
 

 

 

 

 

 

“To describe the action of nerve as integrative is, although true, hardly sufficient for a 

definition.  If nature of an animal be accepted as being that of a whole presupposed by all 

its parts, then each and every part of the animal is integrative.” Sir Charles Sherrington 

 

 

Timing counts for everything.  Balance is at the centre of it all. 
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Abstract 

The human neuromuscular system is susceptible to changes within the thermal 

environment. Cold extrinsic temperatures can significantly reduce muscle and nervous 

system function and communication, which can have consequences for motor 

performance. A repeated measures design protocol exposed participants to a 12°C cold 

water immersion (CWI) up to the ankle, knee, and hip to determine the effect that 

reduced skin and muscle temperature had on balance and strength task execution. 

Although a linear reduction in the ability to perform balance tasks was seen from the 

control condition through to the hip CWI, results from the study indicated a significant 

reduction in dynamic balance (Star Excursion Balance Test reach distance) performance 

from only the hip CWI (P<0.05). This reduced performance could have been due to an 

increase in joint stiffness, increased agonist-antagonist co-contraction, and/or reduced 

isokinetic muscular strength. Reduced physical performance due to cold temperature 

could negatively impact outdoor recreational athletics.  
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Introduction 

Dynamic postural control is of fundamental importance in recreational sports 

where both internal and external perturbations can elicit severe challenge to an 

individual’s equilibrium.  Dynamic balance not only requires that an individual has 

sufficient muscular strength and a well-functioning visual and vestibular systems but a 

strong somatosensory system as well (89).  The somatosensory system is integrated 

within the body’s neuromuscular network, and includes muscle spindle and other various 

mechanoreceptors such as Pacinian corpuscles that assist in touch discrimination, 

muscular coordination and contraction to help the body remain upright.  It is also the 

somatosensory system that can be influenced by environmental conditions, most notably 

cold temperatures, which can disrupt muscle and nerve communication (150).  For 

example, direct cooling of skeletal muscle seems to result in a drop in muscle spindle 

firing rates, which can lead to abnormal levels of muscle tension (35).  This phenomenon, 

in addition to decreases in nerve conduction velocity (150), may result in an impaired 

ability to remain balanced and to generate vigorous muscular contractions with the lower 

extremities in athletic endeavours.  This may make injuries more likely.  For instance, a 

greater amount of knee injuries occur in female alpine skiers when ambient temperatures 

are relatively cold (125). 

The lower extremities are comprised of a complex network of muscle, joints, 

bones, nerves and other anatomical structures which operate synergistically to produce 

muscular force and assist in posture, propulsion and balance.  The lower extremities also 

act as a shell to insulate the body’s vital organs from cold ambient temperature (76).  

Therefore, it is often the case that when the body is exposed to a cold medium that leg 
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temperature becomes highly susceptible to a reduction compared to other bodily regions.  

Subsequently the muscles and somatosensory organs housed within the legs are at 

increased risk to be influenced by the cold.  Due to the complexity and temperature 

reactivity of the lower extremities it is important to understand how they respond and 

adapt to fluctuating localized temperature.         

Cold temperature’s effect on the somatosensory system has been well documented 

with respect to general physiological changes (4, 35, 39), balance (95, 121, 138), and 

muscular strength (131, 25, 26, 27).  For example, it has been shown that postural sway 

during standing increases with cold exposure (95), and antagonist muscle activity follows 

a negative, linear correlation with localized drops in muscle temperature (111).  When it 

comes to dynamic balance and muscle strength research with respect to cold exposure, 

the research tends to focus on one specific joint (i.e., ankle or knee) and/or one specific 

muscle group (i.e., quadriceps femoris) (144, 149, 121) and narrow in on either elite 

athletic populations or those with limited balance (104, 27).  What has been less 

researched is the fundamental effect that cold poses to the lower limbs of the recreational 

athlete with regards to challenging dynamic balance tasks in the anterior-posterior 

direction.  Additionally, the idea that different lower limb segments, and their associated 

joints, may be more or less of an influencing factor on dynamic balance when cooled 

down has not been published.  For instance, the plantar aspect of the foot is populated by 

a greater density of pressure sensitive mechanoreceptors than similar skin surface areas 

on the shank or thigh (142).  This may mean that cooling down just the foot could reduce 

relative dynamic balance to a greater extent than if a larger volume of the lower limb is 

cooled down.  Conversely, dynamic balance relies on muscular strength.  The quadriceps 
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and hamstrings, without consideration of lever class at joints, can produce a greater 

magnitude of muscular force comparatively to the muscles of the shank and foot.  This 

may mean that cooling down the thigh may have a greater relative contribution to 

dynamic balance performance than if just the foot was cooled alone.  It is the proposed 

research within this document that hopes to establish if these relationships exist. 

Literature Review 

Overview: 

The dynamic thermal relationship that exists between the human body and the 

external environment generates deviations in physical performance.  The human body can 

be subdivided into systems, each which are more or less susceptible to thermal variation. 

One of these systems within the body that is extremely sensitive to temperature changes 

is the neuromuscular system (NMS).  Reviews by Rutkove (129), Oksa (114), and 

Racinais and Oksa (123) highlight the various components of the NMS that seem to be 

adversely affected by swings in temperature.  These authors deal specifically with 

ambient temperatures that create reductions in both skin, muscle and, at times, core 

temperature.  In relation to reductions in skin, muscle and core temperature often a linear 

correlation is observed with regards to NMS performance issues.  For example, balance 

(95) and dynamic strength (30) show direct relationships to muscle temperature changes 

while isometric, submaximal muscular endurance can be inversely influenced from 

temperature drops (145).  Ultimately, as body temperature moves farther away from its 

ideal temperature range negative repercussions relating to muscle function will become 

manifest.  
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It is often taken for granted how balance and strength are integral to daily living.  

It is not until these kinesthetic attributes are tested to their limits, for example, during 

outdoor, athletic endeavours where the motor tasks can be more demanding and further 

confounded by the physical, and specifically thermal, environment that the integrative 

and complex nature of the NMS becomes most apparent.  This is exemplified by the 

lower extremities which are of obvious importance to the execution of motor tasks 

associated with outdoor recreational athletics like skiing and kiteboarding.  As a result of 

thermoregulatory mechanisms, localized leg temperature is often reduced when exposed 

to cold mediums.  This could have the effect of reducing one’s performance during leg 

intensive and thermally challenging activities.  This review will summarize the research 

that has been done on cold exposure with regards to human balance and muscular 

strength with a focus on the lower limb and peripheral NMS mechanisms.  

Neuromechanics and anatomy of the lower extremities: 

Anatomy of the lower extremities: 

 The lower extremities are comprised of approximately 33 bones from the ischium 

to the first distal phalanx of the foot, and 49 muscles per limb, with the vast majority of 

cutaneous and muscular nerve supply stemming from the lumbar and sacral plexuses.  

The lower extremities provide a means of locomotion, and assist in maintenance of 

balance through bone structure, somatosensory detection and the voluntary contraction of 

skeletal muscle.  Depending on the location and attachment sites to bone, each muscle 

provides a specific action (See appendix D).  The following paragraphs will provide a 

brief description of the anatomical and neuromechanical characteristics that revolve 
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around the hip, knee and ankle joints and their importance to athletic activities, 

specifically squatting mechanics which are integral to many forms of athletics.  

Hip: 

The hip is a fusion of three bones: the ischium, illium and pubis.  The hip joint 

itself is created by the integration of these three bones that form the acetabulum which 

accepts the head of the femur or thigh bone.  The hip joint allows for three degrees of 

freedom in sagittal, frontal and transverse planes (55) and yet still maintains a highly 

stable structure. 

In a bipedal stance, the hip joint is stabilized through gravity, which presses the 

femoral head against the acetabulum (132).  During two-legged posture, at rest, each hip 

is loaded with approximately one-third to one-half body weight (96).  This load increases 

to two-to-four times body weight when standing on one leg (69).  This could be due to 

both an increase in the physical weight that the single hip is required to bear and also the 

increased contraction of the surrounding musculature.  During more dynamic movement 

the hip is subjected to forces from gravity, ground reaction force, increased muscle 

contraction and body segment accelerations (55).  Therefore, one-legged dynamic tasks, 

such as one-legged squatting provide the greatest challenge to the structure of the hip.   

Almost 2 dozen muscles act about the hip to cause hip flexion, extension, 

adduction, abduction, internal and external rotation.  The gluteus muscles and adductors, 

which will be discussed here, as well as the biarticular muscles of the thigh, which will be 

discussed later under the knee sub-section, contribute to the structure and mobility of the 

hip joint.  Within a squat, as the knees and hips flex, the gluteus maximus is recruited to 

control descent and contribute to ascent (127).  As a squat approaches and passes 90° of 
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knee flexion the gluteus maximus recruitment is at its greatest to compensate for a 

mechanically disadvantaged (shortened) hamstrings muscle group (55).  Where gluteus 

maximus tends to act as a prime mover during the squat movment, it is the gluteus 

medius and adductor longus which act more to stabilize to torso, especially during one-

legged stance.  During one-legged squats and other unipedal athletic stances the gluteus 

medius is activated to a greater extent than during two-legged squats and athletic postures 

(100).  McCurdy and colleagues state that the reason for this increased activation of 

gluteus medius during one-legged squats is to prevent lateral pelvic drop (100).  As for 

adductor activity during athletic posture and exercises, a moderate level of activity (25% 

of a maximal voluntary contraction or MVC) was observed by a research group for the 

adductor longus muscle during a lunge, single-leg squat and step-up (15).  They 

concluded that similar to gluteus medius, the adductor longus group acted in a stabilizer 

role during the three different lower extremity exercises to control pelvic movement in 

the frontal plane.  Therefore, dependant on attachment points, muscles of the hip act 

either as prime movers, synergists or stabilizers to control lower extremity actions with 

increased stabilization required for more complex dynamic tasks.  

Knee: 

The knee joint is comprised of interacting bony surfaces of the femur, tibia, fibula 

and patella.  The three main articulations to the knee joint include the tibiofemoral joint, 

patellofemoral joint and suprerior tibiofibular joint (147).  It is usually the tibiofemoral 

joint that most recognize as the knee joint, although it is all three joints which act to 

create a modified hinge-like joint (55).  It is this same integration of joints which allows 

for the two degrees of freedom of the knee through flexion/extension and axial rotation 
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(101).  The association of bones which creates the knee joint also renders it unstable and 

therefore requires support from a network of ligaments and muscles to maintain its 

structure (55). 

During isotonic squats the knee joint is exposed, through both the tibiofemoral 

and patellofemoral joints, to forces which can compromise knee integrity.  These forces 

that cause compression are the same as experienced at the hip.  It was found that both 

tibiofemoral and patellofemoral compression forces were at their maximum when 

participants were close to the end of and start to the lowering and lifting phase of the 

squat (37).  This is most likely due to the resistance from posterior cruciate ligamentous 

support and contraction of the surrounding musculature to prevent excessive anterior 

tibial translation with respect to the femur (37).   

Primary movers for knee flexion include biceps femoris, semitendinosus, 

semimembranosus and assisted by gastrocnemius while knee extension is generated 

through rectus femoris and the vasti muscles (55).  Axial rotation in the form of 

supination is controlled by biceps femoris and pronation is controlled by gracilis, 

popliteus, sartorius, semitendinosus and semimembranosus (55).  During isotonic squats, 

regardless of extra weight or bodyweight alone, where both hip, knee and ankle are in 

varying degrees of flexion and extension it is the vasti muscles which are more active in 

relation to the biarticular rectus as well as all other lower extremity muscles (37, 71).  For 

example, the hamstrings activate during the lowering phase of the squat to control 

descent and prevent anterior tibial translation (37).  Hamstring activity only achieves a 

relatively low level of activity (~4-20% MVC) and does not become much more active 

until the lifting phase of the squat to assist in hip extension and knee extension (37, 71).  
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However, with one-legged squats, the decreased base of support (BOS) increases 

neuromuscular demand and as a result increases the quadriceps:hamstring co-activation 

ratio closer to 1:1 (1.67:1) (100).  It could be that the biceps femoris activity is increased 

during one-legged lower body exercise to resist knee internal rotation moments by 

producing knee external rotation (10).      

Ankle: 

The ankle and foot consist of 26 irregular shaped bones and motion is controlled 

across 30 synovial joints by 23 muscles (55).  The majority of motion at the foot and 

ankle occurs at three synovial joints: the talocrural, midtarsal and subtalar joints (102).  

Due to the multitude of joints there are many degrees of freedom that the ankle and foot 

are capable of.  The talocrural joint provides a great deal of stability to the ankle joint due 

to its shape which permits ankle plantar and dorsiflexion (55).  The subtalar joint, located 

just distal to the talocrural joint, allows for foot pronation (eversion, abduction and 

dorsiflexion) and supination (inversion, adduction and plantarflexion) (55).  During squat 

exercises, the ankle joint permits dorsiflexion to reach up to 40° to allow for movement at 

the knee and hip to remain balanced (55).  The ankle must withstand the great majority of 

the body’s weight while still allowing for unencumbered movement.  This is in part 

accomplished by the coordination of the largest muscles crossing the ankle 

(gastrocnemius and soleus) which are positioned in a way that they exhibit a 2
nd

 class 

lever characteristic that allows for a mechanical advantage to create plantarflexion (55). 

Muscles often researched with regards to muscle activity and ankle movement 

during squat tasks are the gastrocnemius, soleus and tibilalis anterior, which cross the 

talocrural joint on the posterior and anterior surfaces respectively.  During the deepest 
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part of the squat descent and early ascent, tibialis anterior and soleus/gastrocnemius co-

activation is at its greatest (127).  This co-activation could be a result of the tibialis 

anterior activating to a greater degree to assist in a posterior shift in centre of pressure 

(COP) (45), or point location of the vertical ground reaction force (151), while the 

gastrocnemius and soleus help to control the eccentric descent.  Throughout the rest of 

the squat the tibialis anterior, soleus and gastrocnemius remain relatively silent (127).  A 

search on one-legged squats and muscle activation of the leg muscles revealed no results.  

It might be possible that in a one-legged stance and squat, with the increased 

neuromuscular challenge, there would be an increased co-activation of the tibialis 

anterior and triceps surae similar to the increase seen between the knee flexors and 

extensors (100).   

Kinetic/Kinematic Chains: 

The hip, knee and ankle joints are subjected to tremendous forces during dynamic 

athletic activity from a variety of sources.  It is therefore imperative that optimal joint 

mechanics is achieved through neuromuscular control to ensure that injury risk is 

minimized.  Just as the neural network is an integrated entity so too are the skeletal 

muscles.  The muscles and joints of the lower extremity create kinetic and kinematic 

chains (126), which can be defined by muscle-force relationships and additive joint 

degrees of freedom respectively (55).  Functionally this means that when operating either 

in an open chain, where the distal end of the appendage is free to move, or more-so in a 

closed chain movement, where the distal end of the extremity is in contact with the 

ground or another surface, one muscle or one joint will influence how other muscles and 

joints behave (140).  For instance biarticular muscles like the gastrocnemius, biceps 
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femoris and rectus femoris are capable of transferring mechanical energy from their own 

muscular contraction to other muscles within the lower extremities (127).  Additionally, 

during a squat, if the tibialis anterior is capable of controlling COP, which in turn can 

affect the body’s centre of gravity (COG), which is considered a vertical projection of a 

body’s centre of mass (COM) onto the ground (151), if the tibialis anterior were to 

contract and shift the COP posteriorly, this could affectively push the COG anteriorly and 

cause the knee extensor muscles to activate to a greater extent (80).  To try and better 

understand this example and other neuromechanical properties of the lower extremities it 

is imperative to have a good grasp of the how the skeletal muscles and peripheral nerves 

communicate within the body.       

Role, Physiology and Measurement of the Peripheral Neuromuscular System: 

Transmission of information to and from the muscles and somatosensory 

receptors occurs through the propagation of action potentials along the axons of sensory 

and motor nerve cells or neurons.  There can be as few as two neurons in a monosynaptic 

reflex or many neurons if a larger amount of the central nervous system (CNS) is 

involved (92).  Some of the most review relevant steps to neural communication will be 

outlined briefly and will be followed by a discussion on outcomes of neuromuscular 

control, how this control can be quantified and some of the important sensors within the 

neuromuscular network.      

Modality gated channels: 

Sensory receptors and their associated neurons within the lower extremities detect 

and transmit sensory information such as muscle stretch and tension, or superficial skin 

pressure and vibration.  Detection occurs through the function of modality gated ion 
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channels.  These specialized ion channels are sensitive to mechanical, chemical or 

thermal stimulation.  Upon detection of a change in one of these modalities the receptors 

are able to convert this natural form of information into a form (graded receptor 

potentials) suitable for the initiation of action potentials through the process of 

transduction  (13, 139).  Important to this thesis, further information will be provided on 

the specific mechanically and thermally sensitive receptors, or mechanoreceptors and 

thermoreceptors later on in this literature review.     

Action potential propagation: 

The lower extremities house some of the longest axons in the body which can 

span as far as the caudal region of the spine to the big toe.  Therefore, it is important that 

the transmission of signals be quick and efficient to allow for fluid control of the legs.  

The speed at which the signal propagates is termed the conduction velocity and is 

dependent on the diameter of the axon and whether myelination is present or not.  

Conduction velocity ranges from 1.7 m/sec/µm in diameter in unmyelinated axons to 

upwards of 6.0 m/sec/µm in diameter for the largest diameter, myelinated axons (70, 

146).  Most nerve fibres are myelinated, it is only some of the smaller diameter nerves 

which relay pain and temperature information that are not (139).  Although the peripheral 

nerves are resilient, in that they possess viscoelastic properties to stretch and bend with 

the movement of the limbs, they are sensitive to ambient temperature which can impair 

the speed at which they can transmit information (146, 129, 79).  This will be discussed 

later in the review.    

Once the afferent signal enters the spinal cord it is usually relayed through various 

interneurons, either at the spinal level or higher levels of the CNS which is beyond the 
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scope of this review.  Once the signal is relayed and processed by interneurons, if 

required, a signal is sent back to the effector organs to be turned into an action (muscular 

contraction, gland secretion) (139).  Neuromuscular coordination is required to maintain 

balance and exhibit strength.    

Somatic balance control components:  

Balance control is maintained through the use of visual, somatosensory and 

vestibular systems on effector organs (i.e. muscles).  Vision is utilized to plan out routes, 

avoid obstacles, and provide feedback on body orientation (151).  The vestibular system 

grants the body the ability to detect linear and angular accelerations through head 

movement (151).  Finally, the somatosensory system provides feedback to the CNS on 

limb and joint angle velocity, contact with the ground and other surfaces, and orientation 

of the body with respect to gravity (151).  Out of these three balance systems, it is the 

somatic senses, integrated within the NMS, that tend to be the most exposed and 

influenced by external temperature changes.  These somatic senses include muscle 

spindle activity (deep mechanoreceptor), superficial mechanoreceptor signaling, skeletal 

muscle coordination and joint-position sense.  

Muscle spindles: 

Goodwin and colleagues were one of the first research groups to begin to 

definitively understand the relationship between muscle spindle sense organs and 

“kinaesthesia”, a term often used synonymously with position sense and balance (44).  

Muscle spindles are characterized through their afferent nerve supply.  These afferents 

exist as both type Ia (annulospiral) and type II (flower-spray) afferent fibres that connect 

to bag and chain spindle fibres which relay and detect both rapid (phasic) and tonic, and 
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tonic only muscle stretch information respectively towards the CNS (44).  The actual 

muscle spindle sensors are fusiform capsules filled with viscous fluid and are situated 

within intrafusal skeletal muscle so that as muscle fibres elongate, the muscle spindles 

stretch as well, sending signals to elicit a stretch reflex (see figure 2.1, phasic depicted).  

The stretch reflex has been shown to be integral to joint position sense and coordination, 

and which is imperative for maintenance of balance (95).  It is known that the number of 

human muscle spindles increases with respect to the amount of muscle mass by a power 

law relationship in the form of y = 0.48x + 1.33 where y = spindle content and x = muscle 

mass (86).  With implications regarding the dynamic thermal environment of skeletal 

muscle discussed later it is hypothesized that muscle spindles exist in greater numbers in 

areas dominated by oxidative muscle fibres and high vascularity (86). 

