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Abstract

Hub Location Problems play vital economic roles in transportation and telecommuni-

cation networks where goods or people must be efficiently transferred from an origin

to a destination point whilst direct origin-destination links are impractical. This work

investigates the single allocation hub location problem, and proposes a genetic algo-

rithm (GA) approach for it. The effectiveness of using a single-objective criterion

measure for the problem is first explored. Next, a multi-objective GA employing var-

ious fitness evaluation strategies such as Pareto ranking, sum of ranks, and weighted

sum strategies is presented. The effectiveness of the multi-objective GA is shown

by comparison with an Integer Programming strategy, the only other multi-objective

approach found in the literature for this problem. Lastly, two new crossover operators

are proposed and an empirical study is done using small to large problem instances

of the Civil Aeronautics Board (CAB) and Australian Post (AP) data sets.
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Chapter 1

Introduction

Hub location problems occur in real life situations when goods or people are trans-

mitted from one location to another through specialized processing centers. The

processing centers direct and facilitate the efficient flow of the data. In these situ-

ations, a direct communication between the sender and the recipient is impractical,

thus, the need for processing centres. The processing centers are called hubs, while

the sending and receiving locations are known as spokes. Usually, the locations are

in a network where a subset of them are chosen to serve as hubs, and the remaining

nodes are assigned to each chosen hub. Such a network is termed a Hub-and-Spoke

Network and form a HLP. The main objective in this network is to efficiently con-

struct a low-cost network that allows for faster transmission of data. This usually

involves determining the optimal number of hubs, efficiently locating the hubs, and

allocating the non-hub nodes to the hubs. Hub location problems find applications in

many areas. Examples of real life applications of HLPs include passenger airlines [5],

supply-chain industry [2], telecommunication systems [28], message delivery networks

[21], trucking industry [35], among others.

Different variants of HLPs exist such as the single allocation HLPs where a spoke

is allocated to exactly one hub [15, 14, 26]; multiple allocation HLPs where a spoke

can be assigned to one or more hubs [16, 13]; dynamic allocation HLPs in which a

spoke is assigned to a hub when the need arises [10]; p-hub Median HLPs where the

number of hubs to be chosen is fixed [16, 32, 34], and so on. This thesis investigates

both the uncapacitated and the capacitated SAHLP. In the uncapacitated SAHLP

(USAHLP), incoming and outgoing traffic flow at hubs are unlimited [6, 25, 32, 36, 22],

e.g., the passenger transport system. On the other hand, for the capacitated SAHLP

(CSAHLP), the amount of traffic flows at a given hub is restricted to the capacity

that hub can handle [33, 29, 12, 17], e.g., Postal Delivery System.

3



CHAPTER 1. INTRODUCTION 4

Due to the economic importance HLPs play in real life situations, various research

attention has been given to HLPs and a number of heuristics have been proposed in

literature to solve them. Some of these methodologies include the simulated anneal-

ing (SA) and random descent (RDH) [17]; Lagrangian Relaxation (LR) [11, 4]; ant

colony optimization (ACO) [29]; Genetic Algorithms (GA) [33, 34, 24]; integer linear

programming formulation [12], among others. Although these methodologies have

been able to solve problems instances of nodes sizes n ≤ 200, their results leave much

to be desired in terms of computational time and solution quality.

GAs are search meta-heuristics that model the concept of natural evolution by

encoding problem-specific solutions in a chromosome-like data structure and applying

the natural process of selection and recombination to evolve approximate solutions

for a given problem. GAs have been applied to many areas of research with success.

In the SAHLP, GAs have been applied to problem instances of nodes sizes n ≤
200 in [33, 34, 24] and obtained modest results. However, none of these GAs has

been applied to the newly introduced larger AP problems of node sizes 300 and 400.

Besides, there is no previous work on GA using a multi-objective approach to this

problem. In order to close these gaps, this thesis proposes two variants of GAs for

the problem. The first GA is applied for both the USAHLP and the CSAHLP and

uses a single objective criterion measure where the total network transportation cost is

minimized as traditionally found in the literature. It employs a list-based chromosome

representation [24], and proposes two new problem-specific crossovers that produce

efficient results. These new crossovers are the Best Cost Route Crossover, inspired by

[27, 28], and the Random Exchange Spoke Crossover. In addition, the GA employs

two other crossovers, thus, the Double Exchange Cluster Crossover, and the Multi-

cluster Exchange crossover from [24, 25] for a comparative study, and incorporates

three mutation operators, Shift Node [1, 36], Swap Hub [1, 36], and Replace Hub

[24, 25] mutations.

The other GA variant proposes a multi-objective approach to the CSAHLP and

it removes the capacity constraints, and instead, introduces the time to process flow

as the second objective measure in addition to the network transportation cost as the

first objective. This modification to the classical CSAHLP was introduced by [12]. No

previous work on GA in the literature has applied a multi-objective approach to this

problem. A comparative study for the GA with different multi-objective strategies

using Pareto Ranking, Sum of Ranks, and Weighted Sum is done.

Two well-known benchmark data sets are employed to test the performances of

the proposed GAs. These are the Civil Aeronautic Board (CAB) and Australian
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Post (AP) data sets. The CAB data set is based on air-traffic flows between cities

in the USA and its problem instances have node sizes n = 10, 15, 20, and 25. It is

uncapacitated by nature and hence used for benchmarking the USAHLP. The AP

data set on the other hand is based on postal districts in Australia. It has been used

as test data for both USAHLP and CSAHLP and includes problem instances of nodes

size n ≤ 200, while new larger instances of node sizes n = 300 and 400 have been

recently introduced for the USAHLP.

1.1 Summary of Research Motivation and Goals

In a summary, the main objectives of this thesis are:

1. implement a SOGA for the

• USAHLP capable of solving both small and larger instance data of the AP

and CAB Data Sets

• CSAHLP capable of solving both newer and larger instance data of the

AP Data set

2. implement a MOGA for the CSAHLP

3. implement two new crossover operators for the GAs and evaluate their effec-

tiveness, in addition to employing two others from previous work in order to

perform a comparative study.

1.2 Organization of Chapters

The remaining chapters are organized as follows. Chapter 2 provides background

information on HLPs and a review of past related works, GAs, and multi-objective

GA and Fitness Evaluation Strategies. Chapter 3 provides details of the design and

implementation of SOGA for SAHLP, while the experimental results of the SOGA for

USAHLP and CSAHLP respectively are provided in Chapters 4 and 5. In Chapter

6, the problem formulation and implementation of MOGA for the CSAHLP is pro-

vided, while its computational results are shown in Chapter 7. Chapter 8 provides

conclusions and future work.



Chapter 2

Background

This chapter provides background information on hub location problems, their classifi-

cation and formulation, and then a literature review of past research on the problem is

made afterwards. Lastly, an overview of genetic algorithms as well as multi-objective

genetic algorithms is discussed.

2.1 Hub Location Problems (HLPs)

HLPs are NP-hard [30] combinatorial optimization problems that are concerned with

constructing a cost-effective hub-and-spoke network. Constructing a fully connected

network that ensures traffic flow from any node can be transmitted to any other node,

and which guarantees high-speed connectivity among the nodes is expensive. As such,

in situations where a scalable network is required, a hub-and-spoke is employed. The

overall objective in HLPs, therefore, is to minimize the transportation cost. In a

hub-and-spoke network, the connections between hubs form a complete graph, and

there is no direct connectivity between any two given spokes thus strictly ensuring

that all traffic are routed through the respective hub(s). Given a set of nodes to

construct this network, the first step involves determining the number of nodes that

should serve as hubs, and then the next step involves locating these hubs. In the final

step, an efficient approach of allocating the remaining non-hub nodes (spokes) to the

located hubs is done.

Figure 2.1 illustrates a simple hub-and-spoke network. In this figure, hubs are

represented as squares, while spokes are represented as circles. As the figure depicts,

all the hubs are fully connected. For instance, if node i, which is connected to hub k,

is to transmit data to node j which is connected to hub l, it first sends it to its hub (k)

and indicates the destination node (j). When k receives it, it checks if j is connected

6
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Figure 2.1: Simple Hub-and-Spoke Network

to it or to a different hub. Since j is connected to l, k routes it to l. At l, it checks

for the destination node, j, and subsequently sends the data to j. HLPs are classified

into two main types. The first type constructs the hub-and-spoke network such that

a spoke is assigned to exactly one hub. This type is called SAHLP, and is shown

in Figure 2.1. In the second type, called the Multiple Allocation HLP (MAHLP), a

spoke can be assigned to more than one hub. Figure 2.2 illustrates a MAHLP.

Figure 2.2: MAHLP Network

This thesis concentrates on SAHLP, and in the following section, its formal de-

scription is provided.
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2.2 Single Allocation Hub Location Problem

As defined earlier, in a SAHLP network, a spoke is assigned to exactly one hub. Its

hubs are fully connected as depicted in Figure 2.3, and all inter-nodal flow takes place

through at least one hub, and at most two hubs.

Figure 2.3: SAHLP Network

Two types of SAHLP exist. One type places restrictions on the amount of

flow a given hub can receive and process, and is known as the capacitated SAHLP

(CSAHLP). A typical application CSAHLP is the postal delivery system (PDS). In

a PDS, mail is posted from various source locations (spokes) to destination locations

(spokes). First, the mail arrives at a processing center (hub) and is sorted to deter-

mine the destination locations. However, any given processing center has a capacity

limit within which it can receive and process mail at a given period. As a result, if this

capacity is exceeded, any additional mail would have to be redirected to a different

processing center whose capacity is not exceeded. In other words, there are capacity

restrictions at the hubs beyond which no flow could be accepted and processed. The

second type of SAHLP has no restrictions on the amount of flow hubs can receive, and

is known as the uncapacitated SAHLP (USAHLP). The passenger transport system

is a typical example. No passenger is redirected to another place since there are no

limitations on the number of passengers to be serviced.

Irrespective of the type of SAHLP, the main objective is to form a hub-and-spoke

network that yields a minimal cost such that every node in the network is either a

hub or a spoke and the number of nodes to be chosen as hubs is not known.
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2.2.1 Formal Problem Definition

The overall objective for a SAHLP is to find a minimum cost transportation network

and this cost is made up of two components.

1. Internodal flow cost: the cost of sending data from a source node to a des-

tination node in the hub-spoke network. There are three components of this

cost:

(a) The Collection Cost (χ): the cost of transporting flow from an origin node

to its hub (spoke-to-hub flow cost).

(b) The Transfer Cost (α): the cost incurred in sending flow from the origin

node’s hub to the destination node’s hub (hub-to-hub flow cost), and

(c) Distribution Cost (δ): the cost of flow from destination node’s hub to the

destination node. (hub-to-spoke flow cost)

2. The cost of establishing nodes as hubs. Depending on the problem, this

cost may be fixed for any node to be set up as a hub, or varies depending on

the chosen node. For instance, in the CAB data set, the hub establishment cost

is fixed irrespective of the node chosen as a hub, whereas with the AP data set,

this cost varies with the given nodes.

The above costs are assumed to be per unit distance of flow between the nodes.

If node (spoke) i in Figure 2.3 which is connected to hub j, is to transmit flow,

Wij, to node (spoke) l connected to hub k, then the internodal flow cost is given

as in Equation (2.1). In this equation, χ, α, and δ are the collection, transfer, and

distribution costs coefficients respectively.

Cijkl = Wij(χ× dik + α× dkl + δ × dlj) (2.1)

In the formulations that follow, let the flow from node i to node j through hubs

k and l be Wij; the number of nodes in the given network be n; the distance from

node i to node j be dij; the cost per unit flow from node i to node j be Cij; the fixed

cost of establishing a hub at node k be Fk; Zik = 1 if node i is allocated to the hub

located at node k, and zero otherwise; the transfer cost be α; the collection cost be

χ; the distribution cost be δ; Xijkl be a decision variable that represents the fraction

of flow of traffic from node i to j through hubs k and l ; the capacity of hub k be Γk.

By O’Kelly’s Quadratic Integer Programming formulation [26], the cost of an optimal

network is given below.
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min
n∑

i=1

n∑
k=1

n∑
l=1

n∑
j=1

Wij(χ× dik + α× dkl + δ × dlj)Xijkl +
n∑

k=1

FkZkk (2.2)

Subject to:
n∑

k=1

n∑
l=1

Xijkl = 1, ∀i, j ∈ n, (2.3)

Zik ≤ Zkk,∀i, k ∈ n, (2.4)

n∑
j=1

n∑
l=1

(WijXijkl + WjiXjilk) = (Oi +Di)Zik,∀i, k ∈ n, (2.5)

n∑
i=1

OiZik ≤ ΓkZkk, ∀i, k ∈ n, (2.6)

Zik ∈ {0, 1}, ∀i, k ∈ n, (2.7)

0 ≤ Xijkl ≤ 1 ∀i, j, k, l ∈ n, (2.8)

In the above formulations, Constraint (2.3) ensures all the traffic between an

origin-destination pair has been routed via the hub sub-network; Constraint (2.4)

prevents non-hub nodes from being allocated to other non-hub nodes and Constraints

(2.5) and (2.6) restrict the commodity flow through each hub by ensuring their ca-

pacities are not exceeded

2.3 Previous Work

A summary of previous work on both USAHLP and CSAHLP is provided here.

2.3.1 Previous work on USAHLP

Abdinnour-Helm [1] proposed a hybrid heuristic called GATS, where a GA determined

the number and location of hubs, and a Tabu Search (TS) strategy assigned the spokes

to respective hubs. GATS employed a binary encoding representation for the GA part,

while Shift and Exchange moves techniques were used in the TS. According to this

work, a Shift move is where a spoke is randomly selected from one cluster and shifted
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to another randomly selected cluster, while an exchange move randomly selects a

spoke in a cluster, and makes that spoke a hub of that cluster and the original hub

is made a spoke. GATS reported an improvement over results found previously by

the same authors using a pure GA which used a distance-based assignment of spokes

to hubs; however, the authors have not made the results from their previous GA

available.

Abdinnour-Helm and Venkataramanan [3] proposed a new quadratic integer for-

mulation for the USAHLP and employed a branch-and-bound (B&B) procedure and

a genetic search in finding near optimal solutions. The B&B method was limited to

solving only smaller problems, while the genetic search was efficient in solving large

problems.

Topcuoglu et al. [36] proposed a GA for this problem and employed a one-point

crossover, and introduced two new mutation operators. Their approach was the first

to use the AP data set for this problem and reported improved results to some problem

instances.

Chen [9] proposed an SA, Tabu List (TL), and improvement procedures to the

USAHLP. The approach used SA to determine an upper bound for the number of

hubs, and located the hubs using a restricted single allocation exchange approach.

Naeem [24] proposed a GA solution and introduced two chromosome representa-

tions as well as three new problem-specific crossovers for the USAHLP.

Silva and Cunha [31] proposed a multi-start TS heuristic and a two-stage inte-

grated TS heuristic to solve this problem. They generated new larger AP problem

instances of node sizes 300 and 400 for this problem.

