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Abstract

Understanding the machinery of gene regulation to control gene expression

has been one of the main focuses of bioinformaticians for years. We use a

multi-objective genetic algorithm to evolve a specialized version of side effect

machines for degenerate motif discovery. We compare some suggested objec-

tives for the motifs they find, test different multi-objective scoring schemes

and probabilistic models for the background sequence models and report our

results on a synthetic dataset and some biological benchmarking suites. We

conclude with a comparison of our algorithm with some widely used mo-

tif discovery algorithms in the literature and suggest future directions for

research in this area.
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Chapter 1

Introduction

In this chapter some background information on biological terms and pro-
cesses used throughout this work is discussed. Furthermore, the aims and
goals of such a scientific effort and its importance and challenges are elabo-
rated. This chapter is then concluded with an outline of the entire work.

1.1 Biological Background

1.1.1 DNA and RNA

Structure

Deoxyribonucleic acid(DNA) is a macromolecule which is made up of nucle-
obases which are nitrogenous bases bound to a sugar. Two different groups
of nucleotides exist in DNA:

• Purines which include Adenine(A) and Guanine(G).

• Pyrimidines which include Cytosine(C) and Thymine(T)

The nucleobases bind together with hydrogen bonds. As depicted in
Figure 1.1, Thymine binds with Adenine and Cytosine binds with Guanine.
These base pairs are bound together in a strand with phosphate bonds which
make up the DNA sequence (Figure 1.1).

Figure 1.2 shows two strands of nucleotides bound together in an anti-
parallel double helix form. Anti-parallel means that the two strands run in
opposite directions from each other with one strand complementing the other.

1
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Figure 1.1: Base Pairs. Image extracted from [41].

This double strand makes up the DNA sequence which can be represented
as a string of characters with possible alphabet Alph = {A,C,G, T}.

Figure 1.2: DNA. Courtesy: National Human Genome Research Institute.

A Ribonucleic Acid(RNA) is another molecule that when in form of
mRNA is used to transfer genetic information. RNA has a very similar
structure to the DNA with the difference that it has a different type of sugar
and it has Uracil(U) instead of Thymine in the structure.

What the DNA Encodes

DNA encodes most of the information needed for the creation, functioning
and reproduction of an organism. Extracting this information will give us
the blueprint of any organism known to exist. Knowing the blueprint of an
organism not only gives us insight into the concept of life but also helps us
preserve life by understanding, repairing or reproducing the mechanisms of it.
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More importantly, the secret to some human sicknesses or, to some extent,
behavior is conserved inside the DNA and has been passed on from each
generation to the next for years. One of the biggest problems is the decoding
of this information. To extract this information we have to understand the
“language” of the DNA.

Central Dogma of Molecular Biology One of the main focuses of biol-
ogy is to understand how organisms inherit and mutate traits. These traits
range from something unique like the color of a person’s eyes to something
shared in all forms of a species like the production of antibodies for a disease.
But how does this process start?
The sections of the DNA which code information are called genes. These
genes code the information needed to start the chain reaction of events that
would create the entity that the information encodes. The process of creation
of this entity is called gene expression.
Proteins are the workhorses of life. Genes usually encode recipes for creation
of proteins. Proteins created from expression of one gene could then partic-
ipate in the expression of another gene and effectively the creation of other
proteins. The process of creation of proteins from the DNA is known as the
central dogma of molecular biology. This process has two main stages:

Figure 1.3: Transcription1

Transcription
There are regions in the DNA that do not code for proteins. Initially

1http://hyperphysics.phy-astr.gsu.edu/hbase/organic/transcription.html



CHAPTER 1. INTRODUCTION 4

these were dubbed “junk DNA” since they were believed to be useless.
But some of these regions were later found to be quite important to the
gene expression process by containing regulatory elements controlling
the process. These regions, also called regulatory regions, control which
genes are expressed and which are not. Regulatory regions are usually
positioned upstream of the gene transcription start site. The start site
is the position where the transcription begins by special proteins that
bind to specific patterns in these sites. These regions with binding sites
are also known as promoters.
The proteins initiating the transcription process are called Transcrip-
tion Factors (TFs). Each transcription factor binds to a certain sub-
sequence in the regulatory region with a certain affinity which also
depends on the level of gene expression. The binding sites for TFs are
quite diverse, i.e they could have variations or mismatches in certain
positions.
In the transcription stage, the transcription factors form a part of the
Transcription Initiation Complex (TIC) which starts the process. Also
a part of this complex is an enzyme called RNA polymerase. When
the TIC is activated, the RNA polymerase glides through the DNA se-
quence unwinding the double helix and creating a type of RNA called
messenger RNA or mRNA. This mRNA would then find its way out of
the nucleus into the cytoplasm.

Translation
The mRNA transcribed from the DNA is shown in Figure 1.3. This
molecule contains two tails which signify either end of the mRNA. In
translation, another complex called ribosomes binds to the mRNA and
according to the information encoded in the mRNA, building blocks
of proteins called amino acids are bound together in a string of amino
acids which forms the protein. Each 3 consecutive nucleotides (called
codons signify one amino acid. The ribosome glides all the way through
the mRNA until it is signified by by a stop codon to stop. After ter-
mination a protein decoded from the DNA remains.

1.1.2 Motifs

Motifs are patterns of DNA sequence in short length (usually less than 30bps)
that are of some biological significance. Binding sites for TFs are examples
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of motifs. By recognizing each transcription factor’s motif one may be able
to understand and manipulate the expression of a certain gene.
Since motifs are patterns of short length, it is very hard to identify them
by searching through the entire genome or even the promoter region which
usually extends to thousands of base pairs long. Also, the promoter regions
could have binding sites for different TFs, so a better solution is to look at
promoter regions of a series of co-regulated genes. Since the genes are co-
regulated (regulated by the same transcription factor) one may assume that
the same Transcription Factor Binding Site(TFBS) of a given TF appears in
the sequences more frequently. Another possible source of TF binding sites
are sequences extracted from ChIP-chip experiments which are designed to
biologically find the sequences that a TF binds to, an example of which is
discussed in Section 6.3.

1.2 Problem Statement

The motif discovery problem could be formalized as the problem of find-
ing strings of length m that are statistically over-represented in the input
sequences {S1, S2, . . . , Sn} where Si is a subsequence from an organism’s
genome. The output is a set of candidate motifs (binding sites for transcrip-
tion factors) that are thought to be present in the input sequences.
We focus on de novo motif discovery in this work, which requires an unsu-
pervised approach to find undiscovered motifs in a set of input sequences.

1.3 Challenges

The motif discovery problem formulated above has some intrinsic complexi-
ties which include:

• Lack of Locality: Regulatory regions can be far away from the coding
regions they regulate. This lack of locality in the search presents a
problem to the search algorithm.

• Relative Small Size: Motifs have a very small size when compared to
the size of the sequence containing them which could extend to millions
of bases long.
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• Motif Degeneracy: Motifs that encode the same conserving function
are not always exactly the same and may have some variation to them.

• Complexity: The motif discovery problem has been shown to be a very
computationally hard problem even when being the subset (alphabets
restricted) of the equivalent computer science problem of approximate
string matching which is NP-Complete [16].

• Unidentified Motifs: Even if the motif finder algorithm finds a pattern
that is not an already known motif, it would take biological experimen-
tation to show if it is really a novel unidentified motif or not.

• No Best Single Objective: The motif finding task does not have a single
best objective to maximize. Although many algorithms only maximize
the statistical likelihood of the pattern, the dataset, may also hold less
likely patterns that are not known motifs.

• No Widely Accepted Benchmarking Suite: Although several bench-
marking suites have been introduced in the literature, there is no one
single accepted and widely used benchmarking suite on which to test
the performance of algorithms. The datasets used for the task are
usually either specifically curated by the authors or use benchmarking
suites that are not widely used and consequently cannot be used to
compare with other algorithms.

1.4 Thesis Organization

Our approach utilizes a multi-objective genetic algorithm to train Side Effect
Machines (SEMs) , defined in chapter 4, which represent the motif. We
first analyze the SEM functionality and performance by applying it to a
DNA classification problem. The SEM is later restricted to make the motif
extraction process from the SEM straight-forward and a restricted version
of the SEM, called a Next or First State Side Effect Machine(NFS-SEM),
is defined. We first test the performance of different suggested objectives
to the problem on a synthetic and a biological dataset. We then test the
program on a more recent benchmarking suite containing a set of biological
datasets, finding comparable results to the best motif finding algorithms in
the literature.
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The remainder of this thesis is organized as follows: Chapter 2 contains
definitions of some of the methods used in the motif discovery field. Chapter 3
contains a review of the literature on motif discovery algorithms. In Chapter
4, SEMs and NFS-SEMs are defined and initial experimentation on the DNA
classification problem are reported. Details on our motif discovery algorithm
design is discussed in Chapter 5. We provide information on the datasets
used to test our algorithm in Chapter 6. Chapters 7 and 8 contain results
on these datasets. Chapter 9 presents conclusions and future directions.



Chapter 2

Methodology

In this chapter an overview of the methods used for the motif discovery
problem is given. In the first section a brief description of the evolutionary
algorithm used is given and in the next section some probabilistic methods
used in the algorithm are discussed.

2.1 Evolutionary Computation

2.1.1 Introduction

In science most innovation comes from adding newer ideas to already exist-
ing concepts. Any scientific contribution is built upon work done by others
before. On the other hand just as adding and modifying existing ideas has
been prevalent in the past, a newer approach tries to find solutions to prob-
lems by studying how nature approaches its problems. This area is called
bio-inspired computation [18]. The swarming of ants and bees, for instance,
are examples of this type of algorithm. Ants and bees when working to-
gether are able to accomplish complicated tasks. These tasks are done by
delegating simpler tasks to individuals in the population, thus breaking the
problem down into smaller ones solvable by a single individual. Also these
individuals communicate with one another about, for example, a source of
food or a place to avoid, which provides a perfect analogy for the problem of
search in computation.
In order to mimic the problem-solving mechanisms in nature, one has to
know how nature has learned to carry out these tasks. The answer to this

8
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of course is evolution. Evolution is the adaptation of a species to the envi-
ronment so as to maximize its chances of survival. Many times in the face of
pressures from the environment, individuals in the species that are not able
to adapt die out and the “fitter” individuals survive and reproduce. This pro-
cess throughout generations creates offspring that are ever fitter with respect
to likely pressures from the environment. But how does nature generate the
diversity needed to overcome environmental challenges?
Crossover and mutation are two methods used in reproduction to create vari-
ation and to test newer individuals that may be fitter. Crossover attempts
to mix the genetic material of the parents by inheriting certain genes from
one parent and others from another. Likewise, mutation makes changes to
the organism’s DNA and effectively changes the way the organism functions.
But the question is still unanswered. Why are these changes for the best and
the children fitter?
From a computational point of view, the answer is that nature is just doing
a search. It is important to understand that nature is not necessarily search-
ing for the “best” solution to the problem but only a solution that works.
Hence the children that are produced are experiments carried out by nature
in the fitness landscape(space of all possible solutions) of life. Fitter indi-
viduals usually have higher chances of survival and reproduction. After the
offspring is born if the reproduction methods created a fitter individual, the
offspring survives and itself reproduces. Conversely, if the individual is not
able to cope with environment pressures, other fitter members of this newer
generation would survive and reproduce. This idea is the basis of evolution-
ary computation(EC). The individuals in EC are represented as a two-layer
structure which consists of:

• Genotype: This represent the genetic code, i.e the genes that encode
information about the individual and are the inputs to the reproduction
operators.

• Phenotype: This represents the expression of the genes or the behavior
of the individual when interacting with the environment.

Evolution in EC starts with a population of individuals. Each individual
has a genotype and a phenotype. The individuals in the first generation are
created either in a supervised or random manner. This first generation goes
through the evaluation phase in which each individual’s fitness is calculated.
The fitness is extracted with regards to the individual’s phenotype. Next
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comes the reproduction phase in which the fittest individuals have prior-
ity. The biological equivalent of this rule is “natural selection” or “survival
of the fittest”. In the reproduction phase either crossover or mutation cre-
ates offspring from the fitter individuals. The aim is to improve the average
fitness of the generations through the iterations, mimicking Darwinian evo-
lution(evolution based on heritable differential reproductive potential). Dif-
ferent termination criteria exist for EC, including a prespecified number of
generations or a specified number of generations with no improvements.

2.1.2 Genetic Algorithms

Genetic algorithms (GA)[20] are a category of EC in which individuals are
commonly represented by bit strings. Just like EC individuals in a generation
compete and evolve using the same principles. The bit string represents the
genotype and the interpretation of the bit string is the phenotype from which
the fitness is calculated. An example of an interpretation could be the binary
representation of the gene.

Case Study

We will use a case study to show how a problem can be solved with a GA.
In each section we present how the concept should be implemented for the
problem. We will try to evolve a GA that is able to play the game of Pris-
oner’s Dilemma.
In this game two opponents are presented with two options: “cooperation”
and “defection”. If opponents cooperate they are both paid off; if one defects
then the player who cooperated gets nothing and the one who defected gets
a higher pay off; if both players defect they receive a minimal pay off. This
is summarized in Table 2.1.

Table 2.1: The Prisoner’s Dilemma

Player B(Cooperate) B(Defect)

A(Cooperate) 3/3 5/0

A(Defect) 0/5 0/0

Human players usually learn to cooperate as the game is played in more
rounds to get more points each. On the other hand, a solution to the prob-
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lem using game theory is minimizing the maximum damage the other player
can inflict. This means that the right action would be to defect. Another
strategy is to use the “tit for tat” method which would cooperate in the first
round and in the next rounds copy the exact action the other player made,
i.e if the other player had defected the player would defect and similarly for
the other cases. Axelrod and Forrest as reported in [22] developed a GA that
evolved the “tit for tat” method which is explained throughout this section.
They and also developed an improvement to realize if the opponent could
be fooled into cooperating in the face of defection; if not, it would resolve to
“tit for tat”. This improvement is not discussed here.
The representation of the GA should encode the information about the strat-
egy the algorithm takes for the game. We assume that the decision for the
outcome of the algorithm is based on the last 3 rounds of the game. Since
each player has 4 options in each round and we have 3 rounds in history we
need to be able to store 64 possible outcomes. For example the first gene
would represent the outcome of the algorithm for three mutual defections.
The other 63 bits are setup for all possible permutations of outcomes and
the number 0 or 1 would be the decision made. The all zero genome then
would be defection in all cases.

Initialization

In the initialization step the individual is first initiated by specifying a length
for the chromosome. Then, the operation continues by randomly selecting 0
or 1 using a coin flip until the individual is filled with 0s and 1s. This phase
may also use auxiliary problem-dependent information which would help the
evolution by supplying already known fit individuals.
In the prisoner’s dilemma case the initial individuals (bit strings of size 64
bits) are randomly created by putting 1 or 0 in each bit of the bit string.

Evaluation

Fitness evaluation is a phase in the genetic algorithm’s evolution where all
individuals’ fitness in the current generation are evaluated. Usually the indi-
viduals have a single property or objective that differentiates them in terms
of fitness score.
The fitness value in our case study is the average number of payoffs an indi-
vidual’s encoded strategy received after some number of played games.
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Selection Methods

Tournament Selection This method requires only one parameter which
is the size of the set of individuals s chosen to be considered for selection.
Initially s individuals are randomly chosen from the population. Then de-
pending on the reproduction method the one or two fittest individuals are
chosen and returned. This method ensures that fitter individuals are selected
on average. The parameter s is also important to consider. A higher value
for s puts higher selection pressure on the generation and lower values of s
put less selection pressure. In the extreme case where s = 1, the selection is
just random selection resulting in random search.

Roulette Wheel In this method the fitness value for the individuals is
normalized and the individuals are selected proportionate to their fitness
values as in a roulette wheel where each individual takes up proportionate
space on the wheel. This method also ensures that more fit individuals get
selected on average.
Roulette wheel selection is more commonly called fitness proportional selec-
tion in more recent work.

Genetic Operators

Crossover

One-Point Crossover As an example we take the case of the bit string
for the individuals’ genotype in our case study. In this type of crossover
a position in the gene is first selected uniformly at random from the two
parents. This would divide the two parents into two segments. The segments
in these parents are then swapped. The swapping could be done either by
exchanging the segment to the right of the pivot point in both parents or any
other combination.

