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Abstract

Root and root finding are concepts familiar to most branches of mathematics.

In graph theory, H is a square root of G and G is the square of H if two

vertices x, y have an edge in G if and only if x, y are of distance at most

two in H. Graph square is a basic operation with a number of results

about its properties in the literature. In this thesis, we are interested in

the characterization and recognition problems of graph powers. There are

algorithmic and computational approaches to answer the decision problem of

whether a given graph is a certain power of any graph. On the other hand

characterization of graph powers such as the work of Mukhopadhyay [24] do

not provide a polynomial time algorithm for the recognition problem.

One of the best known results for the problem is given by Farzad et al. [11].

They approached the problem in terms of the girth of the square root. They

provided an almost dichotomy theorem for the problem. However the problem

has been open in the case where the root graph has girth five. We settle,

in the affirmative, the conjecture that recognition of square of graphs with

girth 5 is NP-complete. We also present a polynomial time algorithm for

graphs of girth five without specific dense subgraphs.
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Chapter 1
Introduction

Graph-theoretical ideas date back to at least the 1730’s, when Leonhard Euler

published his paper on the problem of Seven Bridges of Köningsberg. This

puzzle asks whether there is a continuous walk that crosses each of the seven

bridges of Köningsberg only once and if so, whether a closed walk can be

found, see Figure 1.1.

Figure 1.1: Bridges of Köningsberg

The methods for solving such games or problems was the main motivation
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1 Introduction 1

for a theory called Graph Theory.

Graphs are very convenient tools for representing the relationships among

objects, which are represented by vertices. Also relationships among vertices

are represented by connections. In general, any mathematical object involving

points and connections among them can be called a graph or a hypergraph.

For a great diversity of problems such pictorial representations may lead to a

solution.

Nowadays, graph theory is a dynamic field in both theory and applications.

Graphs can be used as a modelling tool for many problems of practical

importance. For instance, a network of cities, which are represented by

vertices, and connections among them make a weighted graph. The link

structure of a website could be represented by a directed graph. The vertices

are the web pages available at the website and a directed edge from page A

to page B exists if and only if A contains a link to B. A similar approach

can be taken to problems in travel, biology, computer chip design, and many

other fields.

Root finding problem in graphs has been extensively studied in the past

three decades. As a very basic operation in algebra, we may refer to the nth

power of a number xn, and the nth root of a number n
√
x. The same attempt

to such operations in graph theory was first introduced by Harary and Ross

in [27]. They defined the square of a tree T denoted by T 2, to be graph in

which two vertices x, y have an edge if and only if x, y are of distance at

most two in T . However the same definition work for an arbitrary graph H.

2



1 Introduction 1

For a given graph H, computing the square graph H2 is an easy operation.

However for a given graph G deciding if there exists a graph H such that

G = H2 is not that easy.

Ross and Harary [27] characterized squares of trees and showed that tree

square roots, when they exist, are unique up to isomorphism. Mukhopad-

hyay [24] provided a characterization of graphs which have a square root.

However his characterization does not give a short certificate. In fact, such a

good characterization may not exist as Motwani and Sudan [23] proved that

it is NP-complete to determine if a given graph has a square root.

Meanwhile, there are polynomial time algorithms to compute the tree

square root [21, 18, 19, 6, 7], a bipartite graph square root [19], and a proper

interval graph square root [20].

As an almost complete dichotomy theorem in square root finding problem,

Farzad et al. [11] provided the fastest known algorithm for the recognition of

square of graphs with girth at least 6. They also proved the NP-completeness

of the square root finding problem for graphs with girth four. Putting all

results together Table 3.1 is representing the square root problem regarding

the girth of square root (indicated by H). The recognition problem has been

open for square roots of girth 5.

3



1.1 Overview 1

Girth Complexity Class
∞ P [7]

g(H) ≥ 7 P [11]
g(H) ≥ 6 P [11]
g(H) ≥ 5 ?
g(H) ≥ 4 NP-Complete [11]
g(H) ≥ 3 NP-Complete [23]

Table 1.1: Known complexity classes for Square Root Problem.

1.1 Overview

In addition to introducing some preliminaries and notations in Chapter 2, we

introduce the concept of graph powers and decision problem of root finding in

Section 2.2. In Chapter 3, we present the previous works on the complexity

problem of root finding with a focus on locality. We present the result of

Farzad et al. [11] for square of graph with girth at least 6. We also present

the NP-completeness proof of Motwani and Sudan [23] for finding square

roots of graphs in general and the NP-completeness proof of Farzad et al. [11]

for finding square roots of girth 4 of graph. We also discuss the uniqueness

results for square roots in terms of their girth.

In Chapter 4 we settle, in the affirmative, the conjecture that recognition

of square of graphs with girth 5 is NP-complete. We also present a polynomial

time algorithm for graphs of girth 5 without specific dense subgraphs.

Chapter 5 contains the concluding remarks and discussions about possible

further directions.
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Chapter 2
Preliminaries and Notions

In this chapter we introduce graph-theoretical definitions and terminologies

for the remainder of this thesis. For undefined notations and definitions that

are not included in this chapter, we use [30] as our reference.

2.1 Preliminaries and Notions

A graph G is an ordered pair G = (V,E) where V is a set of elements of

which are called vertices or nodes, and E is a set of unordered pairs of distinct

vertices called edges or lines. Each vertex of an edge e is called an endpoint

of e and we show e = vu for v and u two different endpoints of e. When u

and v are the endpoints of an edge, they are adjacent and are neighbours.

We write u ∼ v for u is adjacent to v. A finite graph is a graph such that

V (G) and E(G) are finite sets. All graphs studied in this thesis are finite and

undirected.

5



2.1 Preliminaries and Notions 2

An isomorphism from a graph G to a graph H is a bijection f : V (G)→

V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say G is

isomorphic to H, written G ∼= H, if there is an isomorphism from G to H.

Since H is isomorphic to G whenever G is isomorphic to H, we often say G

and H are isomorphic. It is an observation that the isomorphism relation is

an equivalence relation on the set of simple graphs. An isomorphism class of

graphs is an equivalence class of graphs under the isomorphism relation. The

adjacency matrix of a graph G on n vertices {v1, v2, ..., vn}, written A(G), is

the n× n matrix in which entry ai,j is 1, if there exists an edge between vi

and vj, and 0 otherwise.

If G is a graph of order n, then V (G) = {v1, v2, . . . , vn} is the set of vertices

in G and E(G) = {e1, e2, . . . , em} is the set of edges. Also, d(vi) denotes

the degree of vi. In a graph G denote by δ(G) and ∆(G) the minimum and

maximum degrees of G, respectively. A k-regular graph is graph in which every

vertex has a degree of k. In a graph G, a walk from vertex vi to vertex vj is an

alternating sequence of vertices and edge W = 〈vi, vivi+1︸ ︷︷ ︸
e1

, vi+1, . . . , vj−1vj︸ ︷︷ ︸
ek

, vj〉.

The number of edges in W is called the length of W . The distance from a

vertex v to a vertex u is the length of the shortest walk from v to u. We may

use dG(v, u) or simply d(v, u) for the distance notation between v and u in

graph G. Also if there is no walk from v to u then d(u, v) =∞. The diameter

of a graph G is defined as maximum of distances in G, or maxu,v∈V (G)dG(u, v).

A graph G is said to be connected if there exists a path between every pair of

vertices and disconnected otherwise. The diameter of a disconnected graph is

6



2.1 Preliminaries and Notions 2

defined to be ∞.

For a vertex v in graph G, the set of all vertices adjacent to v is called the

neighbourhood of v showed by NG(v). The closed neighbourhood of a vertex

v is its neighbourhood and v itself and we show it by NG[v] or simply N [v].

In other words, N [v] = N(v) ∪ {v}.

A path is a walk without vertex repetition. A cycle is a closed path

meaning the first and the last vertex of the path are the same. The length

of the shortest cycle in the graph G is called the girth of the graph and is

shown by g(H).

A subgraph of a graph G = (V,E), is another graph G′ = (V ′, E ′) such

that V ′ ⊆ V and E ′ ⊆ E. For S a subset of vertices, we write G− S for the

subgraph obtained by deleting S (and of course edges having an endpoint

in S). An induced subgraph of G, is a subgraph obtained by deleting a set

of vertices. We write G[T ] for G− T̄ such that T̄ = V (G)− T , which is the

subgraph of G induced by T . A graph G is called H-free if G has no induced

subgraph isomorphic to H.

A graph on n vertices is called complete when every vertex is adjacent to

all other vertices. Such a graph is denoted by Kn. A complete subgraph of a

graph G is called a clique of G. The size of a maximum clique in G is called

the clique number of G.

Definition 1 (Petersen Graph). The Petersen graph is the simple graph

whose vertices are the 2-element subsets of a 5-element set and whose edges

are all pairs of disjoint two element subsets, see Figure 2.1.

7



2.1 Preliminaries and Notions 2

Figure 2.1: Different drawings of Petersen graph

A Moore graph is a k-regular graph with diameter d, with k2 + 1 vertices.