 

Figure 2.1: Muscle spindle and phasic stretch reflex (adapted from (97)) 
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Superficial mechanoreceptors:  

Beyond the proprioceptive capacity of the muscle spindles for postural control, 

the exteroceptive mechanoreceptors are also critical to maintaining balance.  

Mechanoreceptors of the glabrous skin exist as both slow (Merkel cells and Ruffini 

endings) and fast (Pacinian corpuscles) adapting varieties to detect position, force, 

acceleration and velocity of indentation on the skin from the external environment (138).  

Hairy skin (non-glaborous) also possesses exteroceptive mechanoreceptors similar to 

their glaborous counterparts to detect localized pressure on the skin and nearby joint 

ambulation (33).  In regards to glabrous mechanoreceptors of the feet, many studies in the 

past had looked at these receptors with respect to balance, however, they had difficulty 

removing ankle joint proprioceptive organs from the equation with the exception of 

Nasher er al. (108), and Bloem et al. (14).  These researchers were able to isolate plantar 

surface mechanoreceptors of the feet by using clinical populations with reduced stretch 

reflexes at the ankle and knee.  A more recent study, Meyer et al., was able to eliminate 

other confounding variables and look solely at the effect of cutaneous, glabrous 

mechanoreceptors on balance (103).  Meyer found that these mechanoreceptors provided 

minimal assistance for postural support with eyes open in a stable stance (103).  However 

with a more challenging posture and with eyes closed the mechanoreceptors provided 

crucial feedback to the CNS for postural guidance (103).  Another study found evidence 

that the cutaneous receptors did not purely contribute to postural support but acted 

primarily to protect against high regional pressures (98).  Although it would seem that the 

feet mechanoreceptors would be the most significant contributors in the maintenance of 

upright posture it is also the non-glabrous mechanoreceptors of the thigh that help 

contribute to balance and proprioception.  Edin observed that specifically slow acting 
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receptors of the anterio-lateral thigh detected changes in knee joint angle and passive skin 

stretch (33).  The majority of evidence (108, 25, 103, 33) seems to indicate that 

superficial mechanoreceptors can assist with postural control.  

Muscular co-ordination: 

When a muscular contraction is performed by the agonist muscle, opposing, or 

antagonistic, muscle fibres are also activated to help control the movement.  This level of 

antagonist to agonist muscle activation ratio is always fluctuating and can be linked to 

several causes.  These causes include modifications to muscle spindle and Golgi tendon 

organ firing rates, motor learning of postural skills, or even the utilization of preferred 

motor unit recruitment strategies (41). As a way to quantify and compare opposing 

muscular contractions the agonist-to-antagonist muscle activity is often expressed as a 

ratio or co-activation index (CI) (41).  There are multiple methods to express CI (16, 38, 

41).  One method by Frost demonstrated that a greater overlapping surface area of linear 

enveloped electromyographic (EMG) activity of the agonist versus antagonist muscles 

equates to a greater numeric value within the CI.  This means that the higher the numeric 

value of CI the greater the amount of agonist-antagonist co-activation (41).  Greater 

amounts of co-activation can be beneficial in regards to joint stability, although during 

dynamic movement this co-activation can reduce joint torque, and economy of motion.  

The amount of agonist-antagonist co-activation can be linked to two different 

hypothetical modes of control (115).  First, an equilibrium-point control (EPC) 

hypothesis, where the body reacts through reflexive neural feedback mechanisms to 

maintain or achieve specific joint angles.  It is thought that the CNS establishes specific 

muscle lengths that must be met, otherwise an increase in tonic reflex organ (i.e. muscle 
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spindles) activity occurs to bring the muscle length back to the equilibrium point (24).  

This EPC hypothesis is used when learning new tasks or encountering new environments, 

which results in a greater amount of EMG activity generated (52).  Second, an internal 

control (IC) hypothesis is based upon the learning of motor tasks to establish novel 

synaptic neural pathways for unique movement patterns (12).  In other words the CNS 

governs muscle force to complete a task which has been previously learned.  This ‘top 

down’ control relies less on proprioceptive spring-like properties of skeletal muscle 

which, in turn, results in lower levels of viscoelastic muscular forces during movement 

(19).  These two modes of control correlate with the degree of motor learning.  This 

means that recreational, novice athletes might rely on their somatic senses, such as 

muscle spindles and Golgi tendon organs, or an EPC method.  Relying on an EPC 

method which could cause greater co-activation may allow for higher levels of protection 

at joints than professionals, who rely more on learned motor skills, or IC method, to 

allow for efficient movement and economical force production.  However, generally 

under thermoneutral conditions, in a closed-kinetic chain posture, it is likely both IC and 

EPC methods are used to varying degrees to maintain the relationship between lower 

limb agonist and antagonist muscle groups, which ensures that there is always some 

degree of muscular co-activation.  Opposing muscle groups, triceps surae and tibialis 

anterior, for example, work synergistically to keep joint locomotion of the ankle smooth, 

and efficient.  

Thixotropy: 

Interrelated with muscle spindle activity, skin stretch response, and muscle 

agonist-antagonist co-activation is the notion of thixotropic position sense.  Thixotropic 
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muscle behaviour was first noticed by researchers who observed that during muscular 

contraction the initial movement of the muscle appeared stiffer compared to later time 

points within the same contraction (61).  In general, thixotropy can be thought of as 

muscle stiffness variation as an effect of previous muscle contraction and length (122) 

and is based on Newtonian physics.  Physiologically, thixotrophy is derived from the 

contraction characteristics of both intra- and extrafusal muscle fibres (72).  For example, 

when myosin crossbridges are formed as the extrafusal muscle is in a shortened state 

there is a greater resistance to extrafusal muscle lengthening due to this myosin/actin 

affinity (122).  Thixotropy is also present within muscle spindle sense organs which are 

imbedded within the intrafusal muscle fibres.  Muscle spindle firing rates increase at the 

initiation of a voluntary contraction of their associated intrafusal muscle fibres (122).  

Immediately after a previous muscular contraction, a new contraction from the same 

muscle manifests an even greater initial burst from the muscle spindles than was 

witnessed during the preliminary contraction (122).  This is believed to be associated 

with previous contraction crossbridge linkages of the intrafusal muscle fibres, similar to 

their extrafusal counterparts, resisting the elongation or shortening of sarcomeres (122).  

For instance, when the biceps brachii is contracted at a shortened length (i.e. increased 

elbow joint flexion), this increases the amount of stiffness when the same muscle is 

subsequently lengthened and is linked to increased excitability or discharge rate of 1A 

afferent neurons that are connected to muscle spindles (54).  Thixotropy has implications 

for maintaining and returning to previous joint positions and must be accounted for by the 

NMS to ensure adequate joint control (5).  With thixotropic corrections applied, the 
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human body is able to remain in equilibrium even during dynamic postural disturbances 

where muscle length and tension are in constant change. 

The various receptors, muscle behaviours and information pathways within the 

NMS are one critical component that allows individuals to perform balance and strength 

tasks proficiently.  

Balance: 

Balance is the ability to maintain COM relative to the base of support (BOS).  

Balance can be subdivided into two main categories: static and dynamic balance.  Static 

balance refers to the ability to maintain COM within BOS in a stationary position while 

dynamic balance refers to the ability to maintain equilibrium while body segments are in 

motion.  Static and dynamic balance can be challenged further through the introduction of 

unstable surfaces, or external perturbations.  

Postural control, or the ability to remain in balance, can be quantified through the 

use of postural sway analysis, also known as posturography.  Posturography includes the 

use of force plate and EMG technologies to measure muscular coordination with relation 

to remaining in a balanced position (92).  This technique is often employed throughout 

posture oriented literature and provides a great deal of information about balance.  For 

example, an individual may change their COP, which corresponds to changes in muscle 

activity across the ankle which, in turn, allows the body to remain upright during both 

quiet standing and dynamic balance tasks.  For instance, an anterior shift in COP is a 

result of a greater activation of the lateral gastrocnemius while a posterior COP shift is 

generated by more EMG activity within the tibialis anterior (45).  These fluctuations in 

COP and EMG activity can help to keep an individual’s COM within their BOS and 
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therefore maintain balance.  There are also a great variety of field balance tests to 

measure one’s equilibrium in both dynamic and static postures.  A standard static balance 

test is the modified Romberg test, which challenges all components (vision, vestibular, 

somatosensory) of balance control (32).  One recently developed test for measuring 

dynamic balance is the Star Excursion Balance Test (SEBT).  This test involves the 

performance of a series of unilateral half-squats while attempting to reach with the 

opposite leg as far as possible in up to 8 different directions (32).  Increasing the reach 

distance is thought to require greater range of joint motion and neuromuscular control of 

the lower extremity, which equates to better dynamic balance (32).  The SEBT also 

provides a greater challenge for a healthy, athletic population compared to other dynamic 

balance tests that are more suited for geriatric or paediatric populations (51).  The SEBT 

is quick to administer, with a fast learning curve of only four practice trials needed before 

reliable measures can be recorded with strong repeatability (interclass coefficient (ICC: 

0.82 -0.94)) from session-to-session (105). In general, all balance tests ultimately help 

researchers and clinicians to better understand the way in which one or many components 

of balance control contribute to postural equilibrium. 

Muscular strength: 

 Generally speaking, muscular strength is directly equated with the ability to 

produce force.  Strength can be divided into three different domains: static (isometric), 

dynamic (isotonic, isokinetic) and ballistic (plyometric) strength (85).  Although there are 

many physiological aspects which contribute to strength, one of the most relevant to this 

literature review is the neurological component.  Skeletal muscle is comprised of both 

slow and fast twitch motor units.  These motor units are functional units comprised of 
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muscle fibres innervated by alpha efferent neurons that command the muscle fibres to 

contract either with slow, sustained twitch or a fast, strong burst (56).  Human muscle is 

roughly an equal percentage of fast and slow twitch motor units with some exceptions, 

such as the soleus, which tends to have a much greater amount of slow twitch units (77).  

Interestingly, and with significant consequences regarding muscle temperature, which 

will be discussed later, motor unit distribution, although in most cases is evenly 

represented within human muscle, tends to be found in varied proportions relative to 

depth.  Through observation of both post-mortem muscle cross-section (90) and EMG 

(84) it has been witnessed that fast twitch motor units are in greater abundance 

superficially, both within individual fascicles (20) and whole muscle (77) while 

conversely, slow twitch variants make up a greater percentage of the units in the deeper 

layers of skeletal muscle tissue (20, 84). It is possible that having the more forceful motor 

units towards the periphery of the muscle may assist in contraction by giving these motor 

units a mechanical advantage with regards to the moment compared to motor units 

located deeper within the muscle.  Perhaps most interesting is that this pattern of larger 

motor units located more superficially to smaller ones follows a common pattern found 

throughout nature, notably the concept of granular convection, where larger 

objects/particles end up on top of smaller items with respect to gravity.  This could mean 

that the main reason motor units are distributed this way is for efficiency’s sake.  

 Neurologically, the greater the number of motor units recruited within an 

individual muscle, either fast or slow, to perform muscular work, the greater the amount 

of contractile units (sarcomeres) activated and therefore the higher level of force that is 

produced with that muscle.  Motor units are most likely recruited systematically through 
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the concept of Henneman’s size principle which states that the order of motor unit 

recruitment is based on motor unit size (58).  This means that smaller, slow twitch motor 

units are usually recruited before larger, fast twitch motor units.  Strength is also based on 

the rate at which motor neurons discharge action potentials or rate coding, as faster 

discharge rates generate higher amounts of force (31).  However, just like the NMS in 

general, the neurological component of strength is not as clear-cut as the previous 

statement.  The body must also balance out strength with joint stability to prevent 

physiological damage.  For example, antagonist muscles will work against the desired 

agonist movement to help maintain joint integrity, especially when nearing maximal 

exertion (42).  Furthermore, similar to the communication of glaborous skin 

mechanoreceptors and joint receptors, it has been hypothesized that Renshaw cells, 

inhibitory interneurons, can also alter motor unit recruitment of both agonist and 

antagonist muscles to prevent excessive tension from being generated (2).  It is obvious 

that there are a multitude of NMS sensors and motor unit input, many beyond the scope 

of this review, that ultimately contribute to create the end product, muscular strength.  

Neurological Quantification:  

Quantification of muscle neurological activity can be measured through the use of 

EMG, while muscular strength (joint torque) can be measured through the use of 

dynamometers, such as isokinetic dynamometry or other strength tests.  One EMG 

measure often used in analysis is the root-mean-square (RMS) amplitude.  The RMS 

value can be represented by the equation: 
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Where T = a given epoch or data window and EMG
2
(ti) is the squared value of each 

datum of EMG within the data window.  Although the RMS cannot be used to determine 

specific motor unit behaviour it can be used to represent the overall power behind the 

signal which is representative of motor unit recruitment, firing rate and sarcolemmal 

conduction velocity, or in essence the overall activity level of the muscle (78).  RMS also 

has the added advantage when it comes to testing under different environmental 

conditions as it is less affected by temperature than other measures such as the frequency 

content (120).  Integration of both EMG and isokinetic testing can give researchers an 

idea of what types, and quantity of motor units that are being recruited and link that with 

strength performance (21).  Beyond just the raw measures of muscular recruitment and 

strength, these tools are powerful modes to detect: changes in strength due to training (1), 

pathological conditions (6), and most relevant to this review, environmental stress (22, 

25, 145, 30).  It must be noted that one concern with the use of surface EMG, one 

commonly used non-invasive EMG modality, and muscle force within a cold 

environment is the fact that changes in tissue temperature may alter the EMG signal 

without a change in actual muscle activity (150).  This makes it difficult to discern if 

motor unit recruitment patterns have changed or if changes in the EMG signal came as a 

result of a reduction in nerve conduction velocity or a modification to the low pass filter 

characteristics of the underlying tissue (150).  It is possible to employ correction factors 

or use more invasive EMG techniques to help adjust for temperature, although the ideal 

temperature range for lower limbs and surface EMG analysis remains 32-34˚C (129).  
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Therefore the researcher using surface EMG in colder situations needs to be cognizant of 

the limitations of such data collection tools when drawing conclusions.  

Correlation between strength and balance: 

Although both muscular strength and balance ability are important to the 

successful execution of motor tasks the actual relationship between strength and balance 

ability is not clear.  It is suggested that the two variables are linked such that as strength 

improves so too does mastery of balance (57, 11, 65, 66).  Conversely other evidence 

shows that regardless of balance ability, strength plays a limited role in balance 

performance (46, 47, 91, 99).  It has been hinted at that there might be a minimum 

threshold of strength, that once attained and maintained, is enough to keep balance 

proficiency from dropping (99).  Perhaps it is only with advanced age, or certain medical 

conditions associated with skeletal muscle atrophy or NMS deficit that will cause a drop 

below this minimum level of strength, which then negatively impacts balance.  More 

research is needed to clarify if there is indeed a connection between balance and strength.  

It could be that developing more studies similar to Dewhurst and colleagues (28), which 

looks at both older and younger populations, as well as individuals in sedentary versus 

strength trained states could be advantageous.  These types of studies could pinpoint if 

there is a definitive correlation between balance and strength and, if this correlation 

exists, if it is specific to all individuals or only select populations.  

 The NMS operates in a thermally diverse environment, the following section 

deals with the interaction of temperature and the NMS. 
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Thermal relationships between the lower extremities, body and external environment: 

The human body can be thought of as an open system with regards to the concept 

of modern thermodynamics (87).  This open system concept is defined by the exchange 

of matter between the external and the body’s internal environment as well as the thermal 

gradients that exist between individual structures within the body, and between the body 

and the external environment whereby energy flows from areas of high energy 

(temperature) to low energy (temperature). 

There are several pathways for which energy is received and exchanged between 

the human body and the external environment.  This is represented by the heat balance 

equation: 

        
                    ) 

Where heat storage,    in W · m-2
 is solved for by the addition of   , or the metabolic heat 

production, the subtraction of   , or wet and dry evaporative heat exchange, and the 

subtraction or addition of   
  (external work),    (radiation),    (conduction), and    

(convection).  It is the goal of human physiology to maintain a balanced state of heat 

storage to prevent or minimize states of hyperthermia or hypothermia. 

When exposed to cold ambient temperatures, a negative    and    draw energy 

away from the body and can potentially create a negative heat storage value which can 

lead to hypothermia.  As the body attempts to keep heat storage as balanced as possible it 

is often the tissue temperature of the legs and arms that are sacrificed to maintain the 

temperature of the body’s core (133).  This physiological change due to fluctuations in 

ambient temperatures has been come to be known as the core-shell model of temperature 
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distribution which was introduced by Aschoff and Wever in 1958 (3) and verified by 

Webb in 1992 (148).  By reducing localized limb tissue temperature, this has the effect of 

increasing the body’s thermal resistance, due to a smaller temperature gradient for heat to 

flow from the core to the external environment.  This increased resistance slows down 

energy loss.  This thermal resistance can be represented by the equation: 

  
                    

         

  

     
 

 

Where R = resistance or the amount of insulation (76).  A primary reason as to why this 

increased resistance occurs could be that it helps to protect against rapid energy loss so 

that essential bodily functions (i.e. liver enzymatic activity, cardiac cellular functions) 

remain within optimal temperature ranges.   

This reduction in shell tissue temperature is primarily accomplished by passive 

conduction and convective energies and through active changes in circulation due to two 

physiological mechanisms, these being changes in localized nitric oxide production and 

adrenergic alterations: 

One: when skin, subcutaneous tissue and skeletal muscle are exposed to cold 

ambient temperatures blood vessels react by changing the rate at which nitric oxide is 

produced.  With cold stimulus, blood vessels vasoconstrict due to an inhibition of the 

enzyme nitric oxide synthase (NOS) (63, 152).  This in turn reduces the amount of blood 

capable of flowing through the affected vascular network and mitigates the potential for 

heat transfer from the blood to the surrounding tissues. 
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 Two: thermally sensitive afferent neurons detect changes in temperature that 

signal an andrenergic response in the body to vasoconstrict blood vessels.  Specifically, it 

is during the initial 10 minutes of cold exposure that these afferent neurons trigger a 

constriction of blood vessels (62).  It could be as a result of neural fatigue, desensitization 

to the thermal stimulus, or a reduction in the thermal gradient that causes these afferent 

cold sensitive neurons to lose their ability to contribute to the adrenergic vasoconstrictor 

response after 10 minutes (62).  During later stages of cold exposure it has been shown 

that these afferents do not assist in constriction and that is it most likely NOS inhibition 

or other unknown mechanisms which maintain vasoconstriction with long-term exposure 

(62).  A modest amount of additional information will be provided on peripheral thermal 

afferents later in this literature review.   

Whether or not the lower extremities are exposed to a cold stimulus that also 

threatens the core, mechanisms are in place which reduces the conductance of heat from 

the core to the shell tissues and from the deep to superficial layers of the body.  Although 

the ultimate goal of minimizing heat loss may be achieved with this physiological 

countermeasure, the subunits of the peripheral neuromuscular complex in the lower 

extremities, which are important for maintenance of balance and muscular strength, can 

be compromised.          

