( )

148 {

i n t K = assemblyCore .K;

150 StreamWriter sw = new StreamWriter ( Parameters .

ContigsOutputAddress ) ;

i n t idx = 0 ;

152 assemblyCore . c o n t i g s . Sort ( de l e ga t e ( UUContig c1 ,

UUContig c2 )

{

154 i f ( c1 . Sequence . Length <= c2 . Sequence . Length )

re turn 1 ;

156 re turn −1;

}) ;

158 St r i ngBu i l d e r sb = new St r ingBu i l d e r ( ) ;

L i s t <UUContig> wrongToBeRemoved = new List <UUContig

>() ;

160 List <UUContig> smallToBeRemoved = new List <UUContig

>() ;

f o r each ( UUContig cont i g in assemblyCore . c o n t i g s )

162 {

// s t r i n g con t i gS t r = ASCIIEncoding . ASCII .

GetStr ing ( cont i g . Sequence . ToArray ( ) ) ;

164 s t r i n g con t i gS t r = U t i l i t i e s . BitDecode ( cont i g .

Sequence , cont i g . OccupiedCellCounts , cont i g . LastPos ) ;

i f ( c on t i gS t r . Length <= 2 ∗ K)

166 {

smallToBeRemoved . Add( cont i g ) ;
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168 cont inue ;

}

170 bool foundInGenome = f a l s e ;

i f ( Parameters . RefGenomeAvailable )

172 {

i f ( AssemblyGlobal . ReferenceGenomeData .

Contains ( con t i gS t r ) | | AssemblyGlobal .

ReferenceGenomeData . Contains ( ASCIIEncoding . ASCII .

GetStr ing ( U t i l i t i e s . GetRC( cont i g . Sequence ) . ToArray ( ) ) ) )

174 foundInGenome = true ;

e l s e

176 {

foundInGenome = f a l s e ;

178 wrongToBeRemoved . Add( cont i g ) ;

}

180 }

182 /∗ sb . AppendLine ( s t r i n g . Format ( " id :{0} s i z e :{1}

q u a l i t y : {2} found :{3} seq :{4} " , idx , cont i g . Sequence .

Length ,

cont i g . Quality ,

foundInGenome ? " yes " : " no " , con t i g . Sequence ) ) ;∗/

184 sb . AppendLine ( ">Contig_ " + idx . ToString ( ) + "

_Size_ " + cont i g . Sequence . Count ( ) . ToString ( ) + "

_LeftChar : " +

cont i g . LeftExtensionChar + "

_RightChar : " + cont i g . RightExtensionChar ) ;
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186 sb . AppendLine ( con t i gS t r ) ;

idx++;

188 }

sw . Write ( sb . ToString ( ) ) ;

190 sw . Close ( ) ;

192 /∗ f o r each ( UUContig cntg in wrongToBeRemoved)

{

194 AssemblyCore . c o n t i g s . Remove( cntg ) ;

}∗/

196

f o r each ( UUContig cntg in smallToBeRemoved )

198 {

assemblyCore . c o n t i g s . Remove( cntg ) ;

200 }

}

202

#endreg ion

204

#reg ion Pr ivate Methods

206

pr i va t e AssemblyCore assemblyCore ;

208

#endreg ion

210

}
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• Parameters Class holding values for all settings/configuration of the

assembler

1 pub l i c c l a s s Parameters

{

3 pub l i c s t a t i c s t r i n g ReadSet1Address ;

pub l i c s t a t i c s t r i n g ReadSet2Address ;

5 pub l i c s t a t i c s t r i n g ReferenceGenomeAddress ;

pub l i c s t a t i c s t r i n g ContigsOutputAddress ;

7 pub l i c s t a t i c bool RefGenomeAvailable ;

9

11 pub l i c s t a t i c bool ConsiderPairReads = true ;

pub l i c s t a t i c bool mult ip leKs ;

13

// pub l i c s t a t i c i n t K;

15 pub l i c s t a t i c L i s t <int > KList = new List <int >() ;

pub l i c s t a t i c i n t ContigsMinLength ;

17 pub l i c s t a t i c i n t Mult ip l i c i tyMinThresho ld ;

pub l i c s t a t i c i n t HighQualityMinThreshold ;

19 pub l i c s t a t i c i n t ContigsOverlapValue ;

pub l i c s t a t i c double Major ityVotingThreshold ;

21

pub l i c s t a t i c bool ResolveNotUUExtensions ;

23

pub l i c s t a t i c i n t BaseQualityValue ;

25
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pub l i c s t a t i c bool Para l l e lRun ;

27 pub l i c s t a t i c bool DoLog ;

pub l i c s t a t i c s t r i n g Conf igF i l eAddress ;

29 pub l i c s t a t i c bool LoadExtCntgs ;

pub l i c s t a t i c s t r i n g Externa lCont igFi l eAddress ;

31

}

• Utilities class containing bit Encoder/Decoder algorithms

pub l i c s t a t i c c l a s s U t i l i t i e s

2 {

4 pub l i c s t a t i c i n t GetDNABPIndex( byte BP)

{

6 switch ( ( char )BP)

{

8 case ’A ’ :

r e turn 0 ;

10 case ’C ’ :

r e turn 1 ;

12 case ’G’ :

r e turn 2 ;

14 case ’T ’ :

r e turn 3 ;

16 }

return −1;
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18 }

20 pub l i c s t a t i c s t r i n g GetRC( s t r i n g seq )

{

22 St r i ngBu i l d e r sb = new St r ingBu i l d e r ( seq ) ;

f o r ( i n t i = seq . Length − 1 ; i >= 0 ; i−−)

24 sb [ seq . Length − 1 − i ] = GetComplementBP( seq [ i ] )

;

r e turn sb . ToString ( ) ;

26 }

28 pub l i c s t a t i c ByteArrayWrapper GetRC( ByteArrayWrapper

seq )

{

30 re turn new ByteArrayWrapper (GetRC( seq . Bytes ) ) ;

}

32

pub l i c s t a t i c byte [ ] GetRC( byte [ ] seq )

34 {

byte [ ] r e s u l t = new byte [ seq . Length ] ;

36 f o r ( i n t i = seq . Length−1; i >=0; i−−)

{

38 r e s u l t [ seq . Length − 1 − i ] = GetComplementBP( seq

[ i ] ) ;

}

40 re turn r e s u l t ;

}

104



Appendices 5

42

pub l i c s t a t i c L i s t <byte> GetRC( List <byte> seq )

44 {

List <byte> r e s u l t = new List <byte >() ;

46 f o r ( i n t i = seq . Count − 1 ; i >= 0 ; i−−)

{

48 r e s u l t . Add(GetComplementBP( seq [ i ] ) ) ;

}

50 re turn r e s u l t ;

}

52

pub l i c s t a t i c s t r i n g GetReverse ( s t r i n g seq )

54 {

char [ ] a r r = seq . ToCharArray ( ) ;

56 Array . Reverse ( a r r ) ;

r e turn new s t r i n g ( a r r ) ;

58 }

60 // Copyright ( c ) 2008−2013 Hafthor Ste fans son

// Di s t r ibut ed under the MIT/X11 so f tware l i c e n s e

62 // Ref : http ://www. opensource . org / l i c e n s e s /mit−l i c e n s e .

php .

pub l i c s t a t i c unsa fe bool UnsafeCompare ( byte [ ] a1 , byte

[ ] a2 )

64 {

i f ( a1 == n u l l | | a2 == n u l l | | a1 . Length != a2 .

Length )
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66 re turn f a l s e ;

f i x e d ( byte∗ p1 = a1 , p2 = a2 )

68 {

byte∗ x1 = p1 , x2 = p2 ;

70 i n t l = a1 . Length ;

f o r ( i n t i = 0 ; i < l /8 ; i ++, x1 += 8 , x2 += 8)

72 i f (∗ ( ( long ∗) x1 ) != ∗ ( ( long ∗) x2 ) ) re turn

f a l s e ;

i f ( ( l & 4) != 0)

74 {

i f (∗ ( ( i n t ∗) x1 ) != ∗ ( ( i n t ∗) x2 ) ) re turn

f a l s e ;

76 x1 += 4 ;

x2 += 4 ;

78 }

i f ( ( l & 2) != 0)

80 {

i f (∗ ( ( shor t ∗) x1 ) != ∗ ( ( shor t ∗) x2 ) ) re turn

f a l s e ;

82 x1 += 2 ;

x2 += 2 ;

84 }

i f ( ( l & 1) != 0) i f (∗ ( ( byte ∗) x1 ) != ∗ ( ( byte ∗)

x2 ) ) re turn f a l s e ;

86 re turn true ;

}

88 }
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90 pub l i c s t a t i c unsa fe s t r i n g GetReverseUnsafe ( s t r i n g seq )

{

92 // assuming the seq s i z e i s u sua l l y 100 the f a s t e s t

method i s unsa fe po in t e r r e v e r s e . . . ( http :// cha r t e r .

herokuapp . com/MZ02Y32T/ performance−of−s e l e c t e d−s t r i ng−

r e v e r s a l−methods−lower−i s−b e t t e r )

i n t l en = seq . Length ;

94

// Why a l l o c a t e a char [ ] array on the heap when you

won ’ t use i t

96 // out s id e o f t h i s method? Use the s tack .

char ∗ r eve r s ed = s t a c k a l l o c char [ l en ] ;

98

// Avoid bounds−check ing performance p e n a l t i e s .

