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Abstract

Relation algebras is one of the state-of-the-art means used by mathematicians and computer
scientists for solving very complex problems. As a result, a computer algebra system for
relation algebras called RelView has been developed at Kiel University. RelView works
within the standard model of relation algebras. On the other hand, relation algebras do
have other models which may have different properties.

For example, in the standard model we always have ã;ã=ã (the composition of two
(heterogeneous) universal relations yields a universal relation). This is not true in some
non-standard models. Therefore, any example in RelView will always satisfy this property
even though it is not true in general. On the other hand, it has been shown that every
relation algebra with relational sums and subobjects can be seen as matrix algebra similar
to the correspondence of binary relations between sets and Boolean matrices [49, 50].

The aim of my research is to develop a new system that works with both standard

and non-standard models for arbitrary relations using multiple-valued decision diagrams

(MDDs). This system will implement relations as matrix algebras. The proposed structure

is a library written in C which can be imported by other languages such as Java or Haskell.
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Chapter 1

Introduction

Relation algebras is one of the state-of-the-art means used by mathematicians and
computer scientists for solving very complex problems. In fact, since the mid-1970’s,
relational methods have been the basis for many conceptual and methodological tools,
and a very convenient means of dealing with fundamental concepts such as graphs,
orders, lattices, games, databases, Petri nets, data types, and semantics in computer
science and mathematics [5, 7, 44, 45].

Relation algebra has been used for analyzing and modeling various computer sci-
ence problems such as program specification, heuristic approaches for program deriva-
tion and verification, automatic prover design, database and software decomposition,
program fault tolerance, testing, data abstraction and information coding, and spatial
reasoning.

Relation algebras can be represented by concrete relations between sets on the
assumption that relational products exist or the point axiom is given. In this case,
we can visualize relation algebras using a Boolean matrix such that the rows and
columns of the matrix correspond to the elements of the source, and the elements of
the target of the relation respectively. Since the entries of the matrix are Boolean
values, a “true” (or “1”) entry in the ith row and jth column indicates that the elements
i and j are in relation. Similarly, a “false” (or “0”) entry means that the corresponding
elements are not in relation.

Relation algebra is increasingly being used to solve problems because it has very
small set of operations such as union, intersection, converse, complement and com-
position, which can easily and efficiently be implemented on finite carrier sets using
data structures such as Boolean arrays, linked lists or decision diagrams [8].

As a result of this, several computer systems have been developed to facilitate the
use of relations. RelView is one of such systems which visualizes relations as Boolean
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CHAPTER 1. INTRODUCTION 2

matrices using reduced ordered binary decision diagrams (ROBDDs). The use of
ROBDD provides very efficient implementations of the operations on relations. This
system is written in C programming language. RelView is an interactive and specific
purpose computer algebra system with a graphical user interface for the manipulation
and visualization of relation algebra and relational programming. The first versions
were developed at the University of the German Forces Munich from 1988 to 1992.
It was further rebuilt and extended by Kiel University since 1993. RelView can be
used to solve many different tasks while working with relational algebra, concrete
relations, relations based on discrete structures and relational programs. For further
details and some examples using RelView in applications we refer to [8].

However, RelView works within the standard model of relation algebra, i.e., binary
relations between sets. On the other hand, relation algebras do have other models
which may have different properties. That is, not all relation algebras can be repre-
sented as the algebra of Boolean matrices. For example, in the standard model the
property ã;ã=ã (the composition of two (heterogeneous) universal relations equal a
universal relation) is always true. But this is not true in some non-standard models.
In [2] we list further examples such as:

“Another example is given by the relationship between the power set of
a disjoint union of two sets A and B and the product of the power set
of A and the power set of B. In the standard model both constructions
lead to isomorphic objects, while this might not be the case in certain
non-standard models” [2], page 1.

In [49, 50], it was proved that every relation algebra R with relational sums and
subobjects can be represented by matrices. In particular, it is possible to characterize
a full subalgebra B, called the basis of R, such that the matrix algebra B+ with the
coefficients from B is equivalent to R.

As a result of this, we can visualize an arbitrary relation algebras using matri-
ces whose coefficients are not limited to Boolean values. Hence, we can associate
all standard operations on relations to matrix operations. In order to implement
relations using the matrix algebra approach and adopting a data structure similar
to RelView, we have to use a more general version of BBD’s called multiple valued
decision diagrams (MDDs).

A multiple-valued decision diagram (MDD) is a natural extension of the reduced
ordered binary decision diagrams (ROBDDs) to the multiple-valued case. It was
introduced by Bryant in 1986 [17, 32]. MDDs are considered to be more efficient and
require smaller memory size than the ROBDDs.
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In my thesis, I want to develop a new system called RelMDD that works with both
standard and non-standard models for any arbitrary relation using multiple-valued
decision diagrams (MDDs). This system will implement relations as matrix algebras.
The proposed structure is a library written in C which can be imported by other
languages such as Java or Haskell. We will refer to [2, 3, 5, 8, 13, 17, 32, 39, 49] for
definitions, terminology, notions, theorems as well as other theoretical aspects used
in this thesis.

1.1 Outline

The outline of the subsequent chapters are as follows:

Chapter 2: In this chapter, we present the necessary background required for un-
derstanding this thesis, including algebraic preliminaries, concrete relation algebras
and heterogeneous relation algebras. We shall introduce matrix algebra and state
a theorem that relates heterogeneous relation algebras to matrix algebras. We will
also recall various properties of relations including integral objects, subobjects and
splittings.

Chapter 3: In this chapter, we will look at work done in this area. We shall review
various systems developed for relations algebras and their implementations.

Chapter 4: This chapter describes the proposed system including its implementa-
tions, technical details, scope and how it operates.

Chapter 5: We will then conclude by summarizing what we have said in the pre-
ceding chapters and give suggestions for future work in this area.



Chapter 2

Relation-Algebraic Preliminaries

The Development of Relation Algebra

The basic theory and the calculus of binary relations was founded by Augustus De
Morgan in 1860. However, it was further developed by C.S. Peirce around 1870. This
theory was extended by Ernst Schröder in a very definitive, thorough and systematic
approach around 1895. The interest in relation algebra was further awaken by Tarski
in one of his article in 1941; noting that, “the calculus of relation deserves much more
attention than it receives”, having “the intrinsic charm and beauty which makes it
a source of intellectual delight to all who become acquainted with it” [23, 48]. He
then came up with certain axioms as the definition for a relation algebra. For more
information on the history of relation algebras, see [23, 28].

Formerly, relation algebra was presented in its classical form in which relations
were perceived to be quadratic or homogeneous, i.e., concrete relation over a given
set. That is, relations were restricted to only one set on a fixed universe U . In recent
years, a variant of the theory of relation has evolved to include relations between two
or more different sets. This approach is called heterogeneous or rectangular relation
algebras. Therefore, a homogeneous relation algebras can be seen as a heterogeneous
relation algebras with a single universe [22, 23, 30, 39, 40]. Heterogeneous relation
algebra uses category theory in order to distinguish the source and the target of a
relation.

In this chapter, we will examine various properties and definitions of relation
algebras. We will then introduce matrix algebra and a theorem that establishes that,
in every relation algebra R with relational sums and subobjects, it is possible to
characterize a full subalgebra B called the basis of R, such that the matrix algebra
B+ with coefficients from B is equivalent to R.

4
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2.1 Concrete Relation Algebras

If we want to describe a relationship between elements of two sets A and B, we can
use ordered pairs such that, the first element is taken from A and the second element
is taken from B. Since this is a relation between two sets, it is called a binary relation
(concrete relation). We often make statements in our everyday lives which illustrate
the use of relations. Examples include “Lisza is the husband of Alan”, “Australia has
a smaller population than China”, etc

Definition 1. A concrete relation R between two sets A and B is a subset of the
Cartesian product A ×B, where

A ×B = {(a, b) ∶ a ∈ A, b ∈ B}.

Example 1. The relation “is a sister of”, is defined on a set of persons.
The relation “is succeeded by”, defined on natural numbers can be given by
T:= {(0,1),(1,2),(2,3),(3,4),(4,5),...} ⊆ N ×N.

Example 2. Let P be a set of people, C be a set of cars, and R be the relation
describing which person drives which car(s).
P = {John, Sarah, Peter, Mark}
C = {Mercedes, BMW, tricycle}
R = {(John, Mercedes), (Sarah, Mercedes),(Sarah, BMW), (Peter, tricycle)}

This means that John drives a Mercedes, Sarah drives a Mercedes and a BMW,
Peter drives a tricycle, and Mark does not drive any of these vehicles. R can be
visualized in the following diagram.

John Sarah Peter Mark

Mercedes BMW tricycle
��

R

��

R

��

R

��

R

Figure 2.1: Relations between persons and cars: R = drives
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Relations can be represented by tables, matrices or graphs when the set under
consideration is finite.

Example 3. Let A = {1,2,3,4} and let R be a relation defined on A such that
R = {(a, b) ∣ a < b}, then the relation can be visualized as set given by:
R = {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}.

R can also be visualized as a graph, a table or a boolean matrix as shown in the
figures below:

1

23

4

����

��

oo

����

R 1 2 3 4
1 x x x
2 x x
3 x
4

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4

1 0 1 1 1

2 0 0 1 1

3 0 0 0 1

4 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

Figure 2.2: Graph, Table and Boolean Matrix Representation of R

2.1.1 Basic Operations of Relation Algebras

The following defines the basic operations of relation algebras: Let A,B,C be sets,
R,T ⊆ A ×B, and S ⊆ B ×C. Then we define:

1. Transpose or Converse: The converse of R is obtained by “turning around” all
pairs of R, that is,

R⌣ = {(x, y) ∣ (y, x) ∈ R} ⊆ B ×A

2. Complement: The complement of R consist of all ordered pairs of element of
the universe that do not belong to R. That is,

R = {(x, y) ∣ (x, y) ∉ R} ⊆ A ×B

3. Union:
R ⊔ T = {(x, y) ∣ (x, y) ∈ R ∨ (x, y) ∈ T} ⊆ A ×B

4. Intersection:

R ⊓ T = {(x, y) ∣ (x, y) ∈ R ∧ (x, y) ∈ T} ⊆ A ×B
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5. Composition:

R;S = {(x, z) ∣ ∃y ∈ B ∶ (x, y) ∈ R ∧ (y, z) ∈ S} ⊆ A ×C

6. Inclusion:

R ⊆ T ⇔ R ⊓ T = R, i.e., R ⊆ T ⇔ ∀x, y ∶ [(x, y) ∈ R → (x, y) ∈ T ]

7. Special relations include:

• Empty or zero relation: á= ∅ ⊆ A ×B

• Universal relation: ã= A ×B

• Identity relation: I = {(x,x) ∣ x ∈ A} ⊆ A ×A

For full description of the above operations see [5, 39, 29].

2.1.2 Product and the Schröder equivalences

In this section, we want to illustrate the product of two relations and the interplay
between the various operations defined in the previous sections:

Example 4. Product or Composition of relation: In this example we want to illustrate
the composition of two relations using all three representations, i.e., the set represen-
tation, the graph representation, and the Boolean matrix representations (example
taken from [62]).
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Figure 2.3: Composition of two relations [62]

Proposition 2.1.1. Schröder equivalences
Given the relations Q, R, S, then, we have

Q;R ⊆ S ↔ Q⌣; S̄ ⊆ R̄↔ S̄;R⌣ ⊆ Q̄

.

Example 5. Schröder equivalences

The interplay between composition, transposition, and complement, with respect
to containment can be shown by the following example using the Schröder equiva-
lence. The Schröder equivalence can be read as: converse the first (or second), then
complement and permute the other two [23, 39, 48]. We shall illustrate how the
Schröder equivalences can be applied using a kinship relation. This example is taken
from [39]. The statement Q⌣;S ⊆BC R can be explicitly written as follows,
∀x, y ∶ [∃z ∶ (x, z) ∈ Q⌣ ∧ (z, y) ∈ S ⊆BC → (x, y) ∈ R]
Suppose that B, F, M and G are relations defined as follows:

1. B = “is a Brother of ”,

2. F = “is a Father of ”,
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3. M = “is a Mother of ”,

4. G = “is the Godfather of ”

Then, P ∶= F ⊔M means “is a Parent of ” and B;P means “is an Uncle of ”. Now,
let’s assume that uncles in our family tradition evolves into godfathers. So we have
B;P ⊆ G. Now, by applying the Schröder’s equivalence to the family relation above,
we have B⌣; Ḡ ⊆ P̄ and Ḡ;P ⌣ ⊆ B̄.
B⌣; Ḡ ⊆ P̄ can easily be read as: if a family member x has a brother z, who is not a
godfather of y, then x can not be a parent of y. The latter statement must be true,
otherwise, contrary to family tradition, z would be an uncle of y without being y’s
godfather. We can visualize this in the diagram below.

Ralph Emily Clara

Bob Kate Alex

Matthew Stephen Thomas

+3F

� 

U

#+

M

KS

��

B

+3U

�'

F

3;

M

KS

��

B

+3F

7?

U

KS

B

>F

M 7?

