
Region Connection Calculus:
Composition Tables and Constraint

Satisfaction Problems

Manas Ghosh

Department of Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Faculty of Mathematics and Science, Brock University
St. Catharines, Ontario

c©Manas Ghosh, 2013

To Professor Michael Winter

&

My Parents

Abstract

Qualitative spatial reasoning (QSR) is an important field of AI that deals with qual-

itative aspects of spatial entities. Regions and their relationships are described in

qualitative terms instead of numerical values. This approach models human based

reasoning about such entities closer than other approaches. Any relationships be-

tween regions that we encounter in our daily life situations are normally formulated

in natural language. For example, one can outline one’s room plan to an expert by in-

dicating which rooms should be connected to each other. Mereotopology as an area of

QSR combines mereology, topology and algebraic methods. As mereotopology plays

an important role in region based theories of space, our focus is on one of the most

widely referenced formalisms for QSR, the region connection calculus (RCC).

RCC is a first order theory based on a primitive connectedness relation, which

is a binary symmetric relation satisfying some additional properties. By using this

relation we can define a set of basic binary relations which have the property of being

jointly exhaustive and pairwise disjoint (JEPD), which means that between any two

spatial entities exactly one of the basic relations hold. Basic reasoning can now be

done by using the composition operation on relations whose results are stored in a

composition table. Relation algebras (RAs) have become a main entity for spatial

reasoning in the area of QSR. These algebras are based on equational reasoning which

can be used to derive further relations between regions in a certain situation. Any

of those algebras describe the relation between regions up to a certain degree of

detail. In this thesis we will use the method of splitting atoms in a RA in order to

reproduce known algebras such as RCC15 and RCC25 systematically and to generate

new algebras, and hence a more detailed description of regions, beyond RCC25.

Acknowledgements

I would like to express my profound gratitude to my supervisor, Dr. Michael Winter

for his continuous supervision, advice, motivation, and encouragement from the very

beginning of this research work. Throughout the duration of my master program,

his constant support, valuable suggestions and efforts to clarify concepts and simplify

terms have inspired and enriched my development as a young researcher. It would

have never been possible for me to finish this thesis work without his guidance and

help.

I would like to thank my supervisory committee members- Dr. Brian Ross and

Dr. Ke Qui for their support, guidance and helpful suggestions. Their guidance has

served me well and I owe them my heartfelt appreciation.

My sincere thanks goes to Dr. Wendy MacCaull who took her time to read through

my thesis for her insightful comments.

I would also like to thank the Department of Computer Science of Brock Univer-

sity for the financial and academic support.

Last but not the least, I would like to thank my family members and friends for

their constant support, assistantship and inspiration with the best wishes.

M.G

Contents

1 Introduction 1

2 Background 5

2.1 Binary Relations and Their Algebras 7

2.1.1 Definitions . 7

2.2 Contact Algebra . 14

2.3 Region Connection Calculus . 15

2.3.1 Definitions and Axioms . 15

2.3.2 RCC Axioms . 15

2.4 Composition Table . 16

2.4.1 Definitions . 16

2.5 Splitting Atoms in Relation Algebra 19

2.6 Constraint Satisfaction Problem . 25

2.6.1 Definitions and Axioms . 25

2.6.2 Path-consistency . 26

3 Composition Tables for RCC 27

3.1 From RCC8 to RCC11 . 27

3.2 From RCC11 to RCC15 . 28

3.3 From RCC15 to RCC25 . 34

3.4 From RCC25 to RCC27 . 36

3.5 From RCC25 to RCC29 . 43

3.6 Generating RCC31 . 46

3.7 Splitting ECNB . 47

4 Constraint Satisfaction Problem for RCC 55

5 Conclusion and Future Work 59

iv

Appendices 60

A Installing Glade and GTK for Haskell 61

B Tables and Figures 62

List of Tables

2.1 RCC8 Composition Table. 18

3.1 Triple removed considering definitions of RCC25 36

3.2 Triggered pair for the RCC31 algebra 47

3.3 Match Table . 51

B.1 Definitions of RCC25 atoms . 62

B.2 Triggered pairs for the RCC25 algebra 63

B.3 Triggered pairs for the RCC27 algebra 64

B.4 Triggered pairs for the RCC29 algebra 65

B.5 Triggered pairs for the ECNB Splitting 66

List of Figures

2.1 Thirteen basic relations of Allen’s interval algebra 7

2.2 Regions v and w are in contact by means of a point 14

2.3 Relations between regions defined in terms of C 17

2.4 Relations definable in terms of C . 17

3.1 Splitting of atoms EC and PO . 28

3.2 xECNy and xECDy . 29

3.3 xPONy, xPODY y and xPODZy . 29

3.4 xTPPAz and xTPPBz . 29

3.5 Composition Table for RCC11 . 30

3.6 (a+ c)PONXB2(a · s) . 36

3.7 (a+ t)PONXA1(d+ s) . 37

3.8 (a · s)PONXA2(a+ c+ t) . 37

3.9 (a+ c)PONXB1a · (s+ b) . 37

3.10 (s+ t)PONY A1(a · (s+ d)) . 37

3.11 sPONY A2(a+ t) . 38

3.12 Splitting of the RCC15 relation algebra 38

3.13 (a+ b)PONZH(a+ c) . 43

3.14 Generation of the RCC31 relation algebra 47

3.15 xHz . 50

3.16 xTPPB1z . 51

3.17 xTPPAz . 51

3.18 xTPPAz . 52

3.19 (b+ c)PONY A1H(b · d+ a) . 54

3.20 (b · d+ a)PONY A1tH(b+ c) . 54

3.21 (a · b+ d · v)PONXA2H(b+ c) . 54

4.1 Constraint string manipulation . 57

4.2 Constraint string manipulation . 58

vii

B.1 Constraint satisfaction checking interface 67

B.2 Variables entered for constraint string 67

B.3 Atomic relations for RCC8 . 68

B.4 Constraint satisfied based on the RCC11 algebra 68

B.5 Constraint not satisfied based on the RCC11 algebra 69

Chapter 1

Introduction

Qualitative reasoning is an approach where reasoning is based not on numbers, but

on a range of more abstract or sophisticated data. The qualitative approach is consid-

ered to be closer to how humans represent and reason about commonsense knowledge.

Qualitative spatial reasoning (QSR) is an important subfield of AI which is concerned

with the qualitative aspects of representing and reasoning about spatial entities. Non-

numerical relationships among spatial objects can be expressed through QSR. Most

of the work carried out in QSR has focused on single aspects of space. The most

studied, and probably most important, aspect is based on topology, the spatial re-

lationship between regions. Relation algebras (RAs) are interesting to researchers

of spatial reasoning because a large part of contemporary spatial reasoning is based

on the investigations of the behavior of “part of” relations and their extensions to

“contact” relations in various domains [7, 23, 24, 56]. Using the techniques of relation

algebras the consistency of topological relations can be checked. From the definition

of the Boolean operations , the composition operation, and the converse operation

on relations we can derive which relationships between two regions are possible in a

given situation. Relation algebras were introduced into spatial reasoning in [24] with

additional results published in [25, 26]. We would like to refer the reader to these

papers for additional motivation.

The most popular reasoning methods used in qualitative spatial reasoning are

constraint based techniques. In order to apply them, it is necessary to have a set of

basic qualitative binary relations which have the property of being jointly exhaustive

and pairwise disjoint (JEPD). The set of all possible relations is then the set of all

possible unions of the basic relations, given that reasoning can be done by exploiting

composition of relations. Pre-computed compositions of relations are stored in a

composition table which can serve as a look-up table for the relations. For example,

1

CHAPTER 1. INTRODUCTION 2

if binary relation R holds between entities A and B and the binary relation S holds

between B and C, then the composition of R and S restricts the possible relationship

between A and C.

A constraint will be a subset of regions for a particular selected algebra. Two op-

erators, composition and join, will be used for forming the constraint. For example a

constraint is given below. In that constraint washroom, bedroom and drawingroom

are variables ranging over regions and TPP and ECN are atomic relations. Multi-

ple atomic relations are joined by ‘,’ in the constraint string which means essentially

‘and’. In a constraint string, it is also possible that two entities are related by non-

atomic relationships. This is indicated by combing the appropriate atomic relations

using OR.

washroom TPP bedroom,

bedroom ECN drawingroom,

washroom(TPP OR ECN)drawingroom

As an area within QSR, mereotopology combines mereology, topology and alge-

braic reasoning. Formalisms for reasoning about spatial entities can be developed

using mereotopology [4, 8, 45, 47]. Many possible theories have been proposed for

mereotopology, among them, the most prominent theory is the region connection

calculus (RCC) [7], which is originated from Clarke’s theory [5]. Randell in [48, 49]

first proposed RCC to describe a logical framework for mereotopology. It was shown

in [55] that models of the RCC are isomorphic to Boolean connection algebras (or

Boolean contact algebras). As lattices and Boolean algebras in particular are well-

known mathematical structures, this led towards an intensive study of the properties

of the RCC including several topological representation theorems [12, 13, 21, 27].

RCC is one of the widely studied systems of QSR. In RCC, regions are used

as a fundamental notion. This region-based approach to spatial reasoning closely

mirrors Allen’s [1] interval-based approach to temporal reasoning. The JEPD set of

topological relations known as RCC8 were identified as being of particular importance

in the RCC theory. RCC8 consists of the relations “x is disconnected from y”, “x is

externally connected to y”, “x partially overlaps y”, “x is equal to y”, “x is tangential

proper part of y”, “x is non-tangential proper part of y”, and the inverses of the latter

two relations. A relation algebra was developed based on these 8-atomic relations.

These relations are defined by { DC, EC, PO, EQ, TPP, NTPP, TPP ,̆ NTPP˘

}. This kind of categorization of topological relations was independently given by

Egenhofer [27] in the context of geographical information systems (GIS). The same

CHAPTER 1. INTRODUCTION 3

set of relations has been independently identified in [2, 29] as significant in the context

of GIS. RCC8 supports the notion of a composition table since it is a JEPD. To study

contact relations, Düntsch [14, 15, 16] used methods of relation algebras and explored

their expressive power with respect to topological domains.

It has been shown in [14, 15, 17] that after several refinements of the eight atomic

relations it is possible to produce new algebras of up to 25 atoms. New relations were

obtained by splitting certain atoms from the previous algebra into two new relations

and simultaneously removing certain entries in the composition table for one of the

new atoms.

In [3] a method for splitting atoms in relation algebras was introduced. This

method was then used in the theory of cylindric algebras to obtain nonrepresentable

cylindric algebras from representable ones. In this approach a condition of splittability

on the atoms was used in order ensure associativity of the composition operation

after splitting. Unfortunately, this condition is violated by all the RCC tables in

consideration starting with RCC11 that is also known as complemented closed disc

algebra [16, 17].

Siddavaatam and Winter [51] proved a theorem for splitting atoms in a more

general setting and explore ways to accomodate functional elements like bijections

during the splitting process. Our contributions in the thesis are listed below.

• A proof is given for removing the additional cycle 〈TPPA, TPPA, TPPB〉 from

RCC15 and RCC25 in the Lemma 3.2.2.

• In section 3.3, we have produced know algebras RCC11, RCC15 and RCC25

from RCC15 based on [51].

• In section 3.4, we have produced RCC27 from RCC25 by splitting PONXB2.

• In section 3.5, RCC29 is generated from RCC25 by splitting PONXB1.

• In section 3.6, RCC31 is generated by combining RCC27 and RCC29.

• Splitting of ECNB is not possible shown in the section 3.7.

• We have developed a system to check whether a given constraint satisfiable

or not based on composition as well as based on particular selected relation

algebra.

The remainder of the thesis is structured as follows. In Chapter 2 we will first

introduce the region connection calculus and its basic properties. Then we will discuss

CHAPTER 1. INTRODUCTION 4

relation algebras in order to study contact relations within the RCC. We will also

define constraint satisfaction problems (CSP) in the context of spatial reasoning.

In Chapter 3 we describe existing composition tables and using the system [51] for

splitting atoms develop composition tables for RCC25, RCC27, RCC29 and RCC31,

where each composition table induces a particular relation algebra. In Chapter 4

we focus on CSP for different relation algebras, finally in Chapter 5 we present our

conclusion and future work.

Chapter 2

Background

Relational methods have been the basis for many conceptual and methodological tools

in computer science since the 1970’s. In logic and computer science there are many

applications for the calculus of relations, references to many of these can be found

in Németi’s survey [44]. Another excellent source of applications can be found in

the publications of the International Seminar on Relational Methods in Computer

Science.

For analyzing, modeling or resolving several computer science problems such as

program specification, heuristic approaches for program derivation, automatic prover

design, database and software decomposition, program fault tolerance, testing, data

abstraction and information coding, and more importantly in the area of QSR, rela-

tion algebra has been used as a basic tool.

The relation algebras that we are interested in are based on finite sets of JEPD

relations which are also basic relations. If R and S are members of a JEPD relation

set then R∩S = ∅ for each pair of relations and the union of all is the greatest relation

on the set. The relations of such a set are the atoms of a subalgebra of the Boolean

algebra of all relations on the structure in question. If two entities are related by

one of the basic relations, this can be used to represent specific knowledge. Unclear

knowledge can be specified by unions of possible basic or atomic relations. If the basic

relations are closed under composition and converse, then the Boolean algebra induced

by the basic relations forms a relation algebra. Converse, complement, intersection

and union of relations can easily be obtained by performing the corresponding set

theoretic operations.

Allen’s interval algebra introduced in [1] is considered as a best known example

of such a relation algebra, which defines different basic relations between convex

intervals on a directed line. Though the interval algebra was introduced for temporal

5

CHAPTER 2. BACKGROUND 6

representation and reasoning, there is a number of spatial calculi which are derived

from the interval algebra. Allen identified a set of thirteen JEPD relations those are

given in Figure 2.1. Those relations exist between two interpreted time intervals and

reasoning can be done based on the composition of relations. If a time interval is

denoted by X then X is an ordered pair (X−, X+) such that X− < X+, where X−

and X+ are taken points on the real line. Basic interval relations are defined in terms

of its endpoint relations. Let us consider the set B of those thirteen basic interval

relations, then an atomic formula of the form XBY , where X and Y are intervals and

B ∈ B, is said to be satisfied by an interpretation if the interpretation of the intervals

satisfies the endpoint relation specified in Figure 2.1.

First-order logic is of great importance to the foundations of mathematics as it

is the standard formal logic for axiomatic systems and it is different from proposi-

tional logic by its use of quantified variables. It is also known as first-order predicate

calculus, the lower predicate calculus quantification theory, and predicate logic.

The equational theory of the calculus of binary relations is equivalent to the three

variable fragments of the first-order logic with at most binary relations [52]. Thus it

is imperative to use relation algebraic methods, initiated by Tarski [53], to explore

their expressive power in the topological domains based on contact relations.

Mereotopology is part of qualitative spatial reasoning which combines mereology,

topology and algebraic reasoning. Mereology is a collection of axiomatic first-order

theories dealing with parts and their respective wholes. The algebraic part is an

atomless Boolean algebra. Topological approaches for qualitative spatial reasoning

generally describe relationships between spatial regions. Here spatial regions are

subsets of some topological space. Existing approaches for formalizing topological

properties of spatial regions are based on the work of Whitehead [58].

RCC is based on the primitive connectedness relation, C, which is a binary sym-

metric relation. Using this primitive relation it is possible to define many other

relations. RCC theory of spatial regions was greatly influenced by the works of Allen

and Hayes [2, 31, 32, 46]. Later, its development followed based on first-order theory.

Bennett [6] investigates logical representations for describing and reasoning about

spatial situations. Egenhofer and Sharma [28] used relation algebras for spatial rea-

soning.

Reasoning which can be done in RCC through composition tables and these com-

position tables have become a key technique in providing an efficient inference mech-

anism for a wide class of theories. Cui, Cohn, Randell [10] and Egenhofer [29] inde-

pendently established the composition table for basic topological relations for RCC8.

CHAPTER 2. BACKGROUND 7

Figure 2.1: Thirteen basic relations of Allen’s interval algebra

2.1 Binary Relations and Their Algebras

2.1.1 Definitions

Binary relations and their algebras have become essential entities for researchers es-

pecially in the field of QSR. For QSR researchers composition based reasoning with

binary relations has been of great interest. Expressive power, consistency and com-

plexity of relational reasoning have also become topics of study today.

Definition 1. A binary relation on a set U is a subset of U × U . If R,S ⊆ U ×
U , and x, y, z ∈ U , we generally write xRy for 〈x, y〉 ∈ R, −xRy for 〈x, y〉 /∈ R and

xRySz for xRy and yRz. We will denote the set of all relations on U by Rel(U).

The following definitions for a relation R on U are frequently used:

1. R is reflexive if xRx for all x ∈ U .

2. R is irreflexive if xRx for no x ∈ U .

3. R is symmetric if for all x, y ∈ U , xRy implies yRx.

4. R is antisymmetric if for all x, y ∈ U , xRy and yRx implies x = y.

5. R is asymmetric if for all x, y ∈ U , xRy implies −yRx.

6. R is transitive if for all x, y, z ∈ U , xRy and yRz implies xRz.

CHAPTER 2. BACKGROUND 8

7. R is functional if for all x, y, z ∈ U , xRy and xRz implies y = z.

In this thesis we will use multiple algebras of different kinds. In order to define

algebras in the sense of universal algebra we will use the notation An for Cartesian

product A× . . .× A︸ ︷︷ ︸
n times

. Using this notation f : An → A denotes an n-ary function on

A. Notice that we will use the convention that a 0-ary function is considered to be

an element of A.

Definition 2. An algebra A = 〈A,F〉 consists of a set A and a set of operations F,

i.e., each f ∈ F is a function f : Anf → A. If the set F is finite we will also use the

notation A = 〈A, f1, . . . , fm〉. In this case we say that A is of type 〈n1, . . . , nm〉 if fi

is an ni-ary function for all 1 ≤ i ≤ m.

In the following we will also use the following specific types of algebras. We call

an algebra A

• of unitary type iff its type is 〈1〉,

• of Boolean type iff its type is 〈2, 1〉,

• of monoid type iff its type is 〈2, 0〉,

• of relational type iff its type is 〈2, 1, 2, 1, 0〉.

Since relations are sets, the collection of all relations on U forms a Boolean algebra.

Definition 3. A structure B = 〈B,+, 〉 of Boolean type is called a Boolean algebra

(BA) iff it satisfies the following for all x, y, z ∈ B:

B1 x+ y = y + x.

B2 x+ (y + z) = (x+ y) + z.

B3 x+ y + x+ y = x

In a Boolean algebra we can define a meet (·) by x · y = x+ y. The least element

0 and the greatest element 1 are defined respectively as 0 = x ·x and 1 = x+x where

x ∈ B. A Boolean algebra is also equipped with a partial order ≤ definable as x ≤ y

iff x + y = y (x · y = x). Notice that x + y and x · y are the least upper bound

(supremum) and the greatest lower bound (infimum) of x and y. A Boolean algebra

B is called complete iff every subset M ⊆ B has a supremum
∑
M and and infimum

CHAPTER 2. BACKGROUND 9

∏
M with respect to the partial order ≤. Notice that a finite Boolean algebra is

always complete.