Neuromuscular Interaction with Cold Exposure: 

Balance and cold exposure: 

Balance, or postural control, can be challenged by cold temperatures, through cold 

inflicting impairment on the intrinsic somatosensory components of the NMS, and 

through an increased likelihood of exposure to extrinsic factors such as slippery, icy 
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surfaces (43).  Of substantial importance with respect to somatosensory and NMS 

involvement are the alteration of the stretch reflex (112, 9, 35), superficial 

mechanoreceptors (94, 7, 138, 34), joint-position sense (23, 136), and muscle agonist-

antagonist relationships of the lower extremities (111, 113).  The interaction with cold 

temperature on these balance mechanisms will be outlined over the next few pages:  

Deep mechanoreceptors (muscle spindles): 

The stretch reflex, a muscular contraction due to passive stretching of the same 

musculature, has long been suspected to play a role in the decrease of postural stability 

with cold exposure.  A linear relationship between the firing rates of muscle spindles and 

muscle temperature has been observed (35).  Annulospiral and flower-spray muscle 

spindle configurations, when cooled, decreased their firing rate compared to the same 

muscle tension within thermoneutral conditions (35).  Eldred and colleagues found that a 

10˚C drop in muscle temperature elicited a drop in muscle spindle firing rates of between 

10 to 30 pulses per second (35).  Bell and colleague later reinforced this finding through 

demonstrating a drop in muscle spindle activity through a reduction in response from the 

tendon-tap test with skin and intramuscular temperature of 18.4˚C and 12.1˚C below their 

normal, room temperature values respectively (9).  This reduction in spindle 

communication could be thought of as a decrease in the sampling frequency of the 

continuous monitoring of muscle length.  This ultimately leads to a reduction in the flow 

of accurate information to the CNS about muscle length and has the effect of hindering 

control of the affected muscle.  It has also been shown that the afferent nerve fibres which 

integrate the muscle spindles with the NMS are influenced by temperature.  Conduction 

velocity slows down as nerve temperature decreases, with observations most apparent for 
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spindle group 2 (smaller) afferent fibres (135).  With reductions in the muscle spindle 

mechanism to monitor and control muscle stretch, especially in the lower limbs, it is 

possible that balance, which relies on accurate afferent signals from the muscle spindles, 

could become impaired with lower limb cooling.  

Although most evidence demonstrates a positive linear relationship of decreased 

temperature and decreased muscle spindle excitability, some research has shown the 

opposite relationship.  Oksa et al. found with low-intensity repetitive work during cold 

exposure that the stretch reflex of the forearm extensors and flexors was increased (109).  

This research seems to be the exception but the results are based on solid physiological 

argument.  It might be that the increased co-contraction of muscle groups due to cold 

exposure generated an increased response from the muscle spindles to maintain 

appropriate levels of muscle length (109).  It should be noted that this research was 

conducted on upper limb musculature, it might be that lower limb muscle spindles behave 

differently with cold compared to their upper body counterparts.  Even if muscle spindle 

activity is enhanced with cold exposure, as Oksa and colleagues have found, it is still 

possible that this increased activity could still affect balance by changing muscular 

coordination from what the body is familiar with when under room temperature 

conditions. 

Superficial mechanoreceptors: 

 Mechanoreceptor ability to help guide limbs due to changes in compression 

forces on the skin and joint ambulation are altered under localized cold.  The behaviour 

of mechanoreceptors to varying temperatures was first scientifically examined by Hensel 

and Zotterman in 1951 (59).  They found that while thermoreceptors, temperature 
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sensitive receptors, responded to minute changes in local temperature, mechanoreceptors 

also responded to temperature changes (59).  However, these changes needed to occur 

much more rapidly and of a greater magnitude temperature drop than with 

thermoreceptors to elicit a change in mechanoreceptor firing rates (59).  More recently, 

mechanoreceptors on the plantar surface of the feet have received most of the attention 

with respect to balance, as the feet contain a higher density of dermal mechanoreceptors 

than the rest of the legs, and are the only parts of the human body in direct contact with 

the ground when individuals are trying to remain upright.  Magnusson and colleagues 

were one of the first research groups to look at the direct effect of cold temperatures on 

the plantar mechanoreceptors of the feet (94, 93).  Their research uncovered that, while 

holding a static position, anterior-posterior postural sway velocity increased significantly 

when subjects were in colder than normal temperature conditions regardless of visual 

feedback (94).  Magnusson et al. also found that lateral sway increased to a great extent 

with mechanoreceptors that had been cooled down (93).  Stål and colleagues found 

similar results, in that increased localized cold to the feet caused an increase in postural 

sway (138).  

Not only static, but dynamic postural control is affected by mechanoreceptor 

activity modification due to temperature drops.  By cooling down the plantar aspect of the 

feet, individuals are prone to maintain a more cautious walking pattern (34).  This would 

indicate that the ability to accurately adjust COP while the body is in motion is reduced 

with colder feet.  

 Recalling that there are both slow and fast acting mechanoreceptors, with the fast 

mechanoreceptors generally being responsible for reactionary alterations to maintain 
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balance in more dynamic situations (139).  Perry et al. measured reactionary postural 

shifts to unpredictable, multidirectional perturbations (118).  Cooling down the soles of 

the feet with ice water for 20 minutes generated a significant reduction in this 

compensatory sway mechanic that created poorer reactionary countermeasures to the 

postural disturbances (118).  Therefore, with colder extremities, it is possible that the 

sudden, unexpected challenges to posture may have a greater chance of overwhelming the 

body’s ability to remain upright. 

 To further complicate matters, it can easily be forgotten that the body’s thermal 

environment is not only reacting to the surrounding ambient air/water conditions but to 

the heat generated from within as a byproduct of metabolic and mechanical work as 

expressed in the heat balance equation (  ±   
 ) .  This balancing act between internal 

and external temperatures sets up dynamic temperature gradients that allow for heat flow 

and cause superficial to deep layers of muscle, adipose, and skin tissues to vary relative to 

one another temperature-wise.  Furthermore, temperature gradients can be affected by 

blood vessel architecture where localized regions of muscle, adipose and skin tissue 

might be warmer due to greater volumes of blood flow (82).  For instance, recalling that 

muscle spindles tend to exist in greater abundance near blood vessels it could be that 

muscle spindles are more resistive to the effects of cold compared to superficial 

mechanoreceptors when it comes to environmental cold exposure.  
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Figure 2.2: Mechanoreceptors throughout the thermal gradient of the anterio-lateral thigh at rest 

and within a thermoneutral environment 

It is generally accepted that at rest and at temperatures ranging from room 

temperature (~21-24°C) to cold water immersion temperature of 8°C, muscle temperature 

(Tmu) gradients tend to follow a parabolic pattern, with the deep and middle regions of 

muscle significantly warmer than superficial areas (See figure 2.2) (17, 82, 130).  For 

example, Kenny et al. observed that, with a multi-sensor temperature probe, thigh 

musculature Tmu at 10 mm and 25 mm from the femur were quite similar (~36°C) while 

at 40 mm distance from the femur Tmu had dropped off by 1°C compared to the deeper 

Tmu (82).  During aerobic exercise, with the increased perfusion of blood to supply 

working muscles with O2 and nutrients, remove waste, and manage elevated core 
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temperature, the parabolic pattern is replaced with a linear one where Tmu is similar 

throughout all depths even in colder environmental conditions (130).  It has yet to be 

looked at whether anaerobic exercise, which creates ischemic conditions within the 

muscle, creates this linear Tmu pattern.  

Thixotropy: 

It is often the case that individuals remark on feeling that their joints and muscles 

are stiffer when their limbs are cooled down during cold exposure.  This increased 

stiffness has the potential to alter proprioceptive ability, specifically the sense of the 

affected joints and muscles.  This could, in turn, evoke problematic reductions in balance 

control during dynamic tasks.  Sekihara and associates found by cooling the biceps 

brachii muscle down to 5˚C that, after a maximal contraction of the biceps brachii at a 

predetermined joint angle, the individual sensed that their limb was in a significantly 

different position than in actuality (136).  This being said, a subsequent study on the 

thixotropic position sense of the knee joint failed to show any sign of increased position 

sense error with joint cooling (23).  The author states that it is possible that there was 

some degree of position sense error incurred by the cold application in this second study.  

This is due to the design of the study which was built to show only large discrepancies in 

joint angle (23).  Balance, and especially dynamic postural control, requires the 

individual to have as precise a control over limb positioning as possible. With reductions 

in position sense to control for thixotropy, balance may become more precarious or create 

an increased injury risk due to modifications in joint angle at other regions in the 

kinematic chain to maintain equilibrium.  
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Agonist-antagonist Ratio: 

   Muscle co-activation helps to keep joints stable, helping to maintain posture, 

especially when learning a new motor task (115).  During dynamic balance activities, the 

human body relies on this relationship of muscles to learn and maintain correct joint/body 

position.  When exposed to cold temperatures, the neural activity and coordination 

between muscles are altered.  These cold temperatures increase the degree of co-

activation through agonist-antagonist relation (123).  For example, Bawa and colleagues 

observed that with general cooling the extension of the forearm was accompanied by 

greater amounts of antagonist (biceps brachii) EMG activity (7).  Further research by 

Oksa and colleagues found that, in both the lower and upper extremities, with cold air 

exposure ranging from 27˚C to 10˚C, the colder air caused a drop in agonist activity and 

an increase in the antagonist EMG pattern (113, 111).  This physiological response is 

known as the “braking effect” and is a documented source for decreases in muscular 

performance (111).  An increase in this counter-productive muscle activity with regards 

to fluid and efficient movement patterns could affect dynamic balance tasks.  

Hypothetically, with a decrease in leg temperature, an increase in biceps femoris activity 

during hip flexion would result in reducing an individual’s ability to extend a leg in the 

SEBT, having the possible effect of decreasing their maximal reach distance.   

Thermal detection and thermal sensitivity of skeletal muscle: 

Although this review focuses on the effect that temperature has on the NMS it 

should briefly be noted that peripheral thermal detection is a crucial ability that enables 

individuals to react to external and internal energy variations.  Unmyelinated free nerve 

endings that are scattered throughout the skin layers, at some places projecting into the 
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epidermis, form the majority of body’s external thermal receptor compliment (134).  Both 

cold and hot sensitive thermal receptors have been identified which arguably are closely 

linked, or potentially one-and-the-same, with pain sensitive nociceptors (49).  It makes 

practical sense that the human body is founded on the principle of efficiency.  This 

principle is exemplified by the observation of Sir Charles Sherrington, that most thermal 

detection is invested towards the periphery of the organism (137).  Following this pattern 

it appears that deeper skeletal muscle does have limited capacity to detect changes in 

temperature.  High-threshold warm sensitive thermoreceptors within muscle have been 

shown to respond to injected saline solution of varying temperatures (48).  Interested 

readers should consult the 2004 literature review by Green (49) and 2010 review by 

Schepers (134) to gain more insight into human peripheral thermoreception.  

Additional information and contrasting evidence: 

In addition to these potential sources for decreased balance, increased synovial 

fluid viscosity, deviations in the viscoelastic properties of muscle and general joint 

stiffness have also been researched with regards to cold exposure, although with only 

passing remarks regarding balance (121).  It is feasible that increased joint and muscle 

stiffness could result in a reduced ability to respond to postural challenges.  

 The vast majority of research revolving around cold exposure and balance 

impairment suggest that there is a positive relationship where decreases in temperature 

lead to decreases in the ability to remain upright.  One study which did not show this 

relationship was by Dewhurst et al. (28).  Comparing a younger female population to an 

older female population, no significant decrease was noted in postural sway for either 

groups when their lower limb muscles were cooled to 31°C (28). This result went against 
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their initial hypothesis, based off of previous research (29), which showed increases in 

neuronal excitability with cold exposure among youthful participants.  It is possible that 

the Tmu of 31°C was not sufficient to impair balance and that lower temperatures would 

have been needed to show a significant effect.  

Muscular strength and cold exposure: 

Recall that human muscle is often found to contain a greater percentage of fast 

twitch relative to slow twitch motor units within more superficial relative to deeper 

regions of skeletal muscle tissue.  Due to their closer proximity to the external 

environment, it could be that fast twitch motor units are more often affected by 

temperature changes than their slower counterpart.  This could be a potential reason as to 

why it seems that forceful and rapid contractions, that tend to utilize more fast twitch 

fibres, are impaired to a greater extent than slower, more sustained muscle activity.  This 

pattern of cold exposure and muscle strength will be outlined briefly over the next several 

paragraphs:   

Isometric strength and muscular endurance and cold exposure: 

Beyond fatigue associated with muscle activity, exposure to cold environments, 

with the potential for reductions in Tmu, can modify isometric muscle mechanics.  A study 

in 1958 found that maximal isometric contraction was reduced when the muscle was 

cooled below 27˚C (22).  Since that study, more have been published (25) and 

summarized (123) which show the same pattern. While maximal isometric contraction 

seems to be reduced with muscle cooling, endurance of submaximal isometric contraction 

appears to increase.  Davies et al., (25) and Thornley et al. (145) both showed that, with 
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local muscle and skin cooling, there was a significant increase in time to exhaustion for a 

submaximal isometric contraction. 

Dynamic strength and cold exposure: 

Reductions in Tmu do appear to cause impairments to dynamic contractions.  For 

instance, cooling by each degree Celsius can reduce the peak strength of dynamic 

contractions by as much as 2-5% (129).  It is thought that this drop in force could be due 

to slowing down of metabolic pathways, and/or desynchronization of individual motor 

units (129).  Explosive movement of the leg muscles also shows increments of 

impairment with cold.  Asmussen et al. used a vertical jump test and found that with 

reduced Tmu (~33
°
C) that jump height was considerably reduced (4).  However, 

Asmussen also found that a greater amount of elastic energy could be released under 

these same cold conditions, allowing for a gain in height from a drop jump compared to 

thermoneutral Tmu (4).  It is argued that this improved ability to store and release elastic 

energy within the series elastic component of the muscle is due to reduced cross-bridge 

breaking at lower temperatures (4).  Although there are potential strength mechanisms 

that seem to improve with decreasing temperatures the overall NMS pattern shows 

reduced performance with a colder thermal environment. 

Nerve conduction velocity: 

One common physiological measure between balance and strength performance is 

the magnitude at which messages travel in both afferent and efferent directions.  It has 

been established that it is important that nerve pulses travel at a fast enough speed to 

create the desired level of muscular contraction and overcome inhibitive interneurons 

through temporal and spatial summation (92).  As tissue temperature drops the speed at 
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which nerves are capable of transmitting action potentials also decreases.  At room 

temperature (skin temperature of ~32-34°C) nerve action potentials are conducted at 72-

120 m/sec., 35-120 m/sec., 35-75 m/sec. and 0.5-30 m/sec for extrafusal muscle fiber, 

muscle spindles, cutaenous mechanoreceptors, and thermoreceptors respectively (146).  

With every degree Celsius drop in skin temperature it is thought that nerve conduction 

velocity is impaired by 1.5-2 m/sec. with larger, myenlinated axons more affected than 

smaller non-myelinated axons (129).  This value takes into account the thermal gradient 

and that the near-nerve temperature can be substantially different from skin temperature 

(129).  Several physiological parameters can account for this drop in nerve conduction 

velocity with cooling.  Action potentials rely on the speed at which sodium gates open 

and close to allow for depolarization along the length of the axon (139).  As nerve 

temperature drops so too does the speed at which these sodium gates open and close 

which translates to a slower depolarization and repolarization and therefore slower 

conduction velocity (64).  This decrease in conduction velocity of the axon can carry over 

to the sarcolemmal action potential where a decrease in muscle temperature also 

decreases the velocity of the depolarizing wave along the outer membrane of skeletal 

muscle (18).  A drop in conduction velocity could be a reason as to why both sensory 

information and effector performance can be reduced with the cold.     

Conclusion: 

The pattern of integration that the nervous system possesses extends to all parts of 

the human body, as Sir Charles Sherrington proclaimed in his 1906 publication: The 

Integrative Action of the Nervous System.  This much is clear, as the body is built on a 

foundation of kinematic and kinetic chains, where transmission of forces and energies 
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from one segment of the body to another allow for human movement and athletic 

activities (126).  Muscular strength and balance are the end result of various components, 

from muscle spindles and Pacinian corpuscles to synergistic and antgonistic muscle 

contraction, forging and maintaining an intricate communication network.  Integration 

extends beyond the boundaries of the human body as it obeys the universal laws of 

thermodynamics.  External temperature variations influence the body’s internal climate 

from minute-to-minute.  Cold temperatures can draw energy away from the body at faster 

rates slowing down nerve conduction (129) and impairing muscle activity (111).  Apart 

from the possible philosophical implications of the above sentences there is an obvious 

practical importance as well.  Outdoor athletic endeavours can expose participants to 

temperatures which can hinder their ability to produce force and maintain equilibrium 

thereby reducing performance and increasing chance of injury.  Past research has looked 

at full body cold air exposure (112), or a specific amount of CWI (i.e. up to the knee) 

(104), but none have researched what the impact of varying amounts of CWI relative to 

the segments of the lower extremities have on balance and strength performance.  The 

rest of this thesis is dedicated to this research question.              
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Statement of the Problem: 

Through peripheral mechanisms, both balance and muscular strength have been 

shown to be altered when the limbs are exposed to frigid temperatures.  Most research 

demonstrates a positive linear relationship for balance and strength, with progressively 

colder temperatures.  The majority of this research has been done without consideration 

of the lower limb as an integrative machine where an effect on one component can 

influence other mechanisms that ultimately lead to a change in kinesthetic performance 

outcome.  

Little research has been conducted to look at the relative contributions of different 

limb segments (foot, shank, and thigh), and associated joints to dynamic balance with 

respect to cold exposure.  For example, is it the reduction in temperature of the foot and 

ankle that contribute the most to possible dynamic balance impairments or does cooling 

down the entire limb have even greater consequences for balance mechanics.  Previous 

research has suggested that more scientific focus needs to be invested in observing more 

challenging dynamic balance tasks and their interaction with cold exposure.  

Purpose:   

The novel experiment outlined within this document hopes to fill a gap in the 

scientific understanding of the interaction between the integrative nature of the NMS and 

the thermal environment.  The primary purpose of this research is to determine the effect 

that cold exposure has on the performance of a challenging dynamic balance task.  The 

SEBT is a balance task which not only requires precise neuromuscular control but a high 

degree of muscular strength to be successfully executed.  Secondary objectives include 

uncovering any connections that may exist between muscle groups and peripheral 
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nervous system receptors through indirect exposure to the cold stimulus.  For example, 

does cooling up to the ankle impact the agonist-antagonist ratio of the thigh musculature 

or is direct cooling of the muscle required to elicit this effect.  

Hypotheses: 

By utilizing the SEBT, stork stand test and isokinetic knee extension/flexion tests 

on young, recreationally active males with segmental limb cooling; there are several null 

hypotheses that will be investigated:  

1. A decrease in muscle, skin and joint temperature of the foot and ankle will not 

contribute to a greater relative decrease in balance performance (SEBT reach 

distance, SS time) compared to cooling down a greater volume of the lower limbs 

in the SEBT and SS tasks.  

2. Peak torque of the quadriceps and hamstrings will not be reduced to the greatest 

extent with entire lower limb cooling compared to knee and/or ankle cooling. 

3. In regards to EMG, there will be no significant increase in muscular co-activation 

between agonist and antagonist pairings with cold exposure across all conditions 

during maximal reach of the SEBT.  The greatest amount of co-activation in a 

muscle pairing will not occur when the muscle temperature is directly influenced 

by the CWI (i.e. there will be no difference in the co-activation between biceps 

femoris and vastus lateralis across all conditions).  
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Methods: 

Participants: 

The study enlisted 10, non-acclimated, recreationally active males, (age 22.8 ± 3.4 

years; body mass 76.5 ± 9.1 kg; height 1.76 ± 0.06 m; body fat 12.8 ± 7.7% mean ± SD).  