In Filipovic et al. [18], a GA-inspired heuristic is proposed. The GA aspect

simultaneously finds the number and location of hubs, whiles a B&B procedure is

used to allocate spokes to the respective hubs. Their approach also incorporates

caching techniques to improve computational performance.

Bailey et al. [6] proposed, for the first time, Particle Swarm Optimization (PSO)

to this problem, and provided results that compete with those found in literature.

2.3.2 Previous work on CSAHLP

Randall [29] proposed an ACO to this problem and employed four variations of the

ACO to explore various construction modelling of the problem as well as incorporated

local search heuristics to improve the solutions provided by the ACO approach. The

approach, however, was for small size networks only.
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In Ernst and Krishnamoorthy [17], a modified version of a Mixed Integer Linear

Programming (MILP) formulation developed by them in a previous work for p-hub

median problems is proposed. The new formulation used fewer variables and con-

straints, and they developed two separate heuristic algorithms based on SA and RDH

that provide an upper bound. The upper bound was then used to develop a B&B

solution method and their results analysis recommended RDH as suitable for small

to medium-sized problems, while for larger problems, SA should be used.

In Stanimirovic [33], a GA which employs mutation with frozen bits and a fine-

grained tournament selection strategy is proposed. The approach also incorporates

a modified one-point crossover and uses caching techniques to improve solutions. It

proved efficient in solving large problem instances.

Naeem [24] also proposed a GA solution and introduced two new chromosomes

representation as well as three new crossover operators for this problem.

Contreras et al. [11] proposed a Lagrangian Relaxation to this problem, and

extended their experiments to problem instances of node size n = 60, 70, 75, 90, 125,

150 and 175, in addition to the other node sizes of the AP data set.

2.3.3 Previous work on Multi-Objective Approach

Costa et al. [12] was the first to propose a multi-objective approach to CSAHLP. They

removed capacity constraints on CSAHLP formulation and instead introduced the

time to process flow at a hub as the second objective in addition to the transportation

cost and proposed an integer linear programming strategy for CSAHLP problem

instances of up to 40 nodes.

2.4 Genetic Algorithms (GAs)

GAs [19, 20, 23] are search meta-heuristics that simulate the natural process by which

individuals in a given population are randomly selected to reproduce through the use

of such genetic operators as crossover and mutation. The individuals selected for

reproduction are the fittest in the population. A population in a GA represents the

problem search space within which a solution is sought, and each individual in the

population is represented by a chromosome which can be translated into a solution in

the problem search space. The reproduction process produces new set of individuals

that replaces the old population, and this process continues iteratively until a stopping

criteria are met, and the solution returned. As a result of their robust nature, GAs



CHAPTER 2. BACKGROUND 13

have been successfully applied to many fields of research. In particular, the works of

[33, 24, 36, 25, 22, 34] have applied GAs to HLPs.

2.4.1 Simple GA Algorithm

Algorithm 1 outlines a simple GA. It starts by randomly creating a population of

individuals, otherwise known as chromosomes, that serve as potential solutions to the

problem.

Algorithm 1: Basic GA

Set GA parameters

Initialize random population

while termination criteria are not met do
Evaluate chromosome fitness

Select chromosomes to reproduce new population

Perform crossover on selected parents using crossover rate

Perform mutation on selected offspring using mutation rate

Replace old population with new population

end

2.4.2 Population Initialization

The individuals in the population are initially created here. There are many ways of

initializing the population; the commonly used method involves randomly creating

the individuals while ensuring that each created individual represents a potential

solution in the problem search space.

2.4.3 Fitness Evaluation

In order to determine the quality of each individual in the population, a function that

scores the individual in numerical value is employed. Ideally, the function converts

the individual into the potential solution of the problem, and then assigns a score

to it. In a minimization problem, solutions with smaller fitness scores are considered

best, while maximization problems consider higher scores as the best solutions to the

problem. This function is called the fitness function and its choice for a given problem

is mostly dependent on the problem’s objective.
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2.4.4 Fitness Based Selection

The selection process in GAs is where individuals are chosen for recombination in

the form of crossover and/or mutation. The selection is done based on the quality

of the individuals. This quality measure, known as fitness evaluation, influences an

individual’s chances of being selected for recombination: the better the quality, the

higher the chance of its selection. This encourages the traits of fitter individuals to

be transmitted into the next generations.

There are various types of selection strategies among which are tournament selec-

tion, roulette wheel, Boltzman selection, rank selection, steady state selection, and

so on. In a tournament selection strategy, a set of k individuals (k is the tourna-

ment size) is chosen from the population randomly and the best of these is selected

for recombination. Selection pressure is easily adjusted by changing the tournament

size. If the tournament size is large, weaker (less fit) individuals have a small chance

of being selected. On the other hand, a tournament size of 1 reduces the GA to a

random search.

2.4.5 Recombination

Recombination in a GA usually takes the form of crossover where two selected chro-

mosomes undergo reproduction to produce offspring by exchanging genes between

them. Different problems require different crossover types to be applied. A simple

crossover, called the one-point crossover, randomly chooses a point in a chromosome

string, and all genes after this point are exchanged between the chromosomes. This

process results in producing two offspring. The new offspring then form part of the

new population generated and replace the existing population as evolution continues.

Crossovers serve as the main genetic operator in any GA algorithm that are required

for evolution.

2.4.6 Mutation

Mutation normally takes the form of a random minor alteration of the genetic com-

position of a chromosome. Unlike crossovers which involve two chromosomes, during

mutation, one chromosome is involved and it produces one offspring after the alter-

ation process. Mutation guarantees that there is diversity in the solutions, and hence

minimizes stagnation in the solutions as evolution continues.
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2.4.7 Elitism

The concept of elitism is to avoid losing the fittest individual(s) in the population as

new generations are evolved by injecting into the new population the fittest individ-

ual(s) from the previous population. Such individual(s) are called the elites. Some

approaches to elitism exempts these elites from being selected for recombination af-

ter copying the elites to the new population, while other approaches allow the elite

populate to participate in selection process. In this work, the elite population are

allowed to participate in the selection process after they have been copied to the new

population.

2.4.8 Termination Criteria

In a GA algorithm, there are three (3) termination criteria. These are

1. The GA has executed for the generation span specified.

2. There is no improvement in the solution quality of the offspring for a certain

number of generations.

3. The best solution is obtained.

2.4.9 GA Parameters and Settings

GA parameters and settings form a crucial component in any GA process if good

solutions (near optimal) are to be found. Carefully fine-tuning these parameters and

settings are catalyst to obtaining better solutions and the vice-versa. Some of these

parameters and their settings are explained below.

• Population Size: The population size of a GA specifies how many potential

solutions (chromosomes) should be kept throughout the evolutionary process.

As new chromosomes are created through recombination, the old population is

replaced by these new population until a termination criteria is met. A large

population size tends to widen the problem search space making convergence

to the unique solution to take a longer period, and the vice-versa.

• Generation Span: This is the number of generations (iterations) that the GA

is set to run.
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• Crossover Rate: This is the probability of applying a crossover operator during

the creation of new individuals in the GA algorithm. Usually two individuals,

known as parents, are chosen for this operation to create offspring.

• Mutation Rate: The mutation rate specifies the probability of applying mutation

in a GA. Since the mutation process involves the random alterations of genes,

specifying a higher value for this parameter could reduce the GA to a random

search.

• Elitism Rate: This is the probability of applying elitism in the GA process.

It ensures that fitter individuals are preserved as the old generation is being

replaced by the newly created individuals during the evolutionary process.

2.5 Multi-objective Problem

A multi-objective problem has two or more objective measures that determine the

overall quality of the solutions produced. The objective measures sometimes do con-

flict with each other. As a result of these conflicts, optimizing one objective would

come at the expense of the other. In order to determine the overall fitness of an

individual, some fitness evaluation strategies are mostly employed depending on the

problem at hand, and also which strategy best suits the situation. Three of these

evaluation strategies are explained shortly.

2.5.1 Weighted Sum

Given a set of objective functions, f1, f2, . . . , fk, of a multi-objective problem, the

weighted sum evaluation strategy works by finding a weight parameter for each of the

objectives, and then adding them to obtain a single objective function. In Equation

2.9, w1, w2, . . . , wk are the weight parameters for the objective functions f1, f2, . . . , fk,

and fitness is the resulting fitness function.

fitness = w1 ∗ f1 + w2 ∗ f2 + · · ·+ wk ∗ fk (2.9)

Finding suitable weights is time-consuming and sometimes biased unless there is prior

knowledge of which objective is more important. This is a limitation of this evaluation

strategy.
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2.5.2 Pareto Ranking

The Pareto ranking strategy was named after an Italian economist Vilfredo Pareto.

The idea is to use the concept of dominance to score the individuals in a population

using ranks, and replace the raw fitness values with the ranks. Pareto ranking has

been applied successfully to multi-objective problems [19].

Based on Veldhuizen and Lamont [37], and considering the fact that MOGA is

tackling a minimization problem where smaller values are preferred, the following

definition is made:

Given a problem defined by a vector of objectives ~f = (f1, ..., fk) subject to

appropriate problem constraints, then vector ~u dominates ~v iff ~u � ~v, ∀i ∈ (1, ..., k) :

ui ≤ vi ∧ ∃i ∈ (1, ..., k) : ui < vi.

From the above definition, a vector is dominated if and only if another vector

exists which is better in at least one objective, and at least as good in the remaining

objectives

Using this strategy, the raw fitnesses of the individuals are converted into ranks,

and the appropriate selection criteria is applied using these ranks. The ranking of the

individuals is done by first going through the population to find individuals that are

non-dominated, and assigning a rank of 1 as their score. After being ranked, these

set of individuals are removed from the unranked population. In the second round

of iteration, the remaining unranked population is again checked for non-dominated

individuals, and the resulting individuals given rank 2, and subsequently removed

from the unranked population.

The process continues with each step’s non-dominated individuals each given a

rank of previous rank + 1 until the entire population has been ranked. Individuals

assigned rank 1 are non-dominated (best); i + 1 dominated by those of rank i, and

so on. The effect of the ranking is that, it stratifies the population into categories.

In order to know which individual in the list of rank 1 individuals is better than the

other, the raw fitness values have to be resorted to.

Algorithm 2 outlines how a given population is ranked using the Pareto Ranking

Scheme.

2.5.3 Sum of Ranks

The sum of ranks is another fitness evaluation technique employed for most multi-

objective problems. The strategy was proposed by Bentley and Wakefield [7]. The

motivation for its conception was an attempt to solve the limitations that higher di-
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Algorithm 2: Pareto Ranking Scheme Algorithm [27]

current rank ← 1
N ← pop size
m← N
while m ≥ 1 do

for i← 1 to m do
if ~vi is non-dominated then

rank(~vi)← current rank
end

end
for j ← 1 to m do

if rank(~vj) = current rank then
Remove ~vjfrom population
N ← N − 1

end

end
current rank ← current rank + 1
m = N

end

mensional multi-objective problems face in which Pareto Ranking struggles to provide

good results. It has, however, been successfully applied to small-dimension problems

as well by Bergen and Ross [8]. One major advantage of this strategy is that, it

eliminates outliers in the solutions [8].

For a given set of fitness vectors of an individual, the approach works as follows.

It first separately ranks each of the objectives by assigning rank 1 to individuals

with the best fitness score of that objective, rank 2 to the next best individuals,

until every individual has been ranked. This process is repeated for the rest of the

objective measures. After all the objectives have been ranked, the sum of all the

ranks is computed, and this gives the fitness score of the individual.

Two types of this approach exist. The first type works as explained above where

the raw ranks are summed to produce the overall score. The second type, called the

normalized sum of ranks, divides each of the ranks of a given objective by the sum

of all the ranks in that objective. This thesis uses the normalized sum of ranks since

it guarantees that the ranks are fairly and evenly distributed throughout the entire

population.

The resulting summed ranks then replaces the raw fitnesses of the individuals and

an appropriate reproduction selection strategy is applied using these ranks.

One major difference between the sum of ranks and weighted sum is that, the
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weighted sum adds the raw fitness scores of the various objectives of the individuals

after finding the weight parameters, unlike sum of ranks which first ranks the given

objective measures, before summing the ranks together.



Chapter 3

Single Objective Genetic

Algorithm for the Single Allocation

Hub Location Problem

This chapter discusses the design and implementation of the SOGA for SAHLP,

the chromosome representation and initialization, fitness evaluation, the selection

strategy, crossovers, and mutation.

SOGA starts by randomly initializing the population’s chromosomes where every

node has a potential of being made a hub. Each chromosome in the population is

transformed into a network of one or more clusters. After evaluating the fitnesses

of the chromosomes, evolution starts where a fitness-based selection strategy that

employs tournament selection with elite retaining model [19] is used for selecting

chromosomes for reproduction. Two new problem-specific crossover operators have

been proposed in addition to employing two others from previous works [24]. The

evolutionary process continues iteratively until a stopping criteria is met, at which

stage, SOGA stops and returns the best chromosome. Algorithm 3 outlines the

pseudocode for SOGA.

20
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Algorithm 3: SOGA for the SAHLP

Read problem instance data set

Set GA parameters

Randomly create initial population

while termination criteria are not met do
Evaluate fitnesses of individuals using Algorithm 4

Add elite individuals to new population using elitism rate

while the size of new population < population size do
Select chromosomes using tournament selection strategy

Perform crossover using crossover rate

Perform mutation using mutation rate

Add offspring to new population

end

Replace old population with new population

end

Return the best individual

3.1 Chromosome Representation and Initialization

A direct chromosome representation, known as the list-based representation [24], was

employed for encoding the chromosome. This representation scheme uses integers in

the range 1...n to represent the nodes in the given network, where n is the number

of nodes in the network. Here, a chromosome is represented as an array with length

equal to n. The indices of the array represent each of the nodes, and the array entries

are the hubs which the given nodes have been assigned to, while a hub is assigned to

itself in the array. For instance, if node k is a hub, then k is assigned to array index

k.

Figure 3.1 shows how a given network is encoded using the list-based representa-

tion. In this figure, there are 10 nodes, of which three are selected as hubs. The hubs

are 3, 4, and 6. As can be observed, nodes 5 and 7 are assigned to hub 6 forming

one cluster. A cluster in the context of this thesis is a group of nodes, including the

hub itself, that are assigned to a hub. In transforming this cluster to the list-based

representation, 6 (the hub) is the entrant to array indices 5 and 7, and since a hub is

assigned to itself, 6 is assigned to array index 6. The transformation process is shown

by the arrow in the diagram. The same transformation process is repeated for the

other two clusters in the network where nodes 10, 1 and 2, allocated to hub 4, have 4

as the entrant to their respective array indices, i.e, 10, 4, 1, and 2, and nodes 8 and
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9 allocated to hub 3.