Two-Point Crossover Assuming a bit string representation for the geno-
type, in this type of crossover two random positions in the bit string are
selected in the two parents. The part of the genotype between these two
points are then swapped between the parents.
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Mutation The mutation operator could be designed to change the geno-
type dramatically or be thought of as corrections in random places in the
genotype. In the former case, for example, one could go through all the bits
of the bit string and choose to flip the bit at that position by a coin flip (0.5
probability). In the latter case a random position in the gene is selected for
mutation and the bit is flipped.

Replication This operator copies the chosen individual from the selection
phase and copies it to the next generation without any modification.

Elitism

A common problem with GAs is that very good solutions evolved at the
early stages of the generational run may be eliminated due to destructive
reproduction operators. Therefore, to overcome this issue a certain number
of best individuals in each run are copied without modification to the next
generation to preserve them from destruction.

Multi-objective Fitness Evaluation Strategies

The prisoner’s dilemma implementation discussed previously aims to improve
one objective which is the average payoffs over a number of played games.
However, there exist other problems that aim to improve more than one ob-
jective. As an example identification of cats in an image is a multi-objective
problem since using a single objective of “Number of Cats” or “True Pos-
itive”(TP) could easily and prematurely evolve individuals which recognize
every single object as cats in the image. The reason for this is that this
approach would give better scores to individuals that recognize every single
object as a cat than individuals that only get the real cats as answers. Con-
sequently, another objective is needed to differentiate these two groups. This
objective could be the “Number of Non-cats” or “True Negatives”(TN) which
would balance the identification of the two groups. Some strategies that re-
ceived more attention at the time of early efforts in the area of multi-objective
fitness evaluation include [19], [23], [45] which all used a non-dominated sort-
ing algorithm coupled with a diversity strategy. It was shown afterwards in
[51] that elitism has a positive effect in multi-objective evolutionary algo-
rithm’s evolution. In this subsection firstly classic strategies are discussed
and then the two most popular methods are elaborated.



CHAPTER 2. METHODOLOGY 14

Weighted Sum : Many different strategies can be thought of to improve
more than one objective simultaneously, which could range from simple ones
like adding or averaging objectives to constructing complicated problem spe-
cific formulas with weights for each. These methods if chosen fail to account
for the improvement of one objective at the expense of the other since they
do not enforce any restrictions. And this is more than often the case where
one objective works against the other one or two objectives and they both
cannot improve concurrently. Furthermore, all these methods lack a strategy
to encourage diversity or convergence to the “Pareto Optimal Set”.

Pareto Optimal Set : This is the set of all individuals in a multi-objective
problem that are not dominated by any other individual. An individual is
said to dominate another if and only if it is better in all objectives. This
definition leaves the domination criteria undefined for two individuals where
one is better than the other in some objectives and worst in some others.
These two individuals cannot be compared and are considered to be in the
same set.
The Pareto Optimal Set is the set of all the individuals in the population
that are undominated by any other individual. In a multi-objective opti-
mization problem with n objectives, Individual A(a(1), a(2), ..., a(n)) is said
to dominate individual B(b(1), b(2), ..., b(n)) if and only if:

∀i : a(i) ≤ b(i) ∧ ∃i : a(i) < b(i)

This idea has been used in the field of GAs and multi-objective optimization
previously [20]. These individuals are also called the “Pareto Front” or rank
1. These could later be removed from the population in an iterative process to
find higher ranks in a process called “Pareto Ranking”. The problem with this
method of ranking is that the Pareto Front is susceptible to outliers which
would be of considerable distance to the other individuals in the archive.
Since one cannot label any of the individuals in the archive as the best
solution, one would want these solutions to produce a spectrum of all possible
solutions spread out in the solution space with equal distances between them.

NSGA-II : This algorithm was introduced after some success of the pre-
vious algorithm by the the same authors in [45]. This approach is called
the Non Dominated Sorting Genetic Algorithm(NSGA). The creators report
that the previous algorithm had the following shortcomings:
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• Expensive sorting algorithm : The sorting algorithm used was of order
O(MN3) where M is the number of objectives and N is the number of
individuals. This made the sorting algorithm too slow for big popula-
tions.

• Lack of Elitism : The authors reviewed the results of recent studies
and deduced that elitism could help improve the performance of the
algorithm by preserving the best individuals and preventing them from
being lost.

• Extra parameters : the previous algorithm required an extra parameter
which required fine tuning by the user.

In the improved version the algorithm uses another sorting method which
takes O(MN2) time to complete. The sorting is done as follows: for each
individual in the population calculate these two values:

• np: Number of individuals that dominate the current individual.

• sp: A set of individuals that the current individual dominates.

The individuals with sp equal to zero are then in the non-dominated front.
Now for each of these individuals each member of their sp is visited and their
np is reduced by one. Lastly the recognized undominated set is removed from
consideration and the algorithm iterates.
The diversity strategy of NSGA-II uses an estimate called the Density Es-
timate. This gives an estimate of how dense the solutions are at a certain
point the Pareto front. The estimate is calculated by first sorting the solu-
tions in the front by each objective in ascending order and the calculating
the summation of the normalized difference between the objectives from the
individual before and after each solution. This gives an estimate of how far
the two closest individuals are from the current one. The fitness comparison
between individuals then is as follows: if the two individuals are in different
Pareto ranks then the individual with the lower rank is preferred but if the
individuals are in the same rank, the one in the less crowded area is preferred
which means less density.

SPEA2 : The Strength Pareto Evolutionary Algorithm(SPEA) algorithm
also found a successor after the introduction of NSGA-II and its dominance
over SPEA. SPEA2 was introduced a year after NSGA-II in 2001. The
authors report the differences as follows:
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• Improved fitness assignment which takes into account the number of
individuals dominating or dominated by a certain individual.

• A density estimation technique based on a nearest neighbor strategy.

• A new archive truncation method to preserve boundary solutions.

The SPEA algorithm starts with an empty archive and a regular population.
At the time of evaluation first the Pareto front is chosen from the population
and copied to the archive. If there are any individuals already in the archive
that are dominated by the new individual they are removed, also duplicates
which are individuals with the same objective values are replaced by the en-
tering individual. If the size of the archive after the addition is bigger than
the specified value then the archive is reduced to its right size using a clus-
tering technique described below.
Firstly the fitness of each individual in the archive is calculated by calculating
a strength value S(i)(will be regarded as fitness value) which is the number
of individuals in the population that are dominated by it or are equal to it
(in the sense of objectives) divided by the population size plus 1. Then the
fitness value of the individuals in the population that are not in the archive
is calculated. Their fitness would be the summation of the strength values
of all the members of the front that dominate or are equal to the current
individual. This means that each individual is penalized if it dominated by
more individuals in the front. Also notice that fitness is to be minimized in
this case since the archive individuals have lower fitness values. The mating
process would then choose individuals from the union of the archive set and
the population with a binary tournament selection. Finally the old popula-
tion is replaced by the new offspring.
Potential weaknesses of this approach are for example the situation in which
the archive holds only one individual which effectively makes all other indi-
viduals have the same fitness value since all other individuals are either equal
or are dominated by that individual, which in turn changes the algorithm
to random search. The fitness evaluation in SPEA2 is the same as SPEA
with the difference that instead of only taking into account the individuals
in the archive to calculate each individuals’ fitness, other individuals in the
population that dominate it are also included. Also the reproduction phase
differs in the sense that the individuals in the archive are only used for re-
production whereas in SPEA both the archive and population took part in
reproduction.
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The additional density information added with SPEA2 uses the k nearest
neighbor method to estimate how close the the kth neighbor is to the current
individual. The higher the distance the better the fitness for the individual.
Another improvement made is the archive truncation scheme. SPEA’s archive
does not have a size limit. In SPEA2 a size limit is added which means that
at any point in the algorithm there are two situations possible:

• Archive’s content not up to capacity: To fill up the archive other in-
dividuals sorted by their fitness from the next Pareto rank are added
to the archive. This procedure iteratively continues until the archive
reaches capacity.

• Archive’s content exceeds capacity: In this case all the archive’s indi-
viduals are sorted according to their distance to the closest neighbor
and then individuals with the smallest distance to the next individual
are eliminated. Ties are broken by calculating the distance of each
individual to the second most closest etc.

SPEA2 was tested on certain test problems comparing it to some other tech-
niques and it was shown to have a better performance than SPEA on them.

Summed Ranks : Summed rank introduced in [6] is a simple multi-
objective evaluation technique which was initially shown to work well in
problems with a high number of objectives. It was later shown that it could
be effective in problems with few objectives too [38], [8].
In this method for all objectives, individuals are sorted in decreasing order
and ranked. Individuals with equal or similar (problem specific) are given
the same rank. This would yield a vector of ranks for all objectives of each
individual. This vector represents the individual’s fitness relative to others
in each specific objective. This vector is then summed up to represent the
individual’s raw fitness. The lower the summed rank, the fitter the individual
is deemed to be.
Since certain individuals can have the same value for an objective they should
have the same rank. This could result in a bias towards objectives with a
higher variability in their values, since by taking up more values they are
able to climb up to a higher number in ranks and contribute more with the
variation to the fitness. In order to remedy this problem objectives could be
normalized. The normalization is done by taking the maximum and mini-
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mum value (always 1) in each objective and calculating the following:

fitness =
∑

allObjectives

ObjectiveV alue

MaxV alue−MinV alue

2.2 Probabilistic Methods

2.2.1 Introduction

Most of the studies done in statistics have been about independent trial
processes. These processes form the basis of classical probability theory.
When a sequence of trial experiments are conducted with one following the
other and they follow an independent trial process, the possibility outcome
of any of the trials is the same and it has the same probability. In other
words, the outcome of a certain trial in the chain of trials does not influence
the probability of the experiments after it. An example of an independent
trial process is the act of continuously flipping a coin. The outcome of each
of the trials is always S = head, tail and also the probability of any of the
possible outcomes is always 0.5. Each of these experiments can be thought
of as a random variable and the set of all these random variables are said to
be Independent and Identically Distributed(iid).
The probability of a sequence of trials could then be calculated by the chain
rule of probability as follows:
If we denote each experiment with Si where 1 < i < n, then according to
the conditional independence of experiments and according to basic rules of
probability we have:

P (S1, S2, ..., Sn) = P (Sn|Sn−1, ..., S1) · P (Sn−1|Sn−2, ..., S1)...P (S2|S1) · P (S1)

= P (S1) · P (S2)...P (Sn−1) · P (Sn) (2.1)

In modern probability theory these processes were extended to include knowl-
edge from past experiments. For example when trying to predict a student’s
grade in the final exam one might use information about his midterm and
assignments’ scores. In 1907 A. A. Markov started the study of these types
of processes. Hence these processes are called Markov chains. A good review
of the use of different probabilistic models for biological sequence analysis
can be found in [1].
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2.2.2 Markov Chains

A Markov chain consists of a series of states, S = s1, s2, ..., sr. The chain
starts at one of these states and makes transitions from one state to another.
The starting state is determined by a probability distribution defined on S.
Each of the state transitions are called a step. The probability of a certain
transition from state si to state sj is denoted by pij. If this probability
depends on the time si the Markov chain is called a non-homogeneous Markov
chain or a non-stationary Markov chain. If pij stays the same regardless of
the time or the state the transition was made from then the Markov chain is
called stationary or time-homogeneous.

First Order Markov Chain

The Markov chain should have a property called the Markov property. This
property states that at any certain state the probability of transition to future
states is only dependent on the current state and not on the states before.
In a first-order Markov model this property holds.
The probability of an occurrence of a sequence of experiments following a
first order Markov model assuming a graphical model of which the Markov
property enforces, can be calculated as follows:

P (S1, S2, ..., Sn) = P (Sn|Sn−1, ..., S1) · P (Sn−1|Sn−2, ..., S1)...P (S2|S1) · P (S1)

= P (S1) · P (S2|S1)...P (Sn|Sn−1) (2.2)

Example 2.2.1. Assume that we have a transition matrix P and an initial
probability vector I as below for weather changes and also assume that the
transitions follow the Markov property. We want to calculate the probability
of having the weather sunny today, rainy tomorrow and snowy the next day.

P =


Transition Matrix Sunny Rainy Snowy

Sunny 0.25 0.30 0.45
Rainy 0.15 0.50 0.35
Snowy 0.60 0.30 0.10



I =
(Sunny Rainy Snowy

0.65 0.20 0.15
)
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Solution The probability of (Sunny,Rainy, Snowy) is as follows:

P (Sunny) ·P (Rainy|Sunny) ·P (Snowy|Rainy) = 0.65× 0.30× 0.35 = 0.06

This means that there is a 6% chance that this sequence happens one after
the other.

Second and Higher Order Markov Chains

In these types of Markov chains each type of transition for future states
depends on the current state and the state before.
As an example, the probability of occurrence of a sequence of experiments
following a second order Markov model can be calculated as follows:

P (S1, S2, ..., Sn) = P (S1|S2, ..., Sn) · P (S2|S3, ..., Sn)...P (Sn−1|Sn).P (Sn)

= P (S1) · P (S2|S1) · P (S3|S2, S1)...P (Sn|Sn−1, Sn−2)(2.3)

2.2.3 Probabilistic Models for DNA Sequences

DNA sequences can be modeled as a trial of experiments each having a
probability of occurrence. The probability of the sequence depends on the
probabilistic model assumed for the DNA sequence.
Let us assume sequence S = “ACGGTGCGTAGTCAT” is the DNA sequence
that we want to model. If we assume that this sequence was created using
15 experiments which were all independent of one another and used the
same probability distribution, we have actually modeled it using a an iid
probabilistic model. In other words, each position in the sequence can be
thought of as a random variable which has 4 possible outcomes (A, C, G, T)
and the probability of any of the possible outcomes remains constant between
experiments.
There are two scenarios possible when one works with probabilistic models:

1. Parameter Fitting

In this scenario, we do not know the parameters of our probabilistic model (in
the above example the probability vector for possible outcomes of the random
variables). We would then try to fit parameters of the model by estimates
like the Maximum Likelihood Estimate(MAP) which tries to maximize the
likelihood of the observed data given the model parameters. In the above
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examples calculating the frequencies of each of the nucleotide bases gives us
a MAP estimate of the parameters of an iid model for the sequence. The
MAP estimates if each base would be calculated by the formula:

frequency =
ni

N
(2.4)

where ni is the number of occurrences of base i where 1 < i ≤ 4 and N is the
sequence length.
If the assumed model is a first order Markov model then the MAP estimates
could be calculated by first calculating the iid model since it will be used in
the formula and then by calculating:

frequency =
nij∑4
j=1 nij

(2.5)

Where nij is the number of occurrences of base j right after base i where
1 < i ≤ 4 and 1 < j ≤ 4.
For a second order Markov model both the above frequencies have to be
calculated plus the formula:

frequency =
nijk∑4
k=1 nijk

(2.6)

Where nijk is the number of occurrences of base k right after base i and j
where 1 < i ≤ 4 and 1 < j ≤ 4 and 1 < k ≤ 4.

2. Calculating Likelihood of Observations

If the parameters of the probabilistic model are already available or calculated
then the likelihood of a given observation can be calculated using either of
the formulas calculated above.
There is a problem inherent in this calculation. What would one do if the
observation holds a pattern that was not seen in the modeling stage? A naive
answer to this question is assuming a 0 probability of such pattern. But that
answer is not correct, the reason of which can be explained using the below
example introduced by Laplace.