An equivalent definition of a Moore graph is that it is a graph of diameter

d with girth 2d+ 1. The Petersen graph also can be considered as a Moore

graph of diameter 2, and girth 2× 2 + 1 = 5, see Figure 2.2.

Figure 2.2: Petersen graph as Moore graph

It also can be seen that the maximum number of vertices in a k-regular

graph of diameter d with girth 2d+ 1 is k2 + 1 [30].

8



2.2 Graph Powers, Graph Roots 2

2.2 Graph Powers, Graph Roots

In this section we introduce the cardinal concepts of this thesis which are

graph power and graph root.

Definition 2. Graph G is called the rth power of H and H is called the rth

root of G where for every pair of vertices v and u, v is adjacent to u in G if

and only if dH(v, u) ≤ r.

Example 1. The graph shown in Figure 2.3 is an example of a graph and

its square and cubic graph. Notice that the only pair of vertices of distance

four in H are the only non-adjacent ones in H3.

Figure 2.3: Example of Power Graph.

Proposition 1. Let G be the square of the graph H, then A(G) = A(H)2 +

A(H), where addition is defined to be the binary operation of or1.
1x+ y = 0 iff x = y = 0.

9



2.2 Graph Powers, Graph Roots 2

As a very trivial extension to Proposition 1, for G the nth power graph

of H:

A(G) = Σr
k=1A(H)k

However the other direction of this problem is not trivial. Indeed for given

G and r, determining if there exists H such that H is the rth root of G is

not an easy problem. Considering the square root of a graph we have the

following theorem by Mukhopadhyay [24].

Theorem 1 (Mukhopadhyay). A connected graph with n vertices v1, v2, . . . , vn

has a square root if and only if some set of n cliques of G whose union is

G can be labeled C1, C2, . . . , Cn so that, for all 1 ≤ i, j ≤ n the following

conditions hold:

(i) Ci contains vi;

(ii) Ci contains vj if and only if Cj contains vi.

A detailed proof of Proposition 1 deals with the maximum clique problem.

Clique Problem

Instance: A graph G, a positive integer k.

Question: Does there exist a clique of size k in G.

The clique problem is an NP-complete problem (one of the Karp’s 21 NP-

complete problems [31]). That means any given solution to such a problem

can be verified quickly, however there is no known efficient algorithm to find

a solution for an arbitrary instance.

10



2.2 Graph Powers, Graph Roots 2

So the problem of finding a maximum clique is NP-complete if one could

solve it, one could also solve the decision problem, by comparing the size

of the maximum clique to the size parameter given as input in the Clique

problem.

Hence Mukhopadhyay theorem is not interesting from a complexity point

of view. So the complexity problem of root finding problem is interesting.

Definition 3 (Root Problem). We call the following decision problem rth

Root Problem:

Clique Problem

Instance: A graph G.

Question: Does there exist a graph H such that G = Hr?

A good deal of this study is dedicated to solving this problem when r = 2

i.e. the problem of square root finding. The reason is that a dichotomy

theorem for the Square Root Problem is the core of a similar theorem

for rth Root Problem. In almost all parts of this thesis, we are working

with the square root version of the rth Root Problem.

11



Chapter 3
Complexity Problem of Finding Square

Roots

The main motivation for studying the complexity of checking if a given graph

is a certain power (square specifically) of another graph comes from distributed

computing. Consider a network of computers that are connected through

their links. We can model this network by a graph (called the underlying

graph) H, where each computer is a vertex and each link is an edge between

two computers, see Figure 3.1 for an example.

The rth power of graph H represents the possible flow of information

in r round of communication in a (distributed) network of processors (or

computers) organized according to H. Linial [3] introduced a question about

the characterization of this problem. He asked if there exists a polynomial

time algorithm to decide the entire topology of H by knowing Hr.

12



3.1 Square Graphs and Local-Information 3

Figure 3.1: A sample of network of computers and its underlying graph.

3.1 Square Graphs and Local-Information

Let G = H2. For v ∈ VH(= VG) we have NH(v) ⊆ NG(v), and NH(v) = NG(v)

only if H is a star graph. Hence we can assume that NG(v) − NH(v) 6= ∅.

The set NG(v)−NH(v) contains all vertices of distance 2 from v in H. Note

that an algorithm that can distinguish NH(v) from NG(v) for any vertex v,

can reconstruct the graph H only using information from G. Consider the

square root finding problem while we know an arbitrary neighbourhood in H.

Proposition 2. Let G = H2 for some graph H with girth at least 6. Then,

for all vertices x ∈ V and all vertices y ∈ NH(x), NH(y) = NG(y) ∩
(
NG[x] \

NH(x)
)
.

Proof. First, consider an arbitrary vertex w ∈ NH(y) − x. Clearly, w ∈

13



3.1 Square Graphs and Local-Information 3

NG(y), as well w ∈ NG(x). Also, since H is C3-free, wx /∈ EH . Thus

w ∈ NG(y) ∩
(
NG(x) \NH(x)

)
.

Conversely, let w be an arbitrary vertex in NG(y) ∩
(
NG[x] \ NH(x)

)
.

Assuming wy 6∈ EH , then w 6= x and there exist vertices z and z′ such that

zx, zw ∈ EH and z′y, z′w ∈ EH . As H is C3-free, zy 6∈ EH , z′x 6∈ EH , and

zz′ 6∈ EH . But then x, y, w, z and z′ induce a C5 in H, a contradiction. Thus

w ∈ NH(y).

Indeed if graph contains no short cycle (of length 5 or less), with knowing

an arbitrary neighbourhood NH(v) we can distinguish all second neighbours

and then recognize all neighbourhoods of neighbours of v. This process can be

repeated to completely reconstruct the square root. In the following section

we study the complexity problem for square roots without short cycles. At

this point we redefine our decision problem in terms of the girth of the square

root.

Square of Graphs With Girth g

Instance: A graph G.

Question: Does there exist a graph H of girth at least g such

that G = H2.

3.1.1 Square of Graphs Without Short Cycles

We study the following decision problem:

Square of Graphs With Girth 6 and A Specified Neighbourhood

14



3.1 Square Graphs and Local-Information 3

Instance: A graph G, v ∈ VG and U ⊆ NG(v).

Question: Does there exist a graph H of girth at least six

such that G = H2 and NH(v) = U .

Theorem 2 (Farzad et al. [11]). Square of Graphs With Girth 6 and A

Specified Neighbourhood has at most one solution. The unique solution,

if any, can be constructed in time O(M(n))1.

Proof. Given G, v ∈ VG and U ⊆ NG(v), assume H is a square root of

G with g(H) = 6, such that NH(v) = U . Then, by Proposition 2, the

neighbourhood in H of each vertex u ∈ U is uniquely determined by NH(u) =

NG(u)∩
(
NG[v]\U

)
. By repeatedly applying Proposition 2 for each u ∈ U and

U ′ = NH(u), we can conclude that H is unique. Assuming the pseudo-code

given in appendix A, It can be seen, that H is a graph of girth at least 6,

correctness of pseudo-code follows from Proposition 2. Since every vertex

is enqueued at most once, it (lines 1-13 in pseudo code) take O(m) steps,

m = |EG|. Checking if G = H2 (line 14 in pseudo code) takes O(M(n)) steps,

n = |VG|.

Although knowing an arbitrary neighbourhood is not changing the com-

plexity nature of the problem, but we can find a square root with a rather

stricter condition.

Proposition 3. Suppose H is of girth at least 6, xy ∈ EH and H2 = G.

Then C = NG(x) ∩NG(y) has at most two connected components. Moreover,
1Note that M(n) stands for the time needed to perform a matrix multiplication of two

n× n matrices; currently, M(n) = O(n2.376).

15



3.1 Square Graphs and Local-Information 3

if A and B are the connected components of C (one of them maybe empty)

then

- A = NH(y)− {x}, B = NH(x)− {y}

- A = NH(x)− {y}, B = NH(y)− {x}

Proof. One can see C has at most two connected components. Since xy ∈ EH

vertices that are adjacent to y are either neighbours of x or y (in G) hence

we have A = NH(y) − {x}, B = NH(x) − {y} or A = NH(x) − {y}, B =

NH(y)− {x}.

The stricter version of the problem is as follows:

Square of Graphs With Girth 6 and One Specified Edge

Instance: A graph G, v ∈ VG and and edge xy ∈ EG.

Question: Does there exist a graph H of girth at least six

such that G = H2 and xy ∈ EH .

Theorem 3 (Farzad et al. [11]). Square of Graphs with Girth 6 and

One Specified Edge can be solved in time O(n4).

It has been proven by using Proposition 3.

Theorem 4 (Farzad et al. [11]). Square of Graphs with Girth 6 can be solved

in time O(δ(G)n4).

It has been proven by using Theorem 3.