F

+3F

Figure 2.4: An instance of Schröder equivalence
F= Father, M = Mother, U = Uncle, B = Brother
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The kinship relation above can be represented as a Boolean matrix as follows:

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R B M E K S C A T

R 0 0 0 1 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0

M 0 0 0 0 1 1 0 0 0

E 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0

S 0 0 0 0 0 0 0 1 1

C 0 0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R B M E K S C A T

R 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0

M 0 0 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 1 1

K 0 0 0 0 0 0 1 0 0

S 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

B;P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R B M E K S C A T

R 0 0 0 0 0 0 0 0 0

B 0 0 0 0 1 1 0 0 0

M 0 0 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0

S 0 0 0 0 0 0 1 0 0

C 0 0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure 2.5: Boolean Matrices for the kinship relation
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B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R B M E K S C A T

R 0 0 0 0 0 0 0 0 0

B 0 0 1 0 0 0 0 0 0

M 0 1 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0

S 0 0 0 0 1 0 0 0 0

C 0 0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0 1

T 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R B M E K S C A T

R 0 0 0 0 0 0 0 0 0

B 0 0 0 0 1 1 0 0 0

M 0 0 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0

S 0 0 0 0 0 0 1 0 0

C 0 0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

B⌣; Ḡ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R B M E K S C A T

R 0 0 0 0 0 0 0 0 0

B 1 1 1 1 1 1 1 1 1

M 1 1 1 1 0 0 1 1 1

E 0 0 0 0 0 0 0 0 0

K 1 1 1 1 1 1 0 1 1

S 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0

A 1 1 1 1 1 1 1 1 1

T 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure 2.6: Boolean Matrices for the kinship relation
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Now, from the above, we can deduce that Bob is a godfather of Stephen. This
is because Bob is a brother of Matthew and Matthew is the father of Stephen. In
other words, Bob is an uncle of Stephen, and since an uncle becomes a godfather
according to tradition we have B;P ⊆ G. Another scenario is the case where Bob
is not a brother of Stephen, then Bob is not a godfather of Thomas who is a son of
Stephen. Now, based on the formula Ḡ;P ⌣ ⊆ B̄, which is equivalent to B;P ⊆ G using
the Schröder equivalence, we obtain that Bob is not a brother of Stephen.

2.2 Category Theory

A variant of the theory of relation is called heterogeneous relation algebras. In this
approach, relations have different source and target. This type of algebra is based
on category theory, hence it suffices to review the basic concepts of category theory
[1, 19, 55] before we proceed to heterogeneous relation algebra.

Definition 2. A category C is a quintuple C = (Objc, Morc, dom, cod, “;” )
which consists of the following data:

1. A class of objects Objc, denoted by a, b... or A,B...

2. A class of morphisms (arrows) Morc, denoted by f, g...

3. Each morphism f has a source object (dom) A called the domain of f and a
target object (cod) B called the the codomain of f . In order to indicate that f
has source A and target B we use the notion f ∶ A→ B.

4. An operation “;” called composition assigning to each pair f , g of arrows with
cod(f) = dom(g) an arrow f ; g such that dom(f ; g) = dom(f), cod(f ; g) =
cod(g).

5. An operation I assigning to each object A a morphism IA (the identity of A)
such that dom(IA) = cod(IA) = A.

In addition, identity and composition must satisfy the following laws:
Identity Law: For each morphism we have f ∶ A→ B, f ; IB = f and IA; f = f.
Associativity Law: For morphisms f ∶ A → B, g ∶ B → C, h ∶ C → D, we have
f ; (g;h) = (f ; g);h

Given two objects A and B, the collection of all morphisms f such that f ∶ A→ B

is denoted by C[A,B]. Also, composition of morphisms has to be read from left to
right, i.e., f ; g means f , then g.
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Example 6. Examples of concrete categories

1. A classic example is Rel: sets as objects, relations as morphisms.

2. Vec: vector spaces as objects, linear maps as morphisms.

3. Group: groups as objects, homomorphisms as morphisms.

4. Top: topological spaces as objects, continuous functions as morphisms.

5. Diff: smooth manifolds as objects, smooth maps as morphisms.

6. Ring: rings as objects, ring homomorphisms as morphisms.

2.2.1 Functor

A suitable function or transformation between two categories is called functor. This
transformation maps objects and morphisms from one category to the objects and
morphisms of another category.

Definition 3. A functor F ∶ C → D between categories C and D is a mapping of
objects to objects Fobj ∶ ObjC → ObjD and arrows to arrows FMor ∶ MorC → MorD,
such that for each f ∶ A→ B, g ∶ B → C in C,

1. FMor(f) ∶ Fobj(A)→ Fobj(B)

2. FMor(f ; g) = FMor(f);FMor(g)

3. FMor(IA) = IFobj(A)

That is, F preserves domains and codomains, identity arrows, and composition. If
for all A,B ∈ ObjC and every i ∈ D[F (A), (B)], if there is f ∈ C[A,B] such that
i = F (f), then we call F full. Similarly, if for all A,B ∈ ObjC and for all f, h
∈D[A,B], F (f) = F (h) implies f = h, then we call F faithful.

A category R is said to be locally small if for all objects A and B in this category,
MorR[A,B] is a set (and not a class).
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2.2.2 Dedekind Category

In this section, we want to consider a categorical structure on relation called Dedekind
category. Under certain conditions Dedekind category may be seen as L-fuzzy rela-
tions [20, 36, 37, 53]. L-fuzzy relations are relations taking values from an arbitrary
complete Brouwerian lattice [20, 36, 37, 53] instead of the unit interval [0,1] of real
numbers. It is useful to consider it here since most of the examples in this thesis are
based on this structure.

Definition 4. A Dedekind category RD is a locally small category satisfying the
following:

1. For all objects A and B, the set RD[A,B] is a complete distributive lattice.
Meet, join, the induced ordering, the least and the greatest element are denoted
by ⊔AB, ⊓AB, ⊆AB, áAB, ãAB respectively.

2. There is a monotonic operation ⌣ (called conversion) such that for all relations
Q: A→ B and R ∶ B → C the following holds:

(Q ∶ R)⌣ = R⌣;Q⌣, (Q⌣)⌣ = Q.

3. For all relations Q ∶ A→ B, R ∶ B → C and S ∶ A→ C the modular law

Q;R ⊓ S ⊆ Q; (R ⊓Q⌣;S)

holds.

4. For all relations R ∶ B → C and S ∶ A → C, there is a relation S/R ∶ A → B (
called the left residual of S and R ) such that for all Q ∶ A → B the following
holds

Q;R ⊆ S⇔ Q ⊆ S/R

[53, 20, 36, 37]

From the definition above, it is important to note that the class of complete
distributive lattices and the class of Heyting algebras are equivalent. If every hom-set
(the collection of all morphisms) of RD is an atomic lattice then, RD is called atomic.
Now, if every hom-set RD[A,B] is a Boolean algebra then RD is called a Schröder
category.



CHAPTER 2. RELATION-ALGEBRAIC PRELIMINARIES 15

2.3 Heterogeneous Relation Algebras

With the notion of objects and morphisms from the above, we shall now give a formal
definition of heterogeneous relation algebras. Notice, that it can be shown that the
notion of a heterogeneous relation algebra defined below is equivalent to an atomic
Schröder category defined in the previous section [19, 22, 39, 40, 50, 54, 55].

Definition 5. A (heterogeneous abstract) relation algebra is a locally small category
R consisting of a class ObjR of objects and a set R[A,B] of morphisms for all A,B ∈
ObjR. The morphisms are usually called relations. Composition is denoted by “;”,
identities are denoted by I ∈ R[A,B], conversion ⌣AB ∶ R[A,B] → R[B,A]. The
operations satisfy the following rules:

1. Every set R[A,B] carries the structure of a complete atomic boolean algebra
with operations, ⊔AB, ⊓AB, AB, zero element áAB, universal element ãAB,
and inclusion ordering ⊆AB.

2. The Schröder equivalences

Q;R ⊆AC S ⇐⇒ Q⌣;S ⊆BC R⇐⇒ S;R⌣ ⊆AB Q

holds for all relations Q ∶ A→ B, R ∶ B → C and S ∶ A→ C.

In heterogeneous relation algebras, ⊔, ⊓ “;” are considered as partial operations
because they cannot be applied to relations with different source or target. As we
mentioned earlier on in this chapter, the definition of heterogeneous relation algebras
is based on category theory. All the indices of elements and operations are usually
omitted for brevity and can easily be reinvented. For each morphism R[A,A] where
the source object is the same as the target object there is an identity, a zero and a
universal element. However, there is only a zero and a universal relation per morphism
set R[A,B] if A ≠ B. A standard example is the full relation algebra Rel, where sets
are objects and relations are morphisms.

In the following example, we want to illustrate the above definition. Figure 2.7
shows two Boolean algebras L2 and L4 with 2 and 4 elements respectively. Now,
based on these lattices we can define a heterogeneous relation algebra R with two
objects A and B. The relations from A to A and B to B are given by the lattice L4.
Between A and B we use the lattice L2. The various relations and operations tables
are shown in Table 2.1, Table 2.2, Table 2.3, Table 2.4 and Table 2.5. For simplicity,
we will assume that the tables for composition for relations with source and target
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both equal to A or both equal to B are the same as join, i.e., ⊓ =;, and that the
of converse of an element x is defined as x⌣ = x. The other composition tables are
given either explicitly in Table 2.5 or can be computed using the converse operation
and Table 2.5 and/or by exchanging A and B. Clearly, there are two objects under
consideration, i.e., A and B. Now, from Table 2.1 each object has an identity relation,
for instance, the identity element of A = 1 and that of B = 1. Table 2.2 also defines
the zero and universal elements between A and B. For example, the zero element and
universal element with source as A and target as B is 0 and 1 respectively. Table 2.3
and Table 2.4 shows the meet and join operations respectively.

1

0

3

1 2

0

Figure 2.7: Boolean algebras L2 and L4

Identity
A 1
B 1

Table 2.1: Identity relation

Bottom
A, A 0
B, B 0
B, A 0
A, B 0

Top
A, A 3
B, B 3
B, A 1
A, B 1

Table 2.2: Bottom and Top



CHAPTER 2. RELATION-ALGEBRAIC PRELIMINARIES 17

A,B 0 1

0 0 1
1 1 1

B,A 0 1

0 0 1
1 1 1

A,A 0 1 2 3

0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

B,B 0 1 2 3

0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

Table 2.3: Join operation in the lattice algebra R

A,B 0 1

0 0 0
1 0 1

B,A 0 1

0 0 0
1 0 1

B,B 0 1 2 3

0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

A,A 0 1 2 3

0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

Table 2.4: Meet operation in the Lattice algebra R

AB/BB 0 1 2 3

0 0 0 0 0
1 0 1 1 1

AB/BA 0 1

0 0 0
0 0 1

Table 2.5: Composition operation in R
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We can visualize the relation described above in the following diagram.

A

B

[0,1,3]

[0,1]

[0,1,3]

[0,1]

Figure 2.8: A two object relation
[á, I,ã]= [zero element, identity, universal relation], and [áã]= [zero element,

universal relation]

Notice that we have ãAB;ãBA= 1; 1 ≠ 3 =ãAA in R.

2.3.1 Properties of relation algebras

In this section we will examine various properties of heterogeneous relation algebras.

Definition 6. Let T ∈R[A,B] be a relation, then we can define the following special
relations as:

1. T is called univalent iff T ⌣;T ⊆ IB

2. T is called total iff IA ⊆ T ;T ⌣ or equivalent T ;ãBA=ãAA

3. T is called map iff Q is univalent and total.

We can visualize the above definition in the following diagram.
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1
b

a

2
c

3
d

4
e

X Y

Total

&&--

  

99

--33

1
b

a

2
c

3
d

4
e

X Y

Univalent

--

--

@@ 1
b

a

2
c

3
d

4
e

X Y

Mapping

%%

%%++

>>

>>

Figure 2.9: Total relation, Univalent relation and Mapping

Definition 7. Homomorphisms
Let R and S be relation algebras and F ∶ R → S a functor, then F is called a homo-
morphism between relation algebra iff

1. F (⊓Si) = ⊓
i∈I
F (Si),

2. F (R) = F (R),

3. F (R⌣) = F (R)⌣

holds for all relations R,S, with i ∈ I.

2.3.2 Relational Sums

In Rel, the relational sum is given by the disjoint union of sets and the corresponding
injection functions [6, 19, 40, 54].

Definition 8. Let {Ai∣i ∈ I} be a set of objects indexed by a set I. An object ∑
i∈I
Ai.

together with relations ιj ∈ R[Aj,∑
i∈I
Ai] for all j ∈ I is called a relational sum of

{Ai∣i ∈ I} iff for all i, j ∈ I with i ≠ j the following holds:

1. ιi;ι⌣i = IAi

2. ιi;ι⌣j = áAiAj

3. ⊔
i∈I
ιi;ι⌣i = I∑

i∈I
Ai
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A relation algebra has relational sums if and only if for every set of objects a
relational sum exists. Relational sums are unique (up to isomorphism) because they
are simultaneously categorical product and co-product [50].

Suppose A and B are objects of a relation algebra, then the above definition
corresponds to the usual definition of relational sums as follows. In the binary case
we also write ι ∶ A → A + B and κ ∶ B → A + B for the two injections. For two
relations R ∶ A → C and S ∶ B → C we define the sum R + S ∶ A + B → C by
R+S = ι⌣;R; ι⊔κ⌣;S;κ. We now want to illustrate these constructions using Boolean
matrices.

Example 7.

Suppose that R and S are represented by the following Boolean matrices.

R =
⎛
⎜⎜⎜
⎝

z1 z2 z3 z4 z5

x1 1 0 0 0 0

x2 0 0 1 0 0

x3 0 1 0 1 0

⎞
⎟⎟⎟
⎠

S =

⎛
⎜⎜⎜⎜⎜⎜
⎝

z1 z2 z3 z4 z5

y1 1 1 0 0 0

y2 0 1 1 0 0

y3 0 0 1 1 0

y4 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

Then the relational sum R+S is given by the following Boolean matrix

R + S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1 z2 z3 z4 z5

x1 1 0 0 0 0

x2 0 0 1 0 0

x3 0 1 0 1 0

y1 1 1 0 0 0

y2 0 1 1 0 0

y3 0 0 1 1 0

y4 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure 2.10: Boolean matrix for direct product

2.4 Matrix Algebra

In the preceding sections we have used matrices to visualize relations in various forms.
We will now give a formal definition of matrix algebras and how it can formally be
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used to represent relations. Given a heterogeneous relation algebra R, an algebra R+

of matrices with coefficients from R is defined by:

Definition 9. Let R be a relation algebra. The algebra R+ of the matrices with
coefficients from R is defined by:

• The class of objects of R+ is the collection of all functions from an arbitrary set
I to ObjR.