Example 2.2.2. What is the probability of the sun not rising tomorrow?
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Solution This question although seeming philosophical reveals an intricate
complication in calculating the likelihood of unseen events. In order to sim-
plify the calculations we only consider the data from the past week for our
modeling process.
We represent the rise of the sun by the binary random variable R = t, f
which can take the value t representing that the sun rose on that day or f
the opposite. Now according to the example description we have seen the
“ttttttt” pattern occur and we would like to find the probability of “tttttttf”.
As another assumption to simply the model we consider the rise of the sun
to be statistically independent of the previous day enabling us to consider
the events of the past week as 7 independent Bernoulli trials. Given this
assumption we can calculate the probability of the patterns as:

P (X) = (1− x)N−mxm

where X is the pattern and x is the probability of t or f .
Since we do not have the probability of sun rising tomorrow we would have
to estimate it from the current data. We use the maximum likelihood es-
timator and find t and f as P (t) = 1

7
, P (f) = 0

7
which is an overfit to the

model and would result in a probability of 0 for the pattern “tttttttf”. In
order to fix the estimator Laplace smoothing or 1 additive smoother is used.
In these types of smoothing 1 is added to the numerator and denominator
for each participating term In this case since the formula has one term in
the numerator (Number of times sun did not rise) and two formulas in the
denominator (number of times sun didn’t rise + number of times sun rose)
we add 1 to the numerator and 2 to the denominator:

P (t) =
7 + 1

7 + 2
=

8

9
, P (f) =

0 + 1

7 + 2
=

1

9

So the probability of the sun not rising in the 8th day when 7 days have been
observed is 1

9
. Notice that this number approaches zero as the number of

observed days increases.



Chapter 3

Literature Review

In this chapter a review of previous work in the field of motif discovery is pre-
sented. This review demystifies some of the jargon used in the field and also
analyzes in detail some of the more extensively used motif discovery tools in
the literature. An overview of techniques using an evolutionary approach is
also provided.
According to Sandre and Drablos [40] one of the early origins of DNA motif
discovery is a computer program written in 1977 by Korn et al [29]. This pro-
gram was able to discover similarities in sequences upstream of the binding
sites. This program allowed mismatches and gaps but only allowed pairwise
comparisons. Later on Queen et al [36] added to the work by enabling mul-
tiple sequence comparisons between sequences. Stormo et al [48] introduced
a Perceptron algorithm using a sum of weighted position matchings of the
motif and the sequence. Staden [46] introduced the position weight matrix
which is mostly used in probabilistic methods and uses weights correspond-
ing to log-frequencies of the bases in aligned matches of the motif and the
sequence. In the following sections some of the more popular motif finders
and motif representations are discussed.

3.1 Motif Representation

Several different representations of a motif have been suggested in the litera-
ture. A motif could be shown as a consensus. For example, the HNF-1 TF’s
binding site can be shown as the pattern “TATTGTTTATT”. This shows
how the motif is mostly in most occurrences but fails to show its degenerate

23
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ACCTGAG
AGCGGAG
AGCTGGT
ACGTTAA
CCCTGAA
ACCGTAG

(a) All occurrences

1 2 3 4 5 6 7
A 5 0 0 0 0 5 2
C 1 4 5 0 0 0 0
G 0 2 1 2 4 1 3
T 0 0 0 4 2 0 1

(b) Alignment Matrix

1 2 3 4 5 6 7
A 0.83 0 0 0 0 0.83 0.33
C 0.17 0.66 0.83 0 0 0 0
G 0 0.34 0.17 0.17 0.66 0.17 0.50
T 0 0 0 0.66 0.17 0 0.17

(c) Frequency Matrix

Figure 3.1: Representations of Motif

forms. To show these other forms IUPAC symbols may be used. IUPAC sym-
bols add more possible alphabets to the existing 4 bases. These alphabets
add more flexibility to representation of the consensus sequence. For exam-
ple the letter Y represents C or T and W represents A or T (U). Although
more flexible, these forms still fail to show the frequency of occurrence of
such bases.
Also, Alignment Matrices or Position Weight Matrices (PWMs) are another
representation of a motif. For a motif of size m, the corresponding PWM is
a matrix Aij of size 4 ∗ k whose columns Aj, 1 ≤ j < m represent location j
of the motif. Each Aij shows the number of occurrences of each nucleotide
in each position of the motif instances.
The PWM may also be normalized to show the occurrence probability of
nucleotides at these positions. These possible representations are depicted
in Figure 3.1. In part (a) of this figure all found instances of a motif are
listed which could then be clustered into a consensus sequence or alignment
matrix (or PWM). The alignment matrix corresponding to the occurrences
in part (a) is shown in part (b). Part (c) shows the normalized PWM or
the frequency matrix which can be calculated from the alignment matrix by
normalization.
Another method of motif representation uses the concept of entropy of a
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certain base assuming each base in the motif to be produced by a statistical
sampling method. Each location is considered to be a random variable that
can hold 4 values (A,C,G and T). These random variables are considered
independent and identically distributed assuming a multinomial distribu-
tion. The sampling process at each position samples from this multinomial
distribution. The entropy score of the random variable is the amount of
uncertainty about the outcome of that random variable before the sampling
is done. The formula used for entropy uses the same concept as Shannon’s
entropy used in information theory [47]. The entropy score for location j is
then calculated as follows:

E(Xj) =
4∑

i=1

xij
n

log2

xij
n

(3.1)

where n is the number of occurrences of the aligned motif and xij is the
number of times letter i occurs in position j of the motif. In the case of DNA
sequences i can take on 4 values representing Alph = {A,C,G, T}.
The value of the entropy of the variable is maximized when the uncertainty
about the outcome of the variable is maximized, i.e. when all bases have
an equal probability of occurrence. This would result in a value of 2 for
the entropy. Also the value is minimized when the uncertainty is lowest
and one base has the probability of 1 and others are 0s. In other words
in all occurrences of the motif, only one base appears in position j. The
entropy score in this case would be of value 0 which means no uncertainty.
These entropy scores can then be used to create sequence logos, stacks of
letters in each sequence position with letters proportioned according to their
probability of occurrence. In order to translate the entropy score shown in
Equation 3.1 to a proportional representation where the most common base
has the highest proportional value the formula has to be changed as follows:

E(Xj) = 2−
4∑

i=1

xij
n

log2

xij
n

(3.2)

The last form of motif representation discussed is the motif logo[42]. This
form of representation of the motif stacks all possible letters at a position
on top of one another. The size of the stacked letters are relative the their
frequency or to the entropy as calculated in Equation 3.2. An example of
a sequence logo representation is shown in 3.2. In this figure at position 0,
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T is shown to be the most frequent letter to appear. Also, position 7 does
not have a dominant letter with high frequency: while C has the highest
frequency, A also takes its fair share of occurrence in the instances. The
more frequent a letter, the bigger it is in the logo. Motif logos are a very
intuitive form of visualization and are usually chosen to represent motifs in
motif finder algorithms.

Figure 3.2: The “Creb” motif found in the human genome

3.2 Motif Discovery Algorithms

More than a hundred algorithms have been devised to tackle the single motif
discovery problem. These algorithms can be divided into two broad cate-
gories: (i) enumerative or word based algorithms and (ii) alignment or profile
based algorithms.
Enumerative algorithms search the entire space of possible n-mers for a motif
of length n containing a preset number of mismatches. An exact match of
n-mers to motifs is not desirable and some degeneracy should be accounted
for by the algorithm.

3.2.1 Consensus-Based Methods

Some examples of word based methods are described below:

YMF

YMF [43] represents the motifs as strings over the alphabet A,C,G,T,Y,S,W,N
which are IUPAC codes. IUPAC alphabets were discussed in Section 3.1.
YMF (Yeast Motif Finder) was designed to find motifs in the promoter re-
gions of Saccharomyces cerevisiae. YMF’s inputs are (i) the input promoter
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sequences (ii) the number of spacers in the motif (places with N’s) (iii) the
number of non-spacers (any IUPAC model but N) in the motif and (iv) a
position weight matrix containing base compositions of already computed
background frequencies in the promoter regions of the yeast genome when
assuming a third order Markov model for the background model. YMF finds
motifs by ranking all possible words of length k(size of motif) by the z-score
calculated by the formula:

zs =
Ns − E(Xs)

σ(Xs)

where Ns is the number of occurrences of the candidate motif in the sequences
and E(X) is the expected number of times given the background model. This
formula calculates how many standard deviations the actual number of oc-
currences of the motif is from the expected value. The higher the value of
the z-score the more likely it is that the motif was not produced from the
calculated distribution of the background model. Since YMF assumes the
current input sequences to be a sample from a background distribution of a
third order Markov model with the given stationary distribution (the input
position weight matrix) it has to check the p-value of the calculated statistic
in order to make sure the high z-score did not happen by chance. The p-value
measures the probability of a motif getting a score more extreme than the
current score. To this end, 100 more datasets of the same dimensions are
created from the background model and YMF is run on them. An estimate
of the p-value is then calculated by deriving the fraction of times the z-score
was greater. The motifs that have the highest z-score and are statistically
significant are then reported.

Weeder

Weeder [34] is another enumerative technique which uses a consensus based
representation of the motif. Weeder first constructs a suffix tree from the
set of input sequences. The suffix tree is created by iteratively adding se-
quences one by one to the tree and also marking each suffix as coming from
a certain sequence. This marking is done by a n-bit vector which is 0 in
all places except the sequence indices it came from. To find a certain sub-
sequence one can start from the root and continue along the path specified
by the subsequence and eventually arrive at a marker vector which shows
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the sequences that contain the subsequence. A subsequence matching which
contains mismatches could use the same mechanism, with the difference that
different paths could be taken in the sense that if the current character in the
path doesn’t match the subsequence character one mismatch is added to the
number of mismatches and pattern matching is continued. If the number of
mismatches reaches a predefined number the pattern is abandoned. Weeder
uses a similar technique.
The algorithm starts from the root and checks if the pattern A is in more than
q sequences. If so the pattern is expanded and the pattern AA is checked. If
this pattern was not found in q sequences then one is added to the number of
mismatches and AAA is checked. If no more mismatches are allowed AAC,
AAT, AAG are checked similarly and are expanded. Basically all possible
paths are checked in the suffix tree until the search is exhausted. Notice
that the pattern that is being checked does not have to necessarily be a sub-
sequence from the input sequences. A problem with this approach is that
right from the start of the matching process all sequences of length e(possible
number of mismatches) are possible paths to expand. But all these possible
paths (3e) already contain 4 mismatches and are very unlikely to produce a
valid motif candidate. These patterns would be weeded out. As a means of
eliminating the need for supplement of the mismatch count parameter from
the user, Weeder uses an error ratio instead of a fixed number of possible
mismatches. The error ratio is a function of the motif length. Also, as the
pattern is being matched each pattern of length m can have at most m × e
possible mismatches.
After the search for all possible matches is finished a number of possible
motifs are reported by the algorithm. In this stage Weeder uses a statistic
constructed from the suffix tree to test the statistical significance of the found
motif to sort the output.

Consensus

Consensus [21] is also a word based method which aligns the motif by scoring
alignment matrices and testing for their statistical significance. While the
first version of Consensus was dependent on the order of the input sequences
supplied to the algorithm, the authors later fixed this problem and in the
current version, to search for possible motifs one word of length k(motif
length) is selected from each of the input sequences. Each word is then
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turned into an alignment matrix. The alignment matrix that consists of one
alignment has a 1 in the corresponding place of the base and 0 elsewhere. This
process is then continued by adding all other not previously aligned words
from all other sequences to each of these alignment matrices. So effectively
each alignment matrix or each word is compared with all other words of
length k. The comparison criteria is calculated from the formula:

L∑
j=1

A∑
i=1

fi,j ln
pi
fi,j

where fij is the frequency that letter i occurs at position j. This formula,
also known as relative entropy, is used to score all possible alignments. Each
alignment matrix is updated by the best two-sequence alignments with the
highest score calculated by the above formula. The algorithm continues until
each sequence has contributed one or more (user specified parameter) words
to the alignment. The p-value of the relative entropy statistic is calculated
using a large deviation technique for statistical significance. Because enu-
merative methods cover the entire search space, they do not run the risk
of getting stuck in a local optimum. On the other hand they may overlook
some subtle patterns in the search space [14] and also since they look for all
possible n-mers they are not suitable for larger motif lengths and sequences.

3.2.2 Alignment-Based Methods

Alignment based algorithms consist of probabilistic models that attempt to
fit a motif model to the target sequence using a background sequence model.
This type of model assumes that the entire sequence was created by a prob-
abilistic model called the background model, but that the motif was created
from another model called the foreground model or the motif model. Since
the motif is statistically over-represented in the sequences, these two models
can be identified.
In these algorithms the probability of a sequence being produced by the
motif model given the background model is calculated. Different types of
background models like random sequences or i -th order Markov chains are
created and then compared with the sequence containing the target gene for
over-representation. For discriminating between the background and fore-
ground sequences, an optimization technique can be used to maximize the
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likelihood of the observed data.
Motif Sampler [49] and AlignAce [25] use the Gibbs sampling optimiza-
tion technique and MEME [5] uses the expectation maximization technique.
DEME [37] is a discriminative motif discovery algorithm that uses a com-
bination of local and global search to find the motif that best differentiates
the positive and negative sequence sets provided as input. BAMBI [26] uses
Bayesian inference and sequential Monte Carlo using a Hidden Markov Model
(HMM) to model the occurrences of the motif. Motif sampler’s Gibbs sam-
pling search is very computationally expensive. MEME and other algorithms
like DEME, which rely on background sequences, are very sensitive to the
type of background sequence used and also require the user to procure a suit-
able background sequence otherwise they do not achieve very good results.
Below some more popular methods of motif discovery using profile-based
methods are analyzed.

MEME

This algorithm approximates maximum likelihood estimates of the parame-
ters of a mixture model that has created the dataset. A finite mixture model
assumes that observed data from the model comes from two or more groups
with known distributional forms but different unknown parameters. Expec-
tation Maximization(EM) is used to find maximum likelihood estimates of
these unknown parameters. The algorithm’s objective is to find those values
of the parameters of the overall model that maximize the likelihood of the
data. The mixture model does not actually model the dataset but instead
it models a sequence of all overlapping subsequences of a given length. This
is a good approximation if care is taken to ensure that the model does not
predict two overlapping subsequences to be created by the motif model. This
is done by enforcing a constraint on the estimated probabilities of two over-
lapping sequences being motif occurrences.
The mixture model consists of two components. One models the motif and
the other background (non-motif) sequences. The motif model regards each
position of the subsequence which is an occurrence of the motif to be gen-
erated by an independent random variable describing the multinomial trial.
This multinomial distribution has parameters fi = {fi1, fi2, fi3, ..., fim} where
fij is the probability of letter aj appearing in position i of motif of length m.
These parameters are going to be estimated from the data.
The background model regards each subsequence of length W that is a non-
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motif to be created as a series of W independent samples of a single back-
ground distribution with common parameters f0 = (f01, f02, ..., f0L).
The model is assumed to be working in these lines: first the motif model
with probability λ1 or the background model with probability λ1 = 1 − λ1
is chosen. After this a sequence of length W is generated according to the
probability governing the model chosen. The parameters for the model are:

• θ1 = (f1, f2, ..., fW )

• θ2 = f0

where each fi is a vector of letter frequencies of the motif model and f0 is
the vector for the letter frequencies for the background model.
The EM algorithm makes use of the concept of missing data. In this case
the missing information is the group that a certain sample belongs to. The
samples are represented by labels Zij which if equal to 1 mean that sample Xi

belongs to group j. These labels are to be estimated along with θ(distribution
parameters) and λ(mixing parameters).
After the parameters for the model are fitted to the data. The likelihood of
a given pattern can be calculated from the mixture model. The authors of
MEME report MEME’s advantage over Gibbs Sampling based algorithms,
which they believe to be the best at the time, is that it converges predictably
and it also doesn’t require the input sequences to be all classified as containing
the motif.

Amadeus

The Amadeus [30] motif finder algorithm uses a series of filters or refinement
stages to find the highest scoring motifs. The stages take a series of candidate
motifs as input and try to improve on the scoring of these motifs. These newly
scored motifs would then be submitted as inputs to the next stage. The stages
get more computationally intensive as this filtering process progresses. This
program also supplies an intuitive and simplistic user interface which reports
on the motif’s p-value, sequence logo, local localization score and some other
statistical scoring schemes. The different stages of this algorithm are as
follows:

Preprocessing considers and evaluates all possible k-mers where k is an
input parameter to the algorithm by the user.
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Mismatch adds some degenerate forms to the algorithm.

Merge combines similar motifs. These stages are repeated until no new
highly scoring motif is added to the candidates. In the three first
stages the motifs model is a consensus model.