Figure 3.1: List-based Chromosome Representation

During chromosomes initialization, three (3) main steps were followed. These are

determination of the number of potential hubs, location of these potential hubs, and

optimal allocation of spokes to the located hubs. In determining the number of hubs

to be used in the network, m, it is randomly selected in the range 2 ≤ m ≤ n/2.

After determining the number of potential hubs, the next step is to locate these hubs.

In our approach, any node has an equal potential of being made a hub. Therefore the

hubs were randomly chosen from the set of nodes until the required number of hubs

is met. The distance-based assignment of spokes rule was used in the the allocation

of spokes step. This rule ensures spokes are assigned to hubs that are closer to them

using their computed Euclidean distances. This process is repeated until all spokes

are assigned the chosen hubs. The final stage in the initialization process is a repair

step which re-assigns (demotes) stand-alone hubs to other hubs. Stand-alone hubs

are hubs that do not have any spoke assigned to them. In the case of CSAHLP,

the capacities of the hubs are checked, and if there is an excess flow in any hub,

the assigned spokes are re-assigned elsewhere until no excess flow exists. The above

initialization process is repeated until the required population size is obtained.

3.2 Fitness Evaluation

The weighted-sum fitness function was used and it computes the transportation cost

of flow through the entire network as shown in Equation 3.1. In this equation, the

cost of the internodal flow is the first term, while the second term denotes the hub
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establishment cost.

f(x) =
n∑

i=1

n∑
k=1

n∑
l=1

n∑
j=1

Wij(χ× dik + α× dkl+

δ × dlj)Xijkl +
n∑

k=1

FkZkk

(3.1)

Algorithm 4 shows how the computation of the fitness function in Equation 3.1

is done. In this algorithm, n is the number of nodes in the network; Wij represents

the flow from node i to node j through hubs hi and hj respectively; Hc(hub) is the

hub establishment cost of node hub; χ, δ, and α are respectively the collection, dis-

tribution and transfer cost of the network; hubList is the list of hubs in the given

chromosome.

Algorithm 4: Computing the fitness of a chromosome

Input: chromosome

Output: fitness

fitness← 0;

for i← 1 to n do

for j ← 1 to n do

fitness← fitness+Wij ∗ (χ ∗ di,hi
+ α ∗ dhi,hj

+ δ ∗ dhi,j);

end

end

foreach hub in hubList do

fitness← fitness+Hc(hub) ;

end

return fitness;

3.3 Recombination

The recombination operators employed are explained next.

3.3.1 Best Cost Route Crossover (BCRC)

The BCRC was inspired by the works of [27, 28] in Vehicle Routing Problems with

Time Windows. In these works, BCRC randomly chooses a route from each parent,
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and inserts the customers from the chosen routes at locations in the opposite child

that yields minimal (optimum) cost. This thesis modified BCRC for SAHLP and it

involves two main steps:

• random selection of a cluster from each parent, and

• optimal allocation of the nodes in the selected clusters at places which results

in minimal cost in the opposite children.

During the cluster selection stage, random hubs, h1 and h2, are chosen from both

parents, p1 and p2 respectively, and marked for exchange and their assigned spokes

are added to a re-assignment list. Hub h2 is then copied to child c1 if it is not an

existing hub in p1. The same operation is done for hub h1 to child c2.

The next stage is to allocate the nodes in the re-assignment list to cost-efficient

resulting clusters in the offspring. During this process, the spokes are randomly

selected from the re-assignment list, and the cost of allocating the selected spoke to

any cluster is computed. In computing this cost, a node from each cluster in the child

is randomly selected, and the transportation cost to and from these nodes is computed

for each possible allocation of the randomly selected node in the re-assignment list.

After estimating the optimal cost, the selected node is assigned to the hub of the node

which yielded the lowest cost. This process is repeated until all unallocated nodes

are assigned.

Algorithm 5 shows the pseudo-code for BCRC procedure and an illustration of

how two chromosomes undergo BCRC is shown in Figure 3.2. In Equation 3.2, the

function for computing the optimal cost in order assign a given node in the BCRC is

given. In this equation, i is the node to be assigned, while Ns is the set of nodes made

up of each randomly selected node from each of the clusters in the child solution. The

function computes the cost of transporting flow from the randomly chosen node in

the reassignment list to and from each node in Ns.

C(x) =
∑
j∈Ns

Wij(χ ∗ dik + α ∗ dkl + δ ∗ dlj) +Wji(χ ∗ djl + α ∗ dlk + δ ∗ dki) (3.2)
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Algorithm 5: The BCRC Algorithm

Input: Two parents

Output: Two children

foreach parent in Parents do
Randomly select a cluster

end

Copy parents to children excluding selected cluster from opposite parent

foreach child in children do

while there are nodes in selected cluster from opposite parent do
Randomly detach a node, randomNode

Randomly select a node each from the clusters of child, and add to Ns

Compute the cost of transporting flow from randomNode to and from

every node in Ns using Equation 3.2

Allocate randomNode to the hub of the node that yielded the minimum

cost from the above step of computation

end

if CSAHLP then

foreach hub in Hubs do
Check its capacity and reassign spokes to other hubs if exceeded

end

foreach hub in Hubs do
Check if it is standalone and demote if so

end

end

3.3.2 Random Exchange Spokes Crossover (RESC)

The RESC operator is proposed in this work. It randomly selects a cluster from each

of the mating parents, and swaps the spokes from the selected clusters. During the

swapping process, the spokes are randomly detached from the selected clusters, and

then allocated to the opposite child’s selected cluster until there are no more spokes in

the selected clusters. Missing nodes are allocated, and standalone hubs are demoted.

To illustrate how RESC works, consider two parents, P1 and P2 shown in Figure

3.3, selected for crossover, with P1 = {{2, 3, 4}, {5, 1, 6}} and P2 = {{3, 1, 2, 4},
{5, 6}}. The underlined nodes in these representation are the hubs for the respective

clusters. RESC is applied as follows.

1. Randomly select a cluster from P1, say, P1C1 = {2, 3, 4}, and a cluster from
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Figure 3.2: Illustration of the BCRC Operator

P2, say, P2C2 = {5, 6}.

2. Detach the spokes in P1C1 and add to a “to-be-assigned” nodes list, L1, and

repeat the same process for P2C2, L2. Thus, L1 = {3, 4}, and L2 = {6}.

3. Detach from P1, spokes that are in P2C2, and add to L1. If a spoke from P2C2 is

a hub in P1, it is not detached. The same process is repeated for P2. Duplicate

nodes in either lists are deleted as well as nodes that are hubs in destination

child. This step results in L1 = {3, 4, 6}, and L2 = {6, 4}.

4. Copy the genetic information of the P1 to its child, Ch1, and repeat this for P2

and its child, Ch2 and this results Ch1 = {{2}, {5, 1}}, and Ch2 = {{3, 1, 2},
{5}}.

5. Randomly allocate the nodes in L1 to P1C1 in Ch1, and then repeat this process

using L2 for P2C2 in Ch2.

6. For a CSAHLP, where a node to be allocated in step 5 will result in excess
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flow in the selected cluster’s hub, it is allocated to any other hub that yields an

optimal cost. Standalone hubs are demoted if any exists. The created children

are: Ch1 = {{2, 4, 3, 6}, {5, 1}}, and Ch2 = {{3, 1, 2}, {5, 6, 4}}.

Figure 3.3 illustrates the above processes.

Figure 3.3: Illustration of the Random Exchange Spokes Crossover

3.3.3 Double Cluster Exchange Crossover (DCEC)

The DCEC was introduced in [25, 24]. Given two parents, DCEC randomly selects

two clusters from one parent and inserts them into the offspring of the other parent,

and then repeats the same operation for the second parent. Duplicate nodes resulting

from the crossover operation are removed, and missing nodes are re-allocated to hubs

that are closest to them. For CSAHLP, if the capacity of any hub is exceeded, its

spokes are detached and re-allocated to other hubs until there is no excess flow.

The final process checks for the existence of standalone hubs and demotes them by

allocating those hubs to other hubs as spokes.

For illustration, consider two parents, P1 and P2, with P1 = {{4, 1, 2}, {3, 5,

9}, {8, 6, 7, 10}} and P2 = {{6, 1, 4}, {5, 9, 10}, {8, 7, 2, 3}} selected to undergo

a DCEC. The underlined nodes in these representation are the hubs for the various

clusters. The following steps illustrate how it works.
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1. Randomly select two clusters from P1, say, P1C2 = {3, 5, 9}, and P1C3 = {8,

6, 7, 10}, and repeat the same process for P2, say P2C1 = {6, 1, 4}, P2C2 = {5,

9, 10}.

2. Delete the randomly selected clusters from their respective parents, and then

copy the resulting parent’s genetic information to their respective children, Ch1

and Ch2. This gives Ch1 = {{4, 1, 2}} and Ch2 = {{8, 7, 2, 3}}.

3. Insert P2C1 and P2C2 into Ch1. If a spoke in these clusters is a hub in Ch1, the

spoke is detached, otherwise it is deleted from Ch1. If a hub from the clusters

is also a hub in Ch1, the two clusters are merged. The same process is repeated

for Ch2 using P1. These produce Ch1 = {{4, 1, 2}, {6, 1}, {5, 9, 10}}, and

Ch2 = {{8, 7, 2, 3, 6, 10}, {3, 5, 9}}.

4. Missing nodes are allocated to hubs that are closest. In the case of CSAHLP,

overflown hubs’ spokes are detached and allocated to other non-overflown clus-

ters until their capacity constraints are met. Standalone hubs (hubs without

any spoke assigned to them) are demoted (assigned as spokes to other hubs).

The created children are: Ch1 = {{4, 2, 3, 7}, {6, 1, 8}, {5, 9, 10}}, and Ch2

= {{8, 7, 2, 3, 6, 10}, {3, 5, 9, 1, 4}}.

The above DCEC operation is illustrated in Figure 3.4.

3.3.4 Multi-Cluster Exchange Crossover (MCEC)

The MCEC, also introduced in the works of [25, 24], was employed in this study. Ide-

ally, MCEC works the same as the DCEC except the number of clusters to be selected

from each parent for the crossover varies in the range 1 ≤ number of clusters ≤ n−1,

where n is the number of clusters in the given parent. It first randomly determines

the number of clusters to be selected, and then randomly selects this number from

the parent. The selected cluster(s) are inserted into the opposite parent’s child, and

the same operation repeated for the opposite parent.

As an illustration, consider two parents, P1 and P2, with P1 = {{4, 1, 2}, {3, 5,

9}, {8, 6, 7, 10}} and P2 = {{6, 1, 4}, {5, 9, 10}, {8, 7, 2, 3}} selected to undergo

a MCEC. The underlined nodes in these representation are the hubs for the various

clusters. The following steps illustrate how it works.

1. Randomly select one or more clusters from each parent. In P1, one cluster, P1C2

= {3, 5, 9}, was selected, while two clusters, P2C1 = {6, 1, 4}, P2C2 = {5, 9,

10}, were selected from P2.
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Figure 3.4: Illustration of the Double Cluster Exchange Crossover

2. Delete the randomly selected clusters from their respective parents, and then

copy the resulting parent’s genetic information to their respective children so-

lutions, say, Ch1, and Ch2. This produces Ch1 = {{4, 1, 2}, {8, 6, 7, 10}}, and

Ch2 = {{8, 7, 2, 3}}.

3. Insert P2C1 and P2C2 into Ch1. If a spoke in P2C1 and P2C2 is a hub in Ch1,

it is detached from its cluster before insertion, otherwise, it is detached from

Ch1. If a hub from either P2C1 or P2C2 is also a hub in Ch1, the two clusters

are merged. This process is repeated for Ch2 using P1C2. These produce: Ch1

= {{4, 2}, {6, 1}, {5, 9, 10}, {8, 7}} and Ch2 = {{8, 7, 2}, {3, 5, 9}}.

4. Missing nodes are allocated to hubs that are closest. In the case of CSAHLP,
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overflown hubs’ spokes are detached and allocated to other non-overflown clus-

ters until their capacity constraints are met. Standalone hubs are also demoted.

The created children are: Ch1 = {{4, 2, 3}, {6, 1}, {5, 9, 10}, {8, 7}}, and Ch2

= {{8, 7, 2, 6, 1}, {3, 5, 9, 4, 10}}.

The above processes of the MCEC are shown in Figure 3.5.

Figure 3.5: Illustration of the Multi-Cluster Exchange Crossover

3.4 Mutation

Three problem-specific mutation types were used probabilistically. These are Shift

Node [1, 36], Swap Hub [1, 36], and Replace Hub [24, 25] mutations. Figure 3.6

illustrates these mutations. They are further explained below.
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Figure 3.6: Illustration of the Three(3) Mutation Operators

3.4.1 Replace Hub Mutation

The Replace Hub mutation works by randomly selecting a cluster, and then demoting

the hub of that cluster to a spoke, and promoting a randomly selected spoke in the

cluster to become the hub of the cluster. For the CSAHLP, the capacity of the

randomly chosen spoke must be greater than its flow in order to receive additional

flow, else a spoke with higher capacity is chosen instead.

3.4.2 Swap Node Mutation

In a Swap Hub mutation, a random spoke each from two randomly selected clusters

are exchanged. It is only performed if a given chromosome has more than one cluster.

3.4.3 Shift Node Mutation

The Shift Node mutation randomly selects a spoke from a randomly chosen cluster,

and then allocates it to a different random cluster. This mutation is only performed

if there is more than one cluster in chromosome, and the spoke’s current cluster has

more than one node.
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3.5 Elitism

An elitism rate of 1% of the population was used. After the elite individuals were

copied into the next generation, they were not deleted from the current population.

This ensures that, during selection of chromosomes for reproduction, they also have

the chance of being selected.



Chapter 4

Computational Results of the

SOGA for the USAHLP

A detailed discussion and analysis of the experimental study of the SOGA for the

USAHLP proposed in Chapter 3 is provided here.

4.1 Experimental set-up

The proposed SOGA was implemented in Microsoft Visual C# and all experiments

performed on a 3GB Intel Core i3 64-bit Processor with speed 3GHz and 4GB RAM

on a Windows 7 Home Premium environment. Four types of experiments were carried

out with 50 runs for each problem instance as follows:

1. GA-BCRC - GA using BCRC

2. GA-RESC - GA using RESC

3. GA-DCEC - GA using DCEC

4. GA-MCEC - GA using MCEC

In each of the above experiments, any time mutation was to be applied, the Shift

Node mutation was used at the rate of 0.2, Swap Node mutation at 0.6, while replace-

hub mutation was used at the rate of 0.2. These rates were empirically determined.

4.1.1 GA Parameters

Table 4.1 shows the parameter settings that were empirically set for all the experi-

mentations.

33
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Table 4.1: GA Parameters for the SOGA
Parameter Value
Population Size 300
Generational Span 1000
Number of Runs 50
Elitism Rate 1%
Crossover Rate 80%
Mutation Rate 20%
Tournament Size 3

4.2 Benchmark Data set

The two most commonly used data set for benchmarking the USAHLP are the AP

[17] and CAB [26] data sets. These data sets are explained below.