16



3.1 Square Graphs and Local-Information 3

3.1.2 Square of Graphs With Short Cycles

Proposition 2 is the heart of the known efficient algorithms in the study of

square root finding problem. As one can see the condition "girth at least

six" is necessary for Proposition 2. In fact we will see in the following two

subsections and Chapter 4 that there is no efficient algorithm to decide if

there exists a square root when the girth of square root graph is less than

five.

When the complexity of square root finding was introduced by Linial [3]

in 1992 for the first time, Motwani and Sudan [23] answered it fairly quickly

in 1994. They proved it is NP-complete to determine if a given graph is the

square of another graph. Indeed they proved the Square root problem

is NP-complete. They reduce the NAESAT2 problem (which is an special

version of 3-SAT problem) to the Square root problem. Although they

proved Square root is NP-complete, the square root graph which they

used in their reduction contains many triangles and is relatively dense.

A main source of interest for solving this problem comes from distributed

networks. Distributed graphs are rarely dense and are often of a certain

girth. Hence we are more interested to find a complete dichotomy theorem

for this problem in terms of the girth of the square root. It is also worth

while mentioning that the reduction introduced by Motwani and Sudan [23]

can not be extended for any other girth of the square root.

In the following two sections we introduce reductions of [23] and [11],
2Not-All-Equal 3SAT

17



3.1 Square Graphs and Local-Information 3

however we just present the sketch of their results.

Square of Graphs With Girth Three

Theorem 5. (Motwani and Sudan [23]) Square of Graphs With Girth

Three is NP-complete.

Motwani and Sudan [23] reduce the NAESAT to Square of Graphs

With Girth Three. NAESAT is like 3SAT, but we require additionally

that there be a satisfying truth assignment under which no clauses have the

three literals equal in truth value. In other words each clause must have one

or two literal assigned true.

NAESAT is an NP-complete problem [31]. Although we do not deal with

details of their proof, we present the sketch of their proof.

Basic Theme of The Reduction Graph: We are about to introduce a

(reduction) square graph G(φ) where φ is an instance of NAESAT. Before

defining G(φ) specifically, lets give a general idea about it. A proper con-

struction must present a square graph that does not contain information of

any assignment but its square root does. We choose two constant vertices

TRUE and FALSE and represent each literal li as a vertex called Li. Li is

adjacent to both TRUE and FALSE in G(φ) (as it contains no information

of any assignment) but to exactly one of TRUE or FALSE in square root

of G(φ). The graph shown in Figure 3.1.2 is a basic illustration of this idea

for a clause cj containing three literals x, y and z.

Vertices Axy, Ayz and Axz are added to make sure all vertices are adjacent

18



3.1 Square Graphs and Local-Information 3

Figure 3.2: A subgraph of H =
√
G(φ) for representing a clause

to TRUE and FALSE in G(φ). Also vertex Cj that represents cj, is also

to make sure all x, y and z do not have the same truth value (otherwise the

vertex Cj is not adjacent to both TRUE and FALSE in G(φ)).

While literal vertices have different possibilities in connecting to constant

vertices TRUE and FALSE, we need to make sure thatX ∼ {TRUE,FALSE}

and Cj ∼ {x, y, z}. The idea introduced by Motwani and Sudan is a con-

struction called tail. Tail is a P4 (a path with four vertices) associated with

the desired (fixed) neighbourhood. For example if we associate the vertex X

with onw end of a P4 in the square root graph, then we can make sure that

X ∼ {TRUE,FALSE} in any square root of G(φ), see Figure 3.1.2. Same

idea works for Cj as well.

Reduction Let cj be the set of literals in clause j and let C = {cj|1 ≤

19



3.1 Square Graphs and Local-Information 3

Figure 3.3: The tail structure.

j ≤ m}. The graph G(φ) is constructed as follows:

• VG(φ) contains:

– Constant Vertices: TRUE, FALSE, X and tail vertices to X, t1,

t2 and t3.

– Literal Vertices: Li : 1 ≤ i ≤ 2n for each literal li.

– Literal Pair Vertices: Aij : 1 ≤ i < j ≤ 2n for each literal li 6= ¬lj.

– Clause Vertices: Cj for each clause cj ∈ C and tail vertices C1
j , C

2
j

and C3
j .

• EG(φ) contains:

– Edges of the tail of X: t3 ∼ t2, t3 ∼ t1, t2 ∼ t1, t2 ∼ X, t1 ∼

{X,TRUE,FALSE}, X ∼ {TRUE,FALSE} and TRUE ∼

20



3.1 Square Graphs and Local-Information 3

FALSE.

– Edges of the tail of clauses: ∀cj ∈ C, C3
j ∼ C2

j , C3
j ∼ C1

j , C2
j ∼ C1

j ,

C2
j ∼ Cj, C1

j ∼ {Li1, Li2, Li3} where cj = {li1, li2, li3}.

– Edges of the clauses: ∀cj ∈ C, ∀i such that li ∈ cj, Cj ∼

{Li, TRUE, FALSE}, also ∀k such that lk 6= ¬li, Cj ∼ Aik.

– Edges of the literal vertices: All remaining vertices {Li}’s, the

{Aij}’s and TRUE,FALSE and X are adjacent, except for the

the pairs Li and Lj where li = ¬lj.

One can see that this graph can be constructed for a given φ in polynomial

time. To prove Square of Graphs With Girth Three is NP-complete

we just need to show that for φ (an instance of NAESAT), when there is an

assignment in such a way that φ evaluates as true then G(φ) is the square of

some graph. The graph H = G(φ)2 is constructed as follows:

EG(φ) contains:

• Edges of the tail of X: t3 ∼ t2, t2 ∼ t1, X ∼ {t1, TRUE, FALSE}.

• Edges of the tail of clauses: ∀cj ∈ C, C3
j ∼ C2

j , C2
j ∼ C1

j , C1
j ∼

{C1
j , Li1, Li2, Li3} where cj = {li1, li2, li3}.

• Edges of the literal vertices: according to the assignment if li evaluated

as true then Li is adjacent to TRUE and to FALSE otherwise. Also

for each literal lk that lk 6= ¬li, Li ∼ Aik.
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3.1 Square Graphs and Local-Information 3

• Edges of literal pair vertices Aik: Aik ∼ TRUE,FALSE.

One can see that H2 = G(φ). And also a square root of G(φ) can be used to

form a truth assignment for φ.

Square of Graphs With Girth Four

Farzad et al. [11] proved that the problem of The Square of Graphs With

Girth Four is NP-complete. They reduced the set splitting problem

to The Square of Graphs With Girth Four. The nature of the set

splitting problem is reasonably simple, and construction of the reduction

graph does not need any preliminary explanation.

Theorem 6 (Farzad et al. [11]). Square Root Graph with Girth Four

is NP-complete.

Sketch of the proof: They reduce the following NP-complete problem set

splitting [12, Problem SP4], also known as hypergraph 2-colorability,

to it.

set splitting

Instance: Collection D of subsets of a finite set S.

Question: Is there a partition of S into two disjoint subsets S1 and S2 such that

each subset in D intersects both S1 and S2?
Let S = {u1, . . . , un}, D = {d1, . . . , dm} where dj ⊆ S, 1 ≤ j ≤ m, be an

instance of set splitting. We construct an instance G = G(D,S) for The

Square of Graphs With Girth Four as follows.

The vertex set of graph G consists of:
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3.1 Square Graphs and Local-Information 3

- Ui, 1 ≤ i ≤ n. Each ‘element vertex’ Ui corresponds to the element ui

in S.

- Dj, 1 ≤ j ≤ m. Each ‘subset vertex’ Dj corresponds to the subset dj

in D.

- D1
j , D

2
j , D

3
j , 1 ≤ j ≤ m. Each three ‘tail vertices’ D1

j , D
2
j , D

3
j of the

subset vertex Dj correspond to the subset dj in D.

- S1, S
′
1, S2, S

′
2, four ‘partition vertices’.

- X, a ‘connection vertex’.

The edge set of graph G consists of:

- Edges of tail vertices of subset vertices:

For all 1 ≤ j ≤ m: D3
j ∼ D2

j , D3
j ∼ D1

j , D2
j ∼ D1

j , D2
j ∼ Dj, D1

j ∼ Dj,

and for all i, D1
j ∼ Ui whenever ui ∈ dj.

- Edges of subset vertices:

For all 1 ≤ j ≤ m: Dj ∼ S1, Dj ∼ S ′1, Dj ∼ S2, Dj ∼ S ′2, Dj ∼ X,

Dj ∼ Ui for all i, and Dj ∼ Dk for all k with dj ∩ dk 6= ∅.

- Edges of element vertices:

For all 1 ≤ i ≤ n: Ui ∼ X, Ui ∼ S1, Ui ∼ S2, Ui ∼ S ′1, Ui ∼ S ′2, and

Ui ∼ Ui′ for all i′ 6= i.
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3.2 Uniqueness of Square Roots 3

- Edges of partition vertices:

S1 ∼ X, S1 ∼ S ′1, S1 ∼ S ′2, S2 ∼ X, S2 ∼ S ′1, S2 ∼ S ′2, S ′1 ∼ X,

S ′2 ∼ X.