• For every pair f ∶ I → ObjR, g ∶ J → ObjR of objects from R+, the set of
morphisms R+[f, g] is the set of all functions R ∶ I × J →MorR such that
R(i, j) ∈R[f(i), g(j)] holds.

• For R ∈R+[f, g] and S ∈R+[g, h] composition is defined by
(R;S)(i, k) ∶ = ⊔R(i, j);S(j, k).

• For R ∈R+[f, g] conversion and negation is defined by
R⌣(j, i) ∶= (R(i, j))⌣ , R(i, j) = R(i, j)

• For R,S ∈R+[f, g] union and intersection is defined by
(R ⊔ S)(i, j) = R(i, j) ⊔ S(i, j), (R ⊓ S)(i, j) = R(i, j) ⊓ S(i, j)

• The identity, zero and universal elements are defined by

If(i1,i2) ∶=
⎧⎪⎪⎨⎪⎪⎩

áf(i1)f(i2) : i1 ≠ i2
If(i1) :i1 = i2

áfg(i,j)∶=áf(i)g(j), ãfg(i,j)∶=ãf(i)g(j)

[50, 54].

The morphisms in matrix algebra are matrices indexed by objects from R. Unlike
the Boolean matrix where elements of the matrix were restricted to only Boolean
values (0 or 1), here the elements could take values including real numbers. In order
to understand the meaning of the definition above we will illustrate with several
examples.

Given a finite list of objects [A, B] with a set of binary relations (morphisms)
defined between each source and target, i.e., for each [A, A], [A ,B], [B, B], [B, A],
we define a binary relation for how each element of a source object is mapped to the
target object. We will use the lattice structure introduced in Figure 2.7 and its basis
tables described in Table 2.1, Table 2.2, Table 2.3 and Table 2.4 of Section 2.3.
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Example 8. Identity, Zero and the Universal relations

We can compute the zero and universal relations in R+ with source [A, B, A, B]
and target [A, A, B, B] taking the coefficients from R and using Table 2.2 as our
basis table by:

⎛
⎜⎜⎜⎜⎜⎜
⎝

Zero A B A B

A áAA áAB áAA áAB

A áAA áAB áAA áAB

B áBA áBB áBA áBB

B áBA áBB áBA áBB

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

A B A B

A 0 0 0 0

A 0 0 0 0

B 0 0 0 0

B 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

Universal A B A B

A ãAA ãAB ãAA ãAB

A ãAA ãAB ãAA ãAB

B ãBA ãBB ãBA ãBB

B ãBA ãBB ãBA ãBB

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

A B A B

A 3 1 3 1

A 3 1 3 1

B 1 3 1 3

B 1 3 1 3

⎞
⎟⎟⎟⎟⎟⎟
⎠

Figure 2.11: Zero and universal relation

Since in the case of identity relation the source objects must be equal to the target
objects, we will consider the list [A, B, A, B] and using Table 2.2 as our basis table.
We have:

⎛
⎜⎜⎜⎜⎜⎜
⎝

Identity A B A B

A IAA áAB áAA áAB

B áBA IBB áBA áBB

A áAA áAB IAA áAB

B áBA áBB áBA IBB

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

A B A B

A 1 0 0 0

B 0 1 0 0

A 0 0 1 0

B 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠
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Example 9. Intersection and Union

In the case of union and intersection of two relations in R+ the list of source of
objects (row of the matrix) of the two relations must be the same. Also, the list
of target objects (columns of the matrix) of the first relation must be equal to that
of the second relation. Now suppose we have two relations with [A, B, A, B] and
[A, B, A, B] as the source and target objects respectively, then, we can compute
the intersection in the algebra with coefficients from R using Table 2.4 as our basis
relation. We have

⎛
⎜⎜⎜⎜⎜⎜
⎝

A B A B

A 1 0 3 0

B 1 3 0 1

A 3 1 0 0

B 0 1 0 3

⎞
⎟⎟⎟⎟⎟⎟
⎠

⊓

⎛
⎜⎜⎜⎜⎜⎜
⎝

A B A B

A 2 1 1 1

B 0 0 0 2

A 3 1 3 0

B 1 2 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

A B A B

A 0 0 1 0

B 0 0 0 0

A 3 1 0 0

B 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

Similarly, given that the list of source objects are [A, A, A, B] and the list of target
objects are [B, A, A, B] and using Table 2.3 we have:

⎛
⎜⎜⎜⎜⎜⎜
⎝

A A A B

B 0 1 1 3

A 2 3 2 1

A 0 0 1 0

B 0 1 1 3

⎞
⎟⎟⎟⎟⎟⎟
⎠

⊔

⎛
⎜⎜⎜⎜⎜⎜
⎝

A A A B

B 1 0 1 3

A 0 0 1 0

A 3 3 3 0

B 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

A A A B

B 1 1 1 3

A 2 3 3 1

A 3 3 3 0

B 0 1 1 3

⎞
⎟⎟⎟⎟⎟⎟
⎠

Example 10. Multiplication or Composition

We need to ensure that the target objects of the first relation is the same as the
source of objects of the second relation. In Section 2.3 we assumed that the table
for composition operation is the same as the table for intersection, hence we will use
Table 2.3 for composition operation. Now, suppose we have two relations M and N
such that M has [A, A, B, B] and [A, B, B, A] as source and target objects respectively,
and N has [A, B, B, A] and [B, B, B, A] as source and target objects respectively,
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then, the composition is given by:

⎛
⎜⎜⎜⎜⎜⎜
⎝

A A B B

A 1 1 0 0

B 0 0 1 1

B 0 0 1 1

A 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

;

⎛
⎜⎜⎜⎜⎜⎜
⎝

B B B A

A 0 0 1 1

A 0 0 1 1

B 1 0 1 1

B 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

B B B A

A 0 0 0 0

B 0 0 0 0

B 0 0 0 0

A 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

Example 11. Conversion

Similarly, we will illustrate conversion by assuming that the converse of an element
x is given by x⌣ = x. So suppose that T is a matrix with source [A, B, A, B] and
target [A, A, B, B] given by:

T =
⎛
⎝

A B A B

A 1 1 2 0

B 0 3 1 2

⎞
⎠

Then Transpose of T is:

⎛
⎜⎜⎜⎜⎜⎜
⎝

A B

A 1 0

A 1 3

B 2 1

B 0 2

⎞
⎟⎟⎟⎟⎟⎟
⎠

We can summarize the basic properties of R+ in the following lemma. This lemma
indicates that matrix algebras are relation algebras with relational sums.

Lemma 1. R+ is a relation algebra that has relational sums [50].

2.5 Integral Objects and the Basis of R
Every relation algebra R with relational sums and subobjects is equivalent to an
algebra of matrices over a suitable basis. This basis B or coefficients are given by
what we call integral objects of R. Integral objects are characterized by the fact that
their identity morphisms are atoms. It is clear that B cannot be isomorphic to R
since B is normally smaller than R. That is, B is a proper subalgebra of R. In this
section, we shall look at the definition and properties of integral objects which make
them very important to consider [50].
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Definition 10. An object A of a relation algebra is called integral iff áAA≠ãAA and
for all Q,R ∈R[A,A], the equation Q;R =áAA implies either Q =áAA orR =áAA.

Example 12. Suppose that the integral objects in Rel is given by the singleton sets
and the basis of Rel is also given by all singleton sets with exactly two relations, ∅
and {(a, b) ∣ a ∈ {a}, b ∈ {b}}. Then all objects in this basis are isomorphic, and the
matrix algebra over this basis is the category of Boolean matrices.

Example 13. The following example shows that not all objects are integral objects.
Let Q,R ∈ [A,A] where A is a set with two elements. Now consider

Q =
⎛
⎝

1 0

1 0

⎞
⎠

; R =
⎛
⎝

0 0

1 1

⎞
⎠

=
⎛
⎝

0 0

0 0

⎞
⎠

That is Q;S =á. However, neither Q =á nor S =á. Hence we can conclude that
A is not an integral object according to the definition above.

Lemma 2. The following properties are equivalent:

1. A is an integral object,

2. Every non-zero relation in R[A,A] is total,

3. I is an atom.

The proof can be found in [50]. The following lemma summarizes the basic prop-
erties of relations for which the source or target object is integral.

Lemma 3. Let B be an integral object, Then,

1. if Q;R =áAC with Q ∈R[A,B] and R ∈R[B,C] then either Q =áAB or R =áBC,

2. if R ≠áBC then R;ãCD=ãBD [50].

Hence, from the above lemma we can deduce that all non-zero relations in R[B,C]
are total if B is integral. Now, the following definitions states that the class of all
integral objects forms the basis of R.

Definition 11. Let R be a relation algebra. The basis BR of R is defined as the full
subcategory given by the class of all integral objects.
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2.6 Splitting

The next construction is motivated by the following set-theoretic principle. If X
is a partial equivalence relation, i.e., a relation that is symmetric and idempotent
X;X =X, then each element is in at most one equivalence class. We can now consider
the set of all those equivalence classes and the relation that relates an element with
its class, if the element belongs to such a class. We start with the following definition
[19, 40, 47].

Definition 12. A relation Q ∶ A → A is called a symmetric idempotent relation
(partial equivalence), if and only if Q⌣ = Q and Q;Q = Q.

The following example illustrates the above definition. Let A be a set and an
object in Rel defined by: A = { Frank, Mick, Ken, Tom, Steve, Denis, Mark, Joan}
such that Q ∶ A→ A is a relations on the set of persons which relates two people if they
took the the same course or class at college defined by: {<Frank, Frank>, <Frank,
Ken>, <Frank, Tom>, <Mick, Mick>, <Ken, Frank> <Ken, Ken>, <Ken, Tom>,
<Tom, Frank>, <Tom, Ken>, <Tom, Tom>, <Denis, Mark>, <Denis, Denis>,
<Mark, Mark>, <Mark, Denis> }. We can also represent Q as a Boolean matrix as
in Figure 2.12.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Frank Mick Ken Tom Steve Denis Mark Joan

Frank 1 0 1 1 0 0 0 0

Mick 0 1 0 0 0 0 0 0

Ken 1 0 1 1 0 0 0 0

Tom 1 0 1 1 0 0 0 0

Steve 0 0 0 0 0 0 0 0

Denis 0 0 0 0 0 1 1 0

Mark 0 0 0 0 0 1 1 0

Joan 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure 2.12: Boolean Matrix of R

Q represents a partial equivalence relation which consists of 3 equivalence classes:
{Frank, Ken, Tom},{Denis, Mark}, and {Mick} as well as elements which do not
belong to any equivalence class, simply because they did not attend college or take
the same course.
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Definition 13. Let R be a relation algebra, and Q ∶ A → A be a partial equivalence
relation. An object B together with a relation R ∶ B → A is called a splitting of Q (or
R splits Q ) iff R;R⌣ = I and R⌣;R = Q.

We shall illustrate this definition briefly using the persons and the partial equiv-
alence relation Q ∶ A → A from the preceding example. Let B = {{Frank, Ken,
Tom},{Denis, Mark}, and {Mick} } be an object of the splitting of Q. Then, the
splitting R ∶ B → A is equivalent to the relation that maps every equivalence class to
its elements. We can represent R as a Boolean matrix as follows:

⎛
⎜⎜⎜
⎝

Frank Mick Ken Tom Steve Denis Mark Joan

{Frank,Ken,Tom} 1 0 1 1 0 0 0 0

{Mick} 0 1 0 0 0 0 0 0

{Denis,Mark} 0 0 0 0 0 1 1 0

⎞
⎟⎟⎟
⎠

Figure 2.13: Boolean Matrix of R (Splitting)

The Boolean matrix below verifies that R;R⌣ = I, after computing R;R⌣

⎛
⎜⎜⎜
⎝

{Frank,Ken,Tom} {Mick} {Denis,Mark}
{Frank,Ken,Tom} 1 0 0

{Mick} 0 1 0

{Denis,Mark} 0 0 1

⎞
⎟⎟⎟
⎠

Figure 2.14: Boolean Matrix of R;R⌣

And also we can verify that R⌣;R = Q. This is shown in the figure below.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Frank Mick Ken Tom Steve Denis Mark Joan

Frank 1 0 1 1 0 0 0 0

Mick 0 1 0 0 0 0 0 0

Ken 1 0 1 1 0 0 0 0

Tom 1 0 1 1 0 0 0 0

Steve 0 0 0 0 0 0 0 0

Denis 0 0 0 0 0 1 1 0

Mark 0 0 0 0 0 1 1 0

Joan 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure 2.15: Boolean Matrix of R⌣;R

2.6.1 Subobjects or Subsets

In this subsection, we want to look at a special case of splittings. This will help us to
state a theorem between a relation algebra and its basis. We can represent subsets
in two different ways inside a relation algebra;

1. by vectors, i.e. a relation v such that v =ã; v

2. by partial identities, i.e. a relation ζ ⊆ I.

The two properties above are equivalent and may be used to characterize subobjects
[19, 40, 50]. Subobjects are defined as follows:

Definition 14. Let ζ ∈ R[A,A] be a partial identity. An object B together with a
relation ψ ∈R[B,A] is called subobject (or subsets) of A induced by ζ iff

1. ψ;ψ⌣ = IB,

2. ψ⌣;ψ = ζ

A relation algebra has subobjects iff for all partial identities a subobject exist. Notice
that subobjects are special case of splittings since every partial identity is a partial
equivalence relation.

As mentioned above, the basis is smaller than R. Hence, the basis of R is never
isomorphic or equivalent to R. This makes integral objects and subobjects very
important structure to consider. The theorem below throws more light on this.
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Theorem 1. Let R be a relation algebra with relational sums, and let B be the basis
of R. Then B is a proper subalgebra of R.

See [49] for proof.

2.7 A Pseudo Representation Theorem

From the above, we have been able to define relational sums, subobjects, integral
objects, basis and their relationships. With all these we are now ready to state the
main theorem. This theorem defines the relationship between relation algebras and
matrix algebra [50].