4.2.1 CAB Data Set

CAB data set is based on the air traffic between 25 cities in the USA in the 1970s.

It has problem instances of node sizes n = 10, 15, 20, and 25 with its traffic flow

being symmetric (Wij = Wji). This data set does not have capacity restrictions on

the hubs, and also does not include fixed costs on nodes. As a result, it is used only

as test data for the USAHLP.

The collection (χ) and distribution (δ) unit costs for this data set are fixed at 1.0

whereas the transfer (α) cost varies at an interval of 0.2 for the range 0.2 ≤ α ≤ 1.

Moreover, the cost of establishment of any node as a hub is fixed unlike the AP data

set. The establishment cost vary at an interval of 50 for the range 100 ≤ f ≤ 250.

4.2.2 AP Data Set

The AP data set was introduced by Ernst and Krishnamoorthy [17]. Each node in

this data set denotes a postal district with their geographical coordinates and flow

volumes in Australia. The AP data set has two versions: capacitated and uncapaci-

tated. Since this chapter is concerned with the uncapacitated SAHLP, we discuss the

uncapacitated version of the AP data set.

Two types of fixed costs exist for the uncapacitated AP data set: tight/high

cost (T), and loose/low cost (L). Problems of type T are difficult to solve. Each

problem with nodes size n has two instances: L, and T. In general, problems of

the uncapacitated AP data set are denoted as nF where n is the problem instance’s

nodes size, and F is the fixed cost type. A problem instance denoted 10T means, a
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tight-cost (T) problem instance with nodes size 10. The collection (χ), transfer (α),

and distribution (δ) costs coefficients are respectively 3, 0.75 and 2 for this data set.

Moreover, the inter-nodal flow of the uncapacitated AP is asymmetric (Wij 6= Wji)

and any node can send data to itself (Wii 6= 0).

The uncapacitated AP data set initially had problem instances of node sizes n ≤
200, but newer problems instances of up to 400 nodes have been introduced lately

[31].

4.3 Experimental Results of the Uncapacitated AP

Data Set

Experiments for problem instances of node sizes n ≤ 200 were performed. In addition,

the experiments were extended to the larger problem instances (300L, 300T, 400L,

and 400T) introduced by Silva and Cunha [31].

In Table 4.2, the problem and its known best are represented in the first two

columns. The next columns are the best solution out of 50 runs for each of the four

crossover type implementation: GA-BCRC, GA-RESC, GA-DCEC, and GA-MCEC

respectively. In the table, where the proposed GAs found the currently known best

solution, it is indicated with a
√

, and the frequency of obtaining this known best in

50 runs is shown in the brackets next to the
√

. Where the proposed GA found better

solutions than the currently known best, it is shown with a bold figure. In addition,

the averages of the 50 runs are shown in Table A.1 of Appendix A.

From Table 4.2, it can be observed that all the crossovers’ implementation obtained

the currently known best for problems instances of node sizes n ≤ 200. It can also

be observed that GA-RESC, GA-DCEC and GA-MCEC consistently scored 50 out

of 50 (the frequency of obtaining the known best in 50 runs) for problem instances

25T, 40T, 50T and 100T providing indications that, they had no difficulty finding the

known best for problems of type “T”. The GA-BCRC, though it did not score high

frequencies for all the problem instances, proved to perform better than the rest when

applied on the larger problem instances. Its results closely match that of Silva and

Cunha [31], and found new best for problem instance 400T. The same observation

made on the results of the other three crossovers show that they struggled in obtaining

these currently known best.

Comparing the crossover types, GA-BCRC generally performed better than the

rest and has proven to be robust when applied to problem instances of larger node
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Table 4.2: Results of Uncapacitated AP Data Set & Comparison with Known Best
Problem Known Best GA-BCRC GA-RESC GA-DCEC GA-MCEC

10L 224,250.05
√(23) √(3) √(2) √(3)

20L 234,690.95
√(11) √(20) √(26) √(43)

25L 236,650.62
√(4) √(22) √(30) √(42)

40L 240,986.23
√(5) √(10) √(20) √(16)

50L 237,421.98
√(8) √(29) √(45) √(45)

100L 238,016.28
√(7) √(29) √(39) √(46)

200L 233,802.97
√(8) √(18) √(29) √(40)

300L 264,837.88 [31] 264, 848.16(2) 271, 202.42(1) 269, 089.46(1) 269, 239.54(3)

400L 268,164.13 [31] 268, 631.09(1) 275, 621.46(1) 272, 715.14(4) 275, 540.36(2)

10T 263,399.94
√(24) √(2) √(5) √(2)

20T 271,128.18
√(8) √(2) √(6) √(3)

25T 295,667.84
√(2) √(50) √(50) √(50)

40T 293,164.83
√(11) √(50) √(50) √(50)

50T 300,420.98
√(2) √(50) √(50) √(50)

100T 305,097.96
√(20) √(50) √(50) √(50)

200T 272,188.11
√(2) √(2) √(1) √(1)

300T 276,047.75 [31] 279, 178.29(4) 290, 854.54(2) 284, 993.86(1) 291332.22(2)

400T 284,212.47 [31] 284,124.88(2) 292, 864.44(2) 301, 941.64(50) 301, 941.64(50)

Number of known best found 15/18 14/18 14/18 14/18

sizes since it got most of the currently known best, and established a new best solution

for problem instance 400T.

A one-way Analysis of Variance (ANOVA) test to measure the statistical signifi-

cance of differences in the means of the results of the crossover implementations was

performed. The test used the results of the crossovers for the AP data set. The results

of the ANOVA test shown in Table 4.3 reveal that there is statistically insignificant

difference between the crossovers performances, hence providing indications that, no

crossover outperformed the other.

Table 4.3: ANOVA test comparing the means of the GAs for the AP data set

Degree of Freedom (df) Sum Squared Mean Squared F value P Value
X 3 4.512× 109 1.504× 109 1.804 0.155

Residuals 68 5.671× 1010 8.340× 108

4.3.1 Computational Time Performances of SOGA for the

Uncapacitated AP Data set

A graph of the computational time of the GAs is shown in Figure 4.1. Since problem

instances of type “T” are generally perceived to be the most difficult to solve, and
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therefore requires higher computational time, the runtime of the GAs for this type of

problems using node sizes n = 20, 40, 50, 100, and 200 were plotted. From the graph,

it can be observed that BCRC steadily takes a longer time as the problem nodes size

increases. This is followed by RESC. MCEC generally spends less computation time

while DCEC is least from the initial stages. An observation from the chart shows that

though generally the implementation of the BCRC proves robust in finding almost all

the currently known-best and improving on others, it comes with high computational

time. Therefore, if less computational time is required, then obviously, the best option

will be to go for the MCEC or DCEC. However, if the goal is to have an approach

that obtains the currently known-best for both small and larger problem instances,

irrespective of the computational time, then BCRC should be chosen.

Figure 4.1: Computational Time of GAs for Problems of Type “T”

4.4 Experimental Results of the CAB Data Set

The results of applying the SOGA on the CAB data set are shown in Tables B.1, B.2,

B.3, and B.4 of Appendix B. In these tables, the first two columns represent the α

and the f values of the problem instance. The next columns represent the problem’s

currently known best (Optimal Cost), and the best solution obtained by each of the

four crossover implementation types.

As it can be seen from these tables, out of the total of 80 problem instances, all

the crossover operators, except GA-MCEC were effective in finding their currently
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known best solutions. The GA-MCEC could not obtain the currently known best for

problem instance n = 15 using f =100 and α = 0.2 where it obtained 1110.09. These

results confirm how competitive the crossover operators are when compared with the

works of Silva and Cunha [31].

4.5 Conclusion

In conclusion, it can be observed from the above results that the implementation of

the SOGA for the USAHLP has been effective and competitive in finding the currently

known best solutions to problem instances of both the AP and CAB data sets.



Chapter 5

Computational Results of the

SOGA for the CSAHLP

5.1 Experimental Set-up & GA Parameters

The computational results of the SOGA for the CSAHLP are presented here. The

experimental set-up and GA parameter settings are the same as those used for the

SOGA for the USAHLP in Chapter 4. A further description of the data set used

(capacitated AP data set) is, however, provided here since only its uncapacitated

version was explained in Chapter 4.

5.2 Benchmark Data set

As explained in section 4.2.1 of Chapter 4, the CAB data set does not factor in

capacity restrictions on its hubs. Moreover, CAB does not include fixed costs on

nodes. The AP data set, also explained in Section 4.2.2 of the same chapter, however,

has capacity restrictions on the hubs as well as include fixed costs on nodes. As a

result, the capacitated AP data set is the data set commonly used to benchmark

CSAHLP, and therefore, was used in the experiments here.

5.2.1 The Capacitated AP Data Set

The capacitated AP data set has two types of capacities, in addition to the inclusion

of the fixed costs on nodes as explained in Chapter 4. These capacity types are:

tight (T), and loose (L). Problems of type “T” are difficult to solve while type “L”

problems are relatively easy solving. A problem with node size n has four different

39
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instances obtained through permuting the capacities and fixed costs types, thus, LL,

LT, TL, TT. In general, problems of the capacitated AP data set are denoted as

nFC where n is the number of nodes, F is the fixed cost type, and C represents the

capacity type. For instance, a problem instance denoted 10LT represents a “Loose”

fixed cost, “Tight” capacity type problem instance with node size 10. The collection

(χ), transfer (α), and distribution (δ) costs coefficients are the same as that of the

uncapacitated version. The capacitated AP data has problem instances of node sizes

n ≤ 200.

5.3 Results of the CSAHLP

SOGA was applied to various problem sizes of the capacitated AP data set and a

comparative study done with best known solutions given in Contreras et al. [11]. The

results are presented in Tables 5.1, 5.2, and 5.3 according to small, medium, and

large data set. In these tables, the problem and its known best [11] are presented on

the first two columns of the table. The same format of results is used for the other

columns as those in Chapter 4. In addition, the averages of the 50 runs are shown in

Tables A.2, A.3, and A.4 found in Appendix A.

5.3.1 Experimental Discussion

An analysis and comparison of the results obtained by each of the crossovers and that

of the currently known best from [11] is made. Tables 5.1, 5.2, and 5.3 generally show

that GA-DCEC and GA-MCEC were good at obtaining the currently known best for

problem instances of the “LL” type with higher frequencies. From the results for the

smaller problem instances (Table 5.1), GA-DCEC and GA-MCEC each scored 18 out

of 20 whereas their counterparts GA-BCRC and GA-RESC each scored 20 out of 20

and 19 out of 20 respectively. Similar observations can be made for the other two

tables.

Another observation is that all the four crossover operators were able to establish

new best solutions (improved currently known best) for problem instance 25TT. GA-

BCRC and GA-RESC, though generally scored lower frequencies, have proved to

perform consistently well as the problem instance node sizes increase. In addition,

most of the newly established best were in most cases found by these two crossover

types implementation. Furthermore, GA-BCRC and GA-RESC generally performed

better than the GA-DCEC and GA-MCEC since they got most of the currently
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Table 5.1: Small Capacitated AP Data Set Results, and Comparison with Known
Best [11]

Problem Known Best GA-BCRC GA-RESC GA-DCEC GA-MCEC
[11]

10LL 224,250.05
√(26) √(2) √(8) √(5)

10LT 250,992.26
√(6) √(2) √(1) √(2)

10TL 263,399.94
√(37) √(4) √(8) √(7)

10TT 263,399.94
√(37) √(4) √(8) √(7)

20LL 234,690.94
√(12) √(46) √(50) √(36)

20LT 253,517.40
√(6) √(27) √(44) √(50)

20TL 271,128.18
√(7) √(2) √(3) √(5)

20TT 296,035.40
√(4) √(29) √(14) √(25)

25LL 238,977.95
√(3) √(27) √(25) √(33)

25LT 276,372.50
√(2) √(5) √(11) √(12)

25TL 310,317.64
√(4) √(3) √(21) √(31)

25TT 348,369.15 346,582.01 346,582.01 348,280.00 346,582.01

40LL 241,955.71
√(3) √(35) √(18) √(23)

40LT 272,218.32
√(5) √(6) √(4) √(30)

40TL 298,919.01
√(4) √(19) √(23) √(27)

40TT 354,874.10
√(2) √(2) 356,509.86 356,453.79

50LL 238,520.59
√(7) √(13) √(50) √(50)

50LT 272,897.49
√(8) √(1) √(2) √(5)

50TL 319,015.77
√(4) √(2) √(14) √(7)

50TT 417,440.99
√(1) 418,550.34 422,064.22 419,510.01

No. of known best found 20/20 19/20 18/20 18/20

known best, and in most cases, found new best solutions for some of the problem

instances. However, a one-way ANOVA test performed on the means of 50 runs

for each problem instance of the capacitated AP data set obtained using the four

crossovers shows otherwise. The test results are shown in Table 5.4. From this table,

the ANOVA p-value shows that there is statistically insignificant difference among

the performances of the four crossovers.

5.3.2 Computational Time Performances of the SOGA for

CSAHLP

A graph showing the computational time performances of the GAs is shown in Figure

5.1. The graph is a plot of the runtime for problem instance “TT” for node sizes n =
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Table 5.2: Medium Capacitated AP Data Set Results & Comparison with Known
Best
Problem Known Best GA-BCRC GA-RESC GA-DCEC GA-MCEC

[11]

60LL 225,917.21
√(4) √(50) √(49) √(48)

60LT 253,761.98 257,547.85 254,280.26 257,275.30 255,906.22

60TL 252,496.66
√(10) √(45) √(44) √(32)

60TT 351,274.72
√(1) 351,203.17 351,548.54 351,594.70

70LL 236,817.35
√(1) √(24) √(16) √(13)

70LT 257,454.36 257,207.70 256,939.56
√(1) √(1)

70TL 271,283.82
√(6) √(28) √(33) √(31)

70TT 387,380.20
√(2) 387,836.00 388,362.07 387,820.07

75LL 238,024.22
√(4) √(37) √(35) √(33)

75LT 256,188.12
√(1) √(2) √(7) √(1)

75TL 303,363.55
√(3) √(6) √(26) √(28)

75TT 347,189.81 347,563.67 347,907.08 349,421.19 348,555.35

90LL 224,195.72
√(3) √(35) √(50) √(50)

90LT 246,026.24
√(1) 246,850.51 248,388.02 246,613.76

90TL 281,561.56 281,888.74 282,304.23 298,839.80 298,839.80
90TT 337,008.93 337,540.73 338,077.13 343,662.44 341,207.01
No. of known best found 12/16 10/16 9/16 9/16

20, 40, 50, 70, 100, 125, 150, 175, and 200. From the graph, it can be observed that

BCRC steadily takes longer in computation time as the problem nodes size increases.

This is followed by RESC. MCEC and DCEC initially appear to be spending the

same and less computation time but as the node size increases, DCEC fluctuates and

steadily gets back to be the same as MCEC.