Clearly, G can be constructed from D,S in polynomial time. Now if there

exists a partition of S into two disjoint subsets S1 and S2 such that each

subset in D intersects both S1 and S2, then there exists a graph H with girth

four such that G = H2.

Since depicting H, the square root of G(S,D) depends on the answer to

set splitting problem we illustrate an example of H for S = {u1, u2, . . . , u5}

and D = {d1, d2, d3, d4} with d1 = {u1, u2, u3}, d2 = {u2, u5}, d3 = {u3, u4},

and d4 = {u1, u4}. The graph shown in Figure 3.4 is G(S,D).

The graph shown in Figure 3.5 is H, the square root of G(S,D).

This reduction shows that Square Root Graph with Girth Four is

NP-complete.

3.2 Uniqueness of Square Roots

In Subsection 3.1.1 we introduced an efficient algorithm that computes a

square root of girth at least six of a given graph. However as we showed in

Subsection 3.1.2, there is no efficient algorithm to compute a square root of

girth three or four (if it exists). In this section we present the results about

the uniqueness (up to isomorphism) of square roots.

The uniqueness of the square root is important from the complexity point
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3.2 Uniqueness of Square Roots 3

Figure 3.4: Reduction graph for Square of Graphs With Girth Four,
Figure 2 from [11]

Figure 3.5: The Square Root Graph H, H2 = G(S,D), Figure 3 from [11]
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3.2 Uniqueness of Square Roots 3

of view. Except the unknown case square root graphs of girth 5, when the

Square Root of Girth g is polynomial then the output of an efficient algorithm

is unique and when the problem is NP-complete, there are graphs of girth g

with more than one square root. We will see how this fact turns to a sign in

the recognition problem of square graphs with girth five, in Chapter 4.

Farzad et al. [11] is providing the uniqueness of square root with girth at

least 7.

Definition 4. Let G be an arbitrary graph. An edge of G is called forced if

it is contained in (at least) two distinct maximal cliques in G.

Theorem 7 (Farzad et al. 2009). The square roots with girth at least seven

of squares of graphs with girth at least seven are unique, up to isomorphism.

Proof. Let G be the square of some graph H with girth ≥ 7. If G is complete,

clearly, every square root with girth ≥ 6 of G must be isomorphic to the star

K1,n−1 where n is the vertex number of G.

Thus, let G be non-complete, and let F be the subgraph of G formed

by the forced edges. If F has only one edge, G clearly consists of exactly

two maximal cliques, Q1, Q2, say, and Q1 ∩Q2 is the only forced edge of G.

Then, it is easily seen that every square root with girth ≥ 6 of G must be

isomorphic to the double star T having center edge v1v2 and degT (vi) = |Qi|.

So, assume F has at least two edges. Then for each two maximal cliques

Q,Q′ in G with Q∩Q′ = {x, y}, x or y is the unique center vertex of the star

F [VF ∩Q] or F [VF ∩Q′]. Hence, for any end-vertex u of H, i.e., u ∈ VG− VF ,
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3.2 Uniqueness of Square Roots 3

the neighbor of u in F is unique. Since F is the graph resulting from H by

deleting all end-vertices, H is therefore unique.

Adamaszek and Adamaszek [1] proved that the square root problem proved

by Farzad et al. [11] also give us the only possible square root.

Theorem 8 (Anna Adamaszek, Michal Adamaszek [1] ). If H1 and H2 are

two graphs of girth at least 6 such that H2
1
∼= H2

2 then H1
∼= H2.

Proof. We first prove that if there exists a xyz-path in both H1 and H2 then

H1
∼= H2. Let G = H2, for some H of girth six, then we have, (see Figure 3.6):

NH(x) = (NG(x) ∩NG(y)) NG(z) ∪ {x, y}

Figure 3.6: NH(x) = (NG(x) ∩NG(y)) NG(z) ∪ {x, y} for an xyz-path in H,
where g(H) ≥ 6.

and if dH(y) = 1, i.e. there exist no z, then:

NH(y) = NG(x)

With the above formulas, given one path xyz ofH one can recursively compute

all the edges of H using only the information from G, so the square root of

G with this distinguished path is unique.
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3.3 Square Root Problem So Far 3

So we may assume for every v the set Xv = {u dimuv ∈ E(H1) ∩E(H2)}

has at most 1 element. Define the following map: f : V → V

- if |Xv| = 0 then f(v) = v

- if |Xv| = 1 then F (v) is the unique element of Xv.

which is an isomorphism from H1 to H2.

3.3 Square Root Problem So Far

Putting all results together Table 3.1 represents the square root problem and

fastest known algorithms regarding the girth of square root graph (H).

Girth Complexity Class Uniqueness of Root
∞ O(|V |+ |E|) [7] Up to labelling

g(H) ≥ 7 O(|V | × |E|) [11] Up to labelling [11]
g(H) ≥ 6 O(|V | × |E|) [11] Up to isomorphism [1]
g(H) ≥ 5 ? No
g(H) ≥ 4 NP-Complete [11] No
g(H) ≥ 3 NP-Complete [23] No

Table 3.1: Known complexity classes for Square of Graphs With Girth g.

The recognition problem has been open for square roots of girth 5. In

Chapter 4 we show that this problem is NP-complete. The result is providing

a complete dichotomy complexity theorem for Square of Graphs With

Girth g. Before we introduce our reduction, we present a family of graphs

28



3.3 Square Root Problem So Far 3

with exponentially many non-isomorphic square roots. This family was indeed

the sign that leads us through the NP-completeness of the problem.

The interest in the complexity problem of Square of Graphs With

Girth 5 is not limited to this dichotomy theorem. There are other open

problems related to Square of Graphs With Girth 5.

The complete graph G = Kn has a square root in the graphs with finite

girth if and only if there exists a graph on n vertices that has girth 5 and

diameter 2, a Moore graph. By the Hoffman-Singleton theorem (see [28])

such a graph may exist only for n = 5, 10 and 50. See Figure 3.7 for a Moore

graph of girth five diameter 2 and 50 vertices.

Figure 3.7: Moore Graph of Girth 5 and Diameter 2 on 50 vertices.

The existence of such a graph on 3250 vertices is a long time open problem.

Therefore, any efficient algorithm for the square root problem might (at least

in principle) solve this problem.
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Chapter 4
Square of Graphs With Girth Five

As we saw in Chapter 3 the recognition problem of Square of Graphs

With Girth g has an internal connection with the uniqueness of square root

of girth g. Indeed excluding the unknown case of girth 5, when Square of

Graphs With Girth g has an efficient algorithm to recognize a square root

graph, the square root is unique up to isomorphism. Also when Square of

Graphs With Girth g is NP-complete then there are graphs with many

non-isomorphic square roots of girth g.

In Section 4.1, we advance the technique used in the auxiliary problem

of Square of Graphs With Girth at Least 6 and A Specified

Neighbourhood for graphs with girth 5. This leads us to a polynomial

time algorithm for square of graphs without dense subgraphs.

In Section 4.2, we study the problem of Square of Graphs With

Girth 5 with a question about the uniqueness of square root. We construct

30



4.1 Square Root Graphs Without Dense Subgraphs 4

a family of graphs with exponentially many non-isomorphic square roots.

We disproved the conjecture in [11] in Section 4.3, by showing that Square

of Graphs With Girth 5 is NP-complete. This theorem is presenting the

complete dichotomy theorem for the girth-parametrized square root finding

problem.

4.1 Square Root Graphs Without Dense Sub-

graphs

In this section we present a graph called H1, such that when H1 is excluded

from the square root, the square root finding problem can be solved in

polynomial time. A stronger result is provided in Subsection 4.1.2 by excluding

two edge intersecting H1s from H.

4.1.1 Characterization of Square of Graphs With no H1

Definition 5. Let G = H2, for v ∈ VG let x ∈ NG(v) − NH(v), we define

Lv(x) as follows:

Lv(x) = {u ∈ NH(v) | ux ∈ EG} = NG(x) ∩NH(v)

Let G = H2 such that g(H) = 5 and H contains no H1 as a subgraph (see

Figure 4.1).

We define H1 to be the family of all graphs of girth at least five with no

subgraph of H1.
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4.1 Square Root Graphs Without Dense Subgraphs 4

Figure 4.1: H1

Lemma 1. Let G = H2 where H ∈ H1. For v ∈ V and x ∈ NG(v)−NH(v)

(i) 1 ≤ |Lv(x)| ≤ 2

(ii) If Lv(x) = {u} then x ∈ NH(u)

Proof. (i) It is trivial that Lv(x) has at least one element, and considering

a C5 = [x, u, x, x′, u′] we have Lv(x) = {u, u′}. We want to show that

there exists no x such that Lv(x) = {u, u′, u′′}. Assume otherwise, we

know that x is in the neighbourhood of one of u, u′ or u′′, otherwise

it is not in NG(v) or Lv(x) has more than three vertices. Without

loss of generality let x ∈ NH(u), therefore there exist two different

vertices x′ and x′′ such that xx′u′, xx′′u′′ ⊆ EH , see Figure 4.2, which is

a contradiction with non-existence of H1 in H.