100 f i x e d ( char ∗ s t r = seq )

{

102 i n t i = 0 ;

i n t j = i + len − 1 ;

104 whi le ( i < l en )

{

106 r eve r s ed [ i ++] = s t r [ j −−];

}

108 }

110 // Need to use t h i s over load f o r the System . St r ing

con s t ruc to r
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// as prov id ing j u s t the char ∗ po in t e r could r e s u l t

in garbage

112 // at the end o f the s t r i n g ( no guarantee o f n u l l

te rminator ) .

r e turn new s t r i n g ( reversed , 0 , l en ) ;

114 }

116 pub l i c s t a t i c byte GetComplementBP( byte bp)

{

118 switch (bp)

{

120 case ( byte ) ’A’ :

r e turn ( byte ) ’T ’ ;

122 case ( byte ) ’T ’ :

r e turn ( byte ) ’A’ ;

124 case ( byte ) ’C ’ :

r e turn ( byte ) ’G’ ;

126 case ( byte ) ’G’ :

r e turn ( byte ) ’C ’ ;

128 }

return ( byte ) ’X’ ;

130 }

132 pub l i c s t a t i c char GetComplementBP( char bp)

{

134 switch (bp)

{
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136 case ’A ’ :

r e turn ’T ’ ;

138 case ’T ’ :

r e turn ’A ’ ;

140 case ’C ’ :

r e turn ’G’ ;

142 case ’G’ :

r e turn ’C ’ ;

144 }

return ’X ’ ;

146 }

148 pub l i c s t a t i c i n t C a l c u l a t e N 5 0 S t a t i s t i c ( i n t genomeSize ,

L i s t <int > orderedCont igS i ze s )

{

150 i n t t o t a l = 0 ;

i n t genomeHalfSize = genomeSize / 2 ;

152 f o r each ( i n t s i z e in orderedCont igS i ze s )

{

154 t o t a l += s i z e ;

i f ( t o t a l >= genomeHalfSize )

156 re turn s i z e ;

}

158 re turn −1;

}

160

pub l i c s t a t i c byte GetBPByIndex ( byte [ ] s rc , i n t index ,
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i n t o r i g i na lS r cLeng th )

162 {

i n t c e l l I n d e x = index /4 ;

164 i n t pos = ( index%4) ∗2 ;

byte b = s r c [ c e l l I n d e x ] ;

166 switch ( pos )

{

168 case 0 :

b = ( byte ) (b & 3) ;

170 break ;

case 2 :

172 b = ( byte ) ( ( b & 12) >> 2) ;

break ;

174 case 4 :

b = ( byte ) ( ( b & 48) >> 4) ;

176 break ;

case 6 :

178 b = ( byte ) ( ( b & 192) >> 6) ;

break ;

180 }

switch (b)

182 {

case 0 :

184 re turn ( byte ) ’A’ ;

case 1 :

186 re turn ( byte ) ’C ’ ;

case 2 :
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188 re turn ( byte ) ’G’ ;

case 3 :

190 re turn ( byte ) ’T ’ ;

}

192 re turn ( byte ) ’Z ’ ;

}

194

/∗ pub l i c s t a t i c void ChangeBP( r e f byte [ ] dna , byte newBP

, i n t index InSt r ing )

196 {

i n t c e l l I n d e x = index InSt r ing /4 ;

198 i n t pos InCe l l = ( index InSt r ing%4) ∗2 ;

200 byte r = 0 ;

switch (newBP)

202 {

case ( byte ) ’A ’ :

204 r = 0 ;

break ;

206 case ( byte ) ’C ’ :

r = 1 ;

208 break ;

case ( byte ) ’G’ :

210 r = 2 ;

break ;

212 case ( byte ) ’T ’ :

r = 3 ;
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214 break ;

}

216

r = ( byte ) ( r << pos InCe l l ) ;

218 byte b = dna [ c e l l I n d e x ] ;

switch ( pos InCe l l )

220 {

case 0 :

222 b = ( byte ) (b & 252) ; //b & 11111100 => b :

XXXXXX00

b = ( byte ) (b | r ) ;

224 break ;

case 1 :

226 b = ( byte ) (b & 243) ; //b & 11110011 => b :

XXXX00XX

b = ( byte ) (b | r ) ;

228 break ;

case 2 :

230 b = ( byte ) (b & 207) ; //b & 11001111 => b :

XX00XXXX

b = ( byte ) (b | r ) ;

232 break ;

case 3 :

234 b = ( byte ) (b & 63) ; //b & 00111111 => b :00

XXXXXX

b = ( byte ) (b | r ) ;

236 break ;
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}

238 dna [ c e l l I n d e x ] = b ;

}∗/

240

pub l i c s t a t i c byte [ ] BitEncode ( byte [ ] s t r )

242 {

return BitEncode ( ASCIIEncoding . ASCII . GetStr ing ( s t r ) )

;

244 }

246 pub l i c s t a t i c byte [ ] BitEncode ( s t r i n g s t r )

{

248 // A: 00 , C: 01 , G: 11 , D: 10 MSB −> LSB

// each charac t e r i s encoded by 2 b i t s as above . . .

250 byte [ ] b = new byte [ ( i n t )Math . C e i l i n g ( s t r . Length /

4 . 0 ) ] ;

byte c e l l I n d e x = 0 ;

252 byte pos = 0 ;

f o r each ( char c in s t r )

254 {

byte r = 0 ;

256 i f ( c == ’A ’ )

r = 0 ; //00000000

258 e l s e i f ( c == ’C ’ )

r = 1 ; //00000001

260 e l s e i f ( c == ’G’ )

r = 2 ; //00000010
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262 e l s e i f ( c == ’T ’ )

r = 3 ; //00000011

264

r = ( byte ) ( r << pos ) ;

266 b [ c e l l I n d e x ] = ( byte ) (b [ c e l l I n d e x ] | r ) ;

i f ( pos == 6)

268 {

c e l l I n d e x ++;

270 /∗ i f (b . Length == c e l l I n d e x )

Array . Res i ze ( r e f b , b . Length + 5) ;∗/

272 }

pos = ( byte ) ( ( pos + 2)%8) ;

274 }

return b ;

276 }

278 pub l i c s t a t i c void BitCopyArray ( byte [ ] s rc , i n t

s r cSta r t Idx , r e f byte [ ] dest , i n t des tStar t Idx , i n t

l ength )

{

280 i n t srcPos = ( s r c S t a r t I d x%4) ∗2 ;

i n t s r c C e l l = s r c S t a r t I d x /4 ;

282

i n t destPos = ( de s tS ta r t Idx%4) ∗2 ;

284 i n t d e s t C e l l = des tS ta r t Idx /4 ;

286 i n t endPos = ( ( s r c S t a r t I d x + length )%4) ∗2 ;
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i n t endCel l = ( s r c S t a r t I d x + length ) /4 ;

288

whi le ( t rue )

290 {

i f ( s r c C e l l == endCel l && srcPos == endPos )

292 break ;

294 byte srcByte = s r c [ s r c C e l l ] ;

byte c = 0 ;

296 switch ( srcPos )

{

298 case 0 :

c = ( byte ) ( srcByte & 3) ;

300 break ;

case 2 :

302 c = ( byte ) ( ( srcByte & 12) >> 2) ;

break ;

304 case 4 :

c = ( byte ) ( ( srcByte & 48) >> 4) ;

306 break ;

case 6 :

308 c = ( byte ) ( ( srcByte & 192) >> 6) ;

break ;

310 }

//now c i s our BP . . . e i t h e r A (00) , C(01) , G(10)

, or T(11)

312
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c = ( byte ) ( c << destPos ) ;

314 byte destByte = dest [ d e s t C e l l ] ;

switch ( destPos )

316 {

case 0 :

318 destByte = ( byte ) ( destByte & 252) ; //b

& 11111100 => b :XXXXXX00

destByte = ( byte ) ( destByte | c ) ;

320 break ;

case 2 :

322 destByte = ( byte ) ( destByte & 243) ; //b

& 11110011 => b :XXXX00XX

destByte = ( byte ) ( destByte | c ) ;

324 break ;

case 4 :

326 destByte = ( byte ) ( destByte & 207) ; //b

& 11001111 => b :XX00XXXX

destByte = ( byte ) ( destByte | c ) ;

328 break ;

case 6 :

330 destByte = ( byte ) ( destByte & 63) ; //b &

00111111 => b :00XXXXXX

destByte = ( byte ) ( destByte | c ) ;

332 break ;

}

334 dest [ d e s t C e l l ] = destByte ;
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336 srcPos = ( srcPos + 2)%8 ;

i f ( srcPos == 0)

338 s r c C e l l ++;

340 destPos = ( destPos + 2)%8 ;

i f ( destPos == 0)

342 d e s t C e l l++;

}

344 }

346 pub l i c s t a t i c s t r i n g BitDecode ( byte [ ] b , i n t

occupiedCel lsCount , i n t l a s tPos )

{

348 i n t t = 0 ;

i n t maxT = ( occupiedCel l sCount − 1) ∗4 + la s tPos /2 ;

