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ABSTRACT 

This study examined annual variation in phenology, abundance and diversity of a 

bee community during 2003, 2004, 2006, and 2008 in rec~6vered landscapes at the 

southern end of St. Catharines, Ontario, Canada. Overall, 8139 individuals were collected 

from 26 genera and sub-genera and at least 57 species. These individuals belonged to the 

5 families found in eastern North America (Andrenidae, Apidae, Colletidae, Halictidae 

and Megachilidae). The bee community was characterized by three distinct periods of 

flight activity over the four years studied (early spring, late spring/early summer, and late 

summer). The number of bees collected in spring was significantly higher than those 

collected in summer. In 2003 and 2006 abundance was higher, seasons started earlier and 

lasted longer than in 2004 and 2008, as a result of annual rainfall fluctuations . 

Differences in abundance for low and high disturbance sites decreased with years. 

Annual trends of generic richness resembled those detected for species. Likewise, 

similarity in genus and species composition decreased with time. Abundant and common 

taxa (13 genera and 18 species) were more persistent than rarer taxa being largely 

responsible for the annual fluctuations of the overall community. Numerous species were 

sporadic or newly introduced. The invasive species Anthidium oblongatum was first 

recorded in Niagara in 2006 and 2008. Previously detected seasonal variation patterns 

were confirmed. Furthermore, this study contributed to improve our knowledge of 

temporal dynamics of bee communities. Understanding temporal variation in bee 

communities is relevant to assessing impacts caused on their habitats by diverse 

disturbances. 
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CHAPTER I: ANNUAL VARIATION IN BEE COMMUNITY STRUCTURE 

1. INTRODUCTION AND LITERATURE REVIEW 

1.1. The Carolinian Zone and the Niagara Region ~. 

This study was carried out in the Carolinian Zone, south-western Ontario, which 

concentrates the majority of the rare plant species of Ontario and forms a continuum 

biome with the Eastern Deciduous Forest of North America (Argus, 1992). The Niagara 

Region forms part of the eastern edge of the Carolinian Zone, an 1800 km2 area of a high 

ecological value originally composed of prairies, meadows and woodland communities of 

which 97% have been already degraded (Argus, 1992; Van Hemessen, 1993, in Rutgers­

Kelly, 2005). Relatively undisturbed patches of natural or naturalising woodland edges, 

grasslands and meadows may serve as both ecological refuges and habitat sources where 

the flora and the associated insect fauna find shelter and may expand (Richards et al., 

2011). Franzen and Nilsson (2010) have found that the patch size is indirectly linked to 

bee community abundance through its influence on host plant population sizes. 

Therefore, the quality of these ecological refuges may help to protect bee communities of 

the Niagara Region from detrimental effects that anthropogenic disturbances cause to the 

availability of food and nesting resources (Argus, 1992; Roulston and Goodell, 2011). In 

small and relatively undisturbed patches, bee species composition correlates better to 

habitat change produced by anthropogenic disturbance than does non-bee pollinator 

species composition (Quintero et al., 2010). Furthermore as Kevan (1999) suggested, bee 

communities could also have the potential of becoming a bioindicator of habitat change, 

with interest for conservation purposes. 

11 

• 



1.2. The importance of bee communities 

Bees (Hymenoptera, Apoidea) are particularly diverse, accounting for 20,000 to 

30,000 species worldwide, with an elevated number of rate species (Michener, 2000; 

Williams et ai., 2001). In addition, bees constitute the main pollinator group in many 

ecosystems including agricultural habitats, and playa significant ecological and 

economic role (Cane, 2001; Kevan, 1999; Michener, 1979; Potts et aI., 2003a; Williams 

et ai., 2001). Bee communities enhance the maintenance of biodiversity through their role 

in the sexual reproduction of 90% of angiosperm plants (Fontaine et ai., 2008; Kearns et 

ai., 1998; Kevan, 1999; Potts et ai., 2003a). Despite their importance as pollinators, only 

recently has the effect of anthropogenic disturbance been studied on a bee community of 

Niagara (Rutgers-Kelly, 2005; Richards et ai., 2011). Furthermore, this is the first study 

in this region, investigating patterns of annual variation in a bee community. 

1.3. Temporal variation in animal communities 

The number of species co-existing in a community is determined by oscillations 

in abiotic and biotic factors over time (Chesson and Huntly, 1989; Dupont et ai., 2009; 

Fraterrigo and Rousak, 2008; Kallimanis et ai., 2009; Kevan, 1999; Preston, 1960; Sousa, 

1984). The abiotic factors may include temperature, humidity, nutrient supply, soil 

chemistry, living space, and (natural or anthropogenic) disturbance. The biotic factors 

include competition, predation, parasitism, and mutualism. As a result of the dynamic 

nature of the above factors, community variability in abundance and diversity tends to 

increase with time (Hanski, 1990). Several studies have found that temporal community 

variation is related to fluctuations in abundance (den Boer, 1981; Hanski, 1982a, 1990; 
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Taylor and Woiwod, 1980). These changes would be more noticeable in abundant species 

which are more variable than rare species (Glazier, 1986; Gaston, 1998; Owen and 

Gilbert, 1989; Wolda, 1983). However, abundant species t ver time tend to be more 

persistent and their proportional representation within the community is also more stable 

than in rare species (Collins and Glenn, 1991; Durrer and Schmid-Hempel, 1995; Gibson 

et aI., 1999; Guo et ai., 2000; Hanski, 1982b,c). 

Temporal variation has been described for a diverse array of animal 

communities including aphids, aquatic invertebrates, bees, birds, carabid beetles, lizards, 

moths, rodents, syrphid flies and tropical insects (Cam et ai., 2000; Connell and Sousa, 

1983; den Boer, 1981; Glazier, 1986; Ostfeld, 1988; Owen and Gilbert, 1989; Roubik, 

2001; Schoener, 1985; Taylor and Woiwod, 1980; Taylor et al., 1980; Wolda, 1983). The 

above studies reported a great deal of temporal variability in structure for animal 

communities. This included variation in the number of species and their relative 

abundances, and changes in their morphological, physiological and behavioural traits. 

Knowledge of temporal variation patterns is still being built; hence comparisons among 

animal communities may offer valuable insights for understanding these processes 

(Hanski, 1990). Furthermore, related animal communities may display similar temporal 

variation patterns (Hanski, 1982a, 1990; Taylor et al., 1980). Several studies recognised 

that arthropod communities experience a greater temporal variation than other animal 

communities (i.e. vertebrates) (den Boer, 1981; Hanski, 1990; Ostfeld, 1988; Owen and 

Gilbert, 1989; Schoener, 1985). 
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1.4. Temporal variation in bee communities 

Bee community abundance and diversity are highly variable, with a high genus 

and species turnover over time (Dupont et aI., 2009; Gri:d'rand Packer, 2006; Herrera, 

1988; Minckley et aI., 1999; Petanidou et aI., 2008; Price et aI., 2005; Roubik, 2001; 

Williams et aI., 2001; Wilson et ai., 2009; Wolda and Roubik, 1986). It has been 

observed that bee community variability increases as the time scale increases (Cane et aI., 

2005; Hanski, 1990; Petanidou et aI., 2008; Roubik, 2001; Williams et aI., 2001). 

The phenology (or seasonal variation) of bee communities has been extensively 

studied (Gonzalez et aI., 1999; Gordo and Sanz, 2006; Herrera, 1988; Kallimanis et aI., 

2009; MacKay and Knerer 1979; Oertli et ai., 2005; Ortiz and BeIda, 1994; Richards et 

ai., 2011; Rutgers-Kelly, 2005; Tuell et aI., 2009; Tylianakis et aI., 2005). Seasonal 

weather variability produces fluctuations of flowering and nesting resources, which in 

turn influence bee behaviour and life cycles (Gordo and Sanz, 2006; Herrera, 1988; Ortiz 

and BeIda, 1994; Ortiz and Tinaut, 1994; Packer et aI., 1989; Richards and Packer, 1995; 

Roubik, 2001; Roulston and Goodell, 2011; Rutgers-Kelly, 2005). Bee communities are 

highly related to the time of the year in which floral resources become available (Gordo 

and Sanz, 2006; Herrera, 1988; Roulston and Goodell, 2011). Indeed, bivoltine and 

multivoltine species (having two or more brood generations per year, respectively) may 

show seasonal delays in population abundance in response to fluctuations of flowering 

resources (Roulston and Goodell, 2011). 

An increasing body of literature analyses long-term variation of bee communities 

at annual and/or decadal scales (Alarcon et aI., 2008; Cane et aI., 2005; Fishbein and 

Venable, 1996; Grixti and Packer, 2006; Herrera, 1988; Minckley et aI., 1999; Petanidou 
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et ai., 2008; Roubik, 2001; Tepedino and Stanton, 1981; Williams et ai., 2001). In order 

to analyse annual variation in abundance and diversity in bee communities, studies 

should meet certain methodological requirements (Cane atd Tepedino, 2001; Roubik, 

2001; Williams et ai., 2001). To measure the variability in abundance and diversity, it is 

necessary to have an adequate inventory of the total number of individuals and species in 

the community (McArdle and Gaston, 1993; Williams et al., 2001). Annual variation 

processes need to be studied in the long-term, and a sufficient number of replications 

(covering at least three years) should be provided in order to describe any trend (Roubik, 

2001). In addition, the use of standardised methods ensures the uniformity of the 

collected data and the repeatability of the study (Cane and Tepedino, 2001; Roubik, 

2001; Williams et ai., 2001). This is especially important for re-sampling studies that re­

visit a previously surveyed location after several decades, such as that of Grixti and 

Packer (2006). Below, studies that approach these criteria in their analyses of the annual 

abundance and diversity variation of bee communities are reviewed. 

1.4.1. Annual variation in the bee community of Caledon Hills 

A re-sampling study was made at Caledon Hills (SW Ontario), a Carolinian Zone 

location initially sampled in 1968 and 1969 by MacKay and Knerer (1979). Between 

those earlier collections and these of Grixti and Packer (2006) in 2002 and 2003, 34 years 

had elapsed. Grixti and Packer (2006) made an inventory of species providing full details 

of the Caledon Hills bee community sampled in both periods. In the earlier study 9,784 

bees belonging to 5 families, 26 genera and 105 species were collected. As for the second 

study, 10,437 bees belonging to 5 families, 27 genera and 150 species were collected. 
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From the total of bees collected during the first study nearly two thirds were collected in 

1968 (6290 bees) and over one third (3494 bees) in 1969, which represented a 56% 

decline from one year to the next. Conversely, during the ~econd study at Caledon Hills 

the number of bees collected was 4293 and 6144 in 2002 and 2003, respectively, which 

represented a 70% increase in just one year. In addition, the Caledon Hills bee 

community experienced an average change of 8.2 times in relative abundance between 

studies. This outcome was mostly produced by the decline of Lasioglossum imitatum 

from 5673 to 96 bees between both studies. Relative abundance also varied drastically for 

species such as Ceratina calcarata, which increased from three to 795 bees, Andrena 

wilkella, which increased from 24 to 1162 bees and Colletes kincaidii which declined 

from 35 to one bee. 

A total of 165 species was collected during both studies. The number of species 

increased from 105 to 150 species between studies. Sorting by years, 98 species were 

collected in 1968, 76 species in 1969,98 species in 2002, and 143 species in 2003. 

Ninety species (86%) were shared between the first and the second studies, although the 

community similarity, using the Morisita-Horn index, was only 7.5%. However, inter­

annual similarity was much higher, with 99% similarity between 1968 and 1969 and 76% 

similarity between 2002 and 2003. In general, there was an increase in species richness 

and diversity indices (i.e. Shannon-Wiener and Evenness) for almost all guilds 

considered between the first and the second studies, namely ground-nesting, parasitic, 

non-parasitic, pollen generalist, native, and exotic species. 

The vegetation of both studies consisted of pioneer or early successional stages, 

formed by mats of regularly mowed grass, along with patches of flowering plants (Grixti 
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and Packer, 2006; MacKay and Knerer, 1979). In addition, mature trees and shrubs were 

also found in both periods (such as Prunus sp. and Comus spp. of great importance to 

bees), which Grixti and Packer (2006) assigned to mid-su~'cessional plant communities. 

In both studies, the vegetation covering the ground varied from very light to very dense 

(Grixti and Packer, 2006; MacKay and Knerer, 1979). Soil conditions also remained 

similar in both periods, ranging from sandy and loose to quite compact and cohesive. The 

soil was mostly formed of mixed rocks and pebbles, which facilitated the drainage as no 

standing water was noted even after heavy rains (MacKay and Knerer, 1979). Moreover, 

the site had a large area of ground with a southern exposure and a wide slope gradient. 

These soil conditions offered ground-nesting species a wide variety of nesting sites, and 

protection against nest flooding if rainfall occurred during the breeding seasons (MacKay 

and Knerer, 1979; Richards and Packer, 1995, 1996; Richards, 2004). Thus, edaphic 

factors mostly benefited ground-nesting species (which predominated in both studies), 

while floral resource availability may have enhanced the diversity of the overall Caledon 

Hills bee community (Roulston and Goodell, 2011; MacKay and Knerer, 1979). 

Grixti and Packer (2006) suggested that the Caledon Hills bee community had 

been subject to ecological succession. However, the following arguments support the 

interpretation of annual variation. Plant inventories in both studies were incomplete, 

omitting several species of flowering plants and trees. This jeopardised the comparison of 

vegetation between periods and did not provide sufficient evidence of plant community 

succession. In both studies., the presence of mature trees and shrubs was recorded; in 

addition, habitat management practices such as mowing took also place. In the case of an 

on-going ecological succession process between the two studies, the species richness of 
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pollen specialists and wood nesting species should have also varied. Moreover, diversity 

changes in other guilds seem to be better explained by changes in relative abundance of 

guilds between studies. It should also be noted that the g&ater species richness registered 

in the second studied was likely influenced by the high number of bees collected. 

Richardson and Richards (2008) analysed the effect that abundance had on 

diversity of the Caledon Hills bee community. Their results support the interpretation of 

annual variation. They used the dataset provided by Grixti and Packer (2006) and tested 

variation in species richness both among years and studies. Grixti and Packer (2006) had 

performed a rarefaction analysis for testing the variation of species richness, which 

limited the number of individuals analysed to the sample size of the smallest sample. 

Instead, Richardson and Richards (2008) performed a randomisation analysis which 

allowed using the complete dataset. This analysis tested the null hypothesis that 

differences in species richness were due to variation in abundance among temporal 

samples. When differences in species richness were analysed among years, Richardson 

and Richards (2008) found that the observed species richness was lower than expected 

for the years 1968, 1969 and 2002 and similar to the expected value for 2003. The year 

2003, with 36 unique species found out of the total 165 species, was particularly more 

speciose than the other three sampling years. Therefore, given that differences were 

mostly due to the influence of one sampling year, annual variation in diversity seems to 

be a more plausible explanation of these results than ecological succession. Furthermore, 

this interpretation would be also in agreement with previous long-term studies of bee 

communities (Williams et al., 2001; Cane et al. , 2005; Roubik, 2001). 
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1.4.2. Annual variation in desert bee communities 

In the southwestern U.S.A., the desert bee fauna related to the bush Larrea 

tridentata was studied by Cane et al. (2005), who re-sampled the same sites in three 

different regions (Lower and Upper Sonoran Deserts and the Chihuahuan Desert) during 

3 consecutive years. Larrea tridentata blooms in spring for about 55 days and in summer 

sporadically in response to rains (Bowers and Dimmit, 1994). Flowers of L. tridentata 

remain open for a maximum of 2 days (Minckley et al., 1999). Drought prevents 

flowering and severely diminishes bee populations (Bowers and Dimmit, 1994; Hurd and 

Linsley, 1975), although no drought episode was reported by Cane et al. (2005). Sites 

consisted of 1 ha plots with flat L. tridentata stands that were more than one-third 

through their blooming season (Cane et al., 2005; Minckley et al., 1999). Bush canopy 

volume and density per hectare varied greatly across sites; floral resource variation could 

lead to changes in species richness, although no differences were found (Minckley et al., 

1999; Roulston et al., 2011). 

Over the three-year study, between 54 and 68 species were collected per site. 

Inter-annual diversity comparisons were made using pairs of consecutive years. In the 

above sites, species richness was quite low, ranging from 5 to 23 species per year, with 

73% annual similarity in species composition (using the Morisita-Horn index). In 

addition, one extra Upper Sonoran site was re-sampled during five consecutive years, and 

inter-annual comparisons of diversity were made. In this site, a total of 19 species was 

collected, with 7 to 12 spedes in any given year. Among these species, only 3 of them 

were caught in all years, while between 5 and 8 species were shared among consecutive 

year pairs. The similarity of species composition among the five consecutive years was 
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87%, lower than the seasonal similarity of species composition (97%). These results 

indicate that the L. tridentata bee community was temporally stable. The high temporal 

stability of species may be enhanced by the limited bee' foraging range and the isolation 

of populations caused by habitat fragmentation (Bommarco et al., 2010; Cane et al., 

2006; Zurbuchen et al., 2010). 

At a regional scale, Cane et al. (2005) found that thirteen abundant species were 

more persistent and more frequently collected (with 76% of the total number of bees) 

than rare species during paired or multiple years. Cane et al. (2005) also reported that the 

thirteen abundant species formed a diverse group with representation of all the North­

American families and several nesting guilds. Alternatively, half of the oligolectic (pollen 

specialist) species on L. tridentata were less common and unique to one collection year, 

while the remaining half were represented in pairs of years. Oligolectic species on L. 

tridentata may be more susceptible to inter-annual changes in resource quantity than the 

thirteen abundant species (Minckley et al., 1999). In L. tridentata, the spring bloom is 

longer, and its timing is more predictable than the sporadic summer bloom as a result of 

more consistent rainfall patterns during winter and spring than during summer (Bowers 

and Dimmit, 1994; Hurd and Linsley, 1975). This is reflected by the fact that all 

oligolectic species are active in spring, while only three of them emerge during summer 

blooms (Bowers and Dimmit, 1994; Hurd and Linsley, 1975). Therefore, a small cohort 

of abundant and persistent species was responsible for most of the flower visits, while 

very few flower visits were carried out by a majority of rare and transient species. 
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1.4.3. Annual family-level variation in an Appalachian bee community 

Studies of annual variation in bee communities at the family level are relatively 

scarce. In a two-year study performed in the Appalachian~hale barrens, Kalhorn et al. 