An element q ∈ B of a Boolean algebra B is called an atom iff q 6= 0 and if p ≤ q

implies p = 0 or p = q. We denote the set of all atoms by At(B). In the Boolean

algebra of all subsets of a given set the singleton sets are the atoms of the algebra. A

complete Boolean algebra is called atomic iff every element is the supremum of the

atoms below it, i.e., if
∑
{q ∈ At(B) | q ≤ x} = x.

Several operations may be defined on relations: Let R, S, T ⊆ U ×U and x, y, z ∈
U then we can define:

1. Transpose or converse: xR̆y iff yRx

2. Complement: xR̄y iff −xRy

3. Union: x(R ∪ T)y iff xRy or xTy

4. Intersection: x(R ∩ T)y iff xRy and xTy

5. Composition: x(R;T)z iff there exist y in U : xRy and yTz

6. Inclusion: R ⊆ T ⇔ R ∩ T = R, i.e., R ⊆ T iff xRy implies xTy for all x and

y.

7. Empty relation: R = ∅, the empty relation.

8. Universal relation: V = U × U .

9. Identity relation: x1′y iff x = y.

Definition 4. An algebra A= 〈B, ; , 1’ 〉 of monoid type is called a monoid, i.e.

• ; is associative.

• 1’ ;R = R; 1’ =R for all R ∈ B.

We now provide the definition of an abstract relation algebra. The elements of

such an algebra need not to be relations as defined above. However, the set of relations

on a set U satisfies the axioms of a relation algebra (see Lemma 2.1.2 below).

Definition 5. A structure B=〈B,+, , ; , ˘, 1’ 〉 of relational type is called an (ab-

stract) relation algebra (RA) if it satisfies the following:

R1 〈B,+, 〉 is a Boolean algebra.

CHAPTER 2. BACKGROUND 10

R2 〈B, ; , ˘, 1’ 〉 is an algebra of type 〈2, 1, 0〉 so that,

• 〈B, ; , 1’ 〉 is a monoid.

• ˘̆a = a and (a; b)˘ = b̆; ă.

R3 For all x, y, z ∈ B the following formulas are equivalent:

x; y · z = 0 ⇐⇒ x̆; z · y = 0 ⇐⇒ z; y̆ · x = 0.

We will use the term relation for elements of a relation algebra. We call an

algebra of relational type that satisfies all the axioms of a relation algebra except the

associativity of composition ; a nonassociative relation algebra (NA).

Oriented triangles or the cycle law can be used to visualize R3, which is de

Morgan’s theorem K [11]. R3 express the fact that if one of the directed triangles

below is satisfiable (in the sense of the equation below the triangle), then the others

are also satisfable. In the figure below the first row of triangles was directly obtained

for R3, and we get the second row by applying converse to the corresponding diagram

of the first row.

•
y

��

•
x

��

z

��

•

•

x
??

z

x; y · z = 0
// • • y

x̆; z · y = 0
// • • x

z; y̆ · x = 0
//

z
??

•

y
__

•
z

��

x

��

•
y

��

•

• •y

z̆;x · y̆ = 0
oo • •z

y̆; x̆ · z̆ = 0
oo

x
__

•

y
??

•x

y; z̆ · x̆ = 0
oo

z
__

Lemma 2.1.1. [17] If we denote the set of all relations on the set U by Rel(U) then

the structure denoted by 〈Rel(U),∪, , ; , ˘, 1’ 〉 is a relation algebra.

The above algebra is called the full algebra of relations on U . This algebra is

large even in the case of a small underlying set U . The cardinality of Rel(U) is

given by 2|U |
2

, where |U | denotes the cardinality of U . We call a relation algebra B

representable if it is isomorphic to a subalgebra of a product of full algebras of binary

relations.

Example 1. Consider a full algebra Rel(3) where 3 = {0, 1, 2}. Rel(3) has 512

elements and 9 atoms. Each atom is a set containing exactly one pair, e.g., one atom

CHAPTER 2. BACKGROUND 11

would be {(0,0)}. Atoms are singleton sets, i.e., the sets of the form {(x,y)} with

x, y ∈ U .

In the next lemma, some properties of relation algebras are given below. A proof

can be found in [39, 53].

Lemma 2.1.2. Let B be a relation algebra, and let x, y, z ∈ B. Then we have:

1. 0̆ = 0, 1̆ = 1, 1̆’ = 1’ .

2. x ≤ x; x̆;x.

3. x; (y; z) = (x; y); z.

4. x; (y + z) = x; y + x; z.

5. x; 1’ = x.

6. ˘̆x = x.

7. (x+ y)˘ = x̆+ y̆.

8. (x; y)˘ = y̆; x̆

9. if x̆;x ≤ 1’ , then x; (y · z) = x; y · x; z.

10. if x̆;x ≤ 1’ , then x; y ≤ x; y.

11. x; y ≤ z iff1 x̆; z ≤ y iff z; y̆ ≤ x.

We call a relation x univalent if x̆;x ≤ 1’ . A relation x is called injective if x̆ is

univalent. A bijective relation is both univalent and injective. A relation x is defined

total if 1’ ≤ x; x̆ and x is surjective if x̆ is total.

Integral relation algebras form basic building blocks in constructing arbitrary al-

gebras. For details on their importance, we refer to [57].

Definition 6. A relation algebra B is called integral iff for all x, y ∈ B, x; y = 0

implies that x = 0 or y = 0.

A relation algebra B is integral if and only if the identity is an atom of B. Another

equivalent property is the requirement that all relations of the algebra are total [38].

Properties of atoms in relation algebras are given in the next lemma. We will

denote the set of atoms of a relation algebra B by AtB. Again, a proof of the lemma

can be found in [38].

1We use iff as an abbreviation for if and only if.

CHAPTER 2. BACKGROUND 12

Lemma 2.1.3. [39, 40, 41, 44] Let B be a relation algebra, and x, y, z ∈ AtB. Then

we have:

1. There is an atom i ≤ 1’ with x; i = x.

2. z ≤ x; y iff y ≤ x̆; z iff x ≤ z; y̆ iff z̆ ≤ y̆; x̆ iff y̆ ≤ z̆;x iff x̆ ≤ y; z̆.

3. If y is a bijection and x; y 6= 0, then x; y is an atom.

If a relation algebra B is finite, then the actions of Boolean operators are uniquely

determined by the atoms of it. We denote the set of all bijections i.e. bijective

elements of a relation algebra B by BijB.

If a, b are elements of a relation algebra B. The equation a;x = b may not always

have a solution but there is always a greatest solution to a;x ≤ b. This solution is

obtained using Lemma 2.1.2(11) by

a;x ≤ b ⇐⇒ ă; b ≤ x

⇐⇒ x ≤ ă; b

This solution is called the right residual of b over a and we denote it by a\b = ă; b.

In a similar way the inclusion x; a ≤ b has a greatest solution b/a = b; ă called the

left residual of b over a.

a \ b= -(ă ; -b) and b/a= -(b ; ă)

Lemma 2.1.4. [15]

1. a \ a and a/a are reflexive and transitive.

2. If a is reflexive, then a \ a ≤ a.

3. If a is symmetric, then a\a ≤ a iff (a \ a)˘; (a \ a) ≤ a.

Topological distinctions became particularly interesting for QSR because of its in-

herently qualitative nature. In qualitative spatial reasoning, topological approaches

usually describe relationships between spatial regions rather than points, where spa-

tial regions are subsets of some topological space.

Definition 7. Let X be a non-empty set. A collection T of subsets of X is said to

be a topology on X if

• X and empty set ∅, belong to T

CHAPTER 2. BACKGROUND 13

• the union of any (finite or infinite) number of sets in T belongs to T

• the intersection of any two sets in T belongs to T

The pair (X,T) is called a topological space.

The largest and smallest set defined above do exist since open sets are closed under

arbitrary unions and closed sets are closed under arbitrary intersections. Members of

T are called open and those sets S with X \ S = {x ∈ X | x 6∈ S} ∈ T are called

closed.

Example 2. Let X be a nonempty set. The collection {∅, X}, consisting of the empty

set and the whole set, is a topology on X, called the trivial topology or indiscrete

topology. The power set P(X) of X, consisting of all subsets of X, is a topology on

X, called the discrete topology.

Models for mereotopological structures are collections of regular closed (or regular

open) sets of topological spaces (X, T). We will look at some definitions which are

related to topological spaces. The purpose is to highlight the characterization of the

models of RCC from a topological perspective.

Definition 8. For any subset S of X, the interior of S denoted as Int(S), is the

largest open set contained in S, and for any subset S of X, the closure of S denoted

as Cl(S) is the smallest closed set contained in S.

Let x, y ∈ T , and if Cl(x)∩ y = x∩Cl(y) = ∅, then x and y are called separated.

An open set x that is nonempty is called connected if it is not the union of two

separated nonempty open sets. A set u ⊆ X is called regular open if u = Int(Cl(u)),

and regular closed, if u = Cl(Int(u)).

Lemma 2.1.5. [19] Let RC(X) be a collection of regular closed sets of (X, T), then

RC(X) is a complete Boolean algebra under set inclusion. We then have the following:

1. v + w = v ∪ w.

2. v · w = Cl(Int(v ∩ w))

3. v = Cl(X \ v)

From the above lemma it is important to note that v · w ⊆ v ∩ w. In Figure 2.2

we see that the intersection of v and w contains exactly one element - the point on

the border of the circles where they touch each other. But we have v ·w = ∅ if we use

the regular topology of the Euclidean plane. This difference is the basis of external

contact.

CHAPTER 2. BACKGROUND 14

Figure 2.2: Regions v and w are in contact by means of a point

2.2 Contact Algebra

De Laguna (1922) and Whitehead (1929) [22, 58] first used contact relations in their

works. They tend to use regions instead of points as the basic entity of geometry.

Whitehead [58] has defined that two regular closed sets are in contact, if they have a

non-empty intersection. The notion of a contact is basically reflexive and symmetric

relation C among non empty regions, satisfying an additional extensionality axiom.

Leśniewski’s classical mereology was generalised by Clarke [9] by taking a contact

relation C as the basic structural element. Clarke proposed additional axioms such

as compatibility and summation in [4], in order to formalize mereological structures

which are essentially complete Boolean algebras without a least element together with

Whitehead‘s connection relation C. Nowadays the study of “part-of” and “contact”

relations are used interchangely for the term “mereology” in QSR.

Definition 9. [18] Let B be a Boolean algebra, and C ∈ Rel(B). Then we define the

following properties for all x, y, z ∈ B:

CHAPTER 2. BACKGROUND 15

C0. 0 C̄ x (Null disconnectedness)

C1. if x 6= 0, then xCx (Reflexivity)

C2. if xCy, then yCx (Symmetry)

C3. if xCy and y ≤ z, then xCz (Compatibility)

C4. if xC(y + z), then xCy or xCz (Summation)

C5. if C(x) = C(y), then x = y (Extensionality)

C6. if xCz or yCz, then xCy (Interpolation)

C7. if x 6= 0 and x 6= 1, then xCx (Connection)

A relation C on a Boolean algebra B is called a contact relation if it satisfies

C0-C4. In this case the pair 〈B, C〉 is called a Boolean contact algebra (BCA).

Notice that a Boolean contact algebra is not an algebra in the sense of Definition 3

because C is a relation and not a function. If C satisfies C5 in addition, it is called

an extensional contact relation. In this case C \C is equal to the partial order of the

Boolean algebra. A Boolean contact algebra is called connected if C also satisfies C7.

2.3 Region Connection Calculus

2.3.1 Definitions and Axioms

The RCC is a very appropriate description for a spatial formalism. Spatial entities,

i.e, regions of space are extended by the fundamental approach of RCC. The primitive

relation between regions - giving the language the ability to represent the structure

of spatial entities - is that of connection.

2.3.2 RCC Axioms

A model of the RCC consists of a set R, an element u ∈ R, a singleton set {n} disjoint

from R, a unary operation complement (): R \ {u} → R \ {u}, a binary operation

sum : R × R → R, and prod : R × R → R ∪ {n}, and a binary relation C on R.

CHAPTER 2. BACKGROUND 16

These data are required to satisfy the following axioms, x, y, z ∈ R and v ∈ R \ {u}
which make use of the relations derived from C defined in Figure 2.3.

R1. xCx.

R2. if xCy then, yCx.

R3. xCu.

R4a. xCv iff xNTPPv.

R4b. xOv iff xPv.

R5. xCsum(y, z) iff xCy or yCx.

R6. if prod(y, z) ∈ R then xCprod(y, z) is equivalent to wPy, wPz and xCw for a

w ∈ P .

R7. prod(x, y) ∈ R iff xOy.

R8. if xPy and yPx, then x = y.

R1 and R2 make sure that the connection relation C is a reflexive and symmetric

binary relation. R3 ensures the university of the region u. R4a and R4b capture the

ideas of the complement of a region. R5 represents the sum of regions. The product

of two regions are represented by R6 and R7.

It has been shown that RCC models are equivalent to BCAs without least ele-

ments, i.e., that the two notations are essentially the same. Because of this we will

refer to either or both sets of axioms interchangeably.

Definitions and intended meanings of the relations definable in terms of C are

summarized in Figure 2.3. How one region is connected with other region is given in

Figure 2.4 based on the relations defined in Figure 2.3.

2.4 Composition Table

2.4.1 Definitions

A composition table (CT) can be described as a matrix whose rows and columns are

marked by atoms. If identity (1′) is an atom in our considered relation algebra, then

we will discard the column and row pertaining to 1′ from the composition table.

CHAPTER 2. BACKGROUND 17

Figure 2.3: Relations between regions defined in terms of C

Figure 2.4: Relations definable in terms of C

Definition 10. A composition table CT is a mapping CT : Rels × Rels → 2Rels,

where Rels is a set of relation symbols. A model of CT is a pair (U,v), where U is

a set and v is a mapping from Rels to the set of binary relations on U such that,

{v(R) : R ∈ Rels} is partition of U × U and v(R) ;v(S) ⊆
⋃

T∈CT (R,S)v(T).

For three relational symbols R, S and T , if T ∈ CT (R, S), we say T is a cell entry

in the composition table specified by R and S. In this case we will also write 〈R, S, T 〉
and call this triple a composition triad of the table. A model of a composition table

is consistent if T ∈ CT (R, S) implies that there are elements a, b, c ∈ U with av(R)b,

bv(S)c, and av(T)c, or, equivalently, if v(R); v(S) ∩ v(T) 6= ∅. A consistent model is

CHAPTER 2. BACKGROUND 18

called extensional if the following condition is satisfied

v(R); v(S) =
⋃

T∈CT (R,S) v(T) (2.1)

In such an extensional model if T is an entry in the cell specified by R and S, then

whenever T (a, c) holds, there must exist some b in U such that R(a, b) and S(b, c).

Suppose that R is a set of relations on U , and R, S ∈ R. Now we can define weak

composition in the following way.

R;w S =
⋃
{T ∈ R : T ∩R;S 6= φ} (2.2)

Weak composition is of importance for us if the JEPD set of relation R is the

image of a model of a composition table, i.e., R = {v(R) | R ∈ Rels}. Notice that in

this case we have v(R);w v(S) =
⋃

T∈CT (R,S) v(T), and we call ;w the weak composition

induced by the table. The table is extensional iff weak composition and composition

coincide [16].

Consider the composition table for RCC8 relations as shown in Table 2.1. It is

shown as a (7,7) matrix where an entry (i, j) contains the list of atoms of the compo-

sition of relations xi and xj i.e., (xi;xj). Suppose xi = EC and xj = TPP , then we

find the list EC,PO,TPP ,NTPP in the corresponding entry, i.e., CT (EC, TPP) =

{EC,PO, TPP,NTPP}.

; DC EC PO TPP TPP̆ NTPP NTPP̆

DC DC, EC, PO DC, EC, PO DC, EC, PO DC, EC, PO DC DC, EC, PO DC
TPP, TPP ,̆ 1’ TPP TPP TPP TPP
NTPP, NTPP˘ NTPP NTPP NTPP NTPP

EC DC, EC, PO DC, EC, PO DC, EC, PO EC, PO DC, EC PO DC
TPP˘ TPP, TPP˘ TPP TPP TPP
NTPP˘ 1’ NTPP NTPP NTPP

PO DC, EC, PO DC, EC, PO DC, EC, PO PO DC, EC, PO PO DC, EC, PO
TPP˘ TPP˘ TPP, TPP ,̆ 1’ TPP TPP˘ TPP TPP˘
NTPP˘ NTPP˘ NTPP, NTPP˘ NTPP NTPP˘ NTPP NTPP˘

TPP DC DC, EC DC, EC, PO DC, EC, PO DC, EC, PO
TPP TPP TPP, TPP˘ TPP˘
NTPP NTPP 1’ NTPP NTPP˘

TPP̆ DC, EC, PO EC, PO PO PO PO
TPP˘ TPP˘ TPP˘ TPP, TPP˘ TPP˘ TPP
NTPP˘ NTPP˘ NTPP˘ NTPP˘ NTPP NTPP˘

NTPP DC DC DC, EC, PO DC, EC, PO DC, EC, PO
TPP TPP TPP, TPP ,̆ 1’
NTPP NTPP NTPP NTPP NTPP, NTPP˘

NTPP̆ DC, EC, PO PO PO PO PO
TPP˘ TPP˘ TPP˘ TPP˘ TPP, TPP ,̆ 1’
NTPP˘ NTPP˘ NTPP˘ NTPP˘ NTPP˘ NTPP, NTPP˘ NTPP˘

Table 2.1: RCC8 Composition Table.

Composition tables are of particular interest if the corresponding weak composi-

tion always induces a relation algebra. In this case a composition table together with

some additional information is equivalent to a structure known as an atom structure

CHAPTER 2. BACKGROUND 19

(see definition below). The additional information is related to the identity relation

and the converse operation. In our examples this information is always implicitly

given for any composition table. The identity will always be an atom, i.e., a basic

symbol of the composition table. The converse of an atom in a relation algebra is

again an atom. Therefore, we indicate in a composition table the converse of a symbol

R by either naming its converse R` or assuming that R is its own converse. As an

example the converse of the non-symmetric atom TPP is TPP˘ and the converse of

symmetric atom PON is PON .

2.5 Splitting Atoms in Relation Algebra

It is possible to recover a complete and atomic relation algebra from a suitable struc-

ture based on its atoms with the aid of its complex algebra (see the definition below).

Atom structures are very useful for storing the relation algebra as its taking less

storage space for the entire algebra, where composition is carried out by a ternary

relation and converse is done by a function.

We consider a relational structure G = 〈U,C, f, I〉, where C is a ternary relation

on U, a unary function f : U → U, and I is a subset of U. It is possible to construct

an algebra of relational type on Rel(U) of U as follows.

