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Abstract

In this paper we study the extended Tanh method to obtain some
exact solutions of KdV-Burgers equation. The principle of the Tanh
method has been explained and then apply to the nonlinear KdV-
Burgers evolution equation. A finite power series in tanh is considered
as an ansatz and the symbolic computational system is used to obtain
solution of that nonlinear evolution equation. The obtained solutions
are all travelling wave solutions.
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1 Introduction

Travelling waves are conspicuous in many linear equations and nonlinear mod-
eling of waves, for example, sound wave, string wave, water wave etc. The
nonlinear KdV(Korteweg-de Vries) equation is a famous model[2] of water
wave with long wave and small but finite amplitude. This equation admits
the permanent travelling wave solutions. Besides many nonlinear models of
wave can be found in different physical problems which satisfy different travel-
ling waves. Let us consider one dimensional linear wave equation, as a simple
example, that admits travelling waves:

∂2u

∂t2
= c2

∂2u

∂x2
(1)

where c > 0 denotes speed of the wave and u is a function of spatial variable x
and time variable t usually describe amplitude of the wave. The equation has
the general solution of the form

u(x, t) = f(x− ct) + g(x+ ct) (2)
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The functions f(x − ct) and g(x + ct) describe the right and the left moving
waves respectively with a constant speed c > 0 . The wave f(x − ct) can be
observed with a new system of co-ordinates (x′, t′) so that x = 0 at t = 0. At
time t , the position x of the wave is ct , since c is a speed of the wave, i.e.
x = ct . Then the new co-ordinate is (x′ = x + ct, t′ = t) . Its mean that the
wave moves to the distance (x+ ct) at time t.

If we draw the solution f(x − ct) with a constant speed c = 2 , we will get
the following figure which shows the right moving wave at different values of
t. The figure shows that at t = 0 the spatial space x = 0 and at t = 5 and 10
the wave moves at right direction at a distance x = 10 and 20 respectively.

Fig.1: Right travelling wave at different values of t with constant speed c = 2

Similarly, the solution g(x + ct) ,with constant speed c = 2, have the fol-
lowing left direction travelling wave which also moves at a distance x = −10
and −20 when t = 5 and 10 respectively .

Fig.2: Left travelling wave at different values of t with constant speed c = 2

In other words, a travelling wave is a wave in which the medium moves
in the direction of propagation of the wave[9]. Such waves arise in the study
of nonlinear differential equations where waves are represented by the form
u(x, t) = f(x− ct) , where u is a disturbance moving in the negative or posi-
tive x direction if c < 0 or c > 0 or respectively. If the travelling solution u(x, t)
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depends only on the difference between the two coordinates of partial differ-
ential equations, then the solution keeps its exact shape as it was originally. If
the transition from the asymptotic state at ξ = −∞ to the other asymptotic
state at ξ =∞ of a travelling wave is localized in ξ , where ξ = x− ct , then
it is also called solitary wave.

In this paper our aim is to find some traveling wave solutions of KdV-Burgers
equation using the extended Tanh method. The KdV-Burgers equation[6] is
read of the form:

ut + 2uux − λuxx + βuxxx = 0, (3)

where β and λ > 0 are constants and u is a function of spatial variable x and
time variable t. The equation combines nonlinearity uux , linear dispersion
uxxx and dissipation uxx. This is a well known nonlinear model of viscous
elastic medium and is found in many physical phenomena.

2 Extended Tanh Method

The standard Tanh method was first developed in 1996 by Milfliet and Herman
[11] where they used tanh as a new variable since all derivatives of a tanh are
represented by tanh itself. The method explains that if we take a travelling
wave variable ξ = x − ct so that dependent variable u(x, t) = u(ξ) , then it
converts any partial differential equation(PDE)

P (u(x, t), ut, ux, uxx, uxxx, .........) = 0 (4)

to an ordinary differential equation(ODE)

F (u(ξ),
du

dξ
,
d2u

dξ2
,
d3u

dξ3
, ............) = 0 (5)

The ODE (5) can be integrated as many time as all terms contains derivatives
and one can set integration constant to zero[11] since u(ξ), du

dξ
, d

2u
dξ2
, d

3u
dξ3
, ...→ 0

as ξ → ±∞.

