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Abstract 

      Cancer cells are known to display increased glucose uptake and consumption. The 

glucose transporter (GLUT) proteins facilitate glucose uptake, however, their exact role 

in cancer metabolism remains unclear. The present study examined mRNA and protein 

expression of GLUT1, GLUT3, GLUT4 and GLUT12 in lung, breast and prostate cancer 

cells and corresponding noncancerous cells. Additionally, GLUT expression was 

determined in tumours from mice xenografted with human cancer cells. Differences in 

the mRNA and protein expression of GLUTs were found between cancerous and 

corresponding noncancerous cells. These findings demonstrate abundant expression of 

GLUT1 in cancer and highlight the importance of GLUT3 as it was expressed in several 

cancer cells and tumours. GLUT expression patterns in vitro were supported by the in 

vivo findings. The study of GLUT protein expression in cancer is important for 

understanding cancer metabolism and may lead to identification of biomarkers of cancer 

progression and development of target therapies.  

Key words: epithelial cancer, GLUT1, GLUT3, GLUT4, GLUT12  
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CHAPTER 1: LITERATURE REVIEW 

1.1 Cancer 

 

     Unlike healthy cells, cancer cells share specific properties enabling malignant 

growth
1
. One of the most fundamental characteristics of cancer cells is their uncontrolled 

proliferative capacity, resulting from oncogenic mutations that deregulate signals 

controlling the cell growth-and-division cycle
1
. In order to sustain enhanced proliferation, 

cancer cells have increased requirements for sugars, fatty acids and amino acids. These 

nutrients provide energy and serve as the building blocks for macromolecules
2
. Although 

cancer cells display alterations in the metabolism of all classes of macromolecules, the 

role of carbohydrate metabolism in cancer has received attention in recent years because 

cancer cells are particularly dependent on glucose metabolism for energy production.   

1.2 Glucose Metabolism in Cancer 

     Metabolic changes are a common feature of cancer cells. Although the glycolytic 

pathway is ubiquitous in the body, its role can differ between healthy and cancerous cells. 

The following sections describe how glucose is metabolized to provide energy and the 

modifications that may occur to this process in cancer.  

1.2.1 Glycolysis 

     The ATP required for cellular processes is generated primarily through two pathways: 

glycolysis and the citric acid cycle. During glycolysis, one molecule of glucose is 

metabolized through a series of reactions and split into two pyruvate molecules. The 

reactions and enzymes of glycolysis can be seen in Figure 1. In the first step, glucose 

becomes phosphorylated to glucose-6-phosphate in an endergonic reaction requiring 
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Figure 1. The metabolic pathway of glycolysis. Each glucose molecule that is metabolized 

through this process produces a net energy yield of 2 ATP. Although various cells of the 

body use this pathway, many types of cancers show a greater dependence on this pathway to 

provide energy
3
.  

 

energy from ATP. Next, glucose-6-phosphate is isomerized to fructose-6-phosphate. In 

the third step of glycolysis, phosphofructokinase catalyzes the transfer of ATP to 

fructose-6-phosphate to form fructose-1,6-bisphosphate. This reaction is 

thermodynamically favorable and it is known as a committed step because fructose-1,6-

biphosphate can only react in glycolysis, unlike glucose-6-phosphate which can be 

shunted to other pathways. Fructose-1,6-biphosphate is then split into two 3-carbon units 
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that are oxidized to pyruvate, producing a net energy yield from each glucose molecule of 

two ATP and two NADH
3
.  

 

1.2.2 The Citric Acid Cycle 

     If adequate oxygen is present, pyruvate continues into the citric acid cycle. However, 

under conditions of limited oxygen, pyruvate becomes converted into lactate by the 

enzyme lactate dehydrogenase in a process known as anaerobic glycolysis. One NAD
+
 is 

regenerated in the process of reducing pyruvate and is re-used in the glycolytic pathway 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The fate of pyruvate. In healthy cells, pyruvate is converted to lactate under 

anaerobic conditions. If oxygen is present, pyruvate is converted to Acetyl-CoA and 

continues into the citric acid cycle. Cancer cells may display conversion of pyruvate to 

lactate even in the presence of oxygen
3
. 
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so that ATP production can continue to occur in the absence of oxygen.  

     Under aerobic conditions, pyruvate is transported into the mitochondria and converted 

to acetyl Coenzyme A (CoA) by the pyruvate dehydrogenase complex. The two-carbon 

acyl unit of acetyl CoA enters the citric acid cycle by combining with oxaloacetate to 

form citrate. The series of reactions of the citric acid cycle can be seen in Figure 2. 