(2003) collected 841 bees in 1992 and 361 bees in 1993 using malaise traps. In both 

years, plant density and species composition varied seasonally; dense flower patches 

occurred in spring when moisture was higher and the vast majority of the bees were 

trapped. Nonetheless, Kalhorn et al. (2003) reported no annual changes in their bee 

surveys and plant inventories due to dry periods during 1992 and 1993. No inter-annual 

variation was detected in the number of bees collected per family (paired t-test: t5 = 1.56, 

P = 0.180). The family rank only varied for the rarest families, namely Colletidae (7 bees 

in both years), Megachilidae (4 bees), and Melittidae (4 bees). The most abundant 

families were Halictidae with a total of 690 bees in both years (representing 54% of the 

total number of bees in 1992 and 66% in 1993), Andrenidae with 471 bees (comprising 

44% of the total number of bees in 1992, and 28% in 1993), and Apidae with 26 bees 

(2% and 4% in 1992 and 1993, respectively). 

1.4.4. Annual variation in a rainforest bee community 

Roubik (2001) sampled an orchid bee population in a lowland rainforest for a 20-

year period, in which over 47,000 bees were registered in 1952 monthly counts. Annual 

variation in abundance by two to four-fold was frequently detected for the overall bee 

community abundance, reaching up to fourteen-fold for some species. The EI Nifio­

Southern Oscillation climatic events (in 1982-1983, 1992 and 1997) did not substantially 

affect the orchid bee population, with only brief seasonal increases in bee abundance. 
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Despite the marked annual variation of abundance, no changes in diversity were detected 

from the year 1980 to 2000, for a total of 32 species. The annual variation trends of bee 

communities in tropical regions may differ from those ob~·erved in temperate climates. 

Comparing this to the above studies, the annual patterns of diversity for tropical bee 

communities would seem to be more stable than for bee communities of temperate 

regions. This is in agreement with previous observations by Wolda (1983) and Wolda and 

Roubik (1986) who found tropical bee communities to be more stable than their 

temperate counterparts. 

1.4.5. Bee community variation among decades 

Currently, very few studies have been made on a decades-long basis, collecting 

continuously throughout a sufficiently long annual series (Roubik, 2001; Cane et al., 

2005). However, in order to gain an improved understanding of long-term variation 

processes related to bee communities, studies should ideally be extended over periods 

greater than a few years (Roubik, 2001). Furthermore, variation patterns detected at the 

year-level should be more noticeable at the decade-level (Roubik, 2001). 

1.4.5.1. Decadal variation of desert bee communities 

Cane et al. (2005) re-sampled the L. tridentata bee community at six sites in the 

southwestern U.S.A. that were initially studied by Hurd and Linsley (1975). Many 

species of the L. tridentatq bee community persisted between decades with half of the 

species shared by the two previous studies. The similarity in species composition 

between the two decades was 36% (Morisita-Horn index). Not surprisingly, the similarity 
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in species composition was lower between decades than among years (87%). However, 

Cane et al. (2005) regarded the actual similarity between decades as under-estimated 

given that the two studies differed in their sampling effort. This likely caused the 

abundance to be lower for several common species, and some rare species were missing 

from the more recent and less intensively sampled study. 

1.4.5.2. Decadal variation in a Michigan bee community 

Williams et al. (2001) analysed un-published data of a bee community studied by 

F.e. Evans for 40 years at the E.S. George Reserve in Michigan, USA. Although the 

Evans dataset presented some flaws such as some under-sampled years, it still allowed an 

analysis of the long-term variation of a bee community subject to low anthropogenic 

disturbance. In order to compare the similarity of species composition, three years were 

selected from each decade (1950s, 1970s and 1980s). These were also contrasted with the 

early 1970s (1972-1973) characterised by an especially high abundance. Williams et al. 

(2001) found a decreasing degree of similarity in species composition (using the 

Morisita-Horn index) of the bee community with decade. The species composition in the 

1950s was 54% similar to the 1970s, (44% similar to the early 1970s) and 27% similar to 

the 1980s. In addition, the similarity of species composition in the 1970s was 90% and 

69% similar to the early 1970s and to the 1980s, respectively. Thus, the analysis of 

Williams et al. (2001) provided evidence of an important species turnover among 

decades. This inter-decade species turnover was accompanied by an average 200% 

change in abundance of the bee community (Williams et al., 2001). However, this study 
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did not provide a temporal reference that allowed tracing this change throughout the 

decades. 

1.4.5.3. The Carlinville bee community from the 1880s to 1970s 

Robertson (1929) recorded 296 bee species from 441 flowering plants occurring 

in Carlinville (lllinois, U.S.A.), which is a mesic temperate area (Minckley, 2008). Over 

15,000 visits of several insect orders were registered between 1884 and 1916 (Robertson, 

1929; Marlin and Laberge, 2001). From 1970 to 1972, Marlin and Laberge (2001) re­

sampled the same area, focusing on the 24 most visited plant species, although 43 other 

plants were also sampled for a total of 163 collection hours. These authors aimed to 

collect all the visiting bee species, combining sweep netting with the use of a long­

handled net, allowing them to capture bees flying over short trees (Marlin and Laberge, 

2001). During the period between the two studies, the prairie habitat, initially 

representing 73% of the landscape, was transformed into agricultural lands (Marlin and 

Laberge, 2001). A total of 228 bee species was collected excluding Apis mellifera, 

Bombus spp. and parasitic species. Robertson collected 214 species including 74 not 

detected in the re-sampling survey that recorded 154 species (of which 14 were unique). 

Sixty-five per cent of the species of the historical survey were collected again by Marlin 

and Laberge (2001). These authors also compared the similarity in species composition 

between both surveys by calculating the Jaccard and Sorensen similarity indices, whose 

values were 0.614 and 0.761,respectively. 

In addition, a combined total of 179 species (excluding the above mentioned taxa) 

was collected on the 24 most-visited plant species. In this case, the species richness of the 
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historical survey was 157 (29 unique species), very similar to the 150 species (22 unique 

species) of the re-sampling survey. Likewise, 82% of the species collected by Robertson 

on the 24 plant species were detected in the re-sampling turvey. Accordingly, the values 

of the Jaccard and Sorensen similarity indices were higher 0.715 and 0.883 respectively. 

As a result, Marlin and Laberge (2001) concluded that the high degree of similarity 

between both Carlinville surveys reflected that the bee community had remained almost 

invariable from the 1880s to 1970s. 

1.4.5.4. The bee community of Plummers Island from 1909 to 2006 

Norden (2008) published a century-long survey performed on Plummers Island 

(Maryland, U.S.A.) by several collectors who made an inventory of the insect fauna 

(Brown and Bahr, 2008). Over the century-long period, the vegetation of the island 

progressively changed from open land to developed woodland; conversely, the adjacent 

mainland forests were cleared. The collecting methods and sampling effort were not fully 

described and also varied over the collection period. This prevents the possibility of 

performing meaningful analyses such as a test of temporal variation of abundance. From 

1909 to 1925 bees were collected by hand nets; from 1950s to 1972 hand nets and 

hanging wooden-traps were used; over the 1980s three methods (hand nets, Malaise and 

pan traps) were employed; and from the 1990s to 2006 bees were collected by hand nets 

or pan traps (Brown and Bahr, 2008; Norden, 2008). During the century-long survey over 

9,000 bees were collected, most of them between April and June. In 1985, 163 species 

belonging to 37 genera were recorded, while in 2006,232 species from 41 genera were 
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collected. The species composition for the pooled 1920s - 1950s period was the same as 

in the 2000s, with the addition of only two invasive species. 

1.4.5.5. Historical and re-sampling surveys of a Colorado bee community 

The bee community of Boulder County (Colorado, U.S.A.) was first sampled 

between 1904 and 1907 by Cockerell, who collected 164 species (Kearns and Oliveras, 

2008). The Boulder bee community was re-sampled between 2001 and 2005 when 5741 

bees and 110 species were collected, with 22% of these species represented by only one 

individual (Kearns and Oliveras, 2008). During the course of a century, Boulder County 

changed from prairie habitat to urban landscape, with a significant portion of natural 

habitat surrounding the city (Kearns and Oliveras, 2008). For purposes of comparison, 

the species list of the historical survey was narrowed to 116 species by Kearns and 

Oliveras (2008). In addition to similar species richness, the number of species per genus 

did not differ significantly between the two studies. As a result, these authors stated that 

bee species diversity remained constant even though dramatic changes in landscape had 

occurred in the course of a century. Furthermore, Kearns and Oliveras (2008) suggested 

that bee resource availability had increased over that period, helping to conserve the bee 

community of Boulder County. 

1.4.5.6. Analysis of historical studies on long-term bee community variation 

The studies of Kearns and Oliveras (2008), Marlin and Laberge (2001) and 

Norden (2008) concluded that diversity remained constant for an extremely long period 

of time ranging from five decades to a century. This implied that the community changes 
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occurring in shorter terms would decrease as time increased. This interpretation clearly 

contradicts the inter-annual and inter-decadal studies described above. 

Nonetheless, in order to accept this interpretation further evidence should have 

been provided, and an accurate long-term assessment solving some methodological 

problems should have been made. The three studies failed to provide strong evidence of 

how important habitat changes influenced the bee community. The methodologies of the 

three studies were not standardised or fully specified; historical surveys used one 

collecting technique that differed from the diverse techniques of the re-sampling studies 

(i.e. pan traps, sweep and hand nets). The objectives also varied: historical surveys aimed 

to make an inventory of the bee fauna, whereas re-sampling surveys sought to maximise 

diversity. In addition, unequal sampling effort between surveys of the three studies may 

have resulted in abundance and diversity differences. This was specifically the case for 

the species lists of the Carlinville and Boulder County historical surveys that were 

narrowed in order to allow comparisons with the re-sampling surveys. This potentially 

under-estimated the diversity differences between historical and re-sampling surveys of 

both studies, since more species were detected in the historical survey (with more 

individuals collected) than in the re-sampling survey. Moreover, the three studies made 

important conclusions but flawed conclusions on diversity, analysing only two temporal 

references, when at least three samplings are needed to identify trends in long-term 

variation processes (Roubik, 2001). Indeed, inter-annual analyses of the bee community 

(using the re-sampling surveys) could have provided additional annual comparisons to 

contrast to the historical surveys. The three historical surveys also lacked information on 
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relative abundance of species, which prevented the later authors from analysing the 

abundance variation among years. 

Finally, none of the three studies provided complt te evidence of both the 

abundance and diversity of long-term variation in bee communities. Hence, the 

conclusion of these articles that diversity remained constant for almost a century should 

be questioned, due to the lack of sufficient proof and consistent evidence to support it. 

This was the result of using surveys combining different, missing or not-specified 

methods and insufficient knowledge of temporal variation in the bee community. Bee 

communities assessed from historical sources may provide important information for 

making inventories; however, they should not be used for temporal variation analyses of 

bee communities when doubts about methodological homogeneity exist. 

1.5. A bee community of the Niagara Region 

In 2003, a survey was carried out in set-aside grasslands at the Glenridge Quarry 

Naturalization Site (GQNS) and the Brock University campus, it included the same sites 

used in the present study (refer to section 2.1) (Rutgers-Kelly, 2005; Richards et ai., 

2011). Both areas are located in southern St. Catharines, on the southern crest of the 

Niagara Escarpment (this formation is a World Biosphere Reserve), and have naturalised 

habitat patches of several ages (Richards et ai., 2011). The nearby habitat covers forests, 

suburban gardens, highways with grassy edgings, pastures and cornfields (Richards et ai., 

2011). The Brock University campus includes set-aside natural areas and grasslands that 

have been fallow and rarely mowed for the last 40 years. Conversely, intensive farming 

occurred at GQNS until about the 1960s, when it became a limestone quarry and 
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subsequently a landfill site from 1976 to 2001 (Richards et aI., 2011). In early 2003 the 

GQNS ecological restoration was completed; the area was capped with clay and filled 

with soil, creating a substrate on which Carolinian vegetatt on was planted (Rutgers­

Kelly, 2005). Thus, a habitat suitable for pollinators was regenerated after several 

decades of intensive agricultural and industrial exploitation. Nonetheless, the GQNS 

suffered a severe loss of insect populations after the quarry exploitation started. 

Succession with colonisation of insects, other fauna and flora began after restoration of 

the GQNS (Rutgers-Kelly, 2005). In 2003, bee populations at the GQNS sites were 

practically non-existent, while those on the Brock University campus that had persisted 

for a long time were relatively diverse (Rutgers-Kelly, 2005). Over the years flower and 

nesting resources may have likely differed among sites of both areas, consequently 

affecting the bee community (Steffan-Dewenter and Schiele, 2008; Potts et al. 2003b). 

Disturbance can be defined as a discrete, punctuated killing, displacement or 

damaging of one or more individuals (or colonies) that directly or indirectly creates an 

opportunity for new individuals (or colonies) to become established (Sousa, 1984). The 

intensity, frequency and time since the last disturbance may affect the availability of 

resources, creating a trade-off between the ability of species to colonise and to compete 

(Connell, 1978; Mackey and Currie, 2000). Connell (1978) proposed the Intermediate 

Disturbance Hypothesis (IDH) in order to explain the effect of disturbance on species 

richness. When disturbance episodes are very intense, frequent or recent, only a few 

species are able to survive .Of to re-colonise after each episode, resulting in low diversity 

(Connell, 1978). In the case of no disturbance, competitive exclusion also decreases 

diversity as only the best competitor species would be able to persist in the long-term. 
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When disturbance levels are intermediate, habitat patch heterogeneity is elevated, and 

many species have opportunities to re-establish, including good competitor species and 

pioneer species with good dispersal abilities. AccordinglY, the IDH predicts that the 

highest species richness occurs in areas of intermediate disturbance, followed by areas of 

low disturbance, with the lowest species richness found in areas of high disturbance 

(Connell, 1978). 

Rutgers-Kelly (2005) examined how anthropogenic disturbance affected the 

abundance and diversity of the bee community. The above mentioned sites at the Brock 

University campus had been subject to comparatively lower disturbance intensities than 

the GQNS sites. In addition, the time for recovery of the set-aside old fields at the Brock 

University campus had been greater than for the recently restored grasslands at GQNS. 

Hence, Rutgers-Kelly (2005) assigned disturbance levels to the sites of both areas based 

on the disturbance intensity and time since the last event. Disturbance levels were 

regarded as low at sites of the Brock University campus, while intermediate and high 

levels were assigned to sites at GQNS (Rutgers-Kelly, 2005). These sites were the same 

as in the present study except for those at intermediate disturbance levels. The study of 

Rutgers-Kelly (2005) supported the IDH, as the number of species significantly varied 

among sites (even when abundance was controlled) and displayed the same pattern as 

above. Sites with intermediate levels of disturbance had the highest species richness and 

abundance, followed by sites at low and high levels of disturbance, respectively. 

In 2003, this bee community was systematically sampled by using three collecting 

methods (i.e. pan traps, sweep nets and flower collections) at meadows subject to 

different disturbance levels (Rutgers-Kelly, 2005; Richards et al., 2011). Over 15,733 bee 
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specimens were collected, representing 124 species and morphospecies, of which only 8 

species were abundant while 23 species were rare. The bee community presented three 

peaks of high foraging activity throughout the early spring, late spring and mid-to-Iate 

summer. The foraging activity in spring was higher than in summer, decreasing markedly 

by week 11 coinciding with the summer solstice. This was due to the gap period between 

the brood provisioning carried out by the nest foundresses and the emergence of the 

second brood of eusocial and bivoltine species (Richards et ai., 2011). The most abundant 

families were Halictidae (56% of the total number of bees collected), Megachilidae 

(23%), and Apidae (13%), while the families Colletidae (5%) and Andrenidae (3%) were 

less common. The dominance of the family Halictidae over other families of this survey 

is suggested by the fact that halictids were more frequently captured in pan traps than are 

bees in other families (Cane et ai., 2000; Richards et ai., 2011). Indeed, if only sweep 

nets were considered the Apidae would appear to be the most abundant; therefore, 

different families are selectively captured by each collecting method (Richards et ai., 

2011). Richards et al. (2011) suggested that this bee community experiences a high 

species turnover due to an elevated number of transient species occurring sporadically in 

some yeats. This would be a factor contributing to the annual variation of diversity in this 

bee community (Cane et ai., 2005; Gibbs and Sheffield, 2009; Grixti and Packer, 2006; 

McArdle and Gaston, 1992; Minckley et al., 1999; Richards et ai., 2011). 

1.6. Thesis objectives ~nd hypotheses 

This is the first study made in Canada that comprises a bee collection of four 

years (2003, 2004, 2006 and 2008) using only pan traps. Over this period, pan traps were 

31 

• 



set in transect patterns differing in length and shape covering unequal areas, which might 

cause differences in sampling effort and specimen collection rates. Droege et al. (2010) 

and Tuell and Isaacs (2009) reported that differences in·s(atial configuration and distance 

among pan traps might influence the number of bees collected and subsequent abundance 

and diversity analyses. A preliminary objective of this study aimed to test whether 

differences in sampling effort among transect patterns might affect annual trends in bee 

abundance and diversity. Therefore, the null hypothesis was that the number of bees and 

species collected would not differ among the three transect patterns tested (P140, X050 

and X140). Support for this hypothesis is presented in Appendix I. 

The major objectives of this study were to identify annual variation in a bee 

community of the Niagara Region in terms of changes in phenology, abundance and 

diversity over the four years studied. For the phenological analysis of the four sampling 

years, previous reports made in this region had identified patterns of seasonal variation 

(Rutgers-Kelly, 2005; Richards et ai., 2011). My hypothesis was that seasonal flight 

activity for the overall community and the most abundant species would vary among 

years. 