Greedy transforms the candidate motifs into a PWM model and tries to
optimize these PWMs with an EM algorithm which iteratively tries to
find the best cutoff in the PWM that gives the best score. The instances
in the target set that are above this threshold are used to refine the
new PWM and the iteration continues until there is no improvement.

Post Process If the occurrences of two found motifs overlap more than 5%
the lower scoring motif is removed.

Pair Analysis This stage is optional. In this stage co-occuring motifs are
found and reported. The different scoring schemes are then combined
into a single p-value using the Z-transform.

One of the other contributions in this paper is the comprehensive Metazoan
benchmarking suite they compiled. This dataset holds promoter sequences
from 1000 bp upstream to 200 bp downstream of the transcription start site.
The authors report that, this range is often used in computational promoter
analysis. The total sequence length of the target sets is 383 kbp on average
which is considerably higher than previous benchmarking compilations.

BAMBI

BAMBI takes as input a series of sequences and an upper limit on the num-
ber of motifs embedded in these sequences. It argues that these motifs can
be found by modeling the input sequences as an HMM. The hidden variables
are the motif’s length, logo, instances and location in the sequence.
The induction technique of these variables is Bayesian inference. In this
technique first an initial value for the unknown parameters of the system is
randomly chosen (prior). This initial value is represented as a distribution of
the parameters rather than just a value. This distribution is then updated
using the update method which incorporates newly observed data into the
induction algorithm and hence conditions the “posterior” distribution with
this new information. This process at each iteration gives a posteriori esti-
mate of the parameters.
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BAMBI differs from other algorithms that use this approach in choosing its
observations from the sequence set. While some algorithms use bases or sub-
sequences in each sequence as observations, BAMBI takes the entire sequence
as an individual observation.
The additional computational cost resulting from this choice however is mit-
igated by the choice of a sequential Monte Carlo method. This approach
at each iteration approximates the posterior distribution of the system pa-
rameters. Ideally, one would like to sample from the distribution itself in
order to fit the parameters. But since usually for complex cases such as the
said model, sampling is either impossible or computationally infeasible, these
samples are taken from another distribution which is easily sampled using a
technique called importance sampling.
As the computational complexity increases with the dimension of the state
vector of the HMM, the algorithm is broken down in two stages:

• First the the sequential Monte Carlo method is used to determine if
each sequence has a motif or not and obtain an estimate on the PWM.

• The first estimate of the PWM is then used for a sequence of binary
hypothesis tests.

Breaking down the algorithm into these two stages enables it to use infor-
mative priors for its PWM, even from other motif finder algorithms.

3.2.3 Evolutionary Techniques

There are many examples of the use of evolutionary computation for motif
discovery in the literature. These motif finders include: FMGA [31], MDGA
[10], GAMI [12] and MOGAMOD [27].

FMGA

FMGA uses the same framework and operators for their Genetic Algorithm
(GA) as defined in SAGA [33]. For individuals’ representation FMGA uses
a consensus based method and uses IUPAC characters as the motif. For its
fitness function FMGA counts the number of occurrences of subsequences
that match the consensus with some penalty for the mismatches summed
over all input sequences. The genetic reproduction operators are as follows :
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• Mutation: The individual is first turned into a PWM by considering
all matched patterns in the input sequences. The columns containing
1 are unchanged but the others are randomly mutated. Every pattern
creates two mutated parents to be supplied to the crossover operator.

• Crossover: A one point crossover technique is used which changes the
left side of a random point in the first parent with the right side of
a random point in the second parent and vice versa, producing two
children. To encourage the more conserved patterns (i.e. with less
permutations in each column) the operator adds predefined penalties to
columns containing IUPAC symbols in the pattern. The child pattern
with a better score overall is retained. The number of mismatches and
the gap penalty of the crossover operator can be provided by the user.
The authors report setting the correct values for these parameters was
found to be difficult when trying to find longer motifs.

• Rearrangement: This operator is used to change the IUPAC symbols
back to the most frequent nucleotide base (A, C, G, T) according to
its weight matrix. The base with the highest number of occurrences is
chosen. This operator is applied only when the predicted motif pattern
is unchanged for a certain number of generations.

The authors reported that the algorithm produces better results than Motif
Sampler and is faster than MEME. FMGA considers motifs as recurring pat-
terns and looks for the best match to a random pattern it generated failing
to take into account any statistical significance of the said pattern. Also the
fact that the punishment value for the IUPAC symbols is an input parame-
ter suggests that the algorithm needs refining for each dataset accordingly,
which adds to the workload of the biologist.

MDGA

MDGA [10] evolves a list of integers as starting position of TF binding sites
for the series of input sequences. Each sequence is assigned a random start-
ing position and the length of the motif is fixed by an input parameter. So
the representation of each individual is the starting position of the motif it
represents in each of the input sequences. This forces the restricting assump-
tion that each sequence must contain the motif. The fitness function is the
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entropy measure of the pattern. The entropy formula is the same formula
known as relative entropy :

IC =
∑

fb log2

fb
pb

where fb is the frequency of the nucleotide b in the column of the found
instances of the motif and pb is the frequency of this nucleotide in the back-
ground sequences.
Single-point and double-point crossover and bitwise mutation are used for
reproduction. The replacement strategy in the generational GA is as follows:
in each generation 100 individuals are used to create 50 new individuals
which are added to the parents, and then the worst one-third of these 150 in-
dividuals are eliminated. The authors reported that the algorithm produced
better results than Motif Sampler and also was faster than Gibbs Sampler
and BioProspector.
The authors acknowledge the fact that the assumptions made about the ne-
cessity of a motif occurrence in each sequence is highly restrictive. Also the
fact that the columns of the prospective motifs are considered to be statis-
tically independent should be highlighted, as this is restrictive to the motif
model.

GAMI

GAMI [12] uses a similar approach to FMGA, evolving motif patterns and
matching as many subsequences base matches to the pattern as possible.
The overall fitness is the maximum number of base matches for a pattern
throughout the sequences. GAMI tries to find motif patterns in the space of
all possible N -mers, where N is the length of the motif, compared to looking
at all possible overlapping subsequences of a given length. The authors ar-
gue that this considerably reduces the search space by making the algorithm
dependable on the motif length rather than sequence length.
GAMI expects at least one motif per sequence. It also uses the punishment
used in FMGA to encourage the occurrence of A,C,G,T rather than IUPAC
characters in any column. The mutation operator truncates one end of the
motif and adds a random base to the opposite side allowing the motif to
“glide” along the sequence.
In a later paper [11] the “Information Content” fitness function was used:
this was reported not to be effective since it did not require the motif to
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match the sequence completely and could have many degenerate forms.

MOGAMOD

Multi-objective GA approaches to motif discovery are rare, but MOGAMOD
[27] is one such example. MOGAMOD builds on the idea of MDGA and rep-
resents the individuals as starting positions of binding sites in each sequence
with two main differences.
Firstly, unlike MDGA there is no requirement for all sequences to contain the
motif: the occurrence of motifs in each sequence is determined by a weight
coupled with the starting position, which when less than a given threshold
does not regard the sequence as containing the motif. Secondly, the length
of the motif is evolved with the individual.
The objectives used in MOGAMOD are as follows :

• Similarity: The gene representation used here, encodes different start-
ing positions of the motifs in the sequences and their length. These
positions may point to completely different patterns that could not
possibly constitute a motif. This objective, scores the patterns that
are similar to one another. In order to do so, firstly all the patterns
currently found by the individual are converted into a PWM. This
PWM is then scored by averaging the highest frequency of a base per
column. The frequencies are numbers between 0 and 1 so the average
would also fall in this range and the closer it is to 1 the more conserved
and the more similar the patterns are.

• Support: This objective got its name from a data mining concept. Since
the motif may exist in many or no sequences in the input sequences
set, this objective indicates the number of sequences in which the motif
was found. The more sequences the motif was found in the better the
quality of the found motif.

• Motif Length: This objective is maximized since the program looks for
the longest motif it could find.

MOGAMOD uses an arithmetic crossover and three mutation operators.
The crossover operator is a single point crossover which takes a parameter
that fixes the point to be used as the pivot. This point is a percentage of the
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length of the individual and is changed as more generations are processed.
The mutation operators are as follows :

• Shift the starting location of the found motif to the left.

• Shift the starting location of the found motif to the right.

• Random change: A random number is added or subtracted from either
length, weight or the starting location of the motif.

Although MOGAMOD improves on the GA setup of MDGA and FMGA or
GAMI, the current representation adds the overhead of first finding patterns
with acceptable similarity. This problem can be easily solved by a better
choice of representation which will be discussed in Chapter 4.
MOGAMOD showed very strong results on the 3 datasets chosen from the
Tompa [50] benchmarking suite. The reason why the specific datasets were
picked out of the many other datasets available in that benchmark is not
mentioned. The algorithm was shown to be able to match the results from
MEME, AlignAce and Weeder and improve them on the motif length objec-
tive. The algorithm was also reported to be faster than MEME.



Chapter 4

Side Effect Machines

In this chapter the representation used for a motif in our motif discovery
tool is elaborated and some early experiments done with the setup for DNA
classification are reported.

4.1 Definition

Side Effect Machines(SEMs) were introduced in [3]. The idea behind the
SEM is associating useful information with each state so that when a sequence
is run through the machine a numerical feature set is extracted from the run.
An example of a side effect is state visit count, i.e the number of times the
state was visited when the sequence was run through the machine. This
side effect makes the SEM model a perfect model for feature extraction from
a variable length sequence of events. When the series of events are parsed
through the SEM (each state representing an event) the state visit counts
produce a count vector when the parsing is finished. The key factor here is
that the count vector’s length is not dependent on the length of the series of
events but on the number of states of the SEM. This means SEMs can easily
model variable length sequences.
We further introduce SEMs by following through an application of them in
Bioinformatics. A complication when using computational intelligence in
Bioinformatics is the use of feature vectors by most techniques: in the case
of variable length sequences, these are not easy to extract. A Side Effect
Machine (SEM) can be used as a feature inducer of the DNA sequence.

38
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In [2] the authors used the count of the number of visits to each state as the
side effect for the SEM. We use the same strategy in this example. Extraction
of the features works as follows.
The SEM starts at state zero. A DNA sequence is fed to the SEM one base
at a time, making transitions to other states according to the base parsed
and the SEM’s transition matrix. This process continues until all bases in
the sequence have been parsed. The number of times each state was visited
during the process creates a feature vector of length equal to the number of
states. We use the same approach to find motifs in sequences. An example of
a SEM and its transition matrix is shown in Figure 4.1. The feature vector
produced from parsing a sample sequence through the SEM in Figure 4.1 is
shown in Table 4.1.

0 1

2 3

G, T

A,G,C

A, T

A

AC

C T

G, T C,G

(a) Side Effect Machine

Current State
Base Pairs

A C G T

0 2 0 1 1

1 3 3 3 1

2 3 0 2 2

3 2 3 3 2

(b) Transition Matrix

Figure 4.1: SEM and Transition Matrix

4.2 SEMs and DNA Classification

To meet the demand of newer sequencing technologies that provide sequences
of higher length and quantity, sequence alignment and classification algo-
rithms need to evolve. A plethora of multiple sequence alignment and clas-
sification algorithms has been developed to meet this need. A very good
review and comparison of these algorithms can be found in [24, 28].
Previously SEMs were shown to be useful in classifying DNA Sequences [2, 4].
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Table 4.1: Sample Count Vectors

Sample Sequences
Feature Vector

0 1 2 3

CCGTAC 3 2 0 2

CAGTTG 2 0 5 0

AAAACG 1 0 2 4

GGGGGG 1 1 0 5

The authors reported that the SEM was successful in classifying the DNA
sequence and also, that it was able to pick up on complex patterns in the
sequence. In order to analyze the inner workings of the SEM and how it is
able to come up with the classification by detecting these complex patterns,
some experimentation is done on the classification method reported in the
said papers. We construct synthetic datasets with different properties and
then run the sequences throught SEMs that are evolved with a GA. The
approach is elaborated below.

4.2.1 Dataset For Classification

We are going to use SEMs for DNA classification. For this purpose, a syn-
thetic dataset containing a set of sequences is created to supply the sequences
for classification.
The datasets created are going test if the SEM is able to pick up on the motif
if it exists inside the sequences. The dataset can be designed having a certain
number of the same motif embedded in the sequences. The embedded mo-
tif chosen is HNF-1 with the consensus sequence “TATTGTTTATT”. The
dataset is created so that half of the sequences contain the specific number
of the motif and half do not contain any.
The dataset is first created by creating sequences of the required length as-
suming a uniform distribution over the bases (all have the same probability
of occurrence of 0.25). The embedded motif is then replaced with a subse-
quence of the same size in a random position. Care is taken not to overlap
an already inserted motif.
In this experiment, the embedded motif is inserted in the sequences with
one mismatch to simulate biological datasets. The length of the sequences
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and the number of embedded motifs are determined and explained in each
experiment. The experiment’s input is a set of sequences created from either
of the two possible datasets. The input sequences are divided into two group
for cross validation purposes:

• Exemplars which are sequences that are chosen to train the SEMs in
the training phase.

• Evaluators which are sequences used to test the classification perfor-
mance of the SEMs.

4.2.2 Representation

The GA uses SEMs as individuals which are represented using their transition
matrices. These SEMs are initially generated by randomly creating transition
matrices of size m× 4 that is supplied as a parameter to the algorithm. The
transition matrix has 4 rows per nucleotide and m columns per state.

4.2.3 Reproduction

The reproduction operators are one-point crossover and mutation. Crossover
swaps two rows of the transition matrix in the two selected parents. These
rows are randomly chosen. Mutation changes a row in the transition matrix
by changing the transitions to random states in the SEM.
An example of two parent SEMs are shown in Figure 4.2. The resulting
offsprings are shown in Figure 4.3.

4.2.4 Fitness Function

In the evaluation phase each individual (SEM) parses each exemplar sequence
in the dataset as was discussed in section 4.1. As the sequence is parsed
through the SEM each count vector is stored along with the sequence it was
extracted from. K-Nearest Neighbor (KNN) is then used to classify the set
of exemplar count vectors.
The KNN algorithm [17] is a non-parametric machine learning technique that
classifies objects according to their nearest labeled data objects using a ma-
jor vote technique. The assumption is that each data object is in the same
class as the majority of its K neighboring data objects. In a non-parametric
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Figure 4.2: Parents Before One-point Crossover
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Figure 4.3: Offsprings After One-point Crossover
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approach the model does not fit any parameters to the data using a train-
ing set. Therefore, KNN being non-parametric and classifying according to
known instances can be classified as an instance based, lazy classifying algo-
rithm.
In our experiment, the data objects are count vectors extracted from each
DNA sequence. The KNN algorithm labels each count vector to be of either
class according to its neighboring count vectors. The distance measure used
is Euclidean Distance which measures the smallest distance using a straight
line between two points in space.
In order to test the classification accuracy the Rand Index estimate[15], de-
scribed below, is used to test two sets’ similarity. Given a set of n elements
and two partitions of the set S to compare, the following is defined:

• The number of pairs of elements in S that are in the same set in X and
in the same set in Y .

• The number of pairs of elements in S that are in different sets in X
and in different sets in Y .

• The number of pairs of elements in S that are in the same set in X and
in different sets in Y .

• The number of pairs of elements in S that are in different sets in X
and in the same set in Y .

The Rand index, R, is a number from the range [0, 1]. This number gives
a measure of similarity between two classified sets. In this study the two
sets X and Y are the known classification of the sequences and the predicted
classification of sequences respectively. Values close to 0 mean the two sets
don’t agree at all and values close to 1 mean that the two sets are exactly
the same. This estimate works by counting the number of elements correctly
classified and number of elements incorrectly classified. As the number of
misclassified elements grows the value approaches 0.
Rand index is used as the fitness function in this study: if an SEM is able to
achieve a fitness value of 1 then the ideal individual and the solution to the
classification is found.
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4.2.5 Experiments and Analysis

This experiment is to test if the SEM is able pick up on the motif when
the motif exists in the sequence. The synthetic datasets created contain
1000 sequences each from 1000 to 2000 base pairs long. In order to find
how existence of the motif could change the sequence base composition, five
different datasets with 10 to 50 embedded motifs were created. The exemplar
and evaluator sequences are picked at random from the entire dataset in the
specific experiment. The parameters used for the experiment are shown in
Table 4.2.