(ii) Since x ∈ NG(v)−NH(v) then ux ∈ EH which means x ∈ NH(u).

Lemma 2. Let G = H2 such that H ∈ H1. For v ∈ V and x ∈ NG(v) −
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4.1 Square Root Graphs Without Dense Subgraphs 4

Figure 4.2: Lemma 1-i

NH(v), let Lv(x) = {u, u′}. For y ∈ NG(v)−NH(v) such that Lv(y) = {u} if

xy ∈ EG then x ∈ NH(u) otherwise x ∈ NH(u′).

Proof. Assume otherwise and let x ∈ NH(u′) while xy ∈ EG. It means there

exists a vertex x′ such that xx′u ⊆ EH . Since Lv(y) = {u} then y ∈ NH(u)

(by lemma 1-i), therefore yx /∈ EH otherwise we have a cycle of length four

in H. So there exists y′ such that yy′x ⊆ EH , see Figure 4.3. And this is a

contradiction due to non-existence of H1 in H. Therefore x ∈ NH(u). Since

every neighbour of u is connected to y then if xy /∈ EG then x /∈ NH(u) which

means u ∈ NH(u′).

Knowing the neighbourhood of (an arbitrary vertex) v in H, for every

x ∈ NG(v)−NH(v), Lemma 1 says we have two possibilities, either Lv(x) =

{u} which means vu ∈ EH , or Lv(x) = {u, u′}. In the second case we need

Lemma 2 to decide xu ∈ EH or xu′ ∈ EH , and this gives us a procedure to

decide the neighbourhood of each u ∈ NH(v). Using NH(v) = U we can build
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4.1 Square Root Graphs Without Dense Subgraphs 4

Figure 4.3: Lemma 2

a BFS-like algorithm to decide the whole H. A sample of such pseudo-code

is in Appendices-B.

4.1.2 Characterization of Square of Graphs With no

Edge Intersecting H1s

We can advance further by including subgraphs isomorphic to H1, but exclud-

ing two edge intersecting H1s.

We define H2 to be a family of all graphs of girth at least five with no

subgraph of two edge intersecting H1s.

Lemma 3. Let G = H2 where H ∈ H2. For v ∈ V and x ∈ NG(v)−NH(v):

(i) 1 ≤ |Lv(x)| ≤ 3

(ii) If Lv(x) = {u} then x ∈ NH(u)
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4.1 Square Root Graphs Without Dense Subgraphs 4

Proof. (i) It is trivial that Lv(x) has at least one element, and considering

a C5 = [x, u, x, x′, u′] we have Lv(x) = {u, u′}. Considering an H1 also

gives us a vertex x such that Lv(x) = {u, u′, u′′}. We want to show that

there exists no x such that Lv(x) = {u1, u2, u3, u4}. Assume otherwise,

we know that x is in neighbourhood of one of u1, u2, u3 or u4, otherwise

it is not in NG(v) or Lv(x) has more than four vertices. Without loss of

generality let x ∈ NH(u1), therefore there exist three different vertices

x2, x3 and x4 such that xx2u2, xx3u3, xx4u4 ⊆ EH , see Figure 4.4, which

is a contradiction with existence of two intersecting H1.

Figure 4.4: Lemma 3-i

(ii) Since x ∈ NG(v)−NH(v) then ux ∈ EH which means x ∈ NH(u).

Lemma 4. Let G = H2 such that H ∈ H2. For v ∈ V and x, y ∈ NG(v)−

NH(v), if |Lv(x) ∩ Lv(y)| ≤ 1 then xy /∈ EH
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4.1 Square Root Graphs Without Dense Subgraphs 4

Proof. Assume otherwise and let xy ∈ EH , then there exists u,w ∈ NH(v)

such that ux,wy ∈ EH which means {u,w} ⊆ Lv(x) ∩ Lv(y) and is a contra-

diction to |Lv(x) ∩ Lv(y)| ≤ 1.

Lemma 5. Let G = H2 such that H ∈ H2. For v ∈ V and x ∈ NG(v) −

NH(v), let Lv(x) = {u1, u2, u3}. Also let Sx = {y ∈ (NG(v)−NH(v))∩NG(x) |

Lv(x) ∩ Lv(y)| ≥ 2}. Then we have xui ∈ EH for {ui} =
⋂
y∈S Lv(y).

Proof. Since x ∈ NG(v) − NH(v), xuj ∈ EH for some uj ∈ Lv(x). Without

loss of generality let xu1 ∈ EH . It is enough to show that {u1} =
⋂
y∈S Lv(y).

- u1 ∈
⋂
y∈Sx

Lv(y): Assume otherwise and let y ∈ S and xy /∈ EH

otherwise u1 ∈ Lv(y). Since |Lv(x) ∩ Lv(y)| ≥ 2 and u1 /∈ Lv(y)

then Lv(x) ∩ Lv(y) = {u2, u3}. Having yu2 ∈ EH or yu3 ∈ EH is a

contradiction with having two intersectingH1 inH. So there exists y2, y3

such that yy2u2, yy3u3 ⊆ EH . Also let w ∈ NH(v) such that w /∈ Lv(x)

and yw ∈ EH . Now [w, v, y, u2, u3, y2, y3] and [u1, v, x, u2, u3, x2, x3] are

two different intersecting H1.

-
⋂
y∈S Lv(y) ⊆ {u1}, it is trivial that having ui and uj in

⋂
y∈S Lv(y)

forming two intersecting H1.

Knowing the neighbourhood of (an arbitrary vertex) v, for every x ∈

NG(v)−NH(v) Lemma 3 says we have three possibilities, either Lv(x) = {u}

which means vu ∈ EH or Lv(x) = {u1, u2, u3} or |Lv(x)| = 2. In the second
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4.2 Graphs with Many Non-Isomorphic Square Roots of Girth Five 4

case we need Lemma 5 to decide for which ui, xui ∈ EH . Furthermore it

gives us the parent for other vertices connecting to x that and having Lv of

size two. In third case, we have no other vertices adjacent to x having Lv

of size three and Lemma 2 is again useful in this case. Again we can come

up with a procedure to decide the neighbourhood of each u ∈ NH(v). Using

NH(v) = U we can build a BFS-like (the following) algorithm to decide the

whole H. A sample of such pseudo-code is in Appendices-C.

4.2 Graphs with Many Non-Isomorphic Square

Roots of Girth Five

For a given graph G if there exists H where G = H2 and g(H) ≥ 6, then

H is unique up to isomorphism [1]. However this is not true when the girth

of H is at least 5. For G = K5, two graphs K1,4 and C5 are non-isomorphic

square roots of G. These two graphs can be used to introduce a family of

non-isomorphic pairs of graphs with the same square, see Figure 4.5.

Notice that graphs in this family contain vertices of degree 1. Such vertices

were a main source of technicalities in the past studies.

In [1] there is also an example of a graph with two non-isomorphic square

root of girth five, see Figure 4.6. These two graphs are more interesting as,

unlike the graphs shown in Figure 4.5, they contain no vertex of degree 1.

These two graphs are also the smallest non-isomorphic graphs with girth five,

minimum degree 2 and identical squares. In this thesis, we call these two
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4.2 Graphs with Many Non-Isomorphic Square Roots of Girth Five 4

graphs G1 and G2.

Figure 4.5: A family of non-isomorphic graphs with identical square graph.

Figure 4.6: Non-isomorphic graphs G1 and G2 with no vertex of degree 1 and
identical squares.
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It is also an interesting question to ask if there exists a graph with

many non-isomorphic square roots. We show that G1 and G2 can be used to

construct a family of graphs with many non-isomorphic square roots. With

current labelling of G1 and G2, we have three vertices 1, 12 and 14, that their

neighbourhoods in both G1 and G2 are identical. So we may identify two

graphs on one of these three vertices to construct a new graph with more

than one square roots. For example, we can identify vertex 1 in both G1 and

G2 as shown in Figure 4.7.

Figure 4.7: Connecting G1 and G2 by identifying vertex 1.

Observation 1. The square of the graph shown in Figure 4.7 has three

non-isomorphic square roots.

Proof. In Figure 4.7, by replacing the copy of G1 on the vertices {1, 2, . . . , 16}
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4.2 Graphs with Many Non-Isomorphic Square Roots of Girth Five 4

with a copy of G2, we would get a different graph with the same square. Hence

switching copies of G1 and G2 constructs three non-isomorphic graphs with

identical squares.

The process of connecting G1s and G2s by identifying one of those three

vertices can form a family of graphs with girth five, minimum degree of 2

and exponentially many non-isomorphic square roots. See Figure 4.8 for an

illustration of 16 non-isomorphic graphs with identical square.

Figure 4.8: Non-isomorphic graphs with identical square.