350 s t r i n g s t r = s t r i n g . Empty ;

f o r each ( byte b1 in b)

352 {

byte [ ] masks = new byte [ 4 ] ;

354 masks [ 0 ] = ( byte ) ( b1 & 3) ;

masks [ 1 ] = ( byte ) ( ( b1 & 12) >> 2) ;

356 masks [ 2 ] = ( byte ) ( ( b1 & 48) >> 4) ;

masks [ 3 ] = ( byte ) ( ( b1 & 192) >> 6) ;

358

f o r each ( byte mask in masks )

360 {

i f ( t == maxT)
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362 break ;

i f (mask == 0)

364 s t r += ’A ’ ;

e l s e i f (mask == 1)

366 s t r += ’C ’ ;

e l s e i f (mask == 2)

368 s t r += ’G’ ;

e l s e i f (mask == 3)

370 s t r += ’T ’ ;

t++;

372 }

}

374 re turn s t r ;

}

376

pub l i c s t a t i c bool BitCompare ( byte [ ] a , i n t startIndex_a

, byte [ ] b , i n t startIndex_b , i n t l ength )

378 {

i n t a_pos = ( startIndex_a%4) ∗2 ;

380 i n t a_ce l l = startIndex_a /4 ;

382 i n t b_pos = ( startIndex_b%4) ∗2 ;

i n t b_ce l l = startIndex_b /4 ;

384

i n t idx = 0 ;

386 whi le ( idx < length )

{
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388 byte a_byte = a [ a_ce l l ] ;

byte b_byte = b [ b_ce l l ] ;

390 byte a_bp = 0 ;

switch ( a_pos )

392 {

case 0 :

394 a_bp = ( byte ) ( a_byte & 3) ;

break ;

396 case 2 :

a_bp = ( byte ) ( ( a_byte & 12) >> 2) ;

398 break ;

case 4 :

400 a_bp = ( byte ) ( ( a_byte & 48) >> 4) ;

break ;

402 case 6 :

a_bp = ( byte ) ( ( a_byte & 192) >> 6) ;

404 break ;

}

406 //a_bp i s the BP now . . . e i t h e r A (00) , C(01) , G

(10) , or T(11)

byte b_bp = 0 ;

408 switch ( b_pos )

{

410 case 0 :

b_bp = ( byte ) ( b_byte & 3) ;

412 break ;

case 2 :
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414 b_bp = ( byte ) ( ( b_byte & 12) >> 2) ;

break ;

416 case 4 :

b_bp = ( byte ) ( ( b_byte & 48) >> 4) ;

418 break ;

case 6 :

420 b_bp = ( byte ) ( ( b_byte & 192) >> 6) ;

break ;

422 }

424 i f (a_bp != b_bp)

return f a l s e ;

426 i f ( a_pos == 6)

{

428 a_pos = 0 ;

a_ce l l++;

430 }

e l s e

432 a_pos += 2 ;

434 i f ( b_pos == 6)

{

436 b_pos = 0 ;

b_ce l l++;

438 }

e l s e

440 b_pos += 2 ;
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idx++;

442 }

return true ;

444 }

446 pub l i c s t a t i c byte [ ] BitRC( byte [ ] s rc , i n t

occupiedCel lCounts , i n t l a s tPos )

{

448 byte [ ] r e s u l t = new byte [ s r c . Length ] ;

450 i n t srcPos ;

i f ( l a s tPos == 0)

452 srcPos = 6 ;

e l s e

454 srcPos = la s tPos − 2 ;

i n t s r c C e l l = occupiedCel lCounts − 1 ;

456

i n t r e su l tPo s = 0 ;

458 i n t r e s u l t C e l l = 0 ;

460 whi le ( t rue )

{

462 byte srcByte = s r c [ s r c C e l l ] ;

byte c = 0 ;

464 switch ( srcPos )

{

466 case 0 :
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c = ( byte ) ( srcByte & 3) ;

468 break ;

case 2 :

470 c = ( byte ) ( ( srcByte & 12) >> 2) ;

break ;

472 case 4 :

c = ( byte ) ( ( srcByte & 48) >> 4) ;

474 break ;

case 6 :

476 c = ( byte ) ( ( srcByte & 192) >> 6) ;

break ;

478 }

//now c i s our BP . . . e i t h e r A (00) , C(01) , G(10)

, or T(11)

480 // get complement o f c

switch ( c )

482 {

case 0 : //A

484 c = 3 ;

break ;

486 case 1 : //C

c = 2 ;

488 break ;

case 2 : //G

490 c = 1 ;

break ;

492 case 3 : //T
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c = 0 ;

494 break ;

}

496

c = ( byte ) ( c << re su l tPo s ) ;

498 byte destByte = r e s u l t [ r e s u l t C e l l ] ;

switch ( r e su l tPo s )

500 {

case 0 :

502 destByte = ( byte ) ( destByte & 252) ; //b

& 11111100 => b :XXXXXX00

destByte = ( byte ) ( destByte | c ) ;

504 break ;

case 2 :

506 destByte = ( byte ) ( destByte & 243) ; //b

& 11110011 => b :XXXX00XX

destByte = ( byte ) ( destByte | c ) ;

508 break ;

case 4 :

510 destByte = ( byte ) ( destByte & 207) ; //b

& 11001111 => b :XX00XXXX

destByte = ( byte ) ( destByte | c ) ;

512 break ;

case 6 :

514 destByte = ( byte ) ( destByte & 63) ; //b &

00111111 => b :00XXXXXX

destByte = ( byte ) ( destByte | c ) ;
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516 break ;

}

518 r e s u l t [ r e s u l t C e l l ] = destByte ;

520 i f ( s r c C e l l == 0 && srcPos == 0)

break ;

522 i f ( srcPos == 0)

{

524 srcPos = 6 ;

s r cCe l l −−;

526 }

e l s e

528 srcPos −= 2 ;

i f ( r e su l tPo s == 6)

530 {

r e su l tPo s = 0 ;

532 r e s u l t C e l l ++;

}

534 e l s e

r e su l tPo s +=2;

536 }

return r e s u l t ;

538 }

}

• ByteArrayComparer class used for generating hash codes and equality
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methods for byte arrays in C-Sharp

1 pub l i c c l a s s ByteArrayComparer : IEqualityComparer<byte [] >

{

3 pub l i c bool Equals ( byte [ ] a1 , byte [ ] a2 )

{

5 i f ( a1 . Length != a2 . Length )

re turn f a l s e ;

7 f o r ( i n t i = 0 ; i < a1 . Length ; i++)

i f ( a1 [ i ] != a2 [ i ] )

9 re turn f a l s e ;

r e turn true ;

11 }

13 pub l i c s t a t i c bool S ta t i cEqua l s ( byte [ ] a1 , byte [ ] a2 )

{

15 f o r ( i n t i = 0 ; i < a1 . Length ; i++)

i f ( a1 [ i ] != a2 [ i ] )

17 re turn f a l s e ;

r e turn true ;

19 }

21 pub l i c i n t GetHashCode ( byte [ ] s t r )

{

23 unchecked

{

25 const i n t p = 16777619;

i n t hash = ( i n t ) 2166136261;
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27

f o r ( i n t i = 0 ; i < s t r . Length ; i++)

29 hash = ( hash ^ s t r [ i ] ) ∗p ;

31 hash += hash << 13 ;

hash ^= hash >> 7 ;

33 hash += hash << 3 ;

hash ^= hash >> 17 ;

35 hash += hash << 5 ;

re turn hash ;

37 }

}

39 }

• AssemblyGlobal class containing global containers for K-mer and Read

objects and creating CoreAssembly objects for assembly runs.

1 pub l i c s t a t i c c l a s s AssemblyGlobal

{

3 pub l i c s t a t i c s t r i n g ReferenceGenomeData = s t r i n g . Empty ;

pub l i c s t a t i c L i s t <UUContig> c o n t i g s = new List <UUContig

>() ;

5 pub l i c s t a t i c L i s t <Read> Reads = new List <Read>() ;

7 pr i va t e s t a t i c Dict ionary<Thread , AssemblyCore>

ThreadsToAssemblyCores = new Dict ionary<Thread ,

AssemblyCore >() ;
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9 pr i va t e s t a t i c void Pr intCont igs ( )

{

11 StreamWriter sw = new StreamWriter ( Parameters .

ContigsOutputAddress ) ;

i n t idx = 0 ;

13 c o n t i g s . Sort ( de l e ga t e ( UUContig c1 , UUContig c2 )

{

15 i f ( c1 . Sequence . Length <= c2 . Sequence . Length )

re turn 1 ;

17 re turn −1;

}) ;

19 St r i ngBu i l d e r sb = new St r ingBu i l d e r ( ) ;

L i s t <UUContig> wrongToBeRemoved = new List <UUContig

>() ;

21 List <UUContig> smallToBeRemoved = new List <UUContig

>() ;

f o r each ( UUContig cont i g in c o n t i g s )

23 {

// s t r i n g con t i gS t r = ASCIIEncoding . ASCII .

GetStr ing ( cont i g . Sequence . ToArray ( ) ) ;

25 s t r i n g con t i gS t r = U t i l i t i e s . BitDecode ( cont i g .