Regarding abundance, the study of Richards et ai. (2011) was used to classify 

bees according to their proportional representation. Genera and species recorded in this 

study thus could be classified as abundant, common or rare. Based on Rutgers-Kelly 

(2005), I hypothesised that the number of bees collected over the four years studied, at 

low disturbance sites would be significantly higher than in high disturbance sites. A 

second hypothesis was that the most abundant genera (or species) would occur more 

consistently over the years and would not switch into other abundance categories as often 
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as their common and rare counterparts. I also aimed to assess which species of the bee 

community would display annual variation in abundance. Furthermore, I hypothesised 

that bee abundance would differ annually among sites anC1 disturbance levels. 

As for annual changes in bee diversity, I made the hypothesis that bee 

community diversity, considered as generic and species richness and by other measures 

such as family, nesting guild, social habit and voltinism, would vary among years. Based 

on previous hypotheses by Hanski (1990), Petanidou et al. (2008), and Williams et al. 

(2001) that genus and species composition would differ increasingly with time, I 

formulated the hypothesis that genus and species turnover would increase with years 

elapsed. Previous studies had shown a relationship between stability in relative 

abundance and the persistence of taxa over time (please refer to the section 1.3); hence, I 

hypothesised that abundance ranks for the most abundant genera and species would be 

more stable over the years than those of rarer genera and species. 
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2. METHODS 

2.1. Study sites 

This study was carried out in four sites at the GQ~S and the Brock University 

campus in southern St. Catharines, Ontario, Canada, (Fig. 1). Their proximity, separated 

by only 1.3 km, ensured that weather conditions were equivalent among all sites. All sites 

covered approximately an area of one hectare. 

Two sites were sampled in the GQNS: Pond (latitude: N 43°07.436', longitude: W 

79°14.205') and St. Davids (latitude: N 43°07.352', longitude: W 79°14.044'). The Pond 

site was located on the northern aspect of a covered landfill approximately 200 m from an 

artificial pond, while the St. Davids site was located on the eastern aspect of the covered 

landfill. The GQNS was ecologically restored in 2003 as meadow after having been 

subjected to several kinds of anthropogenic disturbance for more than a century. First, 

intensive farming occurred until the 1960s, followed by a quarry of limestone and 

eventually serving as a landfill from 1976 to 2001. 

The two sites at the south end of the Brock University campus were denominated 

as Brock North (BrockN; latitude: N 43°06.903', longitude: W 79°14.826') and Brock 

South (BrockS; latitude: N 43°06.733', longitude: W 79°14.781 '). In the 1960's they 

became abandoned farm lands remaining as set-aside meadows. In summer 2003, 

following construction of a parking lot, the original BrockN site was destroyed by 

construction and replaced with the Brock West site (BrockW; latitude: N 43°06.787', 

longitude: W 79°14.831 ') (Rutgers-Kelly, 2005; Richards et aI., 2011). Since the two 

sites were very similar, they were treated as a single site (BrockNW). 
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Fig. 1. Location of the study sites (small fonts) in relation to the Brock University 
campus and the Glenridge Quarry Naturalisation Site (large fonts). Note that when in 
2003 construction at BrockN took place, it was substituted with BrockW and collections 
were pooled. The arrowhead in the lower left corner indicates north, while the box in the 
upper left corner indicates the relative position of the field sites within the Niagara 
Region. Photo credit: 2011 Niagara Navigator. 
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Comparatively, the four sites differed in the type and intensity of disturbance, in 

addition to the time since the last event occurred. Pond and St. Davids had been until 

recently subjected to intensive agricultural and industrial "t:xploitation, while the old fields 

of the Brock University campus had been rarely disturbed for the last four decades 

(Rutgers-Kelly, 2005). In 2003 after the ecological restoration was completed, bee 

species began to re-colonise Pond and St. Davids, where they had been eradicated for the 

last 40 years (Rutgers-Kelly, 2005). In contrast, bee populations had persisted for several 

decades at BrockNW and BrockS, having sufficient time to recover from sporadic 

mowing (Rutgers-Kelly, 2005). Consequently, disturbance levels at Pond and St. Davids 

were categorised as high, while at BrockNW and BrockS were regarded as low. 

2.2. Collection period of specimens 

Bees collected using pan traps in 2003, 2004, 2006 and 2008 were used for the 

analysis of the bee community structure and its annual variation. Each year collections 

started by the last week of April (Week 1) and finished by the last week of September 

(Week 23). During 2003 and 2004 all sites were sampled bi-weekly, while during 2006 

and 2008 the frequency of collection was weekly. When sampling was interrupted by 

rain, the collection was usually repeated within the same 7 to 10 day period. For analyses 

that require equal sampling effort among years, the dataset of four years was based on bi­

weekly collections, usually from odd-numbered weeks. However, due to several 

interruptions, it was not Possible to keep a continuous series of collections at each site in 

each year. Missing collections in the bi-weekly series were replaced with samples 

collected in the following week or when necessary, during the previous week. 
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2.3. Bee collections 

Solo brand PS6-0099 plastic bowls (6 oz. capacity) were painted in three colours 

(fluorescent blue Krylon paint brand #3109, fluorescent yeilow #3104 and white) to 

create pan traps. These were filled to two-thirds with a solution of water and Dawn brand 

blue soap, used as a surfactant. Thirty pan traps (10 of each colour) were set out in 

rotating colours along pre-established transect patterns. Pan traps were set before 9:00h 

and recovered after 15:00h. 

Different transect patterns were used in different years as the Bee Inventory Plot 

Protocol was adjusted depending on site dimensions (LeBuhn et ai., 2003). Transects 

were set by different collectors over the years. In 2003, A. Rutgers-Kelly and B. Baker 

set the X140 pattern in BrockNW and BrockS and the H-like pattern in Pond and St. 

Davids (Table 1). In order to set the X140 pattern, two 140 m transects were established, 

forming an X-like pattern, where 15 pan traps were placed on each transect with a 10 m 

distance in between. The H-like pattern consisted of two parallel transects of un-equal 

length (70 m and 80 m) separated by a 140 m transect perpendicular to both (M. 

Frampton, pers. comm.). E. Law and A. Ironside reproduced these settings in 2004, 

although in 2006 (when M. Frampton was the coilector) the P140 pattern was selected for 

Pond and St. Davids. The P140 pattern consisted of two parallel 140 m transects which 

were separated by 20 m. In each of the two transects 15 pan traps were placed at a 

distance of 10 m in between. Finaily in 2008 J. Vickruck set the X050 pattern in ail the 

sites. The X050 pattern consisted of two 50 m transects forming an X-like pattern, in 

which 15 pan traps were placed at a distance of 3.3 m in between. 
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Table 1. The transect patterns used in this study throughout the flight seasons of 2003, 2004, 2006 and 2008. In the first column, the 
description of each transect pattern is shown accompanied by a diagram (not to scale). The second column describes the transect 
lengths (m). The next column shows the distance between pan traps (m), while the year(s) and the sites in which each pattern was used 
are shown in the fourth and fifth columns, respectively. 
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The transect patterns differed in length and shape (i.e. parallel, X- and H-like 

pattern) covering unequal areas, which might have resulted in differences in their 

specimen collection rates (sampling effort). Differences ifi sampling effort among 

transect patterns might influence annual estimates of bee abundance and diversity. To 

address this issue, the P140, X050 and X140 patterns were compared in the field in 2010 

in order to measure potential differences in sampling effort. The results are presented in 

Appendix I. No significant differences were detected in species richness or in the number 

of bees collected per date or per pan trap colour among the P140, X050 and X140 

patterns. 

2.4. Bee handling and identification 

At the end of each day of collection, the contents of each pan trap were 

transferred into 750 ml plastic containers labelled with the date and the location. Upon 

arrival at the laboratory, insects were rinsed with water and temporarily stored in BD 

Biosciences brand 50 ml Falcon tubes containing 70% ethanol, until sorting. Bee 

specimens were sorted from other arthropods, then pinned and labelled indicating the site, 

the date and the method of collection. 

For the year 2003, specimens had been previously identified to genus and species 

(Richards et aI., 2011). For specimens collected in 2004, 2006 and 2008, I carried out the 

identification to genus and, whenever possible, to species level. However, specimens that 

required high expertise (Andrena, L. (Dialictus) and Nomada) were only identified to 

genus. As a result, the species richness of the bee community for 2004, 2006, and 2008 

should be regarded as underestimated. 
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Identifications were carried out with the help of a Meyer Instruments brand Leica­

MS5 stereomicroscope. Most specimens were identified using the identification guides of 

Laverty and Harder (1988), Michener et al. (1994) and·Mitchell (1960, 1962) in addition 

to the online guide Discover Life for identification of bees of eastern North America 

(http://www.discoverlife.org/mp/20q). The collection of Professor Richards at Brock 

University was also reviewed as a reference. Specimen records were organised by years 

(i.e. 2003, 2004, 2006 and 2008) into different databases using the computer program 

Microsoft ® Excel 2007. 

2.5. Ecological traits of the bee community 

The different strategies that species have with respect to the selection and 

diversity of nesting resources and habits allowed for the classification of this bee 

community in the following nesting guilds: miner, mason, small cavity nesters, carpenter, 

large cavity nesters and kleptoparasitic. Information on the nesting guilds of this bee 

community was obtained from Barrows (1973), Cane et al. (2007), Eickwort (1975), 

Laverty and Harder (1988), Michener (2000), Murray et al. (2009), Potts et al. (2005), 

Richards et al. (2011) and Sheffield et al. (2003,2008). Social habits were classified as 

solitary, social or parasitic based on the classification proposed by Michener (1969, 

2000). Information on social habits was obtained from Michener (1969), Laverty and 

Harder (1998) and Richards et al. (2011). Species of this bee community were considered 

as univoltine, bivoltine or.multivoltine if they produced one, two or more generations per 

year, respectively. Information on voltinism of the species of the bee community was 
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obtained from Brady et al. (2006), Danforth (2002), Laverty and Harder (1998), Schwarz 

et al. (2007), and Thorp and Leong (1998). 

2.6. The phenology of the bee community 

Annual variation in phenology was analysed as differences in the proportion of 

individuals of each genus, collected per week in each of the four years studied. In 

addition, variation in the timing of high bee activity for the abundant species was also 

compared among years. 

2.7. Abundance of the bee community 

Bee abundance was considered in terms of the number of bees collected according 

to genus, species, site and disturbance level. The number of bees of each genus (or 

species) was log-transformed after a half-unit was added to their abundance, in order to 

ensure that represented values were all greater than zero. All specimens of the dataset of 

four years were used for genera but not for species. Specimens belonging to Andrena, L. 

(Dialictus) and Nomada were excluded from the species rank abundance distribution. 

The study of Richards et al. (2011) was used to define bee genera and species as 

abundant, common or rare. Genera or species were regarded as abundant when they 

represented about 5% or more of the total number of individuals. The common genera 

and species ranged between this level and a cut-off point of?:4 bees. In turn, this cut-off 

point separated common from rare genera and species «4 bees) based on the minimum 

number of bees that would be necessary to occupy the four sites of this study. A data 

subset was selected from bees collected bi-weekly in 2003 using pan traps that had been 

41 

• 



deployed in seven field sites. The rank abundance distribution of genus and species was 

graphically represented, and in the case of the latter the aforementioned taxa were 

excluded. The genus or species cumulative abundance wts also plotted and helped to 

identify the proportional representation of each group. Subsequently, the same procedure 

was also used to define the genus and species groups of this study, and the results of both 

studies were compared. 

2.8. Annual variation in abundance 

The annual pattern of variation was investigated for the number of bees collected 

according to genera and species and according to site and disturbance level. The inter­

annual variation of genus and species abundance was graphically represented by using 

the rank abundance distribution of the year 2003 as a reference. 

2.9. The diversity of the bee community 

The diversity of the bee community was measured as the number of genera and 

the species richness. In addition, diversity was also assessed in terms of the proportions 

of bees according to family, nesting guild, social habit, and voltinism. 

2.10. Annual variation in diversity 

The analysis of annual variation patterns in diversity required first estimating the 

total diversity present at the sites for the overall four years studied and for each year. 

Subsequently, I investigated whether generic and species richness in addition to genus 

and species turnover varied annually and whether proportional representation of genera 
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and species varied among years. The observed annual variation patterns were also 

analysed according to family, nesting guild, social habit and voltinism. 

Bees collected bi-weekly at the four sites over theoi'four years studied were used to 

estimate the annual change in the total diversity of the bee community. This was 

important given that not all the genera or species present at the sites could be collected 

each year. All specimens were used for the estimation of generic richness; Andrena, L. 

(Dialictus) and Nomada bees were excluded from the species richness estimation. 

Rarefaction curves were constructed to compare generic and species richness 

among years using the program Rarefaction Calculator (Krebs and Brzustowski, 2000). 

The genus and species datasets (for each year and the four years studied) were compared 

at the size of the smallest sample, which was for the year 2008 (Brewer and Williamson, 

1994). These curves also provided information about whether the sample size was 

sufficient to have collected the total genera and species present over the four years 

studied. To calculate the rarefaction curves individuals were randomly re-sampled 

without replacement, representing the average number of genera (or species) collected in 

1,2 ... n individuals (Gotelli and Colwell, 2001). 

The variation in abundance ranks of genera and species was studied among years. 

I hypothesised that the ranks of the most abundant genera and species were more stable 

than the ranks of their rarer counterparts. For this purpose, the 2003 ranks were compared 

to the subsequent years. For each year, ranks were assigned in a serial manner starting 

from the most abundant apd finishing with the rarest genus or species. In case of a tie 

among abundances, the mean rank was assigned to all the tying genera or species. 
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Specimens belonging to Andrena, L. (Dialictus) and Nomada were excluded from the 

species comparisons. 

2.11. Statistical analysis 

2.11.1. Tests for normality 

Normality was assessed using the procedure Univariate in SAS version 9.2. The 

Kolmogorov-Smirnov analysis was performed to test the null hypothesis that a variable 

followed a normal distribution. A transformation was applied when the variable did not 

follow a normal distribution as indicated by Fowler et al. (1998), Wolda and Marek 

(1994), and Zuur et al. (2007). When normality assumptions were not met for ANCOVA 

and regression analyses, the variable was log-transformed. In this case, a half unit was 

added to all the values of the variable when zeros were present as suggested by Wolda 

and Marek (1994). Alternatively, when deviation from normality was not corrected by 

using the log-transformation, the variable was ranked using the procedure Rank in SAS v. 

9.2. This procedure has been recommended by Conover (1999) and Conover and Iman 

(1981, 1982) because of its robustness and power. Conover and Iman (1981, 1982) 

reported that using ranked variables for regression analyses and ANCOV A tests reduced 

the Type I error probability and gained power in relation to parametric analyses. 

2.11.2. Data analysis of the phenology 

The phenology an?lysis tested whether the number of bees collected in spring 

(Weeks 1 to 11) differed significantly from the number of bees collected in summer 

(Weeks 13 to 23). Therefore, a X2 goodness of fit test was performed for testing the null 
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hypothesis that the number of bees collected over the four pooled flight seasons had an 

even distribution. The same analysis was also performed for testing the annual variation 

pattern in the phenology of the overall community and ·tht abundant species. 

2.11.3. Data analysis of abundance among sites 

Chi-square goodness of fit tests were performed for testing the null hypotheses 

that bees were evenly distributed among sites and disturbance levels. 

2.11.4. Data analysis of annual variation in abundance 

Two ANCOVA analyses were performed (using the procedure GLM in SAS v. 

9.2) in order to test for significant relationships between the number of bees collected per 

genus (or species) and year. The variable 'year' was treated as continuous while 'genus' 

(or 'species') was treated as categorical. The response variables number of bees and log 

(N + 0.5) were not normally distributed, hence the analysis was done on ranked variables. 

In addition, in order to detect annual variation patterns in abundance for each species, a 

regression analysis was performed for the number of bees collected per year from the 

four sites. When normality assumptions for the number of bees and log (N + 0.5) were 

not met, the analysis was then performed on the ranked variable. 

The annual variation pattern of the proportion of bees collected according to site 

was analysed by performing a X2 goodness of fit test. In addition, a X2 goodness of fit test 

was also performed to ana,lyse significant differences in the proportion of bees collected 

according to disturbance level. 
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2.11.5. Data analysis of diversity 

Separate X2 goodness of fit tests were performed for testing whether the proportion 

of bees according to family, nesting guild, social habit arf'd voltinism was evenly 

distributed. 

2.11.6. Tests for estimated diversity variation among years 

The Abundance-based Coverage Estimator (ACE) and the classical Chao-l 

estimator were used to assess the total generic and species richness present annually, 

choosing the higher of the two estimators (Chao, 1984; Chao, 2004; Chao and Lee, 

1992). Both estimations were performed using EstimateS (Colwell, 2009) with 50 

randomisations based on the dataset of four years and subsets for each year. As suggested 

by Colwell (2009), the bias-corrected Chao-l was used when genera with only 2 

individuals (doubletons) were absent. It was also used when there was just one doubleton 

species since it was found to be more accurate than the classical version. 

2.11.7. Tests for annual differences in the number of genera and species richness 

Randomisation analyses were performed in order to test the null hypotheses 

stating that the number of genera and the species richness did not vary among years. 

Richardson and Richards (2008) designed the randomisation analysis used in the current 

study. These authors have already shown the robustness of this randomisation analysis to 

test the null hypothesis th~t no differences in the species richness will be found among 

samples. The first step prior to the analysis was pooling the bee specimens collected in 

each of the four samples (i.e. the years 2003, 2004, 2006 and 2008). Subsequently, the 
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computer program randomly re-assigned each bee to each year respecting both the 

number of bees that each genus (or species) had and the number of bees collected in each 

of the years. This process was repeated 10,000 times and''!is a result, the program 

generated a frequency distribution of the expected number of genera or species for each 

year. The observed values of the number of genera or species were then contrasted to the 

95% confidence intervals of the frequency distribution in order to identify significant 

differences among the four years studied. The randomisation analysis of genera was 

performed for all the specimens collected during the four years studied, although 

specimens belonging to Andrena, L. (Dialictus) and Nomada were excluded from the 

species randomisation analysis. 