This process is introducing a family of graphs with exponentially many non-

isomorphic square roots. This family indicates that even with the restriction

δH ≥ 2 knowledge of any local neighbourhood is not sufficient to reconstruct

the rest of the square root.
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When a square root has no short cycle (girth of at least 6) the square root

finding problem is solvable by an efficient algorithm [11]. The main idea of

this algorithm (and almost all attempts to find an efficient algorithm for the

square root finding problem) is to use a known neighbourhood of the square

root and then reconstruct the whole square root by only using informations

from the square graph. Indeed if we know an arbitrary neighbourhood of

graph H of girth at least six, where H2 = G, then we can recognize second

neighbours (vertices of distance two) of that vertex. In this way the whole

graph H can be uniquely reconstructed only using information of G. The

family of graphs we introduced using G1 and G2 indicates that by knowing an

arbitrary neighbourhood of the square root we can never decide the rest of

the graph, as there are always options (to decide a second neighbourhood of

a vertex) that result in different (non-isomorphic) graphs. Hence knowing a

constant number of neighbourhoods in the square root can not help to find a

square root for a given graph (or to decide if there exists a square root).

We also use G1 and G2 graphs as part of our reduction in Section 4.3. We

need to show that the graph G = G12 = G22 has only two non-isomorphic

square roots which are G1 and G2. For the rest of this chapter we use G as

the square of G1 (or G2).

Lemma 6. Let G = H2 for g(H) = 5, then NH(1) = {7, 11, 12}.

Proof. We show this in the following four steps:

I 1
H∼ 12: Assume otherwise and let 1

H� 12, now since 1
G∼ 12 then
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4.2 Graphs with Many Non-Isomorphic Square Roots of Girth Five 4

NH(1) ⊆ (NG(12) ∩ NG(1)) = {11, 7, 2, 3}. In other hand we have

11
G∼ 7, 2

G∼ 3 but non of 11 or 7 is not adjacent to any of 2 and 3,

therefore either NH(1) ⊆ {2, 3} or NH(1) ⊆ {7, 11}. If NH(1) ⊆ {2, 3}

then we have a contradiction with 11 ∈ NG(1), and if NH(1) ⊆ {7, 11}

we again have a contradiction with 2 ∈ NG(1), this implies 1
H∼ 12.

II 1
H∼ 11: Assume otherwise and let 1

H� 11, now since 1
G∼ 11 then

NH(1) ⊆ (NG(11) ∩NG(1)) = {7, 5, 12, 13, 14}. But according to part

I, we know that 1
H∼ 12, therefore NH(1) ⊆ {7, 12}, and this is a

contradiction because non of 12 and 7 are not adjacent to 14 in G, so it

implies 1
H∼ 11.

III 1
H∼ 7: Assume otherwise and let 1

H� 7, now since 1
G∼ 7 then NH(1) ⊆

(NG(7)∩NG(1)) = {5, 11, 12, 13}. Again according to part I and II,1 H∼

11, 12, therefore NH(1) = {11, 12}. Here we have two possibilities, either

7
H∼ 11 or 7

H∼ 12. If 7
H∼ 11, since 14

G� 12 then 14
H∼ 11 and this is a

contradiction since 7
G� 14. If 7

H∼ 12, since 2
G� 11 then 2

H∼ 12 and this

is a contradiction since 7
G� 2. So it implies 1

H∼ 7.

IV NH(1) = {7, 11, 12}: Since {7, 11, 12} is a maximal clique in G, and

{7, 11, 12} ⊆ NH(1) therefore NH(1) = {7, 11, 12}.

Theorem 9. Let G = H2 for g(H) = 5, then H is either isomorphic to G1

or to G2.
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Proof. According to Lemma 6 we have:

- NH(12) = {2, 3, 1}, since L1(2) = L1(3) = 12.

Also 14
H∼ 11 (because L1(14) = 11), but L1(5) = L1(13) = {7, 11}, hence we

have two possibilities:

I Case 1: 5
H∼ 11 and 13

H∼ 7:

- NH(7) = {1, 11}: trivial.

- NH(11) = {1, 5, 14}: trivial.

- NH(13) = NG(7)−NH(7)− {11, 12} = {5, 6, 16}: since 13 and 1

are the only neighbours of 7.

We now consider the set NG(13)−NH(13) = {1, 3, 8, 10, 11, 14, 15},

we have L13(3) = {16}, L13(8) = {6, 16}, L13(10) = {16}, L13(14) =

{5, 6, 16}, L13(15) = {5}, therefore:

- NH(5) = {13, 15, 11}, since 14
G∼ 11 (otherwise we have a cycle of

length four).

- NH(16) = {13, 3, 8, 10}, since 14
G� 3.

- NH(6) = {13, 14}, trivial.

We now consider the set NG(12)−NH(12) = {8, 9, 15, 16}, we have

L12(8) = L12(9) = L12(15) = L12(16) = {2, 3}, however we know

that 16
H∼ 3, 8:

- NH(2) = {12, 15, 8}, since 16
H∼ 8 (otherwise we have a cycle of

length four), and 9
H� 8.
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- NH(3) = {12, 9, 16}, trivial.

- NH(15) = {2, 4, 5, 9}, considering NG(5)−NH(5) and refining the

known neighbours.

- NH(14) = {4, 6, 8, 11}, similar argument to vertex 15, considering

the vertex 11.

- NH(4) = {10, 14, 15}, similar argument to vertex 15, considering

the vertex 15.

- NH(8) = {2, 14, 16}, trivial.

- NH(9) = {3, 15}, trivial.

- NH(10) = {4, 16}, trivial.

It can be seen that the above graph is G1.

II Case 2: 5
H∼ 7 and 13

H∼ 11:

- NH(7) = {1, 5}: trivial.

- NH(11) = {1, 13, 14}: trivial.

- NH(5) = NG(7) − NH(7) − {1, 7} = {6, 7, 13, 16}: since 5 and 1

are the only neighbours of 7.

We now consider the set NG(5) − NH(5) = {1, 2, 4, 9, 11, 14, 15},

we have L5(2) = {16}, L5(4) = {6, 16}, L5(9) = {16}, L5(14) =

{6, 13, 16}, L5(15) = {13}, therefore:

- NH(13) = {5, 11, 15}, since 14
G∼ 11 (otherwise we have a cycle of

length three).
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- NH(16) = {2, 4, 5, 9}, since 14
G� 9, and also 4

G� 13 but 4
G∼ 11,

therefore 4
H� 6.

- NH(6) = {5, 14}, trivial. We now consider the set NG(12) −

NH(12) = {8, 9, 15, 16}, we have L12(8) = L12(9) = L12(15) =

L12(16) = {2, 3}, however we know that 16
H∼ 3, 8:

- NH(2) = {12, 15, 8}, since 16
H∼ 8 (otherwise we have a cycle of

length four), and 9
H� 8.

- NH(3) = {12, 9, 16}, trivial.

- NH(15) = {3, 8, 10, 13}, considering NG(5)−NH(5) and refining

the known neighbours.

- NH(14) = {4, 6, 8, 11}, similar argument to vertex 15, considering

the vertex 11.

- NH(4) = {10, 14, 16}, similar argument to vertex 15, considering

the vertex 15.

- NH(8) = {2, 14, 15}, trivial.

- NH(9) = {3, 16}, trivial.

- NH(10) = {4, 15}, trivial.

It can be seen that the above graph is G2.

So H is either isomorphic to G1 or G2.
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4.3 Square of graphs with girth five

In this section we show that the following problem is NP-complete.

Square of Graphs With Girth Five

Instance A graph G.

Question: Does there exists a graph H with girth at least 5 such

that G = H2?

It is an easy observation that Square of Graphs With Girth Five is in

NP . We will reduce a variation of the “positive 1-in-3 SAT ” problem (which

is an NP-complete problem [32]) to Square of Graphs With Girth Five.

Positive 1-in-3 SAT is a variant of the 3-satisfiability problem (3SAT). Like

3SAT, the input instance is a collection of clauses, where each clause is the

disjunction of exactly three literals, and each literal is just a variable (there

are no negations, which is why it is called positive). The positive 1-in-3

3SAT problem is to determine whether there exists a truth assignment to the

variables so that each clause has exactly one true variable (and thus exactly

two false variables). In this thesis we are interested in another variation of the

positive 1-in-3 SAT, which we call Positive and Minimum Intersecting

1-in-3 SAT.
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Positive and Minimum Intersecting 1-in-3 SAT.
Instance: A collection of clauses, where each clause is the disjunc-

tion of exactly three variables and two different clauses

are sharing at most one variable.

Question: Does there exists a truth assignment to the variables so

that each clause has exactly one true variable?

Theorem 10. Positive and Minimum Intersecting 1-in-3 SAT is

NP-complete.

Proof. It is trivial that this problem is in NP. We reduce an instance of a

Positive 1-in-3 SAT to a Positive and Minimum Intersecting 1-in-3

SAT. Let φ be a given collection of clauses as an instance of the positive

1-in-3 SAT.