Sequence , cont i g . OccupiedCellCounts , cont i g . LastPos ) ;

i f ( c on t i gS t r . Length <= Parameters .

ContigsMinLength )

27 {

smallToBeRemoved . Add( cont i g ) ;
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29 cont inue ;

}

31 bool foundInGenome = f a l s e ;

i f ( Parameters . RefGenomeAvailable )

33 {

i f ( AssemblyGlobal . ReferenceGenomeData .

Contains ( con t i gS t r ) | | AssemblyGlobal .

ReferenceGenomeData . Contains ( ASCIIEncoding . ASCII .

GetStr ing ( U t i l i t i e s . GetRC( cont i g . Sequence ) . ToArray ( ) ) ) )

35 foundInGenome = true ;

e l s e

37 {

foundInGenome = f a l s e ;

39 wrongToBeRemoved . Add( cont i g ) ;

}

41 }

43 /∗ sb . AppendLine ( s t r i n g . Format ( " id :{0} s i z e :{1}

q u a l i t y : {2} found :{3} seq :{4} " , idx , cont i g . Sequence .

Length ,

cont i g . Quality ,

foundInGenome ? " yes " : " no " , con t i g . Sequence ) ) ;∗/

45 sb . AppendLine ( ">Contig_ " + idx . ToString ( ) + "

_Size_ " + cont i g . Sequence . Count ( ) . ToString ( ) + "

_LeftChar : " +

cont i g . LeftExtensionChar + "

_RightChar : " + cont i g . RightExtensionChar ) ;
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47 sb . AppendLine ( con t i gS t r ) ;

idx++;

49 }

sw . Write ( sb . ToString ( ) ) ;

51 sw . Close ( ) ;

f o r each ( UUContig cont i g in smallToBeRemoved )

53 {

c o n t i g s . Remove( cont i g ) ;

55 }

57 }

59 pub l i c s t a t i c void Log ( s t r i n g msg)

{

61 i f ( Parameters . DoLog)

Console . WriteLine (msg) ;

63 }

65 pub l i c s t a t i c void DoAssembly ( )

{

67 IOHandler . LoadConf igurat ionFi l e ( Parameters .

Conf igF i l eAddress ) ;

69 IOHandler . LoadReads ( ) ;

71 i f ( Parameters . Para l l e lRun )

{
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73 Log ( " P a r a l l e l run . . . " ) ;

L i s t <Task> assemblyTasks = new List <Task >() ;

75 f o r ( i n t i = 0 ; i < Parameters . KList . Count ; i

++)

{

77 i n t kTemp = Parameters . KList [ i ] ;

Log ( " Task K = " + kTemp + " added . . . " ) ;

79 AssemblyCore core = new AssemblyCore (kTemp) ;

assemblyTasks . Add( Task . Factory . StartNew ( core

. DoThreadedAssembly ) ) ;

81 }

Task . WaitAll ( assemblyTasks . ToArray ( ) ) ;

83 Log ( " Al l taks done . . . " ) ;

i f ( Parameters . LoadExtCntgs )

85 {

ExpandContigs ( ) ;

87 Log ( " Contigs Expanded . . . " ) ;

Log ( "Done ! " ) ;

89 }

}

91 e l s e

{

93 Log ( " Sequent i a l Run" ) ;

f o r each ( i n t k in Parameters . KList )

95 {

Log ( " Assembly f o r K = " + k ) ;

97 AssemblyCore assemblyRun = new AssemblyCore (
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k ) ;

assemblyRun . DoThreadedAssembly ( ) ;

99 assemblyRun = n u l l ;

}

101 i f ( Parameters . LoadExtCntgs )

{

103 ExpandContigs ( ) ;

Log ( " Contigs Expanded . . . " ) ;

105 Log ( "Done ! " ) ;

}

107 }

}

109 }

• AssemblyCore class containing full code for DNA assembly algorithm

1 pub l i c c l a s s AssemblyCore

{

3 #reg ion Publ ic Global Conta iners

5 pub l i c Dict ionary<byte [ ] , Kmer> Kmers = new Dict ionary<

byte [ ] , Kmer>(new ByteArrayComparer ( ) ) ;

pub l i c Dict ionary<byte [ ] , byte [] > uu_graph = new

Dict ionary<byte [ ] , byte [ ] >(new ByteArrayComparer ( ) ) ;

7 pub l i c Dict ionary<byte [ ] , byte [] > majorityVoted_graph =

new Dict ionary<byte [ ] , byte [ ] >(new ByteArrayComparer ( ) ) ;
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pub l i c Dict ionary<byte [ ] , byte [] > fu_graph = new

Dict ionary<byte [ ] , byte [ ] >(new ByteArrayComparer ( ) ) ;

9 pub l i c Dict ionary<byte [ ] , byte [] > uf_graph = new

Dict ionary<byte [ ] , byte [ ] >(new ByteArrayComparer ( ) ) ;

pub l i c L i s t <UUContig> c o n t i g s = new List <UUContig>() ;

11 pub l i c i n t K;

pub l i c IOHandler IOHandler ;

13 pr i va t e i n t kmersBitS ize ;

15 pr i va t e byte EncoderOccupiedCellsCount ;

p r i va t e byte EncoderLastPos ;

17

#endreg ion

19

pr i va t e void FindKMers (Read read , i n t kmersBitS ize )

21 {

i n t i = 0 ;

23 whi le ( i + K <= 100)

{

25 byte [ ] seq = new byte [ kmersBitS ize ] ;

U t i l i t i e s . BitCopyArray ( read . Seq , i , r e f seq , 0 ,

K) ;

27 Kmer kmer ;

i f ( ! t h i s . Kmers . ContainsKey ( seq ) )

29 {

kmer = new Kmer( ) ;

31 t h i s . Kmers . Add( seq , kmer ) ;
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}

33 e l s e

kmer = t h i s . Kmers [ seq ] ;

35

i f ( i + K < 100)

37 {

byte r ightExtens ionChar = U t i l i t i e s .

GetBPByIndex ( read . Seq , i + K, 100) ;

39 i n t r ightExtens ionQual = read .

GetQualityValue ( i + K) ;

i f ( r ightExtens ionQual >= Parameters .

HighQualityMinThreshold )

41 {

i n t dnabpIndex = U t i l i t i e s . GetDNABPIndex

( r ightExtens ionChar ) ;

43 i f ( kmer . RightCounts [ dnabpIndex ] < 254)

//255 i s r e s e rved . .

{

45 kmer . RightCounts [ dnabpIndex ]++;

}

47 }

}

49

i f ( i > 0)

51 {

byte l e f tExtens ionChar = U t i l i t i e s .

GetBPByIndex ( read . Seq , i − 1 , 100) ;
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53 i n t l e f tExtens i onQua l = read . GetQualityValue

( i − 1) ;

i f ( l e f tExtens i onQua l >= Parameters .

HighQualityMinThreshold )

55 {

i n t dnabpIndex = U t i l i t i e s . GetDNABPIndex

( l e f tExtens ionChar ) ;

57 i f ( kmer . LeftCounts [ dnabpIndex ] < 254)

//255 i s r e s e rved . .

{

59 kmer . LeftCounts [ dnabpIndex ]++;

}

61 }

}

63 i f ( kmer . RepeatsInReads < 255)

kmer . RepeatsInReads++;// i t i s s to r ed in

bytes not i n t e g e r . . . so no more than 255 i s p o s s i b l e .

65

i ++;

67 }

}

69

#reg ion Publ ic Methods

71

pub l i c AssemblyCore ( i n t _K)

73 {

K = _K;
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75 EncoderOccupiedCellsCount = ( byte ) Math . C e i l i n g ( ( (

decimal ) K/4) ) ;

EncoderLastPos = ( byte ) ( (K%4 == 0) ? 8 : (K%4)∗2) ;

77 // EncoderLastPos = ( byte ) ( (K%4) ∗2) ;

IOHandler = new IOHandler ( t h i s ) ;

79 }

81 pub l i c void DetectKmers ( )

{

83 kmersBitS ize = EncoderOccupiedCellsCount ;

// P a r a l l e l . ForEach ( AssemblyGlobal . Reads , read =>

FindKMers ( read , kmersBitS ize ) ) ;

85 f o r each (Read read in AssemblyGlobal . Reads )

{

87 FindKMers ( read , kmersBitS ize ) ;

}

89 }

91 pub l i c void DoThreadedAssembly ( )

{

93 s t r i n g msg ;

95 DateTime t0 = DateTime .Now;

DateTime startTime = DateTime .Now;

97

DetectKmers ( ) ;

99
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DateTime t1 = DateTime .Now;

101 AssemblyGlobal . Log ( s t r i n g . Format ( " d e t e c t i ng k−mers :

{0} ms" , ( t1 − t0 ) . TotalSeconds ) ) ;

AssemblyGlobal . Log ( "Kmers Count : " + Kmers . Count ) ;

103

t0 = DateTime .Now;

105 // SetStatus ( " Removing l e s s f r equent k−mers . . . " ) ;

RemoveLessFrequentKmers ( out msg) ;

107 //Log (msg) ;

t1 = DateTime .Now;

109 AssemblyGlobal . Log ( s t r i n g . Format ( " removing l e s s

f r equent k−mers : {0} ms" , ( t1 − t0 ) . TotalSeconds ) ) ;