2.11.8. Tests for the annual turnover of genera and species 

To test the hypothesis that annual genus and species turnover would increase with 

years, the change in genus and species similarity was analysed over the four years 

studied. Variation in composition and relative abundance of genera and species were 

compared among pairs of years using an Abundance-based Jaccard Index (Jabd). This 

index also accounted for the effect of shared rare taxa that might not be detected in 

smaller samples (Chao et al., 2005). The Jabd index has proven to be less biased than its 

classic version, demonstrating its accuracy for samples differing in size, sampling effort 

or having numerous rare taxa (Chao et ai., 2005; Chao et al., 2006). The computer 

program EstimateS was used to calculate the Jabd index. Values ranged between 0 for total 

dissimilarity to 1 for complete similarity. The Jabd index was calculated as: 
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.",.. 

0= Total relative abundances of individuals in the year 1 belonging to the shared 
species (adjusted for the not detected shared species) 

V = Total relative abundance of individuals in the year 2 belonging to the shared 
species (adjusted for the not detected shared species) 

2.11.9. Additional data analysis for annual variation in diversity 

Annual variation in the proportions of bees according to family, nesting guild, 

social habit and voltinism were tested by performing X2 tests of goodness of fit. 
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3. RESULTS 

3.1. General description of the bee community 

A total of 8139 bee specimens was available in tht four pooled years ofbi-weekly 

collections, 2003, 2004, 2006 and 2008 (Table 2). Specimens belonged to the 5 families 

(Halictidae, Megachilidae, Apidae, Colletidae and Andrenidae) typically found in eastern 

North America. The whole bee fauna collected consisted of 26 genera and sub-genera and 

at least 57 species (not including Andrena, L. (Dialictus) and Nomada). The most 

abundant genera of the bee community were Augochlorella, Ceratina, L. (Dialictus) , 

Halictus, Hylaeus, and Osmia. The two most common species were Augochlorella aurata 

(family Halictidae) with 2745 individuals and Osmia conjuncta (family Megachilidae) 

with 1193 individuals. The following species were represented by only one specimen: 

Hoplitis truncata, Lasioglossum (Evylaeus) macoupinense, Megachile inermis, 

Megachile mendica, Protandrena andrenoides, Osmia simillima, and Xylocopa virginica. 

Please refer to Appendix II for information on bees sampled during the complete flight 

seasons of the four years studied. 

3.2. The phenology of the bee community 

In terms of its phenology the bee community presented three peaks of high 

foraging activity (Fig. 2). The first peak occurred in spring (Week 5), followed by a 

decline in foraging activity by the summer solstice, the time when days begin to shorten 

(Week 11). Two peaks in summer, occurring in Week 13 and Week 19, represent the 

peak of worker brood production and emergence of reproductive brood of eusocial 

species. The most active part of the bee season took place in spring (Weeks 1 to 11), 
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Table 2. Number of bees per species collected, through the use of pan traps, in 2003, 2004, 2006 and 2008. Sampling frequency was 
bi-weekly at four sites (BrockNW, BrockS, Pond and St. Davids) of the Niagara Region. Species were denoted as sp. when complete 
identification to species level was not possible. Information on nesting guilds and social habits was obtained from: Barrows, 1973; 
Cane et al., 2007; Eickwort, 1975; Grixti and Packer, 2006; Michener, 2000; Richards et aI., 2011 and Sheffield et aI. 2003. 

Family 

Andrenidae 

Andrenidae Total 

Apidae 

Ul o 

Genus 

Andrena 

Calliopsis 

Protandrena 

Anthophora 

Apis 

Bombus 

Ceratina 

Melissodes 

Species 

sp. 

andreniformis 

andrenoides 

terminalis 

mellifera 

citrinus 

fervidus 

griseocollis 

impatiens 

mixtus 

rufocinctus 

sandersoni 

vagans 

calcarata 

dupla/mikmaqi 

strenua 

desponsa 

• 

Nesting guild Social habit Voltinism 

Miner Solitary Univoltine 

Miner Solitary Univoltine 

Miner Solitary Univoltine 

Carpenter Solitary Univoltine 

Large cavities Social Multivoltine 

Kleptoparasitic Kleptoparasitic 

Larg cav./grass Social Bivoltine 

Large cavities Social Bivoltine 

Large cavities Social Bivoltine 

Large cavities Social Bivoltine 

Large cavities Social Bivoltine 

Large cavities Social Bivoltine 

Large cavities Social Bivoltine 

Carpenter Solitary Univoltine 

Carpenter Solitary Univoltine 

Carpenter Solitary Univoltine 

Miner Solitary Univoltine 

2003 2004 2006 2008 Grand 
Total 

97 21 20 53 191 

4 1 2 0 7 

1 0 0 0 1 

102 22 22 53 199 

1 0 1 0 2 

16 8 16 14 54 

1 1 0 0 2 

0 2 4 3 9 

0 1 3 4 8 

1 0 1 ~, 7 9 

0 0 2 0 2 

1 0 2 0 3 

0 0 3 0 3 

0 2 1 0 3 

183 53 53 64 353 

215 70 40 121 446 

2 0 0 0 2 

0 1 2 



Table 2 (Continued) 

Family Genus Species Nesting guild Social habit Voltinism 2003 2004 2006 2008 Grand 
Total 

Apidae Homada sp. Kleptoparasitic Kleptoparasitic 3 0 4 9 16 

Triepeolus simplex Kleptoparasitic K1eptoparasitic 0 1 2 0 3 

Xylocopa virginica Carpenter Social Univoltine 1 0 0 0 1 

Apidae Total 425 138 132 223 918 

Colletidae ' Hylaeus affinis Small cavities Solitary Bivoltine 109 30 340 47 526 

affinislmodestus Small cavities Solitary Bivoltine 27 0 4 12 43 

annulatus Small cavities Solitary Bivoltine 3 0 4 0 7 

mesillae Small cavities Solitary Bivoltine 7 2 0 5 14 

modestus Small cavities Solitary Bivoltine 8 4 4 0 16 

sp. Small cavities Solitary Bivoltine 0 0 0 1 1 

Colletidae Total 154 36 352 65 607 

Halictidae Agapostemon virescens Miner Social Univoltine 13 4 10 . 8 35 

Augochlora pura Carpenter Solitary Univoltine 5 1 0 '" 0 6 

Augochlorella aurata Miner Social Bivoltine 922 715 791 317 2745 

Halictus con/usus Miner Social Bivoltine 169 105 138 44 456 

ligatus Miner Social Bivoltine 166 171 303 17 657 

rubicundus Miner Social Bivoltine 11 10 26 8 55 

L. (Dialictus) sp. Miner 293 197 47 94 631 

L. (Evylaeus) cinctipes Miner Bivoltine 5 0 0 6 

macoupinense Miner Social 0 0 0 1 

Lasioglossum coriaceum Miner Solitary Univoltine 7 4 1 0 12 

VI ...... 
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Table 2 (Continued) 

Family 

Halictidae 

Halictidae Total 

Megachi I idae 

Ul 
tv 

Genus 

Lasioglossum 

, Anthidiellum 

Anthidium 

Coelioxys 

Hoplitis 

Megachile 

Osmia 

• 

Species 

leucozonium 

wnulum 

sp. damaged 

notatum 

manicatum 

rufitarsis 

pilosifrons 

producta 

spoliata 

truncata 

brevis 

centuncularis 

lnermlS 

latimanus 

mendica 

montivaga 

relativa 

rotundata 

texana 

sp. 

albiventris 

Nesting guild Social habit Voltinism 

Miner Solitary Univoltine 

Miner Solitary Univoltine 

Miner Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Kleptopara~itic Kleptoparasitic 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Carpenter Solitary Univoltine 

Miner Solitary Univoltine 

Mason Solitary Univoltine 

Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Solitary Univoltine 

Mason Solitary Univoltine 

2003 2004 2006 2008 Grand 
Total 

18 8 12 8 46 

37 5 2 0 44 

0 0 0 1 

1646 1221 1331 497 4695 

4 0 0 0 4 

20 3 9 0 32 

0 1 7 0 8 

27 5 15 26 73 

4 3 6 8 21 

5 0 3 0 8 

0 0 0 1 

16 13 39 2 70 

0 0 1 1 2 

0 0 1 ~. 0 1 

1 2 6 lO 

1 0 0 0 1 

0 0 2 0 2 

0 0 2 0 2 

27 1 2 0 30 

3 0 4 4 11 

0 0 0 1 

0 6 15 30 51 



Table 2 (Continued) 

Family 

Megachilidae 

Megachilidae Total 

Grand Total 

VI 
VJ 

Genus 

Osmia 

Stelis 

Species Nesting guild 

airiventris Mason 

conjuncta Mason (shells) 

inspergens Mason 

lignaria Mason 

pumila Mason 

simillima Mason 

sp. Mason 

lateralis Kleptoparasitic 

• 

Social habit Voltinism 2003 

Solitary Univoltine 14 

Solitary Univoltine 385 

Solitary Univoltine 0 

Solitary Univoltine 

Solitary Univoltine 47 

Solitary Univoltine 1 

Solitary Univoltine 0 

Kleptoparasitic 5 

561 

2888 

2004 2006 2008 Grand 
Total 

3 25 11 53 

133 331 344 1193 

0 9 10 

0 1 1 3 

7 28 33 115 

0 0 0 

1 0 6 7 

3 2 0 10 

182 501 476 1720 

1599 2338 1314 8139 

~ 
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Fig. 2. Phenology of the bee community. The collections of four years were pooled in a bi-weekly basis. The bee community 
presented one peak in spring centred on Week 5 of high foundress bee foraging activity and two peaks in summer centred on Week 13 
and Week 19 (corresponding to the worker and reproductive broods of bivoltine species, respectively). During Week 11 there was a 
decline of bee community activity which corresponded to the summer solstice. 
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before the summer solstice when the number of bees collected was higher than in summer 

(Weeks 13 to 23) (goodness of fit test: X2 = 1305.4, d.f. = 11, p«O.OOl). 

The phenology of the abundant species and the ·oV'erall bee community varied 

annually (Fig. 3, Table 3; goodness of fit tests: X2 = 2070.2, d.f. = 33, p«O.OO 1; X2 = 

2281.7, d.f. = 33, p«O.OOl, respectively). In both cases the 2003 and 2006 seasons were 

generally longer and more advanced, with spring and summer high flight activity being 

detected earlier than in 2004 and 2008. Except for 2003, more bees were captured in 

spring than in summer, with the lowest number of bees collected during the summer of 

2008. In 2006, the bivoltine A. aurata and H. ligatus, occurring in Week 1, had one of the 

most advanced seasons, while for the univoltine Ceratina dupla/mikmaqi and C. 

calcarata, occurring in Week 5, it was the most delayed season. 

3.3. Abundance of the bee community 

In the 2003 survey, the six most abundant genera represented 90% of individuals 

(Fig. 4). The next genus group represented almost 10% of the bees, while the genera with 

fewer than four bees represented less than 0.1 % of individuals. This allowed the genus 

classification of the current study into the following three groups: abundant, common and 

rare genera. Over the four pooled study years the same abundant genera represented 

almost 91 % of the bee community (Fig. 5). The common genera represented 9% of the 

bees, while the rare genera represented 0.1 % of individuals. Between both surveys, the 

common and rare genus groups shared 19 genera, with only Melissodes changing from a 

common to a rare genus. Overall, genus composition remained quite stable between the 

two surveys and differences were only found among rare genera, with Chelostoma, 
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Fig. 3. Annual variation of the phenology of the bee community. This was calculated as the proportion of bees (of the overall bee 
community) collected per week in each of the four years studied. 
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Table 3. Inter-annual comparison of phenology for the abundant species. Bees were collected bi-weekly from the last week of April 
(Week 1) to the last week of September (Week 23). The summer solstice, occurring in Week 11, divided the bee season in spring and 
summer. Bivoltine and univoltine species were grouped separately and weeks of high bee abundance were marked in bold. For some 
species having a low abundance over the season, weeks representing a relatively high value were also marked. 

Bivoltine species 

A. aurata 

H. affinis 

H. confusus 

H. ligatus 

Ul 
-..l 

Year 

2003 

2004 

2006 

2008 

2003 

2004 

2006 

2008 

2003 

2004 

2006 

2008 

2003 

2004 

2006 

2008 

1 

21 

0 

90 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0 

8 

0 

• 

3 5 

Spring 

13 43 

20 323 

45 115 

26 100 

0 0 

0 1 

0 2 

0 1 

0 2 

2 0 

0 4 

6 2 

0 0 

2 62 

19 32 

0 4 

7 9 

106 170 
86 . 18 

16 20 

25 12 

7 6 

5 3 

21 114 

9 17 

4 5 

20 3 

6 22 

1 0 

21 16 

20 2 

29 0 

0 0 

Week 

11 

7 

12 

114 

8 

4 

4 

35 

15 

3 

18 

59 

12 

0 

1 

25 

0 

13 15 17 19 21 23 

Summer Total 

227 157 21 39 24 94 922 

83 103 42 25 3 0 715 

66 56 36 144 91 51 844 

59 18 14 12 33 1 308 

24 7 8 32 17 4 109 

1 3 3 7 3 0 30 

11 13 61 68 8 4 337 . 
7 0 6 9 2 '} 2 68 

85 44 8 7 3 4 167 

20 28 9 5 0 0 105 

16 8 7 10 0 0 132 

14 0 4 0 0 2 41 

20 30 8 12 11 48 166 

28 44 6 3 3 0 171 

19 22 38 86 20 8 306 

3 2 4 2 2 0 17 



Table 3 (Continued) 

Univoltine species 

C. dupla/mikmaqi 

C. calcarata 

O. conjuncta 

Ul 
00 

Year 

2003 

2004 

2006 

2008 

2003 

2004 

2006 

2008 

2003 

2004 

2006 

2008 

1 3 

56 8 

0 12 

0 0 

0 26 

6 1 

0 5 

0 0 

0 6 

163 39 

0 57 

155 7 

4 93 

• 

5 7 

Spring 

26 52 

14 12 

10 10 

23 26 

33 16 . 

7 7 

5 14 

6 11 

39 39 

25 27 

82 41 

132 30 

9 

42 

5 

15 

8 

43 

7 

28 

15 

60 

6 

15 

14 

Week 

11 

0 

3 

1 

13 

15 

3 

2 

2 

10 

4 

2 

12 

13 15 17 19 21 23 

Summer Total 

5 11 6 8 1 0 215 

1 10 0 7 6 0 70 

2 0 0 2 0 0 40 

3 0 11 1 1 2 114 

15 16 5 16 14 2 182 

1 8 2 11 2 0 53 

0 0 0 0 0 1 50 

1 2 7 7 0 2 59 

20 8 2 0 0 0 380 

6 8 0 0 0 0 133 

16 0 1 0 25 . 0 344 ,. 
8 0 0 0 0 0 293 



Abundant ----. . . . . . . .. . ~ •• ',100% 

,/ + 90% 

3.5 

3.0 

80% 
Co:rrtrnon 

2.5 -- 70% 
IQ 
0 
+ s:: 

~ 2.0 
60% 

-G.I 
U 
s:: 50% 
I'll 

1 .5 tl/ -u 
s:: 
:::I 

..C: 40% 
I'll 
G.I 
G.I 
m 

1.0 30% 

20% 

0.5 
Rare 

1~% 

0.0 1-1-1 - 1- 1- 1-1 - 1-1-1-1-1 - 1- 1-1-1 - 1- 1- 1-1-1 - 1- 1- 1- 1- 1- 1- I - I 0% 
=ill .~ 0;:; W tQ tQ Ctl E: .~ .~ c: E: {g 0:.0 OJ) 2 ~ (;)' .~ E 

OJ) OJ) ~ (tI OJ) OJ) (tI (tI 

.S: :::; :=J !:;: Q Q 9 ~ E (jJ ~ r:: 8-~ t: ~ 
.£2 (l) ~ 

::::l ..c: ~ E: .~ Cb :::l G.l .Q :::l UJ 
:::J 0 

CD CD 
OJ) ~ .~ 22 (f) u 8- :"Q E 

<=:( ...Q C/5 -£: CD g. = 02 0 .£: 0 
.~ {s (j Q 0 ""0 (f) (J;:; Ql E (..J ..!'i:! CD OJ) g. 113 Q .£: (lo 

.~ 
Ctl :f c: .Q ~ ::r: (:;) ~ a 0 0 ~ 

=s: '§ CD ~ Q 
0 

CD !:: 
(j 0 

~ 
::r: ~. ~ 0 1::: <: CO ~ 

(tI 0 .£: U ::r: (tI $? 0 ::g fa- <=:( ~ 
() ...,;:: () CD 1": CD '2 ~ "1':: ~ .£: (8 <=:( ~ U ...j (tJ OJ -.i "':;( Q q: 

.-J <=:( 

Genus 

c;e 
G.I 
:> 
~ 
:::I 
E 
:::I 

U 

Fig. 4. Rank abundance distribution (bars) and cumulative abundance (diamonds) of genera for the bees collected bi-weekly in 2003 
using pan traps at seven sites. 

VI 
\0 

• 



3.5 

3.0 

it) 2.5 
0 
+ s:::: 
m 
0 2.0 :;.. 
CD ..... 
s:::: 
to:j 

'" 1 .5 s:::: 
:::I 
~ 
to:j 

3:1 m 1.0 

0.5 

0 .0 

Abundant 

100% 

90% 

80% 
/

---+---..----. • • • • • • • • • 

V 

• • • • . . .-

/ 
"I 

II 

I/~' 

~ .g::; co 
:::J 

Ql 2: .£2 "- co .2 0 .c:: ~ 
Cj :::r: 
0 
§r 

<;;;t:: 

,~i 

~ t;,:y to) (b 

.s :::J c: 
~ (l) @ 

~ 9 ~ L:l 
ClJ .~ :f c: 

0 e ~ 

--.i 

ComInon 

ClJ f:; .!!2 .!!2 CI) t::: c; '=: ::::J 0 .,;;:: ~ ~ Q ...Q E -~ c..J .~ 8- ~ E ~ (1J IJ) IlJ 
en .Q :r: 0 "1Q ...c: 
ClJ 

~ cr.:J 0 "1:: 
2 2- ~ (;) 

0) o.'b 
-....J ~ 

Genus 

70% 

60% 

50% 

40% 

30% 

Rare + 20% .. II 

II 
10% 

1I1I 0% 

-t5 ~ CI) u;-- .!!2 ~ c; CI) ~ CI) CI;J CI;J 

R -2! ~ t::: 8-CI;J (l) :::J CI) ..Q .2 0 
~ E 05 2 

(l) 8- ..c:: 0 ..c:: 0 () 
!1l CJ ~ 

(J.) 8- cr.. -a ..Q 0 (l) 
~ === 0 2- ~ 

t::: 
:2.: 0 CI;J 

~ ::S ~ 
..c:: !:l 5< 0 ~ 0 1:: (l) e ~ t::: ~ <;( ~ Q -.i 

~ 
CD 
:> 
~ 
:::s 
E 
:::s 

U 

lj. 
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Colletes and Heriades unique to the 2003 study and Triepeolus unique to the four years 

studied. 