Theorem 2. Let R be a relation algebra with relational sums and subobjects and B
be the basis of R. Then R and B+ are equivalent [49].

The theorem above states that relation algebras and matrix algebras are equiv-
alent when dealing with categorical structures. However, this structure may not be
isomorphic since the functors from R to B+ may identify isomorphic objects. See [49]
for proof.
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Related Work

The increasing use of relations in several fields have resulted in the development of
highly sophisticated computer tools to manipulate relations. For instance, researchers
working with relations can only do computations by hand when the problem is rela-
tively small but when the relation or problem at hand is very large then it becomes
painful, tedious and time consuming to do. Thus, several computer automated sys-
tems have been developed to help curb this problem. In this chapter, we shall look
at some systems that have been developed to manipulate relations [4, 9, 10, 54].

The following quotes list some computer algebra systems developed to assist in
the manipulation and programming of relations including relation-algebraic theorem
proving:

1. “RelView, developed in Kiel (formerly in Munich). RelView is an in-
teractive tool for computer-supported manipulation of relations rep-
resented as Boolean matrices or directed graphs, especially for proto-
typing relational specifications and programs ” [57].

2. “REALM, Computation and Visualization of Finite Relation Alge-
bras. Brock University, 2006-2009 (Ahmed, Zafor, M.Sc. Thesis)
” [54].

3. “Libra, developed in Adelaide. Libra is a relational programming
language that explores the different values yielded by relations by
back-tracking rather than parallel execution ” [57].

4. “RATH, developed in Munich. RATH is a collection of Haskell mod-
ules that allow exploration of (finite) relation algebras and several

30
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weaker structures such as categories, allegories, and Dedekind cate-
gories ” [57].

5. “TituRel- Multilevel Relational Reference Language. A highly expres-
sive multilevel relational reference language is proposed that covers
most possibilities to use relations in practical applications. The lan-
guage is designed to describe work in a heterogeneous setting. It
originated from a Haskell-based system announced in [41], forerun-
ners of which were [24, 25]. This language is intended to serve a
variety of purposes. First, it shall allow to formulate all of the prob-
lems that have so far been tackled using relational methods providing
full syntax- and type-control. Transformation of relational terms and
formulae in the broadest sense shall be possible as well as interpre-
tation in many forms. In the most simple way, boolean matrices will
serve as an interpretation, but also non-representable models as with
the Rath-system may be used. Proofs of relational formulae in the
style of Ralf or in Rasiowa-Sikorski style are aimed at” [42].

6. “RALF, developed in Munich, currently not maintained. RALF is a
relation-algebraic formula manipulation system and interactive proof
checker. Its meta language is first-order predicate logic in calcula-
tional style. Proofs are manipulated via a graphical user interface:
theorems are represented as trees and the subexpression to be trans-
formed can be selected by mouse click ” [57].

7. “RALL, developed in Munich, currently not maintained. RALL em-
beds the theory of abstract relation algebras in Isabelle ” [57].

8. “CrocoPat, developed in Lausanne, Berkeley, and Cottbus. CrocoPat
is a tool for simple and efficient relational computation, manipulating
relations of any arity ” [57].

9. “PCP - Point and Click Proofs, developed in Orange, California. The
interactive "Point and Click Proof" (PCP) environment allows the
investigation of algebraic theories, such as groups, rings, lattices, and
others, including relation algebras ” [57].

10. “RelAPS, developed in St. Catherines, Ontario RelAPS is an inter-
active system assisting in proving relation-algebraic theorems” [21].
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In the rest of the chapter we shall review the implementation and application of the
first four mentioned systems. For details on any of the above systems please refer to
[42, 43, 57, 60].

3.1 RelView- An OBDD-Based Computer Algebra

System for Relations

RelView is an interactive and specific purpose computer algebra system with a graph-
ical user interface for the manipulation and visualization of relation algebra and re-
lational programming. The first versions were developed at the University of the
German Forces Munich from 1988 to 1992. It was further rebuilt and extended by
Kiel University since 1993.

In RelView, all data are represented as relations. It provides an interface for deal-
ing with both homogeneous and heterogeneous relations. Homogeneous relations are
represented as directed graphs, including sophisticated algorithms for drawing them
nicely. Relations are represented in RelView as Boolean matrices. This second repre-
sentation is very useful for visually editing and also for discovering various structural
properties that are not evident from a representation of relations as directed graphs.

RelView is a system for set-theoretic relations, i.e., works within the standard
model of relation algebras. This system was written in C programming language
using a binary decision diagram package called CUDD [13, 46]. It runs on Sun SPARC
workstations and INTEL-based Linux systems.

The RelView system is capable of manipulating very large relations including
membership relation, inclusion relation and relations involving the whole set or the
power set. It can manipulate several relations simultaneously as well as giving the
user the freedom to manipulate and analyze them by pre-defined operations, tests
and user-defined relational functions and relational programs. The figure below is a
snapshot of the RelView system. For a detailed description please refer to [4, 9, 10, 54].
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Figure 3.1: pictorial view of RelView [58]
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3.1.1 Applications of the RelView system

RelView assists mathematicians and computer scientists working with relation alge-
bra, concrete relations, relation-based discrete structures, and relational programs
[4, 9, 10, 11].

1. In the formulation and proving of relational theorems or relation algebraic
reasoning, RelView can be used as an efficient tool to construct examples to
demonstrate the validity of a theorem or to find counter examples to disprove a
proposed property. The RelView system has been designed with an interactive
interface which allows to add, change and remove relations and directed graphs,
and makes it easier to apply functions and to reuse relational programs at every
time within a working session.

2. Another important application domain of RelView is in relational program de-
velopment. It helps in the implementation of relational algorithms using the
programming language provided by the system.

3. It can also be used to accomplish various tasks in formal program development
such as specification, testing, detection of loop invariants and other important
properties necessary for correctness proofs, rapid prototyping, and improving
efficiency.

4. RelView has a complete graphical user interface which makes it more suitable for
teaching, visualization and animation. It is a very good means to demonstrate
how certain algorithms work.

Some specific problems to which RelView has been applied include, graph-theoretic
problems such as maximum cliques and the lattice-theoretic problems such as the cut
completion. The results produced seem to be relatively good. For more information
refer to [4, 9, 10, 11].
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Initially RelView was implemented using Boolean arrays for storing and manipu-
lating relations. As a result of this, its use in several applications was restricted to
small input relations. RelView was redesigned to overcome this problem. A more
efficient data structure called Binary Decision Diagram (BDD) was used this time.
In this section we want to look at Binary Decision Diagrams and how RelView uses
it to implement relations.

3.1.2 Binary Decision Diagrams

BDD has recently become one of the state of the art data structures used to ma-
nipulate very large Boolean functions. A BDD is a directed acyclic graph with one
root and two leaf nodes. Each decision node is labeled by a Boolean variable and
has two child nodes (low child and high child). A BDD is called ordered if different
variables appear in the same order on all paths from the root node. A BDD is said to
be reduced if there is no isomorphic subgraphs within the diagram, hence, the name
Reduced Ordered Binary Decision Diagram (ROBDD).

We will illustrate the operations of BDDs by example. Let f ∶ B3 → B be a Boolean
function defined in the disjunctive normal form as f(A,B,C) = (A∧B∧C)∨(A∧C).
The BDD for this function is shown in Figure 3.2. In the BDD diagram, 1 and 0 are
represented by the solid lines and dotted lines respectively. Now, let us find the value
of f(A,B,C) given that A = 1, B = 0, C = 1. To compute this we have to follow
corresponding directed arcs from the root node. From Figure 3.2 b the root node is
the variable labeled A.

Now starting from the root node A with the given assignment A = 1, we take the
1-arc and traversing we encounter a node labeled with B variable and since the value
of B = 0 we take the 0-arc. Traversing again we arrive at the node with a variable
labeled C and since C = 1, we take the 1-arc and the leaf node of this arc is 1 which
is the required result for evaluating f(1,0,1).
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Figure 3.2: Binary Decision Diagrams

The representation of a Boolean function by means of a BDD is not unique.
However, when BDD variables are ordered and reduced in their canonical form, then
the BDD representation is unique. Figure 3.2 (b), (c), (d), (e) are different BDD
representations of the same Boolean function f . The BDD in Figure 3.2 (c) can be
deduced from the BDD in (b) by applying reduction rules such as removing isomorphic
subgraphs and elimination redundant nodes from the diagram. Also by continuous
application of reduction rules the BDDs in Figure 3.2 (c), (d), (e) can be achieved.

Several BDD packages have been written to aid the manipulation of BDDs, notable
among them is the CUDD package from the University of Colorado, Boulder (USA).
This is the package used by RelView to implement relation algebra. For the detail
description of this package refer to [13].

3.1.3 Implementation of Relations using ROBDDs in RelView

Reduced Ordered Binary Decision Diagram (ROBDD) is a data structure used by
RelView to implement relations. In this representation RelView uses a binary encod-
ing system in which the domain and range of relations are represented by the row
(X) and column (Y ) of a Boolean matrix respectively. We will illustrate how this is
done in RelView with the following example (our example will be based on a finite
set and a concrete relation).
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Suppose that we have two sets X = {x, y, z} and Y = {u, v} and let R ∶X ↔ Y be
a relation defined by R ∶= {(x,u), (z, u), (z, v)} then R can be represented as a 3× 2
Boolean matrix as:

⎛
⎜⎜⎜
⎝

u v

x 1 0

y 0 0

z 1 1

⎞
⎟⎟⎟
⎠

we can visualize this relation in RelView as:

u v
x
y
z

Now let us define a binary encoding for X and Y as follows: cX ∶ X → B2 such that
cX(x) = 00, cX(y) = 01, cX(z) = 10, and cY ∶ Y → B such that cY (u) = 0, cY (v) = 1.
We can now represent this relation as a ternary partial Boolean function fR ∶ B3 → B.
This Boolean function is depicted in the table below. x1 and x2 are the variables
encoding X and y1 is the variable encoding Y . In order to obtain a totally defined
function, we will add 0’s to where the function is undefined.

x1 x2 y1 f(x1, x2, x3)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Table 3.1: Truth table: fR ∶ B3 → B

Base on this table we can derive a ROBDD for the function by using a fixed
variable ordering such as x1 < x2 < y1. This is shown in Figure 3.3.
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Figure 3.3: Binary Decision Diagram [5]

For any arbitrary values of m and n with the binary encoding cX ∶ X → Bm

and cY ∶ Y → Bn such that m = ⌈log ∣X ∣⌉ and n = ⌈log ∣Y ∣⌉, we can implement a
relation R ∶ X ↔ Y by two sizes ∣X ∣ and ∣Y ∣ and the ROBDD of the totalized
Boolean function FR ∶ Bm+n → B, where fR(x1, ..., xm, y, ..., yn) = 1 if and only if the
decodings c−1X (x1, ..., xn) and c−1Y (y1, ..., yn) are related through the relation R with
variable ordering x1 < ... < xm < y1... < yn. We shall demonstrate this with the
membership relation and one basic binary operation (composition). Let ω ∶ X ↔ 2X

be a membership relation defined on the set X = {a, b, c, d}. This can be depicted in
RelView as a Boolean 4 × 16 matrix:

Figure 3.4: membership relation [5]

In order to represent this relation using an ROBDD we encode X and 2X such that
the variable x1 and x2 encode the 4 element of the domain of ω and the variable
ya, yb, yc and yd encode the 16 elements of the range 2X of ω. This is depicted by the
figure below.
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Figure 3.5: Binary Decision Diagram

Now let us see how composition of two relation is implemented in RelView. Sup-
pose that X, Y, Z are finite sets with sizes ∣X ∣ = n, ∣Y ∣ = m and ∣Z ∣ = k such that
R ∶ X ↔ Y and S ∶ Y ↔ Z are two relations, then we can define the composi-
tion of R and S (R;S ∶ X ↔ Z) in component-wise as (RS)xz ⇔ ∃y(Rxy ∧ Syz)
for all x ∈ X and z ∈ Z. Now let ln = ⌈logn⌉, lm = ⌈logm⌉, and lk = ⌈log k⌉ and
using the binary encodings cX ∶ X → Bln , cY ∶ Y → Blm , cZ ∶ Z → Blk we ob-
tain the Boolean functions for R and S as fR ∶ Bln+lm → B and fS ∶ Blm+lk → B
such that fR(r1, ..., rln , rln+1, ..., rln+lm) = 1 iff C−1

X (r1, ..., rln) and C−1
Y (rln+1, ..., rln+lm)

are related through R and fS(s1, ..., slm , slm+1, ..., rlm+lk) = 1 iff C−1
Y (s1, ..., rlm) and

C−1
Z (slm+1, ..., slm+lk) are also related through S. If we assume that rln+1,...,rln+lm with

s1, ..., slm are variables, then we can derive a general form of the composition of R;S

as fRS = ∃s1...∃slm(fR ∧ fS) [5].

3.1.4 Limitation of RelView system for relation algebras

As pointed out earlier, relation algebra consist of standard and non-standard models.
The standard model forms the concrete relation algebras. The basic underlying layer
of RelView is the standard model, therefore it becomes impossible to implement or
manipulate certain kind of arbitrary (heterogeneous) relation. For example, ã;ã=ã
or P (A) × P (B) ≅ P (A + B) is always true in RelView since it uses the standard
model. However, these properties might not be true in some non-standard models.
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3.2 REALM - A SYSTEM TO MANIPULATE RE-

LATIONS

REALM is a more general interactive relation algebras manipulator that visualizes
an arbitrary relation algebra (both concrete and abstract relation algebras) using
matrix algebra approach. It was developed by Ahmed Zafor supervised by Profes-
sor Michael Winter at Brock University, Ontario Canada (2009). It implements a
complete relation algebra and has a graphical user interface. It was written in Java
using JDK 1.6 platform which supports several generic types. It has several abstract
classes; for instance the class RelAlg has two generic type parameters O and M for
the type objects and the type relations respectively. It has several accessors meth-
ods for performing binary and unary operations between objects. It defines abstract
methods from standard operations and abstract methods such as source and target
for getting the source and target of the relation. It also has a class that accepts basis
files which contains all the relations. This class is initialized by reading or passing an
XML file with a set of objects, relations between them as well as operations. It has
several graphical user interfaces such as loading relations, saving relations, switching
relations, deleting relations, etc. See [54] for detail description.