AssemblyGlobal . Log ( "Kmers Count : " + Kmers . Count ) ;

111

// SetStatus ( " Removing not r e c e i p r o c a l l i n k s . . . " ) ;

113 t0 = DateTime .Now;

RemoveNotReceiprocalLinks ( out msg) ;

115 //Log (msg) ;

t1 = DateTime .Now;

117 AssemblyGlobal . Log ( s t r i n g . Format ( " f i n d i n g ex t en s i on s

: {0} ms" , ( t1 − t0 ) . TotalSeconds ) ) ;

AssemblyGlobal . Log ( s t r i n g . Format ( " uu_graph count :

{0} " , uu_graph . Count ) ) ;

119 i f (K == 19)

{

121 StreamWriter sw = new StreamWriter (@"C: /

uu_graph_cs . txt " ) ;
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f o r each ( KeyValuePair<byte [ ] , byte [] > pa i r in

uu_graph )

123 {

fo r each ( byte b in pa i r . Key)

125 {

sw . Write (b + " , " ) ;

127 }

sw . WriteLine ( " " + pa i r . Value [ 0 ] + "−" +

pa i r . Value [ 1 ] ) ;

129 }

sw . Flush ( ) ;

131 sw . Close ( ) ;

}

133

// SetStatus ( " Creat ing c o n t i g s . . . " ) ;

135 t0 = DateTime .Now;

CreateCont igs ( out msg) ;

137 //Log (msg) ;

t1 = DateTime .Now;

139 AssemblyGlobal . Log ( s t r i n g . Format ( " c r e a t i n g c o n t i g s

based on UU graph : {0} ms" , ( t1 − t0 ) . TotalSeconds ) ) ;

141 PrintCont igs ( c o n t i g s ) ;

AssemblyGlobal . c o n t i g s . AddRange( t h i s . c o n t i g s ) ;

143 TimeSpan durat ion = DateTime .Now − startTime ;

AssemblyGlobal . Log ( " Assembly f o r K " + K + "

f i n i s h e d ! " + " (Time : " + durat ion . TotalSeconds + "
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Seconds ) " ) ;

145 }

147 pr i va t e void Pr intCont igs ( L i s t <UUContig> c o n t i g s )

{

149 c o n t i g s . Sort ( ( c1 , c2 ) => c2 . Sequence . Length .

CompareTo( c1 . Sequence . Length ) ) ;

L i s t <UUContig> smallToBeRemoved = new List <UUContig

>() ;

151 St r i ngBu i l d e r sb = new St r ingBu i l d e r ( ) ;

i n t idx = 1 ;

153 f o r each ( UUContig cont i g in c o n t i g s )

{

155 i f ( cont i g . O r i g i n a l S i z e < Parameters .

ContigsMinLength )

{

157 smallToBeRemoved . Add( cont i g ) ;

cont inue ;

159 }

sb . AppendLine ( ">Contig_ " + idx . ToString ( ) + "

_Size_ " + cont i g . O r i g i n a l S i z e ) ;

161 sb . AppendLine ( U t i l i t i e s . BitDecode ( cont i g .

Sequence , cont i g . OccupiedCellCounts , cont i g . LastPos ) ) ;

idx++;

163 }

s t r i n g d i r e c t o r y = Path . GetDirectoryName ( Parameters .

ContigsOutputAddress ) ;
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165 StreamWriter sw = new StreamWriter ( Path . Combine (

d i r e c to ry , " contigs_K_ " + K. ToString ( ) + " . f a " ) ) ;

sw . Write ( sb . ToString ( ) ) ;

167 sw . Flush ( ) ;

sw . Close ( ) ;

169 f o r each ( var uuContig in smallToBeRemoved )

{

171 c o n t i g s . Remove( uuContig ) ;

}

173 }

175 pub l i c void CalculateReadsOver laps ( out s t r i n g msg)

{

177 msg = s t r i n g . Empty ;

/∗

179 // f i n d i n g reads ove r l ap s (TESTING . . . )

i n t to ta lOve r l ap s = 0 ;

181 f o r each (Read read in Reads )

{

183 i f ( read . Kmers . Count <= 1)

cont inue ;

185 Kmer lastKmer = read . Kmers . Last ( ) ;

f o r ( i n t i = 0 ; i < lastKmer .

S ta r t Ind i c e s inReads . Count ; i++)

187 {

i f ( lastKmer . S ta r t Ind i c e s inReads

[ i ] == 0)
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189 {

read . Overlaps . Add( lastKmer .

Reads [ i ] ) ;

191 }

}

193 t o ta lOver l ap s += read . Overlaps . Count

;

}

195

msg = " Average Overlap Count Per Read : "

+ ( double ) to ta lOve r l ap s /( double ) Reads . Count ;

197 ∗/

}

199

pub l i c void CalculateReadsOver laps ( )

201 {

s t r i n g msg = " " ;

203 CalculateReadsOver laps ( out msg) ;

}

205

pub l i c void RemoveLessFrequentKmers ( out s t r i n g msg)

207 {

i n t min_mult ip l i c i ty = Int32 . MaxValue ;

209 i n t max_mult ip l ic i ty = Int32 . MinValue ;

double multi_avg = 0 ;

211 i n t less_than_threshold_count = 0 ;

double less_than_threshold_count_average = 0 ;
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213 List <byte [] > toBeRemoved = new List <byte [ ] >() ;

f o r each ( KeyValuePair<byte [ ] , Kmer> kmerP in Kmers )

215 {

Kmer kmer = kmerP . Value ;

217 byte [ ] kmerStr = kmerP . Key ;

i f ( kmer . RepeatsInReads < min_mult ip l i c i ty )

219 min_mult ip l i c i ty = kmer . RepeatsInReads ;

e l s e i f ( kmer . RepeatsInReads > max_mult ip l ic i ty )

221 max_mult ip l ic i ty = kmer . RepeatsInReads ;

i f ( kmer . RepeatsInReads < Parameters .

Mult ip l i c i tyMinThresho ld )

223 {

less_than_threshold_count++;

225 less_than_threshold_count_average += kmer .

RepeatsInReads ;

toBeRemoved . Add( kmerStr ) ;

227 }

multi_avg += kmer . RepeatsInReads ;

229 }

231 multi_avg /= Kmers . Count ;

233 msg =

Str ing . Format (

235 " {0} kmers are l e s s f r equent ! ( m u l t i p l i c i t y

l e s s than {1}) {2} m u l t i p l i c i t y average : {3} {4} kmers

count : {5} " ,
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toBeRemoved . Count ,

237 Parameters . Mult ip l i c i tyMinThresho ld ,

Environment . NewLine , multi_avg , Environment . NewLine ,

Kmers . Count ) ;

239

less_than_threshold_count_average /=

less_than_threshold_count ;

241

f o r each ( byte [ ] kmer in toBeRemoved )

243 {

Kmers . Remove( kmer ) ;

245 /∗Kmer removedOne ;

Kmers . TryRemove(kmer , out removedOne ) ;

247 //RemovedKmers . Add(kmer , kmer ) ;∗/

}

249 }

251 pub l i c void RemoveLessFrequentKmers ( )

{

253 s t r i n g msg = " " ;

RemoveLessFrequentKmers ( out msg) ;

255 }

257 pub l i c void RemoveNotReceiprocalLinks ( out s t r i n g msg)

{

259 msg = " " ;

i n t uuKmersCount = 0 ;
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261 i n t majorityVotedCount = 0 ;

i n t fuKmersCount = 0 ;

263 i n t ufKmersCount = 0 ;

i n t kmerIdx = −1;

265 f o r each ( KeyValuePair<byte [ ] , Kmer> kmerP in Kmers )

{

267 kmerIdx++;

Kmer kmer = kmerP . Value ;

269 byte [ ] kmerStr = kmerP . Key ;

271 byte r i gh tF i r s tChar = ( byte ) ’Z ’ ;

byte l e f t F i r s t c h a r = ( byte ) ’Z ’ ;

273 byte r ightMajor ityVotedChar = ( byte ) ’Z ’ ;

byte le f tMajor i tyVotedChar = ( byte ) ’Z ’ ;

275 bool r ightExtens ionIsNotUnique = f a l s e ;

bool l e f tExtens ionI sNotUnique = f a l s e ;

277

byte [ ] dnaBPs = new byte [ ] {( byte ) ’A ’ , ( byte ) ’

C ’ , ( byte ) ’G’ , ( byte ) ’T ’ } ;

279

f o r ( i n t i = 0 ; i < dnaBPs . Length ; i++)

281 {

i n t bpDNAIndex = i ;

283

// f i r s t check ing l e f t l i n k s . . . .

285 i f ( kmer . LeftCounts [ bpDNAIndex ] != 0)

{
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287 byte bpChar = dnaBPs [ i ] ;

// byte [ ] l e f tL inkSeq = new byte [ kmerStr .

Length ] ;

289 // l e f tL inkSeq [ 0 ] = bpChar ;

//Array . Copy( kmerStr , 0 , l e f tL inkSeq , 1 ,

kmerStr . Length − 1) ;

291 byte [ ] l e f tL inkSeq = new byte [ kmerStr .