Participants were excluded from the study if they currently had body fat percentage above 

~25% (119).  Participants had a shank fat volume of 671.7 ± 349.4 cm
3
 and a thigh fat 

volume of 1173.2 ± 756.9 cm
3 

(exclusion criteria of shank and thigh fat volume > 1500 

cm
3
 and >2500 cm

3 
respectively).  These volumetric values were recorded to ensure that 

participants would be cooled consistently with the established CWI protocol.  Subjects 

were free from Raynaud’s Syndrome, neurological, neuromuscular and balance (vision, 

vestibular, somatosensory) related disorders determined through the administration of a 

health questionnaire (adapted from Physical Activity and Readiness Questionnaire, 

CSEP).  Upon an initial familiarization visit to the lab, subjects were asked for their 

written, informed consent (see appendix F) and provided with a written and oral 

presentation on the nature and purpose of the experiment, along with the potential risks 

involved.  During experimental trials participants were asked to refrain from caffeine 

consumption on the day of the trial and avoid alcohol and excessive lower body exercise 

24 hours prior to each test session.  Ethical approval was obtained through the Brock 

University Research Ethics Board (REB# 11-030) and the study complied with the 

declaration of Helsinki for human research.  
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Familiarization: 

Body Dimension Analysis: 

Each participant had their subcutaneous adiposity measured through the use of 3-

site (Jackson & Pollock) (74, 73) skinfold caliper (Harpenden, Baty International, West 

Sussex, England) test plus a calf skinfold measure to gauge lower limb subcutaneous 

adiposity.  Subject height and weight was also recorded.  Participants had their dominant 

leg measured for height from the anterior superior iliac spine (ASIS) to medial malleolus 

to normalize reach distance values for the dynamic balance task (51).  Leg dominance 

was determined through asking what leg the participant would kick a ball with.  9 

participants were right leg dominant and 1 participant favoured their left leg.  Finally, 

anthropometric segmental limb volume was calculated through measuring both the length 

and girth of lower limb segments.  Limb volume was used to help determine fat versus fat 

free volume of the thigh and shank (81) and for a volumetric reach analysis.  Limb 

segment length coupled with limb volume was used to gauge water level within the 

immersion tank for each of the experimental trials (i.e. appropriate water level for knee 

cold water immersion versus ankle cold water immersion) 

Protocol Familiarization: 

Participants were seated in the Biodex® 3 isokinetic dynamometer (Biodex Corp., 

Shirley, NY, USA) and the equipment adjusted to conform to the subject body 

dimensions.  These settings were recorded for use during the experimental trials.  

Participants were allowed to perform as many contractions of the knee extensors and 

flexors at both concentric and eccentric settings to ensure that they were proficient and 

comfortable with the movement.  Participants were shown the balance tasks, both 

verbally and through demonstration, by the investigator.  Participants were allowed to 
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practice balance tests, SEBT and Stork Stand Test, to ensure that they understood how to 

perform these field measures of dynamic and static balance.  

Experimental Trial Protocol: 

The experiment consisted of 4 trials administered in a randomized order.  Trials 

were conducted at minimum a 3 days span between each other to minimize the potential 

for acclimation to the CWI.  For each subject, trials took place at the same time of day to 

account for normal diurnal variation in circadian rhythm on core temperature (88) and 

balance performance (53).  The trials varied only by the amount of lower limb exposure 

to the 12˚C water bath.  Each trial followed a dual-phase, multi-step protocol (see figure 

3.1).  The first phase included participant instrumentation, followed by a cold water 

immersion (CWI), Tmu measurement and finally isokinetic strength measurement.  The 

second phase, which began immediately following the strength testing, included re-

instrumentation, a second CWI, a second muscle temperature measurement, isometric 

EMG normalization, and finally a balance field test battery performed with bare feet.  

Each dual-phase trial spanned approximately 2 hours in duration (see figure 3.1).  All 

testing took place in climate controlled laboratories with an average room temperature of 

22.4 ± 0.8°C, relative humidity of 38.8 ± 12.4% and barometric pressure of 754 ± 5.3 

mmHg.  The majority of testing occurred between the months of February and May 2012 

with an average outdoor temperature of 9.5 ± 6.4°C on trial days. 
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Figure 3.1: Thermo-temporal schematic of experimental design. A: representative raw skin temperature 

plot from 1 participant with indicated time points for muscle temperature and skin temperature 

measurements. (note that there is a time discrepancy between the trials (took longer to enter/exit cooling 

tank, etc.) B:  experimental segments. CWI = cold water immersion, MT = muscle temperature, IKT = 

isokinetic testing, EMG = electromyographic normalization, SEBT = star excursion balance test, SS = stork 

stand. C: cumulative trial time (min.), 0 min = start of data recording  

   

Phase 1: Strength Testing 

Core temperature:  

Upon arrival to the Environmental Ergonomics Lab (EEL) (Brock University, 

Canada) participants were asked to insert their rectal core temperature probe (400 series, 

Mallinckrodt Medical) 15 cm beyond the anal sphincter within the privacy of a private 

changeroom.  

Electromyographic recording: 

Once the core probe was inserted participants returned to the EEL where EMG 

sensor sites, 6 in total, were located with SENIAM (www.seniam.org) recommendations.  

In order to ensure electrodes were not placed directly over motor points, researchers, 

http://www.seniam.org/
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through use of low-intensity, evoked stimulation located skeletal muscle motor points, 

and if necessary, shifted electrode placement away from them, towards the muscle 

tendon.    Motor points were determined as the location of the cathode yielding the 

strongest contraction with the lowest evoked pulse amplitude.  The evoked stimulation 

was accomplished with the use of stimulating electrodes that were connected in series 

with an isolation unit (Grass Telefactor SIU8T, Astro-Med, Inc., West Warwick RI, 

USA) to a peripheral nerve stimulator (Grass Telefactor S88, Astro-Med, Inc., West 

Warwick, RI, USA) that delivered a square-wave pulse 0.5 ms in duration.  These sites, 6 

in total, (non-dominant and dominant limb vastus lateralis and biceps femoris, and 

dominant limb tibialis anterior and lateral gastrocnemius) were then shaved, with the non-

dominant limb muscle sites further prepared with light abrasion, isopropyl alcohol and 

skin prep gel (Nuprep®, Weaver and Company, Aurora CO, USA).  Conductive gel 

(Signagel®, Parker Laboratories Inc., Fairfield NJ, USA) was then applied to the 

electrodes which were then attached to the 2 non-dominant limb sites and a ground 

electrode adhered to the non-dominant limb ASIS.  EMG electrodes were placed on the 

bulk of the muscle belly and away from motor points.  Transpore™ tape (3M™, St. Paul 

MN, USA) was placed over top of the electrodes in addition to the electrode adhesive to 

help keep the electrodes in place during each trial.  

The study utilized a hard-wired 4-channel EMG system (Delsys Inc., Boston, 

MA., USA).  Muscle activity was picked-up through active, single differential electrodes 

(DE-2.1, Delsys Inc., Boston, MA., USA) with a 10 mm inter-electrode distance and 

transmitted via wires to the Bagnoli amplifier (Delsys Inc., Boston, MA., USA) where the 

information was band pass filtered at 20-450Hz and then sampled and digitized by the 
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16-bit multiplex A/D DAQ card (National Instruments Corp., Austin TX, USA) which 

was set to a sampling rate of 2500Hz.  EMG analysis was performed on the filtered EMG 

signal by means of a root mean square (RMS) mathematical protocol through a custom 

script in MATLAB® (Mathworks Inc., Natick MA, USA)   

Skin Temperature: 

Skin temperature was recorded at 5 sites through the use of wired skin 

thermistors.  These 5 sites included chest, posterior upper arm, lateral thigh, lateral shank, 

and dorsal aspect of the foot.  The 4 former thermistor locations were used to calculate 

mean skin temperature with the Ramamathan equation for mean skin temperature (124).  

T sk = 0.3 tchest + 0.3 tarm + 0.2 tthigh + 0.2 tleg 

Transpore™ tape (3M™, St. Paul MN, USA) was placed over top of the thermistors to 

help keep the thermistors in place during each trial. 

Data Logger: 

The 5 skin thermistors and 1 core temperature probe were tethered to a portable 

data logger (Smart Reader Plus, ACR Systems, Surrey, BC, CAN.).  Throughout each 

trial this data logger was either carried by the participant or placed on the ground while 

conducting the strength and balance measures.  

Cooling Protocol #1: 

After instrumentation of rectal temperature probe, skin thermistors, and EMG 

electrodes, subjects, seated within a hard plastic tank (120 cm x75 cm x72 cm), were 

either exposed to no cold water (thermoneutral) or exposed to cold water up to the ankle 

(lateral malleolus), knee (lateral condyle) or hip (ASIS) while seated for 20 minutes.  



47 

 

Subjects were seated in a position such that when the water level was up to the lateral 

condyle that their thigh remained relatively out of contact with the water to keep the thigh 

musculature a neutral temperature.  Subjects remained dry during water exposure through 

the use of a waterproof barrier (Ocean Commander immersion suit outer shell, Mustang 

Survival, Bellingham, WA, USA).  Water temperature was regulated at 12˚C through the 

use of a recirculating chiller (Model 5202, Polyscience, Niles, IL, USA).  

Once 20 minutes of lower body environmental exposure had elapsed, the 

participant exited the cooling tank under their own power, removed the immersion suit 

shell and seated themselves in a transport chair (Airgo™, AMG Medical, QC, CAN).  

They were then wheeled to the muscle temperature station within the EEL and then the 

nearby Applied Physiology Laboratory by the researchers. 

Muscle Temperature Measurement #1: 

5 minutes after the cold water immersion and approximately 5 minutes before the 

isokinetic strength testing, participant Tmu of the non-dominant limb vastus lateralis and 

lateral gastrocnemius was measured with sterilized 26 gauge muscle temperature probes 

(Model MT-26/2, Physitemp Instruments, NJ, USA).  Probes were inserted by the 

researcher into the bulk of the muscle belly within 5 cm of EMG electrodes, if present, 

and to a depth of 3 mm beyond the epimysium.  Probes were held for ~5 s, until a stable 

temperature was recorded.  

Isokinetic Muscle Strength Test: 

Isokinetic, concentric and eccentric, knee extension/flexion torque and EMG 

activity of the non-dominant vastus lateralis and biceps femoris was measured with the 
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use of an isokinetic Biodex 3 dynamometer (Biodex Corp., Shirley, NY, USA) and 

Delsys 4-channel surface EMG (Delsys Inc., Boston, MA., USA).  Subjects seated 

themselves in the Biodex seat and had their knee angle set to 90˚ and hip angle set to 110˚ 

based on familiarization measurements.  Straps were secured across the chest, waist and 

non-dominant thigh to minimize extraneous movements.  The rotational centre of the 

lever arm was aligned to the lateral femoral epicondyle of the knee.  The lever arm was 

secured to the lower leg with the resistance pad around the ankle.  Range of motion 

(ROM) limits were set (~170° knee extension, 180° = full knee extension) and then 

participants completed 3 sub-maximal ‘warm-up’ isokinetic, concentric contractions of 

the knee extensors and flexors at a velocity of 45˚/s through 90% of their constrained 

knee range of motion (5% of participant ROM was taken away from both start position 

(90°) and end position (170°) of knee movement).  This reduction in ROM was done to 

assist during the eccentric repetitions which placed the muscles in a more advantageous 

mechanical position (i.e. length/tension relationship) to be able to produce enough torque 

to trigger the dynamometer to begin lever arm motion.  Once the warm-up set was 

completed the participant rested for 30 seconds and then performed either 3 maximal 

isokinetic concentric knee extension and knee flexion contractions at a velocity of 45˚/s 

or 3 maximal isokinetic, eccentric knee extension and knee flexion contractions at a 

velocity of 45˚/s.  Participants then rested for 60 seconds and then performed the 

contraction type which they hadn’t performed during their first set (concentric/eccentric).  

This order of concentric and eccentric sets was kept constant for each participant, for all 

four of their trials, but was randomized between participants.  10 seconds of rest was 

maintained between each repetition, while 60 seconds of rest was maintained between 
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maximal concentric and eccentric sets to minimize fatigue, and maintain agreement 

between the rest periods used during dynamic balance testing.  During each repetition, 

participants were verbally encouraged by the tester to contract as forcefully as possible.  

If an error occurred during a set (equipment, tester or, participant error) then a further 60 

second rest period was allowed followed by another 3 repetitions of the set that contained 

the error.  Isokinetic torque was recorded at a frequency of 100 Hz, with the highest value 

between the three contractions for each maximal set used for further analysis.  EMG 

activity was recorded with EMGworks 3.5®  (Delsys Inc., Boston, MA, USA). 

Once isokinetic testing was completed participants were then wheeled via 

transport chair back to the EEL to continue the trial.  

Phase 2: Balance Testing 

Instrumentation #2: 

The 2 EMG electrodes were removed from the non-dominant limb, and cleaned 

with isopropyl alcohol to prepare their use for further EMG recording.  The 4 previously 

located EMG sites on the dominant limb were then prepared through shaving, and light 

abrading with isopropyl alcohol and skin prep gel (Nuprep®, Weaver and Company, 

Aurora CO, USA).  The ground electrode was switched to the dominant limb ASIS.  4 

electrodes (DE-2.1, Delsys Inc., Boston, MA., USA) were prepped with conductive gel 

and fixed to the predetermined locations on the dominant limb (vastus lateralis, biceps 

femoris, tibialis anterior, lateral gastrocnemius).  These electrodes were secured to the 

skin with electrode adhesive and Transpore™ tape (3M™, St. Paul MN, USA).  
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Cooling Protocol #2: 

Participants re-entered the cooling tank and were exposed to the same 

environmental condition as previously exposed during phase 1 of the trial.  Participants 

remained in the tank for 10 minutes to counteract any potential rewarming and therefore 

allow for similar muscle and skin temperature during both phases of the experiment 

(isokinetic strength testing and balance testing).  Participants then exited the tank, 

removed immersion suit shell and seated themselves back in the transport chair to have 

their muscle temperature re-measured.  

Muscle Temperature Measurement #2: 

Just prior to the EMG normalization procedure test, participant Tmu of the 

dominant limb vastus lateralis and lateral gastrocnemius was measured with sterilized 26 

gauge muscle temperature probes (Model MT-26/2, Physitemp Instruments, NJ, USA).  

Probes were inserted by the researcher into the bulk of the muscle belly and within 5 cm 

of EMG electrodes and to a depth of 3 mm beyond the epimysium, and probes were held 

in place for ~5 s until a stable temperature was recorded.  

EMG Normalization: 

Subjects sat on the edge of a padded bench with their dominant leg secured with 

padded straps and knee flexed at ~120˚ (180° = full knee extension) with the assistance of 

a custom built wooden apparatus (see appendix B).  Subjects performed maximal 

isometric voluntary contractions (MVC) of tibialis anterior, lateral gastrocnemius , vastus 

lateralis, and biceps femoris by executing ankle dorsiflexion, ankle plantarflexion, knee 

extension and knee flexion respectively.  Participants were verbally encouraged by the 

researchers to contract as forcefully as possible for 3 seconds against the MVC device for 
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each muscle tested.  If clipping of the EMG signal occurred during normalization, 

amplification was adjusted and another 3 second isometric MVC was performed.  EMG 

data for normalization was collected with DASYlab (Ver. 10.0, Measurement 

Computing, Norton, MA, USA).  A 250 ms data window of this isometric MVC EMG 

data was used to normalize the activity of the recorded muscles during the balance tasks. 

Motion Capture: 

Once the isometric MVCs were completed, passive reflective markers were 

adhered with 3M™ Transpore™ tape to specific bony landmarks on the participant (over 

skin where possible).  These landmarks, 8 in total, were the dominant limb: head of 5
th

 

metatarsal, lateral malleolus, lateral femoral condyle, greater trochanter, ipsilateral 

acromion process, and non-dominant limb: head of 1
st
 metatarsal, medial malleolus and 

medial femoral condyle.  As the participant walked over to the balance testing area within 

the EEL, the camera (HDR-CX110 Handycam, Sony Electronics Inc., CA, USA)  was 

turned on to record 2-dimensional kinematics for the balance exercises.  The camera was 

positioned ~4.7 m away from the participant and at a height of ~0.9 m.  Video was 

recorded at 60 Hz and synchronized to EMG data through the use of an LED/trigger 

system.  As participants performed the balance tasks the researcher depressed a trigger 

switch which activated the LED and sent a square wave TTL pulse through the 16-bit 

multiplex A/D DAQ card (National Instruments Corp., Austin, TX, USA) and ultimately 

synchronized to the EMG signal within the EEL computer (DASYLab Ver. 10.0, 

Measurement Computing, Norton, MA, USA) for analysis. 
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Dynamic Stability Test: 

The Star Excursion Balance Test (SEBT) measures dynamic postural control.  It is 

a test that has been shown to have a relatively strong intra-rater reliability of [ICC (2,1): 

0.67 to 0.87] (83) and [ICC (2,1): 0.81 to 0.96] with coefficients higher or lower 

depending on reach direction (60).  Within approximately 10 minutes of completion of 

the CWI, subjects took up position where the floor was taped with either their big toe or 

heel adjacent to the start line depending on direction of reach.  EMG instrumentation was 

connected to data acquisition equipment.  Subjects then performed the SEBT reaching 

task with their non-dominant leg in anterior, and posterior directions while remaining 

balanced on their dominant leg (see appendix C).  Which direction participants performed 

first for the SEBT was kept the same within each subject throughout the 4 experimental 

trials although the order of direction was randomized between subjects.  10 seconds of 

rest was maintained between each reach attempt and 1 minute of rest was maintained 

when switching between reach directions.  This timing was maintained with a stop watch 

(Fisher Scientific, Waltham, MA, USA) by the researchers.  Subjects were instructed to 

keep their hands on their hips throughout all balance testing.  The two SEBT directions 

included, at minimum, 4 practice trials to minimize any learning effect (128), followed 

by, at minimum, 3 test trials, with the maximal excursion distances recorded through the 

use of visual spotting, marking with tape, and at the completion of the trial, measuring 

with a steel measuring tape to establish achieved distance.  The 3 properly executed test 

trial distances were then averaged.  Participants performed more than 4 practice trials and 

more than 3 test trials if they lost their balance as 4 properly executed practice trials and 3 

properly executed measured test trials were needed for data analysis.  The averaged 

excursion distance was normalized to individual participant leg length (ASIS  medial 
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malleolus) (51).  Other standardizing procedures (i.e. maintain balance, no heel raise, rest 

between excursions) that are associated with the SEBT were also adhered to (60).  EMG 

activity was recorded within a 250 ms data window that was established around the 

participant’s maximal reach during each excursion.  The RMS of the EMG signal during 

the SEBT was calculated and normalized to the RMS of the EMG signal during the 

maximal isometric voluntary contraction (MVC). 

Static Balance Test: 

After 1 minute of rest had elapsed post-SEBT testing, subjects completed a stork 

stand test on their dominant leg.  The stork stand test is a measure of static balance with 

an inter-rater reliability coefficient of .76 (143).  Participants placed their hands on their 

hips and non-dominant foot against the inside of their supporting knee.  On the test 

administrator’s command, the participant rose up onto the ball of the dominant foot and 

maintained the position until they were unable to continue.  The participant completed the 

test 3 times with the longest time recorded and used for analysis.  30 second rest was 

allowed in between each of the 3 attempts.  Timing was accomplished with the use of a 

stop watch (Fisher Scientific, Waltham, MA, USA). 

Statistical analysis: 

Data screening: 

Prior to running statistical analysis all data pertaining to the study was screened to 

detect if assumptions were met for repeated measures design:   
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Thermal data:  

Muscle, skin and core temperature met the assumptions of normal distribution, 

sphericity and independent random sampling.  The equal cell sizes assumption was 

violated as at times during testing as it was not always possible to obtain a muscle 

temperature reading or thermistors malfunctioned.  Where possible, trial data was 

smoothed though MATLAB® or discarded to obtain equal cell sizes. 

Cold water immersion (CWI) data from skin thermistors was recorded every 10 

seconds and averaged into 1 minute intervals and leg thermistor information analyzed 

with two-factor (condition x time) repeated measures analysis of variance (ANOVA).  It 

was also important to determine that skin temperature of exposed limb segments dropped 

to similar temperatures with each CWI depth.  Therefore at minute 20 and minute 10 of 

each exposure a repeated measures ANOVA was used to show any main effects and, if 

found, post-hoc pairwise comparisons were ran to find where the differences were.  

Three 1 minute time points of interest for each trial were highlighted to 

investigate skin temperature and how it was affected by the varying environmental 

conditions.  Separate repeated measures ANOVA were performed for thigh, shank and 

foot temperature during the isokinetic strength, SEBT and SS tasks to compare skin 

temperature between control, ankle CWI, knee CWI and hip CWI.  Where significant 

main effects were detected, post-hoc pairwise comparisons with Bonferonni adjustments 

were utilized. 

Superficial muscle temperatures of the vastus lateralis and lateral gastrocnemius 

were obtained after both cold water immersions.  A 3 factor (muscle x exposure x 

condition) repeated measures ANOVA were used to determine the effect that the two 
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immersions had on the thermal profile of the two muscles.  Secondary 1 factor repeated 

measures ANOVA for the vastus lateralis and lateral gastrocnemius were used to 

determine the exact effect that each thermal condition had on the respective muscle 

temperature.  