In 2003, the seven most abundant species represet ied almost 89% of individuals: 

A. aurata, O. conjuncta, C. dupla/mikmaqi, C. calcarata, H. ligatus, H. affinis and H. 

confusus (Fig. 6). The 26 common species represented 11 % of the bees, while species 

with fewer than four bees (rare) represented less than 1 % of individuals. Over the four 

pooled study years the same seven most abundant species represented 88% of the bees 

(Fig. 7). The cornmon species represented 11 % of the individuals, while the rare species 

represented less than 1 %. Between both surveys, thirty-five common and rare species 

remained in the same category; however twenty-one species were either collected in only 

one of the surveys or changed between the common and rare species categories (Table 4). 

Individuals were not collected evenly among sites, which differed significantly in 

the number of bees collected (Fig. 8; goodness of fit test: X2= 307.5, d.f. = 3, p«O.OOI). 

The highest number of bees was collected at BrockS (2502 bees) followed by BrockNW 

(2290 bees), Pond (1875 bees) and St. Davids (1472 bees). This suggests that previous 

disturbance influenced bee community abundance through its effect on the sites. Indeed, 

the number of bees collected at the low disturbance sites (BrockNW and BrockS) was 

significantly greater than in the high disturbance sites Pond and St. Davids (goodness of 
• 

. 2 ' 
fIt test: X = 256.5, dJ. = 1, p«O.OOI). 
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Table 4. Species that changed between the common and rare species abundance 
categories or were collected in only one of the surveys. 

we 

Species category 

Species 2003 survey Four-pooled years 

Bombus bimaculatus Rare 

Bombus fervidus Rare Common 

Bombus griseocollis Rare Common 

Bombus mixtus Rare 

Bombus sandersoni Rare 

Bombus vagans Rare 

Coelioxys octodentata Rare 

Coelioxys rapunculi Rare 

Coelioxys rufitarsis Rare Common 

Colletes simulans Rare 

Heriades lea vitti Rare 

Hoplitis truncata Rare 

Lasioglossum (Evylaeus) macoupinense Rare 

Melissodes desponsa Common Rare 

Megachile ericetorum Rare 

Megachile inermis Rare 

Megachile montivaga Rare 

Megachile relativa Rare 

Osmia albiventris Common 

Osmia inspergens Common 

Triepeolus simplex Rare 
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Fig. 8. Distribution of the number of bees among the study sites for the total of the four years studied. Both BrockS and BrockNW 
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3.4. Annual variation in abundance 

This bee community was characterised by annual variation in genus and species 

abundance (Figs. 9, 10). Bees of the six abundant generai ri addition to the six more 

common genera (Agapostemon, Andrena, Apis, Hoplitis, Lasioglossum and Megachile) 

consistently occurred over the four years studied and rarely changed among abundance 

categories. The exceptions were two abundant genera that became common in one of the 

study years: Hylaeus in 2004, with 36 bees, and L. (Dialictus) in 2006, with 47 bees. 

However, the remaining common and rare genera more frequently changed categories 

and, with the exception of Bombus, were not collected in at least one study year. In terms 

of species abundance, the seven abundant and the following of the common species (A. 

mellifera, A. virescens, H. rubicundus, H. pilosifrons, L. leucozonium and O. pumila) 

were consistently collected over the four years studied, generally remaining in the same 

abundance categories. Only three abundant species became common in one of the study 

years: H. affinis in 2004 with 30 bees, and C. calcarata and C. dupZa/mikmaqi in 2006, 

with 53 and 40 bees, respectively. However, the remaining common and rare species 

were variably collected, with the exception of H. producta, Megachile brevis and M. 

latimanus, were also absent from collections in at least one study year. 

The number of bees collected varied frdm year to year, with 2888 bees in 2003, 

1599 bees in 2004, 2338 bees in 2006 and 1314 bees in 2008. Annual patterns were also 

observed when both the number of bees collected per genus and species were considered. 

In the first case, normality was tested for the number of bees per genus and its log­

transformation (Kolmogorov-Smirnov: D = 0.33, p<O.OlO; D = 0.12, p<O.OlO, 

respectively), and given that normality was not achieved, the former variable was ranked. 
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Subsequently, an ANCOV A test detected a significant relationship between the 

number of bees collected per genus and per year (Table 5). The effect of year was quite 

.,p.." 
significant, which was the consequence of the year-to-year variation in genus abundance. 

In addition, the effect of genus was also significant although no significant year-genus 

interaction was detected. Similarly, normality was tested for both the number of bees per 

species and its log-transformation (Kolmogorov-Smirnov: D = 0.39, p<O.OlO; D = 0.18, 

p<O.OlO, respectively), and since normality was not achieved the former variable was 

ranked. The ANCOV A test detected a significant linear relationship between the number 

of bees collected per species and per year (Table 6). The effect of year was significant 

reflecting annual variation in the number of bees collected per species. In addition, the 

effect of species and the year-species interaction were also significant. 

For each species, the number of bees collected per year from the four sites was 

analysed by performing a regression analysis. A significant regression was only found in 

eleven species (Table 7). Among these H. confusus was the only abundant species, while 

the remaining species (A. pura, B. fervidus, B. griseocollis, B. impatiens, H. modestus, L. 

coriaceum, L. zonulum, M. rotundata, O. inspergens, and S. lateralis) were common or 

rare and were not present in at least one year. In 2003, B. fervidus, B. griseocollis and O. 

inspergens were not collected, while in 2004, B. impatiens and also 0. inspergens were 
• 

absent. In turn, A. pura and L. coriaceum were not collected in 2006 and 2008, while H. 

modestus, L. zonulum, M. rotundata, and S. lateralis were absent in 2008. Almost 60% of 

those species displaying an annual decline in abundante (A. pura, H. confusus, H. 

modestus, L. coriaceum, L. zonulum, M. rotundata and S. lateralis) were halictids. 

Conversely, only four species (75% of them from the genus Bombus) showed an 
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Table 5. Significant annual variation of genus abundance, resulting from a significant 
effect of year, was detected through an ANCOV A test on ranks. The effect of genus was 
also significant. The interaction of year-genus did not have a significant effect. 
Individuals were collected bi-weekly during the four years studied. 

..,p.. -

GLM 

Year 

Genus 

Year-Genus 

Regression 
coefficient 

F-test 

FS1 •S2 = 12.75 

F = 8.38 
d.f. = 1 

F = 24.44 
d.f. = 25 

F = 1.24 
d.f. = 25 

p-value 

p«O.OOl 

p = 0.006 

p«O.OOl 

p = 0.255 
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Table 6. An ANCOV A test on ranks detected a significant annual variation of the 
number of bees per species, with a significant effect of year. Both the effect of species 
and the interaction year-species were also significant. Individuals were collected bi­
weekly during the four years studied. 

GLM 

Year 

Species 

Year-Species 

Regression 
coefficient 

F-test p-value 

F ll3,114= 5.48 p«O.OOl 

F = 5.07 
d.f. = 1 

F = 9.23 
d.f. = 56 

F = 1.73 
d.f. = 56 

p = 0.026 

p«O.OOl 

p = 0.007 

• 
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Table 7. Eleven species showed a significant trend in abundance between 2003 and 2008. For these species, the number of bees 
collected per year from the four sites were analysed through a regression analysis. Species with decreasing abundance have been 
grouped apart from those species showing increases. The response variables number of bees and log (N + 0.5) were not normally 
distributed, hence the regression analysis was made on ranked variables; except for Halictus confusus whose variable number of bees 
was not transformed since it followed a normal distribution. 

Species 

Decrease 

Augochlora pura 

Halictus confusus 

Hylaeus modestus 

Lasioglossum coriaceum 

Lasioglossum zonulum 

Megachile rotundata 

Stelis lateralis 

-....l 
N 

• 

Normality Test(s): 
Kolmogorov-Smirnov 

D = 0.43, p<O.OlO 
D = 0.45, p<0.010 

D = 0.13, p>0.150 

D = 0.25, p<O.OlO 
D = 0.28, p<O.O 1 0 

D = 0.31, p<O.OlO 
D = 0.38, p<O.OlO 

D = 0.42, p<0.010 
D = 0.28, p<0.010 

D = 0.34, p<O.OlO 
D = 0.33, p<O.OlO 

D = 0.31, p<O.OlO 
D = 0.33, p<O.OlO 

Regression 
coefficient 

R2 = 0.36 

R2 = 0.28 

R2= 0.38 

R2= 0.40 

R2 = 0.41 

R2= 0.43 

R2= 0.40 

F-test 

F[,[4= 7.93 

F[,[4 = 5.40 

F[,[4= 8.58 

F[,[4 = 9.46 

F[ ,[4= 9.68 

F[ ,[4 = 10.57 

F[,[4= 9.22 

p-value 

P = 0.014 

P = 0.036 

p = 0.011 

P = 0.008 , 
p = 0.008 

P = 0.006 

P = 0.009 



Table 7. (Continued) 

Species 

Increase 

Bombus fervidus 

Bombus griseocollis 

Bombus impatiens 

Osmia inspergens 

-...J 
W 

Normality Test(s): 
Kolmogorov-Smirnov 

D = 0.31, p<0.010 
D = 0.33, p<O.OlO 

D = 0.38, p<O.OlO 
D = 0.39, p<O.OlO 

D = 0.39, p<O.OlO 
D = 0.42, p<0.010 

D = 0.45, p<0.010 
D = 0.48, p<O.OlO 

.:, 

• 

Regression F-test p-value 
coefficient 

R2=0.25 F1,l4 = 4.65 P = 0.049 

R2= 0.26 F1,14= 4.88 P = 0.044 

R2= 0.28 F1,14= 5.37 P = 0.036 

R2 = 0.29 F1,14= 5.72 p = 0.031 
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increasing abundance (B. fervidus, B. griseocollis, B. impatiens and O. inspergens). 

The proportion of bees collected among sites and disturbance levels varied 

annually. The difference among sites and disturbance le~is progressively decreased 

throughout the study years until 2008 when it was lowest. The four sites (BrockNW, 

BrockS, Pond and St. Davids) differed annually, with an unusually high number of bees 

collected in 2003 due to the contribution of BrockNW and BrockS (Fig. 11; goodness of 

fit test: x:= 1621.9, d.f. = 9, p«O.OOI). This annual pattern was also confirmed when 

abundance was analysed for low (BrockNW and BrockS) and high (Pond and St. Davids) 

disturbance levels (Table 8). 

3.5. The diversity of the bee community 

The number of bees varied among families, thus rejecting the null hypothesis that 

bee specimens were equally distributed among families (Fig. 12; goodness of fit test: X2 = 

7988.4, dJ. = 4, p«O.OOI). The most abundant families were Halictidae and 

Megachilidae, followed by Apidae, Colletidae and Andrenidae. Bees were not evenly 

distributed among nesting guilds either (Fig. 13; goodness of fit test: X2 = 12435.8, d.f. = 

5, p«O.OOI), with miner and mason species being much more common than other guilds. 

The distribution of bees among social categories (social, solitary and kleptoparasitic) was 

not even (Fig. 14; goodness of fit test~ X2 = 3714.3, d.f. = 2, p«O.OOI), with solitary and 

social species being better represented than kleptoparasitic species. Bivoltine species 

predominated over univoltine and multivoltine species (Fig. 15; goodness of fit test: X2 = 

4162.7, d.f. = 2, p«O.OOI). The species A. mellifera was the only representative of the 

multivoltine group. 
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Table 8. The number of bees per disturbance level (low and high), where n denotes the 
number of sites. 

.,p. .. 

Low (n=2) High (n=2) Total 

2003 2434 454 2888 

2004 698 901 1599 

2006 980 1358 2338 

2008 680 634 1314 

Total 4792 3347 8139 

Goodness of fit test 2 X = 1228.1, d.f. = 3, p«O.OOl 
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3.6. Annual variation in diversity 

The total diversity of the bee community varied annually; in addition the total bee 

diversity present at the sites was presumably not collectecteach year. Therefore, to 

estimate the total number of genera and species that was likely present, the ACE and 

Chao-1 estimators were calculated for the overall four years studied and for each year. 

The estimation of the generic richness present in the four years studied suggested a total 

of 27 genera, whereas the number of observed genera was 26 (Table 9). For each year the 

95% confidence intervals included the total generic richness observed over the four years 

studied. The highest estimate for the total number of genera was suggested for 2003 with 

30 genera (Chao-1 95% c.1. = 24.9 - 62.7), while the observed generic richness that year 

was 24. The estimated total number of genera for 2004 was 25 (Chao-l 95% c.1. = 19.9-

57.5), while the observed genera were 19. In both years, a greater generic richness could 

have been caught, as suggested by the difference between the estimated and observed 

genera, and the high upper values for confidence intervals. Conversely according to the 

ACE and Chao-1 estimates, in 2006 and 2008 almost all the genera that were present 

were collected. The 2006 and 2008 estimates (22 and 17 genera, respectively) were close 

to the observed number of genera (21 and 16 genera, respectively), with both years 

having narrower confidence intervals than 2003' and 2004. These annual differences were 

also reflected in the rarefaction curves of genera that were calculated for each year and 

the overall four years studied (Fig. 16). The year 2008 yielded the least diversity (16 

genera) with the lowest sample size (1314 bees) and number of genera per individual. For 

the four years studied, the number of genera was about 20 when 1314 bees had been 

collected. The year 2003 yielded the most generic richness per number of individuals 
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Table 9. Estimation of the total generic richness for the four years studied, using the Abundance-based Coverage Estimator (ACE) 
and the Chao-l estimator. Both estimations were performed using EstimateS with 50 randomisations on each dataset. The 2006 total 
number of genera was estimated using the classical Chao-I; the bias-corrected version was used in 2003, 2004 and 2008 when there 
were no doubletons. 

00 
N 

Data subset 

All-years 

2003 

2004 

2006 

2008 

Number of ACE 
Genera 

26 27.4 

24 30.0 

19 25.0 

21 21.3 

16 17.0 

Chao-l (mean ± SD) Chao-l 95 % C.I. 

27.0 ± 1.9 26.1-37.1 

30.0 ± 7.3 24.9 - 62.7 

25.0 ± 7.2 19.9 - 57.5 

21.7 ± 1.3 21.1 - 28.8 

17.0 ± 2.3 16.1-30.2 
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Fig. 16. Rarefaction curves for the four years studied comparing the number of genera collected bi-weekly at four sites. The vertical 
line represents the sample size (1314 bees) of the year 2008, which is used to compare the generic richness variation among years. 
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collected (about 21 genera at the cut-off of 1314 bees), contributing the most to the total 

number of genera identified over the four years studied. The steep curve of 2004, with 18 

genera when 1314 bees were captured, indicates that a grtater number of genera could 

have still been collected. Conversely, the second richest year was 2006 with about 20 

genera at the cut-off of 1314 bees, having a flatter slope than 2004 due to the lower rate 

at which new genera per individual were added. 

The species richness estimation for the four years studied suggested by the ACE 

estimator totalled about 62 species while the observed species richness was 57 (Table 

10). For each year, the observed species richness was lower, although the respective 

confidence intervals included the observed species richness of the four years studied. The 

highest estimate was suggested for 2003 totalling about 70 species (Chao-1 95% c.1. = 

48.7 - 155.5) while the observed species richness that year was 42. In 2003 the number 

of species collected could have been still higher, due to the existing difference between 

the estimated and observed species richness, and the high upper value of the confidence 

interval. In 2004, the estimated total number of species was 42, while the observed 

species richness was 34 species. On the other hand, in 2006 the observed 45 species was 

the highest species richness among years, whereas the estimated total number of species 

was about 50 (Chao-1 95% C.I. = 46.0 - 64.9). This suggests that in 2006 almost all the 

species that were present were collected. Similarly, almost all the species present in 2008 

were collected, with an estimated total of 33 species (Chao-1 95% c.1. = 28.8 - 60.1) and 

28 species observed. These annual changes were also identified in the rarefaction curves 

that were calculated for the four year studied and for each year (Fig. 17). The year 2008 

yielded the lowest species richness per individual, with the lowest number of individuals 
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Table 10. Estimation of the species richness for the four years studied, using the Abundance-based Coverage Estimator (ACE) and 
the Chao-1 estimator. Both estimations were performed using EstimateS with 50 randomisations on each dataset. Estimates for 2004 
and 2006 were calculated using the classical Chao-I; the bias-corrected version was used in 2003 and 2008 when there was just one 
doubleton. Collections were made bi-weekly at four sites; Andrena, L. (Dialictus) and Nomada were not included in the calculations. 
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Data subset 

All-years 

2003 

2004 

2006 

2008 

Number of 
Species 

57 

42 

34 

45 

28 

ACE 

61.5 

69.5 

39.6 

48.6 

33.0 

Chao-l (mean ± SD) Chao-l 95 % C.I. 

60.1 ± 3.1 57.6 -72.9 

69.5 ± 22.8 48.7 - 155.5 

42.0 ± 7.5 35.7 -71.8 

49.5 ± 4.0 46.0 - 64.9 

33.0 ± 6.1 28.8 - 60.1 
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Fig. 17. Species rarefaction curves comparing the number of species collected bi-weekly at four sites over the four years studied. The 
vertical line represents the cut-off of 1139 bees collected in 2008, with which the species richness comparison among years is made. 