Citrate is further oxidized to release carbon dioxide and produce NADH from NAD
+
 with 

each oxidative decarboxylation. The cycle is completed when an oxaloacetate molecule is 

regenerated. For each molecule of glucose oxidized, two full turns of the citric acid cycle 

are completed (one per pyruvate), yielding a total of 6 NADH, 2 FADH2 and 2 GTP
3
.   

 

1.2.3 Oxidative Phosphorylation 

 

     Oxidative phosphorylation takes places across the inner mitochondrial membrane. It 

uses oxidation of the high energy electrons from NADH and FADH2, produced in 

glycolysis and the citric acid cycle, to pump protons out of the mitochondrial matrix and 

into the inter membrane space. The electron transport chain is performed by electron 

carrier protein complexes embedded in the inner mitochondrial membrane which receive 

electrons in sequence from NADH dehydrogenase → ubiquinone → cytochrome C 

reductase → cytochrome C → cytochrome C oxidase (Figure 3). Oxygen acts as the final 

electron acceptor combining with protons to form water. As the electrons are passed from 

protein to protein, energy is used to pump H+ out of the matrix across the inner 

mitochondrial membrane into the intermembrane space. This creates a proton gradient  

which drives protons to pass back into the matrix through the ATP synthase channel and  
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produces ATP from ADP and PO4
2-

 in the process. The net yield of ATP produced from 

one glucose molecule catabolized through the aforementioned aerobic pathways in 

eukaryotes is approximately 30, depending on the number of protons available for ATP 

synthesis.  This represents a significant increase in energy yield compared to the 2 ATP 

produced in the anaerobic conversion of glucose to lactate.  

 

 1.2.4 The Warburg Effect  

     In 1920, the renowned biochemist Otto Warburg observed that human and animal 

tumours rely on the conversion of glucose into lactate for energy production instead of 

mitochondrial oxidation, even in the presence of oxygen
4
. His observation is supported 

 

 

 

 

 

 

 

 

 

 

Figure 3. The electron transport chain. Electron carriers of the electron transport chain are found in the inner 

mitochondrial membrane. Healthy cells use these carriers to oxidize high energy electrons from NADH and 

FADH2, pumping protons out of the mitochondrial matrix in the process and creating a proton gradient that is 

used to phosphorylate ADP to ATP
3
.  
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by the elevated levels of lactate dehydrogenase that have been found in various cancers
5
. 

The preferred conversion of glucose to lactate for energy production in the presence of 

oxygen (referred to in this text as aerobic glycolysis) in tumour cells became known as 

the “Warburg Effect”.  

     There has been great interest in understanding why tumour cells, with increased 

metabolic needs, use such an inefficient pathway to derive energy from glucose. Initially, 

it was suggested that tumour cells use aerobic glycolysis because of mitochondrial 

defects preventing ATP production by oxidative phosphorylation
4
. However, this 

hypothesis was countered by studies showing that aerobic glycolysis is reversible and in 

most cases there is no permanent mitochondrial damage in cancer cells. This was 

demonstrated using short hairpin RNA-mediated knockdown of lactate dehydrogenase in 

mammary tumour cells, where inhibition of lactate production stimulated mitochondrial 

respiration in these cells
6
. In another study, dichloroacetate, a small molecule inhibitor of 

pyruvate dehydrogenase kinase, was used to activate pyruvate dehydrogenase and induce 

cancer cells to oxidize pyruvate in the citric acid cycle
7
. Although the breast cancer, non-

small-cell lung cancer, and glioblastoma cells used were able to perform mitochondria-

based glucose oxidation after this induction, apoptosis was increased. This indicates that 

aerobic glycolysis is also vital for cancer cell survival. Furthermore, there is some 

evidence to suggest that a degree of mitochondrial metabolism is needed for ROS 

production in tumourigenesis and growth
8,9

. 

     The current theory behind the Warburg effect explains that tumour cells switch to 

aerobic glycolysis in order to produce intermediates needed for cell growth and 

division
10

. Healthy cells and cancer cells both use glucose to produce ATP and to 
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generate metabolites required for synthesis of amino acids, fatty acids and nucleotides. 

Although some ATP is needed in the reactions that produce macromolecules, in 

proliferating cancer cells there is a greater demand to covert glucose to macromolecular 

precursors than to produce ATP through oxidative phosphorylation by metabolizing 

glucose to CO2 and H20
10

. Glucose can provide six carbons for macromolecule synthesis 

or be shunted through the pentose phosphate pathway to generate NADPH needed for the 

synthesis of fatty-acids and nucleotides
10

. Although cancer cells do not use the most 

efficient pathway to produce ATP, with a constant supply of glucose and nutrients in the 

blood, aerobic glycolysis appears to represent a good survival strategy
10

.  