Definition 11. [39] Given a relational structure G = 〈U,C, f, I〉, the complex algebra

CmG = 〈P(U),∪,∩, ,Ø, U, ˘, ; , 1’ 〉 is defined by

X;Y = {z ∈ U : ∃x ∈ X, ∃y ∈ Y, 〈x, y, z〉 ∈ C} and X̆ = {f(x) : x ∈ X}.

Now we will look at some definitions and theorems that are already discussed in

Siddavaatam and Winter’s paper [51] which will act as a basic apparatus for algorithm

implementation to split atoms based on relation algebra.

Definition 12. [39] An atom structure AtA= 〈AtA, C(A), f, I(A)〉 of a NA relation

algebra (A) consists of a non-empty set AtA of atoms, a unary predicate I(A) = {x ∈
AtA : x ≤ 1′}, a unary function f : AtA→ AtA defined by f(x) = x̆ , and a ternary

relation C(A) = {〈x, y, z〉 : x, y, z ∈ AtA, x; y ≥ z}

Theorem 2.5.1. [39] Let G = 〈U,C, f, I〉 be a relational structure consisting of a

set U together with a ternary relation C on U , a unary function f : U → U , and a

subset I of U .

CHAPTER 2. BACKGROUND 20

1. The following three conditions are equivalent:

(i) G is an atom structure of some complete atomic NA

(ii) CmG is a non-associative (NA).

(iii) G satisfies condition (a) and (b)

(a) if 〈x, y, z〉 ∈ C, then 〈f(x), z, y〉 ∈ C and 〈z, f(y), x〉 ∈ C.

(b) for all x, y ∈ U, x = y iff there is some w ∈ I such that 〈x,w, y〉 ∈ C

2. CmG is a relation algebra iff CmG is a NA which also satisfies condition (c):

(c) for all x, v, w, x, y, z ∈ U , if 〈v, w, x〉 ∈ C and 〈x, y, z〉 ∈ C, then there is

some u ∈ U such that 〈w, y, u〉 ∈ C and 〈v, u, z〉 ∈ C

•
u

))

w

��
•

v
??

x //

z

::• y // •

An atom structure of a relation algebra is made up of cycles. We refer to property

(a) of Theorem 2.5.1. for cycles. The notion of cycles basically reflect the cycle law

introduced earlier. A set of cycles is actually the set of triples that are contained in

those cycles. For three elements x, y, z of a relational structure G = 〈U,C, f, I〉 we

write cycle, 〈x, y, z〉 for the following set up to six triples:

〈x, y, z〉 = {(x, y, z), (x̆, z, y), (y, z̆, x̆), (y̆, x̆, z̆), (z̆, x, y̆), (z, y̆, x)}. (2.3)

L. Henkin et al. [30] introduced the method of splitting in cylindric algebra theory.

He showed how to obtain nonrepresentable cylindric algebras from representables

ones. Later on H. Andréka et al. [3] formulated the way of splitting atoms in relation

algebras.

Definition 13. [3] For atomic NA relation algebras A and B, A is obtained from B

by splitting if the following conditions are satisfied:

1. A ⊇ B

2. every atom x ∈ A is contained in an atom c(x) ∈ B, called the cover of x; and

3. for all x,y ∈ AtA, if x,y ≤ 0’, then

x; y =

{
c(x); c(y) · 0’ if x 6= y̆

c(x); c(y) if x = y̆

CHAPTER 2. BACKGROUND 21

If η and θ are functions mapping AtB to cardinals, we say that A is obtained

from B by splitting along η and θ if A is obtained from B by splitting and for all

x ∈ AtB,

η(x) = |{y ∈ AtA : y ≤ x, y 6= y̆}| ,

θ(x) = |{y ∈ AtA : y ≤ x, y = y̆}|

Andréka and Maddux [3] discussed a theorem about splitting along with two functions

η(x) and θ(x) described above. Since RCC11 is an integral relation algebra and

contains the bijection relation ECD, Siddavaatam and Winter [51] showed that there

is no splittable atom in RCC11 based on the Theorem 2.5.1. So splitting is not always

possible because associativity might be lost. The following theorem provides some

conditions under which splitting is possible.

Definition 14. [3] Let A and B be atomic integral RA′s. We say that A is an

extension of B if the following conditions are satisfied:

1. A ⊇ B

2. every atom x ∈ A is contained in an atom c(x) ∈ B, called the cover of x.

If the atoms in A satisfy the condition imposed by two functions η(x) and θ(x)

then we can say that A is an extension of B.

Theorem 2.5.2. [51] Let B be a complete atomic integral RA and let η, Θ be the

functions mapping AtB to cardinals, and let α(x) = Θ(x) + η(x). Then there is

a complete atomic integral RA A that is an extension of B along η and Θ if the

following conditions hold for all x, y ∈ AtB:

1. α(x) ≥ 1

2. η(x) = η(x̆)

3. x ∈ BijB implies α(x) = 1

4. x = x̆ implies η(x) = even, i.e. η(x) = 2 ∗ β for some ordinal β.

5. x 6= x̆ implies Θ(x) = 0.

6. y ∈ BijB implies α(x; y) = α(x)

7. y ∈ BijB x = x̆ and η(x) > 0 implies x; y = (x; y)˘ and θ(x) = θ(x; y)

CHAPTER 2. BACKGROUND 22

8. α(x) > 1, y;x 6= 0 and /∈ BijB implies y ≤ y; (x;xx̆ ∩ 0′)

Let us consider the RCC11 relation algebra where the number of total atoms, n = 11

and the number of symmetric atoms, s = 7. The diversity cycles, i.e., those cycles

that do not contain the identity are given below.

C(A) = {〈TPP, TPP, TPP 〉, 〈TPP, TPP,NTPP 〉, 〈TPP, TPP ,̆DC〉,
〈TPP, TPP ,̆ PON〉, 〈TPP, TPP ,̆ ECN〉, 〈TPP,NTPP,NTPP 〉,
〈TPP,NTPP ,̆NTPP 〉̆, 〈TPP,NTPP ,̆ PON〉, 〈TPP,NTPP ,̆DC〉,
〈TPP,NTPP ,̆ ECN〉, 〈TPP, PON, TPP 〉, 〈TPP, PON,NTPP 〉,
〈TPP, PON,PON〉, 〈TPP, PON,ECN〉, 〈TPP, PON,DC〉,
〈TPP, PODY, TPP 〉, 〈TPP, PODY, PON〉, 〈TPP, PODY,NTPP 〉,
〈TPP, PODY, PODY 〉, 〈TPP, PODY,ECN〉, 〈TPP, PODY,ECD〉,
〈TPP, PODZ, TPP 〉, 〈TPP, PODZ,NTPP 〉, 〈TPP, PODZ,PON〉,
〈TPP, PODZ,PODY 〉, 〈TPP, PODZ,PODZ〉, 〈TPP,ECN,ECN〉,
〈TPP,ECN,DC〉, 〈TPP,ECD,ECN〉, 〈TPP,DC,DC〉,
〈NTPP,NTPP,NTPP 〉, 〈NTPP,NTPP ,̆ PON〉, 〈NTPP,NTPP ,̆ ECN〉,
〈NTPP,NTPP ,̆DC〉, 〈NTPP, PON,NTPP 〉, 〈NTPP, PON,PON〉,
〈NTPP, PON,ECN〉, 〈NTPP, PON,DC〉, 〈NTPP, PODY,NTPP 〉,
〈NTPP, PODY, PON〉, 〈NTPP, PODY,ECN〉, 〈NTPP, PODY,DC〉,
〈NTPP, PODZ,NTPP 〉, 〈NTPP, PODZ,PON〉, 〈NTPP, PODZ,PODY 〉,
〈NTPP, PODZ,PODZ〉, 〈NTPP, PODZ,ECN〉, 〈NTPP, PODZ,ECD〉,
〈NTPP, PODZ,DC〉, 〈NTPP,ECN,DC〉, 〈NTPP,ECD,DC〉,
〈NTPP,DC,DC〉, 〈PON,PON,PON〉, 〈PON,PON,PODY 〉,
〈PON,PON,PODZ〉, 〈PON,PON,DC〉, 〈PON,PON,ECN〉,
〈PON,PON,ECD〉, 〈PON,PODY, PODY 〉, 〈PON,PODY, PODZ〉,
〈PON,PODZ,PODZ〉, 〈PON,ECN,ECN〉, 〈PON,ECN,DC〉,
〈PON,DC,DC〉, 〈PODY, PODY, PODY 〉, 〈PODY, PODY, PODZ〉,
〈PODY, PODZ,PODZ〉, 〈PODZ,PODZ,PODZ〉, 〈ECN,ECN,ECN〉,
〈ECN,ECN,DC〉, 〈ECN,DC,DC〉, 〈DC,DC,DC〉}

For the above relation algebra the non symmetric atoms are TPP and NTPP . Based

on the Theorem 2.5.2 TPP is split into two new atoms called TPPA and TPPB.

As TPP is a non symmetric atom and ECD is a bijection relation then according

to properties (2) and (6) of Theorem 2.5.2 we also have to split TPP ,̆ ECN and

PODY each into two new relations TPPA ,̆ TPPB ,̆ ECNA, ECNB, PODY A

and PODY B. After splitting we get a new algebra for which the number of total

CHAPTER 2. BACKGROUND 23

atoms n = 15 and the number of symmetric atoms s = 9. Detailed description of the

splitting along with a diagram is given the next chapter. The diversity cycles of the

new algebra are as follows:

C(B) = {〈TPPA, TPPA, TPPA〉, 〈TPPA, TPPA, TPPB〉,
〈TPPA, TPPB, TPPA〉, 〈TPPA, TPPB, TPPB〉,
〈TPPB, TPPA, TPPA〉, 〈TPPB, TPPA, TPPB〉,
〈TPPB, TPPB, TPPA〉, 〈TPPB, TPPB, TPPB〉, 〈TPPA, TPPA,NTPP 〉,
〈TPPA, TPPB,NTPP 〉, 〈TPPB, TPPA,NTPP 〉, 〈TPPB, TPPB,NTPP 〉,
〈TPPA, TPPA ,̆DC〉, 〈TPPA, TPPB ,̆DC〉, 〈TPPB, TPPB ,̆DC〉,
〈TPPA, TPPA ,̆ PON〉, 〈TPPA, TPPB ,̆ PON〉, 〈TPPB, TPPB ,̆ PON〉,
〈TPPA, TPPA ,̆ECNA〉, 〈TPPA,NTPP,NTPP 〉, 〈TPPB,NTPP,NTPP 〉,
〈TPPA,NTPP ,̆NTPP 〉̆, 〈TPPB,NTPP ,̆NTPP 〉̆, 〈TPPA,NTPP ,̆ PON〉,
〈TPPB,NTPP ,̆ PON〉, 〈TPPA,NTPP ,̆DC〉, 〈TPPB,NTPP ,̆DC〉,
〈TPPA,NTPP ,̆ ECNA〉, 〈TPPA,NTPP ,̆ ECNB〉, 〈TPPB,NTPP ,̆ ECNA〉,
〈TPPB,NTPP ,̆ ECNB〉, 〈TPPA, PON, TPPA〉, 〈TPPA, PON, TPPB〉,
〈TPPB, PON, TPPB〉, 〈TPPA, PON,NTPP 〉, 〈TPPB, PON,NTPP 〉,
〈TPPA, PON,PON〉, 〈TPPB, PON,PON〉, 〈TPPA, PON,ECNA〉,
〈TPPA, PON,ECNB〉, 〈TPPB, PON,ECNA〉, 〈TPPB, PON,ECNB〉,
〈TPPA, PON,DC〉, 〈TPPB, PON,DC〉, 〈TPPA, PODY A, TPPA〉,
〈TPPA, PODY A,PON〉, 〈TPPA, PODY B,PON〉, 〈TPPB, PODY A, PON〉,
〈TPPB, PODY B,PON〉, 〈TPPA, PODY A,NTPP 〉,
〈TPPA, PODY B,NTPP 〉, 〈TPPB, PODY A,NTPP 〉,
〈TPPB, PODY B,NTPP 〉, 〈TPPA, PODY A,PODY A〉,
〈TPPA, PODY A,PODY B〉, 〈TPPA, PODY B,PODY A〉,
〈TPPA, PODY B,PODY B〉, 〈TPPB, PODY A, PODY A〉,
〈TPPB, PODY A, PODY B〉, 〈TPPB, PODY B,PODY A〉,
〈TPPB, PODY B,PODY B〉, 〈TPPA, PODY A,ECNA〉,
〈TPPA, PODY A,ECNB〉, 〈TPPA, PODY B,ECNA〉,
〈TPPA, PODY B,ECNB〉, 〈TPPB, PODY A,ECNA〉,
〈TPPB, PODY A,ECNB〉, 〈TPPB, PODY B,ECNA〉,
〈TPPB, PODY B,ECNB〉, 〈TPPA, PODZ, TPPA〉, 〈TPPA, PODZ, TPPB〉,

CHAPTER 2. BACKGROUND 24

〈TPPB, PODZ, TPPB〉, 〈TPPA, PODZ,NTPP 〉, 〈TPPB, PODZ,NTPP 〉,
〈TPPA, PODZ,PON〉, 〈TPPB, PODZ,PON〉, 〈TPPA, PODZ,PODY A〉,
〈TPPA, PODZ,PODY B〉, 〈TPPB, PODZ,PODY A〉,
〈TPPB, PODZ,PODY B〉, 〈TPPA, PODZ,PODZ〉,
〈TPPB, PODZ,PODZ〉, 〈TPPA,ECNA,ECNA〉,
〈TPPA,ECNA,ECNB〉, 〈TPPA,ECNB,ECNA〉, 〈TPPA,ECNB,ECNB〉
, 〈TPPB,ECNA,ECNA〉, 〈TPPB,ECNA,ECNB〉, 〈TPPB,ECNB,ECNA〉,
〈TPPB,ECNB,ECNB〉, 〈TPPA,ECNA,DC〉, 〈TPPA,ECNB,DC〉,
〈TPPB,ECNA,DC〉, 〈TPPB,ECNB,DC〉, 〈TPPA,DC,DC〉,
〈TPPB,DC,DC〉, 〈NTPP,NTPP,NTPP 〉, 〈NTPP,NTPP ,̆ PON〉,
〈NTPP,NTPP ,̆ ECNA〉, 〈NTPP,NTPP ,̆ ECNB〉, 〈NTPP,NTPP ,̆DC〉,
〈NTPP, PON,NTPP 〉, 〈NTPP, PON,PON〉, 〈NTPP, PON,ECNA〉,
〈NTPP, PON,ECNB〉, 〈NTPP, PON,DC〉,
〈NTPP, PODY A,NTPP 〉, 〈NTPP, PODY B,NTPP 〉,
〈NTPP, PODY A, PON〉, 〈NTPP, PODY B,PON〉, 〈NTPP, PODY A,ECNA〉,
〈NTPP, PODY A,ECNB〉, 〈NTPP, PODY B,ECNA〉,
〈NTPP, PODY B,ECNB〉, 〈NTPP, PODY A,DC〉,
〈NTPP, PODY B,DC〉, 〈NTPP, PODZ,NTPP 〉,
〈NTPP, PODZ,PON〉, 〈NTPP, PODZ,PODY A〉, 〈NTPP, PODZ,PODY B〉,
〈NTPP, PODZ,PODZ〉, 〈NTPP, PODZ,ECNA〉, 〈NTPP, PODZ,ECNB〉,
〈NTPP, PODZ,DC〉, 〈NTPP,ECNA,DC〉, 〈NTPP,ECNB,DC〉,
〈NTPP,DC,DC〉, 〈PON,PON,PON〉, 〈PON,PON,PODY A〉,
〈PON,PON,PODY B〉, 〈PON,PON,PODZ〉, 〈PON,PON,DC〉,
〈PON,PON,ECNA〉, 〈PON,PON,ECNB〉, 〈PON,PODY A,PODY A〉,
〈PON,PODY A,PODY B〉, 〈PON,PODY B,PODY B〉,
〈PON,PODY A,PODZ〉, 〈PON,PODY B,PODZ〉,
〈PON,PODZ,PODZ〉, 〈PON,ECNA,ECNA〉,
〈PON,ECNA,ECNB〉, 〈PON,ECNB,ECNB〉, 〈PON,ECNA,DC〉,
〈PON,ECNB,DC〉, 〈PON,DC,DC〉, 〈PODY A,PODY A,PODY A〉,
〈PODY A,PODY A,PODZ〉, 〈PODY A,PODY B,PODZ〉,
〈PODY B,PODY B,PODZ〉, 〈PODY A,PODZ,PODZ〉,
〈PODY B,PODZ,PODZ〉, 〈PODZ,PODZ,PODZ〉,
〈ECNA,ECNA,ECNA〉, 〈ECNA,ECNA,DC〉, 〈ECNA,ECNB,DC〉,
〈ECNB,ECNB,DC〉, 〈ECNA,DC,DC〉, 〈ECNB,DC,DC〉,

CHAPTER 2. BACKGROUND 25

〈DC,DC,DC〉, 〈TPPA ,̆ECD,PODY A〉, 〈TPPB ,̆ECD,PODY B〉,
〈TPPA,ECD,ECNA〉, 〈TPPB,ECD,ECNB〉, 〈NTPP ,̆ECD,PODZ〉,
〈NTPP,ECD,DC〉, 〈PON,ECD,PON〉}

2.6 Constraint Satisfaction Problem

2.6.1 Definitions and Axioms

The most popular reasoning methods used in QSR are constraint based techniques.

It is necessary to have a set of qualitative binary basic relations which have the

property of JEPD in order to apply those reasoning methods. The set of all relations

considered is then the set of all possible unions of the basic relations. Reasoning can be

done by exploiting composition of relations. The composition operation is generally

pre-computed and stored in a composition table.

Relationships between entities is often given in the form of constraints. For exam-

ple, a customer specifies the outline of his future home to the architect by indicating

which rooms should be close to each other. From this kind of specification binary

constraints can be formed. A binary constraint is “washroom shall be away from

kitchen” and a ternary constraint is “dining room should be between drawing and

bedroom”.

Binary constraints are consist of variables and relational expression. Relational

expressions are recursively defined by the following:

• R where R is an atomic relation,

• S ∪ T where S and T are relational expressions,

• R ∩ S where R and S are relational expressions,

• R̆ where R is a relational expressions,

• R where R is a relational expressions.

We can define a CSP consisting of a finite set of variables V , a domain D with

possible instantiations for each variable vi ∈ V and a finite set C of constraints

betweeen the variables of V . A solution of a CSP is an instantiation of each variable

vi ∈ V with a value di ∈ D such that all constraints of C are satisfied, i.e., for

each constraint viRvj ∈ C we have (di, dj) ∈ R. If a CSP has a solution, it is

CHAPTER 2. BACKGROUND 26

called consistent or satisfiable. A simple binary constraint is a constraint of the form

xRy where R is an atomic relation. A CSP with simple constraints only is called

a simple CSP. The set of constraints of an arbitrary CSP can be transformed into

a set of simple CSP problems. The original problem is equivalent to this set in the

following sense. The problem is satisfiable if one of the simple problems is satisfiable.