Length ] ;

U t i l i t i e s . BitCopyArray (new byte [ ] {( byte

) i } , 0 , r e f l e f tL inkSeq , 0 , 1) ;

293 U t i l i t i e s . BitCopyArray ( kmerStr , 0 , r e f

l e f tL inkSeq , 1 , K − 1) ;

i f (Kmers . ContainsKey ( l e f tL inkSeq ) )

295 {

Kmer leftLinkKmer = Kmers [

l e f tL inkSeq ] ;

297 i f ( RightLinkCheck ( l e f tL inkSeq ,

leftLinkKmer , kmerStr ) )

{

299 i f ( l e f t F i r s t c h a r != ( byte ) ’Z ’

&& l e f t F i r s t c h a r != bpChar )

l e f tExtens ionI sNotUnique =

true ;

301 l e f t F i r s t c h a r = bpChar ;

//kmer . Fina lLeftCounts [

bpDNAIndex]++;

303 }
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e l s e

305 kmer . LeftCounts [ bpDNAIndex ] =

byte . MaxValue ;

}

307 e l s e

kmer . LeftCounts [ bpDNAIndex ] = byte .

MaxValue ;

309 }

311 i f ( kmer . RightCounts [ bpDNAIndex ] != 0)

{

313 byte bpChar = dnaBPs [ i ] ;

byte [ ] r ightLinkSeq = new byte [ kmerStr .

Length ] ;

315 U t i l i t i e s . BitCopyArray ( kmerStr , 1 , r e f

r ightLinkSeq , 0 , K − 1) ;

U t i l i t i e s . BitCopyArray (new byte [ ] {( byte

) i } , 0 , r e f r ightLinkSeq , K − 1 , 1) ;

317

// byte [ ] r ightLinkSeq = new byte [ kmerStr

. Length ] ;

319 // r ightLinkSeq [ r ightLinkSeq . Length − 1 ]

= bpChar ;

//Array . Copy( kmerStr , 1 , r ightLinkSeq ,

0 , kmerStr . Length − 1) ;

321 i f (Kmers . ContainsKey ( r ightLinkSeq ) )

{
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323 Kmer rightLinkKmer = Kmers [

r ightLinkSeq ] ;

i f ( LeftLinkCheck ( r ightLinkSeq ,

rightLinkKmer , kmerStr ) )

325 {

i f ( r i gh tF i r s tChar != ( byte ) ’Z ’

&& r igh tF i r s tChar != bpChar )

327 r ightExtens ionIsNotUnique =

true ;

r i gh tF i r s tChar = bpChar ;

329 //kmer . FinalRightCounts [

bpDNAIndex]++;

}

331 e l s e

kmer . RightCounts [ bpDNAIndex ] =

byte . MaxValue ;

333 }

e l s e

335 kmer . RightCounts [ bpDNAIndex ] = byte .

MaxValue ;

}

337 }

339 /∗ i f ( kmer . LeftCounts [ 0 ] == byte . MaxValue | |

kmer . LeftCounts [ 1 ] == byte . MaxValue | | kmer . LeftCounts

[ 2 ] == byte . MaxValue | | kmer . LeftCounts [ 3 ] == byte .

MaxValue )
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Console . WriteLine ( " s d f s s ! ! ! ! " ) ;∗/

341 /∗ i f ( kmer . Fina lLeftCounts [ 0 ] + kmer .

Fina lLeftCounts [ 1 ] + kmer . Fina lLeftCounts [ 2 ] + kmer .

Fina lLeftCounts [ 3 ] == 0) ∗/

i f ( ( ( kmer . LeftCounts [ 0 ] == byte . MaxValue ? 0 :

kmer . LeftCounts [ 0 ] ) +

343 ( kmer . LeftCounts [ 1 ] == byte . MaxValue ? 0 :

kmer . LeftCounts [ 1 ] ) +

( kmer . LeftCounts [ 2 ] == byte . MaxValue ? 0 :

kmer . LeftCounts [ 2 ] ) +

345 ( kmer . LeftCounts [ 3 ] == byte . MaxValue ? 0 :

kmer . LeftCounts [ 3 ] ) ) == 0)

// I ’m not us ing sum method or f o r loop

f o r b e t t e r performance

347 // i f ( kmer . F ina lLe f tExtens i ons . Count ==

0)

kmer . Le f tExtens ion = Extens ionLabel .

DEAD_END;

349 e l s e i f ( ! l e f tExtens ionI sNotUnique )

{

351 kmer . Le f tExtens ion = Extens ionLabel .RESOLVED

;

//kmer . LeftExtendedChar = l e f t F i r s t c h a r ;

353 }

e l s e

355 {

i f ( CheckMajorityVoting (kmer , true , out
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l e f tMajor i tyVotedChar ) )

357 {

kmer . Le f tExtens ion = Extens ionLabel .

MAJORITY_VOTED;

359 //kmer . LeftExtendedChar =

majority_voted_char ;

}

361 e l s e

{

363 kmer . Le f tExtens ion = Extens ionLabel .

UNRESOLVED;

}

365 }

367 /∗ i f ( kmer . RightCounts [ 0 ] == byte . MaxValue | |

kmer . RightCounts [ 1 ] == byte . MaxValue | | kmer . RightCounts

[ 2 ] == byte . MaxValue | | kmer . RightCounts [ 3 ] == byte .

MaxValue )

Console . WriteLine ( " s d f s s ! ! ! ! " ) ;∗/

369 /∗ i f ( kmer . FinalRightCounts [ 0 ] + kmer .

FinalRightCounts [ 1 ] + kmer . FinalRightCounts [ 2 ] + kmer .

FinalRightCounts [ 3 ] == 0) ∗/

i f ( ( ( kmer . RightCounts [ 0 ] == byte . MaxValue ? 0 :

kmer . RightCounts [ 0 ] ) +

371 ( kmer . RightCounts [ 1 ] == byte . MaxValue ? 0 :

kmer . RightCounts [ 1 ] ) +

( kmer . RightCounts [ 2 ] == byte . MaxValue ? 0 :
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kmer . RightCounts [ 2 ] ) +

373 ( kmer . RightCounts [ 3 ] == byte . MaxValue ? 0 :

kmer . RightCounts [ 3 ] ) ) == 0)

// i f ( kmer . F ina lRightExtens ions . Count == 0)

375 kmer . RightExtension = Extens ionLabel .

DEAD_END;

e l s e i f ( ! r ightExtens ionIsNotUnique )

377 {

kmer . RightExtension = Extens ionLabel .

RESOLVED;

379 //kmer . RightExtendedChar = r i gh tF i r s tChar ;

}

381 e l s e

{

383

i f ( CheckMajorityVoting (kmer , f a l s e , out

r ightMajor ityVotedChar ) )

385 {

kmer . RightExtension = Extens ionLabel .

MAJORITY_VOTED;

387 //kmer . RightExtendedChar =

rightMajor ityVotedChar ;

}

389 e l s e

{

391 kmer . RightExtension = Extens ionLabel .

UNRESOLVED;
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}

393 }

395 i f ( kmer . RightExtension == Extens ionLabel .

RESOLVED && kmer . Le f tExtens ion == Extens ionLabel .

RESOLVED)

{

397 uuKmersCount++;

uu_graph . Add( kmerStr , new byte [ ] {

l e f t F i r s t c h a r , r i gh tF i r s tChar }) ;

399 }

e l s e i f ( ( kmer . Le f tExtens ion == Extens ionLabel .

UNRESOLVED | |

401 kmer . Le f tExtens ion == Extens ionLabel

.DEAD_END) &&

kmer . RightExtension ==

Extens ionLabel .RESOLVED)

403 {

fu_graph . Add( kmerStr , new byte [ ] {

r i gh tF i r s tChar }) ;

405 fuKmersCount++;

}

407 e l s e i f ( ( kmer . Le f tExtens ion == Extens ionLabel .

UNRESOLVED | |

kmer . Le f tExtens ion == Extens ionLabel

.DEAD_END) &&

409 kmer . RightExtension ==
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Extens ionLabel .RESOLVED)

{

411 fu_graph . Add( kmerStr , new byte [ ] {

l e f t F i r s t c h a r }) ;

ufKmersCount++;

413 }

e l s e

415 {

//TODO: need to th ink more f o r here . . . .