     Furthermore, acidification of the local environment due to excess lactate secretion of 

tumour cells has been shown to promote invasion and enhance cell motility. Lactate was 

shown to stimulate fibroblast expression of hyaluronan, a polysaccharide found in the 

extracellular matrix, and its receptor CD44
11

. The effect of hyaluronan is to separate cells 

by diminishing contact between them, this creates an environment that allows the spread 

of cancer cells
11

. Lactate also has direct effects on cell motility, as shown by its ability to 

induce expression of Transforming growth factor-beta2 (TGF- 2), a key regulator of 

invasion, in glioma cells
12

.  

 

1.3 Glucose Transporter Proteins  

     Due to its hydrophilic nature, glucose requires specific carrier proteins to cross the 

plasma membrane of cells. Glucose uptake across the plasma membrane is the rate-

limiting step for glucose consumption in healthy cells and tumours. There are two  
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 families of membrane-associated carriers that mediate the transport of glucose into the 

cell: the facilitative glucose transporter (GLUT) proteins and the sodium-coupled glucose  

 cotransporter (SGLT) proteins
13

. 

      The SGLT family consists of 12 members from the human genome that function as 

cotransporters for sugars, anions, vitamins, and short-chain fatty acids
14

. These proteins 

are expressed in the epithelial cells of the small intestine and kidney, as well as the brain, 

muscle and thyroid gland
14

. Three members of the family have a role in sugar transport, 

these are the sodium-dependent glucose cotransporters (SGLT1 and SGLT2), and SGLT3 

which is believed to act as a glucose sensor
14

. SGLT proteins transport glucose into the 

cell against its concentration gradient using energy provided by the sodium gradient 

across the cell membrane
14

.  

     Fourteen members of the GLUT protein family have been identified in humans
15

. 

These transporters show a high degree of homology and share the following common 

features: (1) GLUTs are predicted to have a tertiary structure of twelve transmembrane 

domains with intracellular amino- and carboxyl-ends )16 (Figure 4): The transmembrane 

domains are numbered from N-terminus to C-terminus with a large intracellular loop 

existing between transmembrane domains 6 and 716. (2) The presence of seven conserved 

glycine residues within the transmembrane helices: These residues are regarded as being 

essential for facilitative transporter function, this has been confirmed using site-directed 

mutagenesis where glycine residues at position 75, 76 and 79 were found to be necessary 

for transport activity of GLUT1 from Xenopus oocytes
17

. (3) Several basic and acidic 

residues at the intracellular surface of the proteins: The significance of some of these  
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Figure 4. Schematic model of the structure of Class I and II and Class III members of the GLUT 

family. Twelve hydrophobic transmembrane domains are numbered and connected by hydrophilic 

loops. The characteristic N-glycosylation sites found between transmembrane domains 1 and 2 in 

Class I and II, and between transmembrane domains 9 and 10 in Class III can be seen. The seven 

conserved glycine residues and the conserved tryptophan and tyrosine residues are shown 

individually
16,24

. G, glycine; W, tryptophan; Y, tyrosine; L1-11, loops 1-11. 

 

residues has been examined using mutational analysis; arginine and glutamate residues 

were found to be essential for the conformation of GLUT4 in COS-7 cells
18

. The amino  

acid motif R-X-G-R-R was also found to provide the proper membrane topology of 

GLUTs in Xenopus oocytes
19

. (4) Conserved tryptophan residues at helices 6 and 11: The  

 tryptophan in helix 11 of GLUT1 has been shown to be essential for both transport 

activity and the binding of the glucose transport inhibitors cytochalasin B and 
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forskolin
20,21

. (5) Conserved tyrosine residues in helices 4 and 7: It has been 

demonstrated that these residues are important for the transport activity of GLUT1 and 

GLUT4
22,23

.  