The transformation is based on the following replacement rules where C is a simple

binary constraint and {R, S, S1....Sn} is a set of atomic relations from the composition

table and x and y are variables:

• {x(R∪S)y}∪C is transformed into the two problems {xRy}∪C and {xSy}∪C,

• {x(R ∩ S)y} ∪ C is transformed to {xRy, xSy} ∪ C,

• {x(R̆)y} ∪ C is transformed to {yRx} ∪ C,

• {xRy} ∪ C is transformed to {xS1y,, xSny} ∪ C.

As an example if we consider a set A = {xRy, x(S ∩ (R ∪ T))z, yS̆z} from set of

constraints. The set A can be simplified to {xRy, xSz, x(R ∪ T)z, zSy}. Now it can

be represented by two sets as follows.

• { xRy, xSz, xRz, zSy}

• { xRy, xSz, xTz, zSy}

If there is a solution for any of those sets, then we can say CSP has a solution or

it is satisfiable.

2.6.2 Path-consistency

As deciding consistency is highly complex, different forms of local consistency and

algorithms were introduced for achieving local consistency. Path-consistency was

developed as a local consistency by Montanir [43].

Definition 15. [37] A CSP is path-consistent, if for every instantiation of two vari-

ables vi, vj ∈ V that satisfies viRijvj ∈ C there exists an instantiation of every third

variable vk ∈ V such that viRikvk ∈ C and vkRkjvj ∈ C are also satisfied.

One algorithm that was developed by Montanir is the path consistency algorithm.

The path-consistency algorithm removes locally inconsistent tuples from the relations

between the variables by successively applying the Rij = Rij ∩ (Rik;Rkj) to all triples

of variables vi, vj ∈ V until a fixed point is reached. CSP is inconsistent if the empty

relation occurs. Otherwise the resulting CSP is path-consistent.

Chapter 3

Composition Tables for RCC

In this chapter we want to generate more detailed composition tables for RCC starting

with RCC8. After a brief review of how RCC11 was constructed from RCC8 we will

reconstruct the tables for RCC15 and RCC25 which have been studied in [17]. Then

we will continue to produce new tables by splitting atoms in RCC25. This way we

obtain the new composition tables for RCC27, RCC29 and RCC31.

3.1 From RCC8 to RCC11

The composition table of RCC8 is given in Table 2.1. The universal or largest region

1 in a model of RCC can be characterized algebraically (or relationally). It was

determined in [15] that the investigation of RCC can be restricted to the set U =

R ∩ \{1}. Therefore, the relations EC and PO split into two disjoint non-empty

relations ECN and ECD and PON and POD, respectively. Whenever x and y are

related by EC or PO we can distinguish two situations depending on whether the

union x and y is equal to the whole space or not, i.e., whether x+ y = 1 or not. This

leads to the following equivalent definitions for ECN and ECD, where P is restricted

to R \ {0, 1}.

ECD = −(P ;P)̆ ∩ −(P ;̆P) xECDy ⇐⇒ y = x (3.1)

ECN = EC ∩ −ECD xECNy ⇐⇒ x · y = 0, x+ y � 1, xCy (3.2)

Figure 3.2 (Page 29) shows the diagram for ECN and ECD. In that figure two

circles x and y are externally connected that is indicated by ECN . On the other hand

for ECD a different shading issued for y in order to indicate, that is everything else x.

27

CHAPTER 3. COMPOSITION TABLES FOR RCC 28

POD = PO ∩ −(P ;P)̆ xPODy ⇐⇒ xPOy, x+ y = 1 (3.3)

PON = PO ∩ −POD xPONy ⇐⇒ xPOy, x+ y ≤ 1 (3.4)

Using these definitions we get 10 disjoint atomic relations that are referred to as

RCC10 relations [17]. We refer to [17] for the composition table of RCC10. The

composition table of RCC10 does not have an extensional interpretation. In addition,

the weak composition induced by this table is not associative. Properties of RCC10

relations are given in the Lemma 3.2.1. By splitting the relation POD of RCC10 into

two new atoms PODY and PODZ we obtain RCC11 [59]. Diagrams of PODY and

PODZ are shown in Figure 3.3 (Page 29). In that figure for PODY , y is indicated

by everything else the white circle and x is indicated by different shading than y, that

touches the border of y. For PODZ, x does not touch the white border of y. Among

the 11 atoms of RCC11 seven are symmetric and four are non-symmetric atoms. The

atoms of RCC11 are { 1′, DC, ECN, ECD, PON, PODY, PODZ, TPP, TPP ,̆

NTPP, NTPP˘ }. The iterative splitting of EC and PO in the transition from

RCC8 to RCC11 is shown in Figure 3.1 (Page 28). Finally, the composition table of

RCC11 is given in Figure 3.5 (Page 30).

Figure 3.1: Splitting of atoms EC and PO

3.2 From RCC11 to RCC15

In order to obtain the composition table RCC15 consider the composition of ECN ;

TPP from the RCC11 composition table. The atomic relation TPP is the result

from the composition, i.e., we have TPP ∩ ECN ;TPP 6= ∅ since the RCC11 table

is consistent. We now provide an example where RCC11 cannot be extensional for

CHAPTER 3. COMPOSITION TABLES FOR RCC 29

Figure 3.2: xECNy and xECDy

Figure 3.3: xPONy, xPODY y and xPODZy

Figure 3.4: xTPPAz and xTPPBz

any RCC model. For a detailed proof we refer to [59]. In order to do so we have

to provide two regions so that xTPPz but there is no y with xECNyTPPz. For

completeness we also provide an example where such a y exists. These examples are

provided in Figure 3.4 (Page 29). Notice that the figure only shows the situation in

the Euclidean plane. However, the situation can be constructed in every RCC model

[59]. As a consequence the relation TPP can be split into two new versions of TPP ,

CHAPTER 3. COMPOSITION TABLES FOR RCC 30

Figure 3.5: Composition Table for RCC11

one version for which the y in question always exists and one version for which the y

never exists. In Figure 3.4, for TPPA, x is externally connected with y, i.e ECN .

For TPPB, x is a touching proper part of z, where z is the union of two circles.

In the first step a new algebra is obtained by splitting TPP into a pair TPPA,

TPPB of identical copies of TPP . In the second step we remove the corresponding

triple (ECN, TPP, TPP) for one of the copies from the composition table, i.e., we

use the definitions

TPPA = TPP ∩ ECN ;TPP (3.5)

TPPB = TPP ∩ ECN ;TPP (3.6)

During the first step of the process indicated above it may become necessary to

split more atoms than originally intended. With respect to our example we know that

TPP is non symmetric i.e., TPP 6= TPP .̆ Since the converse of an atom needs to

be an atom again, we need to split TPP˘ also, i.e., TPP˘ = TPPĂ ∪ TPPB˘ with,

TPPĂ = TPP˘∩ (ECN ;TPP)̆ (3.7)

CHAPTER 3. COMPOSITION TABLES FOR RCC 31

TPPB˘ = TPP˘∩ (ECN ;TPP)̆ (3.8)

Furthermore, the composition table RCC11 shows that ECD is a bijection. It is

easy to verify that the composition of an atom in a RA with a bijection from the left

or the right is an atom. Therefore, we also need to split the ECN = TPP ;ECD and

PODY = ECD;TPP . We name the new relations ECNA, ECNB and PODY A,

PODY B respectively. Form the definition of TPPA and TPPB we obtain

ECNA = ECN ∩ (TPP ;TPP)̆ (3.9)

ECNB = ECN ∩ (TPP ;TPP)̆ (3.10)

PODY A = PODY ∩ (TPP ;̆TPP) (3.11)

PODY B = PODY ∩ (TPP ;̆TPP) (3.12)

The splitting of the TPP relation of RCC11 algebra leads to the RCC15 relation

algebra. Now in addition it is required to remove triples (ECNA, TPPA, TPPB),

(ECNA, TPPB, TPPB), (ECNB, TPPA, TPPB) and (ECNB, TPPB, TPPB).,

which are related to TPPB. Removing a triple requires the removal of a cycle because

of the a Theorem 2.5.1(a). For a given triple (ECNA,TPPA,TPPB) related triples

are obtained by composition with the bijection ECD from the left and/or right. For

the previous mentioned triple, related triples are (ECNA, TPPA, TPPB), (ECNA,

ECNA, ECNB), (TPPĂ , TPPA, PODY B), (TPPĂ , ECNA, TPPB)̆, (TPPA,

PODY A, TPPB), (TPPA, TPPĂ , ECNB), (PODY A, PODY A, PODY B) and

(PODY A, TPPĂ , TPPB)̆. Some properties of RCC15 relations are listed in the

next lemma. A proof can be found in [15].

Lemma 3.2.1. [15] Let B be a relation algebra, and let x, y, z ∈ B. Then we have:

1. 1′ ∈ NTPP ;̆NTPP, i.e. for all z there is some x with xNTPPz.

2. ECN = TPP ;ECD, i.e. xECNz iff xTPPz.

3. If xDCz, then xTPP (x+ z).

4. xNTPPz and yNTPPz iff (x+ y)NTPPz.

5. If xNTPPz, then (x · z)TPPz

6. DC;P˘∈ DC, i.e. xDCy and z ≤ y imply xDCz.

7. NTPP = ECD;NTPP ;̆ECD, i.e. xNTPPy iff yNTPPx.

CHAPTER 3. COMPOSITION TABLES FOR RCC 32

8. P ;NTPP ≤ NTPP , i.e. x ≤ y and yNTPPz imply xNTPPz.

9. NTPP ;TPP = NTPP

10. NTPP ;P = NTPP

11. TPP ;NTPP = NTPP

12. 1′ ≤ NTPP ;NTPP ,̆ i.e. for all x there is some z with xNTPPz

13. xNTPPy and xNTPPz iff xNTPPy · z.

14. ECD;DC = NTPP ,̆i.e xDCz iff zNTPPx.

15. PON ;ECD = PON , i.e. xPONz iff xPONz

16. TPP ;̆ECD = POD ∩ −(ECD;NTPP)

17. xECN ;TPPz iff xECN(x · z)TPPz.

18. If x · z 6= 0 then x− (TPP ;̆TPP)z iff (x · z)NTPPx or (x · z)NTPPz

19. xTPP ;̆TPPz iff xTPP x̆ · zTPPz

20. xTPP ;TPP z̆ iff xTPP (x+ z)TPP z̆

21. yNTPP (x+ z) and yDCz implies yNTPPx

22. PONZ ⊆ TPP ;TPP .̆

23. PONY B ⊆ TPP ;̆TPP .

24. PONZ ⊆ TPP ;̆TPP .

25. PODZ ⊆ POD.

26. PODZ ⊆ TPP ;̆TPP

In [17] Düntsch and Winter presented the RCC25 composition table. From this

table as well as from the RCC15 table the additional cycle 〈TPPA, TPPA, TPPB〉
was removed. Unfortunately, the paper did not provide a proof that removal of this

triple is correct, i.e., TPPA;TPPA∩TPPB = ∅. We give the proof in the following

lemma.

Lemma 3.2.2. TPPA;TPPA ∩ TPP ⊆ ECN ;TPP

Proof:

CHAPTER 3. COMPOSITION TABLES FOR RCC 33

To prove the above lemma, assume x(TPPA;TPPA ∩ TPP)z. Then there is

a y so that xTPPAyTPPAz, i.e., we have (1) xTPPy (2) yTPPz (3) xTPPz (4)

xECN(x · y)TPPy (5) yECN(y · z)TPPz by Lemma 3.2.1 (17). We want to show

(a) xECN(x · z) and (b) (x · z)TPPz. To prove (a) at first we show xTPP (x + z)

which is equivalent to (a) by Lemma 3.2.1 (2). We have x ≤ x + z. If x = x + z,

then z ≤ x, and hence x ≤ z. But this implies z = 1, and, hence, xTPP1 by (3),

which is a contradiction to xNTPP1 for all x. Therefore we have xPP (x+ z). Now

assume xNTPP (x+ z) . From the computation

(x+ y) · (y + z) = x · (y + z) + y · (y + z)

= x · y + x · z + y · y + y · z

= x+ 0 + 0 + z by (1), (2) and (3)

= x+ z

we obtain xNTPP (x+y) · (y+ z), which implies xNTPP (x+y) and xNTPP (y+ z)

by Lemma 3.2.1 (13). The first property is equivalent to xECD(x · y) by Lemma

3.2.1 (14), a contradiction to (3). Therefore we have xTPP (x+ z).

Now, in order to prove (b) we already have x · z ≤ z. If x·z = z, then z ≤ x, and,

hence, x ≤ z · z = 0 by (3). But this is a contradiction to (3) since 0NTTPz for all

z. We conclude (x · z)PPz. Now, assume (x · z)NTPPz. From the computation

x · y + y · z = x · y + x · (x+ y) · z

= x · (y + (x+ y) · z)

= x · (y · z + (x+ y) · z)

= x · (y + x+ y) · z

= x · z

we get (x·y+y ·z)NTPPz, and, hence, x·yNTPPz and y ·zNTPPz by Lemma 3.2.1

(4). The second property is a contradiction to (5). So we conclude that (x · z)TPPz.

All these facts prove the above lemma. �

CHAPTER 3. COMPOSITION TABLES FOR RCC 34

3.3 From RCC15 to RCC25

To generate the RCC25 table we started from RCC15. Düntsch and Winter [17]

showed that RCC25 is generated based on splitting of atom PON . To split PON

the composition of (ECN ;TPP) and (TPP ;TPP)̆ as well as their converses are

taken into consideration and that shows 11 new atomic relations, among those the

first 5 are symmetric atoms and the remaining 6 are non-symmetric atoms. We

used Siddavaatam’s system [50] that is developed based on Theorem 2.5.2. Fig-

ure 3.12 shows the splitting of PON using his system, where the field eta(η) and

theta (θ) indicates non-symmetric and symmetric atoms. Symmetric atoms are

PONXA1, PONXA2, PONXB1, PONXB2 and PONZ and non-symmetric atoms

are PONY A1, PONY A2, PONY A1̆ , PONY A2̆ , PONY B, PONY B .̆ Diagrams

of PONXB2, PONXA1, PONXA2, PONXB1, PONY A1 and PONY A2 are

given in the Figure 3.6 (Page 36), Figure 3.7 (Page 37), Figure 3.8 (Page 37), Fig-

ure 3.9 (Page 37), Figure 3.10 (Page 37) and Figure 3.11 (Page 38) respectively.

Düntsch and Winter [17] showed that each relation is non-empty and since ECD is

a bijection relation we have to consider the following compositions related to ECD.

a) TPPA;ECD = ECNA

b) TPPB;ECD = ECNB

c) TPPĂ ;ECD = PODY A

d) TPPB ;̆ECD = PODY B

e) PONXA1;ECD = PONXA1

f) PONXA2;ECD = PONY A1̆

g) PONXB1;ECD = PONY A1

h) PONXB2;ECD = PONZ

i) PONY A1;ECD = PONXB1

j) PONY A2;ECD = PONY B˘

k) PONY A1̆ ;ECD = PONXA2

l) PONY A2̆ ;ECD = PONY A2̆

CHAPTER 3. COMPOSITION TABLES FOR RCC 35

m) PONY B;ECD = PONY B

n) PONY B ;̆ECD = PONY A2

o) PONZ;ECD = PONXB2

As PON is split into eleven relations for each PON we will keep the compositions

related to ECD mentioned above and remove the other ten compositions as a result

of other PONs to make the relation ECD a bijection. As an example, if we consider

the relation PONXA1. We will remove the following triples:

• PONXA1;ECD = PONXA2

• PONXA1;ECD = PONXB1

• PONXA1;ECD = PONXB2

• PONXA1;ECD = PONY A1

• PONXA1;ECD = PONY A2

• PONXA1;ECD = PONY B

• PONXA1;ECD = PONY A1̆

• PONXA1;ECD = PONY A2̆

• PONXA1;ECD = PONY B˘

• PONXA1;ECD = PONZ

The same procedure is applied for all other relations PONXA2, PONXB1,

PONXB2, PONY A1, PONY A2, PONY A1̆ , PONY A2̆ , PONY B, PONY B˘and

PONZ. So, in this way the total number of triples that we are removing is 110. Def-

initions of all atomic relations related to RCC25 are given in Table 3.1. Lemma 3.2.1

shows the reason of definition of relations PONY B, PONZ and PODZ.

Considering the definitions of all relations of RCC25 from Table B.1, we also re-

move triples which are listed in Table 3.2. However while removing TPP , TPP˘

and ECN , we consider those relations as TPPA, TPPB, TPPĂ , TPPB ,̆ ECNA

and ECNB because of their splitting. After splitting and removing all those triples

we are checking the associativity of the algebra based on Theorem 2.5.1. A pair

of triples will trigger if that pair is not associative for a given algebra. After that

CHAPTER 3. COMPOSITION TABLES FOR RCC 36

we check which triple should remain and removing other triple. We remove triple

with its related triples, which are the products of relative multiplication by isomor-

phism of the algebra. As an example while generating RCC25 for a triggered pair

[(TPPĂ , PONZ,PODY A), (PODY A, TPPĂ , ECD)], we are removing all isomor-

phic triples of (TPPĂ , PONZ,PODY A), as this triple must not exist in the relation

algebra because there is no such y for which x is related to TPPĂ and z is related

to PONZ. To generate RCC25 the list of triggered pairs with removed triple is given

in Table B.2.

Relation Triple Removed

PONXA2 (TPP ,̆ TPP , PONXA2)
PONXB1 (TPP ,TPP ,̆PONXB1)
PONXB2 (TPP , TPP ,̆ PONXB2), (TPP ,̆TPP ,PONXB2)
PONY A1 (ECN ,TPP , PONY A1)
PONY A2 (ECN , TPP , PONY A2), (TPP ,̆ TPP , PONY A2)
PONY A1̆ (TPP ,̆ECN , PONY A1̆)
PONY A2̆ (TPP ,̆ ECN , PONY A2̆), (TPP ,̆ ECN, PONY A2̆)
PONY B (ECN , TPP , PONY B), (TPP , TPP ,̆ PONY B)
PONY B˘ (TPP ,̆ ECN , PONY B)̆, (TPP , TPP ,̆ PONY B)̆
PONZ (ECN , TPP , PONZ), (TPP ,̆ ECN , PONZ)

Table 3.1: Triple removed considering definitions of RCC25

Figure 3.6: (a+ c)PONXB2(a · s)

3.4 From RCC25 to RCC27

Now considering the diagram of PONXB2 that is given in Figure 3.6 (Page 36) we

see that xNTPP (x + z) where x = (a + c) and z = a · s , but zNTPP (x + z).

So this fact implies that PONXB2 can be split into two parts as PONXB2H and

PONXB2H .̆

CHAPTER 3. COMPOSITION TABLES FOR RCC 37

Figure 3.7: (a+ t)PONXA1(d+ s)

Figure 3.8: (a · s)PONXA2(a+ c+ t)

Figure 3.9: (a+ c)PONXB1a · (s+ b)

Figure 3.10: (s+ t)PONY A1(a · (s+ d))

CHAPTER 3. COMPOSITION TABLES FOR RCC 38

Figure 3.11: sPONY A2(a+ t)

Figure 3.12: Splitting of the RCC15 relation algebra

xPONXB2Hz = xPONXB2z ∩ xNTPP (x+ z) (3.13)

xPONXB2H z̆ = xPONXB2z ∩ xNTPP (x+ z) (3.14)

Later we will provide a justification for the name PONXB2H˘ by showing that

PONXB2H˘ is indeed the converse of PONXB2H.