The graph also shows that though generally the implementation of the BCRC

proved robust in finding almost all the currently known best for most problems,

and establishing new best solutions for other problem instances, it always does so

at high computational time. Therefore, if less computation time is required, then

the best option will be to go for the MCEC or DCEC. However, if the goal is to

have an approach that obtains the currently known-best for all problem types (small

and large) as well as establish new solutions for some problems irrespective of the

computational time, then BCRC stands out. An alternative option to the BCRC is

the RESC since its performance proved robust after that of the BCRC.
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Table 5.3: Large Capacitated AP Data Set Results & Comparison with Known Best
[11]

Problem Known Best GA-BCRC GA-RESC GA-DCEC GA-MCEC
[11]

100LL 246,713.97
√(2) √(2) √(5) √(4)

100LT 256,155.33 256,639.38 256,237.99 256,553.74 256,355.96

100TL 362,950.09
√(4) √(1) √(1) √(2)

100TT 474,680.32
√(1) √(1) 475,344.62 475,344.62

125LL 239,920.75 239,889.33 239,889.33 239,889.33
√(2)

125LT 251,259.16
√(2) √(2) 257,288.70 251,285.88

125TL 246,486.69
√(4) √(50) √(38) √(48)

125TT 291,807.35
√(2) 293,265.26 309,697.22 297,523.88

150LL 234,765.44
√(5) √(44) √(36) √(39)

150LT 250,186.53
√(1) √(2) 257,723.68 251,354.59

150TL 262,822.24 262,583.31 262,716.52 263,502.69 262,583.31
150TT 323,992.37 323,777.37 327,052.32 324,091.43 323,777.37

175LL 227,997.58
√(2) √(16) √(3) √(9)

175LT 251,540.80 261,459.73 253,900.23 259,843.31 253,124.42

175TL 244,860.41
√(5) √(7) √(3) √(22)

175TT 308,310.13 317,160.29 317,885.27 320,716.80 317,894.61
200LL 231,069.50 241,992.97 241,992.97 241,992.97 241,992.97
200LT 268,820.57 268,682.61 269,065.28 268,682.61 268,682.61

200TL 273,443.81
√(7) √(2) 276,369.59 279,915.93

200TT 290,841.84 297,099.13 294,694.45 315,371.41 294,838.03
No. of known best found 15/20 12/20 8/20 10/20

Table 5.4: ANOVA test comparing the means of the GAs for AP data set

Degree of Freedom (df) Sum Squared Mean Squared F value P Value
X 3 2.168× 1010 7.225× 109 2.198 0.0892

Residuals 220 7.233× 1011 3.288× 109

5.4 Conclusion

In conclusion, a summary of the performances of the GAs is provided in Tables 5.5, 5.6

and 5.7. It is clear from these tables that SOGA has been effective and therefore, most

suited for applying to the CSAHLP. Through SOGA’s approach, new solutions have

been established for problem instances 25TT, 60TT, 70LT, 125LL, 150TL, 150TT,

and 200LT.
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Figure 5.1: Plot of computational Time of GAs for Problems of Type “TT”

Table 5.5: Summary of SOGA Performances for Small Problem Instances

GA-BCRC GA-RESC GA-DCEC GA-MCEC
Currently Known Best 19 18 17 17
New Best 1 1 1 1
Inferior 0 1 2 2
Total Score 20 19 18 18
Number of Problem Instances 20 20 20 20

Table 5.6: Summary of SOGA Performances for Medium Problem Instances

GA-BCRC GA-RESC GA-DCEC GA-MCEC
Currently Known Best 11 8 9 9
New Best 1 2 0 0
Inferior 4 6 7 7
Total Score 12 10 9 9
Number of Problem Instances 16 16 16 16

Table 5.7: Summary of SOGA Performances for Large Problem Instances

GA-BCRC GA-RESC GA-DCEC GA-MCEC
Currently Known Best 11 10 6 7
New Best 4 2 2 3
Inferior 5 8 12 10
Total Score 15 12 8 10
Number of Problem Instances 20 20 20 20



Chapter 6

Multi-Objective Genetic Algorithm

for the CSAHLP

This chapter discusses the design and implementation of the MOGA for the CSAHLP.

6.1 Multi-Objective CSAHLP

Most previous works on the CSAHLP have focused on minimizing the total cost of

network transportation while ensuring that the capacities of the various hubs are not

exceeded. That is, their approaches have only one objective: minimising the total

network transportation cost. This, however, limits the decision maker (DM) to just

two options: the acceptance or rejection of the proposed solutions. As a result, an

approach that provides more options to choose from, is most appropriate.

In overcoming these limitations, Costa et al. [12] introduced the idea of removing

the capacity constraints on the CSAHLP, and introducing a second objective measure,

called the time to process flow received at the various hubs, in addition to the first

objective function: the network transportation cost. Their work was motivated by

the fact that the non-dominated solutions (n.d.s) provided by the multi-objective ap-

proach would serve as good support decision tool for managerial decisions as compared

to the single objective approach. Their approach used an integer linear programming

strategy.

In this thesis, a MOGA approach, motivated by [12], is proposed. The MOGA

approach was also motivated by the fact that many times situations arise where

the cost of re-routing any excess flow to a different hub is more costly than making

adjustment at the current over-flown hub to accommodate the excess flow. This is

practical in many real life situations. For instance, in a health care delivery system, if

45
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on admission, a patient’s survival rate depends on how early he/she is attended to by

a medical team, the time to re-direct him/her to another health centre just because

the current place has exceeded its capacity can cost the patient’s life. This situation

could be minimised if logistic adjustments are made by extending the service time.

In such a case, the removal/violation of the capacity constraint is recommended and

inevitable.

6.1.1 Multi-Objective Formulation

From the works of Costa et al. [12], the problem formulation of the multi-objective

CSAHLP are shown in Equations 6.1 and 6.2 below. In these formulations, Tk is the

time hub k takes to process one unit of flow; Pk is the fixed time to initiate service

at hub k; while the rest of the variables in the formulations retain their meanings

from Section 2.2.1 of Chapter 2. Moreover, Constraints (2.5) and (2.6) from the

formulations in Chapter 2 have been removed, and a second objective function which

measures the total time to process flow gathered at the various hubs is introduced.

min
n∑

i=1

n∑
k=1

n∑
l=1

n∑
j=1

Wij(χ× dik + α× dkl + δ × dlj)Xijkl +
n∑

k=1

FkZkk (6.1)

min
n∑

i=1

n∑
k=1

OiTkZik +
n∑

k=1

PkZkk (6.2)

Subject to:

n∑
k=1

Zik = 1, ∀i, k ∈ n, (6.3)

Zik ≤ Zkk, ∀i, k ∈ n, (6.4)

6.2 MOGA for the CSAHLP

The MOGA algorithm, shown in Algorithm 6, differs from SOGA by only the fitness

evaluation strategy, where the multi-objective fitness evaluation strategies described

in Section 2.5 of Chapter 2 are employed. During chromosome evaluation, one of

these evaluation strategies is used to evaluate the overall fitness of the chromosome

based on the computed transportation cost and processing time. Furthermore, only
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the BCRC crossover is used here. Apart from when weighted sum fitness evaluation

strategy is used, the output of MOGA is a list of n.d.s. These n.d.s are the ones

being analysed and provided to the DM. In the case of the weighted sum evaluation

approach, only one solution is provided by the MOGA.

Algorithm 6: MOGA for the CSAHLP

begin
Read problem instance data set

Set GA parameters

Randomly create initial population

while termination criteria is not met do

foreach chromosome in population do
Compute its transportation cost, C(x), and processing time, T (x)

Evaluate its fitness using Pareto, Summed Ranks, or Weighted Sum

end

Add elite chromosomes to new population using elitism rate

while the size of new population < population size do
Select chromosomes for reproduction using tournament selection

scheme

Apply crossover using crossover rate

Apply mutation using mutation rate

Add offspring to new population

end

Replace old population with new population

end

Return the list of n.d.s
end

6.3 Objective Functions

Two objective dimensions were used in measuring the fitnesses of the chromosomes.

These objective measures are:

1. Network transportation cost: shown in Equation 6.5, this measures the overall

network transportation cost of flow. In the equation, the cost of the internodal

flow is the first term, while the hub establishment cost is represented by the

second term. Algorithm 4 in Chapter 3 shows how to compute it.
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C(x) =
n∑

i=1

n∑
k=1

n∑
l=1

n∑
j=1

Wij(χ× dik + α× dkl+

δ × dlj)Xijkl +
n∑

k=1

FkZkk

(6.5)

2. Processing Time: this measures the time to process the flow gathered at the

hubs of the hub-and-spoke network. In computing it, some assumptions were

made since the AP data set does not include processing times. As a result,

the assumptions and formulation used in [12] to compute these values were

employed. In [12], a given hub’s capacity is expressed as the amount of flow it

can process in a given day consisting of eight (8) hours. In expressing time in

seconds, a day consists of 28800 seconds. In addition, there is a constant time to

initiate service at any given hub, and these components together constitute the

processing time of any given hub in the hub-and-spoke network. In Equation 6.6,

the computation of this measure for a given hub k is shown. In this equation,

the first term represents the time hub k takes to process flow gathered at it,

and the second term represents the fixed time to initiate service at this hub.

This formulation is from [12].

T (x) =
n∑

i=1

n∑
k=1

OiTkZik +
n∑

k=1

PkZkk (6.6)

In computing this value in the MOGA, Algorithm 7 is employed. In this algo-

rithm, Tp is the total processing time; hs, hf , and hc are the service time, total

flow, and capacity of hub h respectively; while hubList is the list of hubs in the

given network.

6.4 Fitness Evaluation Strategies

The fitness evaluation strategies employed for the MOGA are explained next.
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Algorithm 7: Processing Time Algorithm

begin
Input: Chromosome
Output: Total Processing Time, Tp
Tp ← 0
foreach h in hubList do

Tp ← Tp + hs(h) + 28800/hc(h) ∗ hf (h)
end
return Tp

end

6.4.1 Weighted Sum

The evaluation strategy of the weighted sum works by adding the given objective

measures to obtain a single objective function by incorporating weights that provide

a balance measure among the given objective measures [27, 28]. In this work, the two

objectives are inversely related. Choosing the appropriate weight parameters for these

measures is influenced by this relationship. By incorporating these weight parameters

into the objective function, Equation 6.7 was obtained. In the formulation, C(x) is the

network transportation cost; T (x) is the time to process flow; α and β are respectively

the weight parameters for C(x), and T (x).

F (x) = α · C(x) + β · (1/T (x)) (6.7)

In this work, α and β were empirically established to be 1 and 1000000 respectively,

and these values were used in all the experiments with this evaluation strategy.

6.4.2 Pareto Ranking

The Pareto Ranking strategy was employed as one of the fitness evaluation strategies

for the MOGA. After computing the transportation costs, and processing times of

the chromosomes, this strategy was used to rank the chromosomes. After the ranking

process, the raw fitnesses of the chromosomes were replaced by these ranks and the

selection of chromosomes for reproduction then performed using the ranks as fitnesses.

6.4.3 Sum of Ranks

The normalized sum of ranks, explained in Chapter 2, was also employed in MOGA.

It was applied after the raw fitnesses of the chromosomes were computed. The re-
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sulting ranks after this process replaced the raw fitnesses of the chromosomes, and

tournament selection done using the ranks as fitness values.



Chapter 7

Computational Results of the

MOGA for the CSAHLP

The computational results of MOGA for the CSAHLP are provided here.

7.1 Experimental Set-up

Three sets of experiments were carried out, namely

1. Pareto Ranking - MOGA using the Pareto Ranking fitness evaluation strategy

2. Sum of Ranks - MOGA using the Sum of Ranks fitness evaluation strategy, and

3. Weighted Sum - MOGA using Weighted Sum fitness evaluation strategy.

The experimental test data set and GA parameters are explained in the next

sections.

7.2 Benchmark Data set

Since MOGA was proposed for the CSAHLP, the capacitated AP data set described

in sub-section 5.2.1 of Chapter 5 was used. An empirical study on problem instances

of nodes sizes n =10, 20, 25, and 40 giving a total of 16 problems (each node size

has four different instances) was made, and a comparative analysis of the computed

results made with that of the works of Costa et al. [12].
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7.2.1 Categorization of Problem Instances

The works of Costa et al. [12] classified the 16 problem instances into three groups:

• Group I: Problem instances that have their optimal solutions of the SOGA to

belong to the list of n.d.s from the MOGA and they include 10LT, 20LT, 25LL,

25TL, and 40LL. With this group, the n.d.s from the MOGA depict that one of

the two objectives can be improved at the expense of the other. They generally

have lower cost, and lower service times. The n.d.s provide options to the DM

on how much flow could be exceeded at a processing center to improve the cost

or time

• Group II: Problem instances 10LL, 10TL, 10TT, 20LL, and 20TL exhibit fea-

tures of this group of problems. Their capacity constraints are not restrictive

and therefore can be removed without any violations. They also tend to yield

lower service times at higher cost. An advantage of classifying problems in this

group is that, it gives the DM options of service quality improvement verses

cost minimization. If the former is of prime importance, then he/she does that

at the expense of the latter, and vice-versa.

• Group III: Here, the optimal solution of the SOGA match the dominated solu-

tion of the MOGA, and there is excessive flow volumes on the hubs. Problem

instances 20TT, 25LT, 25TT, 40LT, 40TL, and 40TT fall under this group.

The MOGA results present results that allow for improvement of both objec-

tive measures at the same time with excess flow.

7.3 GA Parameters

The parameter values shown in Table 7.1 below were empirically determined and used

for all experimentations.

7.4 Computational Results

To demonstrate the effectiveness of the MOGA approach as an alternative to the

SOGA, and also to compare the results with [12], the trade-offs of the transportation

costs and the processing times were computed. The trade-offs, expressed in percent-

ages, were computed as the difference between the objective values obtained in the
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Table 7.1: GA Parameters for MOGA
Parameter Value
Population Size 300
Generational Span 200
Number of Runs 50
Elitism Rate 1%
Crossover Rate 80%
Mutation Rate 20%
Tournament Size 3

MOGA, and that of the SOGA. They ideally provide an overview of how one objective

criteria could be exploited at the expense of the other.

Equations 7.1 and 7.2 respectively show how the trade-offs of the transportation

cost and processing time were computed. In these equations, f 1
MOGA and f 2

MOGA

respectively represent the values of the transportation cost, and processing times

obtained from the MOGA; f 1
SOGA and f 2

SOGA are the values of the transportation

cost and processing times respectively obtained from the SOGA; while ∆f1(%) and

∆f2(%) represent the trade-offs of the transportation cost and processing times re-

spectively.

After computing these trade-offs, an analysis is made for the three sets of experi-

ments.

∆f1(%) =
f 1
MOGA − f 1

SOGA

f 1
SOGA

× 100% (7.1)

∆f2(%) =
f 2
MOGA − f 2

SOGA

f 2
SOGA

× 100% (7.2)

In the following sub-sections, the results for the three experiments are provided.