417 i f ( Parameters . ResolveNotUUExtensions )

{

419 i f ( ( kmer . Le f tExtens ion ==

Extens ionLabel .MAJORITY_VOTED &&

kmer . RightExtension ==

Extens ionLabel .RESOLVED)

421 | |

( kmer . Le f tExtens ion ==

Extens ionLabel .MAJORITY_VOTED &&

423 kmer . RightExtension ==

Extens ionLabel .MAJORITY_VOTED)

| |

425 ( kmer . Le f tExtens ion ==

Extens ionLabel .RESOLVED &&

kmer . RightExtension ==

Extens ionLabel .MAJORITY_VOTED) )

427 {

/∗uuKmersCount++;
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429 uu_graph . Add(kmer , S t r ing . Format ( "

{0}{1} " , kmer . LeftExtendedChar , kmer . RightExtendedChar ) )

;∗/

majorityVotedCount++;

431 majorityVoted_graph . Add( kmerStr , new

byte [ ]

{

433

l e f tMajor i tyVotedChar ,

r ightMajor ityVotedChar

435

}) ;

}

437 e l s e

{

439 //MessageBox . Show( " sd f sd " ) ;

}

441 }

}

443 }

}

445

pub l i c void RemoveNotReceiprocalLinks ( )

447 {

s t r i n g msg = " " ;
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449 RemoveNotReceiprocalLinks ( out msg) ;

}

451

pr i va t e bool CheckMajorityVoting (Kmer kmer , bool

check_le f t_extens ion , out byte majorityVotedChar )

453 {

i n t a_count , c_count , g_count , t_count ;

455 i f ( check_le f t_extens ion )

{

457 a_count = kmer . LeftCounts [ 0 ] ;

c_count = kmer . LeftCounts [ 1 ] ;

459 g_count = kmer . LeftCounts [ 2 ] ;

t_count = kmer . LeftCounts [ 3 ] ;

461 }

e l s e

463 {

a_count = kmer . RightCounts [ 0 ] ;

465 c_count = kmer . RightCounts [ 1 ] ;

g_count = kmer . RightCounts [ 2 ] ;

467 t_count = kmer . RightCounts [ 3 ] ;

}

469

i n t t o t a l = a_count + c_count + g_count + t_count ;

471

i f ( ( double ) a_count / ( double ) t o t a l >= Parameters .

Major ityVotingThreshold )

473 {
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majorityVotedChar = ( byte ) ’A’ ;

475 re turn true ;

}

477 e l s e i f ( ( double ) c_count / ( double ) t o t a l >=

Parameters . Major ityVotingThreshold )

{

479 majorityVotedChar = ( byte ) ’C ’ ;

r e turn true ;

481 }

e l s e i f ( ( double ) g_count / ( double ) t o t a l >=

Parameters . Major ityVotingThreshold )

483 {

majorityVotedChar = ( byte ) ’G’ ;

485 re turn true ;

}

487 e l s e i f ( ( double ) t_count / ( double ) t o t a l >=

Parameters . Major ityVotingThreshold )

{

489 majorityVotedChar = ( byte ) ’T ’ ;

r e turn true ;

491 }

majorityVotedChar = ( byte ) ’Z ’ ;

493 re turn f a l s e ;

}

495

pr i va t e void RemoveKmer( byte [ ] or ig inalKmer , Dict ionary<

byte [ ] , byte [] > mapping )
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497 {

mapping . Remove( or ig inalKmer ) ;

499 s t r i n g origDecoded = U t i l i t i e s . BitDecode (

orig inalKmer , t h i s . EncoderOccupiedCellsCount , t h i s .

EncoderLastPos ) ;

s t r i n g origDecodedRC = U t i l i t i e s . GetRC( origDecoded ) ;

501 byte [ ] rcEncoded = U t i l i t i e s . BitEncode ( origDecodedRC

) ;

mapping . Remove( rcEncoded ) ;

503 }

505 pub l i c void CreateCont igs ( out s t r i n g msg)

{

507 i n t t o t a l C o n t i g s S i z e = 0 ;

i n t l a r g e s t C o n t i g S i z e = Int32 . MinValue ;

509 UUContig l a r g e s tCon t i g = n u l l ;

whi l e ( uu_graph . Count > 0)

511 {

UUContig cont i g ;

513 KeyValuePair<byte [ ] , byte [] > f i r s t E l em =

uu_graph . F i r s t ( ) ;

515 RemoveKmer( f i r s t E l em . Key , uu_graph ) ;

517 // cont i g . Sequence = f i r s t E l em . Key . ToList ( ) ;

i n t cont igPos ;

519 i n t cont igCel lCount ;
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i f ( EncoderLastPos == 8)

521 {

cont igPos = 0 ;

523 cont igCel lCount = EncoderOccupiedCellsCount

+ 1 ;

}

525 e l s e

{

527 cont igPos = EncoderLastPos ;

cont igCel lCount = EncoderOccupiedCellsCount ;

529 }

// cont i g = new UUContig ( f i r s tE l em . Key ,

EncoderOccupiedCellsCount , EncoderLastPos , K) ;

531 cont i g = new UUContig ( f i r s t E l em . Key ,

cont igCel lCount , contigPos , K) ;

byte l e f t E x t e n s i o n = f i r s t E l e m . Value [ 0 ] ;

533 byte r i ghtExtens i on = f i r s t E l em . Value [ 1 ] ;

bool r ightTruncated = f a l s e ;

535 bool l e f tTruncated = f a l s e ;

537 bool f i n i s h = f a l s e ;

539 whi le ( ! f i n i s h )

{

541 f i n i s h = true ;

543 byte [ ] r ightExtensionKmer = new byte [
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kmersBitS ize ] ;

U t i l i t i e s . BitCopyArray ( cont i g . Sequence ,

cont i g . O r i g i n a l S i z e − (K − 1) , r e f rightExtensionKmer ,

0 , K − 1) ;

545 U t i l i t i e s . BitCopyArray (new byte [ ] {( byte )

U t i l i t i e s . GetDNABPIndex( r i ghtExtens i on ) } , 0 , r e f

rightExtensionKmer , K − 1 , 1) ;

547 //Array . Copy( cont i g . Sequence . ToArray ( ) ,

cont i g . Sequence . Count − (K − 1) , rightExtensionKmer , 0 ,

K − 1) ;

// rightExtensionKmer [ r ightExtensionKmer .

Length − 1 ] = r ightExtens i on ;

549 // byte [ ] rightExtensionKmerEncoded =

U t i l i t i e s . BitEncode ( rightExtensionKmer ) ;

551 /∗ s t r i n g rightExtensionKmer =

cont i g . Sequence . Subst r ing ( cont i g .

Sequence . Length − ( latestRightKmerSize − 1) ,

553

l a testRightKmerSize − 1) + r ightExtens i on ;∗/

// byte [ ] rightExtensionKmerRC = U t i l i t i e s .

GetRC( rightExtensionKmer ) ;

555 byte [ ] le f tExtens ionKmer = new byte [

kmersBitS ize ] ;

U t i l i t i e s . BitCopyArray (new byte [ ] { ( byte )

U t i l i t i e s . GetDNABPIndex( l e f t E x t e n s i o n ) } , 0 , r e f
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le ftExtensionKmer , 0 , 1) ;

557 U t i l i t i e s . BitCopyArray ( cont i g . Sequence , 0 ,

r e f le ftExtensionKmer , 1 , K − 1) ;

559 // byte [ ] le f tExtens ionKmer = new byte [K] ;

// le f tExtens ionKmer [ 0 ] = l e f t E x t e n s i o n ;

561 //Array . Copy( cont i g . Sequence . ToArray ( ) , 0 ,

le ftExtensionKmer , 1 , K − 1) ;

// byte [ ] leftExtensionKmerEncoded =

U t i l i t i e s . BitEncode ( le ftExtens ionKmer ) ;

563 // s t r i n g le ftExtens ionKmer = l e f t E x t e n s i o n +

cont i g . Sequence . Subst r ing (0 , l a t e s tLe f tKmerS i z e − 1) ;

// byte [ ] leftExtensionKmerRC = U t i l i t i e s .

GetRC( le ftExtens ionKmer ) ;

565

/∗Kmer rightExtensionKmer =

567 new Kmer(

f i r s t E l em . Key . Sequence . Subst r ing (1 ,

f i r s t E l em . Key . Sequence . Length − 1) + f i r s t E l em . Value [ 1 ] ,

569 s t r i n g . Empty) ;∗/

/∗Kmer le ftExtens ionKmer =

571 new Kmer(

f i r s t E l em . Value [ 0 ] + f i r s t E l e m . Key .

Sequence . Subst r ing (0 , f i r s t E l e m . Key . Sequence . Length − 1)

,

573 s t r i n g . Empty) ;∗/
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575 i f ( ! r ightTruncated )

{

577 i f ( uu_graph . ContainsKey (

rightExtensionKmer ) )

{

579 cont i g . ExpandByOne( r ightExtens ion ,

0) ;

// cont i g . Sequence . Add( r i ghtExtens i on

) ;

581 /∗ i f ( ! reference_genome . Contains (

cont i g . Sequence ) )

MessageBox . Show( " not a good

d e c i s i o n ! " ) ;∗/

583 r i ghtExtens i on = uu_graph [

rightExtensionKmer ] [ 1 ] ;

c on t i g . RightExtensionChar =

r ightExtens i on ;

585 //uu_graph . Remove( rightExtensionKmer

) ;

RemoveKmer( rightExtensionKmer ,

uu_graph ) ;

587 f i n i s h = f a l s e ;

// break ;

589 }

e l s e i f ( majorityVoted_graph . ContainsKey

( rightExtensionKmer ) )

591 {
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cont i g . ExpandByOne( r ightExtens ion ,

0) ;

593 // cont i g . Sequence . Add( r i ghtExtens i on

) ;

r i ghtExtens i on = majorityVoted_graph

[ rightExtensionKmer ] [ 1 ] ;

595 cont i g . RightExtensionChar =

r ightExtens i on ;

//RemoveKmer( rightExtensionKmer ,

majorityVoted_graph ) ;

597 // majorityVoted_graph . Remove(

rightExtensionKmer ) ;

f i n i s h = f a l s e ;