Table 4.2: Relative Entropy vs Entropy Experiment Parameters

Parameter Value

Number of Runs 30

Number of Generations 50

Mutation Rate 30%

Crossover 70%

Population 100

Selection Method Tournament Selection (Size 3)

Exemplars 25

Evaluators 15

Elites 2

Number of States 2

The experiments on these 5 datasets revealed that even a two-state SEM
is easily evolved in the first few generations when the embedded motif occurs
in the sequence set more than 30 times. When the number of occurrences
falls below this threshold the performance deteriorates and falls to 95% with
20 occurrences and 77% with 10 occurrences.
The main reason for the GA’s success in finding the best individual so fast
when the number of occurrences is high is that with a high number of occur-
rences of the motif the GC-content of the entire sequence set is completely
effected by the motif. Table 4.3 has the different GC-content percentages for
each dataset.
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Table 4.3: Percentage of Bases

Number of occurrences A C G T

10 Embedded Motifs 0.24 0.23 0.24 0.27

20 Embedded Motifs 0.24 0.21 0.24 0.29

30 Embedded Motifs 0.24 0.20 0.23 0.31

40 Embedded Motifs 0.24 0.18 0.23 0.33

50 Embedded Motifs 0.24 0.17 0.22 0.34

Table 4.3 shows that the GC-content could be considerably affected when
the number of motifs embedded is high especially if the motif is rich in cer-
tain bases which is the case with the embedded motif here. The table shows
considerable change in the GC-content down to 10 embedded motifs. The
rather low performance in this dataset then, is due to the small difference
made to base composition.
The SEM then would only need to count the number of G and C bases in
each sequence to guess if the motif is embedded in the sequence or not. The
two-state solution evolved is shown in Figure 4.4.

0 1

C,G A, T

A, T

C,G

Figure 4.4: A Simple Two-State SEM

In the next experiment the algorithm is tested against a dataset with only
one embedded motif. The previous experiment shows that the algorithm
would no longer be able to detect the motif with base composition analysis
since in this experiment with only one added motif, the base composition
remains roughly the same and indiscernible to the SEM count vectors.
In the dataset created for this experiment, sequences of length 100 are created
with only 1 occurrence of the HNF-1 motif (with an added mismatch). The
parameters used for this experiment are the same as the previous experiment
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(Table 4.2) with the difference that the state count is variable. The results
are shown in Figure 4.5.

Figure 4.5: DNA Classification with Variable State Count

As shown in Figure 4.5, the algorithm was able to successfully classify
the sequences with one motif embedded in them. The motif does not change
the base composition considerably so it can be deduced that the algorithm
has picked up on the pattern embedded in those sequences.
The relation between the state count and the performance is also worth not-
ing. The two-state SEM as shown does not have good classification accuracy
or a good evolution since there is not much to evolve with only two states.
As the number of states are increased the algorithm is able to produce more
complex patterns and after 10 states the performance is excellent.
Considering the motif was found in the sequences, how can one extract this
motif from the SEM? The extraction of the motif from the SEM proves to
be an equally hard problem. This can be seen in Figure 4.6: what pattern
does this SEM find? The figure shows the best individual evolved in the run
with three-state SEMs. Although this SEM does not have the accuracy of a
20-state SEM classifier, it shows the difficulty of motif extraction from even
three states of the SEM.
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Figure 4.6: Detector of HNF-1 with 87% accuracy

4.3 Restricted SEM for Pattern Recognition

In the previous section, the experiments showed that although the SEM found
the motif (according to the high classification score), the inner workings of
a SEM of even 3 states was already sufficiently complex that extracting the
motif was very difficult. To circumvent this problem we restricted the SEM
to only develop patterns that could later be easily extracted. Functions like
loops and jumps to states ahead, although helpful for finding the motif, are
not required for pattern discovery since both can be simulated by a SEM
with a higher number of states but without those functions.

0 1 2 3 4

C,G

A, T

A,G

T,C

C,G

A, T

A,C

G, T

A,C,G, T

Figure 4.7: Next or First State Side Effect Machine

A restricted-transition SEM is one in which certain transitions are dis-
allowed. In our work, we limit the transitions of a n-state SEM as follows:
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for each state i, 0 ≤ i < n, the only transitions allowed from state i are to
state 0 and to state i+ 1 (if it exists). We call an SEM designed with these
restrictions a “Next or First State Side Effect Machine” or NFS-SEM. An
example of a NFS-SEM is shown in Figure 4.7. The restriction allows the
NFS-SEM to be used as a pattern recognizer that makes transitions forwards
while on the pattern and that goes back to the first state to start over when
the sequence diverts from the pattern. NFS-SEMs have the last state set as
a “Pattern Found” state, meaning that if this state is visited then a pattern
has been found in the sequence. In further experiments NFS-SEMs were
able to gain acceptable classification accuracy for the same DNA classifica-
tion problem normal SEMs were applied to.
It may be assumed that since the loops and jumps in the SEM are now not
allowed, the classification would have poor results. To further analyze this,
the same dataset from the previous section with only one motif embedded
with one mismatch is also used this time with an NFS-SEM to see how the
classification accuracy changes. The results of this experiment are shown in
Figure 4.8.

Figure 4.8: DNA Classification with Variable State Count

As the Figure 4.8 shows, although the 100% accuracy rate is not achieved,
the NFS-SEM is able to obtain up to 95% accuracy which seems reasonable
given the restriction.
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Genetic Algorithm Design

This chapter explains the details of the motif discovery tool created in this
work. The representation, reproduction operators, fitness and strategies used
are detailed.

5.1 Representation

There are notable differences in choosing SEMs for representing the motif
instead of consensus based methods like GAMI, YMF, Weeder, etc. SEMs
have the same capability as consensus methods to show degeneracy by al-
lowing more than one transition from each state. They don’t need to use
IUPAC characters to represent the motifs, nor do they need to set the num-
ber of mismatches because intrinsically they handle the degeneracy by state
transitions. Another advantage is the incorporation of a fast method to parse
the sequence. In comparison, consensus based methods parse the string by
moving a motif-length window along the sequence and calculating the mis-
matches, requiring more time than just parsing the string though a SEM.
A final advantage is that after parsing, SEMs output a feature vector (state
visit counts) for each sequence parsed which is usable as a problem specific
heuristic.

5.2 Sexual Reproduction

Since the SEM used is a NFS-SEM, a general crossover or mutation operator
may render an individual invalid by exchanging states at non-corresponding
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indexes or mutating a state transition to point to an invalid state. Conse-
quently, special reproduction operators are needed. Two types of crossover
and three types of mutation are considered.

5.2.1 Crossover

Crossover State At Index This operator is the normal one point crossover
in which a random state is chosen in one of the parents and all the transi-
tions are swapped between the two at the same state. Figure 5.1 shows an
example of the two parents before this crossover and Figure 5.2 shows the
corresponding result after crossover. The dotted lines represent the tran-
sitions that are exchanged in the parents. As seen in the figure the index
2 was chosen for crossover and all transitions to states 3 and 0 were swapped.

0 1 2 3

C,G

A, T

A,G

C, T G, T

A,C

A,C,G, T Current State
Base Pairs

A C G T

0 1 0 0 1

1 0 2 0 2

2 0 0 3 3

3 0 0 0 0

0 1 2 3

A,C

G, T

C, T

A,G G

A,C, T

A,C,G, T Current State
Base Pairs

A C G T

0 0 0 1 1

1 2 0 2 0

2 0 0 3 0

3 0 0 0 0

Figure 5.1: Parent SEMs before the State At Index Crossover

Crossover Genetic Material In this crossover two random states are
picked. All transitions between these two points are swapped between the
two parents. By applying this operator, individuals that have correctly de-
termined the conserved part of the motif can pass the genetic material to
individuals that have correctly determined the less conserved parts. Fig-
ure 5.3 shows the result of applying this crossover to the same parents from
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Figure 5.2: Parent SEMs after the State At Index Crossover

Figure 5.1. In the figure states 1 and 2 are chosen for substitution and all
transitions between them are swapped.
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Figure 5.3: Parent SEMs after Genetic Material Crossover

5.2.2 Mutation

Random Transition In this type of mutation a random state is picked
and for all its state transitions a coin is flipped to change the transition to
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the next state or the first state. The individual is then checked and the
process repeated if all transitions were changed to the first state at a certain
index, rendering an invalid individual. Figure 5.4 and 5.5 show this operator
in action.
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3 0 0 0 0

Figure 5.4: Parent Chosen for Mutation
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3 0 0 0 0

Figure 5.5: Offspring After Random Transition Mutation

Frontal Decay In this type of mutation, the first state is deleted and a
new state with random transitions is added to the penultimate state (the last
state is the “Pattern Found” state and does not take part in reproduction).
Figure 5.6 shows the result of applying this operator to an individual. The
dashed lines represent the transitions mutated.

Posterior Decay This operator is the opposite of the previous one. The
NFS-SEM would lose its penultimate state and receive a random starting
state with random transitions (obeying any required restrictions). Figure 5.7
shows the result of applying this operator to an individual. The dashed lines
represent the transitions mutated.
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Figure 5.6: Offspring After Frontal Decay Mutation
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Figure 5.7: Offspring After Posteriorl Decay Mutation

5.3 Multi-Objective Fitness

One characteristic of a motif is its number of occurrences. In our implemen-
tation if only this objective is taken into account then the GA would look for
an NFS-SEM that has the highest number of visits for its last state. There is
an NFS-SEM that would have the maximum number of state visits possible
for any sequence fed to it and that is one that for all states the transition to
the next state happens for any base. This is shown in Figure 5.8. This easily
achieves the maximum number of visits to the last state objective but clearly
the NFS-SEM would merely represent a motif pattern of all possible n-mers
and is never a true solution to the problem. Consequently other objectives
of the problem should be considered as well. Our main goal then is to search
for a motif that allows for degenerate forms but is conserved as well. We now
suggest and describe several objective functions.

5.3.1 Objectives

Last State Visit Count This objective counts the number of times a
certain pattern was found which is the same as the number of times the
individual’s NFS-SEM parsed the string and was able to reach its last state.



CHAPTER 5. GENETIC ALGORITHM DESIGN 54

0 1 2 3 4
A,C,G, T A,C,G, T A,C,G, T A,C,G, T
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Figure 5.8: NFS-SEM with all transitions going to the next state

This objective is maximized. Since the NSF-SEM is already storing visit
counts for each state, this objective’s value is the last index of the extracted
feature vector.

Entropy This objective shows the amount of uncertainty in each position
of the motif. The more conserved a motif is, the lower the entropy. The
formula used for entropy uses the same concept as Shannon’s entropy used
in Information Theory [47]. The entropy for a motif pattern M is calculated
as:

E(X) = −
m∑
i=1

4∑
j=1

P (xij) log2 P (xij)

where m is the length of pattern M and X is the probability of occurrence
matrix with xij the probability that base j happens in the position i of
the motif. The entropy is calculated from the individual’s PWM by first
calculating the probability of occurrence of bases at all locations of the motif
and then using the above formula to calculate the summation of all bases in
each location. The resulting entropies of all columns are then added together
for the motif’s entropy value.
The highest value for entropy in each column is two, which occurs when all
pairs have an equal probability of occurring. The absolute value of entropy
is minimized in this problem. It is also in opposition with the first objective.
The “Last State Visit Count” objective tends to favor very degenerate SEMs
to be able to get to the last state and get better fitness, but such an SEM
would have a very high entropy value and is not going to receive a good final
score.

Clustering SEMs were shown to be successful at classifying DNA se-
quences in both this study and earlier studies [2, 4]. It was also used to
find motifs in [32] coupled with an evolutionary algorithm. This prompted
the idea of using them as an optimization objective in this problem.
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In the context of discriminative motif discovery this objective can be turned
into a classification objective. For the current non-discriminative problem
then clustering is adopted as another objective. Feature vectors extracted
from each string in the sequence are going to be fed to the k -means clustering
algorithm. The algorithms would then cluster the instances to two clusters,
aiming to minimize the intra cluster error and maximize the inter cluster
distance.

Likelihood This objective relates to the fact that motifs are statistically
over-represented in the dataset being analyzed. Firstly, a probabilistic back-
ground model for the input sequences is assumed. Then, according to this
background model, the input sequence is fitted to an n-order Markov model
which would then be used to calculate the likelihood of a pattern to be pro-
duced by the background model. Due to statistical over-representation, the
aim here is to minimize the likelihood of the pattern given the background
model.

5.3.2 Scoring Method

Individuals in a multi-objective problem have a vector of values as their
fitness, so comparing them is not straight forward. Pareto ranking ranks
the individuals by a domination criterion and is known to be susceptible to
outliers [38]. In our work the normalized sum rank [7] approach was taken.
For all objectives of the problem, the population is sorted by that objective
and individuals are ranked according to their value in that objective. This
result is a rank vector which is then summed to be the individual’s fitness.
This converts a multi-objective problem to a single objective problem and
there is no need to assign weights to different objectives.
Although weighted ranks could be used to weight the importance of certain
objectives, we do not use this approach here. Also, a normalized ranking
scheme was chosen since when ranking individuals in the population some
objectives could lead to having differences in ranges of values in ranks due
to identical and repeated values of the individuals for that objective.
The problem with summed rank is its relativity to each generation. The
score of an individual is dependent only on individuals of its own generation.
This can result in the best individual of the run possibly being overwritten
by a worse individual in generations to come. To mitigate this problem we
use an archive to hold all the undominated best individuals of all generations
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of the run. A best individual of each generation is added to the archive only
if it is undominated by all the individuals in the archive. The archive size
does not have a limit in our experiments.

5.4 Algorithm Outline and the Archive Set

The algorithm starts by creating an initial population of NFS-SEMs as tran-
sition matrices which also represent a motif. An individual also holds a
PWM that corresponds to the occurrences of the motif updated online as
the sequences are parsed. The update happens every time the NFS-SEM
hits the last state (the “Found Motif” state). After each evaluation the best
individual of the generation is analyzed to determine if it should be put into
an archive set. The requirements are as follows:

• Not Pareto Dominated: There should not be any other individual in
the archive that Pareto dominates the individual to be added.

• PWM Divergence: To encourage diversity in the archive, the PWM of
the individual to be added is compared to all of the individuals in the
archive. This measure calculates the Euclidean distance of correspond-
ing columns in PWMs. Only individuals with an average Euclidean
distance greater than 0.25 (number set after extensive experimenta-
tions) are allowed in the archive otherwise the individual is deemed to
be finding a very similar motif and is rejected.

• Degenerate Consensus Forms: The consensus form of the individuals in
the archive and the individual to be added are taken from the position
weight matrices by picking the most probable base to appear in each
column. The candidate individual’s consensus is compared agains all
individuals in the archive. If any of the distances are zero or less than
dPatternLength

4
e, the new individual is rejected.

At the end of each run the contents of the archive are the found motifs in
the dataset.
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Datasets

In this chapter the datasets used to test the performance of our tool and how
they were curated or created are discussed.
Most motif finding algorithms introduced in the literature use datasets gath-
ered from experimental results as in data from ChIP-chip experiments (bi-
ological experiments which experimentally determine protein binding sites
during protein-DNA interations) or by curating a set of co-regulated genes.
Although choosing different datasets will prevent different algorithms from
bias against a certain type of dataset, it may also lead to confusion from
the biological community regarding the exact difference in performance and
accuracy of motif finding algorithms. As a result, benchmarking datasets
were created.
In our work we created a synthetic dataset to simulate a variation of the
known Challenge problem [35]. We also use current available benchmarking
datasets.