The results are grouped into the three groups of problem instances as outlined in

Section 7.2.1.

7.4.1 Pareto Ranking

The output of the MOGA using this strategy is a list of non-dominated solutions

(n.d.s). A total of 50 runs were performed for each of the 16 problem instances and

the best solutions set from these runs are those presented and discussed here. From

these solutions, four were chosen for analysing each problem instance and to allow

for an easier comparison with [12]. Details on the number of n.d.s provided by the
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Pareto Ranking strategy and other breakdowns are shown in Tables 7.2, 7.3 and 7.4.

Tables 7.5, 7.6, and 7.7 show the computed results of the Pareto Ranking fitness

evaluation strategy, and the results from [12]. In these tables, each problem instance

is presented with four n.d.s within which the decision maker could choose from. More-

over, “Bi-criteria” represents the results from [12], and “Pareto”represents the results

of the Pareto Ranking.

The n.d.s carefully selected can provide alternative options to the decision maker

depending on where managerial priorities lie, unlike the single solution provided by

the SOGA for a given problem instance. Some n.d.s allow for improvement of both

objective measures; others improve one objective at the expense of the other. From

Tables 7.5, 7.6 and 7.7, these observations can be made. The results of this fitness

evaluation scheme clearly depict how competitive the MOGA approach is compared

with that of [12]. The results also provide us with more convincing reasons why a

MOGA approach using the Pareto Ranking strategy is a better alternative to the

single solution of a SOGA for a given problem instance since the DM has at least

four solutions to choose from.

Moreover, the values shown in Tables 7.5, 7.6 and 7.7 provide enough information

on how cost can be improved at the expense of service time or the vice-versa, and

at what excess of flow, that the given network’s hub(s) would have to accommodate

in order to achieve it. In particular, the results in Table 7.6 deserve some attention.

A careful look at the “Number of Hubs with flow Excess” column reveal that there

is no excess flow from the solutions provided by the MOGA. This gives indications

that the capacity constraints placed on the hubs of these set of problems (categorized

as Group II) can be removed. However, as it can be seen in this table, doing so

(removing the capacity constraints) will only come at an increased cost.

Table 7.2: Group I: Comparing Characteristics of problems using Pareto Ranks’
Solutions with [12]

Problem Number of Number of n.d.s that improve Number of n.d.s that improve Number of n.d.s that improve
n.d.s f1 and f2 only f1 only f2

Bi-criteria Pareto Ranks Bi-criteria Pareto Ranks Bi-criteria Pareto Ranks Bi-criteria Pareto Ranks

10LT 22 8 11 2 10 4 0 2
20LT 17 30 10 15 15 9 14 6
25LL 31 24 5 11 1 4 6 9
25TL 29 52 1 10 19 23 22 7
40LL 42 10 3 1 0 8 15 1

A plot showing how the individuals in the population are stratified as a result of

the Pareto Ranking procedure is shown in Figure 7.1.
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Table 7.3: Group II: Comparing Characteristics of problems using Pareto Ranks’
Solutions with [12]

Problem Total Number of n.d.s Number of n.d.s with excess Flow
Bi-criteria Pareto Ranks Bi-criteria Pareto Ranks

10LL 13 10 0 0
10TL 8 11 0 0
10TT 12 9 7 0
20LL 23 15 0 0
20TL 19 10 0 0

Table 7.4: Group III: Comparing Characteristics of problems using Pareto Ranks’
Solutions with [12]

Problem Number of Number of n.d.s that improve Number of n.d.s that improve Number of n.d.s that improve
n.d.s f1 and f2 only f1 only f2

Bi-criteria Pareto Ranks Bi-criteria Pareto Ranks Bi-criteria Pareto Ranks Bi-criteria Pareto Ranks

20TT 6 8 1 2 5 4 0 2
25LT 38 30 9 15 15 9 14 6
25TT 25 24 18 11 1 4 6 9
40LT 52 52 11 10 19 23 22 7
40TL 16 10 1 1 0 8 15 1
40TT 26 20 9 9 8 5 9 6

Table 7.5: Group I: Pareto Ranking’s Results & Comparison with Costa et al. [12]
Problem ∆f1 ∆f2 Maximum Excess Number of Hubs Total Number of Hubs

(%) (%) of flow (%) with flow Excess in Solution
Bi-criteria Pareto Bi-criteria Pareto Bi-criteria Pareto Bi-criteria Pareto Bi-criteria Pareto

10LT -10.65 10.82 520.72 -32.55 752.28 0.00 2 0 3 2
-1.79 -1.79 64.83 64.83 47.94 47.94 1 1 3 3
1.30 6.50 -6.24 -31.20 0.00 0.00 0 0 3 2
2.90 3.22 -7.89 3.47 0.00 0.00 0 0 3 2

20LT -2.72 -2.72 0.85 0.85 15.04 15.04 1 1 2 2
-1.31 -6.55 0.29 237.35 4.44 23.94 1 1 2 3
0.47 -1.29 -0.56 0.57 2.95 0.00 1 0 2 2
8.53 8.83 -6.63 -6.63 82.21 82.21 1 1 1 3

25LL -0.97 18.75 0.94 -34.17 15.04 27.15 1 1 2 3
-0.26 17.80 0.19 -28.10 0.76 0.43 1 1 2 2
2.60 2.60 -18.87 -18.87 0.00 0.00 0 0 2 2
2.84 4.34 -19.12 -17.09 0.00 0.00 0 0 2 2

25TL -4.72 -4.72 97.92 97.92 137.34 137.34 1 1 1 2
12.30 18.94 -9.25 -1.14 0.00 0.00 0 0 2 2
15.66 14.38 -10.94 2.25 0.00 0.00 0 0 2 3
18.76 19.39 -16.20 -1.47 0.00 0.00 0 0 1 3

40LL -0.40 5.75 296.22 -19.98 534.82 317.71 1 1 2 1
-0.29 4.46 287.75 -22.97 516.86 558.28 1 1 2 1
0.07 0.07 -21.33 -21.33 0.00 0.00 0 0 2 2
0.23 2.57 -21.96 -5.10 0.00 0.00 0 0 2 4
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Table 7.6: Group II: Pareto Ranking’s Results & Comparison with Costa et al. [12]
Problem ∆f1 ∆f2 Maximum Excess Number of Hubs Total Number of Hubs

(%) (%) of flow (%) with flow Excess in Solution
Bi-criteria Pareto Bi-criteria Pareto Bi-criteria Pareto Bi-criteria Pareto Bi-criteria Pareto

10LL 0.77 6.85 -8.19 -16.68 0.00 0.00 0 0 3 3
1.58 1.58 -10.31 -10.31 0.00 0.00 0 0 3 2
2.57 2.57 -18.36 -18.36 0.00 0.00 0 0 2 2
3.76 3.76 -7.89 -7.89 0.00 0.00 0 0 2 2

10TL 0.43 0.43 -6.03 -6.03 0.00 0.00 0 0 2 2
2.13 2.13 -7.29 -7.29 0.00 0.00 0 0 2 2
4.15 12.50 -8.81 -21.60 0.00 0.00 0 0 2 2
9.55 8.59 -16.81 -8.46 0.00 0.00 0 0 2 2

10TT 1.53 1.53 -1.76 -1.76 0.00 0.00 0 0 3 3
4.04 9.31 -6.32 -3.17 0.00 0.00 0 0 2 3
5.23 5.23 -6.50 -7.10 0.00 0.00 0 0 2 2
7.07 7.07 -6.51 -6.51 0.00 0.00 0 0 2 2

20LL 4.26 4.26 -7.02 -7.02 0.00 0.00 0 0 2 2
6.53 6.53 -11.13 -11.13 0.00 0.00 0 0 2 2
6.98 6.98 -11.50 -11.50 0.00 0.00 0 0 2 2

20TL 0.39 0.39 -0.42 -0.42 0.00 0.00 0 0 2 2
1.58 2.81 -0.84 -0.74 0.00 0.00 0 0 2 2
2.60 2.60 -5.65 -5.65 0.00 0.00 0 0 1 1
15.57 16.39 -10.82 0.00 0.00 0.00 0 0 2 3

Table 7.7: Group III: Pareto Ranking’s Results & Comparison with Costa et al. [12]
Problem ∆f1 ∆f2 Maximum Excess Number of Hubs Total Number of Hubs

(%) (%) of flow (%) with flow Excess in Solution
Bi-criteria Pareto Bi-criteria Pareto Bi-criteria Pareto Bi-criteria Pareto Bi-criteria Pareto

20TT -8.16 -2.83 226.79 -1.42 476.09 612.74 2 1 2 2
-7.36 -1.80 206.99 -11.23 423.06 147.69 2 1 2 2
-6.93 -1.93 196.13 -8.14 393.094 134.16 2 1 2 2
-6.04 -6.04 -19.15 -19.15 82.21 82.21 1 1 1 1

25LT -4.73 -2.56 -0.41 -1.09 30.56 111.34 1 1 3 2
-4.71 -0.76 -0.51 -1.22 30.56 108.89 1 1 3 3
-0.81 -0.81 -4.25 -4.25 21.53 21.53 2 2 3 3
-0.73 -0.73 -4.38 -4.38 21.53 21.53 2 2 3 3

25TT -9.98 -9.98 -9.37 -9.37 154.70 154.70 1 1 1 1
-8.78 -8.56 -10.24 -10.41 74.77 102.39 1 1 2 2
-1.88 -4.81 -20.57 -11.33 28.10 141.27 1 1 2 3
-1.51 -5.87 -20.92 -11.19 34.40 386.59 1 2 2 2

40LT -4.58 -4.58 -1.43 -1.43 108.36 108.36 1 1 2 2
-4.57 -7.86 -1.51 -56.77 105.66 191.64 1 1 2 2
-3.08 -0.18 -2.49 -58.63 70.94 156.49 2 2 2 2
-2.62 -7.74 -2.61 -57.13 66.93 184.72 2 1 2 2

40TL -1.93 -1.93 -6.78 -6.78 38.48 38.48 1 1 1 1
2.24 2.24 -10.99 -10.99 32.06 32.06 1 1 1 1
2.95 7.18 -11.15 -10.59 0.00 0.00 0 0 2 2
3.44 14.17 -11.52 -21.30 0.00 558.23 0 1 2 1

40TT -4.17 -2.86 -10.60 -0.92 55.54 26.47 2 1 2 1
-4.05 -4.05 -11.00 -11.00 61.72 61.72 1 1 2 2
-0.21 -4.15 -12.94 -10.33 90.99 82.29 1 2 2 2
-0.04 -13.70 -12.95 7.97 91.20 130.87 1 2 2 2
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Figure 7.1: Pareto Front plot of problem instance 20LL
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7.4.2 Sum of Ranks

In Tables 7.8, 7.9 and 7.10, a comparison of the computed results from the Sum of

Ranks fitness evaluation strategy, and that of [12] are presented. The same format

used for the results for the Pareto Ranking scheme is adopted here. In the tables,

“Summed” represents that of the Sum of Ranks’ results.

The same observation and analysis made for the computed results of the Pareto

Ranking scheme can be made here. This approach results appear to compete with

the Pareto Ranking scheme as the tables clearly depict.

Table 7.8: Group I: Summed Ranks’ Results & Comparison with Costa et al. [12]
Problem ∆f1 ∆f2 Maximum Excess Number of Hubs Total Number of Hubs

(%) (%) of flow (%) with flow Excess in Solution
Bi-criteria Summed Bi-criteria Summed Bi-criteria Summed Bi-criteria Summed Bi-criteria Summed

10LT -10.65 -10.65 520.72 520.72 752.28 752.28 2 2 3 3
-1.79 3.79 64.83 -31.89 47.94 0.00 1 0 3 2
1.30 2.01 -6.24 -30.78 0.00 0.00 0 0 3 2
2.90 3.22 -7.89 3.477 0.00 0.00 0 0 3 2

20LT -2.72 -2.72 0.85 0.85 15.04 15.04 1 1 2 2
-1.31 -3.47 0.29 10.99 4.44 23.94 1 1 2 3
0.47 -6.07 -0.56 11.65 2.95 86.30 1 1 2 2
8.53 8.53 -6.63 -6.63 82.21 82.21 1 1 1 3

25LL -0.97 8.92 0.94 -27.86 15.04 27.15 1 1 2 3
-0.26 5.77 0.19 -29.57 0.76 0.43 1 1 2 2
2.60 2.60 -18.87 -18.87 0.00 0.00 0 0 2 2
2.84 9.99 -19.12 -27.99 0.00 0.00 0 0 2 2

25TL -4.72 -4.72 97.92 97.92 137.34 137.34 1 1 1 2
12.30 9.23 -9.25 -4.84 0.00 0.00 0 0 2 2
15.66 0.05 -10.94 -0.04 0.00 0.00 0 0 2 3
18.76 18.76 -16.20 -16.20 0.00 0.00 0 0 1 1

40LL -0.40 0.42 296.22 -13.58 534.82 317.71 1 1 2 1
-0.29 9.26 287.75 -23.01 516.86 558.28 1 0 2 4
0.07 0.07 -21.33 -21.33 0.00 0.00 0 0 2 2
0.23 3.92 -21.96 -28.47 0.00 0.00 0 0 2 2
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Table 7.9: Group II: Summed Ranks’ Results & Comparison with Costa et al. [12]
Problem ∆f1 ∆f2 Maximum Excess Number of Hubs Total Number of Hubs

(%) (%) of flow (%) with flow Excess in Solution
Bi-criteria Summed Bi-criteria Summed Bi-criteria Summed Bi-criteria Summed Bi-criteria Summed

10LL 0.77 9.63 -8.19 -23.27 0.00 0.00 0 0 3 3
1.58 8.12 -10.31 -17.19 0.00 0.00 0 0 3 2
2.57 2.57 -18.36 -18.36 0.00 0.00 0 0 2 2
3.76 3.76 -20.48 -20.48 0.00 0.00 0 0 2 2

10TL 0.43 0.43 -6.03 -6.03 0.00 0.00 0 0 2 2
2.13 2.13 -7.29 -7.29 0.00 0.00 0 0 2 2
4.15 4.15 -8.81 -8.81 0.00 0.00 0 0 2 2
9.55 8.59 -16.81 -8.46 0.00 0.00 0 0 2 2

10TT 1.53 1.53 -1.76 -1.76 0.00 0.00 0 0 3 3
4.04 9.31 -6.32 -3.17 0.00 0.00 0 0 2 3
5.23 5.23 -6.50 -7.10 0.00 0.00 0 0 2 2
7.07 7.07 -6.51 -6.51 0.00 0.00 0 0 2 2

20LL 4.26 4.26 -7.02 -7.02 0.00 0.00 0 0 2 2
4.60 4.60 -7.46 -7.46 0.00 0.00 0 0 2 2
6.53 6.53 -11.13 -11.13 0.00 0.00 0 0 2 2
6.98 6.98 -11.50 -11.50 0.00 0.00 0 0 2 2