The definition of PONXB2H is based on the condition xNTPP (x + z). This

property cannot be used to remove triples because it is not based on the composition

CHAPTER 3. COMPOSITION TABLES FOR RCC 39

of atomic relations. Instead it uses the algebraic operation +. In the following we

want to show that PONXB2H can be written in suitable way.

Lemma 3.4.1. x(ECN ;O)z ⇔ xTPP (x+ z)

Proof:

First we want to prove the implication ⇒. For this purpose we have to find a

region y with xECNyOz, i.e., y has to satisfy (1) x · y = 0 (2) xCy (3) x+ y 6= 1 (4)

z · y = 0. Now choose y = x · z. The properties (1) and (4) follow immediately from

the definition of y. From the assumption we conclude that xNTPP (x+ z), which is

equivalent to (2) by Lemma 3.2.1. In order to show (3) assume that x+ y = 1. Then

we have

1 = x+ (x · z)

= (x+ x) · (x+ z)

= (x+ z).

This implies z ≤ x, and, hence, x + z = x. But this is a contradiction to the

assumption. For the other implication assume xNTPP (x+ z). From the assumption

we obtain a y with (1)-(4) as listed above. First, we want to show that xTPPy.

From (1) we get x ≤ y. If x = y, then xECDy, a contradiction to the assumption

xECNy. Since xCy we conclude xTPPy. On the other hand (1) and (4) show that

x+z ≤ y. By our assumption xNTPP (x+z) and Lemma 3.2.1(10) we get xNTPPy,

a contradiction. �

Lemma 3.4.2. xNTPP (x+ z)⇔ x(ECN \O)z

Proof:

First consider direction ⇒. From xNTPP (x + z) we get xTPP (x + z) since

x ≤ x+ z. This is equivalent to x(ECN ;O)(x+ z) by Lemma 3.4.1, and, hence, we

have x(ECN \O)z. Now consider the other implication. Let us assume xTPP (x+z).

Then we get x(ECN ;O)z from Lemma 3.4.1. But this contradicts with (ECN \O).

If, x = x+ z then z ≤ x. Now choose an a with aNTPPx, which is possible because

of Lemma 3.2.1(1). Then define y = x · a. We want to show that xECNy. First, we

have x · y ≤ x · x = 0. Now, assume xCy then yNTPPx from Lemma 3.2.1 (14) and

CHAPTER 3. COMPOSITION TABLES FOR RCC 40

hence we have (y + a)NTPPx from Lemma 3.2.1(4). Then we have

y + a = (x · a) + a

= (x+ a) · (a+ a)

= (x+ a)

= x since a ≤ x.

This implies xNTPPx. But that is contradiction to the assumption. This fact implies

xCy. If x + y = 1 then 1 = x + (x · a), which is equivalent to x + a and that implis

a ≤ x. So we have a ≤ x + x = 1 and hence aNTPPx i.e xECNy. Now y.z is

equivalent to x · a · z and that is 0. Which implies z ≤ x. So, we can conclude that

yOz. �

The previous two lemmas show that

PONXB2H = PONXB2 ∩ (ECN \O) (3.15)

This formula can be used for our method of splitting. But before we proceed with this

procedure, we want to show that PONXB2H˘ is indeed the converse of PONXB2H.

Lemma 3.4.3. (ECN \O) ∩ (ECN \O)̆ = ∅
Proof:

From Lemma 3.4.2 x(ECN \O)z is equivalent to xNTPP (x+z) and z(ECN \O)x

is equivalent to zNTPP (x+z). The latter two imply (x+z)NTPP (x+z) by Lemma

3.2.1(4), which is a contradiction. �

Lemma 3.4.4. (ECN \O) ∩ (ECN \O)̆ ⊆ TPP ;TPP˘

Proof:

Suppose we have x(ECN \O)z and x(ECN \O)̆ z. Then Lemma 3.4.2 implies

xNTPP (x+z) and zNTPP (x+z). But xNTPP (x+z) is equivalent to xTPP (x+z)

and zNTPP (x + z) equivalent to zTPP (x + z) since xPP (x + z) and zPP (x + z).

�

We can write Lemma 3.4.4 in the following ways

• TPP ;TPP˘⊆ (ECN \O) ∪ (ECN \O)̆

• TPP ;TPP˘∩ (ECN \O) ⊆ (ECN \O)̆

CHAPTER 3. COMPOSITION TABLES FOR RCC 41

Lemma 3.4.5. PONXB2H˘ = PONXB2 ∩ (ECN \O)̆

Proof:

PONXB2H˘ = PONXB2 ∩ (ECN \O)

= PONXB2 ∩ (ECN \O) ∩ (TPP ;TPP)̆ (by definition of PONXB2)

= PONXB2 ∩ (ECN \O)̆ ,

where the last line follows from previous two lemmas. �

The next lemma will show precisely which cycles have to be removed during the

splitting process for PONXB2 and PONZ.

Lemma 3.4.6. PONXB2H = PONXB2 ∩ (ECN ;DC)

Proof:

PONXB2H = PONXB2 ∩ (ECN \O)

= PONXB2 ∩ ECN ;O

= PONXB2 ∩ ECN ; (DC ∪ ECD ∪ ECN)

= PONXB2 ∩ (ECN ;DC) ∪ (ECN ;ECD) ∪ (ECN ;ECN)

= PONXB2 ∩ (ECN ;DC) ∩ (ECN ;ECD) ∩ (ECN ;ECN)

= PONXB2 ∩ (ECN ;DC) ∩ TPP ∩ (ECN ;ECN)

= PONXB2 ∩ (ECN ;DC),

where the last line follows from PONXB2 6= TPP and PONXB2 /∈ ECN ;ECN �

Again from the RCC25 relation algebra we know that,

• PONXB2;ECD = PONZ

• PONZ;ECD = PONXB2

• ECD;PONXB2 = PONZ

• ECD;PONZ = PONXB2

So we also need to split PONZ. We are splitting PONZ into PONZH and PONZH˘

because PONXB2 is already split into two. The definitions of PONZH and PONZH˘

are given below. Figure 3.13 shows the diagram of PONZH.

PONZH = PONXB2H;ECD (3.16)

CHAPTER 3. COMPOSITION TABLES FOR RCC 42

PONZH˘ = PONXB2H ;̆ECD (3.17)

As before the lemma will show precisely which cycles have to be removed.

Lemma 3.4.7. PONZH = PONZ ∩ (ECN ;NTPP)

Proof:

PONZH = PONXB2;ECD

= PONXB2 ∩ (ECN ;DC);ECD

= PONXB2;ECD ∩ (ECN ;DC;ECD)

= PONZ ∩ (ECN ;NTPP) �

If we split PONXB2 and PONZ in RCC25, we obtain an algebra with 27 atoms,

which we will call RCC27. During the splitting process we will remove initially the

cycles listed below plus the cycles obtained from them by composing a cycle from the

left and/or right with the bijection ECD. The first two cycles are removed in order to

make sure that ECD remains a bijection. The other cycles are removed considering

the definition of PONXB2H, PONXB2H ,̆ PONZH and PONZH .̆

• 〈PONXB2H,ECD,PONZH 〉̆

• 〈PONXB2H ,̆ECD,PONZH〉

• 〈ECNA,DC, PONXB2H〉

• 〈ECNB,DC,PONXB2H〉

• 〈DC,ECNA,PONXB2H 〉̆

• 〈DC,ECNB,PONXB2H 〉̆

• 〈ECNA,NTPP, PONZH〉

• 〈ECNB,NTPP, PONZH〉

• 〈NTPP ,̆ECNA,PONZH 〉̆

• 〈NTPP ,̆ECNB,PONZH 〉̆

Then we continue by checking the associativity of RCC27. During this process

additional cycles are being removed in the same way as we did in the case of RCC25.

Triggered triples and the removed triples are listed in Table B.3.

CHAPTER 3. COMPOSITION TABLES FOR RCC 43

Figure 3.13: (a+ b)PONZH(a+ c)

3.5 From RCC25 to RCC29

Now let us look at the diagram of PONXB1 that is given in Figure 3.9 (Page 37). It is

obvious that xNTPP (x+ z) holds for PONXB1 where x = a+ c and z = a · (s+ b)

but, zNTPP (x + z) not hold, so this indicates that we can also split PONXB1.

PONXB1 is being split into two parts PONXB1H and PONXB1H .̆ Definitions

of PONXB1H and PONXB1H˘ are given below.

xPONXB1Hz = xPONXB1z ∩ xNTPP (x+ z) (3.18)

xPONXB1H z̆ = xPONXB1z ∩ xNTPP (x+ z) (3.19)

The same reasoning as for RCC27 leads to the following equations for the two rela-

tions.

PONXB1H = PONXB1 ∩ (ECN \O) (3.20)

PONXB1H˘ = PONXB1 ∩ (ECN \O)̆ (3.21)

The next lemmas will tell us which cycles have to be removed concretely.

Lemma 3.5.1. PONXB1H = PONXB1 ∩ (ECN ;DC)

CHAPTER 3. COMPOSITION TABLES FOR RCC 44

Proof:

PONXB1H = PONXB1 ∩ (ECN \O)

= PONXB1 ∩ ECN ;O

= PONXB1 ∩ ECN ; (DC ∪ ECD ∪ ECN)

= PONXB1 ∩ (ECN ;DC) ∪ (ECN ;ECD) ∪ (ECN ;ECN)

= PONXB1 ∩ (ECN ;DC) ∩ (ECN ;ECD) ∩ (ECN ;ECN)

= PONXB1 ∩ (ECN ;DC) ∩ TPP ∩ (ECN ;ECN)

= PONXB1 ∩ (ECN ;DC),

where the last line follows from PONXB1 6= TPP and PONXB1 /∈ ECN ;ECN . �

From RCC25 we know that:

• PONXB1;ECD = PONY A1

• PONY A1;ECD = PONXB1

• PONY A1̆ ;ECD = PONXA2

• PONXA2;ECD = PONY A1̆

• ECD;PONXB1 = PONY A1̆

• ECD;PONY A1 = PONXA2

• ECD;PONY A1̆ = PONXB1

• ECD;PONXA2 = PONY A1

So now we can define PONY A1H, PONY A1H ,̆ PONY A1tH, PONY A1tH ,̆

PONXA2H and PONXA2H˘ in the following ways:

• PONY A1H = PONXB1H;ECD

• PONY A1H˘ = ECD;PONXB1H˘

• PONY A1tH = PONXB1H ;̆ECD

• PONY A1tH˘ = ECD;PONXB1H

• PONXA2H = ECD;PONXB1H ;̆ECD

• PONXA2H˘ = ECD;PONXB1H;ECD

CHAPTER 3. COMPOSITION TABLES FOR RCC 45

Based on the definition we obtain the following equations that make the cycles,

which have to be removed, explicitly.

Lemma 3.5.2. PONY A1H = PONY A1 ∩ (ECN ;NTPP)

Proof:

PONY A1H = PONXB1H;ECD

= PONXB1 ∩ (ECN ;DC);ECD

= PONXB1;ECD ∩ (ECN ;DC;ECD)

= PONY A1 ∩ (ECN ;NTPP) �

Lemma 3.5.3. PONY A1tH = PONY A1 ∩ (DC;TPP)

Proof:

PONY A1tH = PONXB1H ;̆ECD

= PONXB1 ∩ (DC;ECN);ECD

= PONXB1;ECD ∩ (DC;ECN ;ECD)

= PONY A1 ∩ (DC;TPP) �

Lemma 3.5.4. PONXA2H = PONXA2 ∩NTPP ;̆TPP

Proof:

PONXA2H = PONY A1H ;̆ECD

= PONY A1̆ ∩ (NTPP ;̆ECN);ECD

= PONY A1̆ ;ECD ∩ (NTPP ;̆ECN ;ECD)

= PONXA2 ∩ (NTPP ;̆TPP) �

Lemma 3.5.5. a) PONY A1H˘ = PONY A1̆ ∩NTPP ;̆ECN

b) PONY A1tH˘ = PONY A1̆ ∩ (TPP ;̆DC)

c) PONXA2H˘ = PONXA2 ∩ (TPP ;̆NTPP)

Proof:

Similar to the proofs of lemma 3.5.2, 3.5.3 and 3.5.4. �

RCC29 will be obtained by splitting PONXB1, PONY A1, PONY A1̆ and

PONXA2. Removing the following cycles and those how are related by compos-

CHAPTER 3. COMPOSITION TABLES FOR RCC 46

ing the bijection from the left and/or right will result in an algebra with 29 atoms.

We call this algebra RCC29.

• 〈PONY A1H,ECD,PONXB1H 〉̆

• 〈PONY A1H ,̆ECD,PONXA2H 〉̆

• 〈PONY A1tH,ECD,PONXB1H〉

• 〈PONY A1tH ,̆ ECD,PONXA2H〉

• 〈PONXA2H,ECD,PONY A1tH 〉̆

• 〈PONXA2H ,̆ECD,PONY A1H 〉̆

• 〈PONXB1H,ECD,PONY A1tH〉

• 〈PONXB1H ,̆ECD,PONY A1H〉

• 〈ECNA,DC, PONXB1H〉

• 〈ECNB,DC,PONXB1H〉

• 〈DC,ECNA,PONXB1H 〉̆

• 〈DC,ECNB,PONXB1H 〉̆

Diagrams showing examples for PONY A1H, PONY A1tH and PONXA2H are

given in Figure 3.19 (Page 54), Figure 3.20 (Page 54) and Figure 3.21 (Page 54)

respectively. Now we continue by checking the associativity of RCC29. During this

process additional cycles are being removed in the same way as we did in the case of

RCC25. Triggered triples and the removed triples are listed in Table B.4.

3.6 Generating RCC31

Now by combining the RCC27 and RCC29 relation algebras we will get RCC31.

RCC27 is obtained by splitting PONXB2 and PONZ. In order to obtain RCC31

it is, therefore, sufficient to split these two relations in RCC29. An alternative way

would be to split the new PONXB1, PONY A1, PONY A1̆ , and PONXA2 in

RCC27. During the associativity test for RCC31, only one pair of triples is triggered

and that is given in Table 3.2.

CHAPTER 3. COMPOSITION TABLES FOR RCC 47

No. Triggered Pair Removed Triple

1 [(TPPA,TPPĂ , PONY A1tH),(TPPB,PONY A1tH,PONXB2H)̆] (TPPB,PONY A1tH,PONXB2H)̆

Table 3.2: Triggered pair for the RCC31 algebra

Figure 3.14: Generation of the RCC31 relation algebra

3.7 Splitting ECNB

Mormann [42] introduces the concept of a hole relation. The hole relation was defined

by: H = EC ∩ (EC;O). A restricted version of hole relation H ′ = ECN ∩ H =

ECN∩EC∩(EC;O) is also introduced in the same paper. H ′ = ECN∩H = ECN∩
EC∩ (EC;O) was defined as H ′ = ECN ∩H, where ECN = {(x, y) : xECy, x 6= y′}
An example for the hole relation is given in Figure 3.15, where x is a Hole of z. Some

basic properties of hole relations already presented in [42] are given below.

• H and H ′ are nonempty relations on U .

• xHy iff xECy and xNTPPx or xNTPPy

• xHy iff there is some z ∈ U such that xNTPPz and y = z − x

• The relation ECNB splits as ECNB = H ′ ∩H ′̆

The last property from above shows that the restricted hole relation can be ob-

tained by splitting ECNB. In the remainder of the thesis we will focus on the restricted

hole relation and write H instead of H ′. We get

CHAPTER 3. COMPOSITION TABLES FOR RCC 48

H = ECNB ∩ (ECN�O) (3.22)

H˘ = ECNB ∩ (ECN�O)̆ (3.23)

As before we want to make the cycles that have to be removed explicit.

Lemma 3.7.1. H = ECNB ∩ (ECN ;DC)

Proof:

ECNB ∩ (ECN \O) = ECNB ∩ ECN ;O

= ECNB ∩ [ECN ; (DC ∪ ECD ∪ ECN)]

= ECNB ∩ (ECN ;DC) ∪ (ECN ;ECD) ∪ (ECN ;ECN)

= ECNB ∩ (ECN ;DC) ∩ (ECN ;ECD) ∩ (ECN ;ECN)

= ECNB ∩ (ECN ;DC) ∩ TPP ∩ (ECN ;ECN)]

= ECNB ∩ (ECN ;DC),

where the last equation follows from ECNB 6= TPP and ECNB /∈ ECN ;ECN . �

From RCC25 we know that

• ECNB;ECD = TPPB

• TPPB;ECD = ECNB

• TPPB ;̆ECD = PODY B

• ECD;TPPB˘ = ECNB

• PODY B;ECD = TPPB˘

• ECD;PODY B = TPPB

Therefore, we also need to split TPPB, TPPB˘ and PODY B. This leads to the

following definitions:

• TPPB1 = H ;̆ECD

• TPPB1̆ = ECD;H

• TPPB2 = H;ECD

• TPPB2̆ = ECD;H˘

CHAPTER 3. COMPOSITION TABLES FOR RCC 49

• PODY BH = ECD;H;ECD

• PODY BH˘ = ECD;H ;̆ECD

Again, in the following lemmas we make the cycles that have to be removed

explicitly.

Lemma 3.7.2. TPPB1 = TPPB ∩DC;TPP

Proof:

TPPB1 = H ;̆ECD

= ECNB ∩ (DC;ECN);ECD

= ECNB;ECD ∩ (DC;ECN ;ECD)

= TPPB ∩ (DC;TPP) �

Lemma 3.7.3. TPPB2 = TPPB ∩ ECN ;NTPP

Proof:

TPPB2 = H;ECD

= ECNB ∩ (ECN ;DC);ECD

= ECNB;ECD ∩ (ECN ;DC;ECD)

= TPPB ∩ (ECN ;NTPP) �

Lemma 3.7.4. PODY BH = PODY B ∩ (TPP ;̆NTPP)

Proof:

PODY BH = PPB1̆ ;ECD

= TPPB˘∩ (TPP ;̆DC);ECD

= TPPB ;̆ECD ∩ (TPP ;̆DC;ECD)

= PODY B ∩ (TPP ;̆NTPP) �

To make sure ECD will act as a bijection relation, we remove the following cycles.