Using a 4-site model (see appendix A or skin temperature section in methods), 

mean skin temperature (T sk) was measured across trials using a single repeated measures 

ANOVA.  

SEBT and stork stand:  

Reach distance during SEBT and stork stand time violated normal distribution, as 

the data set was slightly kurtotic and skewed in several instances.  This violation should 

be expected due to the relatively small sample size (10) and the fact that these tests are 

field tests and contain a greater potential for variability due to tester error and variation in 

reach and balance technique than other measurement tests.  Since this variation was 

expected these values were left untreated.  For SEBT condition interaction sphericity was 

violated, a greenhouse-geiser adjustment was used.  Assumptions on equal cell sizes, and 

independent random sampling were met.  

A two-factor (reach direction x condition) repeated measures ANOVA was used 

to look at the change in excursion distance during the SEBT in relation to cold exposure.  

Post-hoc pairwise comparisons within each reach direction were used to find significant 

reach differences between conditions. 

A single repeated measures ANOVA was utilized to look at stork stand time in 

relation to cold exposure. 
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Joint kinematics:  

Normal distribution assumption was violated due to a large standard deviation 

within the data set.  This large standard deviation was as a result of different reaching 

strategies creating large variation in joint angle of the ankle, knee and hip on the 

supporting limb.  As this was a biomechanically expected phenomenon, the values were 

left untreated.  Equal cell size, sphericity and independent random sampling assumptions 

were met. 

A three-factor (reach-direction x joint x condition) repeated measures ANOVA 

was used to detect for significant variation within the SEBT joint kinematic data set 

(ankle, knee, hip).  With each analysis, if significant main effects were detected, post-hoc 

(tukey) pairwise comparisons were utilized with Bonferonni adjustments.  Reach distance 

was correlated to joint angle at maximum reach with Pearson squared correlations. 

Muscle activation:  

In general, the muscle activity data met the assumptions associated with ANOVA.  

Specific violations included: violation of sphericity for comparison of normalized root 

mean square (RMS) activity between muscles, and comparison of normalized RMS 

activity between muscles and reach direction. Additionally, several normalized RMS 

statistical distributions were slightly kurtotic.  

 A three factor (reach direction x muscle x condition) repeated measures ANOVA 

and separate two factor (reach direction x condition) repeated measures ANOVA for each 

individual muscle were utilized to examine any potential significant main effects and 

interactions on the muscle activity of the vastus lateralis, biceps femoris, tibialis anterior 

and lateral gastrocnemius during the maximal reach of the SEBT.  Where significant 
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main effects were found, post-hoc analysis, with pairwise comparisons with Bonferonni 

adjustment were used.  One participant’s data set was removed due to a higher degree of 

variability.  This participant was unsure of their limb dominance which may have been a 

reason as to this higher amount of RMS variability. 

 Muscle agonist/antagonist co-activation between the vastus lateralis and biceps 

femoris and the tibialis anterior and lateral gastrocnemius was determined through the 

following calculation (68): 

    
                  

                  
                                            

A two factor (reach direction x condition) repeated measures ANOVA was used 

to analyze for any significant main effects for the CI across different conditions. 

 

Peak isokinetic torque: 

All assumptions were met for ANOVA with the exception of slight kurtosis in the 

peak torque data set.  

A three factor (muscle x contraction type x condition) was used to look for main 

effects and interactions.  

All statistical analyses were conducted with SPSS 16.0 (SPSS Inc., Chicago, 

Illinois).  Statistical significance was set at P<0.05. 
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Results: 

Cooling protocol: 

During each of the 4 trials, participants were exposed to a different environmental 

condition.  Additionally, within each trial, participants underwent two exposures: First, a 

20 minute seated exposure to room air, ankle, knee, or hip high 12°C water (CWI1); and 

second, a 10 minute seated exposure to the same condition as during the first exposure 

(CWI2).  In general, with each different depth of cold water immersion (CWI), the skin 

of the immersed lower limb segment (foot, shank, thigh) was significantly cooled.  This 

cooling effect followed a parabolic pattern with the quickest cooling occurring within the 

first half of the immersion duration.  During the hip CWI 1 & 2 the thigh skin 

temperature was significantly cooled from 31.9 ± 1.3°C to 21.5 ± 3.7°C (P<0.001) 

(Figure 4.1A) and 28.8 ± 1.2°C to 22.7 ± 4.0°C (P≤0.012) (Figure 4.1B) respectively: 
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Figure 4.1: Thigh skin temperature (A: Top panel, 20 min. CWI) A repeated measures ANOVA was 

performed on the final minute of the CWI (Min 20). After a greenhouse-geisser adjustment, a significant 

main effect was found for the thigh skin temperature in relation to thermal conditions (F(1.09, 7.65)=51.49, 

P<0.001, ƞ²=.880).  With Bonferroni adjustments, post-hoc pairwise comparisons showed a significant 

 Data points 

represent 1 min. averages.  Error bars represent ± 1 SE.  (B: Bottom panel, 10 min. CWI)  A repeated 

measures ANOVA was performed on the final minute of the CWI (Min 10).  After a greenhouse-geisser 

adjustment, a significant main effect for thigh skin temperature was found (F(1.14, 6.81)=28.04,  P=0.001, 

ƞ²=.824). With a Bonferonni adjustment, post-hoc analysis revealed that the thigh skin cooling was 

signi .  

Data points represent 1 min. averages.  Error bars represent ± 1 SE.  
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Figure 4.2: Shank skin temperature (A: Top panel, 20 min. CWI) A repeated measures ANOVA was 

performed on the final minute of the CWI (Min 20). After a greenhouse-geisser adjustment, a significant 

main effect was found for the shank skin temperature in relation to thermal conditions (F(1.33, 

9.29)=310.1, P<0.001, ƞ²=.978).  With Bonferroni adjustments, post-hoc pairwise comparisons showed a 

 Data 

points represent 1 min. averages.  Error bars represent ± 1 SE.  (B: Bottom panel, 10 min. CWI)  A 

repeated measures ANOVA was performed on the final minute of the CWI (Min 10). After a greenhouse-

geisser adjustment, a significant main effect for shank skin temperature was found (F(1.60, 12.76)=236.83, 

P<0.001, ƞ²=.967).  With a Bonferonni adjustment, post-hoc analysis revealed that the skin cooling was 

. 

Data points represent 1 min. averages.  Error bars represent ± 1 SE. 
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During the hip and knee CWI, shank skin temperature was significantly cooled.  

As a result of CWI1 and CWI2, shank skin temperature dropped from 30.7 ± 1.1°C to 

17.3 ± 1.5°C (P<0.001) (Figure 4.2A) and 26.0 ± 1.1°C to 17.6 ± 2.3°C (P<0.001) 

(Figure 4.2B) respectively *see previous page for figures. 

During the ankle, knee and hip CWI, dorsal foot skin temperature was 

significantly cooled.  Due to CWI1 and CWI2, dorsal foot skin temperature dropped from 

29.7 ± 1.5°C to 16.2 ± 1.6°C (P<0.001) (Figure 4.3A) and 22.2 ± 1.8°C to 15.3 ± 1.0°C 

(P<0.001) (Figure 4.3B) respectively * see next page for figures: 
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Figure 4.3: Dorsal foot skin temperature (A: Top panel, 20 min. CWI) A repeated measures ANOVA 

was performed on the final minute of the CWI (Min 20).  A significant main effect was found for the dorsal 

foot skin temperature in relation to thermal conditions (F(3,18)=136.37, P<0.001, ƞ²=.958).  With 

Bonferroni adjustments, post-hoc pairwise comparisons showed a significant difference between all 3 CWI 

.  The ankle CWI compared to the hip CWI approached but was not 

significant at P=0.077. Data points represent 1 min. averages. Error bars represent ± 1 SE. (B: Bottom 

panel, 10 min. CWI) A repeated measures ANOVA was performed on the final minute of the CWI (Min 

10).  A Significant main effect for dorsal foot skin temperature was found (F(3,18)=165.43, P<0.001, 

ƞ²=.965).  With a Bonferonni adjustment, post-hoc analysis revealed that the skin cooling was significantly 

different for the ankle, knee and hip immersions compared to the control.  Effect was similar for knee and 

hip immersion  (P<0.001). Additionally, after the 10 minute CWI, foot skin temperature was significantly 

.  Error bars represent ± 1 SE. 
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Muscle temperature: 

In addition to skin cooling from the CWI, superficial Tmu of the thigh (vastus 

lateralis) and shank (lateral gastrocnemius) was impacted.  Tmu measurements were taken 

on participants within 5-7 minutes of them exiting the cooling tank.  Vastus lateralis was 

cooled only with the hip CWI (P<0.001) where Tmu dropped to an average temperature of 

27.8 ± 1.7°C compared to the other 3 test conditions which averaged a vastus lateralis Tmu 

of 32.9 ± 0.9°C (Figure 4.4A, top panel).  The lateral gastrocnemius was cooled from 

both the hip and knee CWI (P<0.001) where Tmu dropped to an average temperature of 

22.9 ± 1.0°C compared to the ankle CWI and control conditions which averaged a lateral 

gastrocnemius Tmu of 31.0 ± 1.0°C (Figure 4.4B, bottom panel). 
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Figure 4.4: Muscle temperature (A. Top panel: first exposure) and (B. Bottom panel: second 

exposure) muscle temperature.  A 3 factor (muscle x exposure x condition) repeated measures ANOVA 

was performed on all muscle temperature measurements for the vastus lateralis and lateral gastrocnemius.  

A significant main effect for condition was found (F(3,12)=161.97, P<0.001, ƞ²=.976).  A significant 

interaction between muscle and condition was found (F(3,12)=106.47, P<0.001), ƞ²=.964).  Follow-up 

repeated measures ANOVA for vastus lateralis and lateral gastrocnemius against conditions were 

performed which both had significant main effects (F(1.93,28.87)=94.77, P<0.001, ƞ²=.863) and 

(F(3,30)=335.49, P<0.001, ƞ²=.971) respectively.  With Bonferonni adjustments significance was found 

with pairwise comparisons.  Hip immersion had a significant cooling effect on the vastus lateralis  

(P<0.001) while knee and hip immersion had a significant cooling effect on the lateral gastrocnemius  

(P<0.001).  Bars represent mean.  Error bars represent ± 1 SE 
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Skin temperature during strength and balance tasks: 

Balance and strength tasks were completed within approximately 10 minutes of 

muscle temperature measures.  It is likely that muscle temperature was slightly elevated 

during strength and balance tests beyond what was quantified, although given the 

technical challenges of the experimental design (i.e. testing in separate labs, EMG 

normalization) this temporal deficit could not have been diminished to any greater level 

without compromising data collection or safety of the participant. 

Skin temperature of the thigh, shank and dorsal foot were measured during the 

balance and strength tasks.  Although, like the potential muscle rewarming, skin 

temperature was warmer than when measured post CWI but was still significantly cooler 

than when the skin was not exposed to the cold water immersion.  In certain conditions, 

there was also a difference due to rewarming across the balance and strength tasks, again, 

as a result of skin rewarming after CWI in room temperature air.  
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Thigh skin temperature: 

During the hip immersion condition at the strength and balance task time points, 

the thigh temperature was significantly colder compared to all 3 other thermal conditions 

at the same time points (Figure 4.5).  The temperature dropped from an average of 32.2 ± 

0.6°C to 27.7 ± 2.0°C (P<0.01).  There was also approximately 1.0°C difference of thigh 

skin temperature when cooled during the hip immersion between the dynamic and static 

balance tests due to rewarming (P=0.11).  

 

 

Figure 4.5: Task thigh skin temperature: A repeated measures ANOVA revealed a significant main 

effect for all thigh skin temperature during the strength and balance tasks after environmental exposures 

(F(11, 99)=37.52, P<0.001, ƞ²=.807).  Bonferonni adjusted pairwise comparisons revealed significant 

differences in thigh skin temperature during the isokinetic, SEBT and SS tests after exposed to the hip CWI 

compared to all other conditions  (P<0.01). There was also a significant difference between the thigh skin 

temperature between the SEBT and SS during the hip immersion trial (P=0.011).  Bars represent mean.  

Error bars represent ± 1 SE. 
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Shank skin temperature: 

After the knee and hip CWI shank skin temperature was significantly lower 

during the strength and balance tasks when compared to the same time points after the 

control and ankle CWI conditions (P<0.05) (Figure 4.6).  The shank temperature dropped 

from an average of 30.8 ± 0.9°C during the ankle CWI and control conditions to an 

average of 26.1 ± 1.0°C during the knee and hip CWI tasks.  There were also some 

significant differences of ~2.0°C between the tasks during the knee (P<0.05) and hip CWI 

(P<0.01) as the skin warmed back up.  

 

 

Figure 4.6: Task shank skin temperature: A repeated measures ANOVA revealed a significant main 

effect for all shank skin temperatures during the strength and balance tasks after environmental exposures 

(F(11, 99)=128.41, P<0.001, ƞ²=.935).  Bonferonni adjusted pairwise comparisons revealed significant 

differences in shank skin temperature during the isokinetic, SEBT and SS tests after exposed to knee and 

hip CWI compared to ankle CWI and control conditions  (P<0.05).  After the knee CWI, shank skin 

temperature was significantly different during isokinetic, SEBT and SS tasks do to the temporal effect of 

rewarming in ambient room air (P<0.05). During the hip CWI SS task, shank skin temperature was 

significantly different from both SEBT and isokinetic tasks, again due to rewarming (P<0.01).  Bars 

represent mean.  Error bars represent ± 1 SE. 
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Dorsal foot skin temperature: 

After the ankle, knee and hip CWI dorsal foot skin temperature was significantly 

lower during the strength and balance tasks when compared to the same time points after 

the control condition (P<0.01) (Figure 4.7).  The dorsal foot skin temperature dropped 

from a mean of 28.2 ± 1.9°C during the control temperature tasks to an average of 21.2 ± 

1.5°C during the ankle, knee and hip CWI tasks. There was also a ~ 1.0°C difference 

between the dorsal foot skin temperatures during the two balance tasks after the foot had 

been submerged which appeared as significant (P<0.01).  

 

 

Figure 4.7: Dorsal foot skin temperature: A repeated measures ANOVA revealed a significant main 

effect for all dorsal foot skin temperature during the strength and balance tasks after environmental 

exposures (F(11, 99)=75.09, P<0.001, ƞ²=.893).  Bonferonni adjusted pairwise comparisons revealed 

significant differences in dorsal foot skin temperature during the isokinetic, SEBT, and SS tests after 

exposed to ankle, knee and hip CWI compared to the control condition  (P<0.01).  During the control 

condition dorsal foot skin temperature was significantly different between the isokinetic and SEBT testing 

(P=0.016).  During the ankle, knee and hip CWI dorsal foot skin temperature was significantly different 

between the SEBT and SS testing (P=0.003, 0.007, 0.001).  During the SEBT, skin temperature was 

significantly lower during hip immersion than ankle immersion (P=0.03).  Bars represent mean.  Error bars 

represent ± 1 SE.  
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Core temperature: 

A 1 minute average of core temperature (Tre) was measured during the first and 

last minute of both environmental exposures (control, CWI1 & 2).  A 1 minute average 

was also measured during the time point in each trial when isokinetic, dynamic and static 

balance testing occurred.  No significant change in Tre was detected across environmental 

exposures during CWI and strength and dynamic balance tasks.  Within knee and hip 

CWI1 and knee CWI2 a significant rise (0.1 ± 0.02°C) in Tre was noticed between the 

first and last minutes of exposure (P<0.01).  Within the static balance task a significant 

main effect across conditions was observed (P<0.05).   

 

 

 

Figure 4.8: Tre during critical trial time points: With a repeated measures ANOVA a significant main 

effect during SS was observed (F(3, 27)=3.19, P<0.05, ƞ²=.262).  No pairwise comparisons were 

significant.  Bars represent mean.  Error bars represent 1 ± SE.   
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Figure 4.9: Core (Tre) temperature start/end of CWI1 (A: Top panel ) and CWI2 (B: Bottom panel): 

Individual repeated measures ANOVA within conditions detected a significant main effect for T re for the 

knee (F(1, 9)=25.31, P<0.01, ƞ²=.738) and hip (F(1, 9)=19.17, P<0.01, ƞ²=.680) CWI1 and knee (F(1, 

9)=11.84, P<0.01, ƞ²=.568) CWI2.  Bars represent mean.  Error bars represent ± 1 SE.    

 

  

35.5 

36.5 

37.5 

38.5 

39.5 

Control Ankle CWI Knee CWI Hip CWI 

T r
e 

(°
C

) 

Core Temperature (Tre) at start and 
end of CWI1 

Start CWI 

End CWI 

35.5 

36.5 

37.5 

38.5 

39.5 

Control Ankle CWI Knee CWI Hip CWI 

T r
e 

(°
C

) 

Core temperature (Tre) at start and 
end of CWI2 

Start CWI 

End CWI 



71 

 

Trial Mean skin temperature: 

A 4-site model for mean body skin temperature was used to monitor thermal 

variation (see appendix A).  Although the CWI did directly impact temperature of the 

exposed body segments, the upper body remained largely unaffected which resulted in a 

moderated effect on mean skin temperature throughout the trials.  Despite this moderation 

there was still a significant drop in mean skin temperature between the knee and hip 

immersion trials compared to the control and ankle CWI trials (P<0.05) (Table 4.1). 

 

 

 

 

 

Table 4.1: Mean skin temperature (  sk).  A significant main effect was found across environmental 

conditions (F(3,18)=15.40, P<0.001, ƞ²=.720).  Pairwise comparisons with Bonferonni adjustment applied 

revealed a significant difference between mean skin temperature during the knee and hip CWI trials 

compared to the ankle CWI and control conditions (P<0.05).  *Significance accepted at P<0.05.  

 

 

 

 

 

Mean skin temperature (T sk) during experimental trials 

 Control  Ankle CWI Knee CWI Hip CWI 

Mean (°C) 31.50 31.62 30.77  

 

29.73  

 ± 1 SE 0.08 0.07 0.09 0.11 
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Isokinetic peak torque: 

No significant changes in peak concentric and eccentric torque for the quadriceps 

femoris and hamstrings muscle groups were found across conditions.  See figure 4.10 A 

and B for peak torque values.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 (A: Top panel) Isokinetic quadriceps femoris peak torque. (B: Bottom panel) Isokinetic 

hamstrings peak torque.  Values represent mean.  Error bars represent ± 1 SE.  
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Balance performance: 

SEBT: 

Across the different thermal conditions, a significant drop in reach distance for 

both anterior (Figure 4.11A, top panel) and posterior (Figure 4.11B, bottom panel) 

directions of the SEBT was observed (P<0.05).  This significant value was for the hip 

immersion reach distances versus the control and ankle conditions.  Across all 4 

conditions, the mean SEBT reach distance showed a decreased reach distance each time 

more of the lower limb was exposed to the cold water immersion.  
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Figure 4.11 (A: Anterior reach, Top panel) (B: Posterior reach, Bottom panel)   
SEBT Reach distance and across environmental conditions.  A significant main effect 

was found for reach distance comparing anterior to posterior reach (F(1,9)=92.72, 

P<0.0001, ƞ²=.912).  After a greenhouse-geisser adjustment was performed a significant 

main effect was found for reach distance across thermal conditions 

(F(1.695,15.252)=5.62, P=0.018, ƞ²=.385).  With Bonferroni adjustment for multiple 

comparisons, post-hoc analysis of this thermal condition main effect revealed a 

significant difference in reach distance between the control and hip CWI (P=0.01) and 

ankle CWI and hip CWI conditions (P=.025).  Error bars represent ± 1 SE. 

Significance accepted at P<0.05 
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When layering mean reach distance with the relative volumes of the affected limb 

segment during each different immersion depth it becomes apparent that, although the 

ankle CWI did not significantly impair reach distance, hypothetically it did have the most 

significant impact on reach distance if we compare the relative volume of the foot to that 

of the shank and thigh as a weighted mean (See below, Figure 4.12 and Table 4.2, See 

Equation 6 in Appendix A for weighted mean calculation). 