For each pair of clauses c : (x ∨ y ∨ z) and d : (x ∨ y ∨ u) in φ, that

are sharing two variables x and y, we know u and v must have the same

truth value. So we may identify the two variables and thus replace v with

u and remove the clause d. We construct φ′ from φ by removing one of the

clauses in each pair of clauses that are sharing two variable. Therefore φ′ is

an instance of Positive and Minimum Intersecting 1-in-3 SAT. This

reduction shows that Positive and Minimum Intersecting 1-in-3 SAT

is NP-complete.

In this section we reduce the Positive and Minimum Intersecting

1-in-3 SAT to Square of Graphs With Girth Five.
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4.3.1 The Reduction

Before introducing the reduction in full detail, we present three main ideas

of the graph construction that we will explain below. For convenience, we

represent ∀a ∈ A : v ∼ a by v ∼ A, and also {xa, ya, za, . . .} by {x, y, z, . . .}a.

First is the idea of using graph G to represent each copy of a variable. As

we proved in Appendix A, a square root of G is a graph which is isomorphic

to either G1 or G2.

We set G1 to represent the FALSE value and G2 to represent the TRUE

value. If the square root of the subgraph that is representing a copy of a

variable x is isomorphic to G1 we conclude that x is FALSE. Otherwise, that

is if it is isomorphic to G2, we conclude that x is TRUE.

The second idea is to represent a clause ci = xi ∨ yi ∨ zi in such a way

that exactly one of xi, yi and zi is true (i.e., exactly one of the subgraphs that

are representing the three variables is isomorphic to G2 and the other two are

isomorphic to G1). For this, for each clause ci we introduce four new vertices

yi1, . . . , y
i
4 to construct a Petersen graph in the square root (that is a K10 in

the square graph) using vertices 5 and 13 in the three subgraphs representing

the copies of variables in ci. This construction is illustrated in Figure 4.9.

Lemma 7. The square of the graph shown in Figure 4.9 has three different

(up to labelling) square roots. The other two square roots can be obtained by

switching G1s with G2s. However, it has a unique square root of girth 5 up to

isomorphism.
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Figure 4.9: Structure of a subgraph of the square root which represents a
clause.

Proof. Let C be the square of the graph shown in Figure 4.9 on X ∪Y ∪Z ∪ I

where X = {1, 2, . . . , 16}xi , Y = {1, 2, . . . , 16}yi , Z = {1, 2, . . . , 16}zi and

I = {yi1, . . . , yi4}. Also let D to be a square root of C. Graphs constructed

by switching G1s with G2s. The isomorphism of these three graphs can be

obtained by a permutation on I.

For example, assume that D[X] ∼= D[Y ] ∼= G1 and D[Z] ∼= G2. Then the

graph obtained by the permutation yi1 ↔ yi3 and yi2 ↔ yi4 has the same square

as the graph shown in Figure 4.9.

By Theorem 9, the square root of the subgraph induced by X, Y or Z is either

G1 or G2. Now consider the neighbourhoods of vertices 5 and 13. We have

NG1 [5] = NG2 [13] = {5, 13, 11, 15} and NG1 [13] = NG2 [5] = {5, 13, 6, 7, 16}. It
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can be seen that if none or more than one of the square roots of the subgraph

induced by X, Y or Z is isomorphic to G2, then there would be no permutation

on I, that form the same square as the graph shown in Figure 4.9.

The third idea is to make sure that different copies of the same variable

have the same truth value. Again we use the fact that NG1 [5] = NG2 [13] =

{5, 13, 11, 15} and NG1 [13] = NG2 [5] = {5, 13, 6, 7, 16}. Let xi and xj be two

copies of the same variable in two different clauses ci and cj . We introduce two

new vertices called vxi,xj and wxi,xj which form a C6 in the square root together

with the vertices 5 and 13 in the subgraphs corresponding to xi and xj. If

both xi and xj are TRUE then vxi,xj ∼ {13xi , 13xj} and wxi,xj ∼ {5xi , 5xj},

otherwise wxi,xj ∼ {13xi , 13xj} and vxi,xj ∼ {5xi , 5xj}. This construction is

shown in Figure 4.10. Moreover we have the following Lemma.

Figure 4.10: Different copies of a variable have the same truth value.
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Lemma 8. Let X be the square of the graph shown in Figure 4.10 on the

vertex set of X i ∪Xj ∪ {vxi,xj , wxi,xj} where X i = {1, 2, . . . , 16}xi and Xj =

{1, 2, . . . , 16}xj . Let X2 = X. If X[X i] ∼= G1 (or G2) then X[Xj] ∼= G1 (or G2).

Proof. Assume otherwise and let (without loss of generality) X[X i] ∼= G1

while X[Xj] ∼= G2, hence vxi,xj must be adjacent to 5xi and 13xj which means

5xi
X∼ 13xj , and this is a contradiction as 5xi

X� 13xj .

Reduction Graph: Let φ : (c1∧c2∧· · ·∧cn) be an instance of Positive

and Minimum Intersecting 1-in-3 SAT such that ci = xi ∨ yi ∨ zi. As a

convention we use xi and xj to represent two copies of variable x in distinct

clauses ci and cj.

We construct an instance G = G(φ) and we show that there exists a square

root H of girth 5 of graph G that corresponds to a satisfying assignment of φ.

The vertex set of graph G(φ) consists of:

• For every copy xi of variable x, Vxi = VG1(= VG2) = {1, 2, . . . , 16}xi ,

representing 16 vertices of a graph G.

• For each clause ci, Vi = {yi1, yi2, yi3, yi4}.

• Wxi,xj = {vxi,xj , wxi,xj}, corresponding to two copies xi and xj of the

same variable x, in two distinct clauses ci and cj.

The edge set of G(φ) consists of:

• Variable edges: for each xi, G[Vxi ] = G.
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• Clause edges: For each clause ci = xi ∨ yi ∨ zi

G[{5xi , 13xi , 5yi , 13yi , 5zi , 13zi , y
i
1, y

i
2, y

i
3, y

i
4}] ∼= K10, i.e., they are all

adjacent to each other. Also by recalling that NG1 [5] = NG2 [13] =

{5, 13, 11, 15} and NG1 [13] = NG2 [5] = {5, 13, 6, 7, 16}, we have:

yi1 ∼ {11xi , 15xi , 6yi , 7yi , 16yi , 11zi , 15zi},

yi2 ∼ {6xi , 7xi , 16xi , 11yi , 15yi , 11zi , 15zi},

yi3 ∼ {6xi , 7xi , 16xi , 6yi , 7yi , 16yi , 6zi , 7zi , 16zi},

yi4 ∼ {11xi , 15xi , 6yi , 7yi , 16yi , 6zi , 7zi , 16zi}, see Figure 4.11.

Figure 4.11: A subgraph of G(φ) corresponding to a clause.

• Intra clause edges: for each clause ci = xi ∨ yi ∨ zi where i /∈ {j, k,m}:

yi1 ∼ {vxi,xj , wyi,yk , vzi,zm},

yi2 ∼ {wxi,xj , vyi,yk , vzi,zm},

yi3 ∼ {wxi,xj , wyi,yk , wzi,zm},
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yi4 ∼ {vxi,xj , vyi,yk , wzi,zm}.

Notice that we may have only a subset of these edges depending on the

existence of xj (the copy of variable x in cj), yk (the copy of variable y

in ck) and zm (the copy of variable z in cm).

• Edges for different copies of a variable: for each arbitrary pair xi and

xj which are different copies of the same variable,

vxi,xj ∼ {13xi , 13xj , 5xi , 5xj},

vxi,xj ∼ {11xi , 15xi , 11xj , 15xj},

wxi,xj ∼ {13xi , 13xj , 5xi , 5xj},

wxi,xj ∼ {6xi , 7xi , 16xi , 6xj , 7xj , 16xj}, see Figure 4.12.

Figure 4.12: A subgraph of G(φ) corresponding to the clause ci = xi ∨ yi ∨ zi.
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• Edges of variable copies:

for an arbitrary variable x and all i 6= j and k 6= l, we have wxi,xj ∼ wxk,xl

and vxi,xj ∼ vxk,xl .

It is an easy observation to see that G(φ) can be constructed from φ in

polynomial time.

Lemma 9. There exists a truth assignment to variables in instance φ of

POSITIVE AND MINIMUM INTERSECTING 1-in-3 SAT that satisfies the

formula if and only if there exists a graph H of girth five such that G(φ) = H2.

Proof. • Satisfiability to squareness:

- H construction: we construct the graph H by using a satisfying

assignment of φ as follows:

∗ For all i such that there exists a clause ci where xi ∈ ci,

H[{1, 2, . . . , 16}xi ] = G2 if x is true and H[{1, 2, . . . , 16}xi ] =

G1 if x is false.

∗ For each pair of xi and xj where i 6= j if x is true then

vxi,xj
H∼ {13xi , 13xj} and wxi,xj

H∼ {5xi , 5xj}. Otherwise, that

is if x is false, wxi,xj
H∼ {13xi , 13xj} and vxi,xj

H∼ {5xi , 5xj}.