• 〈TPPB1, ECD,H〉

• 〈TPPB1̆ , ECD,PODY BH 〉̆

• 〈TPPB2, ECD,H 〉̆

CHAPTER 3. COMPOSITION TABLES FOR RCC 50

Figure 3.15: xHz

• 〈TPPB2̆ , ECD,PODY BH〉

• 〈PODY BH,ECD, TPPB2̆ 〉

• 〈PODY BH ,̆ECD, TPPB1̆ 〉

As ECNB is split into two atomic relation H and H ,̆ we are removing following

cycles considering definitions of H and H .̆

• 〈ECNA,DC,H〉

• 〈H,DC,H〉

• 〈H ,̆DC,H〉

• 〈DC,ECNA,H 〉̆

• 〈DC,H,H 〉̆

• 〈DC,H ,̆H 〉̆

We are also removing cycles considering the definiton of TPPB1, TPPB1̆ , TPPB2,

TPPB2̆ , PODY BH and PODY BH˘

Table B.5 shows the list of triggered pairs during the splitting process for ECNB.

For the last triggered pair it is not possible to remove any one of the pair as both

triples are possible in any model of RCC (see Figure 3.17 (Page 51) and Figure 3.18)

(Page 52). We are interested what the cause of this inconsistency is. Since cycles

represent up to six triples, these cycles correspond to multiple situations in the asso-

ciativity condition of Theorem 2.5.1. All those situations are listed in Table 3.3. In

CHAPTER 3. COMPOSITION TABLES FOR RCC 51

No. Matching Cycle Set u exist

1 [(TPPA, TPPB1, TPPA, TPPB2, TPPA)] 0
2 [(TPPA, TPPB1, TPPA, TPPB2̆ ,TPPA)] 1
3 [(TPPB1, TPPĂ ,TPPĂ , TPPA, TPPB2)] 1
4 [(TPPB1, TPPĂ ,TPPĂ , TPPA, TPPB2̆)] 1
5 [(TPPB1̆ ,TPPĂ ,TPPĂ , TPPA, TPPB2)] 0
6 [(TPPB1̆ ,TPPĂ ,TPPĂ , TPPA, TPPB2̆)] 1
7 [(TPPA, TPPB1̆ , TPPA, TPPB2, TPPA)] 1
8 [(TPPA, TPPB1̆ , TPPA, TPPB2̆ , TPPA)] 1

Table 3.3: Match Table

Figure 3.16: xTPPB1z

Figure 3.17: xTPPAz

that table, the column “u exists” indicates whether the u required by Theorem 2.5.1

exists or not. Obviously, we are interested in the first and fifth row containing a zero,

i.e., indicating that such a u does not exist. The first row can be visualized by the

following diagram:

CHAPTER 3. COMPOSITION TABLES FOR RCC 52

Figure 3.18: xTPPAz

•
u

))
TPPB1 ��

•

TPPA
??

TPPA
//

TPPA

::•
TPPB2

// •

Possible candidates for u with respect to the composition TPPB1;TPPB2 are TPPA,

TPPB1, TPPB2 and NTPP . On the other hand, if we require that TPPB2 is con-

tained in TPPB1̆ ;u, we have the following candidates for u:

• PONXA1, PONXB1, PONZ, PODY A, PODZ, PONY A1, PONY A1̆ ,

PONY B, PONY B ,̆ TPPA, TPPĂ , TPPB1, TPPB1̆ , TPPB2, TPPB2̆

TPPA, TPPB1 and TPPB2 are the common candidates. Therefore, we will consider

triples those are related with these three relations only. Among our considered triples,

(TPPB1, TPPB2, TPPA) was removed in Step 61 and (TPPB1, TPPB2, TPPB1)

and (TPPB1, TPPB2, TPPB2) are removed in Step 5 of Table B.5. The second

situation in which the required u does not exist is visualized as follows:

•
u

))
TPPĂ ��

•

TPPB1̆
??

TPPĂ
//

TPPB2

::•
TPPA

// •

Triple (TPPB1̆ , TPPA, TPPB2) is removed from step 61. Triples (TPPB1̆ , TPPB1,

TPPB2) and (TPPB1̆ , TPPB2, TPPB2) are related to the removing triple of row

5 from Table B.5.

If we continue to chase the problem backwards, i.e., analyzing what the cause

for Step 5 and Step 61 is, we come back to Step 3. In step 3 we get the following

matching for which the required u does not exist:

CHAPTER 3. COMPOSITION TABLES FOR RCC 53

• (TPPB2, TPPB2̆ , TPPĂ , ECNA, TPPĂ)

• (TPPB2, TPPB2̆ , TPPA, TPPĂ , ECNA)

The following diagram is obtained from the first situation:

•
u

))
TPPB2̆ ��

•

TPPB2
??

TPPĂ
//

TPPĂ

::•
ECNA

// •

The composition result of TPPB2̆ ;ECNA is given as follows

• ECNA, PONXA1, PONXA2, PONXB1, PONXB2, H, H ,̆ PODY BH,

PODY BH ,̆ PONY A1, PONY A2, PONY B

On the other hand, candidates for u so that TPPĂ is included in TPPB2;u are

TPPĂ , TPPB1̆ , TPPB2̆ , NTPP .̆

If we look at both results there is no common atomic relation. Since NTPP˘ is

included in the second set, let us consider NTPP˘ as a result of the composition of

TPPB2̆ ;ECNA. We obtain the following cycles:

• 〈ECNA,DC,H〉

• 〈DC,ECNA,H 〉̆

• 〈DC,TPPA,TPPB1〉

• 〈ECNA,NTPP ,TPPB2〉

• 〈TPPĂ ,NTPP ,PODY BH〉

• 〈NTPP ,̆TPPA,PODY BH 〉̆

The above list is related to the definitions of H, H ,̆ TPPB1, TPPB2, PODY BH

and PODY BH .̆ A similar argument applies to all other potential candidates. This

means that the definition of H and H˘ and related relations by splitting does not lead

to a relation algebra, a situation similar to RCC10. It should be possible to obtain a

relation algebra by splitting at least one atom in addition. So far we were not able

to identify that atom and the condition defining its subrelations. So we leave this

problem for future investigation.

CHAPTER 3. COMPOSITION TABLES FOR RCC 54

Figure 3.19: (b+ c)PONY A1H(b · d+ a)

Figure 3.20: (b · d+ a)PONY A1tH(b+ c)

Figure 3.21: (a · b+ d · v)PONXA2H(b+ c)

Chapter 4

Constraint Satisfaction Problem

for RCC

Knowledge between different entities or knowledge about relations between entities

can be represented by constraints. To formulate constraints about spatial entities,

spatial calculi are used, which can be represented as constraint satisfaction problem.

A CSP can be represented as a graph with the nodes corresponding to the variables

and the arcs corresponding to constraints. If an assignment for all variables to values

of the domain can be found that satisfies all constraints, then we can say CSP is

consistent. Otherwise it is not.

Different algorithms such as path consistency, arc consistency and k-consistency

have been extensively studied for this kind of problem. Renz [37] has shown that

if the consistency problem for CSP is decidable for a certain subset S ⊆ 2B, where

B is a set of atomic relations, then the solution remains for other subsets of 2B by

using a non-deterministic algorithm. Trudel [54] proved that a constraint is part

of a consistent scenario of a non-finite interval algebra network if and only if it is a

consistent scenario of a finite interval algebra network. The CSP is a more appropriate

and successful approach for reasoning about spatial qualitative constraint networks.

In classical CSPs relations are finite, and they can be explicitly manipulated as a set

of tuples of a finite domain.

In spatial CSPs the domains of spatial variables are usually infinite. A usual

way to deal with relations of qualitative spatial variables is to have a finite set of

JEPD relations. The relations of a JEPD set are atomic relations. To represent

the knowledge, we can use these relations by using CSPs and use constraint based

techniques to decide whether such a problem is consistent or not. Operators such

as union, complement, converse, intersection and composition are connected with

55

CHAPTER 4. CONSTRAINT SATISFACTION PROBLEM FOR RCC 56

relations. Composition is not as straight forward as other operators, because it has

to be computed only for pairs of atomic relations. Computing the composition may

not be feasible for domains of arbitrary spatial regions that are not well structured

and if there is no common representation of the region. Therefore the composition can

be approximated by using weak composition. The point of using weak composition

is that the result will remain within the given set of relations.

If the given constraint is satisfied then we can say constraints that we are consider-

ing will be subsets of regions for a particular selected algebra. The constraint is com-

posed of composition and join operators. Relation algebra that we are taking into ac-

count are RCC8, RCC11, RCC15, RCC25, RCC27, RCC29 and RCC31. For exam-

ple we consider a constraint like “washroomTPPbedroom, bedroomECNdrawingroom,

washroomECNdrawingroom” where washroom, bedroom and drawingroom are

variables, and TPP and ECN are relations from RCC11.

The way our developed system works to check constraints is given in Figure 4.1.

For example the constraint may be

washroomDCbedroom,

bedroomPODY drawingroom,

washroomTPPdrawingroom OR washroomNTPPdrawingroom

From the above constraint it is clear that if the composition of DC and PODY is

either TPP or NTPP , then the given constraint is satisfiable based on the composi-

tion. Now it is required to check whether the entered constraint is satisfiable or not

based on the composition table of a particular selected algebra. The flowchart for

manipulating the constraint is given in Figure 4.2. For example, if the constraint is

“washroomDCbedroom, bedroomPODYdrawingroom, washroomTPPbedroom” then

it is not a satisfiable constraint as there is no relation with ‘washroom’ and ‘draw-

ingroom’. So we don’t need to check this constraint by the composition table of a

particular algebra.

There are different sections like ‘Select Relation Algebra’, ‘Enter Name of Vari-

able’, ‘Enter Constraint’ and ‘Test Constraint’ in the user interface of the application

‘Constraint Satisfaction Checking’. They are marked by red square in Figure B.1.

The ‘Add variable’ button adds variables for the constraint string that we need to

check. While entering the name for variables, we have to make sure the name of vari-

ables should start with a lowercase letter. For example in Figure B.2 we have entered

four variables in our system. In the ‘Select Relation Algebra’ section there are seven

CHAPTER 4. CONSTRAINT SATISFACTION PROBLEM FOR RCC 57

Figure 4.1: Constraint string manipulation

radio buttons named with different relation algebras. After selecting a particular

algebra, all the atomic relations related to that algebra will appear below the text

box of where to enter a constraint. For example if ‘RCC8’ is selected eight atomic

relations will appear (Figure B.3). Those atomic relations are ‘ID, DC, EC, PO,

TPP , TPP ,̆ NTPP and NTPP ’̆. By clicking on the buttons of the variable and

the relation we can enter a constraint. We have to insert ’,’ after inserting a relation

with two variables.

For example, we select a relation algebra “RCC11” and enter four variables:

“washroom”, “bedroom”, “drawingroom” and “kitchen”. After that we enter a con-

straint string “washroomTPPbedroom, bedroomECNdrawingroom, washroomECN-

CHAPTER 4. CONSTRAINT SATISFACTION PROBLEM FOR RCC 58

drawingroom” in the text area of “Enter Constraint”. As the relation “washroomEC-

Ndrawingroom” is present in the constraint string, this is a satisfiable constraint. Next

we check the constraint by the composition table of RCC11. In the composition table

of RCC11 there exists the relation ECN as the result of composition of TPP and

ECN . So the given constraint satisfies the selected algebra (Figure B.4). Again, if

we enter a constraint like “washroomTPPbedroom, bedroomECNdrawingroom, wash-

roomTPPdrawingroom” then the given constraint is satisfiable based on compostion

but it would not satisfy the selected algebra RCC11. This is because TPP is not

there as a result of composition of TPP and ECN . Figure B.5 shows this scenario.

Figure 4.2: Constraint string manipulation

Chapter 5

Conclusion and Future Work

In this chapter we will review the contents covered in this thesis. We will suggest

some work and investigation that can be carried out in the future.

We started by introducing Allen’s [1] interval calculus that lead us to define the

composition table. Then we have shown binary relations, Boolean algebra, and their

properties from where we have defined relation algebra and their properties. We have

discussed contact algebra that is based on contact relations where spatial regions

are used instead of points. Region connection calculus is defined based on contact

relation “C’. We have also discussed atom structure and how an atomic relation can

be split from old algebras to form new algebras. Based on the splitting mechanism,

atomic relations PONXB1, PONXB2 and ECNB were split from relation algebra

RCC25. However we are not able to split ECNB successfully and leave this problem

for future investigation. We have also given a proof showing that the triple (TPPA,

TPPA, TPPB) can be removed from RCC15 as well as from RCC25. In the context

of spatial reasoning we also defined the constraint satisfaction problem. We have

developed a system in Java to check whether the given constraint is satisfied or not.

There are also two TPPA situations that are given below.

TPPA1 = TPPA ∩ TPPA;TPPB2 (5.1)

TPPA2 = TPPA ∩ TPPA;TPPB2 (5.2)

So if we are splitting TPPA we also need to split ECNA, as ECNA is related to

TPPA by ECD. We are also not able to split ECNB. Further investigation can

be done and may be it would be possible to generate more atoms beyond atoms of

RCC31 algebra. Spatial regions that we are considering are circles. So polygons can

be considered instead of circles in future endeavors.

59

CHAPTER 5. CONCLUSION AND FUTURE WORK 60

Siddavaatam’s system [50] was developed in the functional programming language

Haskell. One of the drawbacks of his system that it is very slow for relation algebras

with large N values, mainly where N≥15. For graphical user interface design he used

the GTK+ toolkit along with Haskell library Gtk2Hs. However it is tiresome to install

this open source GTK+ toolkit and integrate with Haskell. The method to install

Glade and GTK for Haskell is given in the appendix. We have converted some basic

functions in C that are used by Siddavaatam’s system to check the associativity of

the algebra. Basic functions related to splitting and associativity can be implemented

in other languages like Java and C]. If that works fine, then a full system can be

developed with that language.

Appendix A

Installing Glade and GTK for

Haskell

It would be recommended to install all files related to Haskell, MINGW, GTK and

GLADE in the same directory. At first Haskell and MinGW need to be installed.

Haskell can be downloaded from [33] and after installing Haskell, MinGW needs to

be installed and it can be downloaded from [34]. Now to install libxml download

and unzip the latest libxml2 and libxml2-dev from the Gnome site, that is [35], to the

folder where we are installing all files related to Haskell, Glade and GTK. After unzip-

ping the libxml contents the name of the folder would be “libxml22.7.7-1win32” and

“libxml2-dev2.7.7-1win32 ”. We also need to copy the contents of /bin and /manifest

of “libxml22.7.7-1win32” to “libxml2-dev2.7.7-1win32 ”. To install the GTK/Glade

bundle we have to download that from [35]. We also have to set values for environ-

ment variables. As an example for the environment variable ‘PKGCONFIGPATH’

we have set the location of ’pkgconfig’ directory. There would be not any ‘PKGCON-

FIGPATH’ in environment variables so we have to create that variable. For example

we have assigned the value “ D:/Program/Gtk+/lib/pkgconfig;D:/Program/libxml2-

dev/lib/pkgconfig” for the ‘PKGCONFIGPATH’ variable. For the INCLUDE envi-

ronment variable we add the location of ‘libglade-2.0’ directory. Our environment

variable should be look like:

“D:\ Program\ Gtk+\ include\ libglade-2.0;D:\ Program \ libxml2-dev\ include;D:\
Program\ Gtk+\ include”.

61

Appendix B

Tables and Figures

No. Definition

1 1’
2 TPPA = TPP ∩ (ECN ;TPP)
3 TPPĂ = TPP˘∩ (ECN ;TPP)̆
4 TPPB = TPP ∩ −(ECN ;TPP)
5 TPPB˘ = TPP˘∩ −(ECN ;TPP)̆
6 NTPP
7 NTPP˘
8 PONXA1 = PON ∩ (ECN ;TPP) ∩ (ECN ;TPP)̆ ∩ (TPP ;TPP)̆ ∩ (TPP ;̆TPP)
9 PONXA2 = PON ∩ (ECN ;TPP) ∩ (ECN ;TPP)̆ ∩ (TPP ;TPP)̆ ∩ −(TPP ;̆TPP)
10 PONXB1 = PON ∩ (ECN ;TPP) ∩ (ECN ;TPP)̆ ∩ −(TPP ;TPP)̆ ∩ (TPP ;̆TPP)
11 PONXB2 = PON ∩ (ECN ;TPP) ∩ (ECN ;TPP)̆ ∩ −(TPP ;TPP)̆ ∩ −(TPP ;̆TPP)
12 PONY A1 = PON ∩ −(ECN ;TPP) ∩ (ECN ;TPP)̆ ∩ (TPP ;TPP)̆ ∩ (TPP ;̆TPP)
13 PONY A2 = PON ∩ −(ECN ;TPP) ∩ (ECN ;TPP)̆ ∩ (TPP ;TPP)̆ ∩ −(TPP ;̆TPP)
14 PONY A1̆ = PON ∩ (ECN ;TPP) ∩ −(ECN ;TPP)̆ ∩ (TPP ;TPP)̆ ∩ (TPP ;̆TPP)
15 PONY A2̆ = PON ∩ (ECN ;TPP) ∩ −(ECN ;TPP)̆ ∩ (TPP ;TPP)̆ ∩ −(TPP ;̆TPP)
16 PONY B = PON ∩ −(ECN ;TPP) ∩ (ECN ;TPP)̆ ∩ −(TPP ;TPP)̆
17 PONY B˘ = PON ∩ (ECN ;TPP) ∩ −(ECN ;TPP)̆ ∩ −(TPP ;TPP)̆
18 PONZ = PON ∩ −(ECN ;TPP) ∩ −(ECN ;TPP)̆
19 PODY A = POD ∩ −(ECD;NTPP) ∩ (TPP ;̆TPP)
20 PODY B = POD ∩ −(ECD;NTPP) ∩ −(TPP ;̆TPP)
21 PODZ = ECD;NTPP
22 ECNA = ECN ∩ (TPP ;TPP)̆
23 ECNB = ECN ∩ −(TPP ;TPP)̆
24 ECD
25 DC