6.1 Synthetic Dataset

The synthetic dataset designed for testing of our work is a variant of the
well-known Challenge problem [35] for non-discriminative motif finding al-
gorithms. A standard synthetic dataset in this field would have a consensus
motif in all of the sequences and the distribution of the bases in other parts
not containing the motif is uniform. We introduce more complexity by only
adding the motif in half of the sequences and adding not the consensus but
various forms of a degenerate motif to the sequences. The original Challenge
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problem dataset includes 20 sequences, each with a number of mismatches
in the occurrences of the motif. The sequence length and the algorithm is
tested on different lengths for the sequence up to a maximum length where
they fail to find it. The synthetic dataset created here aims to simulate bio-
logical occurrences of a motif in a sequence or series of sequences. Therefore,
instead of adding mismatches to the consensus sequence, a position weight
matrix of a known motif is used as instances of the motif in the sequences.
In real applications of this problem not all the sequences hold the motif, thus
we also added negative sequences to the dataset. The synthetic dataset holds
40 unlabeled sequences consisting of 20 positive and 20 negative sequences.
The positive sequences are created using the HNF-1 motif’s PWM. First the
PWM of the HNF-1 motif is analyzed for the probability of occurrence of
each base in each location. Then two degenerate motifs are randomly cre-
ated according to the calculated probabilities and inserted into a sequence
of the desired size with randomly created base pairs. The positions of motif
insertion are checked to avoid motifs overlapping each other.

6.2 Tompa et al’s Dataset

The authors in [50] introduced the first prominent benchmarking dataset. It
consisted of 56 datasets on a set of organisms. The authors also compared
a series of motif finding algorithms. The comparison data of all these algo-
rithms are easily available which makes it possible to compare our algorithm
with other algorithms using the dataset, as well as MOGAMOD [27], which
has been tested on this dataset.

6.3 Metazoan Compendium

The authors in [30] curated a set of co-regulated genes from high throughput
experimental techniques in the literature. The sequences needed for using
this data set were extracted from the Ensembl database using a sequence
retriever tool [39]. The promoter sequences were extracted from 1000 bps
upstream to 200 bps downstream of the transcription start site. This range
as the authors report is mostly used in promoter sequence analysis. The total
sequence length of the sequences are 383 kbp on average which is considerably
larger than most other datasets to date. Their dataset contains Gene-IDs
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from the Ensembl Database [44] which have been known to contain binding
sites of the same transcription factor.
The different datasets in this benchmarking suite are named after the first
transcription factor that they contain followed by the author of the paper
the dataset was extracted from. For example the CREB Zhang shows that
the dataset contains the “CREB” TF and the author’s name follows.



Chapter 7

Results

This chapter holds the results of the execution of the algorithm on the
datasets discussed in the previous chapter. The results are reported and
the algorithm’s performance is analyzed.

7.1 Synthetic Dataset

One of the design decisions of this program that differentiates it from others
(e.g. FMGA, MDGA, GAMI and MOGAMOD) is the use of SEMs to rep-
resent the individuals. For all of these algorithms, performance suffers when
the sequence lengths and number of sequences change. We have devised an
experiment to test the effect of sequence length on our program. 10 datasets
were created using sequences of length 100 to 1000 each with the same prop-
erties as described in 6.1 and having the HNF-1 motif (TATTGTTTATT)
embedded, including degenerate forms.

The parameters used in this experiment are shown in Table 7.1. For
this experiment only the first two objectives mentioned in section 5.3.1 were
used. The performance measures chosen are the PWM divergence and the
edit distance to the consensus form of the embedded motif. The output
of each run consists of all the motifs found in the archive set. For each
individual, the edit distance and PWM divergence to the embedded motif
was calculated and averaged for all 30 runs. Results are shown in Figure 7.1
and 7.2.

For all the runs of different lengths the motif was found in the archive with
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Figure 7.1: Average PWM divergence (30 runs)

Figure 7.2: Average Edit Distance (30 runs)
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Table 7.1: Parameters for Run on Synthetic Dataset

Parameter Value

Number of Runs 30

Number of Generations 100

Mutation Rate 30%

Crossover 70%

Population 2000

Selection Method Tournament Selection (Size 3)

Background Model 1st-order Markov Model

Objectives Found Motif Count + Entropy

Motif Length 11

the exception of three datasets consisting of sequences of lengths 300, 400 and
500. In each of these three datasets a motif with an edit distance of 1 was the
best motif found. An example of the best motif found is “TATTGTTTATA”
which only differs from the target motif in the last base. By comparing the
motif to the PWM of the target motif we realized that the motif found was
actually not a mismatch but a degenerate form of the target motif.
The overall trend suggests an increase in the edit distance of the motif as the
sequence length increases from less than 100 up to 200, after which the edit
distance decreases. The reason could be that as the sequence length increases,
and since our method’s performance does not decrease with sequence length
because of more random bases in the sequence, the over representation of the
motif is picked up more easily. The trend of the mean PWM divergence is
consistent with this hypothesis.
Overall our method showed consistency throughout the length increase and
even found the motif in all cases.

7.1.1 A Note On Performance Measures

The PWM divergence and edit distance have been shown to complement each
other in the case of performance. For example, a motif in the experiment with
one mismatch got a 0.25 score for the PWM Divergence measure, whereas
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some motifs with edit distance of zero got a score of 0.35 as their divergence
value. The reason is that some individuals only get the consensus form of the
target motif right and ignore the other forms (motifs with the best entropy
score of zero), whereas some others get several degenerate forms and have
higher entropy values for each column. Consequently it is suggested that the
combination of the PWM divergence score and the edit distance score be
used to compare motifs.

7.2 Tompa’s Dataset

We chose the same 3 datasets in Tompa’s dataset that were previously used
by the MOGAMOD algorithm. This would enable us to compare our algo-
rithm to the other multi-objective program. Data from other motif finder
algorithms (e.g. the binding sites identified and the position of the detected
site) are also available in Tompa’s benchmark, allowing us to do further
comparison. First, some combinations of objectives are used to show the
effectiveness of each on the dataset. Then the best combination is used to
compare the motifs found by our tool to the other methods.

7.2.1 Objective Effectiveness Study

In this section we test the effectiveness of each objective while keeping two
objectives constant. Unfortunately, since the PWMs and the consensus se-
quence of the known motifs are not readily available in the dataset we are
unable to calculate the PWM divergence and edit distance to the known site
as a means of calculating the effectiveness of each method. Thus our perfor-
mance measure would be how well the best motifs in the archive match the
motifs reported by the benchmarking suite and other algorithms.
Firstly, the Entropy and Last State Visit objectives are set as the base combi-
nation. This choice is due to preliminary experiments. The base combination
remains constant throughout all the runs.
For each run only one objective is added and compared to the base combi-
nation. Each run is carried out 10 times using the same GA parameters as
Table 7.1 and motifs of length 10. These 10 runs each produce an archive of
best Pareto non dominated individuals in the run. At the end of 10 runs the
archive is analyzed for found motifs. The size of the archive is not limited,
and is usually from 3 to 7 depending on the objective used.
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Table 7.2: Objective Effectiveness Comparison

Objective Combination

Base
Base + Base +

Likelihood Clustering

Motifs

ATTTTTTTTT CCGTCGCTCG CATCCAGTTT

AAAAAAAAAA ACGCCGCGGG TTTTCTCCTC

TTYTTCYTTW CGCGGCGGGG CATCGGGATT

The clustering objective consistently created a larger archive size than en-
tropy since it actually adds three objectives: the intra cluster, inter cluster
sums of errors and the distance between the two cluster means. Some found
motifs of each experiment are shown in Table 7.2. It was not expected that
any of these objectives would get good results on their own. However, in
comparing some of these results to the known motifs in this dataset cluster-
ing showed superior predicted motifs than the other two objectives and also
showed much more diversity in the archive’s individual set.

The reason this experiment was carried out was to show how differently
each objective covers the search space. For example the Likelihood objec-
tive may look for individuals that have a lower chance of producing a motif
sequence given the dataset’s base composition statistical model, while the
clustering objective would never give those individuals good scores. The
use of these objectives that each consider one aspect of the motif finding
problem results in more diversity in the population and prevents premature
convergence.

7.2.2 Comparison to other programs

In this section we experiment with the yeast04r, yeasr08r and hm03r datasets
in Tompa’s benchmark to compare our methods to the programs AlignAce,
MEME, Weeder and MOGAMOD. 1000 individuals were evolved for 100
generations. All other parameters remain the same. Motifs found by our
program and the other programs are listed in Tables 7.3, 7.4 and 7.5.

As seen in these tables, our algorithm was as successful as other algo-
rithms in finding the motifs in the dataset. An advantage of our algorithm
compared to others is that in each run many possible motifs are reported to
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Table 7.3: Found Motifs In Yeast04R

Program Motifs Found

Our Program CTGGCATCCA, CCGCGGATCG, CCTTTTCTGG

Weeder TTTTCTGGCA

AlignACE CGGGATTCCA

MEME CGGGATTCCCC

MOGAMOD CGAGCTTCCACTAA, CGGGATTCCTCTAT

Table 7.4: Found Motifs In Yeast08R

Program Motifs Found

Our Program ACACCCAGAC

Weeder ACACCCAGAC

AlignACE CACCCAGACAC, TGATTGCACTGA

MEME CACCCAGACAC

MOGAMOD ACACCCAGACATC

Table 7.5: Found Motifs In Human03R

Program Motifs Found

Our Program TGTCTAGCTA

Weeder TGATCACTGG

AlignACE TGTGGATAAAAAA

MEME AGTGTAGATAAAAGAAAAAC

MOGAMOD
TATCATCCCTGCCTAGACACAA,
TGACTCTGTCCCTAGTCT, TTTTTTCACCA
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the user. For example in the Yeast04r dataset Weeder found only one set of
degenerate motifs and other algorithms picked up on another motif, whereas
our approach had both sets in the archive.



Chapter 8

Improved Results

In the previous chapter initial experimentations were discussed. In this chap-
ter new approaches are sought to improve the previous results.

8.1 Motif Database

In previous experimentations the TRANSFAC database was used since the
benchmarking suites used this database. Unfortunately this database’s free
version proved to be unusable for the purposes of this work since it was in-
complete, slow and not available as a flat file. An alternative to this database
which also holds motif information was sought and JASPAR [9] was chosen.
This database as stated in its documentation “is a collection of transcription
factor DNA-binding preferences, modeled as matrices”. This is the only open
source database in this scope which allows unrestricted access to the data
it holds. Also, the ability of downloading a flat file of the entire database
greatly simplifies the process of result validation.

8.2 Mass Experimentation Tool and Summary

Page

A system was developed to enable mass experimentation of the possible pa-
rameter space and further approaches. The program would submit runs to
two available clusters, one with 36 Intel corei7/PhenomII cores and the other
with 36 Intel corei5 cores. After the submitted job returns the program ana-

67
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lyzes the results by extracting run information as in average objective value
per generation chart, average objective value of archive individuals chart, run
time, number of successful runs, similarity to original motif in JASPAR, etc.
After the data collection phase a summary page is generated which would
show the results of the run in an HTML format. A snapshot of the system
can be seen in Figure 8.1

Figure 8.1: Snapshot of Program Output

This system adds the following capabilities and parameter options.

8.2.1 Motif Representation

One of the shortcomings in the previous study was the visualization of the
motif. The comparison between different approaches and methods proved
difficult since the motif representation was its frequency matrix and consen-
sus. A better representation called motif logo as explained in section 3.1, is
then taken as the motif representation for the program output. This decision
helps the comparison process between different runs of the algorithms plus
the comparison between the algorithm and others which also take the same
approach. For implementation a library created by [13] is used.
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8.2.2 Ranking System

With the multi-objective approach, at the end of a run of the algorithm a
family of results is shown to the user. Although in a multi-objective problem
no trivial sort exists and if one did exist there wouldn’t be a need for a
multi-objective approach, some ranking methods are analyzed.

8.2.3 Background Model Additions

Different probabilistic sequence models were discussed in section 2.2.2. In
order to test different models for their effect on the performance the new
system allows IID, 1st, 2nd and 3rd-order Markov models for the background
sequences.

8.2.4 Multi-objective Scoring Schemes

The multi-objective scheme used in chapter 7 was the normalized sum ranks.
The capability of choosing other multi-objective scoring schemes was added
to analyze the different multi-objective scoring schemes behavior. These
schemes were discussed in section 2.1.2.

8.2.5 Convergence Charts

The program averages the entire generation’s objective value for each ob-
jective per generation and then averages this value over all runs (number
of executions of the algorithm per experiment). The depiction of the trend
of progress during evolution shows how well the population converges and
how the objective values relate to one another. Due to space issues these
charts may have illegible labels for the axes. The axis labels would then
remain constant and consistent during the runs with the X axis representing
the “Objective Value” and the Y axis representing the “Number of Genera-
tions”. This data series is drawn in blue.
There are also bars representing the average standard deviation of the indi-
viduals per generation throughout the run. While this statistic does not show
the statistical standard deviation for a number of sets based on population-
based statistics, it is used to depict the variation of the objective value in
each generation throughout the runs.
In addition, the charting section of the program graphs another data series
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in red which depending on the multi-objective scoring system used can be
one of the following:

• Summed Ranks: The custom archive set.

• SPEA2: The archive set used by SPEA2 as discussed in section 2.1.2.

• NSGA-II: The Pareto front of the population in the last generation of
the run.

In order to simplify the analysis, all the objectives in all the experiments
conducted are going to be maximized. Even though objectives like Entropy
and Likelihood should actually be minimized, they are converted into a value
that could be maximized to minimize the actual objective. For example when
working with the Entropy objective the value of zero is the best possible value.
But by choosing the following formula for the objective we could have the
same effect by maximizing it:

Entropy = (2×m)− IndE

Where m is the pattern length and IndE is the raw entropy value for indi-
vidual Ind.
Therefore, it is very important to remember this setup during the experi-
ments and know that higher values are better.

8.2.6 Matches to JASPAR

The program checks each motif found in the runs with the JASPAR database.
The motifs are compared with two performance measures also used in pre-
vious experiments, the edit distance and the PWM divergence. If the PWM
divergence of a motif is less than 0.30 from any of the JASPAR motifs or if
the edit distance is less than dM

4
e, where M is the length of the JASPAR’s

motif, then the motif is considered a match. In addition, if the PWM di-
vergence from the JASPAR motif is less than 0.24 then the found motif is
considered an exact match. In the case that JASPAR’s reported motif is
of differing length to the motif found, a sliding window of the width of the
smaller of the two is moved on the motif with higher length. For each pattern
enclosed in the window in the longer motif the values for PWM divergence
and edit distance are stored and the lowest of these values is reported.
In order to differentiate found matches to JASPAR, normal matches are
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marked with an outlining green square around the motif and an exact match
is marked with a red square around it.

8.3 New Experiments

8.3.1 IID vs Markov Models

The likelihood objective looks for the probability of occurrences of a pattern.
This objective’s mechanism was discussed in 2.2.1.
In the IID model the assumption is that each of the positions in the motif is
statistically independent of other positions, for example the occurrence of C
after A in the pattern ACGACC does not have any significance. Apparently
this assumption is a very restrictive one to the motif model. Most motif
finders that base their algorithm on a probabilistic model may use an IID
approach since the change to a Markov model over complicates the parameter
inference machine learning approach which is already quite complex. In this
algorithm a move to a higher order Markov model does not require much
change and can be added to the algorithm by first analyzing the background
sequence data to extract a probabilistic model and a mechanism to score
observations.

Likelihood Calculation Method

In the previous section the IID model was extracted from the background
by counting the number of occurrences of the bases and dividing them by
the overall length of the input sequences. In the case of a Markov model
depending on the order, the number of occurrence of a base followed by 1,2
or 3 or more bases has to be calculated. As an example for extracting the
probabilities as a 2nd-order Markov model the process is as follows.
Firstly the IID and 1st-order Markov models are extracted from the input
sequences since these models are needed to calculate the observation proba-
bility as stated in section 2.2.1.
Secondly in the case of the 2nd-order Markov model all possible overlapping
3-mers are extracted from the sequences keeping count of the number of oc-
currences that start with the first two characters. For example if the found
3-mers are ACC, ACG, ACC in different positions in the input sequence set
then the probability of C after AC is 2

3
and probability of G after AC is 1

3
.
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If a pattern is not found in the input sequences then the probability of it is
calculated using Laplace smoothing as described in section 2.2.3.
This section compares IID, 1st-order, 2nd-order and 3rd-order Markov mod-
els plus a case of Non-homogeneous Markov model. The more effective the
background modeling, the more information is provided to the evolution by
the likelihood objective.