 

 

Figure 4.12: SEBT mean reach distance relative to additive lower limb volumetric analysis.  The 

percentage change in SEBT reach relative to maximal SEBT reach during control condition was adjusted 

through the relative segmental (foot, shank, thigh) volumetric contribution to overall lower limb volume.  

Table 4.2: Relative segmental contribution to volume of lower limb.  

Relative segmental contribution to volume of lower limb 

Thigh volume (cm
3
) Shank volume (cm

3
) Foot volume (cm

3
) 

6480.19 ± 1326.83 3858.76 ± 579.51 1027.80 ± 66.91 

Thigh volume / total volume (%) Shank volume / total volume (%) Foot volume / total volume (%) 

57.01 33.95 9.04 
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Joint kinematics: 

Joint angles of the dominant leg were recorded and analyzed during the maximum 

reach distance during SEBT of each participant.  No statistically significant effects were 

found.  

 
 

 

 

 

 

 

 

Figure 4.13 (A: Top panel) Knee flexion angle at maximum reach distance across 

environmental conditions (180° = full knee extension).  (B: Bottom panel)  Ankle 

dorsiflexion at maximum reach distance across environmental conditions (0° = neutral ankle 

posture).  Error bars represent ± 1 SE. 
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Maximum reach distance of the SEBT can be correlated to the amount of ankle and 

knee flexion achieved.  Through a Pearson’s r correlation it was found that knee flexion 

(Figure 4.14A) did not correlate in the anterior direction, although there were medium 

positive correlations (r=.358 & .385) between ankle dorsiflexion in both anterior (Figure 

4.14B) and posterior (Figure 4.15B) SEBT directions as well as a strong negative 

correlation (r=-.556) between reach distance and knee flexion when reaching backwards 

during the SEBT (Figure 4.15A).  The data set although slightly kurtotic did not violate 

assumptions greatly enough to utilize Spearman’s rho (although these values were quite 

similar when analyzed) 
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Figure 4.14A: Support leg knee flexion angle and maximal anterior SEBT reach distance.  (r=-

.058). 

 
Figure 4.14B: Support leg ankle dorsiflexion angle and maximal anterior SEBT reach distance.  

(r=.385)  * significant at P<0.05. 
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Figure 4.15A: Support leg knee flexion angle at maximal reach during posterior SEBT 

excursion attempt. (r=-.556) ** significant at P<0.01.  

 
 

Figure 4.15B: Support leg ankle dorsiflexion angle at maximal reach during posterior SEBT 

excursion attempt.  (r=.358) * significant at P<0.05. 
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SEBT Muscle activation: 

Through analysis of the root mean square (RMS) of the normalized EMG activity 

around a 250 ms data window of the maximal reach, several observations present 

themselves.  First, reliance on the vastus lateralis is greater than the other 3 muscles 

measured during the maximal reach of the SEBT.  This is seen through a significant main 

effect (F(1.79,14.33)=15.67, P<0.001, ƞ² = .662) and a significant pairwise comparison 

between the vastus lateralis and the 3 other muscle groups (P<0.05) within the three 

factor ANOVA.  Second the muscle activation patterns differed within muscle groups 

depending on the reach direction.  This is seen through a significant main effect of the 

two factor ANOVA for the biceps femoris (F(1,9)=8.43, P<0.05), ƞ²=.484) and tibialis 

anterior (F(1,9)=8.65, P<0.05, ƞ²=.490)  For example, the tibialis anterior and biceps 

femoris muscles are more active during the maximal reach in the posterior reach direction 

than the anterior reach direction.  (See figures 4.16A-B and 4.17A-B)  
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Figure 4.16 (A: Top panel) Thigh muscle activation during anterior reach of SEBT.  (B: Bottom 

panel) Thigh muscle activation during posterior reach of SEBT. Bars represent mean.  Error bars 

represent ± 1 SE. 
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Figure 4.17 (A: Top panel) Shank muscle activation during anterior reach of SEBT.  Lateral 

gastrocnemius activity across condition approached but was not significant (P=0.059) (B: Bottom panel) 

Shank muscle activation during posterior reach of SEBT.  Bars represent mean.  Error bars represent ± 

1 SE. 
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SEBT Muscle Co-activation: 

The larger the magnitude of the CI calculated, the greater the amount of co-

activation that occurs.  No significant changes in co-activation were seen between the 

vastus lateralis and biceps femoris (Table 4.3A) as well as the tibialis anterior and lateral 

gastrocnemius (Table 4.3B).  There does appear to be marginal increase of co-activation 

between vastus lateralis and biceps femoris although due to the variability of reach 

patterns between and within individuals this data is extremely difficult to base any 

conclusive results.  

 

Table 4.3A: Thigh muscle co-activation during maximal reach of SEBT.  Mean  ± 1 SE. 

 Thigh muscle co-activation during maximal reach of SEBT 

Control Ankle CWI Knee CWI Hip CWI 

Anterior reach 66.90 ± 16.20 79.53 ± 26.27 62.47 ± 14.30 80.11 ± 24.40 

Posterior reach 78.65 ± 23.09 82.13 ± 28.10 85.29 ± 21.34 72.71 ± 20.88 

 

Table 4.3B: Shank muscle co-activation during maximal reach of SEBT.  Mean  ± 1 SE. 

 Shank muscle co-activation during maximal reach of SEBT 

Control Ankle CWI Knee CWI Hip CWI 

Anterior reach 27.78 ± 3.49 29.93 ± 5.15 25.37 ± 3.09 28.71 ± 4.51 

Posterior reach 31.78 ± 3.46 35.66 ± 7.72 28.67 ± 3.50 21.08 ± 3.24 
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Stork stand test: 

 Participants experienced a reduction in the time that they were able to maintain 

their stork stand when exposed to CWI.  The data shows a decrease in time in seconds 

across conditions (control  hip), although the variability of the time between 

participants, especially within the control condition, weakened the pattern.  No pairwise 

comparisons were observed between conditions (see figure 4.18).  

 

Figure 4.18: Stork stand performance. A significant main effect was found for stork stand performance 

across CWI depths (F(3,27)=4.89, P=0.008, ƞ²=.352).  No significant pairwise comparisons were found. 

Data points represent mean SS time.  Error bars represent ± 1 SE. 
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Discussion: 

 This study sought out to discover the impact that CWI has on dynamic balance 

performance as well as static balance and isokinetic strength involving the lower 

extremities.  Specifically the study examined the proportional significance that each 

segment of the lower extremity, the foot, shank, and thigh to be exact, might have with 

regards to impairment from the cold and contribution to kinesthetic, test battery 

performance. 

 Three null hypotheses were established at the outset of the study which related to 

the environmental effect from the novel CWI protocol:   

1. A decrease in muscle, skin and joint temperature of the foot and ankle will not 

contribute to a greater relative decrease in balance performance (SEBT reach 

distance, SS time) compared to cooling down a greater volume of the lower limbs 

in the SEBT and SS tasks.  

2. Peak torque of the quadriceps and hamstrings will not be reduced to the greatest 

extent with entire lower limb cooling compared to knee and/or ankle cooling. 

3. In regards to EMG, there will be no significant increase in muscular co-activation 

between agonist and antagonist pairings with cold exposure across all conditions 

during maximal reach of the SEBT.  The greatest amount of co-activation in a 

muscle pairing will not occur when the muscle temperature is directly influenced 

by the CWI (i.e. there will be no difference in the co-activation between biceps 

femoris and vastus lateralis across all conditions).  

These hypotheses will be addressed throughout the discussion. 
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Cooling protocol: 

 Previous research has looked at the impact of tissue cooling during and within a 

short time after cold water (82, 117, 119, 121), cold air (95, 110) and ice pack (36, 75) 

modalities and the impact of rewarming after a long post cold exposure recovery period 

(153).  Dependent on the modality type, temperature and exposure time, as well as 

participant adiposity, and limb girth, which can all affect the thermal gradient, a variety 

of tissue temperatures result (107).  This can make it difficult to generalize the effect of 

cold temperature on the body.  The 20 minute and 10 minute 12°C CWI utilized during 

this study provided sufficient time and thermal stress to generate significant cooling 

(P<0.001) both of the skin and superficial skeletal muscle of the lower extremities.  The 

room temperature environment (22.4 ± 0.8°C), after CWI exposure, allowed for 

significantly cooler skin temperature for the limb segment(s) exposed (thigh and foot 

P<0.01 and shank P<0.05) versus non-exposure during the strength and balance tasks 

which occurred between ~10-20 minutes after CWI.  It is possible for up to 60 minutes 

after cold exposure for effects from that exposure to still manifest within the individual 

(153).  It would be ideal to perform the balance and strength tasks immediately after 

CWI, although this wasn’t possible, due to logistics and Tmu measurements.  The balance 

and strength tasks were still performed within 60 minutes of CWI due to the dual phase 

methodology where 2 CWI were performed during each experimental trial. 

 Although the dual phase protocol worked sufficiently well for our purposes it 

would be advisable for future studies to use caution when using a dual phase cooling 

protocol.  The dual phase cooling protocol adds an extra level of complexity where more 

is likely to go wrong during each trial.  For example, it was a challenge to keep skin 
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thermistors on when participants entered and exited the immersion suit.  Performing a 

suit ingress and egress twice, provided more opportunity for wires to become ensnared 

and break or tape to come unstuck.  The dual phase protocol also made it difficult, but not 

impossible, to keep consistent skin and muscle temperatures between the strength task in 

the first phase and balance tasks in the second phase.  This could be due to the fact that it 

is found that muscle temperature often lags behind skin temperature both during cooling 

and rewarming (22).  As a result, during the second Tmu often a lower value, although not 

statistically significant, was obtained compared to the first recording.  This might have 

been due to the Tmu starting the second CWI in a colder than normal state and 

subsequently, even the shorter 10 minute CWI, still brought the Tmu down further than 

after the first CWI.  Therefore if studies are trying the establish relationships based on 

muscle temperature and different kinesthetic tasks it might be best to have participants 

endure separate CWI and tasks on different days to maintain ideal Tmu congruence.       

Isokinetic strength:    

When skeletal muscle and the surrounding tissue are cooled previous research has 

indicated that isokinetic strength is reduced (67, 131).  Therefore it was thought that peak 

isokinetic torque of the knee extensors and flexors would be reduced the most with the 

entire limb exposed to the CWI.  It was thought that quadriceps femoris and hamstrings 

peak torque could be reduced with ankle and knee CWI as well.  It was thought that 

perhaps cooling the ankle might influence how much force a participant could exert 

against the ankle pad of the isokinetic lever arm due to altered mechanoreceptor 

sensitivity.  By cooling up to the knee it was thought that increased knee joint or patellar 

ligament stiffness might negatively impact isokinetic peak torque.  Unfortunately the 
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speed at which the isokinetic testing occurred in the current study might have been too 

slow to elicit a significant drop in peak torque regardless of CWI exposure level.  This 

may be the case as past research shows the reduction in peak torque due to cooling is 

linked to the speed at which the contraction is executed (67).  Howard and colleagues 

noticed that, at concentric isokinetic velocities reaching 180°/s and faster, peak torque 

was reduced by ~25-27% with muscle cooling from a 12°C water bath up to the gluteal 

fold (67).  At a velocity of 0-30°/s no significant reduction in peak torque was found (~4-

10% reduction) from the same cooling protocol (67).  

Due to the small number of participants who were run through the current 

isokinetic testing protocol successfully (n=4) not much can confidently be stated about 

12°C CWI on isokinetic peak torque at 45°/s. Inferring to the pattern established over the 

4 test conditions and keeping in mind that slower isokinetic concentric velocities appear 

to be less influenced by cold temperatures, it is hypothesized that the relatively slow 

contraction speed used in this study also created a situation where no significant 

reduction in peak torque of the quadriceps femoris and hamstrings muscle groups 

occurred.  It could be that the faster contraction speeds in colder conditions exaggerate 

the ‘braking effect’ of antagonist muscle groups which causes the drop in peak torque 

(114).  It could also be as a result of increased joint stiffness which provides significantly 

increased resistance only at faster contraction velocities (131).  What can be said about 

this current study is that the peak torque values that were obtained are similar to other 

studies (40, 106).  At relatively slow isokinetic speeds (30-180°/sec.) a 0.5 strength ratio 

of the knee flexors to knee extensors has been observed (106).  The current study showed 

an average hamstrings to quadriceps peak torque ratio of 0.64 ± 0.03 concentric and 0.58 
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± 0.06 eccentric across all conditions.  Therefore, it could be stated that with this study 

that the torque ratio between the quadriceps and hamstrings was not disrupted by the cold 

exposure.   

The reason behind including a slow speed isokinetic strength component in this 

study was to determine if muscular strength of the thigh, an important component to the 

successful execution of the SEBT (32), was influenced by cold exposure and could 

therefore be a reason as to why SEBT performance was reduced with lower limb cooling.  

No significant change in torque was seen across conditions.  Therefore we must accept 

the null hypothesis and reject the alternative.  It is plausible that, despite inconsistencies 

in correlating balance and strength (46, 47, 91, 99), the muscular strength needed for the 

SEBT, which is executed at a relatively slow joint velocity, was not severely impacted by 

the cold to become a factor in the impairment of the test performance when the lower 

limb, specifically the thigh, was cooled.  

Static balance performance: 

The time one is able to hold the stork stand posture for is related to how strongly 

their visual, vestibular and somatosensory organs can integrate to allow one to maintain 

their balance in a static position (143).  As a greater limb volume was cooled and 

therefore potentially more of the somatosensory organs were impaired by the cold 

exposure, a greater reduction in the mean stork stand time was found.  Shortest mean 

stork stand times were found after the entire lower limb was submerged from the hip 

CWI (17.96 ± 3.95s control versus 7.55 ± 1.15s hip CWI).  Many participants also 

remarked, without query from the researchers, that they felt that the hip immersion made 

it more difficult for them to maintain the stork stand position.   
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There are several possible reasons as to why there was decreased stork stand 

performance across environmental conditions.  Vision and vestibular balance components 

were not affected by the CWI, or tested in particular during the stork stand (i.e. eyes were 

kept open), which leaves the somatosensory component as the one part of balance that 

might have been influenced by the cold.  Previous research has demonstrated impairment 

of static balance with single (93, 94) and repeated (95) cold exposure through postural 

sway analysis.  Reasons stated as to why decreased static balance performance occurred 

runs parallel with this current study: One, stimulation of cutaneous afferents can 

influence motor recruitment patterns (recruitment order) (141).  Therefore, as more of the 

cutaneous mechanoreceptors were cooled due to the segmental cooling protocol, altering 

their sensitivity, this could have changed muscle behavior which might have made it 

more difficult to perform the stork stand by reducing effectiveness of postural 

corrections.  Two, cooling of sensory afferents can reduce their conduction velocity 

(129).  The greater the amount of the lower limb cooled (i.e. cooling entire limb versus up 

to knee) may have translated to greater impairments to afferent and efferent nerve 

conduction velocity to the foot to control COM.  Three, an increase in muscle tone can 

occur with muscle cooling (95).  During the stork stand, this increased muscle tone may 

have stiffened joints due to increased co-activation (115).  For example, cooling the hip 

joint might have increased joint stiffness and made it more challenging to perform hip 

movement strategies to keep their balance.  
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Dynamic balance performance: 

Previous research observed a 1% reduction in maximal excursion per degree 

Celsius drop in muscle temperature during a bipedal limit of stability test after a 60 min., 

15°C CWI up to the popliteal fossa (121).  A limit of stability test requires a participant to 

keep their feet stationary while actively shifting their COG as far as possible in a variety 

of directions and as such could be considered a dynamic stability task (121).  Similar to 

this past study by Piedrahita, SEBT performance during this study was reduced after 

CWI.  The anterior SEBT reach direction resulted in a relative drop in mean reach 

distance by 1.38, 2.48 and 4.73% for ankle, knee and hip CWI respectively compared to 

the control reach distance (figure 4.11A).  The posterior SEBT reach direction resulted in 

a relative drop in mean reach distance by 0.74, 2.74 and 4.05% for ankle, knee and hip 

CWI respectively compared to the control reach distance (figure 4.11B).  Significance 

was achieved for pairwise comparison between hip and the control and ankle conditions 

(P<0.05).  Caution should be taken interpreting these results as previous research has 

indicated that a 6-8% change in normalized reach distance is needed between tests to be 

certain that measurement error is not the main influence on results (105).  With this in 

mind it can be tentatively stated that hip immersion negatively impacted SEBT reach 

distance.  It is even possible that there was impairment in reach distance from ankle and 

knee CWI as there was a drop in the mean scores compared to the control.  Perhaps it was 

that the SEBT was not a sensitive enough field test to detect a significant change in reach 

distance due to cold exposure.  This is a possibility as cooling down just the plantar 

aspect of the feet with ice was enough in one study to generate a cautious walk pattern 

(less ground reaction force and braking peak force) (34) and in essence influence 

dynamic balance.   
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Hypothetically if one ignores statistical significance and looks at the reduction in 

mean SEBT reach distances and then relates that to the limb volume exposed to the CWI 

as a weighted mean (see appendix A) a different pattern for reach distance versus 

environmental condition  becomes manifest.  The greatest magnitude dynamic balance 

performance drop comes when the relatively small volume of the foot is cooled (~11.7% 

drop in reach performance) compared to the shank (an additional ~4.6% drop in reach 

performance) and thigh (an additional ~3.1% drop in reach performance).  This result 

would be congruent with an alternative hypothesis that cooling down the foot would 

bring about the most substantial drop in balance performance.  This potential increased 

susceptibility to balance performance within the feet could be due to the increased density 

of superficial mechanoreceptors and the greater chance for restricting degrees of freedom 

(55).  It might be with more participants or more sensitive dynamic balance tests that this 

hypothetical analysis could show significance. 

However, from the current research, through reach distance and statistical 

analysis, we would have to accept the null hypothesis that cooling the feet alone would 

not cause the most significant impairment to dynamic balance and that it is only when the 

entire limb is cooled that balance performance suffers.  This could be due to the same 

environmental somatosensory impairment as stated during the static balance test.    

    There is a linear relationship between kinesthetic performance and body 

temperature (129).  This current experiment required CWI up to the hip to show a 

significant reduction in SEBT reach distance.  This thermal relationship and result 

generates two hypotheses: One, an integrative hypothesis, that it is the cumulative effect 

of more lower extremity volume cooled that led to reduced balance performance with hip 
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CWI, or two, a segregated hypothesis, that the hip and surrounding musculature, when 

cooled creates an impaired reach unique to SEBT mechanics.  Due to the integrated 

nature of the human body, the first hypothesis seems to intuitively bear more traction.  

For reasons similar to those given for the stork stand test performance (i.e. decreased 

nerve conduction velocity) and by looking at joint kinematics and muscle activation we 

can try to provide evidence for an integrative effect on dynamic balance performance 

from varying amounts of cold exposure.    

Joint kinematics:     

   Previous research has determined that sagittal plane joint kinematic analysis of 

the SEBT through passive marker and camera use is a reliable and valid method to 

capture joint angle data for slow dynamic motor tasks (50).  Within the context of this 

study, joint kinematics were used to determine if there were any changes in joint angle of 

the support leg at the ankle, knee and hip during the maximal reach of the SEBT 

throughout the 4 different environmental conditions.  Although no significant changes in 

joint angle at maximum reach were detected there were still some potential patterns 

within the data.  