Table B.1: Definitions of RCC25 atoms

62

APPENDIX B. TABLES AND FIGURES 63

No. Triggered Pair Removed Triple

1 [(TPPĂ , PONZ, PODY A),(PODY A,TPPĂ ,ECD)] (TPPĂ , PONZ, PODY A)
2 [(TPPĂ , PONY A1, PODY A),(PODY A,TPPĂ ,ECD)] (TPPĂ , PONY A1, PODY A)
3 [(TPPĂ , PONY A2, PODY A),(PODY A,TPPĂ ,ECD)] (TPPĂ , PONY A2, PODY A)
4 [(TPPĂ , PONY B, PODY A),(PODY A,TPPĂ ,ECD)] (TPPĂ , PONY B, PODY A)
5 [(TPPĂ , PONZ, PODY B),(PODY B,TPPB ,̆ECD)] (TPPĂ , PONZ, PODY B)
6 [(TPPĂ , PONY A1, PODY B),(PODY B, TPPB ,̆ECD)] (TPPĂ , PONY A1, PODY B)
7 [(TPPĂ , PONY A2, PODY B),(PODY B,TPPB ,̆ECD)] (TPPĂ , PONY A2, PODY B)
8 [(TPPĂ , PONY B, PODY B),(PODY B,TPPB ,̆ECD)] (TPPĂ , PONY B, PODY B)
9 [(TPPB ,̆ PONZ, PODY A),(PODY A,TPPĂ ,ECD)] (TPPB ,̆ PONZ, PODY A)
10 [(TPPB ,̆ PONY A1, PODY A),(PODY A,TPPĂ ,ECD)] (TPPB ,̆ PONY A1, PODY A)
11 [(TPPB ,̆ PONY A2, PODY A),(PODY A,TPPĂ ,ECD)] (TPPB ,̆ PONY A2, PODY A)
12 [(TPPB ,̆ PONY B, PODY A),(PODY A,TPPĂ ,ECD)] (TPPB ,̆ PONY B, PODY A)
13 [(TPPB ,̆ PONZ, PODY B),(PODY B,TPPB ,̆ECD)] (TPPB ,̆ PONZ, PODY B)
14 [(TPPB ,̆ PONY A1, PODY B),(PODY B,TPPB ,̆ECD)] (TPPB ,̆ PONY A1, PODY B)
15 [(TPPB ,̆ PONY A2, PODY B), (PODY B, TPPB ,̆ECD)] (TPPB ,̆ PONY A2, PODY B)
16 [(TPPB ,̆ PONY B, PODY B), (PODY B, TPPB ,̆ ECD)] (TPPB ,̆ PONY B, PODY B)
17 [(PONXA2, PODY A, PODY A), (PODY A, TPPĂ ,ECD)] (PONXA2, PODY A, PODY A)
18 [(PONXB2, PODY A, PODY A),(PODY A, TPPĂ ,ECD)] (PONXB2, PODY A, PODY A)
19 [(PONY A2, PODY A, PODY A), (PODY A, TPPĂ ,ECD)] (PONY A2, PODY A, PODY A)
20 [(PONXA2, PODY B, PODY A),(PODY A,TPPĂ ,ECD)] (PONXA2,PODY B, PODY A)
21 [(PONXB2, PODY B, PODY A),(PODY A,TPPĂ ,ECD)] (PONXB2, PODY B, PODY A)
22 [(PONY A2, PODY B, PODY A),(PODY A,TPPĂ ,ECD)] (PONY A2,PODY B, PODY A)
23 [(PONY A2, PODY B, PODY B),(PODY A,TPPB ,̆ECD)] (PONY A2, PODY B, PODY B)
24 [(PONXA2, PODY B, PODY B),(PODY B,TPPB ,̆ECD)] (PONXA2, PONY B, PODY B)
25 [(PONXB2, PODY B, PODY B),(PODY B,TPPB ,̆ECD)] (PONXB2, PONZ, PODY A)
26 [(PONXB1, ECNA, ECNA),(ECNA, TPPA, ECD)] (PONXB1, ECNA, ECNA)
27 [(PONXB2, ECNA, ECNA), (ECNA, TPPA, ECD)] (PONXB2, ECNA, ECNA)
28 [(PONY B, ECNA, ECNA), (ECNA, TPPA, ECD)] (PONY B, ECNA, ECNA)
29 [(PONY A2, PODY B, PODY B),(TPPB ,̆ECD, PODY B)] (PONY A2, PODY B, PODY B)
30 [(PONY A2, PODY A, PODY B),(TPPĂ , ECD, PODY A)] (PONY A2, PODY A, PODY B)
31 [(PONXB1, ECNA, ECNB), (TPPA,ECD, ECNA)] (PONXB1, ECNA, ECNB)
32 [(PONXB1, ECNB, ECNA), (ECNA, TPPA, ECD)] (PONXB1, ECNB, ECNA)
33 [(PONY B ,̆ ECNB, ECNA),(ECNA,TPPA,ECD)] (PONY B ,̆ ECNB, ECNA)
34 [(PONY B, ECNB, ECNA),(ECNA, TPPA, ECD)] (PONY B, ECNB, ECNA)
35 [(PONXB2, ECNA, ECNB),(TPPA, ECD, ECNA)] (PONXB2, ECNA, ECNB)
36 [(PONXB1, ECNB, ECNB),(TPPB,ECD,ECNB)] (PONXB1, ECNB, ECNB)
37 [(PONXB2, ECNB, ECNB),(TPPB,ECD,ECNB)] (PONXB2, ECNB, ECNB)
38 [(PONY B, ECNB, ECNB),(TPPB,ECD,ECNB)] (PONY B, ECNB, ECNB)

Table B.2: Triggered pairs for the RCC25 algebra

APPENDIX B. TABLES AND FIGURES 64

No. Triggered Pair Removed Triple

1 [(TPPA,NTPP ,̆ PONXB2H),(TPPA,ECNA,ECNA)] (TPPA,NTPP ,̆ PONXB2H)
2 [(TPPA,TPPB,TPPA),(TPPB,PONXB2H,NTPP)] (TPPB, PONXB2H,NTPP)
3 [(TPPA,TPPĂ , PONXA1),(TPPA,PONXA1,PONXB2H)̆] (TPPA,PONXA1,PONXB2H)̆
4 [(TPPA,TPPĂ , PONXA1),(TPPB,PONXA1,PONXB2H)̆] (TPPB,PONXA1,PONXB2H)̆
5 [(TPPA,TPPĂ , PONXA1),(NTPP ,PONXA1,PONXB2H)̆] (NTPP ,PONXA1,PONXB2H)̆
6 [(TPPA, TPPĂ , PONXA2),(TPPA,PONXA2,PONXB2H˘)] (TPPA, PONXA2, PONXB2H˘)
7 [(TPPA, TPPĂ , PONXA2),(TPPB, PONXA2, PONXB2H)̆] (TPPB, PONXA2, PONXB2H)̆
8 [(TPPA, TPPĂ , PONXA2) ,(NTPP, PONXA2, PONXB2H)̆] (NTPP, PONXA2, PONXB2H)̆
9 [(TPPA, TPPĂ , PONZH),(TPPA, PONZH, PONXB2H)̆] (TPPA, PONZH, PONXB2H)̆
10 [(TPPA, TPPĂ , PONZH),(TPPA, PONZH ,̆PONXB2H)̆] (TPPA,PONZH ,̆PONXB2H)̆
11 [(TPPA,TPPĂ , PONZH),(TPPB,PONZH,PONXB2H)̆] (TPPB,PONZH,PONXB2H ,̆ECD)
12 [(TPPA,TPPĂ , PONZH),(TPPB,PONZH ,̆PONXB2H)̆] (TPPB,PONZH ,̆PONXB2H)̆
13 [(TPPA,TPPĂ , PONZH),(NTPP ,PONZH,PONXB2H)̆] (NTPP ,PONZH,PONXB2H)̆
14 [(TPPA,TPPĂ , PONZH),(TPPB,PONZH ,̆PONXB2H)̆] (TPPB,PONZH ,̆PONXB2H)̆
15 [(TPPA,TPPĂ , PONY A1),(TPPA,PONY A1,PONXB2H)̆] (TPPA, PONY A1,PONXB2H)̆
16 [(TPPA,TPPĂ , PONY A1),(TPPA,PONY A1̆ ,PONXB2H)̆] (TPPA,PONY A1̆ ,PONXB2H)̆
17 [(TPPA,TPPĂ , PONY A1),(TPPB, PONY A1,PONXB2H)̆] (TPPB,PONY A1,PONXB2H)̆
18 [(TPPA,TPPĂ , PONY A1),(TPPB,PONY A1̆ ,PONXB2H)̆] (TPPB,PONY A1̆ ,PONXB2H)̆
19 [(TPPA,TPPĂ , PONY A1),(NTPP, PONY A1,PONXB2H)̆] (NTPP ,PONY A1,PONXB2H)̆
20 [(TPPA,TPPĂ , PONY A1),(NTPP ,PONY A1̆ ,PONXB2H)̆] (NTPP ,PONY A1̆ ,PONXB2H)̆
21 [(TPPA,TPPĂ , PONY A2),(TPPA, PONY A2,PONXB2H)̆] (TPPA, PONY A2,PONXB2H)̆
22 [(TPPA,TPPĂ , PONY A2),(TPPA,PONY A2̆ ,PONXB2H)̆] (TPPA,PONY A2̆ ,PONXB2H)̆
23 [(TPPA,TPPĂ , PONY A2),(TPPB, PONY A2,PONXB2H)̆] (TPPB, PONY A2,PONXB2H)̆
24 [(TPPA,TPPĂ , PONY A2),(TPPB,PONY A2̆ ,PONXB2H)̆] (TPPB,PONY A2̆ ,PONXB2H)̆
25 [(TPPA,TPPĂ , PONY A2),(NTPP, PONY A2,PONXB2H)̆] (NTPP, PONY A2,PONXB2H)̆
26 [(TPPA,TPPĂ , PONY A2),(NTPP ,PONY A2̆ ,PONXB2H)̆] (NTPP ,PONY A2̆ ,PONXB2H)̆
27 [(TPPA,NTPP ,̆ PONXB1),(TPPA, PONXB1,PONXB2H)̆] (TPPA, PONXB1,PONXB2H)̆
28 [(TPPA,NTPP ,̆ PONXB1),(TPPB, PONXB1,PONXB2H)̆] (TPPB,PONXB1,PONXB2H)̆
29 [(TPPA,NTPP ,̆ PONXB1),(NTPP, PONXB1,PONXB2H)̆] (NTPP, PONXB1,PONXB2H)̆
30 [(TPPA,NTPP ,̆ PONXB2H)̆,(TPPA, PONXB2H,PONXB2H)̆] (TPPA, PONXB2H,PONXB2H)̆
31 [(TPPA,NTPP ,̆ PONXB2H)̆,(TPPB, PONXB2H,PONXB2H)̆] (TPPB, PONXB2H,PONXB2H)̆
32 [(TPPA,NTPP ,̆ PONXB2H)̆,(NTPP, PONXB2H,PONXB2H)̆] (NTPP ,PONXB2H,PONXB2H)̆
33 [(TPPA,NTPP ,̆ PONY B),(TPPA,PONY B ,̆PONXB2H)̆] (TPPA,PONY B ,̆PONXB2H)̆
34 [(TPPA, NTPP ,̆ PONY B),(TPPB,PONY B ,̆PONXB2H)̆] (TPPB,PONY B ,̆PONXB2H)̆
35 [(TPPA, NTPP ,̆ PONY B),(NTPP, PONY B ,̆PONXB2H)̆] (NTPP, PONY B ,̆PONXB2H)̆
36 [(TPPA, NTPP ,̆ PONY B)̆,(TPPA, PONY B, PONXB2H)̆] (TPPA, PONY B, PONXB2H)̆
37 [(TPPA, TPPA,NTPP),(NTPP, PONXB2H ,̆PONY A2̆)] (NTPP ,PONXB2H ,̆PONY A2̆)
38 [(TPPA, NTPP ,̆ PONY B)̆,(TPPB,PONY B,PONXB2H)̆] (TPPB,PONY B,PONXB2H)̆

Table B.3: Triggered pairs for the RCC27 algebra

APPENDIX B. TABLES AND FIGURES 65

No. Triggered Pair Removed Triple

1 [(TPPA,NTPP ,̆ PONXB1H),(TPPA,ECNA,ECNA)] (TPPA,NTPP ,̆ PONXB1H)
2 [(TPPA, TPPB, TPPA),(TPPB,PONXA2H ,̆NTPP)] (TPPB,PONXA2H ,̆NTPP)
3 [(TPPA,TPPĂ , PONXA1),(TPPA, PONXA1,PONXB1H)̆] (TPPA, PONXA1, PONXB1H)̆
4 [(TPPA, TPPĂ , PONXA1),(TPPB,PONXA1,PONXB1H)̆] (TPPB, PONXA1, PONXB2H)̆
5 [(TPPA,TPPĂ , PONXA1),(NTPP ,PONXA1,PONXB1H)̆] (NTPP, PONXA1, PONXB1H)̆
6 [(TPPA, TPPĂ , PONXA2H),(TPPA, PONXA2H, PONXB1H˘)] (TPPA, PONXA2H, PONXB1H˘)
7 [(TPPA, TPPĂ , PONXA2H),(TPPA,PONXA2̆ ,PONXB1H)̆] (TPPA,PONXA2̆ ,PONXB1H)̆
8 [(TPPA,TPPĂ , PONXA2H),(TPPB, PONXA2H,PONXB1H)̆] (TPPB, PONXA2H,PONXB1H)̆
9 [(TPPA,TPPĂ , PONXA2H),(TPPB,PONXA2H ,̆PONXB1H)̆] (TPPB,PONXA2H ,̆PONXB1H)̆
10 [(TPPA,TPPĂ , PONXA2H),(NTPP ,PONXA2H,PONXB1H)̆] (NTPP ,PONXA2H,PONXB1H)̆
11 [(TPPA,TPPĂ , PONXA2H),(NTPP ,PONXA2H ,̆PONXB1H)̆] (NTPP ,PONXA2H ,̆PONXB1H)̆
12 [(TPPA,TPPĂ , PONZH),(TPPA, PONZH ,PONXB1H)̆] (TPPA, PONZH, PONXB1H)̆
13 [(TPPA, TPPĂ , PONZH),(TPPB, PONZ,PONXB1H)̆] (TPPB, PONZ,PONXB1H)̆
14 [(TPPA,TPPĂ , PONZ),(NTPP, PONZ, PONXB1H)̆] (NTPP, PONZ, PONXB1H)̆
15 [(TPPA, TPPĂ , PONY A1H),(TPPA,PONY A1H,PONXB1H)̆] (TPPA,PONY A1H,PONXB1H)̆
16 [(TPPA,TPPĂ , PONY A1H),(TPPA,PONY A1H ,̆PONXB1H)̆] (TPPA,PONY A1H ,̆PONXB1H)̆
17 [(TPPA,TPPĂ , PONY A1H),(TPPB,PONY A1H,PONXB1H)̆] (TPPB,PONY A1H,PONXB1H)̆
18 [(TPPA,TPPĂ , PONY A1H),(TPPB,PONY A1H ,̆PONXB1H)̆] (TPPB,PONY A1H ,̆PONXB1H)̆
19 [(TPPA,TPPĂ , PONY A1H),(NTPP ,PONY A1H,PONXB1H)̆] (NTPP ,PONY A1H,PONXB1H)̆
20 [(TPPA,TPPĂ , PONY A1H),(NTPP ,PONY A1H ,̆PONXB1H)̆] (NTPP ,PONY A1H ,̆PONXB1H)̆
21 [(TPPA,TPPĂ , PONY A1tH),(TPPA,PONY A1tH,PONXB1H)̆] (TPPA,PONY A1tH,PONXB1H)̆
22 [(TPPA,TPPĂ , PONY A1tH),(TPPA,PONY A1tH ,̆PONXB1H)̆] (TPPA,PONY A1tH ,̆PONXB1H)̆
23 [(TPPA,TPPĂ , PONY A1tH),(TPPB,PONY A1tH,PONXB1H)̆] (TPPB,PONY A1tH,PONXB1H)̆
24 [(TPPA,TPPĂ , PONY A1tH),(TPPB,PONY A1tH ,̆PONXB1H)̆] (TPPB,PONY A1tH ,̆PONXB1H)̆
25 [(TPPA,TPPĂ , PONY A1tH),(NTPP ,PONY A1tH,PONXB1H)̆] (NTPP ,PONY A1tH,PONXB1H)̆
26 [(TPPA,TPPĂ , PONY A1tH),(NTPP ,PONY A1tH ,̆PONXB1H)̆] (NTPP ,PONY A1tH ,̆PONXB1H)̆
27 [(TPPA,TPPĂ , PONY A2),(TPPA, PONY A2,PONXB1H)̆] (TPPA, PONY A2, PONXB1H)̆
28 [(TPPA,TPPĂ , PONY A2),(TPPA,PONY A2̆ ,PONXB1H)̆] (TPPA,PONY A12̆ ,PONXB1H)̆
29 [(TPPA,TPPĂ , PONY A2),(TPPB, PONY A2,PONXB1H)̆] (TPPB, PONY A2,PONXB1H)̆
30 [(TPPA,TPPĂ , PONY A2),(TPPB,PONY A2H ,̆PONXB1H)̆] (TPPB,PONY A2̆ ,PONXB1H)̆
31 [(TPPA,TPPĂ , PONY A2),(NTPP, PONY A2,PONXB1H)̆] (NTPP, PONY A2,PONXB1H)̆
32 [(TPPA,TPPĂ , PONY A2),(NTPP ,PONY A2̆ ,PONXB1H)̆] (NTPP ,PONY A2̆ ,PONXB1H)̆
33 [(TPPA,NTPP ,̆ PONXB1H)̆,(TPPA, PONXB1H,PONXB1H)̆] (TPPA, PONXB1H, PONXB1H)̆
34 [(TPPA, NTPP ,̆ PONXB1H)̆,(TPPB, PONXB1H, PONXB1H)̆] (TPPB, PONXB1H, PONXB1H)̆
35 [(TPPA, NTPP ,̆ PONXB1H)̆,(NTPP, PONXB1H, PONXB1H)̆] (NTPP, PONXB1H, PONXB1H)̆
36 [(TPPA, NTPP ,̆ PONXB2),(TPPA, PONXB2,PONXB1H)̆] (TPPA, PONXB2, PONXB1H)̆
37 [(TPPA, NTPP ,̆ PONXB2),(TPPB, PONXB2, PONXB1H)̆] (TPPB, PONXB2, PONXB1H)̆
38 [(TPPA, NTPP ,̆ PONXB2),(NTPP, PONXB2,PONXB1H)̆] (NTPP, PONXB2,PONXB1H)̆
39 [(TPPA, NTPP ,̆ PONY B),(TPPA,PONY B ,̆PONXB1H)̆] (TPPA,PONY B ,̆PONXB1H)̆
40 [(TPPA, NTPP ,̆ PONY B),(TPPA,PONY B ,̆PONXB1H)̆] (TPPB,PONY B ,̆PONXB1H)̆
41 [(TPPA, NTPP ,̆ PONY B),(NTPP ,PONY B ,̆PONXB1H)̆] (NTPP ,PONY B ,̆PONXB1H)̆
42 [(TPPA, NTPP ,̆ PONY B)̆,(TPPA, PONY B,PONXB1H)̆] (TPPA, PONY B,PONXB1H)̆
43 [(TPPA, TPPA,NTPP),(NTPP, PONXA2H,PONY A2̆)] (NTPP, PONXA2H, PONY A2̆)
44 [(TPPA, NTPP ,̆ PONY B)̆,(TPPB, PONY B, PONXB1H)̆] (TPPB, PONY B, PONXB1H)̆