3.2.1 IMPLEMENTATION

REALM was implemented using the array data structure. Relations are stored in
one or two dimensional arrays using hash tables for referencing. The underlying data
structure of REALM limits its ability to manipulate and manage very large relations
with respect to speed and memory as well as flexibility. This was the same problem
faced by the first versions of RelView system. For more information see [54].

3.3 LIBRA: A Lazy Interpreter of Binary Relational

Algebra

Another system that implements relations is called LIBRA. The following better
explains what the LIBRA system is.

“LIBRA is a general-purpose programming language based on the alge-
bra of binary relations. It is an attempt to unify functional and logic
programming, retaining the advantages of both, and avoiding some of
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the problems. It has all the features needed of a programming language,
including a straightforward semantic interpretation. Since program spec-
ifications are easily expressed as relations, it offers a simple path from a
specification to a program and from the program to its proof of correct-
ness. The algebra of binary relations has several operators whose effects
are like those of familiar procedural language constructs, for example,
relational composition is analogous to sequential execution” [18].

See [59] for details description.

3.4 RATH - Relation Algebra Tools in Haskell

RATH is a tool for manipulating relations written in Haskell. The following quote
gives a better descriptions of the system.

“RATH-1 is a collection of Haskell modules that allow exploration of (fi-
nite) relation algebras and several weaker structures such as categories,
allegories, and Dedekind categories by providing different means to con-
struct and test such algebras. The kernel of our library is strictly con-
formant to the Haskell 98 standard, and can therefore be expected to be
usable on future Haskell systems, too. For ease of use, we additionally
provide a more elegant interface using non-standard extensions” [27].

Since our main focus is on RelView and the REALM systems we will not give
details on the last four systems, however for details on these systems refer to [42, 43,
57, 60].
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RelMDD System

From the preceding chapters, we have been able to show how relations can be visual-
ized using matrices, so base on this, we want to develop a system for relations using
MDDs. RelMDD is an arbitrary relation algebra manipulator library written in C
programming language. It is a package that implements relation algebras using the
matrix algebra approach and can be imported by other programs and/or languages
such as Java and Haskell when programming or manipulating arbitrary relations.
We implemented RelMDD using the matrix algebra over a suitable basis approach
hence, it is capable of manipulating both the classes of standard and the non-standard
models of relation algebra.

The implementation requires a more advanced form of OBDD’s (data structure)
[13, 15], since OBDD’s are limited to Boolean values. We need a data structure
similar to OBDD’s that is able to store arbitrary coefficient of a matrix instead of just
Boolean values. We shall assume that the reader is familiar with OBBDs, otherwise,
the reader should refer to the previous chapter or see [5, 13, 15]. Before we give a
full account of the system, we will first of all look at the data structures used for the
implementation of RelMDD. The main data structure used is multiple-value decision
diagrams (MDDs) [17, 32, 33, 34]. However, we will get to know later on in this
chapter that this data structure is best or usually implemented by encoding them
into another form of decision diagram called algebraic decision diagrams (ADDs) [3].
We will refer to [13, 15] for definitions and examples of MDDs.

4.1 Data Structure and Implementation

A multiple-valued decision diagram (MDD) is a natural extension of the reduced or-
dered binary decision diagram (ROBDD) to the multiple-valued case [17, 32]. MDDs

42
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are considered to be more efficient and require smaller memory size than the ROB-
DDs. In this section, we will examine various properties and examples of MDDs.

4.1.1 Multiple-Valued Decision Diagram (MDD)

Let V be a set of finite size r . An r-valued function f is a function mapping V n

for some n to V . We will identify the n input values of f using a set of variables
X = {x0, x1, ..., xn}. Each xi as well as f(X) is r-valued, i.e., it represents an element
from V . The function f can be represented by a multi-valued decision diagram. Such
a decision diagram is a directed acyclic graph (DAG) with up to r terminal nodes
each labeled by a distinct value from V . Every non-terminal node is labeled by an
input variable xi and has r outgoing edges [17, 32].

An MDD is ordered (OMDD) if there is an order on the set of variables X so
that for every path from the root to a leaf node all variables appear in that order.
Furthermore, an MDD is called reduced if the graph does not contain isomorphic
subgraphs and no nodes for which all r children are isomorphic (i.e. there is no
redundant node in which two edges leaving a node point to the same next node
within the graph). An MDD that is ordered and reduced is called a reduced ordered
multi-valued decision diagram (ROMDD). Both ROBDDs and ROMDDs have widely
been studied. Most of the techniques used when implementing a package for the
creation and manipulation of an ROMDD are those already known from the binary
case. These techniques include edge negation, adjacent level interchange, operator
nodes and logical operation [17, 32, 34].

Example 14. Let f be a multiple valued logic defined over the truth values T , M , F
such that T = True, M = Maybe and F = False. The truth table below defines the
conjunction and disjunction for this function. For instance, from the table F ∧T = F ,
T ∨M = T . Using this table we can produce an MDD for the function f = y ∧ x as
shown in Figure 4.1. Figure 4.2 shows the reduced multiple valued decision diagram
for f after applying reduction rules to the MDD on Figure 4.1a [17].

Figure 4.1:



CHAPTER 4. RELMDD SYSTEM 44

Figure 4.2: f = y ∧ x, (a)MDD; (b)ROMDD [17]

4.1.2 Heterogeneous Multiple-Valued Decision Diagram

The following definitions and examples gives a more general version of MDDs called
a heterogeneous MDDs.

Definition 15. Let V(X) be two-valued logic function such that X = {x1, x2, x3, ..., xn}
and xi(i = 1,2, ..., n) are binary variables. If X = X1 ∪X2 ∪ ... ∪Xu and Xi ∩Xj =
∅(i ≠ j), then (X1,X2, ...,Xu) is a partition of X. An ordered set of variable Xi is
called a super variables. If ∣Xi∣ = ki(i = 1,2, ...., u) and k1+k2+ ...+ku = n, then V (X)
can be represented by V (X1,X2, ...,Xu) ∶ P1 × P2 × P3 × ... × Pu → B = {0,1} where
Pi = {0,1,2, ...2ki − 1}. This is called heterogeneous MDD [34].

We shall illustrate this with the following example:

Example 15. Suppose (X1,X2) is a partition of X, where X = (x1, x2, x3, x4, x5) and
each xi is a binary variable. When X1 = (x1, x2) and X2 = (x3, x4, x5), k1 = 2, k2 =
3, P1 = {0,1,2,3}, and P2 = {0,1, ...,7}, we can represent a 5-variable logic function
V(X) by the multi-valued function V (X1,X2) ∶ P1×P2 → B such that X1 takes 4 values
and X2 takes 8 values.

Definition 16. If X = (x1, x2, ..., xn) is partitioned into (X1,X2, ...,Xu), a ROMDD
representing a logic function f(X) is called a heterogeneous MDD. In the case where
k1 = k2 = ... = ku, a ROMDD representing logic function f(X) is called homogeneous
MDD. A homogeneous MDD is also denoted by MDD(k), where k = k1 = k2 = ... = ku.

Example 16. Let f = x1x2x3 ∨ x2x3x4 ∨ x3x4x1 ∨ x4x1x2. Figure 4.3 and Figure 4.4
show various decision diagrams for f. In Figure 4.3(a) the solid lines represents
the 1-edges and the 0-edges are represented by the dotted lines. In Figure 4.3(b)
the input variables of X = (x1, x2, x3, x4, x5) are partitioned into (X1,X2) such that
X1 = (x1, x2) and X2 = (x3, x4), i.e., it shows an MDD(2) for f . Finally, Figure 4.4
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shows two additional heterogeneous MDDs for f with the partitions X1 = (x1, x2, x3)
and X2 = (x4) respectively X1 = (x1) and X2 = (x2, x3, x4).

Figure 4.3: MDD

Figure 4.4: MDD

MDDs are considered to be more efficient and can represent logic functions with
smaller memory size and shorter path length than ROBDDs [17, 32, 34].

MDDs are usually traversed in one of the following three ways:

1. A depth-first traversal starting at the top node and moving along the edges
from each node to the descendants or child nodes. This technique is a very
well-known conventional graph traversal.

2. ROMDDs can be traversed horizontally by moving from one node to another of
all nodes labeled by the same variable. This corresponds to a specific breath-first
traversal.

3. ROMDDs can also be traversed by applying both techniques described above
simultaneously [32].

There are several techniques that can be used to reduce the size of MDDs. This is very
important if one wants to minimize the amount of storage capacity needed to store an



CHAPTER 4. RELMDD SYSTEM 46

MDD as well as the time and speed required to manipulate MDDs. These techniques
include edge negation, variable reordering, operator nodes and logical operation, and
adjacent level interchange. For detailed descriptions on these techniques refer to [32].

4.1.3 Implementation of Relations using MDDs

In this section, we want to show how MDDs can be used to implement relations.
We shall assume that relations are given or stored as matrices. The elements of the
matrices become the leaf or terminal nodes of an MDD after encoding the domain
and the range of a relation.

We will illustrate the implementation by examples using fuzzy relations. Figure 4.5
shows the Hasse-diagram of a lattice that we will use as membership values of fuzzy
relations. Notice that, this lattice is actually a Heyting algebra. See [2, 51] for details
on Heyting algebras.

1

c d

a b

0

Figure 4.5: Heyting algebra L

Hence, from the figure above, we can derive operation tables for the meet and the
join operations of the lattice L or the structure described above. These tables are
depicted in Table 4.1.
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⊓ 0 a b c d 1

0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 b b b b
c 0 a b b b c
d 0 0 b b d d
1 0 a b c d 1

⊔ 0 a b c d 1

0 0 a b c d 1
a a a c c 1 1
b b c b c d 1
c c c c c 1 1
d d 1 d 1 d 1
1 1 1 1 1 1 1

Table 4.1: Meet and join operations in the Heyting algebra L

Now suppose that R and S are two fuzzy relations of the structure above repre-
sented by the following matrices.

R =
⎛
⎝
a b a

0 1 c

⎞
⎠

S =
⎛
⎝
a a 1

0 b d

⎞
⎠

Using the meet operation of the underlying structure described above, we can compute
the intersection (or meet) of R and S as:

T ∶= R ⊓ S =
⎛
⎝
a 0 a

0 b b

⎞
⎠

In order to implement this relation using MDDs, we must first convert R and S
into MDDs by encoding their corresponding matrices first as functions and then as
graphs. We will adopt an approach similar to the method used in the RelView system.
We will start by encoding R. Let L = {0, a, b, c, d,1} be a set (universe) containing
all the elements under consideration, and X = (x1, x2) and Y = (y1, y2, y3) be the
elements labeling the domain and range of R respectively. Since L has 6 elements we
need only one variable for the rows and the columns of R and S respectively. However,
in order to obtain a totally defined function, we have to enlarge the matrices so that
its size is a power of the number of elements, i.e., the corresponding function is defined
for every possible input for each variable. We will fill the new entries with 0’s. The
figure below shows R enlarged to a proper size with its rows and columns labeled
by values, i.e., by elements of the lattice L, for the row variable u and the column
variable v [2].
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 a b c d 1

0 a b a 0 0 0

a 0 1 c 0 0 0

b 0 0 0 0 0 0

c 0 0 0 0 0 0

d 0 0 0 0 0 0

1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Let fR ∶ L2 → L be a multivalued function which takes elements from L2 to L with
variables encoding the domain defined as CX(x1) = 0, CX(x2) = a and that of the
range are CY (y1) = 0, CY (y2) = a, and CY (y2) = b such that fR(u, v) = w⇔ C−1(u)
and C−1(u) are related through w, where u and v are variables such that u < v. For
example fR(x1, y2) = b since x1 and y2 are related through b. The table below shows
the corresponding function fR encoding R where _ stands for an arbitrary parameter
not listed before.

u v fR(u, v)
0 0 a
0 a b
0 b a
a 0 0
a a 1
a b c
_ _ 0

Table 4.2: Encoding of fR

Now based on the variable ordering u < v, we can produce an MDD representing
fR as shown on the left in the figure below. In addition, we present the corresponding
reduced graph on the right-hand side of the figure. Notice that, we only display the
essential part of R in both graphs for brevity. The additional 0’s are skipped:
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Figure 4.6: MDD and ROMDD for fR

Now in the same fashion as above, we will construct an MDD for S. So let
L = {0, a, b, c, d,1} be a set (universe) containing all the elements under consideration,
and X = (x1, x2) and Y = (y1, y2, y3) be the elements labeling the domain and range
of R respectively. This is depicted in the figure below:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 a b c d 1

0 a a 1 0 0 0

a 0 b d 0 0 0

b 0 0 0 0 0 0

c 0 0 0 0 0 0

d 0 0 0 0 0 0

1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Let fS ∶ L2 → L be a multivalued function which takes elements form L2 to L with
variables encoding the domain defined as CX(x1) = 0, CX(x1) = a and that of the
range are CY (y1) = 0, CY (y2) = a, and CY (y2) = b such that fS(u, v) = w⇔ C−1(u)
and C−1(u) are related through w, where u and v are variables such that u < v. The
table below shows the complete encoding of fS.

u v fS(u, v)
0 0 a
0 a a
0 b 1
a 0 0
a a b
a b d
_ _ 0

Table 4.3: Encoding of fS
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Using this table, we get the MDD and its reduced form as:
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v v v
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Figure 4.7: MDD and ROMDD for fS

Now, define an apply operation on the MDDs of R and S as an operation which
applies a function to a leaf node of R and the corresponding leaf node of S. Cor-
responding leaf nodes are determined by the same path from the root to the leaf in
both graphs, i.e., the same spot in each matrix. In order to find T , the intersection of
R and S, we shall derive T from the MDDs of R and S by using the apply operation
defined above. For example, the leaf node of the edges labeled 00 from Figure 4.6 is
a, while the leaf node of the edges labeled 00 of Figure 4.7 is also a. So upon applying
the apply operation we get an MDD in which the path 00 leads to the node labeled
a because a⊔ a = a. We can also deduce the union of R and S in the same procedure
as above, the only difference here is the operation (union) that is passed into apply,
otherwise all derivations are the same.