00 
0\ 



and species collected (1139 bees and 28 species). For the four year studied, about 38 

species were collected at the cut-off of 1139 bees. The year 2006, with 1139 bees and 

about 38 species, yielded the highest species richness 'per ii~mber of individuals 

collected, contributing the most to the species richness of the four year studied. In 2003, 

when most of the bees were captured, 1139 bees yielded 35 species. The slope of the 

curve for 2004 at the cut-off of 1139 bees (with 32 genera) suggests that a greater number 

of species could have been collected that year. 

When the effect of abundance was controlled, the generic and species richness 

also varied among years, with species richness being comparatively more variable. The 

numbers of genera collected in 2003, 2004 and 2006 were not significantly different than 

expected, while in 2008 the number of genera collected was significantly lower than 

expected (Table 11). The numbers of species collected in 2003, 2004 and 2008 were 

significantly lower than expected, while the number of species collected in 2006 was not 

significantly different than expected (Table 12). 

The annual variation pattern of genus and species composition supported the 

hypothesis that turnover of genera and species would increase over time. The 

Abundance-based Jaccard Index used pairs of years to estimate the similarity of genus 

and species composition over the four years stutlied (Table 13). Similarity in genus 

composition was over 99% (with 99.9% in 2004-2006) for periods of 1 to 3 years, 

decreasing similarity for longer intervals of time because fewer genera were shared. 

Species composition similarity was over 99% for periods of time of less than 2 years 

(with 98.2% in 2006-2008), and progressively decreasing to just 92% for the five-year 

period. This decreasing similarity pattern was a reflection of the increasing annual 
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Table 11. The mean expected number of genera was estimated through a randomisation analysis which generated a frequency 
distribution of the expected number of genera (Richardson and Richards, 2008). In addition, the standard deviation, and the 95% 
Confidence Interval (C.I.) of this generated frequency distribution were also calculated. The randomisation analysis was performed in 
order to testthe null hypothesis that the number of genera did not vary among years. The observed number of genera was compared to 
the 95% C.I. of the expected frequency distribution in order to identify significant differences among years. When the observed 
number of genera values fell within the 95% C.I., there were not significant differences among the observed and mean expected 
values. Alternatively, significant differences between the observed and the mean expected number of genera existed when the 
observed values (in bold) fell outside the 95% C.I. 

00 
00 

Observed Number Genera 

Mean Expected Number Genera 

Standard Deviation 

95 % Confidence Interval range 

2003 , 

24 

23.22 

1.22 

20.83-25.60 

2004 2006 2008 

19 21 16 

21.15 22.52 20.44 

1.44 1.31 . 1.49 
;. 

18.33-23.96 19.95-25.09 17.51-23.37 



Table 12. The mean expected species richness was estimated through a randomisation analysis which generated a frequency 
distribution of the expected species richness (Richardson and Richards, 2008). In addition, the standard deviation, and the 95% 
Confidence Interval (C.I.) of this generated frequency distribution were also calculated. The randomisation analysis was performed in 

- order to test the null hypothesis that the species richness did not differ among years. The observed species richness was compared to 
the 95% c.1. of the expected frequency distribution in order to identify significant differences among years. When the observed 
species richness values fell within the 95% C.I., there were not significant differences among the observed and mean expected values. 
Alternatively, significant differences between the observed and the mean expected species richness existed when the observed values 
(in bold) fell outside the 95% c.1. 

00 
\0 

Observed Species Richness 

Mean Expected Species Richness 

Standard Deviation 

95 % Confidence Interval range 

20()3 

42 

46.80 

2.27 

42.35-51.24 

2004 

34 

40.47 

2.53 

35.51-45.44 

2006 2008 

45 28 

45.85 38.38 

2.31 . 2.58 
;, 

41.33-50.37 33.32-43.44 



Table 13. The genus and species (taxa) composition similarity was analysed in order to test the hypothesis that the taxa turnover 
would increase with years. The computer program EstimateS was used to analyse the similarity change among pairs of study years 
(Colwell, 2009). The Abundance-based Jaccard (Jabd) Index was adjusted for the unseen taxa of the bee community (Chao et aI., 
2005). Values close to 1 represented a high similarity while values close to 0 would represent a total dissimilarity. This index 
accounted for the sample size variation among years and also considered the rare shared taxa that might not be detected (unseen) in the 
smaller samples. For each year pair, the number of shared genera and species was also shown. 

Year(s) lapsed 

\0 o 

1 

2 

2 

3 

4 

5 

Years Number Shared 
Genera 

2003-2004 17 

2004-2006 18 

2006-2008 15 

2003-2006 19 

2004-2008 13 

2003-2008 16 

J abd for genera Number Shared Jabd for species 
Species 

0.996 27 0.992 

0.999 30 0.990 

0.990 25 0.982 

0.993 32 0.986 

0.985 21 0.961 

0.988 22 0.923 
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turnover of genera and species experienced by the bee community. This trend was more 

consistent for species than for genera and for periods of four and five years than for 

periods of three years or less. 

The proportions of bees collected according to family varied annually (Fig. 18; 

goodness of fit test: X2 = 872.7, dJ. = 12, p«O.OOI). The family Halictidae represented 

the most abundant family over the four years studied ranging from 57% to 76% of the 

bees collected for the first three study years. However, this family decreased to just 38% 

of specimens in 2008, when Halictidae were nearly equal in abundance to Megachilidae. 

The family ranks did not vary among years, except for 2006 when bees in the family 

Colletidae were exceptionally common relative to other years. According to nesting 

guild, the proportion of bees in each guild differed annually (Fig. 19; goodness of fit test: 

X2 = 837.4, d.f. = 15, p«O.OOI). Miner and mason bees were the most abundant guilds 

for the four years studied, although in 2008 miner bees decreased to just 42% while in , 

previous years they represented between 60% - 80% of bees collected. However, except 

for 2006 when small cavity nesters (with 15% of the total bees collected) were more 

abundant than carpenter bees (4%), ranks for the remaining guilds remained relatively 

stable over the four years studied. Annual variation was also detected in the proportion of 

bees per social habit (Fig. 20; goodness of fit test: X2= 405.8.7, d.f. = 6, p«O.OOI). 

Social bees were most abundant in 2003, 2004 and 2006 ranging from 50% to 73% of the 

bees collected. The proportion of social bees decreased to just 35% in 2008 when solitary 

bees became more abundant. Solitary bees were almost as abundant as social bees in 

2003, but decreased by almost three-fold the following year. Kleptoparasitic bees were 

consistently low over the four years studied. In terms of voltinism, the proportion of bees 
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Fig. 18. Annual variation of the number of bees per family. In relation to previous years, in 2008 the family Halictidae decreased 
abruptly. 
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Fig. 19. Annual variation of the number bees in each nesting guild. The miner species, the most abundant guild over the first study 
years, decreased in 2008 by two-fold. Conversely, the other guilds did not vary that much over the four years studied. 
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collected also varied from year-to-year (Fig. 21; goodness of fit test: X2 = 513.2, d.f. = 6, 

p«O.OOI). Bivoltine bees were the most abundant for the first three study years, 

"1/1-" 
decreasing over two-fold in 2008 when univoltine bee"s became more abundant. From 

2003 to 2004 univoltine bees decreased from 44% to 25% of the bees collected although 

they gradually increased by the end of the study period. Multivoltine bees consistently 

represented a low number of bees over the four years studied. 

The annual pattern of variation for the proportion of bees according to family, 

nesting guild, social habit and voltinism was due to the annual variation of the most 

abundant taxa. These taxa included A. aurata, H. con/usus, H. ligatus, L. (Dialictus), C. 

dupZa/mikmaqi, C. calcarata, H. affinis, and 0. conjuncta. The halictid taxa combined (A. 

aurata, L. (Dialictus), H. confusus and H. ligatus) were more abundant than the rest of 

the abundant taxa in 2003 with 1550 bees, 2004 with 1188 bees and 2006 with 1279 bees. 

In 2008, C. dupla/mikmaqi, C. calcarata, H. affinis and O. conjuncta with 576 bees were 
, 

more abundant than the halictid taxa that decreased to 472 bees. Nevertheless, the 

abundant (and especially the halictid) taxa exerted the most important influence on the 

annual variation pattern exhibited by the whole bee community. The influence of the 

halictid taxa was reinforced by the fact that, in addition to sharing family and nesting 

guild, they were also social and bivoltine species except for L. (Dialictus). Conversely, 

the variety of families and nesting guilds displayed by C. dupla/mikmaqi, C. calcarata, 

O. conjuncta and H. affinis lessened their influence on the annual variation of the bee 

community. 

95 



1800 

'-

~ 1600 

8. 
~ 1400 
0 

6. 

i 
m 1200 
5i • 
C) 

'5 1000 
'-

~ 800 
::J 
s:::: 
'-

8. 600 

j .~; 

'5 400 

.8 
200 E 

::J 
Z 

0 o 

2003 

6. 

6. 

• 

• 

o 

2004 2005 2006 

Year 

• 

6. 

2007 2008 

• Unh.dtine 

6. Bi~ltine 

o Multi~ltine 

,. 

Fig. 21. Distribution of the number of bees according to the number of generations per year. Bivoltine species decreased importantly 
in 2008. 

\0 
0\ 



4. DISCUSSION 

This study strongly supports previous reports that bee communities exhibit annual 

variation in abundance and diversity. There was signifita~t variation among 2003, 2004, 

2006, and 2008. This study was the first to assess the annual variation of abundance and 

diversity in a bee community of the Niagara Region; it also comprised a bee collection of 

four years, constituting the longest bee survey performed in Canada to date. 

4.1. General aspects of the bee community 

This bee community was found to be relatively diverse with the presence of 26 

genera and sub-genera and at least 57 species (excluding Andrena, L. (Dialictus) and 

Nomada) belonging to the 5 families found in eastern North America. The actual species 

richness of the Niagara Region should be greater, when more locations are sampled and 

full identification of the above taxa to species level is completed. Nevertheless, the 

detection of newly introduced species and the collection of transient and rare species has 

also increased in relation to the 2003 survey,after the sampling effort was extended over 

the period covered by this study. Indeed, for 2004, 2006 and 2008 the complete species 

list of the bee community included recently introduced species and rare species not 

collected in 2003 (please refer to Appendix II). 'The invasive species Anthidium 

oblongatum that has been recently expanding its distribution in North America (Maier, 

2009; Miller et al., 2002) was recorded in Niagara in 2006 and 2008. Other rare and 

transient species collected in 2004,2006 and 2008 included B. griseocollis, B. mixtus, B. 

perplexus, B. sandersoni, B. vagans, C. banski, C. rufitarsis, H. illinoisensis, H. truncata, 
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L. (E.) macoupinense, M. apicata, M. campanulae, M. centuncularis, M. inermis, M. 

montivaga, M. relativa, O. inspergens, S. heraclei, and T. simplex . 

.,p.. 

4.2. Phenology of the bee community 

This study confirmed previously detected seasonal variation patterns of this bee 

community of the Niagara Region (Richards et ai., 2011; Rutgers-Kelly, 2005). 

Moreover, the results supported the hypothesis that the number of bees collected in spring 

would be significantly higher than those collected in summer. 

This bee community was characterized by three distinct periods of flight activity 

over the four years studied (early spring, late spring/early summer, and late summer). 

This pattern was also detected in previous surveys of Niagara and other locations (Oertli 

et al., 2005; Richards et ai., 2011; Rutgers-Kelly, 2005). Bees that overwinter as adults, 

belonging to the genera Osmia, Ceratina and Andrena, appeared in early spring (Weeks 

1-5). The abundance of these bees for the four pooled years did not reach a peak in Week 

1, differing from the study of Richards et ai. (2011). For these genera, peaks in Week 1 

were only recorded in 2003 and 2006; in 2004 and 2008 their highest peak occurred in 

Week 5, which represented a delay. In Week 5, the first peak for the four years studied 

occurred and it result from a high foraging activity of A. aurata foundresses, in addition 

to the high activity of the above taxa detected in 2004 and 2008. 

The summer solstice (Week 11) coincided with declining flight activity for all 

years except for 2006 (when the decline occurred in Week 7). This low activity is mostly 

due to a quiescent period between the provisioning and emergence of the worker brood of 

bivoltine and eusocial species. The second peak detected occurred in Week 13 in all years 
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except for 2006 (when it occurred in Week 11). This corresponded to the activity of the 

worker brood of bivoltine and eusocial species, in addition to the emergence of adults in 

the genera Hylaeus and Megachile, which had overwinteted as juveniles and developed 

further in spring (Richards et a!., 2011). Furthermore, in late summer a third seasonal 

peak occurred in Week 19, with high flight activity of the reproductive brood ofbivoltine 

and eusocial species. 

Generally, the flight activity in 2003 and 2006 was greater than in 2004 and 2008. 

This supported the hypothesis that the seasonal flight activity for both the overall 

community and the abundant species would vary among years. There was also a high 

annual variability in the length of seasons and the occurrence of flight activity peaks, 

with the seasons of 2003 and 2006 being longer and more advanced than in 2004 and 

2008. These annual changes in bee phenology might be due to inter-annual differences in 

temperature and annual precipitation; that affect the growing season length and the 

availability of flower and nesting resources (Gordo and Sanz, 2006; Richards and Packer, 

1995,1996; Richards, 2004; Roulston etal., 2011; Tuell and Isaacs, 2010). Weather 

influences the behaviour and life cycle of bees, which find their optimal conditions 

during moderately dry and warm weather; and this has an effect on their activity as 

pollinators (Gordo and Sanz, 2006; Karise et al': , 2010; Lyon; 1992; Pitts-Singer and 

James, 2010; Tuell and Isaacs, 2010). Warm years may favour longer bee seasons, in 

which several life cycles are completed within a season, resulting in an overall increase in 

the number of bees ofthe .,community (Gordo and Sanz, 2006; MacKay and Knerer, 1979; 

Richards, '2004; Richards and Packer, 1995; Weissel et a!., 2006). Conversely, colder 

temperatures and rainfall fluctuations between years may be related to slower 
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development, diseases, nest failure and lower foraging activity, and, in extreme cases, 

may cause mortality, smaller brood and colony sizes and lower numbers of bees (Lyon; 

1992; Pitts-Singer and James, 2010; Richards and Packe/,' 1995, 1996; Richards, 2004; 

Tuell and Isaacs, 2010). 

Bivoltine species such as A. aurata and H. ligatus responded differently than the 

univoltine species C. dupla/mikmaqi and C. calcarata to this annual variability. In 2006, 

the two bivoltine species occurred earlier than other years (in Week 1), while C. 

dupla/mikmaqi and C. calcarata occurred later than other years (in Week 5). Inter-annual 

delays in the early flight activity of univoltine and bivoltine (first brood) species may be 

the result of fluctuations in flower resource availability in the previous year (Gordo and 

Sanz, 2006; Herrera, 1988; Roulston and Goodell, 2011). 

4.3. Abundance of the bee community 

The study of Richards et al. (2011) was used as a reference to assign each genus 

to a specific abundance category (abundant, common or rare). The bee community was 

characterized by considerable consistency of abundance categories between years, in 

proportional representation and composition of genera. However, the stability in genus 

composition decreased with abundance. The abundant genera did not differ between the 

two studies; 19 common and rare genera were shared (although Melissodes was rare in 

this study). Three rare genera (Chelostoma, Colletes and Heriades) present in the study of 

Richards et al. (2011) were not collected in this study, while the opposite was true for 

Triepeolus. A similar stability pattern was also observed for species abundance 

categories, with both studies sharing the same abundant species. However, the abundance 
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of common and rare species was variable than was the abundance of genera, with 35 

species remaining at the same categories, while 21 species changed status between 

common and rare species or were not collected in one ott6.e studies. 

Regarding disturbance, this study partially supported (since intermediate 

disturbance levels were not studied) the Intermediate Disturbance Hypothesis tested on 

this bee community by Rutgers-Kelly (2005). As expected, the proportion of bees over 

the four years pooled was higher in the Brock sites subject to low disturbance levels, than 

in Pond and S1. Davids where disturbance level was regarded as high. This would be the 

result of the differences of nesting resources, plant cover and plant abundance among 

sites experiencing different degrees of disturbance (Grundel et a!., 2010; Quintero et a!., 

2010; Roulston and Goodell, 2011). This is a very common pattern in urban, suburban 

and agricultural landscapes, which have habitat patches of mixed disturbance levels 

(Roulston et al., 2011; Winfree et a!., 2007). 

4.4. Annual variation in abundance 

Over the four years studied, there was annual variation in genus and species 

abundance, with the abundant genera and species differing from the less common and 

rare taxa. This supported the hypothesis that the more abundant genera (or species) would 

occur mote consistently over the years and would not move to other abundance 

categories as often as their less common and rare counterparts. Twelve abundant and 

common genera consistently occurred over the four years studied and remained in the 

same abundance category, not including Hylaeus in 2004 and L. (Dialictus) in 2006, 

which changed from abundant to common genera. Conversely, the remaining genera 
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varied from common to rare over the four years studied and were not present at all in at 

least one year (except for Bombus). Thirteen abundant and common species were 

consistently collected over the four years studied, remai'ni!ig in the same abundance 

category. The exceptions were H. affinis in 2004, and C. calcarata and C. dupla/mikmaqi 

in 2006 that changed from abundant to common species. The remaining common and rare 

species were more variable and were not collected in at least one study year (except for 

H. producta, Megachile brevis and M. latimanus). 

This study also supported the hypothesis that the number of bees collected 

according to genus and species would differ among years. The bee community was 

subjected to annual abundance fluctuations as reflected by annual variation of the number 

of bees collected per genus and per species, with a declining trend over the four years 

studied that was detected by the ANCOVA tests. These tests identified a significant linear 

relationship between the number of bees collected per genus and species and year, 

although the relationship was stronger for genera than for species. Consequently, the 

annual effect was highly significant for genera, while it was significant for species. This 

might be explained by the fact that the ANCOV A test for genera included all the 

available individuals, while Andrena, L. (Dialictus) and Nomada were excluded from the 

analysis of species. Nonetheless, the above genl1s and species analyses yielded a very 

similar result, which suggests that annual patterns detected at genus level were consistent 

but somewhat weaker at species level. 