Table B.4: Triggered pairs for the RCC29 algebra

APPENDIX B. TABLES AND FIGURES 66

No. Triggered Pair Removed Triple

1 [(TPPA, TPPB1, TPPB2),(TPPA, TPPĂ , ECNA)] (TPPA, TPPĂ , ECNA)
2 [(TPPA, TPPB2, TPPB1),(TPPA,TPPB2̆ ,DC)] (TPPA, TPPB2, TPPB1)
3 [(TPPA, TPPB2, TPPB2),(TPPA,TPPĂ ,ECNA)] (TPPA,TPPĂ ,ECNA)
4 [(TPPA, TPPB1, TPPB1),(TPPB1, TPPB1, TPPB2)] (TPPB1, TPPB1, TPPB2)
5 [(TPPA, TPPB1, TPPB1),(TPPB1, TPPB2, TPPB2)] (TPPB1, TPPB2, TPPB2)
6 [(TPPA,TPPB2̆ , PONXA1),(TPPA, PONXA1, ECNA)] (TPPA, PONXA1, ECNA)
7 [(TPPA,TPPB2̆ , PONXA2),(TPPA, PONXA2, ECNA)] (TPPA,TPPB2̆ , PONXA2)
8 [(TPPA,TPPB2̆ , PONZ),(NTPP, PONZ,ECNA)] (TPPA,TPPB2̆ , PONZ)
9 [(TPPA,TPPB2̆ , PONY A1),(TPPA, PONY A1, ECNA)] (TPPA,TPPB2̆ , PONY A1)
10 [(TPPA,TPPB2̆ , PONY A1̆),(NTPP ,PONY A1̆ ,ECNA)] (TPPA,TPPB2̆ , PONY A1̆)
11 [(TPPA, TPPB2, TPPA),(TPPB1, TPPB1, TPPA)] (TPPB1, TPPB1, TPPA)
12 [(TPPA, TPPA,NTPP),(TPPB1, TPPB1, NTPP)] (TPPB1, TPPB1, NTPP)
13 [(TPPA, TPPB1, TPPA),(TPPB1, TPPB2, NTPP)] (TPPB1, TPPB2, NTPP)
14 [(TPPA, TPPB1, TPPB1),(TPPB1, PONXA1, TPPB2)] (TPPB1, PONXA1, TPPB2)
15 [(TPPA, TPPB1, TPPB1),(TPPB1, PONXB1, TPPB2)] (TPPB1, PONXB1, TPPB2)
16 [(TPPA, TPPB1, TPPB1),(TPPB1, PONZ, TPPB2)] (TPPB1, PONZ, TPPB2)
17 [(TPPA, TPPB1, TPPB1),(TPPB1, PONY A1, TPPB2)] (TPPB1, PONY A1, TPPB2)
18 [(TPPA, TPPB1, TPPB1),(TPPB2, PONY A1, TPPB1)] (TPPB2, PONY A1, TPPB1)
19 [(TPPA, TPPB2, TPPA),(TPPB2, TPPB1, TPPA)] (TPPB2, TPPB1, TPPA)
20 [(TPPB2, TPPA, TPPB2),(TPPA,NTPP ,̆H)] (TPPA,NTPP ,̆H)
21 [(TPPB1, TPPA, TPPA),(TPPB1,NTPP ,̆H)] (TPPB1,NTPP ,̆H)
22 [(TPPB2, TPPA, TPPA),(TPPB2, PODZ, TPPB2)] (TPPB2, PODZ, TPPB2)
23 [(TPPA,TPPĂ , PONXA1),(TPPB1, PONXA1, NTPP)] (TPPB1, PONXA1, NTPP)
24 [(TPPA,TPPĂ , PONXA1),(TPPB1, PONXA1, PONXB1)] (TPPB1, PONXA1, PONXB1)
25 [(TPPA,TPPĂ , PONXA1),(TPPB1, PONXA1, PONXB2)] (TPPB1, PONXA1, PONXB2)
26 [(TPPA, TPPĂ , PONXA1),(TPPB1, PONXA1, PONY B)] (TPPB1, PONXA1, PONY B)
27 [(TPPA, TPPĂ , PONXA1),(TPPB1, PONXA1, PONY B)̆] (TPPB1, PONXA1, PONY B)̆
28 [(TPPA, TPPĂ , PONXA1),(TPPB1, PONXA1,H)̆] (TPPB1, PONXA1, H)̆
29 [(TPPA, TPPĂ , PONXA2),(TPPB1, PONXA2, NTPP)] (TPPB1, PONXA2, NTPP)
30 [(TPPA,TPPĂ , PONXA2),(TPPB1, PONXA2, PONXB1)] (TPPB1, PONXA2, PONXB1)
31 [(TPPA,TPPĂ , PONXA2),(TPPB1, PONXA2, PONXB2)] (TPPB1, PONXA2, PONXB2)
32 [(TPPA,TPPĂ , PONXA2),(TPPB1, PONXA2, PONY B)] (TPPB1, PONXA2, PONY B)
33 [(TPPA,TPPĂ , PONXA2),(TPPB1, PONXA2,PONY B)̆] (TPPB1, PONXA2,PONY B)̆
34 [(TPPA,TPPĂ , PONXA2),(TPPB1, PONXA2,H)̆] (TPPB1, PONXA2,H)̆
35 [(TPPA,TPPĂ , PONXA2),(TPPB2, PODZ, PONXA2)] (TPPB2, PODZ, PONXA2)
36 [(TPPA, TPPĂ , PONZ),(TPPB1, PONZ,NTPP)] (TPPB1, PONZ,NTPP)
37 [(TPPA, TPPĂ , PONZ),(TPPB1, PONZ,PONXB1)] (TPPB1, PONZ,PONXB1)
38 [(TPPA, TPPĂ , PONZ),(TPPB1, PONZ,PONXB2)] (TPPB1, PONZ,PONXB2)
39 [(TPPA, TPPĂ , PONZ),(TPPB1, PONZ,PONY B)] (TPPB1, PONZ,PONY B)
40 [(TPPA, TPPĂ , PONZ),(TPPB1, PONZ, PONY B)̆] (TPPB1, PONZ,PONY B)̆
41 [(TPPA, TPPĂ , PONZ),(TPPB2, PODZ, PONZ)] (TPPB2, PODZ, PONZ)
42 [(TPPA, TPPĂ , PONY A1),(TPPB1,PONY A1̆ ,NTPP)] (TPPB1,PONY A1̆ ,NTPP)
43 [(TPPA, TPPĂ , PONY A1),(TPPB1, PONY A1, PONXB1)] (TPPB1, PONY A1, PONXB1)
44 [(TPPA, TPPĂ , PONY A1),(TPPB1, PONY A1, PONXB2)] (TPPB1, PONY A1, PONXB2)
45 [(TPPA, TPPĂ , PONY A1),(TPPB1, PONY A1, PONY B)] (TPPB1, PONY A1, PONY B)
46 [(TPPA, TPPĂ , PONY A1),(TPPB1, PONY A1,PONY B)̆] (TPPB1, PONY A1, PONY B)̆
47 [(TPPA,TPPĂ , PONY A1),(TPPB1,PONY A1̆ ,PONXB1)] (TPPB1,PONY A1̆ ,PONXB1)
48 [(TPPA,TPPĂ , PONY A1),(TPPB1,PONY A1̆ ,PONXB2)] (TPPB1,PONY A1̆ ,PONXB2)
49 [(TPPA,TPPĂ , PONY A1),(TPPB1,PONY A1̆ ,PONY B)̆] (TPPB1,PONY A1̆ ,PONY B)̆
50 [(TPPA,TPPĂ , PONY A1),(TPPB1, PONY A1,H)̆] (TPPB1, PONY A1, H)̆
51 [(TPPA,TPPĂ , PONY A1),(TPPB2, PODZ, PONY A1̆)] (TPPB2, PODZ, PONY A1̆)
52 [(TPPA, TPPĂ , PONY A2),(TPPB1, PONY A2, NTPP)] (TPPB1, PONY A2, NTPP)
53 [(TPPA,TPPĂ , PONY A2),(TPPB1,PONY A2̆ ,NTPP)] (TPPB1,PONY A2̆ ,NTPP)
54 [(TPPA,TPPĂ , PONY A2),(TPPB1, PONY A2, PONXB1)] (TPPB1, PONY A2, PONXB1)
55 [(TPPA,TPPĂ , PONY A2),(TPPB1, PONY A2, PONXB2)] (TPPB1, PONY A2, PONXB2)
56 [(TPPA,TPPĂ , PONY A2),(TPPB1, PONY A2, PONY B)] (TPPB1, PONY A2, PONY B)
57 [(TPPA,TPPĂ , PONY A2),(TPPB1, PONY A2,PONY B)̆] (TPPB1, PONY A2,PONY B)̆
58 [(TPPA,TPPĂ , PONY A2),(TPPB1,PONY A2̆ ,PONXB1)] (TPPB1,PONY A2̆ ,PONXB1)
59 [(TPPA,TPPĂ , PONY A2),(TPPB1,PONY A2̆ ,PONXB2)] (TPPB1,PONY A2̆ ,PONXB2)
60 [(TPPA,TPPĂ , PONY A2),(TPPB1,PONY A2̆ ,PONY B)] (TPPB1,PONY A2̆ ,PONY B)
61 [(TPPB1, TPPB2, TPPA),(TPPA, PONXA2, PONY B)] (TPPA, PONXA2, PONY B)
62 [(TPPA, TPPB1, TPPA),(TPPA, TPPB2, TPPA)] −−−−−−−−−−−−

Table B.5: Triggered pairs for the ECNB Splitting

APPENDIX B. TABLES AND FIGURES 67

Figure B.1: Constraint satisfaction checking interface

Figure B.2: Variables entered for constraint string

APPENDIX B. TABLES AND FIGURES 68

Figure B.3: Atomic relations for RCC8

Figure B.4: Constraint satisfied based on the RCC11 algebra

APPENDIX B. TABLES AND FIGURES 69

Figure B.5: Constraint not satisfied based on the RCC11 algebra

Bibliography

[1] Allen, J. F. : Maintaining knowledge about temporal intervals., Communications

of the ACM, 26(11), 832-843 (1983).

[2] Allen J.F., P.J. Hayes : A common sense theory of time., Proceedings 9th IJCAI,

Los Angeles, 528-531 (1985).

[3] Andréka, H. , Maddux, R. D. , and Nemeti, I. : Splitting in relation algebras,

Proceedings of The American Mathematical Society 111, (1991).

[4] Asher, N. and Vieu, L. : Toward a geometry of common sense: A semantics and

a complete axiomatization of mereotopology, In Mellish, C., editor, IJCAI 95,

Proceedings of the 14th International Joint Conference on Artificial Intelligence,

(1995).

[5] Bowman, C. L. : A calculus of individuals based on ‘connection’, Notre Dame J.

Formal Logic 22, pp. 204-218, (1981).

[6] Bennett, B. : Logical Representations for Automated Reasoning about Spatial

Relationships , PhD thesis, University of Leeds, UK, (1998).

[7] Cohn, A. G., Bennett, B., Gooday, J. and Gotts, N. M. : Representing and

reasoning with qualitative spatial relations about regions, In O. Stock (Ed.),

Spatial and Temporal Reasoning, (Stock, O. , ed.), Kluwer, IRST, pp. 97-134,

(1997).

[8] Cohn, A. G. : Qualitative spatial representation and reasoning techniques. Re-

search report, School of Computer Studies, University of Leeds, (1997).

[9] Clarke, B. L. : A calculus of individuals based on connection., Notre Dame

Journal of Formal Logic 22, pp. 204-218, (1981).

70

BIBLIOGRAPHY 71

[10] Cui, Z., Cohn, A.G., Randell, D.A. : Qualitative and topological relation-ships in

spatial databases D. Abel and B. C. Ooi (Eds.), Advances in Spatial Databases,

Vol. 692 of Lecture Notes in Computer Science, Springer Verlag, Berlin, pp.

293-315, (1993).

[11] de Morgan, A. : On the syllogism: IV, and on the logic of relations., Transactions

of the Cambridge Philosophical Society 10, pp. 331-358, (1860).

[12] Düntsch, I. and Winter, M. : A representation theorem for boolean contact

algebras, Theoretical Computer Science 347, pp. 498-512, (2003).

[13] Düntsch, I. and Winter, M. : Weak contact structures, Relational Methods in

Computer Science, pp. 73-82, (2005).

[14] Düntsch, I. , Wang, H. , and Mccloskey, S. : Relations algebras in qualitative

spatial reasoning, Fundamenta Informaticae, pp. 229-248, (2000).

[15] Düntsch, I. , Wang, H. , and Mccloskey, S. : A relation - algebraic approach

to the region connection calculus, Theoretical Computer Science 255, pp. 63-83,

(2001).

[16] Düntsch, I. : Relation algebras and their application in temporal and spatial

reasoning, Artificial Intelligence Review 23, pp. 315-357, (2005).

[17] Düntsch, I. , Schmidt, G. , and Winter, M. : A necessary relation algebra for

mereotopology, Studia Logica - An International Journal for Symbolic Logic 69,

pp. 381-409, (2001).

[18] Düntsch, I. and Winter, M. : The lattice of contact relations on a boolean

algebra, Relational Methods in Computer Science, pp. 99-109, (2008).

[19] Düntsch, I. and Winter, M. : Algebraization and representation of mereotopo-

logical structures,, Relational Methods in Computer Science, (2004).

[20] Düntsch, I. , Wang, H. , and Mccloskey, S. : Relations algebras in qualitative

spatial reasoning, Fundamenta Informaticae 39, pp. 229-248, (1999).

[21] Dimov, G. and Vakarelov, D. : Contact algebras and region-based theory of

space, Proximity approach - ii, Fundamenta Informaticae 74, pp. 251-282, (2006).

[22] De Laguna, T. : Point, line and surface as sets of solids., The Journal of Philos-

ophy 19, pp. 449-461, (1922).

BIBLIOGRAPHY 72

[23] Egenhofer, M. and Franzosa, R. : Point-set topological spatial relations, Inter-

national Journal of Geographic Information Systems 5, pp. 161-174, (1991).

[24] Egenhofer, M. and Sharma, J. : Topological consistency, In Fifth International

Symposium on Spatial Data Handling, Charleston, SC. (1992).

[25] Egenhofer, M. : Deriving the composition of binary topological relations, Journal

of Visual Languages and Computing 5, pp. 133-149, (1994).

[26] Egenhofer, M. and Sharma, J. : Assessing the consistency of complete and in-

complete topological information, Geographical Systems 1, pp. 47-68, (1993).

[27] Egenhofer, M. J. : Reasoning about binary topological relations, Symposium on

Large Spatial Databases, pp. 143-160, (1991).

[28] Egenhofer, M. J. and Sharma, J. : Topological consistency, University of South

Carolina, Columbia, SC, (1992).

[29] Egenhofer, M.J. : Reasoning about binary topological relations., Advances in

Spatial Databases, Springer, New York, pp. 143-160, (1991).

[30] Henkin, L. , Monk, J. D. , and Tarski, A. : Cylindric algebras, Studies in logic

and the foundations of mathematics, no. v. 2, North-Holland Pub. Co., (1985).

[31] Hayes P.J. : Naive physics I: Ontology for liquids., J.R. Hobbs and B. Moore

(Eds.) Formal Theories of the Commonsense World, Ablex, pp. 71-89, (1985).

[32] Hayes P.J. : The second naive physics manifesto, J.R. Hobbs and B. Moore

(Eds.) Formal Theories of the Commonsense World, Ablex, pp. 1-46, (1985).

[33] http://hackage.haskell.org/platform/windows.html.

[34] http://sourceforge.net/projects/mingw/files/

[35] http://ftp.gnome.org/pub/GNOME/binaries/win32/dependencies/

[36] http://ftp.gnome.org/pub/GNOME/binaries/win32/glade3/3.6/glade3-3.6.6-

with-GTK+.exe.

[37] Jochen Renz, Gérard Ligozat : Weak Composition for Qualitative Spatial and

Temporal Reasoning, Principles and Practice of Constraint Programming, Vol-

ume 3709, pp. 534-548, (2005).

BIBLIOGRAPHY 73

[38] Jonsson, B. and Tarski, A. : Boolean algebras with operators part ii, Amer,

Journal of Mathematics 73, pp. 127-162, (1952).

[39] Maddux, R. D. : Some varieties containing relation algebras, Transactions of

The American Mathematical Society 272, pp. 501-501, (1982).

[40] Maddux, R. D. : Finite integral relation algebras, Proceedings of a Conference

held at Charleston 1149, pp. 175-197, (1985).

[41] Maddux, R. D. : Relation algebras: Studies in logic and the foundations of

mathematics, vol. 150, Elsevier Science, (2006).

[42] Mormann, T. : Holes in the region connection calculus, Preprint, Presented at

RelMiCS 6, Oisterwijk ,(2001).

[43] Montanari, U. : Networks of constraints :Fundamental properties and applica-

tions to picture processing., Information Sciences 7, pp. 95-132,(1974).

[44] Németi, I. : Algebraizations of quantifier logics, Studia Logica, 50. :485-

569 (1991). Updated version 12.1 (January 1997) is available from ftp.math-

inst.hu/pub/ algebraic-logic/survey.ps.

[45] Pratt, I. and Schoop, D. : Expressivity in polygonal, plane mereotopology, Jour-

nal of Symbolic Logic, 65(2), pp. 822-838. (2000).

[46] P.J. Hayes: The naive physics manifesto, D. Mitchie (Ed.) Expert systems in the

micro-electronic age, Edinburgh University Press, (1979).

[47] Pratt, I. and Schoop, D. : A complete axiom system for polygonal mereotopology

of the real plane., Journal of Philosophical Logic, 27(6), pp. 621-658, (1998).

[48] Randell, D. A. and Cohn, A. G. : Modelling topological and metrical properties

in physical processes, Principles of Knowledge Representation and Reasoning,

pp. 357-368, (1989).

[49] Randell, D. A. , Cui, Z. , and Cohn, A. G. : A spatial logic based on regions and

connection, Principles of Knowledge Representation and Reasoning, pp. 165-176,

(1992).

[50] Siddavaatam, P.: Generating Relation Algebras for Qualitative Spatial Reason-

ing, Maste’s Thesis, Department of Computer Science, Brock University, St.

Catharines, Ontario, (2011).

BIBLIOGRAPHY 74

[51] Siddavaatam, P. , and Winter, M.: Splitting atoms in relation algebras, Proceed-

ings of the 12th international conference on Relational and algebraic methods.

:331-346 (2011).

[52] Tarski, A. and Givant, S. : A formalization of set theory without variables,

American Mathematical Society, (1996).

[53] Tarski, A. : On the calculus of relations, Journal of Symbolic Logic 6, pp. 73-89,

(1941).

[54] Trudel, André : Interval Algebra Networks with Infinite Intervals, 16th Inter-

national Symposium on Temporal Representation and Reasoning, pp. 141-146,

(2009).

[55] Vakarelov, D. , Dimov, G. , Düntsch, I. , and Bennett, B : A proximity approach

to some region-based theories of space, Journal of Applied Non-classical Logics

12, pp. 527-559, (2002).

[56] Varzi, A. C. : Parts, wholes, and part-whole relations, The prospect of

mereotopology Data Knowledge Engineering, 20, pp. 259-286, (1996).

[57] Winter, M. : Relation algebras are matrix algebras over a suitable basis, Tech.

Report 1998-05, UBwM, (1998).

[58] Whitehead, A.N. : Process and reality., New York: MacMillan. (1929).

[59] Yongming, Li. , Sanjiang, Li. and Mingsheng, Ying : Relational reasoning in the

Region Connection Calculus., eprint arXiv:cs/0505041. (2005).