20TL 0.39 0.39 -0.42 -0.42 0.00 0.00 0 0 2 2
1.58 0.00 -0.84 0.00 0.00 0.00 0 0 2 2
2.60 2.60 -5.65 -5.65 0.00 0.00 0 0 1 1
15.57 11.53 -10.82 -6.01 0.00 0.00 0 0 2 2

Table 7.10: Group III: Summed Ranks’ Results & Comparison with Costa et al. [12]
Problem ∆f1 ∆f2 Maximum Excess Number of Hubs Total Number of Hubs

(%) (%) of flow (%) with flow Excess in Solution
Bi-criteria Summed Bi-criteria Summed Bi-criteria Summed Bi-criteria Summed Bi-criteria Summed

20TT -8.16 -5.56 226.79 -1.53 476.09 599.00 2 1 2 2
-7.36 -5.71 206.99 0.07 423.06 806.00 2 1 2 2
-6.93 -3.23 196.13 -12.57 393.09 146.20 2 1 2 2
-6.04 -6.04 -19.15 -19.15 82.21 82.21 1 1 1 1

25LT -4.73 -4.45 -0.41 -1.22 30.56 607.00 1 2 3 2
-4.71 -7.49 -0.51 2.53 30.56 12.34 1 1 3 2
-0.81 -0.81 -4.25 -4.25 21.53 21.53 2 2 3 3
-0.73 -3.72 -4.38 2.40 21.53 101.20 2 1 3 3

25TT -9.98 -9.98 -9.37 -9.37 154.70 154.70 1 1 1 1
-8.78 -8.56 -10.24 -10.41 74.77 102.40 1 1 2 2
-1.88 -1.44 -20.57 -4.72 28.10 79.30 1 1 2 3
-1.51 -8.35 -20.92 -10.54 34.40 91.20 1 1 2 2

40LT -4.58 -4.58 -1.43 -1.43 108.36 108.36 1 1 2 2
-4.57 -1.32 -1.51 -59.82 105.66 114.40 1 1 2 4
-3.08 -3.05 -2.49 -69.30 70.94 93.60 2 1 2 3
-2.62 -1.51 -2.61 -59.78 66.93 11.44 2 1 2 4

40TL -1.93 -1.93 -6.78 -6.78 38.48 38.48 1 1 1 1
2.24 2.24 -10.99 -10.99 32.06 32.06 1 1 1 1
2.95 -0.02 -11.15 -0.13 0.00 10.00 0 1 2 2
3.44 0.18 -11.52 -1.01 0.00 19.50 0 1 2 2

40TT -4.17 -4.17 -10.60 -10.60 55.54 55.54 2 2 2 2
-4.05 -15.78 -11.00 16.63 61.72 180.80 1 1 2 2
-0.21 -0.30 -12.94 14.14 90.99 11.74 1 1 2 4
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7.4.3 Weighted Sum

In Tables 7.11, 7.12 and 7.13, a comparison of our computed results of the weighted

sum fitness evaluation strategy, and that of the work of [12]. Each problem is pre-

sented with one solution since this approach returns only one solution at the end of

each run. In these tables, “Weighted” represents the results of the Weighted Sum.

Table 7.11: Group I: Weighted Sum’s Results & Comparison with Costa et al. [12]
Problem ∆f1 ∆f2 Maximum Excess Number of Hubs Total Number of Hubs

(%) (%) of flow (%) with flow Excess in Solution
Bi-criteria Weighted Bi-criteria Weighted Bi-criteria Weighted Bi-criteria Weighted Bi-criteria Weighted

10LT -10.65 -1.79 520.72 14.01 752.28 308.56 2 1 3 3
-1.79 64.83 47.94 1 3
1.30 -6.24 0.00 0 3
2.90 -7.89 0.00 0 3

20LT -2.72 -4.39 0.85 23.65 15.04 55.52 1 1 2 3
-1.31 0.29 4.44 1 2
0.47 -0.56 2.95 1 2
8.53 -6.63 82.21 1 1

25LL -0.97 -0.97 0.94 0.94 15.04 15.04 1 1 2 2
-0.26 0.19 0.76 1 2
2.60 -18.87 0.00 0 2
2.84 -19.12 0.00 0 2

25TL -4.72 -4.72 97.92 97.92 137.34 137.34 1 1 1 2
12.30 -9.25 0.00 0 2
15.66 -10.94 0.00 0 2
18.76 -16.20 0.00 0 1

40LL -0.40 296.22 534.82 1 2
-0.29 287.75 516.86 1 2
0.07 0.09 -21.33 -21.33 0.00 0.00 0 0 2 2
0.23 -21.96 0.00 0 2

Table 7.12: Group II: Weighted Sum’s Results & Comparison with Costa et al. [12]
Problem ∆f1 ∆f2 Maximum Excess Number of Hubs Total Number of Hubs

(%) (%) of flow (%) with flow Excess in Solution
Bi-criteria Weighted Bi-criteria Weighted Bi-criteria Weighted Bi-criteria Weighted Bi-criteria Weighted

10LL 0.77 -8.19 0.00 0 3
1.58 -10.31 0.00 0 3
2.57 2.57 -18.36 -18.36 0.00 0.00 0 0 2 2
3.76 -20.48 0.00 0 2

10TL 0.43 0.43 -6.03 -6.03 0.00 0.00 0 0 2 2
2.13 -7.29 0.00 0 2
4.15 -8.81 0.00 0 2
9.55 -16.81 0.00 0 2

10TT 1.53 1.53 -1.76 -1.76 0.00 0.00 0 0 3 3
4.04 -6.32 0.00 0 2
5.23 -6.50 0.00 0 2
7.07 -6.51 0.00 0 2

20LL 4.26 2.02 -7.02 22.63 0.00 0.00 0 0 2 3
4.60 -7.46 0.00 0 2
6.53 -11.13 0.00 0 2
6.98 -11.50 0.00 0 2

20TL 0.39 -0.42 0.00 0 2
1.58 -0.84 0.00 0 2
2.60 2.60 -5.65 -5.65 0.00 0.00 0 0 1 1
15.57 -10.82 0.00 0 2
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Table 7.13: Group III: Weighted Sum’s Results & Comparison with Costa et al. [12]
Problem ∆f1 ∆f2 Maximum Excess Number of Hubs Total Number of Hubs

(%) (%) of flow (%) with flow Excess in Solution
Bi-criteria Weighted Bi-criteria Weighted Bi-criteria Weighteded Bi-criteria Weighted Bi-criteria Weighted

20TT -8.16 -6.04 226.79 -19.15 476.09 599.00 2 1 2 2
-7.36 206.99 423.06 2 2
-6.93 196.13 393.09 2 2
-6.04 -19.15 82.21 1 1

25LT -4.73 -7.99 -0.41 59.62 30.56 174.84 1 1 3 3
-4.71 -0.51 30.56 1 3
-0.81 -4.25 21.53 2 3
-0.73 -4.38 21.53 2 3

25TT -9.98 -9.98 -9.37 -9.37 154.70 154.70 1 1 1 1
-8.78 -10.24 74.77 1 2
-1.88 -20.57 28.10 1 2
-1.51 -20.92 34.40 1 2

40LT -4.58 -3.77 -1.43 -7.67 108.36 172.54 1 2 2 4
-4.57 -1.51 105.66 1 2
-3.08 -2.49 70.94 2 2
-2.62 -2.61 66.93 2 2

40TL -1.93 -1.93 -6.78 -6.78 38.48 38.48 1 1 1 1
2.24 -10.99 32.06 1 1
2.95 -11.15 0.00 0 2
3.44 -11.52 0.00 0 2

40TT -4.17 -4.17 -10.60 -10.60 55.54 55.54 2 2 2 2
-4.05 -11.00 61.72 1 2
-0.21 -12.94 90.99 1 2
-0.04 -12.95 91.20 1 2
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7.4.4 Analysis of Results of the Fitness Evaluation Strategies

The results of the Pareto Ranking fitness evaluation strategy, shown in Tables 7.5,

7.6 and 7.7, reveal that the strategy provides more alternative solutions that have not

been provided in [12]. The same observation can be made of the results from the Sum

of Ranks approach. Also, from Tables 7.11, 7.12, and 7.13, it can be observed that the

Weighted Sum approach to the fitness evaluation of the MOGA has been effective and

its results compete with that of [12]. Furthermore, MOGA either improved on the

values from [12] or obtained solutions that are within the range of solutions provided

by them. The results show that, all the three fitness evaluation strategies are effective

and suited for applying to the multi-objective approach to the CSAHLP.

7.5 Comparison of the Fitness Evaluation Strate-

gies with [12]

In Tables 7.14, 7.15 and 7.16, a comparison of the computed results of the three fitness

evaluation strategies are provided. From these computed results, it can be observed

that MOGA performed effectively well as compared to [12]. As a result, the MOGA

modelling of the CSAHLP by removing the capacity constraints while introducing a

second objective measure as done by [12], presents compelling results that give the

DM several options to choose from instead of the previous works that always present

two options to the DM: acceptance/rejection of solutions from the SOGA.

The fitness evaluation strategies employed deserve some attention. A careful look

at the results show that generally, all strategies performed fairly the same although

the weighted sum was effective in finding all the existing solutions by Costa et al.

[12].

7.6 Conclusion

In conclusion, it is clear from the computed results and the analysis made so far, that

the MOGA approach to the CSAHLP is most suitable as compared to the SOGA

approach. The approach gives more power to the DM and does not tie him/her

to just an option of rejecting or accepting a given solution to a problem instance.

However, he/she is provided with a list of alternative solutions, and more details on

the consequence of favouring one objective at the expense of the other. The results of
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Table 7.14: Group I: Comparison of MOGA with Costa et al. [12]

Problem Costa et al. [12] Pareto Ranks Sum Ranks Weighted
Trade-off(%) Trade-off(%) Trade-off(%) Trade-off(%)

Cost Time Cost Time Cost Time Cost Time

10LT -10.65 520.72 10.82 -32.55 -10.65 520.72 -1.79 14.01
-1.79 64.83 -1.79 64.83 3.79 -31.89
1.30 -6.24 6.50 -31.2 2.01 -30.78
2.90 -7.89 3.22 3.47 3.22 3.47

20LT -2.72 0.85 -2.72 0.85 -2.72 0.85 -4.39 23.65
-1.31 0.29 -6.55 237.35 -3.47 10.99
0.47 -0.56 -1.29 0.57 -6.06 11.65
8.83 -6.33 8.83 -6.33 8.83 -6.33

25LL -0.97 0.94 18.75 -34.17 8.92 -27.86 0.97 0.94
-0.26 0.19 17.80 -28.10 5.77 -29.57
2.60 -18.87 2.60 -18.87 2.60 -18.87
2.84 -19.12 4.34 -17.09 9.98 -27.99

25TL -4.72 97.92 -4.72 97.92 -4.72 97.92 -4.72 97.92
12.30 -9.25 18.94 -1.14 9.23 -4.84
15.66 -10.94 14.38 2.25 0.05 -0.03
18.76 -16.20 19.39 -1.47 18.76 -16.20

40LL -0.40 296.22 5.75 -19.98 0.42 -13.58
-0.29 287.75 4.46 -22.97 9.26 -23.01
0.07 -21.33 0.07 -21.33 0.07 -21.33 0.09 -21.33
0.23 -21.96 2.57 -5.10 3.92 -28.47

MOGA also compete with that of Costa et al. [12] and includes some new solutions

that were not reported by their works.
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Table 7.15: Group II: Comparison of MOGA with Costa et al. [12]

Problem Costa et al. [12] Pareto Ranks Sum Ranks Weighted Sum
Trade-off(%) Trade-off(%) Trade-off(%) Trade-off(%)

Cost Time Cost Time Cost Time Cost Time

10LL 0.77 -8.19 6.85 -16.68 9.62 -23.26
1.58 -10.31 1.58 -10.31 8.12 -17.19
2.57 -18.36 2.57 -18.36 2.57 -18.36 2.57 -18.36
3.76 -7.89 3.76 -7.89 3.76 -7.89

10TL 0.43 -6.03 0.43 -6.03 0.43 -6.03 0.43 -6.03
2.13 -7.29 2.13 -7.29 2.13 -7.29
4.15 -8.81 12.50 -21.60 7.27 -6.26
9.55 -16.81 8.59 -8.46 8.59 -8.46

10TT 1.53 -1.76 1.53 -1.76 1.53 -1.76 1.53 -1.76
4.04 -6.32 9.31 -3.17 -6.32 -7.24
5.23 -6.50 5.23 -7.40 5.23 -7.40
7.07 -6.51 7.07 -6.51 5.94 -2.21

20LL 4.26 -7.02 4.26 -7.02 4.26 -7.02
4.60 -7.46 4.60 -7.46 4.60 -7.46 20.2 22.63
6.53 -11.13 6.53 -11.13 6.53 -11.13
6.98 -11.50 6.98 -11.50 6.98 -11.50

20TL 0.39 -0.42 0.39 -0.42 0.39 -0.42
1.58 -0.84 2.81 -0.74 0.00 0.00
2.60 -5.65 2.60 -5.65 2.60 -5.65 2.60 -5.65
15.57 -10.82 16.39 -11.39 11.53 -6.01
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Table 7.16: Group III: Comparison of MOGA with Costa et al. [12]

Problem Costa et al. [12] Pareto Ranks Sum Ranks Weighted Sum
Trade-off(%) Trade-off(%) Trade-off(%) Trade-off(%)

Cost Time Cost Time Cost Time Cost Time

20TT -8.16 226.79 -2.83 -1.42 -5.56 -1.53 -6.04 -19.15
-7.36 206.99 -1.80 -11.23 -5.71 0.07
-6.93 196.13 -1.93 -8.14 -3.23 -12.57
-6.04 -19.15 -6.04 -19.15 -6.04 -19.15

25LT -4.73 -0.41 -2.56 -1.09 -4.44 -1.22 -7.99 59.62
-4.71 -0.51 -0.76 -1.22 24.61 -5.66
-0.81 -4.25 -0.81 -4.25 -0.81 -4.25
-0.73 -4.38 -0.73 -4.38 -3.72 2.40

25TT -9.98 -9.37 -9.98 -9.37 -9.98 -9.37 -9.98 -9.37
-8.78 -10.24 -8.56 -10.41 -8.56 -10.41
-1.88 -20.57 -4.81 -11.33 -1.44 -4.715
-1.51 -20.92 -5.87 -11.19 -8.35 -10.54

40LT -4.58 -1.43 -4.58 -1.43 -4.58 -1.43 -3.77 -7.67
-4.57 -1.51 -7.86 -56.77 -1.32 -59.82
-3.08 -2.49 -0.18 -58.63 -3.05 -69.30
-2.62 -2.61 -7.74 -57.13 -1.51 -59.78

40TL -1.93 -6.78 -1.93 -6.78 -1.93 -6.78 -1.93 -6.78
2.24 -10.99 2.24 -10.99 2.24 -10.99
2.95 -11.15 7.18 -10.59 -0.02 -0.13
3.44 -11.52 14.16 -21.30 0.18 -1.01

40TT -4.17 -10.60 -2.86 -0.92 -4.17 -10.60 -4.17 -10.60
-4.05 -11.00 -4.05 -11.00 -15.78 -15.78
-0.21 -12.94 -4.14 -10.32 -0.29 14.14
-0.04 -12.95 -13.69 7.97 -17.39 22.57



Chapter 8

Conclusion & Future Works

SAHLP is a NP-hard combinatorial optimization problem with many practical appli-

cations. This thesis studied both the capacitated and un-capacitated version of the

SAHLP and proposed a GA solution for solving the problem approximately. Although

previous work is found in the literature using GA, the GA work is limited especially

for the capacitated version. Furthermore, to the authors knowledge, this is the first

multi-objective GA for this problem. Two new crossover operators were introduced

where one of them was shown to outperform existing ones in solution quality, while

the second one is competitive with existing crossover operators.