∗ For each clause ci = xi ∨ yi ∨ zi:

if xi is true then

yi1
H∼ {13xi , 13yi , 5zi}, yi2

H∼ {5xi , 5yi , 5zi}, yi3
H∼ {5xi , 13yi , 13zi},
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yi4
H∼ {13xi , 5yi , 13zi}.

if yi is true then

yi1
H∼ {5xi , 5yi , 5zi}, yi2

H∼ {13xi , 13yi , 5zi}, yi3
H∼ {13xi , 5yi , 13zi},

yi4
H∼ {5xi , 13yi , 13zi}.

if zi is true then

yi1
H∼ {5xi , 13yi , 13zi}, yi2

H∼ {13xi , 5yi , 13zi}, yi3
H∼ {13xi , 13yi , 5zi},

yi4
H∼ {5xi , 5yi , 5zi}.

Recall that in all cases 10 vertices y1i , y2i , y3i , y4i , 5xi , 5yi , 5zi ,

13xi , 13yi and 13zi form a Petersen graph in H.

- H2 = G(φ): trivial.

• Squareness to satisfiability:

Let H be a square root of G(φ). By Theorem 9, graph H[Vxi ] (for each

copy of an arbitrary x) is isomorphic either to G1 or G2. We set x to

be true when H[Vxi ]
∼= G2 and false otherwise. By Lemma 8 all other

copies of x would also have the same truth value. By Lemma 7 this

assignment is a truth assignment to φ since exactly one variable in each

clause is evaluated as true.

As an example let φ : c1∧c2∧c3 and c1 = x1∨y1∨z1, c2 = x2∨u2∨v2 and

55



4.3 Square of graphs with girth five 4

c3 = y3 ∨ a3 ∨ b3, where x = b = TRUE and y = z = u = a = v = FALSE.

The graph shown in Figure 4.13 is the square root of G(φ).

Figure 4.13: An example of H.

Theorem 11. Square of Graphs With Girth Five is NP-complete.

Theorem 12 (The Complete Dichotomy Theorem). Square of Graphs

With Girth g is NP-complete if and only if g ≤ 5.
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Chapter 5
Conclusion

We proved that Square of Graphs With Girth Five is NP-complete.

Together with results provided by Motwani and Sudan [23] and Farzad et

al. [11], we presented Theorem 12 as a complete dichotomy theorem for the

square root finding problem. We also found an efficient algorithm when the

square root has girth five but excludes specific dense subgraphs. With respect

to uniqueness of the square root, we present graphs that have exponentially

many square roots of girth five.

To continue this line of research one may follow some natural extensions

of the problem. Bound the number of non-isomorphic square roots with girth

5 for a given graph based on n (size of the graph). We showed that there are

graphs with many non-isomorphic square roots with girth five. A bound on

the number of non-isomorphic square roots can be useful to determine if there

exists an efficient algorithm for root finding in specific graphs. Such bound
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can be beneficial to answer the problem of finding a square root for K572+1.

However the problem of square root finding for graphs can be defined for

higher roots.

kth Power of a Graph With Girth r

Instance: A graph G.

Question: Does there exists a graph H with girth at least r such

that G = Hk.

The problem of root finding for higher root is an open problem in terms

of the rth-root of the power graph. Results provided by Adamaszek and

Adamaszek [2] is the closest result to a complete girth-parametrized complexity

dichotomy. They proved that the recognition problem of kthPower of a

Graph With Girth r is NP-complete when r = k while there is a polynomial

time algorithm to find all kth-roots of girth 2k + 3 for a given graph.

The problem of finding a complete girth-parametrized complexity di-

chotomy for kthPower of a Graph With Girth r is open and we conjec-

tured the following:

Conjecture 1. kthPower of a Graph With Girth r for r = 2k + 1 is

NP-complete.

Another area of interest in this research is the cross field work of root

finding and the study of testing graph algorithms. As we advance further

in the the study of efficient computing, we would face different variations

of "efficiency" for algorithms. For example see [25] for a different definition
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of an algorithm. Usually, efficiency is represented with a polynomial time

complexity (with unrestricted access to the input). Recent definitions of

efficiency are stricter in time as well as the access to the input. In new

frameworks we have to answer a decision problem by using a constant number

of calls to little pieces (ideally random) of our input. Such probabilistic

algorithms are called testing algorithms. Testing algorithms in Graph Theory

is called Graph Testing, and is one of the main source of interests in this area.

Locality in Graph Algorithms is a new approach in graph testing. Roughly

speaking, the problem of locality is as follows. In a distributed network

(without shared memory), processors are exchanging their messages. Since

sending messages to far away nodes is expensive, computation should be based

on local information as much as possible, i.e. every vertex is only sending

messages to its neighbours. There are many amazing properties of a graph

that an algorithm can decide by using only local informations, but also there

are some challenging questions. The question is for what properties of the

graph can locality be achieved?

Results in root finding can be extended to the study of locality in dis-

tributed graphs, as these two concepts are fundamentally connected. In

particular root finding can be a useful test to decide the properties that can

or can not be solved by using local information of graphs. Our approach is

intuitively applicable in basic results of locality as we restate some results in

locality. A basic interconnection is the NP-completeness of deciding (with

local information) whether a graph contains a square or not, which can be
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restated using the NP-completeness of "recognition of square of graphs with

girth four".
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Appendix A

Input: A graph G, a vertex v ∈ VG and a subset U ⊆ NG(v).

Output: A graph H of girth more than six with H2 = G and NH(v) = U

or else ‘NO’ if such a square root H of G does not exist.

1 Add all edges vu, u ∈ U , to EH

2 Q← ∅

3 for all u ∈ U do

4 enqueue u onto Q

5 parent(u)← v

6 while Q is not empty do

8 u← dequeue(Q)

9 set W := NG(u) ∩
(
NG(parent(u)) \NH(parent(u))

)
10 for each w ∈ W do

11 add uw to EH

12 if parent(w) = ∅ then:

13 parent(w)← u

14 enqueue(Q,w)

15 else

16 return(NO)
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Input: A graph G, a vertex v and a neighbourhood U = NG(v)

Output: H =
√
G such that H ∈ H1 with

NH(v) = U or else NO if such square root does not exists.

1 Add all edges vu, u ∈ U , to EH :

2 for all u ∈ U do

3 enqueue u onto Q

4 parent(u)← v

5 while Q is not empty do

6 u← Q.dequeue()

7 set v :=parent(u)

8 for all x ∈ (NG(v)−NH(v)) ∩NG(u) do

9 enqueue x onto S

10 while S is not empty do

11 x← S.dequeue()

12 if parent(x)6= ∅ then:

13 set Lv(x) = NG(x) ∩NH(v)

14 if |Lv(x)| = 1 then:

15 set u := parent(x)

16 EH := EH ∪ {ux}
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17 else then:

18 set y ∈ (NG(u)−NG(u′) ∩ (NG(v)−NH(v)))

19 if yx ∈ EG then:

20 set u := parent(x)

21 EH := EH ∪ {ux}

22 else then:

23 set u′ = parent(x)

24 EH := EH ∪ {u′x}

25 enqueue(Q, x)

26 if G = H2 then

27 return(H)

28 else

29 return(NO)
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Input: A graph G, a vertex v and a neighbourhood U = NG(v)

Output: H =
√
G such that H ∈ H1 with

NH(v) = U or else NO if such square root does not exists.

1 Add all edges vu, u ∈ U , to EH :

2 for all u ∈ U do

3 enqueue u onto Q

4 parent(u)← v

5 while Q is not empty do

6 u← Q.dequeue()

7 set v :=parent(u)

8 for all x ∈ (NG(v)−NH(v)) ∩NG(u) do

9 enqueue x onto S

10 while S is not empty do

11 x← S.dequeue()

12 if parent(x)6= ∅ then:

13 set Lv(x) = NG(x) ∩NH(v)

14 if |Lv(x)| = 1 then:

15 set u := parent(x)

16 EH := EH ∪ {ux}
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17 else, if |Lv(x)| = 3 then:

18 set W := {y ∈ NG(v)−NH(v)|

Lv(x) ∩ Lv(y)| ≥ 2}

19 set w :=
⋂
y∈W Lv(y)

20 set w := parent(x)

21 EH := EH ∪ {wx}

22 for all y ∈ W do

23 set h := Lv(y)− {w}

24 set h := parent(y)

25 EH := EH ∪ {hy}

26 else, if |Lv(x)| = 2 then:

27 set y ∈ (NG(u)−NG(u′) ∩ (NG(v)−NH(v)))

28 if yx ∈ EG then:

29 set u := parent(x)

30 EH := EH ∪ {ux}

31 else then:

32 set u′ = parent(x)
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33 EH := EH ∪ {u′x}

34 enqueue(Q, x) .

35 if G = H2 then

36 return(H)

37 else

38 return(NO)
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