IID

We start with results from the IID background model. The parameters used
for this experiment are shown in Table 8.1. The graphs in Figure 8.2 have
the results. The first thing to note in the graphs is that in a multi-objective

Table 8.1: Background Model Experiment Parameters

Parameter Value

Number of Runs 30

Number of Generations 30

Mutation Rate 10%

Crossover 90%

Population 500

Selection Method Tournament Selection (Size 3)

Multi-objective Scoring Scheme Sum Ranks

Objectives Found Motif Count + Entropy +
Likelihood

Datasets CREB Zhang,HSF1 Page and
GATA Pauli

Motif Length 10

setting, the improvement of all objectives simultaneously is not always pos-
sible. As seen here, one objective improves at the expense of the other.
Predicting which objective would dominate is not always straight forward.
For example, in the case that one objective has a wider range of possible val-
ues and the fitness function is the multiplication of the objective values, one
can predict that the objective with the higher range of values may be able
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to dominate the other objective by dominating the fitness score. Conversely,
in this experiment with the choice of normalized sum ranks (section 2.1.2)
as the multi-objective scoring scheme, this prediction is not possible.
In addition, it is important to understand that the early degradation of the
Found Motif Count objective as can be seen from other experiments through-
out the rest of this chapter is actually desirable. The reason for this is that
the initial individuals in the first generation are mostly highly variable NFS-
SEMs as they have very high entropy and represent an undesirable highly
degenerate motif. This happens although in the initialization stage the prob-
ability of a transition to the next stage or the first stage are both 0.5.
Furthermore, since the number of occurrences of the motif in the sequences
was neither accepted as an input parameter to the algorithm nor was it en-
forced to be a percentage of the number of sequences, it is the multi-objective
scoring scheme’s job to produce a diverse set of individuals covering the en-
tire fitness landscape in the Pareto front.
On another note, a quick comparison of the three different datasets’ conver-
gence rate truly shows the difficulty of this problem for the GA. Each of the
three datasets behave differently in their evolution. In CREB dataset specif-
ically as will be apparent on later sections, the improvement of the Entropy
objective always dominates the Found Motif Count objective. This trend is
broken in the IID background model experiment as shown in Figure 8.2(a).
Strangely, this is the only dataset in the three that shows this effect. Some
of the found motifs from the 30 runs are the motifs shown in Figure 8.3.
Notice in Figure 8.3 that all the motifs shown have mostly or only As
and Ts in their logos for the CREB Zhang dataset and for the HSF1 Page
dataset. This is true for all the other motifs found in the datasets. Also,
in GATA Pauli, motifs mostly consist of Gs and Cs. This we would expect
if the probability of occurrence of the bases with most occurrence in the
found motifs is low in the input sequences. An analysis of the sequences’
base composition reveals that this indeed occurs, with A and T having the
lowest frequency in CREB Zhang (A=0.23, C=0.27, G=0.26, T=0.22) and
HSF1 Page (0.23, 0.27, 0.27, 0.22), and Gs and Cs being the lowest in Elegans
(A=0.31, C=0.18, G=0.15, T=0.34). This shows that the GA is successfully
converging to what seemed the best with the information we supplied with
the IID model, but the fact that none of the reported motifs are the known
motifs reported in JASPAR means that the IID model is insufficient to model
the known motif.
In order to solve this issue, a Markov model to provide more statistically
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Figure 8.2: IID background model convergence charts. The objectives are
as follows : Objective0 = Entropy, Objective1 = Found Motif Count and
Objective2 = Likelihood

(a) CREB Zhang

(b) GATA Pauli

(c) HSF1 Page



CHAPTER 8. IMPROVED RESULTS 75

Figure 8.3: Found motifs in the human CREB TF dataset using an IID
background model. (a) and (b) are from the HSF1 Page dataset, (c) and (d)
are from GATA Pauli and (e) and (f) are from CREB Zhang

(a) (b)

(c) (d)

(e) (f)

accurate information to the GA.

1st-order Markov

In this section the 1st-order Markov model is chosen for the probabilistic
model. Also, the non-homogeneous Markov model that was discussed in
2.2.2 is tested.
Figure 8.4 has the results for the 1st-order Markov model. These convergence
charts still show the different evolution trends in different datasets although
the objective domination trend is consistent throughout the database. The
Entropy objective improves at the expense of Found Motif Count.

The likelihood objective is still unable to guide the search towards the
known JASPAR motif, except in one case throughout the runs in the CREB Zhang
dataset. This motif in addition to some other examples of found motifs are
shown in Figure 8.5.

The motifs in Figure 8.5 show a more complex pattern rather than repe-
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Figure 8.4: 1st-order Markov background model convergence charts. The
objectives are as follows : Objective0 = Entropy, Objective1 = Found Motif
Count and Objective2 = Likelihood

(a) CREB Zhang

(b) GATA Pauli

(c) HSF1 Page
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Figure 8.5: Found motifs in the human CREB TF dataset using an MM1
background model. (a) and (b) are from the CREB Zhang dataset, (c) and
(d) are from HSF1 Page and (e) and (f) are from GATA Pauli

(a) (b)

(c) (d)

(e) (f)

titions of the bases with least occurrence rate. Although more complex these
motifs are now repetition of a pattern of length two with least occurrence
(e.g. TATATATA). Although there are motifs with this recurring patterns as
in the TATA-box motif which has a recurring “TA” pattern but most motifs
consist of more complex mixture of bases.
Even though the algorithm is still unable to pick up on complex patterns,
the motif shown in Figure 8.5 section (b) is actually a match to the JASPAR
database’s motif but it was only one match throughout the entire 30 runs
and it is not an exact match. This motif in a side by side comparison is
shown in Figure 8.6.

The found motif has found the consensus sequence for the motif TGACGTCA.
But this is not an exact match since the frequencies of the bases are not cor-
rectly identified. This is not surprising since at no point in the algorithm are
these frequencies optimized for the best fit. These frequencies are merely a
maximum likelihood estimate extracted from the input dataset.
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Figure 8.6: Comparison between JASPAR’s reported motif for CREB Zhang
and found motif

(a) Matched Motif (b) JASPAR(CREB)

Next we test the non-homogeneous Markov model. Figure 8.7 shows the
convergence charts for this experiment. A comparison of these graphs and
the motifs found in the run shows that there is no difference either in the
evolution of the population or the motifs found in the archive.

One reason for this could be that since all overlapping subsequences of a
given length are analyzed for the modeling process, the position of a certain
base (in case of an IID model) or base pairs (in case of the non-homogeneous
Markov model) does not add any more information. For example if we have a
pattern “ACGCACTTGA” and we try to model 3-mers, the third base “G”
would be once regarded at position 0 (GCA), once at position 1 (CGC) and
once at position 2 (ACG).
This process is also carried out for all other bases and since each base appears
once in each position, it renders the position specific modeling useless. The
ability for each base to appear in each position is true with the exception of a
few bases positioned at the very start and the very end of the sequence (in the
example AC and GA). These small percentage of bases in the sequence, due
to their position, could not appear at certain locations in the overlapping
subsequences which are considered for probabilistic modeling. But due to
their small numbers, their effect on the overall statistical model is negligible.
This is especially true for datasets with long sequences as in the datasets
studied here.
In short, since the non-homogeneous Markov model shows no improvement
to the stationary-Markov model, this model is not further analyzed for other
higher-order Markov models.
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Figure 8.7: Non-homogeneous 1st-order Markov background model conver-
gence charts. The objectives are as follows : Objective0 = Entropy, Objec-
tive1 = Found Motif Count and Objective2 = Likelihood

(a) CREB Zhang

(b) GATA Pauli

(c) HSF1 Page
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2nd-order Markov Model

In this section the algorithm is run with a 2nd-order Markov model for the
probabilistic background model. The convergence charts are reported in
Figure 8.8.

The convergence charts in this section follow on the previous trends of
the Entropy objective and the Likelihood improving in the cost of the Found
Motif Count. In previous experiments (8.4, 8.7), the Entropy objective in
the archive was even surpassed by average individuals. This means that
the individuals in the archive were more degenerate motifs than average
individuals in the population. But in the case of the 2nd-order Markov
model in Figure 8.8 the evolution was able to preserve the archive over the
average individuals and also managed to keep the found motif count higher
too which shows an overall superior evolution.
Figure 8.9 shows the two motifs found in the run accompanied by JASPAR’s
reported motif for the dataset. The first motif in this figure is actually a
match with an edit distance of one, since starting from position 0, AGGTAC
was recognized which is different from the solution (AGATAG) in only one
base. The other motif is another prevalent motif in the runs. Although
the size of the motif to be found is an input parameter, this parameter was
not changed to match the solution motif in JASPAR since the algorithm is
designed to find unknown motifs of unknown length. Also the solution was
not used in any way during the evolution process and it is only used for
performance feedback.
This JASPAR motif was found 3 times out of the 30 runs.

Figure 8.10 has the result for the CREB Zhang dataset. This is by far
the most successful run and a substantial improvement over the previous
experiments. In this dataset the solution was found in 22/30 runs. Also out
of the 37 overall matches, 18 are exact with PWM divergence of less than
0.24.
The success of this run shows that the 2nd-order Markov model was indeed
able to effectively pick out the statistically overrepresented pattern.

Figure 8.11 shows that the HSF1 dataset is a hard dataset for this prob-
lem. Although the motif was found in the other datasets with different suc-
cess rates, this motif was not found in this dataset. On the other hand the
reason for this could be realized by looking at the second motif in this figure.
This motif was the same motif found in CREB Zhang. This means that this
is an actual motif that the algorithm detected to be more statistically over
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Figure 8.8: 2nd-order Markov background model convergence charts. The
objectives are as follows : Objective0 = Entropy, Objective1 = Found Motif
Count and Objective2 = Likelihood

(a) CREB Zhang

(b) GATA Pauli

(c) HSF1 Page



CHAPTER 8. IMPROVED RESULTS 82

Figure 8.9: Found motifs in the GATA Pauli TF dataset using an MM2
background model. (a) and (b) are two found motifs and (c) is the JASPAR’s
reported motif for the dataset.

(a) (b) (c)

Figure 8.10: Found motifs in the CREB Zhang TF dataset using an MM2
background model. (a) and (b) are two found motifs and (c) is the JASPAR’s
reported motif for the dataset.

(a) (b) (c)

represented in the dataset.

3rd-order Markov Model

In this section the algorithm is run with a 3rd-order Markov model for the
probabilistic background model. The convergence charts are reported in
Figure 8.12.

This shows an evolution trend of high similarity to the previous section.
Although one might expect to get even better results in the found motifs,
this is not the case.
Figure 8.13 has 2 examples of the motifs found in each dataset for this exper-
iment. The algorithm failed to find JASPAR’s motif for data sets HSF1 Page
and GATA Pauli. The motif for CREB Zhang’s dataset, which was success-
fully found in the previous section, was also found in this experiment but
with limited success. There are 2 overall matches none of which are exact.
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Figure 8.11: Found motifs in the HSF1 Page TF dataset using an MM2
background model. (a) and (b) are two found motifs and (c) is the JASPAR’s
reported motif for the dataset.

(a) (b) (c)

The matches were found in two separate runs.
The reason for the deterioration in performance could be the length of the
motif. The length of the motif to look for in the experiment is set to 10. It
may be the case that a 3rd-order Markov model, which would calculate the
probability of overlapping 4-mers in the motif, is too high for the motif with
length 10 and modeling the sequences with that order would actually cause
loss of information rather than information gain.

Discussion

In this section different probabilistic models for the background sequences
and the motif were analyzed for the motifs they find. The improvements to
the found motifs were shown when moving from the IID model toward higher
order Markov models stopping at the 3rd-order Markov model. Consequently,
for more extensive runs over the benchmarking suite the 2nd-order Markov
model is going to be applied for the motif and the background sequences’
probabilistic model.

8.3.2 Multi-objective Scoring Scheme Comparison

The system is capable of running the algorithm using Summed Ranks with
custom archive, SPEA2 and NSGA-II as the scoring scheme for fitness eval-
uation. In this section these different methods are compared on different
datasets and the results are analyzed.
Although all these methods report the Pareto front as their final best results,
SPEA2 and NSGA-II have a diversity strategy to spread the final answer
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Figure 8.12: 3rd-order Markov background model convergence charts. The
objectives are as follows : Objective0 = Entropy, Objective1 = Found Motif
Count and Objective2 = Likelihood

(a) CREB Zhang

(b) GATA Pauli

(c) HSF1 Page
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Figure 8.13: Found motifs in the human CREB TF dataset using a MM3
background model. (a) and (b) are from the CREB Zhang dataset, (c) and
(d) are from HSF1 Page and (e) and (f) are from GATA Pauli

(a) (b)

(c) (d)

(e) (f)

throughout the Pareto front and prevent niches. The parameters used for
this experiment are shown in Table 8.2.

The comparison looks for the diversity of the motifs found plus the evo-
lutions trends and the solutions found. Firstly their convergence trends are
analyzed. Convergence charts for summed rank have already been included
in Figure 8.8. The convergence charts for SPEA2 and NSGA-II are shown in
Figures 8.14 and 8.15.
The graph in Figure 8.14 is almost incomprehensible due to the high similar-
ity between the archive set and population values and the large variation in
them. The overlap is consistent with the scoring mechanism which populates
the next generation directly and only from archive individuals. This results
in the population and archive objective values always being close.
The diversity strategy also keeps adding to the variation in individuals as
the generations grow. The second objective (Found Motif Count) also shows
improvement while the two other objectives fluctuate.
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Table 8.2: Relative Entropy vs Entropy Experiment Parameters

Parameter Value

Number of Runs 30

Number of Generations 30

Mutation Rate 10%

Crossover 90%

Population 500

Selection Method Tournament Selection (Size 3)

Background Model 2nd-Markov Model

Objectives Found Motif Count + Entropy +
Likelihood

Datasets CREB Zhang,HSF1 Page and
GATA Pauli

Motif Length 10

The evolution does not look promising. No objectives is converging or even
showing a trend that suggests convergence, except the second objective which
as mentioned earlier is expected to decrease in value in the few starting gen-
erations and then converge. Overall the two fluctuating objectives do not
improve at all and it is expected from this graph to see solutions that are
highly degenerate motifs that are very high in entropy and also rather high
in likelihood.

NSGA-II’s convergence charts in Figure 8.15 show only one graph per
objective. The reason for this is that NSGA-II does not have an archive and
the entire population is evolved with only a diversity strategy in mind. In
the case of diversity this approach does not produce as diverse individuals,
but the diversity does not deteriorate with evolution either.