Previous research on active ankle joint range of motion after CWI noted a 

significant drop in ankle dorsiflexion when participants were cooled in a 10°C whirlpool 

bath up to the fibular head (116).  The current study showed no significant change in 

ankle dorsiflexion at maximal reach of the SEBT.  It could be that there was a drop in 

ankle dorsiflexion although the challenge of placing the markers over four conditions and 

manually measuring the joint angles through MATLAB may have increased the chance 

for measurement error through decreased precision.  For example, previous research, 
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which proved the validity of 2-D kinematic analysis of the SEBT, did so over only 2 test 

sessions and achieved a standard error of 0.83° (50) at the ankle during maximal reach of 

the SEBT, not the 4 sessions which our study employed which achieved a larger standard 

error of 1.92°.  Pursuing a different avenue of thought, SEBT reach distance is thought to 

be correlated to reach distance (32).  Within this study through correlation of maximum 

reach distance and ankle dorsiflexion angle there was a moderate association between 

how far participants could reach and how much dorsiflexion was achieved (0.358 

Posterior reach ,0.385 Anterior reach, P<0.05).  This could lend evidence that the cold 

had no or a very minor effect on ankle dorsiflexion active range of motion within the 

closed kinematic chain SEBT movement.  The previous study which showed impairment 

to ankle dorsiflexion ROM did so in an open kinetic chain exercise (116).  It could be that 

the close chain, semi-squat exercise of the SEBT creates an effect which reduces the 

impact that cold has on ankle ROM.  Since the SEBT is closed chain it is important to 

look at the knee joint as well to observe what is occurring and relate that to the overall 

SEBT mechanics.          

No previous research has looked at changes in knee flexion during a balance task 

with cold immersion.  The current study showed a non-significant decrease in mean knee 

joint flexion angle at maximum SEBT reach as participants had greater amounts of their 

lower extremities exposed to a CWI.  The decrease was on a magnitude of 3-4° 

comparing knee flexion angle between the control to hip CWI conditions.  There was no 

significance achieved due in part to the higher than expected variability of the data.  The 

current study resulted in a standard error of 3.67° degrees at the knee over 4 sessions 

while the previous study looking at 2-D kinematics during the SEBT held a standard error 
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of only 1.70° over 2 sessions (50).  While there were no significant findings with knee 

angle in relation to the cold there was a moderately strong correlation with maximal 

posterior SEBT reach distance and knee joint angle (-.556, P<0.01).  Although no 

significant changes in either knee or ankle joint angles were found as a result of cold 

exposure it is still possible that there were slight changes in joint angle, which in turn 

affected reach distance of the SEBT.  It could be limitations due to measurement error 

with the 2-D kinematic analysis (i.e. standard error, frontal/transverse plane motion) 

which diminished any significant joint angle pattern from developing.   

If there is an effect of cold exposure on joint kinematics it would make sense that 

during the ‘squat-like’, closed kinematic chain motion of the SEBT that if cold restricts 

the ROM at one joint it would influence the ROM at other joints (140).  In the case of the 

current study a slight decrease in knee flexion angle was observed across environmental 

conditions.  However, one would expect to see a decrease in ankle dorsiflexion as well.  

There may have been a very small decrease in ankle dorsiflexion angle across conditions 

but the change was too small to be considered.  Therefore, if only a change in knee angle 

with CWI occurred it could be that the cold impaired joint mobility and coordination of 

joint ambulation.  For example, if during maximal reach of the SEBT ankle dorsiflexion 

was unchanged but knee flexion angle was reduced this might have moved an 

individual’s centre of gravity further forward making a fall or reach error more likely.    

Generally speaking, joint stiffness and coordination can be altered by the cold.  

Joint stiffness can increase with cold exposure due to increased synovial fluid viscosity 

(121), while joint coordination can be challenged from reduced joint position sense due to 

impaired glaborous superficial mechanoreceptors (34, 94, 138), or alterations in the 
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thixotropic properties of skeletal muscle (23, 136). It is difficult to pin down the exact 

mechanistic cause of the possible reduced knee joint angle at maximum SEBT reach.  

Perhaps employing electrogoniometers to more precisely measure joint angle would have 

helped to find more statistical significance and determine if the ankle dorsiflexion angle 

at maximum SEBT reach changed with cold exposure.  

Muscle activation:   

 Previous research has observed the averaged, normalized RMS value of the leg 

muscles during the SEBT (32).  Similar to this current study, Earl and Hertel found that 

the vastus lateralis, as well as the vastus medialis, regardless of reach direction, were the 

most active muscles during a 1-second window analyzing the averaged, normalized RMS 

around the maximal reach of the SEBT.  For instance, the present study during anterior 

and posterior reach of the SEBT generated a vastus lateralis RMS of between 80-120% 

MVC and a biceps femoris RMS of approximately 40-60% MVC.  Earl and Hertel found 

a vastus lateralis RMS of between 90-110% MVC and a biceps femoris RMS of roughly 

of 20-40% MVC (32).  The present study RMS values might be slightly higher due to the 

smaller 250 ms data window and particularly for the biceps femoris as the MVC for this 

muscle was recorded in a mechanically compromised position (60° knee flexion).  Earl 

and Hertel’s study also parallels the findings in this study regarding the reach direction 

and specific muscle activation patterns.  Both this study and theirs show a significant 

increase in biceps femoris and tibialis anterior activity (P<0.05) when reaching 

posteriorly in relation to the forward reaching task.  During the posterior SEBT  

participants reached higher degrees of knee flexion and ankle dorsiflexion (squatted down 

further).  It is possible with a ‘deeper’ squat that biceps femoris activity increased to 
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counter anterior shear of the tibia (37) or resist knee internal rotation (10) while the 

tibialis anterior increased to help stabilize the ankle (127) or manage COP (45).  

 Only one muscle group showed any change approaching statistical significance 

with respect to activation with cold exposure.  The lateral gastrocnemius muscle activity 

during the anterior reach of the SEBT dropped as the participant was cooled up to the 

knee and hip (P=.059).  Due to the bi-articular design of the gastrocnemius it is possible 

that if participants were not squatting down as far when cooled that the gastrocnemius 

activity would be reduced (127).  This would also provide evidence to show that there 

was indeed a change in knee joint angle at maximum SEBT reach from the CWI.  The 

reason why RMS and cold exposure significance was not detected could be due to the 

variability of the RMS values obtained throughout the course of the study.  Lateral 

gastrocnemius activity had a much lower variability between participants and trials 

compared to the other 3 muscles analyzed which allowed for a stronger statistical pattern 

to develop.  It could also be that the physiological changes from the cold and SEBT 

mechanics were not significant enough to elicit a response that could be detected by the 

sensitivity of the recording instruments. 

Muscle co-activation: 

Through use of the CI equation, listed in the methods section and appendix A, a 

statistical analysis was performed on the RMS data set of the agonist / antagonist 

relationship between the thigh muscles (vastus lateralis and biceps femoris) and shank 

muscles (tibialis anterior and lateral gastrocnemius) (see appendix E) during a 250 ms 

data window around the maximal reach of the SEBT.  During the maximal reach of the 

SEBT, the vastus lateralis and tibialis anterior acted as agonists while biceps femoris and 
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lateral gastrocnemius acted as antagonists based on the relative averaged and normalized 

RMS.  There was no statistically significant change in co-activation as a result of the 

cooling protocol.  This lack of significance is most likely due to the high degree of 

variability in the averaged RMS value that was obtained.  Variability was due to intrinsic 

factors such changes in how participants reached from one trial to the next (i.e. more / 

less hip flexion) and how well and consistently they performed the normalization MVC.  

Variability was also due to extrinsic factors related to skin preparation and EMG sensor 

location between trials although great care was taken to minimize these extrinsic factors. 

When one looks at the CI values, despite the lack of significance, there does appear to be 

a general increase in co-activation of the vastus lateralis and biceps femoris as the limb is 

cooled regardless of if the thigh was cooled directly or it was only the foot with a lower 

tissue temperature from ankle CWI.  For example during the anterior SEBT the control 

thigh CI was 66.9 versus a thigh CI of 74.0 after the limb had been exposed with CWI up 

to the ankle, knee of hip.  This pattern of increased co-activation of agonists and 

antagonists due to cold exposure has been documented previously (7, 111, 113, 123).  

Within this study, the possible increased co-activation within the thigh from the 

CWI could be due to a drop in the average RMS of the vastus lateralis and a modest 

increase in biceps femoris activity when compared to the control (see figure 4.16A-B). 

The decrease in vastus lateralis RMS could be due to both the direct physiological affect 

of the cold influencing motor unit recruitment (141) or indirectly due to a reduced reach 

distance which was a result of the participants not squatting down as far as they did when 

under the control condition.  The modest increase in biceps femoris activity, even when 

not cooled directly, could be a result of reflexive mechanisms (crossed extensor reflex) as 
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a means to protect the limb from injury when cooling reduces proprioceptive ability (92).  

It would have been advantageous to measure EMG activity in the reaching limb to see if 

patterns changed to reinforce the possibility that a crossed extensor reflex resulted from 

the cold exposure.  As mentioned, ultimately it might be down to the squat mechanics, 

specifically the joint angle at maximum reach which dictated the hamstrings RMS 

activity.  During the control condition, when the participant average knee joint angle at 

maximum SEBT reach was the most flexed, resulted in a reduced hamstrings RMS 

activity compared to the CWI conditions.  This might be due to the hamstrings being in 

more of a mechanically compromised state (shortened length) then during less knee 

flexion in maximal SEBT reaches (55).  It would have been possibly more advantageous 

to select a specific joint angle during excursion to compare RMS values instead of the 

maximal reach.  This might have filtered out the variability in squat mechanics as a factor 

for RMS and CI differences across conditions.  Although there is evidence pointing for 

increased CI with cold exposure, based on statistical analysis there was no change and 

therefore the hypothesis that cold exposure would not increase CI is accepted. 

 To conclude, all 3 null hypotheses based on the statistical evidence had to be 

accepted.  Observational evidence seems to show a linear decrease in SEBT performance 

as more volume of the lower extremities is cooled by a 12°C water immersion.  However, 

these drops in performance are relatively small and it is only hip CWI that causes 

significant impairment.  Isokinetic strength at 45°/s was not impaired with cooling and so 

it is plausible that muscular strength required to perform the SEBT was not reduced to a 

level which affected reach distance.  Electromyographic activity supports the linear and 

angular kinematic data that show little effect of cold exposure on dynamic balance 
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performance.  It is most likely that the cold does have an impact on dynamic balance 

performance through impairment of a variety of NMS sub-units, but more sensitive tests 

or more participants are required to prove that dynamic balance performance is 

significantly impaired.        

Application to boardsports: 

 In relation to athletics and boardsports in particular, the results of this study 

demonstrate one item of importance.  Maintaining adequate levels of warmth within the 

lower extremities and specifically distal regions can be key to balance performance. 

Many boardsport enthusiasts may neglect the warmth maintained within their feet by 

either not wearing appropriate / adequate insulation in regards to skiing and 

snowboarding or in the case of kiteboarding go without wetsuit booties or opt for a ¾ 

length wetsuit in water temperatures which rapidly conduct/convect heat away from the 

body.  This act could put the boardsports athlete at increased risk for injury or at least 

reduce their performance and enjoyment of their respective disciplines.  For example, it 

has recently been observed that lower ambient temperatures result in an increase 

occurrence of knee injuries in female alpine skiers (125) and that even as skiers remain 

active their intra-articular temperature can drop (8).   

Future Directions:  

Previous research had mentioned that there was a need to look at the effect that 

cold temperature has on more challenging dynamic balance tasks (95).  The SEBT was 

one such field test that lent itself well to see what kind of relationships exist between 

thermal stress and the NMS during taxing dynamic balance motor tasks.  However, only 

2 of a possible 8 reach directions were used in this study due to reliance on the sagittal 
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plane for joint kinematics and also due to the time constraints within the study 

(rewarming).  Future studies could look at lateral reach directions to see if impairment is 

incurred from cold exposure.  

This study dealt with constant thermal stress for its CWI and so when participants 

were exposed up to the ankle this resulted in a significantly warmer dorsal foot 

temperature during the SEBT and SS then when the lower limb was cooled up to the knee 

or hip (~22°C with ankle CWI versus ~20°C with knee and hip CWI).  This could have 

skewed the results with an effect of decreasing the impact that cooling the foot alone had 

on balance performance. Future studies could elect to use a constant thermal strain model 

for its CWI where a slightly colder temperature for the ankle CWI could be used.  

A revisit of isokinetic muscular strength and CWI could be undertaken in future 

studies.  A focus on eccentric muscle contractions as well as utilizing a closed kinetic 

chain leg press could be beneficial in drawing closer comparisons between the SEBT, SS 

and isokinetic strength.  

Developing a more mechanistically-centred approach may help to shed light onto 

the exact pattern of integration that exists between the subunits of the NMS.  Including 

Hoffman reflexes of the lower extremity as well as monofilaments to gauge the 

superficial mechanoreceptor sensitivity could help to determine how impaired these 

organs become when cooled and how this could influence challenging balance and 

strength tasks.      
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Limitations: 

Although the nature of the experimental design lends itself well in applying 

balance performance to the big picture it is weaker at isolating specific mechanisms to 

weight NMS subunit susceptibility to cold and impact on kinesthetic performance.  

Although scientifically it is important to break components (ie. joint ergoreceptors) down 

to try and establish the exact relationship it is ultimately the entire machine, in the case of 

this research the NMS, which works in synergy to create the end product (balance, force).  

Participants were recruited from the general population who were recreationally 

active (3 days per week, +30 minutes per session).  This resulted in a large variance in 

fitness levels, in that some individuals were more resistance trained and others more 

aerobically trained.  This may have impacted some of the results, specifically the muscle 

activation patterns.  

Although kept to a minimum, the cooling protocol at times resulted in parts of the 

posterior aspect of the thigh to be submerged during the CWI.  This could have been 

avoided with participants maintaining different postures during the various CWI depths.  

However, the researchers in this study thought it important to maintain as similar a 

posture between immersion depths to rule out any thixotropic joint position effects due to 

differing joint angles during the CWI.  

 Muscle temperature was limited to single time points and to the periphery of the 

vastus lateralis and lateral gastrocnemius.  This made it difficult to discern how cooled 

the deeper portions of the muscle became after the CWI and what muscle temperature 

was like at the exact time the balance and strength tasks took place



Glossary 

Agonist role played by a muscle acting to cause a movement 

Antagonist role played by a muscle acting to slow or stop a movement 

Balance  the ability of an individual to assume and maintain a stable position, 

specifically referring to maintaining one’s centre of mass within one’s 

base of support 

Concentric action that occurs when a muscle overcomes a load and shortens 

Eccentric action that occurs when a muscle lengthens during a contraction as a 

result of insufficient tension development or to help control a 

movement 

Exteroception body sense pertaining to stimuli and associated receptors which 

originate and detect respectively from sources outside of the body 

Extrafusal muscle muscle which contains the majority of proteins which actively generate 

contraction 

Ground Reaction 

Force 

the force exerted by the ground on a body in contact with it 

Glabrous skin hairless skin 

Interoception stimuli and detectors associated with internal processes related to organ 

function 

Intrafusal muscle muscle which runs in parallel to its extrafusal counterpart that contains 

muscle spindles to allow for monitoring muscle length 

Isokinetic referring to dynamic muscle activity in which a joint moves through a 

range of motion at a constant velocity 

Isometric referring to muscle activity in which force is generated without a 

change in joint angle 

Kinematic referring to motion 

Kinetic referring to force 

Kinesthesia awareness of the position and movement of the parts of the body by 

means of sensory organs (inclusive of proprioception, exteroception 

and to a lesser extent interoception) 
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Glossary (Cont’d) 

 

Lever class  1
st 
– a lever in which the fulcrum is between the effort 

force and the resistance 

 2
nd

- a lever in which the resistance force acts between 

the fulcrum and the effort force 

 3
rd

- a lever in which the effort force acts between the 

fulcrum and the line of action of the resistance force 

 

Mechanoreceptor receptor that responds to mechanical stimulation (ex. Stretch or 

pressure) 

 

Non-Glabrous skin hairy skin 

Prime mover (see agonist) 

 

Proprioception body sense pertaining to stimuli originating from within the body 

related to spatial position and muscular activity and/or the sensory 

receptors that they activate 

Root Mean Square the square root of the mean of all the squared values of EMG activity 

within a given window of data 

 

Somatic Sense 

(Somatosensory) 

Referring to senses of the body (proprioception, exteroception, 

interoception, nociception, thermoreception) 

Stability resistance to losing one’s equilibrium 

Stabilizer a muscle that contracts with no significant movement to maintain a 

posture or fixate a joint 

Synergist - a muscle which performs or helps perform the same set of joint 

motion as the agonist 

 

Thermoreceptor temperature sensitive receptor 

Thixotropy stiffness during joint motion attributed to crossbridge attachment and 

altered muscle spindle sensitivity from previous contractions 

Torque the product of the magnitude of a force and the perpendicular distance 

from the line of action of the force to the axis of motion 
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Appendix A: equations 

 

 

 

      
 

 
     

 

   

      

Equation 1: root mean square amplitude (RMS) (78) 
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Equation 2: Heat balance (76) 

 

  
                    

         

  

     
 

Equation 3: Thermal resistance (76) 

 

    
                  

                  
                                            

Equation 4: Co-activation index (68) 

 

T sk = 0.3 tchest + 0.3 tarm + 0.2 tthigh + 0.2 tleg  

Equation 5: 4-site Ramanathan mean skin temperature (124) 

 

                                           

                                        
 
 

 
 ( i.e. control to ankle CWI = 
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Equation 6: Weighted mean percentage for volumetric analysis of SEBT  



Appendix B: Orthographic projection of MVC device 
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Appendix C: SEBT Pictures 
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Appendix D: Muscle and nerve supply of the lower extremities 

Muscle and associated nerve supply of the hip  

Action Muscle Attachement Innervation 

Flexion Iliopsoas Proximal: T12-L5 transverse 

processes, iliac crest, and sacrum 

Distal: Lesser trochanter 

Femoral nerve 

Rectus femoris Proximal: AIIS and anterosuperior 

acetabulum 

Distal: Superior patella 

Femoral nerve 

(L2-L4) 

Tensor fascia latae Proximal: ASIS and iliac crest 

Distal: Iliotibial tract 

Superior gluteal 

nerve (L4,L5) 

Sartorius Proximal: ASIS 

Distal: Anteromedial tibial plateau 

Femoral nerve 

(L2, L3) 

Extension Gluteus maximus Proximal: Outer cortex of ilium, 

posterior sacrum and coccyx 

Distal: Posterior iliotibial tract and 

gluteal tuberosity 

Inferior gluteal 

nerve (L5, S1, 

S2) 

Biceps femoris Proximal: Ischial tuberosity 

Distal: Fibular head and posterolateral 

tibial plateau 

Tibial branch of 

sciatic nerve 

(L5, S1, S2) 

Semimembranosus Proximal: Ischial tuberosity 

Distal: Posteromedial tibial plateau 

Tibial branch of 

sciatic nerve 

(L5, S1, S2) 

Semitendinosus Proximal: Ischial tuberosity 

Distal: Anteromedial tibial plateau 

Tibial branch of 

sciatic nerve 

(L5, S1, S2) 

Abduction Gluteus medius Proximal: Anterior gluteal line 

Distal: Lateral surface of greater 

trochanter 

Superior gluteal 

nerve (L4, L5) 

Gluteus minimus Proximal: Outer cortex of ilium 

Distal: Anterior surface of greater 

trochanter 

Superior gluteal 

nerve (L5, S1) 

Tensor fascia latae See above See above 

Adduction Adductor magnus Proximal: Inferior pubic ramus, ischial 

tuberosity 

Distal: Gluteal tuberosity and 

adductor tubercle of medial femur 

Obturator 

nerve (L2, L3) 

Adductor longus Proximal: Body of pubis 

Distal: Midle third of linea aspera 

Obturator 

nerve (L2-L4) 
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Adductor brevis Proximal: Inferior ramus and body of 

pubis 

Distal: Proximal linea aspera and 

pectineal line 

Obturator 

nerve (L2_-L4) 

Internal rotation Gluteus medius See above See Above 

Gluteus minimus See above See Above 

External rotation Obturator internus Proximal: Inner surface of obturator 

membrane 

Distal: Medial greater trochanter 

Nerve to 

obturator 

internus (L5, 

S1) 

Obterator 

externus 

Proximal: Outer surface of obturator 

membrane, pubic ramus, and ischium 

Distal: Trochanteric fossa 

Obturator 

nerve (L3, L4) 

Superior gemellus Proximal: Ischial spine 

Distal: Posterior greater trochanter 

Nerve to 

obturator 

internus (L5, 

S1) 

Inferior gemellus Proximal: Ischial tuberosity 

Distal: Posterior greater trochanter 

Nerve to 

quadrates 

femoris 

Piriformis Proximal: Anterior surface of sacrum 

and sacrotuberous ligament 

Distal: Posterosuperior greater 

trochanter 

Ventral rami of 

S1 and S2 

Quadratus femoris Proximal: Lateral boarder of ischial 

tuberosity 

Distal: Quadrate tubercle 

Nerve to 

quadratus 

femoris 

 

 

 

 

 

 

 



132 

 

Muscles of the thigh and associated nerve supply that act on the knee 

Action Muscle Attachment Innervations 

Knee extension Rectus femoris Proximal: Anterior inferior iliac spine 

and ilium superior to acetabulum 

Distal: Tibial tuberosity 

Femoral nerve 

(L2, L3, L4) 

Vastus lateralis Proximal: Greater trochanter and 

lateral lip of linea aspera 

Distal: same as R.F. 