The experimental results show the effectiveness of the proposed GA for larger AP

data set of node sizes 300 and 400 which have only been recently introduced. Besides

easily finding the currently known best solutions for the problem instances, the GA

also introduced new best solutions for some problem instances. A multi-objective

GA approach is proposed for the CSAHLP by removing the capacity constraints, and

introducing the time to process flow as the second objective measure in addition to

the network transportation cost as the first objective. Doing so provides the decision

maker with more options of solutions to choose from, instead of the usual “accept”

or “reject” options that the single objective approach has always presented. The

results of the multi-objective GA are competitive with that of previous multi-objective

approach based on Integer Programming and also provide new solutions.

The following are areas that should be considered for future work:

• Given the good solutions provided by the MOGA, applying it to larger problem

instances should be done.

• Extend the proposed GA approach to similar hub location problems such as the

multi-hub and dynamic versions of the HLP.
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• Perform a fitness landscape analysis for the problem.
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Appendix A

Appendix of SOGA Average

Results

Tables A.1, A.2, A.3, and A.4 show the averages of 50 runs for both the uncapacitated

and capacitated AP data instances using the SOGA. In these tables, the problem and

its known best are represented in the first two columns, and the next columns are

the averages of 50 runs for each problem instance obtained using each of the four

crossover type implementation: GA-BCRC, GA-RESC, GA-DCEC, and GA-MCEC

respectively. The values in bold figure represent the best average among the four GA

implementations for the given problem instance.
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Table A.1: USAHLP: Average of 50 Runs
Problem Known Best GA-BCRC GA-RESC GA-DCEC GA-MCEC

10L 224250.05 228908.91 244124.75 235709.06 235117.40
20L 234690.95 250082.56 248927.33 236308.11 237018.49
25L 236650.62 266384.41 251772.24 239605.69 240011.56
40L 240986.23 273365.26 254978.64 243920.77 242890.98
50L 237421.98 264429.46 251776.90 238789.13 240839.83
100L 238016.28 265045.02 249619.93 238844.38 240313.31
200L 233802.97 255428.19 250791.39 237211.85 235201.73
300L 264,837.88 276976.78 283228.13 275382.32 275861.76
400L 268,164.13 282890.09 288406.22 279808.70 278838.74
10T 263399.94 265986.17 274056.35 270725.21 270428.68
20T 271128.18 293090.86 277907.27 277463.76 277745.34
25T 295667.84 345485.56 295667.84 295667.84 295667.84
40T 293164.83 335040.55 293164.84 293164.84 293164.84
50T 300420.98 350450.44 300420.99 300420.99 300420.99
100T 305097.96 352505.05 305097.95 305097.95 305097.95
200T 272188.11 294382.25 294192.25 279848.29 279394.09
300T 276,047.75 298487.60 305999.61 304232.93 303846.66
400T 284,212.47 304079.04 301497.04 301941.64 301941.64
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Table A.2: Small Problem Instances of CSAHLP: Averages of 50 Runs

Problem Known Best GA-BCRC GA-RESC GA-DCEC GA-MCEC
[11]

10LL 224250.05 227246.38 239920.81 232268.60 237872.27
10LT 250992.26 256592.55 256253.31 252095.89 255557.32
10TL 263399.94 265537.11 273381.50 271886.28 271202.10
10TT 263399.94 264825.89 265162.81 264452.45 264521.09
20LL 234690.94 252474.86 241770.42 234690.96 237535.49
20LT 253517.40 269430.21 253630.48 253726.48 253517.40
20TL 271128.18 292975.98 278167.72 277656.24 277477.56
20TT 296035.40 313091.94 300430.06 298713.13 297815.47
25LL 238977.95 262161.25 240664.96 241567.15 240957.55
25LT 276372.50 290992.20 282519.60 280250.63 279572.30
25TL 310317.64 354190.86 317842.88 315771.09 313231.02
25TT 348369.15 367621.69 357694.32 355511.70 353480.83
40LL 241955.71 273983.08 242065.46 242136.18 242133.53
40LT 272218.32 290925.54 280480.97 276594.07 274646.01
40TL 298919.01 334567.14 302204.16 301387.81 301880.38
40TT 354874.10 384965.20 375508.43 366848.57 364702.35
50LL 238520.59 265522.72 238520.59 238520.59 textbf238520.59
50LT 272897.49 298174.33 288895.21 285785.20 284421.55
50TL 319015.77 346652.02 327214.61 325489.86 326084.12
50TT 417440.99 451616.64 428285.13 425345.02 425075.82
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Table A.3: Medium Problem Instances of CSAHLP: Averages of 50 Runs

Problem Known Best GA-BCRC GA-RESC GA-DCEC GA-MCEC
[11]

60LL 225917.21 247387.69 225917.21 225921.72 225928.26
60LT 253761.98 289531.95 267318.33 263974.39 266303.77
60TL 252496.66 290602.52 254910.83 254276.47 254318.00
60TT 351274.72 383965.19 357357.47 354521.22 355335.19
70LL 236817.35 256803.83 238659.92 238302.64 239191.99
70LT 257454.36 277224.83 265600.10 260790.91 261783.32
70TL 271283.82 327439.31 272606.31 272523.48 272609.90
70TT 387380.20 458490.13 408686.96 393717.97 392438.42
75LL 238024.22 262337.93 239275.32 238309.59 238339.83
75LT 256188.12 295613.70 264718.90 256971.72 258178.16
75TL 303363.55 333721.43 307697.86 308552.14 307931.85
75TT 347189.81 388920.03 362213.62 364118.37 363087.62
90LL 224195.72 261832.99 224395.72 224195.72 224195.72
90LT 246026.24 295875.02 253126.52 252877.87 250520.30
90TL 281561.56 317820.56 301351.42 303011.49 302133.99
90TT 337008.93 374150.02 362693.19 371230.92 358341.33
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Table A.4: Large Problem Instances: Averages of 50 Runs

Problem Known Best GA-BCRC GA-RESC GA-DCEC GA-MCEC
[11]

100LL 246713.97 269365.00 254230.87 255739.71 252928.00
100LT 256155.33 281269.03 269311.50 279421.16 261433.00
100TL 362950.09 394053.05 381088.07 384143.42 381939.35
100TT 474680.32 503155.44 520497.94 535997.77 502402.95
125LL 239920.75 263892.30 242644.72 243050.25 242813.88
125LT 251259.16 292229.84 264260.70 267390.67 262569.51
125TL 246486.69 295335.09 246486.69 246672.95 246854.20
125TT 291807.35 354176.29 331973.39 327513.89 325195.20
150LL 234765.44 261645.47 234883.92 235227.98 235249.10
150LT 250186.53 301295.68 263219.10 266603.67 258391.64
150TL 262822.24 286917.48 270994.89 267835.56 268662.81
150TT 323992.37 373242.57 341081.06 342828.77 340008.72
175LL 227997.58 255993.23 229666.05 229032.14 229851.88
175LT 251540.80 296435.24 269968.89 267574.88 263995.86
175TL 244860.41 278593.53 246138.60 249265.05 247222.78
175TT 308310.13 371058.54 321185.31 324735.79 319623.93
200LL 231069.50 272300.62 243752.80 245603.14 242915.52
200LT 268820.57 324258.53 283453.45 288371.53 277419.59
200TL 273443.81 296552.83 286671.89 298633.61 286921.45
200TT 290841.84 336251.52 326431.67 343370.82 305532.15



Appendix B

Appendix of SOGA Results using

CAB Data Set

Tables B.1, B.2, B.3, and B.4 show the results obtained when SOGA was applied

on the CAB data set. In these tables, the first two columns represent the α and

the f values of the problem instance. The next columns represent the problem’s

currently known best (Optimal Cost), and the best solution obtained by each of the

four crossover implementation types. Where the proposed GAs found the currently

known best solution, it is indicated with a
√

, and the frequency of obtaining this

known best in 50 runs is shown in the brackets next to the
√

.
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Table B.1: Comparison with Known Best, n = 10, CAB Data
α f Optimal Cost [31] GA-BCRC GA-RESC GA-DCEC GA-MCEC

0.2 100 791.93
√(15) √(13) √(10) √(6)

150 915.99
√(36) √(24) √(21) √(26)

200 1015.99
√(43) √(30) √(23) √(20)

250 1115.99
√(38) √(12) √(21) √(20)

0.4 100 867.91
√(11) √(22) √(23) √(26)

150 974.30
√(42) √(30) √(24) √(23)

200 1074.30
√(45) √(25) √(23) √(17)

250 1174.30
√(44) √(10) √(10) √(10)

0.6 100 932.62
√(40) √(20) √(20) √(23)

150 1032.62
√(40) √(20) √(15) √(17)

200 1131.05
√(2) √(9) √(30) √(30)

250 1181.05
√(5) √(13) √(30) √(30)

0.8 100 990.94
√(19) √(20) √(7) √(18)

150 1081.05
√(5) √(5) √(30) √(30)

200 1131.05
√(6) √(7) √(30) √(30)

250 1181.05
√(8) √(14) √(30) √(30)

1.0 100 1031.05
√(28) √(35) √(30) √(30)

150 1081.05
√(29) √(34) √(30) √(30)

200 1131.05
√(24) √(29) √(30) √(30)

250 1181.05
√(30) √(35) √(30) √(30)
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Table B.2: Comparison with Known Best, n = 15, CAB Data
α f Optimal Cost [31] GA-BCRC GA-RESC GA-DCEC GA-MCEC

0.2 100 1030.07
√(4) √(3) √(1) 1110.09

150 1239.77
√(19) √(9) √(1) √(4)

200 1381.28
√(3) √(2) √(5) √(6)

250 1481.28
√(6) √(3) √(1) √(3)

0.4 100 1179.71
√(2) √(3) √(4) √(3)

150 1355.09
√(9) √(7) √(3) √(1)

200 1462.62
√(43) √(25) √(2) √(1)

250 1556.66
√(9) √(15) √(30) √(30)

0.6 100 1309.92
√(7) √(3) √(1) √(1)

150 1443.97
√(21) √(33) √(30) √(30)

200 1506.66
√(3) √(6) √(30) √(30)

250 1556.66
√(2) √(12) √(30) √(30)

0.8 100 1390.76
√(22) √(19) √(3) √(1)

150 1456.66
√(5) √(5) √(30) √(30)

200 1506.66
√(3) √(1) √(30) √(30)

250 1556.66
√(4) √(5) √(30) √(30)

1.0 100 1406.66
√(5) √(20) √(30) √(30)

150 1456.66
√(4) √(7) √(30) √(30)

200 1506.66
√(4) √(8) √(30) √(30)

250 1556.66
√(4) √(3) √(1) √(30)
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Table B.3: Comparison with Known Best, n = 20, CAB Data
α f Optimal Cost [31] GA-BCRC GA-RESC GA-DCEC GA-MCEC

0.2 100 967.74
√(14) √(20) √(2) √(5)

150 1174.53
√(5) √(9) √(10) √(10)

200 1324.53
√(5) √(2) √(4) √(2)

250 1474.53
√(14) √(8) √(9) √(9)

0.4 100 1127.09
√(4) √(11) √(4) √(2)

150 1297.76
√(7) √(8) √(1) √(1)

200 1442.56
√(11) √(15) √(8) √(8)

250 1570.91
√(12) √(7) √(1) √(4)

0.6 100 1269.15
√(4) √(2) √(2) √(2)

150 1406.04
√(17) √(20) √(15) √(9)

200 1506.04
√(15) √(2) √(6) √(4)

250 1701.20
√(13) √(12) √(30) √(30)

0.8 100 1369.52
√(7) √(2) √(9) √(8)

150 1469.52
√(24) √(24) √(3) √(2)

200 1520.91
√(20) √(25) √(30) √(30)

250 1570.91
√(1) √5)

√(30) √(30)

1.0 100 1410.07
√(23) √(22) √(3) √(4)

150 1470.91
√(5) √(12) √(30) √(30)

200 1520.91
√(4) √(2) √(30) √(30)

250 1570.91
√(5) √(9) √(30) √(30)
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Table B.4: Comparison with Known Best, n = 25, CAB Data
α f Optimal Cost [31] GA-BCRC GA-RESC GA-DCEC GA-MCEC

0.2 100 1029.63
√(3) √(2) √(1) √(1)

150 1217.34
√(3) √(3) √(4) √(2)

200 1367.34
√(12) √(10) √(2) √(2)

250 1500.90
√(5) √(12) √(18) √(10)

0.4 100 1187.51
√(4) √(6) √(11) √(1)

150 1351.69
√(15) √(19) √(2) √(2)

200 1501.62
√(15) √(11) √(2) √(1)

250 1601.62
√(6) √(12) √(14) √(12)

0.6 100 1333.56
√(14) √() √(3) √(1)

150 1483.56
√(11) √(11) √(6) √(4)

200 1601.20
√(5) √(6) √(3) √(3)

250 1701.20
√(6) √(10) √(8) √(2)

0.8 100 1458.83
√(15) √(14) √(6) √(9)

150 1594.08
√(11) √(20) √(18) √(14)

200 1690.57
√(4) √(2) √(2) √(1)

250 1740.57
√(1) √(3) √(6) √(2)

1.0 100 1556.63
√(16) √(19) √(13) √(7)

150 1640.57
√(3) √(4) √(6) √(5)

200 1690.57
√(2) √(3) √(3) √(4)

250 1740.57
√(3) √(10) √(8) √(11)



Appendix C

Appendix of Convergence Curves

of SOGA

Figures C.1, C.2, C.3, and C.4, show the convergence curves of problem instances

25TT, 50TT, 100TT, and 200TT.

Figure C.1: Plot of Convergence Curve for Problem Instance 25TT
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Figure C.2: Plot of Convergence Curve for Problem Instance 50TT

Figure C.3: Plot of Convergence Curve for Problem Instance 100TT
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Figure C.4: Plot of Convergence Curve for Problem Instance 200TT