Next, motifs found by any of these algorithms are reported. Since these
motifs may not be the same families in each run, 3 motifs from 3 runs are
chosen and reported in Appendix A.
Figure A.1 shows the motifs found in CREB Zhang with the NSGA-II ap-
proach. This approach finds an overall 51 matches to the JASPAR database
in 30 runs two of which are exact matches. This means that 20 runs out of 30
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Figure 8.14: SPEA2 convergence charts. The objectives are as follows :
Objective0 = Entropy, Objective1 = Found Motif Count and Objective2 =
Likelihood

(a) CREB Zhang

(b) GATA Pauli

(c) HSF1 Page
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Figure 8.15: NSGA-II convergence charts. The objectives are as follows :
Objective0 = Entropy, Objective1 = Found Motif Count and Objective2 =
Likelihood

(a) CREB Zhang

(b) GATA Pauli

(c) HSF1 Page
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runs were successful in finding a match for the motif. This approach shows
very good diversity in the final results. The diversity strategy effectively
spreads all the individuals throughout the Pareto front so that the objective
values show good variance for the final solutions.
What makes this algorithm perform poorly in finding exact matches of the
motif is the diverse nature of the results with different values for the Entropy
objective. Usually the motifs found in JASPAR do not have very high en-
tropies, i.e are not extremely degenerate, and usually create 10 to 15 different
possible forms and not hundreds of different forms. This characteristic of the
motif prevents a certain region in the Pareto front (those with high entropy
values) to gain the exact match score.
Since the shortcoming mentioned above is the specific characteristic of the
search space, this shall not be thought of as a drawback to the algorithm
since the algorithm’s task is to produce a good spread of the Pareto front
which it successfully does in the case of the CREB Zhang dataset.
Figure A.2 has the found motifs in the GATA Pauli dataset. There were 14
successful runs out of 30 and 19 overall matches, none of which are exact.
The solutions still show very good diversity both in the motifs found and in
the objective value’s spread. In NSGA-II the mechanism for diversity tries
to keep the distances of individuals from one another as high as possible.
Although there are families of solutions in each run with the same genome
but different objective values, the algorithm still shows a good diversity in
the genome of the motifs found.
The results for the run on the HSF1 Page dataset are shown in Figure A.3.
JASPAR’s motif was not found in this dataset but some found patterns are
reported in this figure.
SPEA2’s performance on different datasets was poor as expected. Most mo-
tifs found in each run are mostly the same motif (same genome) but with
different objective values. This algorithm was unable to find the solution
in HSF1 Page and CREB Zhang but some other found motifs are reported
in Figures A.4 and A.6. An inspection of the motifs found in different runs
shows that the algorithm is truly prematurely converging to a local maxima
since in each run different sets of motifs are reported and not one single fam-
ily of a motif.
It is surprising that this algorithm was able to find the motif in GATA Pauli
with 273 overall matches and 27 successful runs out of 30, but a closer look
reveals that the reason for this higher overall number of matches is that when
a match occurs the individual is usually present throughout the archive at the
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end of the run. This means that if the archive is of size 10, on average, 9 other
individuals are simply the same motif repeated. This shows that although
the algorithm has a very large variance in the objective values it has little to
no variance in the genome diversity of the members of the archive. Summed
ranks showed reasonable convergence in its convergence charts. This algo-
rithm outperforms the other two in the CREB Zhang dataset with 39 overall
matches, with 14 exact matches and 23 successful runs. Also the motifs
found in each run are roughly of the same set which shows that there is no
premature convergence to local maxima. NSGA-II also shows good results
in this dataset with 51 matches and 2 exact matches in 20 successful runs.
SPEA2 however couldn’t find the JASPAR motif in this dataset.

Discussion

Overall NSGA-II and Summed Ranks showed promising performance in find-
ing a good spread of the Pareto front with NSGA-II showing a better spread
of objective values and Summed Ranks showing a better spread of the motif
diversity (due to the custom archive). SPEA2 does not show good evolution
trends but was able to find JASPAR reported motif in the dataset in one of
the datasets tested.

8.4 Comparison to Other Motif Finders

The algorithm was tested in its early stages to some other algorithms reported
in [50] using the Tompa dataset described in section 7.2.2. This dataset con-
tains very short sequences for the input sequences. With current sequencing
technologies both the length and the number of sequences available to biolo-
gists are growing and as a result benchmarking suites with longer sequences
are needed to test modern motif discovery algorithms. The Metazoan com-
pendium discussed in section 6.3 is an example of these newer benchmarking
suites.
The datasets used in this section are chosen from this compendium with the
criteria that the motif looked for is available in JASPAR. This is because
we need to compare the found motifs with a solution motif and since we do
not have access to the TRANSFAC database, only datasets containing mo-
tifs with their information available in JASPAR can be used. This criteria
leaves us with 9 datasets. In this section our algorithm is compared to some
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Table 8.3: Comparison to Other Algorithms Experiment Parameters

Parameter Value

Number of Runs 30

Number of Generations 60

Mutation Rate 10%

Crossover 90%

Population 500

Selection Method Tournament Selection (Size 3)

Background Model 2nd-Markov Model

Objectives Found Motif Count + Entropy +
Likelihood

Motif Length 10

other algorithms on these datasets. The results for the other algorithms are
extracted from the papers discussing the benchmarking suite [30].
The parameters used for this section’s experiments are shown in Table 8.3.
The background model is a 2nd-order Markov model as this model was the
most successful probabilistic model in experiments conducted in section 8.3.1.
The multi-objective scoring scheme was shown to be a harder choice in sec-
tion 8.3.2. The NSGA-II algorithm found a better spread of the data while
the summed ranks found more accurate answers. Also the objectives dis-
cussed in 7.2.1 showed that both likelihood and likelihood + clustering are
effective with different reported motifs.
For this to be a fair comparison, these two algorithm parameters are fixed to
the values with the best scores so far. Since NSGA found a better spread of
the data this scheme is chosen over Summed ranks. Also, the likelihood ob-
jective is chosen as the best overall. Nevertheless, the runs are also done with
the likelihood + clustering objective, and the results are reported to further
analyze the algorithm’s behavior using this certain objective combination.

The results are shown in Tables 8.4, 8.5 and 8.6. The table cells marked
with “*” signify successful matches to the JASPAR motif. The matching cri-
teria is as discussed in section 8.2.6. The convergence charts can be found in
Appendix B. With a look at these charts it may be deemed that the GA has
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not converged yet and it may be better to continue the evolution for longer,
but some experimentation revealed that if the evolution continues, the only
individuals left in the Pareto front would be one or two outliers with very
high values for specific objectives but not desirable overall.
In HNF1a Odom, Amadeus and Trawler are the two algorithms to find the
biological motif embedded into the dataset. Our algorithm was unable to
find the motif but the best match is shown in Table 8.4.
In E2F Ren, our algorithm found 13 overall matches. This motif has many
entries in both JASPAR and TRANSFAC. The overall matches are the re-
sult of comparisons to 5 different JASPAR motifs. The algorithm found these
matches in 6 different runs out of 30. From the other algorithms Amadeus,
Weeder and Trawler were also successful.
In the HSF1 Page, the algorithm was unable to find the motif. The closest
motif found is reported. Interestingly, this is the case where the clustering
+ likelihood was able to find the motif, although only once in the 30 runs.
This shows how hard it is to choose one combination of the parameters as the
best, since each may search the fitness landscape using different strategies
that may work in certain datasets and not in others. CREB Zhang was the
most successful dataset for our algorithm. As also reported in section 8.3.2
the algorithm was able to obtain exact matches to the JASPAR motif. Other
algorithms successful in this dataset are Amadeus and Weeder. AlignAce and
MEME were not able to finish in a reasonable time [30].
The GATA Pauli dataset’s JASPAR motif was matched by our algorithm in
13 runs out of 30 with 23 overall matches. YMF and Amadeus are the other
algorithms successful at finding the motif.
The Myc Oryan’s reported JASPAR motifs were not located in the dataset.
The only program to find the motif is Weeder. Interestingly in this dataset
the likelihood + clustering combination found the motif with 3 overall matches
in 30 runs.
The ETS1 Hollenhorst also proves a difficult dataset for our algorithm. The
algorithms able to find this motif are Weeder and YMF. The motif that is re-
ported for our algorithm in the figure though is an interesting find. Since we
already have the consensus for CREB we were able to notice it in the results
quite clearly in each run. This shows that the CREB transcription factor
also works with ETS1 in regulating the gene downstream of the promoter
sequence being probed. This shows that this algorithm has great potential
for the field of composite motif discovery in which the coordination between
transcription factors in the regulation initiation complex is studied. This is
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accounted for by the multi-objective design which would produce more than
one motif in each run.
In the MEF2 Blais dataset, the motif was elusive to all the algorithms. But
again our algorithm picked up the CREB pattern in the sequences, which is
reported in the figure.
Our algorithm found the motif with 12 overall matches in 11 successful runs
in the SRF Cooper dataset. Amadeus, Weeder and Trawler are the other
successful programs.
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Chapter 9

Conclusion and Future Works

9.1 Summary

In this work, we implemented a de novo motif discovery tool using a GA to
train NFS-SEMs with a multi-objective fitness scoring scheme. The experi-
mentations started with SEMs to classify DNA sequences.
In the classification problem(section 4.2.5), the SEMs were tested on their
ability to distinguish between sequences with different GC-content. This was
shown to be analogous to the problem of discovering patterns containing mo-
tifs with more than 10 occurrences, since this level of repetition of the motif
changes the GC-content considerably. The GA did not even need evolution
and found the best individual mostly in the first few generations. This best
individual could be evolved with only two states for the SEM. This two-state
SEM(Figure 4.4) easily reached 100% accuracy.
The next problem removed the GC-content effect of the motif by only allow-
ing it to either not appear, or to appear only once in a set of sequences. The
experiments showed individuals with more than 5 states are able to reach
100% accuracy. Since the SEM is no longer picking up on the GC-content,
it is actually finding the pattern. The work continued by introducing a new
type of SEM which would make pattern extraction straight-forward. This
SEM was called the NFS-SEM(section 4.3) since it was only allowed to make
transitions to the next or the first state. The new type was able to obtain
95% accuracy and offer the extraction of the motif too.
In order to test the NFS-SEM to extract the actual pattern, firstly the ap-
proach was elaborated in Chapter 5. This approach, was used in a new set
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of experiments in which the motif was embedded in sequences of variable
length. This motif was inserted twice in sequences called the positive set
and not inserted in negative sets. The two embedded motifs were degenerate
forms of a chosen biological motif from the literature. The results(section
7.1) showed that the NFS-SEM is able to successfully pick out the pattern.
The first biological benchmarking suite used was introduced in [50] and con-
tained rather few and short sequences per dataset. This dataset was used to
test different objective combinations for the motifs they find. This bench-
marking was mostly used to analyze how each objective combination searches
the space.
After this, a system was developed for mass experimentation on a cluster.
The new experiments regarded different entropy approaches, background
models and multi-objective scoring schemes(section 8.3). Finally the best
combination of parameters was used on the Metazoan compendium and the
results were reported(Table 8.4, 8.5, 8.6).
While Amadeus is tied with Weeder on the set of datasets analyzed here, it
was the strongest motif finder reported in the entire Metazoan compendium.
Even so, Amadeus uses a very powerful method and is a state of the art
motif finder. It is necessary to note an observation made in [50]: there has
been an interesting trend in the literature with algorithms’ performance in
their own curated data. In the benchmarking study done in [50] most al-
gorithms performed very well in the yeast datasets but performed poorly in
others(human, fly, etc). One reason for this may be that most of these al-
gorithms used the yeast dataset for testing their algorithm’s performance in
the design phase. These algorithms’ performance on different datasets shows
that they were mostly over-fitted to the yeast database. The only algorithm
with more consistency between the yeast dataset and the other datasets was
Weeder, although its performance on other datasets was still inferior. Weeder
showed consistent performance in the Metazoan compendium as well and re-
mains one of the best algorithms in the literature.
Given the above it would be interesting to see Amadeus’ performance on
some other newer benchmarking suites. Also, as shown, Trawler and YMF
had good results on some datasets as well. This makes it very hard to com-
pare motif finders since as seen in the convergence graphs of our algorithm,
each dataset introduces a completely different solution space and the behav-
ior of each algorithm may be unpredictable. This and the fact that there
is no tool that consistently scores better in every dataset are the reasons
that this problem has remained open for so long and more motif finders are
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introduced every year.
Another problem in the motif discovery field is the question that arises after
each run of the algorithm. Are the algorithm’s found patterns insignificant
or are they maybe a motif that has not yet been discovered? The answer to
this question can only be given after actual biological experiments are carried
out. This uncertainty adds to the complexity of the problem.
Overall, our algorithm introduces one of the few programs with an evolu-
tionary technique for solving this problem. Its performance is comparable
to the best motif finders in the literature. The algorithm found the JAS-
PAR biological motif in 4 datasets out of the 9 analyzed and for the rest it
produced motifs for which the biological significance could not be tested. It
also showed a possible application in composite motif discovery where tran-
scription factors are analyzed for their coordination with other transcription
factors.

9.2 Future Work

The motif discovery problem remains an open and hard problem in bioinfor-
matics. For future work there are many aspects of the algorithm that could
be improved:

• Post-processing stage: Most motif finders in the literature have a few
stages through which each candidate solution goes through some form
of optimization. Our current algorithm although able to locate the mo-
tif in the archive needs to optimize each of the now candidate motifs
PWM’s using another machine learning technique like expectation max-
imization. This way by coupling the power of the GA search and the
optimization capacity of EM which is no longer liable to local maxima,
the found motifs could be clustered and better fitted to the dataset.

• Other objectives: There are many objectives that could be used to
distinguish motifs. One of the properties of motifs are their complexity.
For example the addition of an objective that measures the pattern
complexity could greatly help the algorithm.

• Extracting motif information: A complication faced in this work was
the ambiguity of the biological significance of a found pattern. As
stated in section 8.4, although the algorithm was not able to find the



CHAPTER 9. CONCLUSION AND FUTURE WORKS 100

expected motif for the ETS1 Hollenhorst dataset it found the pattern
of CREB Zhang’s expected motif in it. This discovery was only made
because the pattern was familiar to the researcher. This process should
be automated to test the biological significance of patterns found at
the end of each run. This would provide more accurate performance
feedback on the algorithm. This process can be automated using web
services provided with the commercial version of TRANSFAC. The
open source JASPAR database currently does not provide this service.

• Gapped motifs: By manipulation of the NFS-SEM to allow transitions
to all states after the current state, we would be able to allow gaps or
variable length motifs to be found as well which would be a valuable
addition to the algorithm.

• Post-processing general SEMs to figure out other fixed topologies to
extract the motif. These may evolve NFS-SEMs, e.g. split-next-first
with more than one single track for the pattern. Also, new approaches
may create entirely new schemes which would not restrict the general
SEM like NFS-SEMs do.
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Figure A.1: Instances of motifs found in the Human CREB dataset using
the NSGA-II approach

(a) Run 1

(b) Run 3

(c) Run 10



APPENDIX A. FOUND MOTIFS 109

Figure A.2: Instances of motifs found in the Elegans GATA dataset using
the NSGA-II approach

(a) Run 0

(b) Run 4

(c) Run 6
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Figure A.3: Instances of motifs found in the Human HSF1 dataset using the
NSGA-II approach

(a) Run 2

(b) Run 6

(c) Run 13
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Figure A.4: Instances of motifs found in the Human CREB dataset using
the SPEA2 approach

(a) Run 0

(b) Run 4

(c) Run 8
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Figure A.5: Instances of motifs found in the Human GATA dataset using
the SPEA2 approach

(a) Run 1

(b) Run 5

(c) Run 6
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Figure A.6: Instances of motifs found in the Human HSF1 dataset using the
SPEA2 approach

(a) Run 1

(b) Run 5

(c) Run 7
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Figure A.7: Instances of motifs found in the Human CREB dataset using
the Summed Ranks approach

(a) Run 1

(b) Run 2

(c) Run 4
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Figure A.8: Instances of motifs found in the Elegans GATA dataset using
the Summed Ranks approach

(a) Run 0

(b) Run 1

(c) Run 12
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Figure A.9: Instances of motifs found in the Human HSF1 dataset using the
Summed Ranks approach

(a) Run 0

(b) Run 4

(c) Run 5



Appendix B

Convergence Charts

B.1

Figure B.1: Convergence Charts for HNF1a Odom. The objectives are as
follows : Objective0 = Entropy, Objective1 = Found Motif Count and Ob-
jective2 = Likelihood

(a) HNF1a Odom
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Figure B.2: Convergence Charts for E2F Ren. The objectives are as follows
: Objective0 = Entropy, Objective1 = Found Motif Count and Objective2
= Likelihood

(a) E2F Ren

Figure B.3: Convergence Charts for HSF1 Page. The objectives are as follows
: Objective0 = Entropy, Objective1 = Found Motif Count and Objective2
= Likelihood

(a) HSF1 Pag
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Figure B.4: Myc Oryan The objectives are as follows : Objective0 = Entropy,
Objective1 = Found Motif Count and Objective2 = Likelihood

(a) Myc Oryan

Figure B.5: ETS1 Hollenhorst The objectives are as follows : Objective0 =
Entropy, Objective1 = Found Motif Count and Objective2 = Likelihood

(a) ETS1 Hollenhorst
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Figure B.6: MEF2 Blais The objectives are as follows : Objective0 = En-
tropy, Objective1 = Found Motif Count and Objective2 = Likelihood

(a) MEF2 Blais

Figure B.7: SRF Cooper The objectives are as follows : Objective0 = En-
tropy, Objective1 = Found Motif Count and Objective2 = Likelihood

(a) SRF Cooper