Femoral nerve 

(L2, L3, L4) 

Vastus medialis Proximal: Intertrochanteric line and 

medial lip of linea aspera of femur 

Distal: same as R.F. 

Femoral nerve 

(L2, L3, L4) 

Vastus 

intermedius 

Proximal: Anterior and lateral 

surfaces of shaft of femur 

Distal: same as R.F. 

Femoral nerve 

(L2, L3, L4) 

Knee flexion Semitendinosus Proximal: Ischial tuberosity 

Distal: Medial surface of superior 

part of tibia 

Tibial division of 

Sciatic nerve (L5, 

S1, S2) 

Semimembranosus Proximal: Ischial tuberosity 

Distal: Posterior part of medial 

condyle of tibia 

Tibial division of 

Sciatic nerve (L5, 

S1, S2) 

Biceps femoris 

(long and short 

heads) 

Proximal: Long: Ischial tuberosity 

Proximal: Short: Linea aspera and 

lateral supracondylar line of femur 

Distal: Lateral side of head of fibula 

Long head: Tibial 

division of Sciatic 

nerve (L5, S1, S2) 

Short head: 

Common fibular 

division of sciatic 

nerve (L5, S1, S2) 

 

 

 

Muscles of the shank and associated nerve supply that act on the ankle and foot 

Action Muscle Attachement Innervation 

Dorsiflexion Tibialis 

anterior 

Proximal: Lateral condyle and superior 

half of lateral surface of tibia and 

interosseous membrane 

Distal: Medial and inferior surfaces of 

medial cuneiform and base of 1
st

 

metatarsal 

Deep fibular 

nerve (L4, L5) 

Extensor 

hallicus longus 

Proximal: Middle part of anterior surface 

of fibula and interosseous membrane 

Distal: Dorsal aspect of base of distal 

phalanx of great toe 

Deep fibular 

nerve (L5, S1) 
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Extensor 

digitorum 

longus 

Proximal: Lateral condyle of tibia and 

superior three fourths of anterior 

surface of interosseous membrane 

Distal: Middle and distal phalanges of 

lateral four digits 

Deep fibular 

nerve (L5, S1) 

Fibularis 

tertius 

Proximal: Inferior third of anterior 

surface of fibula and interosseous 

membrane 

Distal: Dorsum of base of 5
th

 metatarsal 

Deep fibular 

nerve (L5, S1) 

Plantarflexion Fibularis 

longus 

Proximal: Head and superior two thirds 

of lateral surface of fibula 

Distal: Base of 1
st

 metatarsal and medial 

cuneiform 

Superficial fibular 

nerve (L5, S1, S2) 

Fibularis brevis Proximal: Inferior two thirds of lateral 

surface of fibula 

Distal: Dorsal surface of tuberosity of 

base of 5
th

 metatarsal 

Superficial fibular 

nerve (L5, S1, S2) 

Gastrocnemius Proximal: Lateral: lateral aspect of 

lateral condyle of femus, Medial: 

popliteal surface of femur, superior to 

medial condyle 

Distal: Posterior surface of calcaneus via 

calcaneal tendon 

Tibial nerve (S1, 

S2) 

Soleus Proximal: Posterior aspect of head of 

fibula, superior quarter of posterior 

surface of fibula, soleal line and medial 

border of tibia 

Distal: Posterior surface of calcaneus via 

calcaneal tendon 

Tibial nerve (S1, 

S2) 

Flexor hallucis 

longus 

Proximal: Inferior two thirds of posterior 

surface of fibula and inferior part of 

interosseous membrane 

Distal: Base of distal phalanx of great toe 

Tibial nerve (S2, 

S3) 

Flexor 

digitorum 

longus 

Proximal: Medial part of posterior 

surfaceof tibia inferior to soleal line and 

by a broad tendon to fibula 

Distal: Bases of distal phalanges of 

lateral four digits 

Tibial nerve (S2, 

S3) 

Tibialis 

posterior 

Proximal: Interosseous membrane, 

posterior surface of tibia inferior to 

soleal line, and posterior surface of 

fibula 

Distal: Primarily to tuberosity of 

naviular, also to cuneiforms, cuboid and 

bases of 2
nd

-4
th

 metatarsals 

Tibial nerve (L4, 

L5) 
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Appendix E: Trial specific muscles for surface EMG 
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Informed Consent: EEL-069 

 

Project Title:  The effect of a segmental localized lower limb cooling protocol on muscular 
strength and balance (EEL-069) 

 

Principal Investigator: Dr. Stephen Cheung, 

Ph.D. (Professor) Department of Physical 

Education and Kinesiology              Brock 

University,   905-688-5550 x 5662, 

stephen.cheung@brocku.ca 

Principal Student Investigator Mr. Roger 

Montgomery (M.Sc. Candidate) 

rm10vt@brocku.ca, 416-710-2532 

Department of Physical Education and 

Kinesiology, Brock University                                          

 

INVITATION 

You are invited to participate in a study that involves research. The purpose of this study is to 

examine the relationship of lower limb muscle temperature on muscular strength and balance. 

The human body and its temperature state is dynamic and constantly interacts with the external 

environment. When temperature within the human body shifts from a thermoneutral state (28-35 

degrees Celsius for skin and muscle temperature) a change in performance is often incurred. For 

example, with localized cold exposure, blood vessels constrict, muscles stiffen and nerves 

transmit messages more slowly within the affected tissue. This altered performance can have 

practical consequences. For instance, with more individuals partaking in recreational activities 

(e.g. skiing, water boardsports) that require participants have a high level of muscular 

performance in strength and balance while placing them at risk for decreased localized skin and 

muscle temperature. It is therefore important to try and better understand the impact that this 

temperature dependant relationship may have on both sport performance and personal safety.  

WHAT’S INVOLVED 

There will be a total of five sessions. The first session will assess your body composition (skinfold 

thickness, lower Limb length, height, weight) and provide familiarization for you with the cooling 

protocol and test battery. The following four sessions (1. Thermoneutral, 2. Ankle inclusive water 

immersion, 3. Knee inclusive water immersion, 4. Hip inclusive water immersion) will be used to 

discover the effect of varying proportions of lower body surface area exposure to cold on test 

battery performance. These sessions will each take place at the same time of day to avoid diurnal 

variations in core temperature and other physiological performance measures. These trials will be 

administered in a randomized order with at least 72 hours in between each. Prior to each session, 

you will be asked to refrain from alcohol and/or heavy exercise for 24 hours prior to the trial and 

caffeine on the day of the trial. In all five sessions, you will change into your own t-shirt and 

shorts. Appropriate change rooms will be provided for you to change into the required clothing.  

 

 

mailto:rm10vt@brocku.ca
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Anthropometric Measurements and Familiarization Session 

In the first session, you will have your height, weight, lower limb length and the amount of body 

fat in your body measured. Body fat testing will be performed using skinfold calipers, which might 

cause a slight pinching sensation, and will be taken by someone of the same sex in a private 

room. You will also be familiarized with the cooling tank, and the array of sensors that you will be 

instrumented with during the following four experimental trials. We will also take you through the 

isokinetic strength test and balance field tests (Star Excursion Balance Test, Stork Stand Test) in 

order that you have a thorough understanding of what will be expected of you during the 

experiment. The total session will take about 1.5 h.  

Experimental Sessions 

During the second through to fifth sessions, you will have your internal temperature measured 

using a tethered core temperature probe. You will be asked to insert this probe up to 15cm past 

the anal sphincter just prior to the experimental trial after you arrive at the lab. You will be asked 

to report to the laboratory at your predetermined time for each of the experimental sessions. 

These sessions will be spaced with a minimal time span of 72 hours to minimize any acclimation 

response. 

Upon arrival at the laboratory, you will change into t-shirt and shorts, and insert core temperature 

probe. You will then be instrumented with a heart rate monitor strap across the chest for 

telemetric recording of heart rate. Skin temperature sensors will be taped onto the body surface 

at the following sites: chest, upper arm, thigh, calf, and foot, which will be used to calculate a 

mean skin temperature. Muscle activity will be recorded at 4 sites on the dominant leg and 2 sites 

on the non-dominant leg with the placement of active electromyographic (EMG) electrodes over 

the major muscle pairings of both upper legs (quadriceps/hamstrings) and dominant limb only 

lower leg (tibialis anterior/gastrocnemius). In order to ensure a clear signal from your muscles to 

the recording equipment we will need to shave and clean with alcohol the area under the 

electrodes. This process might leave your affected skin a bit red/sensitive but will disappear 

within 24h. Muscle temperature will also be recorded during the trials. Muscle temperature will be 

measured using a small sterile muscle temperature probe (needle) on 2 occasions throughout 

each trial: after 1
st
 cooling protocol/before isokinetic test both on your non-dominant lower limb in 

the vastus lateralis (thigh) and lateral head of gastrocnemius (calf), and after 2
nd

 cooling 

protocol/before the balance tests in your dominant limb. The muscle temperature probe will be 

inserted into the thigh and calf muscle at a depth of 3 mm in addition to the the overlaying 

subcutaneous tissue (fat/skin) (5-12 mm in depth) and will be removed immediately once a stable 

temperature measurement has been recorded (~5 seconds). A technician of the same sex will be 

available to assist with the dressing and instrumentation. 

Cooling procedure 

The experimental protocol will adhere to the following operating procedures:  Once instrumented 

you will be guided to the cooling tank where you will climb into a plastic, water-proof immersion 

suit to the waist before lowering yourself into the seated position within the tank. This suit is to 

prevent the sensors and yourself from becoming wet thereby cutting down on the time needed to 

conduct the experiment (towelling off skin). The tank will be filled with water at 12˚C which is a 

common temperature used for athletes who use cold water baths during recovery from sporting 

events. Depending on the experimental condition for that day the tank might be filled with no 

water (thermoneutral), or up to your ankle, knee or hip. You will remain in the seated cooling tank 
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for 20 minutes for the muscle to reach desired experimental temperature. Once 20 minutes has 

elapsed you will be helped out of the tank and immersion suit and wheeled in a transport chair to 

the isokinetic dynamometer lab.  

Test Battery 

Isokinetic dynamometry testing 

You will be secured into the Biodex 3 Isokinetic dynamometer with waist and chest straps and an 

additional lower leg strap during ankle plantarflexion and dorsiflexion to minimize unwanted 

muscle substitution. You will be encouraged to contract as forcefully as possible (maximal 

voluntary contraction or MVC) concentrically at 45˚/s 3 times in both sagittal directions about the 

knee (extension and flexion) to normalize the EMG data. You will then perform 3 knee extension 

and flexion eccentric contractions at a speed of 45˚/s. You will be allowed 3 warm-up repetitions 

before the testing begins to prepare yourself for the maximal contractions.  

Balance testing 

After the isokinetic testing you will be wheeled back into the Environmental Ergonomics Lab for 

balance testing. Just prior to balance testing you will enter the cooling tank to bring limb 

temperature back down to a uniform level. This second exposure will last only 10 minutes. You 

will then exit the tank again and will be instructed to perform an MVC on your dominant leg for 

normalization of EMG data. You will then perform both the Star Excursion Balance Test and Stork 

Stand Test on your dominant leg. 

The Star Excursion Balance Test is a multidirectional test of dynamic postural control which 

involves balancing on one leg while reaching maximally with the other leg in up to 8 directions, 

although only 2 directions will be employed for this research (anterior and posterior). The stork 

stand test challenges static postural control with an individual standing up on the ball of their foot 

for as long as possible while maintaining balance. 

Electrical Stimulation 

You will lie face down on a padded bench. You will allow a nerve in your leg to be electrically 

stimulated up to 300 times during any given session. This does not require the insertion of any 

needles. The electrode for stimulating the nerve will be taped to the skin surface and will deliver 

very brief electrical impulses through the skin. Changes in muscle electrical activity will be 

monitored by placing electrodes over an associated muscle on the lower extremities. 

After completing the electrical stimulation you will be de-instrumented and the trial will be 

concluded.  

The time commitment for each experimental session will be approximately 1.5 hours. Total time 

commitment for the study is ~7.5 hours. 

POTENTIAL BENEFITS AND RISKS 

Participants will receive no direct benefits from their involvement in this study. However, possible 

benefits of participation include your receiving a body composition assessment that will help you 

to understand your fitness/health level. The experimental testing will help you become aware of 

your body’s coping ability in cold temperatures.  
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There may be risks associated with participation. The test battery can be considered to be similar 

to what you might voluntarily perform in everyday life (e.g. strength training). There is a chance 

that you will incur delayed onset muscle soreness, however this soreness should disappear within 

48-72 hours. There will be at least two investigators trained in First Aid and CPR present for each 

experiment. The investigators will contact you later in the day following each session to check on 

your health status. 

The balance tests will challenge your equilibrium and therefore there is a slight chance of falling 

however you are in control during the testing and can use any means possible to regain your 

balance. Additionally, padding will be used around the perimeter of the balance platform and a 

researcher will be close by to maximize your safety. Spotters will be present to assist you in the 

event that you do fall in doing so they may need to physically contact you to help keep you 

upright.  

RECTAL PROBE 

When performed in a healthcare setting, insertion of the rectal probe is a controlled act as set out 

in the Regulated Health Professions Act. While this act does not extend to research outside of a 

healthcare setting, you should be aware of the following potential risks: 

Insertion of the rectal probe can stimulate the vagus nerve which can cause slowing of the heart 

rate which may lead to fainting. This is more likely to happen if you have a low resting heart rate. 

Perforation of the bowel can lead to peritonitis, a serious infection of the abdominal cavity. 

You should not participate in this research if you are pregnant, are under the influence of 

alcohol or other sedating substances (tranquilizers, sleeping pills, street drugs) or have 

any history of fainting or heart disease. 

Insertion of the flexible rectal probe may cause slight discomfort. You will be given instruction 

about how to prepare the probe, and will self-insert the probe in a private room. You will be 

provided with water-based lubricant if necessary, and will secure the probe with a soft gauze 

“sumo sling” harness which will keep it in place during exercise. There is a slight but real risk of 

perforation of the bowel from the insertion of the rectal probe, though the investigators are 

unaware of this ever occurring in a research setting. There is also a chance that surface 

temperature sensors or tape use with these sensors may cause some skin irritation.  

MUSCLE TEMPERATURE PROBE 

Placement of a muscle temperature probe (needle) into the muscle can be somewhat 

uncomfortable and is similar to the sensation from a flu vaccine needle. Like any foreign body, the 

needle probe poses a risk for infection. Signs and symptoms of infection include pain, redness, 

swelling and puss around the insertion site of the muscle temperature probe. If an infection is 

suspected, you should clean the affected area and contact your physician. The needle 

thermistors to be used in this investigation will be thoroughly sterilized prior to use. Although very 

unlikely, placement of muscle temperature probes (needles) may cause inadvertent neurological 

injury, such as paresthesia (the temporary sensation of tingling prickling or numbness). Following 

the experimental session, the investigator will test for neurological damage by examining the 

strength of local muscle groups. If any damage is suspected, you will be asked to consult your 

physician. Paresthesia due to nerve trauma from a needle rarely results in a long term loss of 

sensation. Sensation will usually return after 2 months as the nerves regenerate.  
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EVOKED STIMULATION 

On rare occasion, a participant is unable to tolerate electrical stimulation of the nerve. This 

stimulation may be painful as the nervous system may perceive it, however brief, as noxious. As 

a result there is a potential for fainting. However with your body already in a prone position the 

chance of injury will be very minimal. There is also a small risk that the electrical stimulation may 

cause burns although this risk will be controlled with the brief length and low intensity of the 

stimulation as well as the quality of electrode contact with the skin and limited reuse of electrodes 

as per manufacturer’s instructions.  

CONDITIONS FOR EXPERIMENTAL TERMINATION 

Experimental sessions will be terminated if: 

1. Core temperature increases beyond 39.5
o
C. 

2. Core temperature drops below 35.0˚C. 

3. Dizziness or nausea precludes further experimentation. 

4. You decide, for any reason, to end the experiment. 

5. The investigators determine that the subject is unable/unfit to continue.  

REASONS TO NOT PARTICIPATE 

You should not participate in this research if you are pregnant, are under the influence of alcohol 

or other sedating substances (tranquilizers, sleeping pills, street drugs) or have any history of 

fainting or heart disease. If you have any cardiac conditions then you should not participate. Nor 

should you participate with any history of digestive issues such as bowel or prostate problems 

(colitis, irritable bowel syndrome, prostate problems, haemorrhoids, diarrhea). You should also 

avoid participating if you have neuromuscular (epilepsy, multiple sclerosis, cerebral palsy) or 

skeletal (inflammatory or degenerative arthritis). If you have any balance related issues (inner ear 

infection, vertigo) then you should not participate. 

CONFIDENTIALITY 

Access to this data will be restricted to Dr. Cheung and the principal student investigator, Mr. 

Roger Montgomery. Your participation will remain confidential. The data collected from this 

investigation will be kept secured on the premises of the Department of Physical Education and 

Kinesiology (PEKN) at Brock University in Dr. Cheung’s office or laboratory, and will not be 

accessed by anyone other than the listed investigators. The data (paper and electronic) will be 

destroyed five years after the publication of the results of the study. 

Investigators will require disclosure of your name and contact information (phone, email), and 

therefore your participation is not anonymous during the conduct of the research. All participants 

will have their names removed from any data. The master list matching participants to data will be 

kept by Dr. Cheung, and will be destroyed following the publication of data. 

All information you provide is considered confidential; your name will not be included or, in any 

other way, associated with the data collected in the study. Furthermore, because our interest is in 
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the average responses of the entire group of participants, you will not be identified individually in 

any way in written reports of this research.  

VOLUNTARY PARTICIPATION 

Participation in this study is voluntary. If you wish, you may decline to answer any questions or 

participate in any component of the study. Further, you may decide to withdraw from this study 

at any time and may do so without any penalty or loss of benefits to which you are entitled. 

Participation, non-participation, or withdrawal from the study will not affect your standing at 

Brock University. 

PUBLICATION OF RESULTS 

Results of this study may be published in professional journals and presented at conferences, 

but your personal information and participation will remain confidential. Approximately one 

month after we finish testing all participants, we will provide you with a summary of your own 

results and also the overall group results. Feedback about this study will be available from Dr. 

Stephen Cheung (stephen.cheung@brocku.ca, 905-688-5550x5662). 

CONTACT INFORMATION AND ETHICS CLEARANCE 

If you have any questions about this study or require further information, please contact the 

Principal Investigator or the Faculty Supervisor (where applicable) using the contact information 

provided above. This study has been reviewed and received ethics clearance through the 

Research Ethics Board at Brock University (11-030). If you have any comments or concerns 

about your rights as a research participant, please contact the Research Ethics Office at (905) 

688-5550 Ext. 3035, reb@brocku.ca.  

CONSENT FORM 

I agree to participate in this study described above. I have made this decision based on the 

information I have read in the Information-Consent Letter. I have had the opportunity to receive 

any additional details I wanted about the study and understand that I may ask questions in the 

future. I understand that I may withdraw this consent at any time. My participation, non-

participation, or withdrawal from the study will not affect my standing at Brock University.  

 

Name:  ___________________________       

 

Signature:  _______________________________      Date:    ___________________________ 

 

Thank you for your assistance in this project. Please keep a copy of this form for your records. 

mailto:stephen.cheung@brocku.ca