Now suppose we want to find the converse (transpose) of S which is given by
Figure 4.8 and using the same encoding and values of S given above; we can find the
transpose of S (S⌣) from the MDD of S by just flipping or swapping adjacent edges of
the same variables at the same level of ordering of the MDD of S producing the MDD
in Figure 4.8. However, in general, we also have to apply the underlying converse
operation to the leaves. In this particular example we are using fuzzy relations where
the converse of a membership value is the value itself. Another version of the apply

operation applies a unary function to each leaf node of a single ROMDD. This version
can be used to implement relation algebraic operations such as complement as well
as converse.

S⌣ =
⎛
⎜⎜⎜
⎝

a 0

a b

1 d

⎞
⎟⎟⎟
⎠
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Figure 4.8: MDD for the transpose of S

In our last example, we want to see how the composition of two relations can be
computed. Suppose we want to find the product of R and S. i.e.

R;S⌣ =
⎛
⎝
a b a

0 1 c

⎞
⎠

;

⎛
⎜⎜⎜
⎝

a 0

a b

1 d

⎞
⎟⎟⎟
⎠

=
⎛
⎝
(a ∩ a) ∪ (b ∩ a) ∪ (a ∩ 1) (a ∩ 0) ∪ (b ∩ b) ∪ (a ∩ d)
(0 ∩ a) ∪ (1 ∩ a) ∪ (c ∩ 1) (0 ∩ 0) ∪ (1 ∩ b) ∪ (c ∩ d)

⎞
⎠

M =
⎛
⎝
a b

1 c

⎞
⎠

Now suppose that, an abstraction operation is an operation on ROMDDs which
applies a function to all elements of an entire row or column of a matrix. The
product of R and S can be computed by a combination of the apply and abstraction

operations on the MDDs of these matrices. This is similar to the well known matrix
multiplication. See below for full description of apply and abstraction operations.

Generally, let us suppose that T is an m by n matrix representing a relation
R, and let X = {x1, x2, ..., xn} and Y = {y1, y2...ym} be the domain and range of
R respectively such that L = {k1, k2, ..., kn} is a set containing all the elements
in R, and CX(x1, x2, ..., xn) = l1 ∈ L be the variables encoding the domain and
CY (y1, y2, ..., ym) = l2 ∈ L be the variables encoding the range of R, then we can
define a multiple value function f ∶ L × L → L such that f(xi, yi) = li if and only if
C−1

X (xi) and C−1
Y (yi) are related through w where u and v are variables such that

u < v. It is worthwhile to know that for every variable order and relation R there is
exactly one reduced ordered MDD.
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4.2 Algebraic Decision Diagrams(ADD) or Multiple

Terminal Decision Diagram(MTDD)

One of the best methods to implement MDDs package is to make use of ADDs.
This also makes it easier to use existing packages of ADDs. In this section, we shall
give a brief description of ADDs and how they can be used as an efficient means to
implement MDDs.

Multi-Terminal Binary Decision Diagrams (MTBDD) is a kind of BDD that pro-
vides an efficient means for arithmetic symbolic computation [3]. One significant
feature is that they have multiple terminal nodes. Because they are applicable to
different algebras, and because of their foundation in large Boolean algebras, such
BDDs with multiple terminal nodes are usually termed Algebraic Decision Diagrams
(ADDs). ADDs have been applied to solve various algorithmic problems such as com-
putational problems involving the use of a special class of matrices called Walsh trans-
forms, and the representation of matrices, shortest-path computation using ADDs.
An ADD is basically a BDD whose leaves take on values belonging to a set of con-
stants different from 0 or 1 [3]. In this section we will refer to [3] for definitions and
examples of ADDs.

Example 17. Suppose that T is a set of constants defined as one of the following
T = {0,1,2}, T = {apple, orange, banana} or T = {a, b, c}. We can represent ADDs as
Boolean functions: Let T ⊆ Q such that ∣Q∣ = 2m, for some m, then we can represent
the ADD with the Boolean function f ∶ {0,1}n → Q. Hence we can extend all the
theorems from Boolean Algebra to ADDs. An example of such theorem is the Boole’s
expansion theorem which is defined as f(x, y, z, ...) = x.f(1, y, z, ..) + x′.f(0, y, z, ...)
[12]. The above example was taken from [3]

4.3 Representations of Boolean Functions using ADD

Suppose that an algebraic structure is composed of a finite carrier, a set of operations
and a set of distinguished elements. An ADD is a directed acyclic graph (V,⊔ϕ⊔T,E),
representing a set of functions fi ∶ {0,1}n → S such that:

1. S represents the finite carrier of the algebraic structure over which the ADD is
defined.

2. V is the set of internal nodes such that the out-degree of u ∈ V is 2. The two
out-going arcs for a node v ∈ V are labeled then and else, respectively. Each
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node v ∈ V is labeled l(v) ∈ {0, ..., n− 1}. The label specifies a variable on which
the f ′is depend.

3. ϕ denotes the set of the function nodes such that the out-degree and in-degree
of ψ ∈ ϕ is 0 and 1 respectively.

4. T represents the set of terminal nodes such that each node t ∈ T, is labeled with
an element of the carrier S denoted by s(t).

5. E is the set of edges connecting the nodes of the graph. The edge connecting
the node vi to vj is denoted by (vi, vj). if vj is a descendant of vi. then the
variables of the ADD are ordered. (i.e., (vi, vj) ∈ E, then l(vi) < l(vj)) [3].

The following definition specifies how an ADD can be used to represent a Boolean
function.

Definition 17. An ADD representing a set of Boolean functions, one for each func-
tion node is defined as follows:

1. Let t be a terminal node, then a function of t is the constant function s(t), such
that s(t) is an element of a Boolean algebra larger than or equal to the size of
S.

2. If v ∈ V and let ”.” and ”+” be the Boolean conjunction and disjunction respec-
tively, then we can define the function of a node as l(v).fthen + l(v)′.felse, where
fthen and felse are the functions of the then and else children.

3. The only child of the function is φ ∈ ϕ.

[3].

Suppose that S = {0, ..., r−1}, such that r is a power of 2 and define S as a carrier
of Boolean algebra such that its zero and one are the r-bit binary codes 0...0 and 1...1
respectively and the r atoms are given by the “1-hot ”codes 0...01, 0..10,...,10...0. We
can represent an ADD with a Boolean function f(x) of n variables as

f(x) ∶ {0,1}n → S

This functions obeys the Boole’s expansion theorem [3].
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Theorem 3. if f ∶ {0,1}n → {0,1} is a Boolean function, then f(x1, x2, ...xn) =
x′1.f(0, x2, ..., xn) + x1.f(1, x2, ..., xn), for all (x1, ...xn) ∈ {0,1}n. Now recursively ap-
plication of Boole’s expansion to f leads to the following minterm in the canonical form
[14]: f(x1, ..., xx−1,xn) = f(0, ..,0,0)x′...x′n−1xn + ... + f(1, ...,1,1)x1, ..., xx−1, xn. such
that f(0, ..0,0), ..., f(1, ...,1,1) ∈ S and are termed as discriminants of the function f ,
and x′...x′n−1xn, x′...x′n−1xn, .., x′...x′n−1xn are called the minterms [3].

A complete enumeration of minterm expansion results in an ADD. Minterms with
the same discriminants are grouped together during reordering. Hence, an ADD
consists of a Boolean function, and the set of all such functions for a given carrier
S. This forms a Boolean function algebra. Moreover, the values of the leaf nodes
are members of the algebraic system S. Hence, we can have a set of operation on
an ADD. These are Boolean operations and operations on matrices built on S. The
operation on matrices is further compose of arithmetic and abstraction operations.

4.4 ADD Representation of Matrices

In this section, we want to recall how ADD can be used as a means to represent
matrix. ADDs are very efficient data structures for the representation of graphs
and matrices. We will illustrate this briefly with the following example: Let G be
a simple weighted graph shown in Figure 4.9(a) whose adjacency matrix is shown
in Figure 4.9(b). In this matrix the element 0 indicates that there is no connection
between the two nodes. Figure 4.9(c) shows the corresponding ADD of G.

Figure 4.9: ADD Representation of Matrices [3]



CHAPTER 4. RELMDD SYSTEM 55

In Figure 4.9(c) edges with an open circle on them denote the else child while
those without open circles denote then child. S is given by the set {0,2,4} and each
path that corresponds to an edge that is not an element of G is mapped to the zero
terminal node (0). Suppose that N is the number of vertices in the graph G, then
there will be 2n encoding variables, such that n = ∣x∣ = ∣y∣ = ⌈logN⌉, where x and y
are the row variable and column variable respectively. From the above example we
have a 4 × 4 square matrix. This matrix has size n = 4 i.e. n2. Therefore, in the case
where n is not a power of 2, then, we must “pad” the rows and columns with dummy
values (usually zero) so that the argumented matrix satisfies the power of 2 rule. In
other words, we must ensure that the number of rows and columns is exactly a power
of 2 otherwise, we cannot use ADD to represent the matrix [3].

Let x and y be the top variable and the next variable of the ADD structure respec-
tively, then, we can partition the matrix above with respect to x into 2 rectangular
sub-matrices. The upper part represents the else-child and the lower part represents
the then-child. Further cofactoring in terms of x and y divides the 2 sub-matrices into
4 square sub-matrices. These 4 square matrices represents 4 grand-children. Repeated
and continuous application of this process until all row and column variables have
been cofactored will result in a 1×1 sub-matrices. This 1×1 sub-matrix is actually one
of the constant terminal elements of the given ADD. Suppose that, the given ADD
denotes an N × N matrix then, we have n = log(N) row variables and n = log(N)
column variables [3]. This notion can be visualized in the following diagram:

Figure 4.10: ADD Representation of Matrices [3]

4.4.1 Operations on ADDs

ADD can be manipulated using three sets of operations namely, Boolean, arithmetic
and abstraction operations. These operations have made the implementation of sym-
bolic algorithms for some problems possible. We shall give a brief description of
arithmetic and abstraction operations since it is relevant to this thesis. For further
readings on Boolean operations please refer to [3].
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4.4.2 Arithmetic operations

As mentioned above, an apply operation in ADDs can similarly be used to accomplish
several arithmetic operations. In most ADDs implementations, there is a generic
operation which inherits the properties of the apply operations, this may be used to
accomplish a large number of matrix operations. The following is the definition of an
apply operation.

Definition 18. Let f and g be generic ADDs and op be an operator such as +,-,*,/,
min, max, etc. then an apply operation can be defined as Apply(f,g,op)= f such
that f op g is defined as a function whose set of discriminants is obtained by applying
op to corresponding pairs of discriminants of f and g. i.e. D={df1 op dg1,...,d

f
q op dgq}

where
Df = {df1 , ..., dfq} = {f(0, ...,0,0), f(0, ...,0,1), ..., f(1, ...,1,1)}

Dg = {df1 , ..., dgq} = {g(0, ...,0,0), g(0, ...,0,1), ..., g(1, ...,1,1)}

.

Example 18. Suppose that we want to compute apply(f,g,+) for the following
matrices. where f,g,+ are the parameters accepted by this apply operation. Then

f =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

and g =

⎛
⎜⎜⎜⎜⎜⎜
⎝

5 5 5 5

5 5 5 5

2 2 2 2

2 2 2 2

⎞
⎟⎟⎟⎟⎟⎟
⎠

⇒

apply(f,g,+) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

6 6 5 5

6 6 5 5

2 2 3 3

2 2 3 3

⎞
⎟⎟⎟⎟⎟⎟
⎠

4.4.3 Abstraction Operations

We mentioned abstraction operation for MDDs, now we want to see how it is imple-
mented in ADDs. Abstraction operation provides generic operations that can be used
to reduce the dimensionality of its argument function by using variable abstractions,
for instance, if T is an N ×M matrix such that the abstraction variable is the entire
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row of encoding variables, then the result produced after abstraction is a 1 ×M ma-
trix. There is still loss of dimensionality even if the abstraction variable are not set to
the entire row or column encoding variable set. Some abstraction operations include
taking the sum, product, minimum, join of the rows of a matrix [3]. The following is
a formal definition for an abstraction operation taken from [3].

Definition 19. Let f(u) be a function of u, and let x and y be the two subsets of u
such that x⊔y = u. The generic abstraction of variables x from function f(u), denoted
by f op

x (y) = πop
x f(u) is defined as follows. For each minterm y of fx(y), we define the

discriminant set Dy as the set of discriminants of all the minterms (x, y) of f(x, y).
Then, the discriminant of minterm y of fx(y) is defined as the result of applying the
operation op uniformly, in right to left order, over the members of set Dy. i.e.,

f op
x (y) = πop

x f(u) = (d1 op (d2 op...(dq − 1 op dq))...).

It must be noted that for some operations the above definition depends on the
order in which the operator op is applied. However, given an algebraic system which
obeys the usual associativity, identity and closure laws, then the result of abstraction
is independent of the order in which the operator op is applied. We want to illustrate
this with the following example.

Example 19. Give that

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4

5 6 7 8

0 0 1 2

2 2 2 2

⎞
⎟⎟⎟⎟⎟⎟
⎠

We can compute the sum over the rows of A by using an abstraction operation. This
is given by

abstract(A,+) = ( 8 10 13 16 )

Similarly, taking the minimum over the rows of A results in

⎛
⎜⎜⎜⎜⎜⎜
⎝

1

5

0

2

⎞
⎟⎟⎟⎟⎟⎟
⎠

Please refer to [3] for algorithms used to implement the above operations.
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4.5 RelMDD - Design Specification

This section will give a detailed documentation of the structure, implementation and
technical detail of the RelMDD system. We will give the technical details of the system
as well as platform and system requirements. We shall also look at the other packages
needed in order to use RelMDD. We shall give an account of the system architecture,
the software components, the user interface, and syntax of files containing a basis.