When the differences in annual abundance was analysed for each species, a 

significant increase or decrease was only found in eleven species. These species included 

A. pura, B. fervidus, B. griseocollis, B. impatiens, H. confusus, H. modestus, L. 
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coriaceum, L. zonuium, M. rotundata, 0. inspergens, and S. iateraiis. The only abundant 

species was H. con/usus, while the remaining species were common or rare and did not 

~ -

occur in at least one year. Halictids predominated among those species presenting an 

annual decline in abundance, while 75% of the species that increased belonged to the 

genus Bombus. In terms of absolute abundance, H. con/usus (ranging from 169 bees in 

2003 to just 44 bees in 2008) experienced the most important decline over the years. 

However, the fact that ten species of this subset did not occur consistently over the four 

years studied suggests that rarer species are not any lesS variable than abundant species 

and may be also more exposed to periodic local extinctions (Pimm et ai., 1988). Indeed, 

several authors have argued that abundant species fluctuate more in terms of abundance 

than rare species (Glazier, 1986; Gaston, 1998; Owen and Gilbert, 1989). Wolda (1983) 

suggested that abundant species are not necessarily more variable, but their impact on the 

bee community is more noticeable. Thus asWolda (1983) indicated, rare species have an 

apparent low variance as a result of a statistical artefact caused by their low sample size 

and their numerous zero values. 

The hypothesis that the proportion of bees according to site and disturbance level 

would vary among years was supported. In 2003, the difference between the number of 

bees collected at the low disturbance sites (BrockNW and BrockS) and at the high 

disturbance sites (Pond and St. Davids) was the greatest; this difference declined over the 

years to its minimum in 2008. Movements of bees would have contributed to decreasing 

the existing differences, as, disturbance levels homogenized, among the four sites 

(Hanski, 1982a). Hence, bees would have survived at the shelters provided by Brock NW 

and BrockS in 2003, moving to Pond and St. Davids when habitats of the latter became 
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similar to those of the former over the years. This is in agreement with the study of Potts 

et al. (2003b), who analysed the effect of disturbance in bee communities over time, and 

reported a rapid recovery in diversity of both flowers 'anct""bees two years after a fire. 

4.5. The diversity of the bee community 

Halictidae and Megachilidae bees predominated over other families, and their 

influence was also reflected in the remaining categories (nesting guild, social habit and 

voltinism). This was mostly due to the contribution of two species, A. aurata (Halictidae) 

and O. conjuncta (Megachilidae) that represented over 48% of the 8139 bees analysed for 

the four years studied. Nonetheless, other taxa also contributed to the overall diversity 

pattern such as the genera Andrena, HyZaeus and L. (Dialictus), in addition to Ceratina 

caZcarata, C. dupZa/mikmaqi, Halictus confusus, and H. ligatus. 

4.6. Annual variation in diversity 

The generic and species richness that was observed represented only a portion of 

the total diversity present each year, as not all the genera and species that were present at 

the sites could be collected. Nonetheless, the results supported the hypothesis that the 

total generic and species richness present would change annually, with similar annual 

variation for the total number of genera and species. For the overall four years studied, 

the observed number of genera (26) and species (57) were close to the estimated total 

richness of genera (27) and species (62). In 2003 and 2004, a greater number of genera 

and species could have been collected, as suggested by the difference between the 

observed and estimated values and the high upper confidence interval values. Conversely, 
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the 2006 and 2008 estimates were closer to the observed values, suggesting that almost 

all the genera and species that were present were collected . 

.,;. -
Moreover, the results of this study also suppotteCl the hypothesis that the generic 

and species richness that was actually recorded would also vary among years. This was 

first tested using rarefaction analyses that compared the detected generic and species 

richness according to the number of individuals collected in the smallest samples (those 

of the year 2008). The rarefaction curves for genera reflected annual differences that 

resembled those found in species. The only difference was that 2003 was the richest year 

in terms of genera, while the highest species richness was recorded in 2006. Furthermore, 

these curves also provided information about whether the sample size had been sufficient 

to collect all the genera and species present over the four years studied. Accordingly, in 

2004 the sample size had been insufficient to collect the total genera and species present. 

Subsequently, when the abundance effect was controlled, annual differences in 
, 

generic and species richness were still detected, with species richness being more 

variable. The randomisation analysis detected that the number of genera collected was 

significantly lower than expected in 2008, while the number of species collected was 

significantly lower than expected in 2003, 2004 and 2008. Richardson and Richards 

(2008) reported that in samples in which many rare species are present, observed species 

richness is significantly higher than expected. This is in agreement with the results of this 

study, in which the observed richness was significantly lower than expected when the 

number of rare genera or species was also low. Thus in 2008, only two rare genera were 

collected, while in 2003, 2004 and 2006 the number of rare genera was between 5 and 6. 

Conversely, the number ofrare species in 2003 (14 species), 2004 (16 species) and 2008 
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(7 species) was lower than in 2006 (21 species), which was a very speciose year. 

Furthermore, the randomisation analysis proved to be a good tool to identify in which 

years the annual differences in generic and species richrfes-'; 'occurred. 

In terms of community turnover, several studies have reported that genus and 

species turnover increases with years; these studies were made on bees and other insect 

communities and had sampling periods ranging from 3 years to over a century (Hanski, 

1990; Petanidou et ai., 2008; Williams et ai., 2001). In this study, genus and species 

composition increasingly differed with time, supporting the hypothesis that genus and 

species turnover would increase with years. The similarity of genus and species 

composition progressively decreased over time, with the highest similarity for periods of 

less than 3 years and the minimum for the 5-year period, when fewer genera and species 

were shared. This pattern of decreasing composition similarity was the result of 

increasing annual turnover of genera and species to which the bee community was 

subjected. Nonetheless, this pattern was more consistent for species than for genera and 

for periods of 4-5 years than for periods of:::;3 years. Furthermore, it could be also 

predicted that the observed pattern would be increasingly more pronounced if the study 

period was increased further. 

Annual variation was also found when the proportions of bees according to 

family, nesting guild, social habit and voltinism was compared among years. The families 

Halictidae and Megachilidae, in addition to the miner and mason guilds predominated 

over the four years studied, while social and bivoltine bees did so during 2003, 2004, and 

2006. The variation of the latter is partly explained by the low number of bees collected 

in 2008, when solitary and univoltine bees also became predominant. Nonetheless, within 
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the above categories, relative abundance for the abundant taxa fluctuated more than for 

the less common taxa, although ranks were generally more stable for the abundant than 

. .,fI..-

for the rare taxa. In this regard, Halictidae and Megachilidae, the most abundant families, 

had a great deal of variation in relative abundance in addition to the highest ranks over 

the four years studied, while Apidae and Colletidae were less common and variable. 

Previous studies by Glazier (1986), Gaston (1998), and Owen and Gilbert (1989) 

reported that abundant taxa are usually widespread and exploit temporary or fluctuating 

resources, leading to very variable populations. Conversely, less common taxa use more 

stable resources and have relatively more localized and less variable populations. These 

annual fluctuations in bee community abundance may induce changes in diversity from 

year to year, as has been already observed for other communities (den Boer, 1981; 

Hanski, 1982a, 1990; Taylor and Woiwod, 1980). Furthermore, the annual variation 

pattern in the proportion of bees according to family, nesting guild, social habit and 

voltinism was the consequence of the annual variation of the abundant (and particularly 

the halictid) taxa. From year to year, the abundant taxa were the most variable, and were 

also responsible for the overall pattern of annual variation displayed by the bee 

community. 

Nonetheless, several studies analysing armual variation in diversity reported that 

abundant taxa tend to be more persistent over time and their relative abundance within 

the community is also more stable than in rare taxa (Collins and Glenn, 1991; DmTer and 

Schmid-Hempel, 1995; Gibson et ai., 1999; Guo et ai., 2000; Hanski, 1982b,c). This is 

related to environmental and demographic factors affecting the regional pool of taxa 

(Gibson et ai., 1999; Hanski, 1982b). Over time, abundant taxa may be able to maintain, 
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colonise or establish new populations due to a greater pool of specimens than rare taxa, 

which may more frequently face the likelihood of local extinction (Collins and Glenn, 

1991; Durrer and Schmid-Hempel, 1995; Gibson et al. ; 1999; Guo et ai., 2000; Hanski, 

1982b,c; Pimm et ai., 1988). Consequently, Hanski (l982b) formulated the Core and 

Satellite Species Hypothesis (CSS), establishing that regional distribution of species is 

directly linked to local abundance. Under this model, two types of species may be 

distinguished: core and satellite species (Hanski, 1982b). The core species usually are 

regionally widespread and locally abundant; conversely, satellite species are more 

restricted regionally and locally rare. 

After its proposal, the CSS model has been consistently applied to predict 

regional distributions of species based on local abundances at different locations (Durrer 

and Schmid-Hempel, 1995; Hanski, 1982c; Gibson, 1999). More recently, this model has 

been also extrapolated to explain temporal distributions of species based on annual 

abundances and persistence over time (Collins and Glenn, 1991; Guo et aI., 2000). In this 

study, the CSS model was used to predict the temporal distribution of taxa based on 

patterns of annual stability in relative abundance and the number of years these taxa were 

present. Accordingly, genera and species were regarded as 'core' when they were 

abundant or common and were collected in eacliyear. Taxa were regarded as 'satellite' 

when they were common or rare and were missing in at least one of the years. 

This study also found an annual pattern of stability in abundance ranks of genera 

and species that was related to proportional representation and persistence over time. This 

outcome supported the hypothesis that abundance ranks for the most abundant taxa would 

be more stable annually than for rarer taxa. The abundant and the most common genera 
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(refer to section 3.4) were regarded as core given that they were also collected in each 

year; conversely, the remaining common and rare genera were sporadically collected, and 

.".. 

as a result they were regarded as satellite (Table 14). 'Consequently, ranks for the core 

genera were more stable over time than for their satellite counterparts (Fig. 22). A similar 

temporal pattern of stability in ranks based on relative abundance and annual persistence 

was also found for core and satellite species. Core species were represented by abundant 

and the most common species that persisted in each year (Table 15). On the other hand, 

the remaining common and rare species were missing in at least one of the years, and 

were considered as satellite. Core species usually had more stable ranks than their 

satellite counterparts (Fig. 23). However, some satellite species that were rare or not 

collected in several years, shared the last ranks annually (displaying annual stability). 

This would represent a statistical artefact, due to the low sample size of satellite species, 

rather than stability in abundance ranks (Wolda, 1983). 

Communities may change over time through arrival and disappearance of satellite 

taxa, and variability in the abundance of core taxa, regardless of their persistence (Gibson 

et al., 1999). In general, taxa that were present in each year were also very abundant, 

while those with less than 10 specimens overall tended to be only present during one or 

maximum two years. A remarkable exception was the core species M. latimanus, which 

was present during four years with a total of 10 specimens. Alternatively, three relatively 

common species L. zonulum, M. rotundata and A. manicatum were considered as 

satellite, since they occurred sporadically. New species such as O. albiventris may have 

recently incorporated to the bee community. This species was tentatively considered as 

core given that its abundance increased, displaying very stable ranks, since it was first 
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Table 14. The classification of core and satellite genera was made according to the 
abundance category and the number of years each genus was collected. 

01 . 
Genus Abundance category Years present Type 

Agapostemon Common 4 Core 

Andrena Common 4 Core 

Anthidiellum Common 1 Satellite 

Anthidium Common 3 Satellite 

Anthophora Rare 2 Satellite 

Apis Common 4 Core 

Augochlora Common 2 Satellite 

Augochlorella Abundant 4 Core 

Bombus Common 4 Core 

Calliopsis Common 3 Satellite 

Ceratina Abundant 4 Core 

Coelioxys Common 2 Satellite 

Halictus Abundant , 4 Core 

Hop litis Common 4 Core 

Hylaeus Abundant 4 Core 

L. (Dialictus) Abundant 4 Core 

L. (Evylaeus) Common 3 Satellite 

Lasioglossum Common 4 Core 

Megachile Common 
.,:: 

4 Core 

Melissodes Rare 2 Satellite 

Nomada Common 3 Satellite 

Osmia Abundant 4 Core 

Protandrena Rare 1 Satellite 

Stelis Common 3 Satellite 

Triepeolus Rare 2 Satellite 

Xylocopa Rare 1 Satellite 
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Table 15. Species were classified as core or satellite based on their abundance category 
and the number of years they were collected. 

Species Abundance category Y e~rsppresent Type 

A. manicatum Common 3 Satellite 

A. mellifera Common 4 Core 

A. notatum Common 1 Satellite 

A. pura Common 2 Satellite 

A. striata Abundant 4 Core 

A. terminalis Rare 2 Satellite 

A. virescens Common 4 Core 

B. citrinus Rare 2 Satellite 

B·fervidus Common 3 Satellite 

B. griseocollis Common 3 Satellite 

B. impatiens Common 3 Satellite 

B. mixtus Rare 1 Satellite 

B. rufocinctus Rare 2 Satellite 

B. sandersoni Rare 1 Satellite 

B. vagans Rare 2 Satellite 

C. andreniformis Common 3 Satellite 

C. calcarata Abundant 4 Core 

C. dupla Abundant 4 Core 

C. strenua Rare 1 Satellite 

C. rufitarsis Common 2 Satellite 

H. affinis Abundant 
~; 

4 Core 

H. annulatus Common 2 Satellite 

H. confusus Abundant 4 Core 

H. ligatus Abundant 4 Core 

H. mesillae Common 3 Satellite 

H. modestus Common 3 Satellite 

H. pilosifrons Common 4 Core 

H. producta Common 4 Core 
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Table 15 (Continued) 

Species Abundance category Years present Type 

H. rubicundus Common ..... 4 Core 

H. spoliata Common 2 Satellite 

H. truncata Rare 1 Satellite 

L. (E.) cinctipes Common 2 Satellite 

L. (E.) macoupinense Rare 1 Satellite 

L. coriaceum Common 3 Satellite 

L. leucozonium Common 4 Core 

L. zonulum Common 3 Satellite 

M. brevis Common 4 Core 

M. centuncularis Rare 2 Satellite 

M. desponsa Rare 2 Satellite 

M. inermis Rare 1 Satellite 

M. latimanus Common 4 Core 

M. mendica Rare 1 Satellite 

M. montivaga Rare 1 Satellite 

M. relativa Rare 1 Satellite 

M. rotundata Common 3 Satellite 

M. texana Common 3 Satellite 

O. albiventris Common 3 Core 

O. atriventris Common 4 Core 

O. conjuncta Abundant 4 Core 

O. inspergens Common -:-:.' 2 Satellite 

O. ligna ria Rare 3 Satellite 

O. pumila Common 4 Core 

O. simillima Rare 1 Satellite 

P. andrenoides Rare 1 Satellite 

S. lateralis Common 3 Satellite 

T. simplex Rare 2 Satellite 

X. virginica Rare 1 Satellite 
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Fig. 23. Annual variation in the rank abundance distribution of species. Rank stability among years was the highest for the most 
abundant species and decreased as species became less common. Several species not occurring in 2004 (a), 2006 (b) and 2008 (c), and 
sharing the last ranks, had been either common or rare in 2003. Conversely, several species that were not present in 2003 had occurred 
in the subsequent years . Each year, ranks were assigned serially starting from the most abundant species and finishing with the rarest 
species. In case of a tie, species ranks were averaged and the mean was assigned to all the tying ranks. 
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recorded in 2004. Nonetheless in order to elucidate this aspect, it would have been useful 

to have data on O. albiventris presence in 2005 and 2007. Apidae bees such as the genus 

Xylocopa and some Bombus species (i.e. B. fervidus; B. g;.iseocollis and B. impatiens) 

were un-expectedly rare and sporadic; although this may have been the result of the 

inability of pan traps to retain large-sized bees upon capture (Cane et al., 2000; Richards 

et al., 2011). 

It should be also noted that, core-satellite roles could theoretically change over 

time due to stochastic demographic or environmental variation (Hanski, 1982b; Tokeshi, 

1992). Therefore, it would be required to monitor over time the abundance and 

persistence of the core and satellite taxa defined in this study. Nonetheless, I predict that 

core taxa should be more likely recorded in future samplings than satellite taxa. As the 

former are expected to be more abundant and persistent over time, while the latter are 

rarer and sporadically present (Hanski, 1982b). 

4.7. Conclusion 

This study provided strong evidence of annual variation in phenology, abundance 

and diversity for this bee community. Inter-annual weather variability may have caused 

fluctuations in flowering and nesting resources 'of bees, affecting bee behaviour and 

phenology over the study years (Gordo and Sanz, 2006; Herrera, 1988; Richards and 

Packer, 1995; Roubik, 2001; Roulston and Goodell, 2011). In 2003 and 2006, the 

seasonal flight activity was higher, more advanced, and lasted longer than in 2004 and 

2008. Each year, the number of bees collected in spring was higher than in summer, 

except for 2003. This exception was due to a very high flight activity in 2003 of the 

115 



worker brood in bivoltine and eusocial species such as A. aurata, H. confusus, H. ligatus 

and species of L. (Dialictus), in addition to the adult emergence of H. affinis and H. 

modestus. 
.-if1.: " 

Over the four years studied, an annual variation pattern in genus and species 

abundance was detected, with abundant genera and species occurring more consistently 

than their less common and rare counterparts. In addition, abundant genera and species 

tended to be in the same abundance group over the years, while less common and rare 

taxa were more variable. The number of bees collected either per genus or species 

differed from year to year, displaying a decline over the four years studied, due to the low 

number of bees collected in 2008. Since the number of bees collected greatly fluctuated 

among years, this study were extended to cover the longest possible time interval in order 

to gain full understanding of temporal variation processes (Roubik, 2001). Bee sampling 

was conducted in only four years of collections; therefore, the detected declining trend 

might have been an artefact resulting from the relatively short term spanned by this study. 

Indeed, surveys carried out in 2009 and 2010, using pan traps on a linear transect pattern, 

would suggest an increase in the number of individuals of this bee community (Richards 

et aI., unpubl. data). Furthermore, the existing difference in the number of bees collected 

at sites of low and high disturbance decreased Over the years. A rapid recovery after 

disturbance and movement of bees among sites may have contributed to lessen and to 

homogenize differences between sites with different levels of disturbance in the past 

(Hanski, 1982a; Potts et aJ, 2003b). Moreover as the time series of this study increases, 

future disturbances (i.e. mowing) occurring at the four sites would form part of the 

internal ecological dynamics of their habitat (Rykiel, 1985), this may have already been 
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the case for the Brock sites. This suggests that the assessment of disturbance effects on 

bee communities of the Niagara Region, over a longer period of time, would be of great 

ecological and conservational value. 