599 //MessageBox . Show( " hoooh ! " ) ;

}

601 /∗ e l s e i f ( fu_graph . ContainsKey (

rightExtensionKmer ) )

{

603 cont i g . Sequence += r ightExtens i on ;

r i ghtExtens i on = fu_graph [

rightExtensionKmer ] [ 0 ] ;

605 l a testRightKmerSize = Kmers [

r ightExtensionKmer ] . Sequence . Length ;

// fu_graph . Remove( rightExtensionKmer

) ;

607 f i n i s h = f a l s e ;

}
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609 e l s e i f ( uf_graph . ContainsKey (

rightExtensionKmer ) )

{

611 // cont i g . Sequence +=

//MessageBox . Show( " oh ! " ) ;

613 }∗/

e l s e

615 {

r ightTruncated = true ;

617 }

}

619 i f ( ! l e f tTruncated )

{

621 i f ( uu_graph . ContainsKey (

le f tExtens ionKmer ) )

{

623 cont i g . ExpandByOne( l e f tEx t en s i on , 1)

;

// cont i g . Sequence . I n s e r t (0 ,

l e f t E x t e n s i o n ) ;

625 // cont i g . Sequence = l e f t E x t e n s i o n +

cont i g . Sequence ;

/∗ i f ( ! reference_genome . Contains (

cont i g . Sequence ) )

627 MessageBox . Show( " not a good

d e c i s i o n ! " ) ;∗/

l e f t E x t e n s i o n = uu_graph [
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l e f tExtens ionKmer ] [ 0 ] ;

629 cont i g . LeftExtensionChar =

l e f t E x t e n s i o n ;

//uu_graph . Remove( le ftExtens ionKmer )

;

631 RemoveKmer( leftExtensionKmer ,

uu_graph ) ;

f i n i s h = f a l s e ;

633 // break ;

}

635 e l s e i f ( majorityVoted_graph . ContainsKey

( le ftExtens ionKmer ) )

{

637 cont i g . ExpandByOne( l e f tEx t en s i on , 1)

;

// cont i g . Sequence . I n s e r t (0 ,

l e f t E x t e n s i o n ) ;

639 // cont i g . Sequence = l e f t E x t e n s i o n +

cont i g . Sequence ;

l e f t E x t e n s i o n = majorityVoted_graph [

le f tExtens ionKmer ] [ 0 ] ;

641 cont i g . LeftExtensionChar =

l e f t E x t e n s i o n ;

//RemoveKmer( leftExtensionKmer ,

majorityVoted_graph ) ;

643 majorityVoted_graph . Remove(

le f tExtens ionKmer ) ;
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f i n i s h = f a l s e ;

645 // break ;

}

647 /∗ e l s e i f ( uf_graph . ContainsKey (

le f tExtens ionKmer ) )

{

649 cont i g . Sequence = l e f t E x t e n s i o n +

cont i g . Sequence ;

l e f t E x t e n s i o n = uf_graph [

le f tExtens ionKmer ] [ 0 ] ;

651 l a t e s tLe f tKmerS i z e = Kmers [

le f tExtens ionKmer ] . Sequence . Length ;

// uf_graph . Remove( le ftExtens ionKmer )

;

653 f i n i s h = f a l s e ;

}

655 e l s e i f ( fu_graph . ContainsKey (

le f tExtens ionKmer ) )

{

657 //MessageBox . Show( " oh ! " ) ;

}∗/

659 e l s e

{

661 l e f tTruncated = true ;

}

663 }
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665 /∗whi le ( rightExtensionKmer . Sequence . Length

> 10) // whi l e i s only u s e f u l when we have READ_SPLITTING

{

667 i f ( uu_graph . ContainsKey (

rightExtensionKmer ) )

{

669 cont i g . Sequence += r ightExtens i on ;

r i ghtExtens i on = uu_graph [

rightExtensionKmer ] [ 1 ] ;

671 l a testRightKmerSize = kmers [

r ightExtensionKmer ] . Sequence . Length ;

uu_graph . Remove( rightExtensionKmer ) ;

673 f i n i s h = f a l s e ;

break ;

675 }

e l s e

677 r ightExtensionKmer . Sequence =

rightExtensionKmer . Sequence . Remove (0 , 1) ;

}

679 whi le ( le f tExtens ionKmer . Sequence . Length >

10) // whi l e i s only u s e f u l when we have READ_SPLITTING

{

681 i f ( uu_graph . ContainsKey (

le f tExtens ionKmer ) )

{

683 cont i g . Sequence = l e f t E x t e n s i o n +

cont i g . Sequence ;
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l e f t E x t e n s i o n = uu_graph [

le f tExtens ionKmer ] [ 0 ] ;

685 l a t e s tLe f tKmerS i z e = kmers [

le f tExtens ionKmer ] . Sequence . Length ;

uu_graph . Remove( le ftExtens ionKmer ) ;

687 f i n i s h = f a l s e ;

break ;

689 }

e l s e

691 l e f tExtens ionKmer . Sequence =

leftExtens ionKmer . Sequence .

Remove( le ftExtens ionKmer . Sequence . Length − 1 , 1) ;

693 }∗/

/∗ i f ( f i n i s h )

695 {

MessageBox . Show( " f i n i s h ! " ) ;

697 }∗/

}

699

c o n t i g s . Add( cont i g ) ;

701 /∗ i f ( cont i g . Sequence . Count > l a r g e s t C o n t i g S i z e )

{

703 l a r g e s t C o n t i g S i z e = cont i g . Sequence . Count ;

l a r g e s tCon t i g = cont i g ;

705 }

t o t a l C o n t i g s S i z e += cont i g . Sequence . Count ;∗/

707 }
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msg = Str ing . Format ( " Average Contigs S i z e : {0} {1}

Largest Contig S i z e : {2} " ,

709 ( double ) t o t a l C o n t i g s S i z e /

c o n t i g s . Count , Environment . NewLine ,

l a r g e s t C o n t i g S i z e ) ;

711

// c o n t i g s . RemoveAll ( cont i g => cont i g . Sequence . Length

< 100) ;

713 }

715 pub l i c void CreateCont igs ( )

{

717 s t r i n g msg = " " ;

CreateCont igs ( out msg) ;

719 }

721 pub l i c void ExpandContigs ( out s t r i n g msg)

{

723 msg = " " ;

r e turn ;

725 }

727

pub l i c void ExpandContigs ( )

729 {

s t r i n g msg = " " ;

731 ExpandContigs ( out msg) ;
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}

733 #endreg ion

735 #reg ion Pr ivate Methods

737 pr i va t e bool RightLinkCheck ( byte [ ] s r cSt r , Kmer srcKmer ,

byte [ ] d e s tS t r )

{

739 f o r ( i n t i = 0 ; i < 4 ; i++)

{

741 i f ( srcKmer . RightCounts [ i ] == 0)

cont inue ;

743

// byte [ ] r ightLinkSeq = new byte [ s r c S t r . Length ] ;

745 // r ightLinkSeq [ r ightLinkSeq . Length − 1 ] = bpChar

;

//Array . Copy( s r cSt r , 1 , r ightLinkSeq , 0 , s r c S t r .

Length − 1) ;

747 byte [ ] r ightLinkSeq = new byte [ s r c S t r . Length ] ;

U t i l i t i e s . BitCopyArray ( s r cSt r , 1 , r e f

r ightLinkSeq , 0 , K − 1) ;

749 U t i l i t i e s . BitCopyArray (new byte [ ] {( byte ) i } , 0 ,

r e f r ightLinkSeq , K − 1 , 1) ;

751 i f ( U t i l i t i e s . UnsafeCompare ( r ightLinkSeq ,

de s tS t r ) )

re turn true ;
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753 /∗ i f ( r ightLinkSeq . Equals ( destStr ,

StringComparison . Ordinal IgnoreCase ) )

re turn true ;∗/

755 }

return f a l s e ;

757 }

759 pr i va t e bool LeftLinkCheck ( byte [ ] s r cSt r , Kmer srcKmer ,

byte [ ] d e s tS t r )

{

761 f o r ( i n t i = 0 ; i < 4 ; i++)

{

763 i f ( srcKmer . LeftCounts [ i ] == 0)

cont inue ;

765

// byte [ ] l e f tL inkSeq = new byte [ s r c S t r . Length ] ;

767 // l e f tL inkSeq [ 0 ] = bpChar ;

//Array . Copy( s r cSt r , 0 , l e f tL inkSeq , 1 , s r c S t r .

Length − 1) ;

769 byte [ ] l e f tL inkSeq = new byte [ s r c S t r . Length ] ;

U t i l i t i e s . BitCopyArray ( s r cSt r , 0 , r e f

l e f tL inkSeq , 1 , K − 1) ;

771 U t i l i t i e s . BitCopyArray (new byte [ ] {( byte ) i } , 0 ,

r e f l e f tL inkSeq , 0 , 1) ;

i f ( U t i l i t i e s . UnsafeCompare ( l e f tL inkSeq , de s tS t r

) )

773 re turn true ;

168



Appendices 5

/∗ i f ( l e f tL inkSeq . Equals ( destStr ,

StringComparison . Ordinal IgnoreCase ) )

775 re turn true ;∗/

777 }

return f a l s e ;

779 }

781 #endreg ion

}
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