4.5.1 Overview of RelMDD

As mentioned above, RelMDD is a C-Library that implements arbitrary heteroge-
neous relation algebras using the matrix algebra approach represented by ROMDDs.
RelMDD is a library written in the programming language C. It is a package that
can be imported by other programs and/or languages such as Java and Haskell when
programming or manipulating arbitrary relations.

The implementation is currently restricted to the basic operations of relation alge-
bras, i.e., union, intersection, composition, converse, and complement as well as three
special relations known as the identity relation, empty relation and universal rela-
tion. By design, the package is capable of manipulating relations from both classes
of models, standard models and non-standard models of relation algebras. The main
purpose of this project is to:

1. Implement heterogeneous relation algebras using matrix algebra.

2. Understand how relations represented as matrices could be implemented using
MDDs.

3. Make available a library to aid researchers to manipulate relations in their own
programs.

In RelMDD system, there are two sets of functions, namely, internal and external func-
tions. The internal functions consist of functions that manipulate decision diagrams
whiles the external functions does the manipulation of relations. Users of RelMDD
will normally and frequently use the external functions to manipulate relations.

There are three major generic internal functions that are used to manipulate re-
lations represented as decision diagrams. These functions are imported from CUDD
[46]. They are Cudd_addApply(), Cudd_addMonadicApply(), Cudd_addMatrixMult-
iply(). Cudd_addApply() is used for manipulating operations including meet and
join, Cudd_addMonadicApply() is used to manipulate converse and complement where
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as Cudd_addMatrixMultiply() is used to compute the products of relations. Rela-
tion in RelMDD is a C structure consisting of a matrix (relation), list of source and
target objects, the size of the matrix and the decision diagram representing this rela-
tion. RelMDD is basically a set of C files, each containing several functions packaged
into a static library. Basically, the system reads relations from a file represented as
matrices and list of objects, and represents them as decisions diagrams internally. It
then does manipulations using decision diagrams and then output the result of the
relations as a list. So the user does not interact with the decision diagrams since they
represent relations internally. At input the matrices are stored in Harwell-Boeing
Exchange Format.

4.5.2 Language and Operating System Platforms

We chose to implement RelMDD in C programing language (ANSI standard C) be-
cause we needed a programming language which is very fast in terms of execution of
programs and C is one of the fastest so far, hence C. Moreover, most of the pack-
ages such as CUDD and libxml used in RelMDD are all implemented in C, hence it
will be easier if we also implement RelMDD in C. RelMDD is currently targeted to
Linux operating system platforms which made it easier to utilize other packages in
our system.

4.5.3 RelMDD naming convention

In RelMDD, to name the package, files, variables, methods, and structures we have
followed ANSI standard C. By convention, identifiers are mostly in lowercase letters.

4.6 Components and Technical Details of RelMDD

In this section we shall discuss the various components and the technical details
of RelMDD. These components include structure of basis File, XML parsing, the
Harwell-Boeing exchange format of a matrix, RelMDD operations, internal and ex-
ternal functions.

4.6.1 Structure of Basis File

As in ReAlM [54], basis for relation algebras in RelMDD is stored in XML format for
flexibility and easy accessibility. Without a basis file, RelMDD cannot be used, since
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the result of operations depends on values provided by the basis file. If the program
starts, the content of basis file are read into memory and then used for computations.
The contents are stored in C structures using dynamic memory allocations. A basis
file is associated with XML schema definitions (.xsd). The XML schema file is used
to validate the contents of a basis file. This ensures that, data stored in the XML files
are stored in a specific format to be recognized by the system. One should call the
XML schema validation functions to validate the XML file before parsing it. RelMDD
includes a schema file, which serves as the default schema file within the system.

The content of a basis file consist of several XML tags. The root element "Re-
lationBasis" which is the starting point of the basis file, specifies the type of re-
lations in its attribute name called "TypeOfRelation". Example: <RelationBasis

TypeOfRelation ="FiniteRelAlg">. The next tag is the relation tag <relation>...
</relation>. This tag contains all other tags within a basis and differentiates one
basis from the other. So it is possible to have more than one basis in one file.
The next tag is <comment> ...</comment>. This tag can be used to provide a
brief description of the basis. Example: <comment> this is a basis file for a

sample relation algebra between two objects </comment>. The tag label by
"object" lists the set of objects under consideration. Example: <objects>A , B

</objects>. The relations tag is used to specify the number of relations be-
tween two objects. An example might be like: <relations source="A" target="A"

number="4"/>. This tag indicates that there are four relations between the objects
A and A. The identity tag is used to store the identity of an object. Example:

<identity object="A" relation="1"/> indicates that, the identity relation of
an object A is represented by value 1. The bottom tag is used to store the bot-
tom relations between objects. An example is <bottom source="A" target="A"

relation="4"/> indicates that bottom relation of an object A is represented by
value 4. The top tag is used to store the top relations between objects. Example:

<top source="A" target="A" relation="0"/> indicates that the top relation of
an object A is represented by value 0.

The later half of the basis file defines operations between pair of objects for all pos-
sible combinations. Basis file only defines the standard operations. These operations
are defined in union, intersection, composition_Union, composition_Intersection,
transposition and complement tags. For example, union can be used in the following
way to define a union operation between two objects A and B.

<union source="A" target= "B">

0,0,0;
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0,1,1;

0,2,2;

0,3,3;

1,0,1;

1,1,1;

1,2,3;

1,3,3;

2,0,0;

2,1,3;

2,2,2;

2,3,3;

3,0,3;

3,1,3;

3,2,3;

3,3,3

</union>

The union tag uses “;” as a delimiter among different entries in the operation table.
The above union tag specifies sixteen different union operations. The first operation
“0, 0, 0” implies that the union operation of “0” and “0” with “A” and “B” as the
source and target objects respectively is “0”. For a detailed structure of the basis and
XML schema file we refer to the appendix.

4.6.2 XML Parsing

To manipulate relation using RelMDD, a basis file must be loaded into the system
by calling the function RelMDDParseXmlFile(const char *xmlFilename) which will
initialize all XML functions. However, RelMDDValidateXmlFile(const char *xmlP-

ath) should be used to validate the document before parsing. RelMDD uses a hash
map technique to map the relations to the objects. The system has several functions
for processing XML content.

These functions are divided into two parts. The first one is used by the system
internally and are located in a C file named RelMDDXmlParser.c. They are used to
retrieve and store the content of the XML files. We adopted the usual technique in
which the content of the XML file is traversed from the root node to the child node
until we fetch the data we want. The parsing and processing of XML data was made
easier by using a well known library called libxml2. See below for details on libxml2
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[61]. The other set of functions are defined in the file RelXmlRead.c and are available
for the users to use to process basis file content when using RelMDD. Table 4.4,
Table 4.5 and Table 4.7 show various functions and structures in RelMDD.



CHAPTER 4. RELMDD SYSTEM 63

RelMDDXmlParser.c:-Internal Functions

contains all the internal functions that are use to process XML file internally

xmlChar *relXmlGetComments(xmlDocPtr doc, xmlNodePtr cur);
void relXmlDisplayComments(xmlDocPtr doc, xmlNodePtr root);
xmlChar *relXmlGetListObject(xmlDocPtr doc, xmlNodePtr cur);
relationPtr relxmlReadrelations( xmlNode *root, xmlDocPtr doc);
char **relXmlGetSourceRelation(xmlChar *pt, int i);
char **relXmlGetTargetRelation(xmlChar *pt, int i);
char **relXmlGetNumberRelation(xmlChar *pt, int i);
identityPtr relxmlReadIdentity( xmlNode *root, xmlDocPtr doc);
char **relXmlGetObjectIdentity(xmlChar *pt, int i);
double *relXmlGetRelationIdentity (xmlChar *pt, int i);
topPtr relxmlReadTop( xmlNode *root, xmlDocPtr doc);
bottomPtr relxmlReadBottom( xmlNode *root, xmlDocPtr doc);
xmlChar *relXmlGetTopSource(xmlChar *pt, int i);
xmlChar *relXmlGetTopTarget(xmlChar *pt, int i);
xmlChar *relXmlGetTopRelation(xmlChar *pt, int i);
unionsPtr relxmlReadUnion( xmlNode *root, xmlDocPtr doc);
char **relXmlGetSource(xmlChar *pt, int i);
char **relXmlGetTarget(xmlChar *pt, int i);
intersectionPtr relxmlReadIntersection(
xmlNode *root, xmlDocPtr doc);
compoUnionPtr relxmlReadCompostion_Union( xmlNode *root, xmlDocPtr doc);
compoInterPtr relxmlReadCompostion_Inter(xmlNode *root, xmlDocPtr doc);
conversePtr relxmlReadTransposition(xmlNode *root, xmlDocPtr doc);
complementPtr relxmlReadComplement(xmlNode *root, xmlDocPtr doc);
complementPtr complIni();
intersectionPtr interIni();
unionsPtr unionIni();
xmlDocPtr getdoc();
compoUnionPtr compoUionIni();
conversePtr coverselIni();
compoInterPtr compoInterIni();
double *readString(unsigned char *s);

Table 4.4: RelMDDXmlParser.c
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RelMDDXmlParser.c:-Structure Types
Structures used to store the content of the xml files
typedef struct relation{ int *number; char **source; char ** target; };
typedef struct identity{ char **object; double *rel ; int len; };
typedef struct bottom{ char **source; char ** target; double *rel; int len; };
typedef struct top{ char **source; char ** target; double *rel; int len; };
typedef struct unions{ double *content; char **source; char ** target; int len; int *len_Content; };
typedef struct intersection{ double *content; char **source; char ** target; int len; int *len_Content; };
typedef struct compoUnion{ double *content; char **source; char **target; int len; int *len_Content; };
typedef struct compoInter{ double *content; char **source; char **target; int len; int *len_Content; };
typedef struct converse{ double *content; char **source; char **target; int len; int *len_Content; };
typedef struct complement{ double *content; char **source; char **target; int len; int *len_Content; };

Table 4.5: RelMDDXmlParser.c

RelMDDXmlReader.c:-External Functions

Contains all the external functions that the user can use to process XML files

static xmlDocPtr xmlDocument;
extern int RelMDDValidateXmlFile(const char *xmlPath);
extern int RelMDDParseXmlFile(const char *xmlFilename);
extern unionsPtr RelXmlGetUnion();
extern intersectionPtr RelXmlGetIntersection();
extern complementPtr RelXmlGetComplement();
extern compoUnionPtr RelXmlGetComposition_Union();
extern compoInterPtr RelXmlGetComposition_Intersection();
extern conversePtr RelXmlGetConverse();
extern topPtr RelXmlGetTop();
extern bottomPtr RelXmlGetBottom();
extern identityPtr RelXmlGetIdentity();
extern relationPtr RelXmlGetRelation();
extern void relXmlDisplayComments();
extern char ** relXmlGetObjects();

Table 4.6: RelMDDXmlReader.c
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4.6.3 lixml2

In parsing XML files, we used a C parser and toolkit called Libxml2 developed for the
Gnome project. It can also be used outside the Gnome platform. This software is free
and available under the MIT License. Libxml2 includes complete XPath, XPointer
and XInclude implementations. We used several functions from this library in our
work which made it very easy for us to process XML files. For detailed descriptions
of this package please refer to [61].

4.6.4 CUDD

CUDD (Colorado University Decision Diagram) is a package that provides func-
tions to manipulate Binary Decision Diagrams (BDDs), Algebraic Decision Diagrams
(ADDs), and Zero-suppressed Binary Decision Diagrams (ZDDs), CUDD is written
in C by Fabio Somenzi at the Department of Electrical and Computer Engineering,
University of Colorado at Boulder. RelMDD is built on CUDD version 2.4.2. It pro-
vides a large set of operations on BDDs, ADDs, and ZDDs, and a large assortment of
variable reordering methods. In fact it is one of the best and well known packages that
implements decision diagrams more efficiently by incorporating several optimization
techniques. For detailed overview of this system please refer to [46, 13].

4.6.5 RelMDD Operations and Special Relations

Internally, RelMDD uses three generic functions imported from the CUDD package
for manipulation of decision diagrams. Cudd_addApply() accepts a binary operator
such as meet or join with two ADDs representing two matrices. Hence, we used this
function to tackle the problem of meet and join. Cudd_addMonadicApply() accepts
a unitary operator and one ADD representing a matrix. We used this function to
implement operations such as the converse, and the complement of relations. How-
ever, in the case of converse we had to swap variables of the ADD before using
addMonadicApply(). Lastly, we used Cudd_addMatrixMultiply() to accomplish
composition by modifying it slightly to suite our purpose. In the following para-
graphs, we will describe various functions that can be used in RelMDD to compute
relations. Table 4.7 list the functions in RelMDD for manipulating relations. For
detailed description of how to use the package please refer to the user manual accom-
panying the RelMDD package.
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Union: RelMDDUnionPtr RelMDDUnionOperation(...); The function above is
used to for calculating the union of two relations. It accepts six parameters as input.
The first two parameters are the size of rows and columns of the matrices respectively.
The next two parameters are the list of source and target objects of both matrices
respectively. It should be noted that, to compute the union of two relation, the
source and target objects of the both matrices are the same. This function when
called returns a structure type containing the list of source and target objects, and
the relations.

Intersection: RelMDDIntstersectionPtr RelMDDIntersectionOperation(...);

The function above is used to find the meet of two relations. It behaves similarly to
the join operation described above.