This study also reported annual variation in diversity, in terms of genus and 

species richness, composition and persistence of taxa, and in terms of the proportion of 

bees according to family, nesting guild, social habit and voltinism. Generic and species 

richness varied annually, following a similar pattern in 2004 and 2008, when the lowest 

number of genera (16) and species (28) was recorded. In 2003, the highest number of 

genera was collected (24), while the highest number of species (45) was detected in 2006. 

Moreover, genus and species turnover increased with years, as bee community 

composition increasingly differed with time, with lowest similarity values for periods >3 

years. This represents an interesting outcome if it is compared with studies that found 

similar composition in bee communities analysed over a four-decade period (Williams et 

ai., 2001). 

Regarding bee proportion, the abundant taxa are more variable than less common 

taxa (Glazier, 1986; Gaston, 1998; Owen and Gilbert, 1989; Wolda, 1983). In this study, 

the abundant taxa were largely responsible for the annual variation of the proportion of 

bees according to family, nesting guild, social habit and voltinism. These patterns were 

affected by abundance fluctuations of the abundant taxa over the years, which had an 

important influence on bee community annual variability. 

Moreover, the per~istence of genera and species over time was related to their 

relative abundance; therefore, abundance ranks for core genera and species were more 

stable annually than for their satellite counterparts. Locally abundant genera and species 
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are also abundant regionally, ensuring a steady supply of individuals to the community, 

which makes core taxa to occur consistently and to predominate over time (Collins and 

.,p-." Glenn, 1991; Durrer and Schmid-Hempel, 1995; Gibson et al., 1999; Guo et aI., 2000; 

Hanski, 1982b,c). 

In general, over the four years studied annual variation patterns at the genus level 

resembled those detected at the species level. This suggests that the exclusion of 

Andrena, L. (Dialictus) and Nomada may not have greatly results of analyses at the 

species level. Furthermore, this is in agreement with the study of Rutgers-Kelly (2005), 

who found that bee species richness, for several studies, was highly correlated to generic 

richness. Therefore, analyses at the genus level could provide valuable information when 

identification at the species level is not complete. 

Understanding temporal variation processes in bee communities is relevant to 

assess the extent of the impact caused by diverse anthropogenic disturbances such as 

those derived from agriculture, industry, urban settlement, species invasions or global 

warming. This study contributed to improve our knowledge on the temporal variation of a 

bee community of the Niagara Region. This study may also offer insights for 

conservation purposes about the effect of anthropogenic disturbances in bee 

communities. Finally, this study should be extended over a longer period of time and to 

nearby locations in order to obtain a greater understanding of the temporal variation and 

the influence of disturbance on Niagara bee communities. 
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6. APPENDIX I 

6.1. Methods for the analysis of transect pattern effect 

6.1.1. Study sites 

A test of transect pattern effect was carried out at the 406 site east of the GQNS 

(latitude: N 43°07.492', longitude: W 79°13.949 ' ). The 406 site is bordered to the north 

by the Niagara Escarpment, to the east and the south by the 406 highway and to the west 

by a tree line. The predominant vegetation at the 406 site was formed of set-aside 

meadows since the 1960s when farming finished and they have been un-mowed for the 

last two decades. Disturbance levels at the 406 site were regarded as low as assigned in 

previous surveys (Rutgers-Kelly, 2005; Richards et ai., 2011). 

The 406 site was selected due to low disturbance and to its rectangular 

dimensions, where the P140, X050 and X140 patterns could be deployed simultaneously. 

The closest distance among the three transect patterns was always greater than 20m. This 

cautious approach, based on observations by Droege et al. (2010), was taken in order to 

avoid pan trap competition among different transect patterns. The addition of the H-like 

pattern would have provided a greater power to this test; however, site dimensions did 

not allow for a fourth transect pattern to be deployed. In addition, Droege et al. (2010) 

had already reported that transect pattern shape"did not affect the specimen catch rate in 

their study. 

6.1.2. Collection period of specimens 

Collections were made on 1 June, 11 June, 21 June and 7 July 2010. The test was 

initially conceived to be carried out twice, coinciding with the highest peaks of activity of 
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forager bees of mid-to-Iate spring and early summer. However, after the low number of 

bees captured at the first instance (1 June 2010) four collections were carried out. 

6.1.3. Bee collections 

Collections were performed by R. Kutbi and R. Le6n Cordero using pan traps in 

the same manner as described in section 2.3. The transect patterns used to test the transect 

pattern effect on the analysis of bee community structure were P140, X050 and X140. 

6.1.4. Bee handling and identification 

Upon recovery, pan trap contents were strained, and all the arthropods collected 

were subsequently poured into three 750 ml plastic containers labelled with the date, the 

location and the pan trap colour. Once in the laboratory, insects were rinsed with water 

and temporarily stored in Nasco Whirl-Pak ® bags containing 70% ethanol until sorting. 

Bee specimens were sorted from other arthropods, pinned and labelled indicating the site, 

the date, the collection method, the pan trap colour, and the transect pattern. Bee 

specimens were identified to genus and species following the same procedure as for the 

years 2004, 2006 and 2008 (please refer to the section "2.4 Bee handling and 

identification" in the methods). 

6.1.5. Field research procedures of the test of transect pattern effect 

The first objective"of the current study was to test the null hypothesis that the 

different transect patterns used had no effect on the numbers and types of bees captured. 

It was important to test whether the P140, X050 and X140 patterns could have differed in 
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their specimen catch rates (the sampling effort), as this might have influenced the 

analyses of bee community structure. 

6.1.6. Data analysis 

Before carrying out the test of the transect pattern effect, it was necessary to 

determine the minimum sample size required, so that the statistical analysis selected 

could detect significant differences with an acceptable confidence level. Therefore, an a 

priori test of statistical power was performed for a one-factor ANOV A. The a priori test 

was carried out at different effect sizes (measured in units of standard deviation) as 

suggested in Cohen (1988): small (0 = 0.25), medium (0 = 0.5), and large (0 = 0.75, 1.0 

and 1.25); The statistical power for a hypothetical value of N = 50 bees per transect 

pattern considering a small, medium and large effect size was 18.1 % (for a small effect), 

59.3% (for a medium effect) and 92.3%, 99.5% and 99.9% (for the three 0 values at 

which the large effects were considered). The assumptions of normality were tested for 

date and pan trap colour using the Kolmogorov-Smirnov test. Subsequently, two one­

factor ANOV A analyses were performed in order to test significant differences in the 

number of bees collected per date and per pan trap colour among the three transect 

patterns. A randomisation analysis was performed in order to test the null hypothesis that 

the number of bee species collected did not differ among transect patterns. Richardson 

and Richards (2008) designed the randomisation analysis used in the current study. 

131 



6.2. Results 

A total of 219 bee specimens belonging to 5 families, 14 genera and sub-genera 

and 19 species were collected using the P140, X050 antl ~i40 transect patterns (Table 

16). The number of bees collected was normally distributed and did not differ 

significantly among the three transect patterns either per date (Table 17; Kolmogorov­

Smirnov analysis: D = 0.17, P = 0.15; ANOV A: F2,9= 0.05, P = 0.95) or per pan trap 

colour (Table 18; Kolmogorov-Smirnov: D = 0.26, P = 0.08; ANOVA: F2,6 = 0.02, P = 

0.98). 

The frequency distribution of species generated by the randomisation analysis 

showed that the observed species richness was not significantly different than expected at 

P140 (13 species observed; 95% C.I. range: 9.91-16.20), X050 (14 species observed; 

95% c.1. range: 9.80-16.08) and X140 (10 species observed; 95% C.I. range: 7.73-14.07) 

(Table 19). Only 6 species in addition to the sub-genus Lasioglossum (Dialictus) were 

common throughout P140, X050 and X140: Augochlorella aurata, Ceratina calcarata, 

Halictus confusus, Halictus ligatus, Hylaeus affinis and Osmia conjuncta. Both P140 and 

X050 shared Halictus rubicundus, Lasioglossum leucozonium and Osmia atriventris. The 

X050 and X140 patterns had Apis mellifera, Bombus mixtus, Osmia pumila, and the 

genus Andrena in common. P140 and X140 did not share any species in common. Two 

species were exclusive to P140: Agapostemon virescens and Hoplitis pilosifrons. Two 

species were also exclusive to X050: Ceratina dupla/mikmaqi and Lasioglossum 

coriaceum. Only Megachile relativa was exclusive to X140. 
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Table 16. Number of bees per taxon (genera and species) collected in each transect 
pattern (n = 21, for each transect). The identification of those taxa denoted as sp. 
belonging to the genera Andrena and L. (Dialictus) was completed only to genus and sub-
genus level, respectively. 

~ ' 

Taxon Name P150 X050 X150 Grand Total 

Agapostemon virescens 1 0 0 1 

Andrena sp. 0 1 1 2 

Apis mellifera 0 3 1 4 

Augochlorella aurata 15 10 7 32 

Bombus mixtus 0 1 1 2 

Ceratina calcarata 15 8 6 29 

Ceratina dupla/mikmaqi 0 2 0 2 

Halictus confusus 6 3 3 12 

Halictus ligatus 1 1 2 4 

Halictus rubicundus 2 1 0 3 

Hoplitis pilosifrons 1 0 0 1 

Hylaeus affinis 3 9 5 17 

L. (Dialictus) sp. 25 24 33 82 

Lasioglossum coriaceum 0 1 0 1 

Lasioglossum leucozonium 2 2 0 4 

Lasioglossum zonulum 1 0 0 1 

Megachile relativa 0 0 1 1 

Osmia atriventris 1 1 0 2 

Osmia conjuncta 2 7 7 16 

Osmia pumila 0 1 1 2 

Stelis lateralis 1 0 0 1 

Grand Total 76 75 68 219 
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Table 17. Number of bees collected on 1 June, 11 June, 21 June and 7 July of 2010 in 
each transect pattern deployed at the 406 site. 

P140 XOSO X140 

01/06/2010 12 16 11 

11/06/2010 22 29 15 

21/0612010 31 27 30 

07/07/2010 11 3 12 

Grand Total 76 75 68 

. d'rand 
Total 

39 

66 

88 

26 

219 
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Table 18. Number of bees collected using yellow, white and blue pan traps in each 
transect pattern deployed at the 406 site. 

P140 

Blue 1 

White 37 

Yellow 38 

Grand Total 76 

X050 X140 

7 4 

31 28 

37 36 

75 68 

,-;. 

'<fr~md 
Total 

12 

96 

111 

219 
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Table 19. The mean expected species richness was estimated through a randomisation 
analysis. In addition, the standard deviation and the 95% Confidence Interval (C.I.) of the 
generated frequency distribution were also calculated. Observed species richness values 
within the 95% C.I. range are not significantly different ts- !he mean expected species 
richness. Therefore, the observed species richness for die three transects was not 
significantly different to the expected estimations. 

P140 X050 X140 

Observed Species Richness 13 14 10 

Mean Expected Species Richness 13.05 12.94 10.90 

Standard Deviation 1.60 1.60 1.62 

95 % Confidence Interval range 9.91-16.20 9.80-16.08 7.73-14.07 
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7. APPENDIX II 

Table 20. Species composition of a bee community sampled at four sites (BrN/w, BrS, Pond, StD) of the Niagara Region, through the 
use of pan traps, during the complete season (all-weeks) of the years 2003, 2004, 2006 and 2008. When complete identification to 
species level in all the years was not possible then species were denoted as sp. This has been the case when the bee either belonged to 
genera such as Andrena, Dialictus, Megachile, Nomada and Osmia or the bee was damaged (Hylaeus and Lasioglossum sp.). In bold, 
those species that appear in the list only when all-weeks are considered. 

Family 

Andrenidae 

Andrenidae Total 

Apidae 

...... 
U) 

-..l 

Genus 

Andrena 

Calliopsis 

Protandrena 

Anthophora 

Apis 

Bombus 

Species 

sp. 

andreniformis 

. andrenoides 

te~lJlinalis 

me llifera 

bimaculatus 

citrinus 

fervidus 

griseocollis 

impatiens 

mixtus 

perplexus 

rufocinctus 

sandersoni 

vagans 

Nesting guild Social habit 

Miner Solitary 

Miner Solitary 

Miner Solitary 

Carpenter Solitary 

Large cavities Social 

Large cavities Social 

Kleptoparas i ti c Kleptoparasitic 

Larg cav./grass Social 

Large cavities Social 

Large cavities Social 

Large cavities Social 

Large cavities Social 

Large cavities Social 

Large cavities Social 

Large cavities Social 

Voltinism 

Univoltine 

Univoltine 

Univoltine 

Univoltine 

Multivoltine 

Bivoltine 

Bivoltine 

Bivoltine 

Bivoltine 

Bivoltine 

Bivoltine 

Bivoltine 

Bivoltine 

Bivoltine 

2003 2004 2006 2008 Grand 
Total 

128 21 26 74 249 

8 1 3 12 

1 1 2 4 

137 22 30 76 265 

1 2 3 

17 10 21 19 67 

1 1 

1 1 .~ 3 

1 2 4 3 10 

1 4 8 13 

1 1 11 13 

2 1 3 

1 2 3 

3 3 

2 3 



Table 18 (Continued) 

Family 

Apidae 

Apidae Total 

Colletidae 

Colletidae Total 

Halictidae 

,...... 
w 
00 

Genus 

Ceratina 

Melissodes 

Nomada 

Triepeolus 

Xylocopa 

Hylaeus 

Agapostemon 

Augochlora 

Augochlorella 

Species 

calcarata 

dupla/mikmaqi 

strenua 

apicata 

desponsa 

sp. 

simplex 

virginica 

affinis 
::~ . 

affinislmodestus 

annulatus 

illinoisensis 

mesillae 

modestus 

sp. 

virescens 

pura 

aurata 

Nesting guild Social habit Voltinism 

Carpenter Solitary Univoltine 

Carpenter Solitary Univoltine 

Carpenter Solitary Univoltine 

Miner Solitary Univoltine 

Miner Solitary Univoltine 

Kleptoparasitic Kleptoparasitic 

Kleptoparasitic Kleptoparasitic 

Carpenter Social Univoltine 

Small cavities Solitary Bivoltine 

Small cavities Solitary Bivoltine 

Small cavities Solitary Bivoltine 

Small cavities Solitary Bivoltine 

Small cavities Solitary Bivoltine 

Small cavities Solitary Bivoltine 

Small cavities Solitary Bivoltine 

Miner Social Univoltine 

Carpenter Solitary Univoltine 

Miner Social Bivoltine 

2003 2004 2006 2008 Grand 
Total 

216 53 154 146 569 

305 70 98 254 727 

2 2 

1 3 5 

10 4 10 24 

2 3 

1 

558 140 300 457 1455 

121 30 796 98 1045 

28 9 18 55 

3 8 11 

1 .;. 1 

7 2 5 14 

8 4 14 2 28 

4 4 

167 36 828 127 1158 

14 4 17 9 44 

5 6 

1119 715 1260 575 3669 



Table 18 (Continued) 

Family 

Halictidae 

Halictidae Total 

Megachilidae 

,..... 
w 
\0 

Genus 

Halictus 

L. (Dialictus) 

L. (Evylaeus) 

Lasioglossum 

Sphecodes 

Anthidiellum 

Anthidium 

Coelioxys 

Hoplitis 

Species 

confusus 

ligatus 

rubicundus 

sp. 

cinctipes 

macoupinense 

coriaceum 

leucozonium 

zonulum 

s~: damaged 

heraclei 

notatum 

manicatum 

oblongatum 

banksi 

rufitarsis 

pilosifrons 

producta 

Nesting guild Social habit Voltinism 

Miner Social Bivoltine 

Miner Social Bivoltine 

Miner Social Bivoltine 

Miner 

Miner Social Bivoltine 

Miner 

Miner Solitary Univoltine 

Miner Solitary Univoltine 

Miner Solitary Univoltine 

Miner Solitary Univoltine 

Kleptoparasitic Kleptoparasitic 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Kleptoparasitic Kleptoparasitic 

Kleptoparasitic Kleptoparasitic 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

2003 2004 2006 2008 Grand 
Total 

185 105 251 67 608 

180 171 469 30 850 

18 10 44 16 88 

322 272 89 149 832 

5 2 7 

8 4 3 1 16 

25 8 18 20 71 

40 5 5 50 

1 

1 

1921 1296 2159 ~68 6244 

4 4 

20 3 16 3 42 

3 2 5 

1 

1 10 11 

31 5 28 61 125 

4 3 8 10 25 



Table 18 (Continued) 

Family 

Megachilidae 

...... 
~ o 

Genus 

Hoplitis 

Megachile 

Osmia 

Species 

spoliata 

truncata 

brevis 

campanulae 

centuncularis 

inermis 

latimanus 

mendica 

montivaga 
~~i 

relativa 

rotundata 

texana 

sp. 

albiventris 

atriventris 

conjuncta 

inspergens 

ligna ria 

pumila 

Nesting guild Social habit Voltinism 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Carpenter Solitary Univoltine 

Miner Solitary Univoltine 

Mason Solitary Univoltine 

Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Mason (shells) Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

Mason Solitary Univoltine 

2003 2004 2006 2008 Grand 
Total 

5 5 10 

1 1 

18 13 64 7 102 

1 1 

2 3 

1 

1 2 11 15 

3 3 

6 6 

30 1 2 2 35 

3 11 ~ 4 18 

1 

6 15 31 53 

24 3 34 18 79 

582 133 453 504 1672 

15 16 

1 3 

71 7 39 37 154 



Table 18 (Continued) 

Family Genus Species Nesting guild Social habit Voltinism 2003 2004 2006 2008 Grand 
Total 

Megachilidae Osmia simi/lima Mason Solitary Univoltine 1 1 

sp. Mason Solitary Univoltine 1 10 11 

Stelis lateralis Kleptoparasitic Kleptoparasitic 5 3 6 15 

Megachilidae Total 802 182 722 708 2414 

Grand Total 3585 1676 4039 2236 11536 
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