Suppose we introduce a transformation of independent variable ξ as

Y = tanh(kξ) and ξ = x− ct (6)

where, k is the number of waves and c is the speed of wave.
Then,

d

dξ
= k(1− Y 2)

d

dY
(7)
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d2

dξ2
= k2(1− Y 2)2

d2

dY 2
− 2k2Y (1− Y 2)

d

dY
(8)

d3

dξ3
= k3(1− Y 2)3

d3

dY 3
− 6k3Y (1− Y 2)2

d2

dY 2
− 2k3(1− Y 2)(1− 3Y 2)

d

dY
(9)

and so on.

The tanh method admits the solution for PDE (4) of the form:

u(ξ) =
M∑
i=0

AiY
i +

M∑
j=1

BjY
−j (10)

where M to be determined by

M + r = nM (11)

as balancing the highest order (r) of linear terms with the highest order (n)
of nonlinear term in the resulting ODE. Here Ai, Bj are real parameters. Now
putting (10) into (5) and equating the coefficients of Y of the resulting system
to zero, one have many algebraic equation with unknowns Ai, Bj and c . Solv-
ing these algebraic equations for the unknowns, we can find exact solutions of
(4).

3 Tanh Method In KdV-Burgers Equation

We rewrite the KdV-Burgers equation (3) in the following form for our conve-
nience:

ut + (u2)x − λuxx + βuxxx = 0, (12)

Suppose that ξ = x − ct be a moving co-ordinate with speed c, and u(x, t) =
u(ξ) represent the wave solutions. Then using these transformations to the
PDE (3) we can find an ordinary differential equation (ODE).

The resultant ODE is

−cdu
dξ

+
d

dξ
(u2)− λd

2u

dξ2
+ β

d3u

dξ3
= 0 (13)

Integrating once we have

−cu(ξ) + u2 − λdu
dξ

+ β
d2u

dξ2
= 0 (14)

We set integration constant to zero as described before and since this is a
nonlinear travelling wave equation. According to the Tanh method, from the
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equation (14), we have M = 2.

Let us consider the solution of KdV-Burgers equation is of the form:

u(ξ) =
2∑
i=0

AiY
i +

2∑
j=1

BjY
−j, (15)

where Y = tanh(kξ), k is the number of waves and ξ = x− ct.

Putting (15) in (14) and equating the coefficients of powers of Y to zero,
we have a system of many algebraic equations, where c, λ, β, k 6= 0.

4 Solutions Set of Parameters

Solving, by MAPLE, the algebraic equations found in the section-3, there exist
sixteen set solutions of the parameters. But for A0 = A1 = A2 = B1 = B2 = 0
and A1 = A2 = B1 = B2 = 0 the KdV-Burgers equation has some trivial
solutions and we ignore these solutions. The twelve non-trivial solution sets
for coefficients of (15) are given below:
Set-1:

A0 = − 3λ2

50β
,A1 = A2 = 0, B1 = − 3λ2

25β
,B2 = − 3λ2

50β
, c = − 6λ2

25β
, k =

λ

10β

Set-2:

A0 =
9λ2

50β
,A1 = A2 = 0, B1 = − 3λ2

25β
,B2 = − 3λ2

50β
, c =

6λ2

25β
, k =

λ

10β

Set-3:

A0 = − 9λ2

50β
,A1 = B1 = − 3λ2

50β
,A2 = B2 = − 3λ2

200β
, c = − 6λ2

25β
, k =

λ

20β

Set-4:

A0 =
3λ2

20β
,A1 = B1 = − 3λ2

50β
,A2 = B2 = − 3λ2

200β
, c =

6λ2

25β
, k =

λ

20β

Set-5:

A0 = − 9λ2

100β
,A1 = B1 =

3λ2

50β
,A2 = B2 = − 3λ2

200β
, c = − 6λ2

25β
, k = − λ

20β

Set-6:

A0 =
3λ2

20β
,A1 = B1 =

3λ2

50β
,A2 = B2 = − 3λ2

200β
, c = − 6λ2

25β
, k = − λ

20β
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Set-7:

A0 = − 3λ2

50β
,A1 = A2 = 0, B1 =

3λ2

25β
,B2 = − 3λ2

50β
, c = − 6λ2

25β
, k = − λ

10β

Set-8:

A0 =
9λ2

50β
,A1 = A2 = 0, B1 =

3λ2

25β
,B2 = − 3λ2

50β
, c =

6λ2

25β
, k = − λ

10β

Set-9:

A0 = − 3λ2

50β
,A1 =

3λ2

25β
,A2 = − 3λ2

50β
,B1 = B2 = 0, c = − 6λ2

25β
, k = − λ

10β

Set-10:

A0 =
9λ2

50β
,A1 =

3λ2

25β
,A2 = − 3λ2

50β
,B1 = B2 = 0, c =

6λ2

25β
, k = − λ

10β

Set-11:

A0 = − 3λ2

50β
,A1 = − 3λ2

25β
,A2 = − 3λ2

50β
,B1 = B2 = 0, c = − 6λ2

25β
, k =

λ

10β

Set-12:

A0 =
9λ2

50β
,A1 = − 3λ2

25β
,A2 = − 3λ2

50β
,B1 = B2 = 0, c =

6λ2

25β
, k =

λ

10β

5 Some Exact Solutions

Each solution set of the parameters described above section gives an exact
solution of KdV-Burgers equation. But set-1 and set-7 of section-3 give the
same solution and similar cases arise for the pair of set 2 and 8, 3 and 5, 4 and
6, 9 and 11, 10 and 12. Thus we have 6 exact solutions of the KdV-Burgers
equation which are as follows:
Solution-1:

u1(x, t) = − 3λ2

50β

[
1 + 2 coth

(
λ

10β
x+

3λ3

125β2
t

)
+ coth2

(
λ

10β
x+

3λ3

125β2
t

)]
Solution-2:

u2(x, t) =
3λ2

50β

[
3− 2 coth

(
λ

10β
x− 3λ3

125β2
t

)
− coth2

(
λ

10β
x− 3λ3

125β2
t

)]



Some travelling wave solutions of KdV-Burgers equation 1059

Solution-3:

u3(x, t) =− 3λ2

200β

[
6 + 4 tanh

(
λ

20β
x+

3λ3

250β2
t

)
+ tanh2

(
λ

20β
x+

3λ3

250β2
t

)
+ 4 coth

(
λ

20β
x+

3λ3

250β2
t

)
+ coth2

(
λ

20β
x+

3λ3

250β2
t

)]
Solution-4:

u4(x, t) =
3λ2

200β

[
10− 4 tanh

(
λ

20β
x− 3λ3

250β2
t

)
− tanh2

(
λ

20β
x− 3λ3

250β2
t

)
− 4 coth

(
λ

20β
x− 3λ3

250β2
t

)
− coth2

(
λ

20β
x− 3λ3

250β2
t

)]
Solution-5:

u5(x, t) = − 3λ2

50β

[
1 + 2 tanh

(
λ

10β
x+

3λ3

125β2
t

)
+ tanh2

(
λ

10β
x+

3λ3

125β2
t

)]
Solution-6:

u6(x, t) =
3λ2

50β

[
3− 2 tanh

(
λ

10β
x− 3λ3

125β2
t

)
− tanh2

(
λ

10β
x− 3λ3

125β2
t

)]
All the six solutions are travelling wave solutions. Some of them(1,3,5) are left
travelling and rest of them(2,4,6) are right travelling wave solutions.

6 Concluding Remark

Using extended Tanh method KdV-Burgers equation has six exact solutions
which describe six different travelling waves with different speeds and frequen-
cies. The main advantage of this method is that one can use MAPLE or
Mathematica easily for computing tedious calculation. The Tanh method is
a powerful tool for solving nonlinear partial differential equation. It is more
reliable and efficient method to handle nonlinear partial differential equation.
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