Compostion: To find the composition of two matrices, we use the function RelMDDC-
ompostionPtr RelMDDCompositionOperation(...);. This function takes the size
of the rows and columns of the first matrix as the first two parameters and then the
size of the columns of the second matrix, followed by the list of source and target
objects of the first matrix and then the target objects of the second matrix. The
last two parameters are the two matrices that we want to find their product. The
function returns details of the result of computations in a C structure. Note that,
the source objects of the first matrix is always the same as the target objects of the
second matrix.

Converse: RelMDDConversePtr RelMDDConverse_Operation(...); is use to ac-
complish the converse operation. It accepts parameters similarly to the union and
intersection operations described above except that it takes only one matrix.

Complement: RelMDDComplementPtr RelMDDComplement_Operation(...);

is used for the computation of the complement of a relation. It behaves similarly to
the converse relation describe above.

Identity: To find the identity element of a given list of objects we use the function
RelMDDIdentityPtr RelMDDIdentityRelation(...); The first two parameters are
the of size of the rows and columns of the matrix we want to find its identity. This is
followed by the list of objects. Here the source and target objects are the same. This
function returns a structure made up of the identity relation and the list of objects.
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Zero Element: RelMDDBottomPrt RelMDDBottomRelation(...); is used for the
derivation of the zero element of a given set of objects. As usual the first two pa-
rameters are the size of the rows and columns of the list of source and target objects
respectively. It returns a structure that consist of the bottom element and the list of
objects.

Universal Relation: RelMDDTopPtr RelMDDTopRelation(...); It behaves simi-
larly to the zero element function described above.
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RelMDD.c: Internal and external functions

Contains functions for manipulating relations

extern DdNode *Transpose(DdManager * dd, DdNode * f);
extern CUDD_VALUE_TYPE transposeRelation( CUDD_VALUE_TYPE F);
extern DdNode *RelMDD_SwapVariables(DdManager * dd , int roww, int collh);
extern DdNode *Complement(DdManager * dd, DdNode * f);
extern CUDD_VALUE_TYPE complementRelation( CUDD_VALUE_TYPE F);
extern void RelMDDComplement_Operation(int tra_rn, int tra_col, char
**source_objects, char **target_objects, double *matrimx);
extern void RelMDDConverse_Operation(int tra_rn, int tra_col, char **source_objects,
char **target_objects, double *matrimx) ;
extern fileInforPtr RelMdd_ReadFile(char *filename);
extern double setSequence(double value);
extern DdNode *RelMDD_RenameRelation(DdManager * dd, int roww ,int collh );
extern CUDD_VALUE_TYPE complementRelation( CUDD_VALUE_TYPE F);
extern int *RelMDD_ListSequence(DdNode *E, int roww, int coll);
static FILE *open_file (char *filename, const char *mode);
extern DdNode *Cudd_addUnion_Meet(DdManager * dd, DdNode ** f,DdNode ** g);
extern DdNode *Cudd_addIntersection(DdManager * dd,DdNode ** f,DdNode ** g);
extern RelMDDIntersectionPtr RelMDDIntersectionOperation(int no_rows, int
no_cols,char **source_objects , char **target_objects, double *matrix1, double
*matrix2);
extern RelMDDUnionPtr RelMDDUnionOperation(int no_rows, int no_cols, char
**source_objects, char **target_objects, double *matrix1, double *matrix2);
extern DdNode * node_Complement(DdNode * mat);
extern CUDD_VALUE_TYPE identityRelation( CUDD_VALUE_TYPE F);
extern RellMDDIdentityPtr RelMDDIdentityRelation(int row, int col, char **objects );
extern RellMDDBottomPtr RelMDDBottomRelation(int row, int col, char
**source_objects , char **target_objects);
extern CUDD_VALUE_TYPE BottomRelation( CUDD_VALUE_TYPE F);
extern RellMDDTopPtr RelMDDTopRelation(int row, int col, char **source_objects ,
char **target_objects);
extern CUDD_VALUE_TYPE topRelation(CUDD_VALUE_TYPE F);
extern int RelMdd_CreateRelation(...);
extern RelMDDCompostionPtr RelMDDCompositionOperation(int no_rows, int no_cols,
char **sourceA_objects,char **targetA_objects,char **targetB_objects, double *ma-
trix1, double *matrix2);

Table 4.7: RelMDD.c
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4.6.6 Loading a Matrix

Since relations are represented as matrices, RelMDD has a special format to read in
matrices from files. This format adhere to the format of Harwell-Boeing benchmark
suite. This format specifies how matrices should be stored and read from a file. In our
case the first item on the file specifies the number of rows and column of the matrix.
The second and third items on the file specify the list of source and target objects
respectively. This is followed by the matrix in which the row and column indices of
each element of the matrix is also specified. Refer to the appendix for sample file.
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Conclusion and Future Work

In this thesis, we reviewed various properties of heterogeneous relation algebras. We
went ahead to introduce a system called RelView which only works in the standard
model of relations algebra. This is because the underlying structure of this system
is based on Boolean matrix which restricts its ability to be used outside the class of
standard models.

Now, it has been proved in [49] that for every relation algebra R with relational
sums and subobjects, it is possible to characterize a full subalgebra B called the basis
of R, such that the matrix algebra B+ with the coefficients from B is equivalent to
R. Based on the above theorem, we developed a system called RelMDD which works
within both the standard and the non-standard models of relation algebras using the
matrix approach. In order to do this, we used an advanced and more efficient data
structure called multiple valued decision diagrams (MDDs) which is similar to the
data structure used by RelView system in the Boolean matrix case.

This implementation combines two major advantages over a regular array imple-
mentation of matrices. Both RelView and RelMDD systems have proven that an
implementation of relations using decision diagrams is of great benefit. The RelMDD
system is a library written in C which can be imported by other languages such as
Java or Haskell.

The package implements all standard operations on relations. A future project
will add further operations such as sums and splittings. The latter will then also allow
to compute relational powers and so-called weak relational products [52]. Another
project will be a suitable module for the programming language Haskell that makes
the RelMDD package available in this language. An advanced project will be to extend
the current system into a programming language which will allow programming using
relations. One can also work on integrating the package into the RelView system.
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Appendix

A.1 XML schema file

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault =

"qualified">

<!-- definition of simple elements -->

<xs:element name="comment" type="xs:string"/>

<xs:element name="objects"/>

<!-- definition of attributes -->

<xs:attribute name="TypeOfRelation" type="xs:string"/>

<xs:attribute name="source" type="xs:NCName"/>

<xs:attribute name="target" type="xs:NCName"/>

<xs:attribute name="number" type ="xs:integer"/>

<xs:attribute name="object" type="xs:NCName"/>

<xs:attribute name="relation" type="xs:integer"/>

<!-- definition of complex elements -->

<xs:element name="relations">

<xs:complexType mixed="true">

<xs:attribute ref="source" use="required"/>

<xs:attribute ref="target" use="required"/>

<xs:attribute ref="number" use="required"/>

71
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</xs:complexType>

</xs:element>

<xs:element name="identity">

<xs:complexType mixed="true">

<xs:attribute ref="object" use="required"/>

<xs:attribute ref="relation" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="bottom">

<xs:complexType mixed="true">

<xs:attribute ref="source" use="required"/>

<xs:attribute ref="target" use="required"/>

<xs:attribute ref="relation" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="top">

<xs:complexType mixed="true">

<xs:attribute ref="source" use="required"/>

<xs:attribute ref="target" use="required"/>

<xs:attribute ref="relation" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="union">

<xs:complexType mixed="true">

<xs:attribute ref="source" use="required"/>

<xs:attribute ref="target" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="intersection">

<xs:complexType mixed="true">

<xs:attribute ref="source" use="required"/>
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<xs:attribute ref="target" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="complement">

<xs:complexType mixed="true">

<xs:attribute ref="source" use="required"/>

<xs:attribute ref="target" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="composition_Union">

<xs:complexType mixed="true">

<xs:attribute ref="source" use="required"/>

<xs:attribute ref="target" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="composition_Intersection">

<xs:complexType mixed="true">

<xs:attribute ref="source" use="required"/>

<xs:attribute ref="target" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="transpose">

<xs:complexType mixed="true">

<xs:attribute ref="source" use="required"/>

<xs:attribute ref="target" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="relation">

<xs:complexType>

<xs:sequence>

<xs:element ref="comment"/>

<xs:element ref="objects"/>
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<xs:element ref="relations" maxOccurs="unbounded"/>

<xs:element ref="identity" maxOccurs="unbounded"/>

<xs:element ref="bottom" maxOccurs="unbounded"/>

<xs:element ref="top" maxOccurs="unbounded"/>

<xs:element ref="union" maxOccurs="unbounded"/>

<xs:element ref="intersection" maxOccurs="unbounded"/>

<xs:element ref="composition_Union" maxOccurs="unbounded"/>

<xs:element ref="composition_Intersection" maxOccurs="unbounded"/>

<xs:element ref="transpose" maxOccurs="unbounded"/>

<xs:element ref="complement" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="RelationBasis" >

<xs:complexType>

<xs:sequence>

<xs:element ref="relation" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute ref="TypeOfRelation" use="required"/>

</xs:complexType>

</xs:element>

</xs:schema>

A.2 Sample Basis File

<?xml version="1.0" encoding="utf-8"?>

<FiniteRelAlg name ="two_object_basis">

<comment>

Our very first example.

</comment>
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<objects> A,B </objects>

<relations source="A" target="A" number="4"/>

<relations source="A" target="B" number="2"/>

<relations source="B" target="B" number="4"/>

<relations source="B" target="A" number="2"/>

<identity object="A" relation="1"/>

<identity object="B" relation="1"/>

<bottom source="A" target="A" relation="0"/>

<bottom source="A" target="B" relation="0"/>

<bottom source="B" target="A" relation="0"/>

<bottom source="B" target="B" relation="0"/>

<top source="A" target="A" relation="3"/>

<top source="A" target="B" relation="1"/>

<top source="B" target="A" relation="1"/>

<top source="B" target="B" relation="3"/>

<union source="A" target= "B">

0,1,1;

1,0,1;

0,0,0;

1,1,1

</union>

<union source="B" target= "A">

0,1,1;

1,0,1;

0,0,0;
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1,1,1

</union>

<union source="A" target= "A">

0,0,0;

0,1,1;

0,2,2;

0,3,3;

1,0,1;

1,1,1;

1,2,3;

1,3,3;

2,0,0;

2,1,3;

2,2,2;

2,3,3;

3,0,3;

3,1,3;

3,2,3;

3,3,3

</union>

<union source="B" target= "B">

0,0,0;

0,1,1;

0,2,2;

0,3,3;

1,0,1;

1,1,1;

1,2,3;
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1,3,3;

2,0,0;

2,1,3;

2,2,2;

2,3,3;

3,0,3;

3,1,3;

3,2,3;

3,3,3

</union>

<intersection source="A" target= "B">

0,1,0;

1,0,0;

0,0,0;

1,1,1

</intersection>

<intersection source="B" target= "A">

0,1,0;

1,0,0;

0,0,0;

1,1,1

</intersection>

<intersection source="A" target= "A">

0,0,0;

0,1,0;

0,2,0;
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0,3,0;

1,0,0;

1,1,1;

1,2,0;

1,3,1;

2,0,0;

2,1,0;

2,2,2;

2,3,2;

3,0,0;

3,1,1;

3,2,2;

3,3,3

</intersection>

<intersection source="B" target= "B">

0,0,0;

0,1,0;

0,2,0;

0,3,0;

1,0,0;

1,1,1;

1,2,0;

1,3,1;

2,0,0;

2,1,0;

2,2,2;

2,3,2;

3,0,0;
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3,1,1;

3,2,2;

3,3,3

</intersection>

<composition_Union source="A" target="B">

0,0,0;

0,1,0;

1,0,0;

1,1,1

</composition_Union >

<composition_Union source="B" target="A">

0,0,0;

0,1,0;

1,0,0;

1,1,1

</composition_Union >

<composition_Union source="A" target="A">

0,0,0;

0,1,0;

0,2,0;

0,3,0;

1,0,0;

1,1,1;

1,2,2;

1,3,3;

2,0,0;

2,1,2;
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2,2,1;

2,3,3;

3,0,0;

3,1,3;

3,2,3;

3,3,3

</composition_Union >

<composition_Union source="B" target="B">

0,0,0;

0,1,0;

1,0,0;

1,1,1

</composition_Union >

<composition_Intersection source="A" target="B">

0,0,0;

0,1,0;

1,0,0;

1,1,1

</composition_Intersection>

<composition_Intersection source="B" target="A">

0,0,0;

0,1,0;

1,0,0;

1,1,1

</composition_Intersection>

<composition_Intersection source="A" " target="A">

0,0,0;

0,1,0;

1,0,0;
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1,1,1

</composition_Intersection>

<composition_Intersection source="B" target="B">

0,0,0;

0,1,0;

0,2,0;

0,3,0;

1,0,0;

1,1,1;

1,2,2;

1,3,3;

2,0,0;

2,1,2;

2,2,1;

2,3,3;

3,0,0;

3,1,3;

3,2,3;

3,3,3

</composition_Intersection>

<transposition source="A" target="B" >

0,0;

1,1

</transposition>
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<transposition source="B" target="A" >

0,0;

1,1

</transposition>

<transposition source="A" target="A" >

0,0;

1,1;

2,2;

3,3

</transposition>

<transposition source="B" target="B" >

0,0;

1,1;

2,2;

3,3

</transposition>

<complement source="A" target="B" >

0,1;

1,0

</complement >

<complement source="B" target="A" >

0,1;

1,0

</complement>

<complement source="A" target="A" >

0,1;

1,2;
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2,1;

3,0

</complement>

<complement source="B" target="B" >

0,1;

1,2;

2,1;

3,0

</complement>

</FiniteRelAlg>
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A.3 Sample Matrix in a specified file format

4 4

[A,B,B,B]

[A,B,A,B]

0 0 1

0 1 0

0 2 1

0 3 1

1 0 2

1 1 0

1 2 0

1 3 2

2 0 0

2 1 0

2 2 3

2 3 3

3 0 0

3 1 1

3 2 0

3 3 1
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