  

     The nomenclature of GLUT1-5 was based on the chronological order of cloning of 

their genes. Sequence information provided by various genome projects led to the 

identification of the novel sugar transporters and a new GLUT nomenclature was devised 

based on sequence homology
24

. The GLUTs can be grouped into three classes (Figure 5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Dendogram of multiple alignment of the GLUT family. Branch lengths reflect 

the degree of difference between sequences. Adapted from Joost et. al (2001)
24
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which differ in the position of a predicted long extracellular loop. In Class I (GLUT1, 

GLUT2, GLUT3, GLUT4) and II (GLUT5, GLUT7, GLUT9, GLUT11) proteins, this 

loop containing an N-linked glycosylation site is found between transmembrane domains 

1 and 2. In Class III proteins, the extracellular loop with sites of N-linked glycosylation is 

located between transmembrane domains 9 and 10 (Figure 4)24. Glycosylation at this site 

has been shown to increase the efficiency of glucose transport
25

. An additional difference 

between classes is the presence of an internalization signal possessed by Class III 

transporters that localizes them intracellularly under steady state conditions
26

. This 

internalization signal has been identified as the motif YSRI for GLUT10 and dileucine 

for the remaining Class III transporters
26

. Although GLUT4 possesses internalization 

signals it is classified as a Class I transporter (See GLUT4 Structure/Affinity). Residues 

that are specific to the Class I transporters include a glutamine in helix 5 and the STSIF-

motif in the extracellular loop 7
27,28

. Class II transporters lack a tryptophan following the 

conserved GPXXXP motif in helix 10 that is found in the other GLUT transporters. In 

GLUT1 this tryptophan was found to be important for binding of the ligands cytochalasin 

B and forskolin, but did not influence transport activity
20,21

.  

     Unlike SGLT proteins which require energy to transport glucose, GLUT transporters 

move sugars via diffusion
29

. The transport of glucose by these proteins can be described 

as an alternating conformer model in which the transporter has mutually exclusive 

binding sites for glucose on its intracellular and extracellular side
15

. Binding of glucose to 

one of the sites triggers a change causing the transporter to switch to the other 

conformation and transport glucose across the plasma membrane during the process
15

.  
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Table 1. Summary of the properties of the GLUT family  

Protein Major 

Isoform (aa) 

Molecular 

Weight (kDa) 

Substrates Major Sites of 

Expression  

GLUT1 492 54  Glucose ( Km 3 mM)  

Galactose ( Km  17 mM) 

Mannose ( Km 20 mM) 

Glucosamine ( Km 2.5 mM) 

DHA ( Km 1.1 mM)  

Ubiquitous distribution 

GLUT2 524 55 Glucose ( Km  17 mM)  

Galactose ( Km 92 mM) 

Mannose ( Km 125 mM) 

Glucosamine ( Km 0.8 mM) 

Fructose ( Km  76 mM) 

Kidney, small intestine, 

liver, pancreas 

GLUT3 496 45 2-deoxy-D-glucose ( Km  1.4 

mM)  

Galactose ( Km 8.5 mM) 

Mannose  

Maltose  

Xylose  

DHA 

Brain, nerves 

GLUT4 509 55 Glucose ( Km  5 mM)  

DHA ( Km 0.98 mM) 

Glucosamine ( Km 0.8 mM) 

Muscle, fat, heart 

GLUT5 501 55 Fructose ( Km  6 mM) 

 

Intestine, kidney, testis 

GLUT6 507 46 Glucose Spleen, brain, leukocytes 

GLUT7 524 53 Glucose ( Km  0.3 mM)  

Fructose ( Km 0.2 mM) 

 

Small intestine, colon, 

testis, prostate 

GLUT8 477 51.5 Glucose ( Km  2 mM)  

 

Testis, brain, adrenal 

gland, liver, spleen, fat, 

lung 

GLUT9 511/540 66/46 Glucose ( Km  0.61 mM)  

Fructose ( Km  0.42 mM) 

Urate ( Km  0.9 mM) 

Liver, kidney, placenta 

GLUT10 541 57 2-deoxy-D-glucose ( Km  0.3 

mM)  

Glucose 

Galactose 

Heart, lung, brain, liver, 

muscle, pancreas, 

placenta, kidney 

GLUT11 496 54 Glucose ( Km 0.16 mM)  

Fructose ( Km 0.16 mM) 

 

Heart, muscle, kidney, 

placenta, fat, kidney, 

pancreas 

GLUT12 617 67 Glucose Muscle, heart, fat, small 

intestine, prostate, 

placenta 

GLUT14 497/520 N/A N/A Testis 

HMIT 618/629 69 Myoinositol ( Km  0.1 mM)  Brain 
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Glucose transport may be blocked by competitive inhibition by other sugars or 

metabolites at the extracellular or cytosolic sugar binding sites.        

     The GLUT proteins exhibit different substrate specificities, regulation and tissue 

expression
29

. The following summarizes the available data about the GLUT transporters 

with specific focus on Class I transporters GLUT1, GLUT3, GLUT4 and the Class III 

transporter GLUT12.  

Class I 

1.3.1 GLUT1 

Structure 

     GLUT1 is the first discovered and best characterized facilitative glucose transporter. 

In humans, it consists of a protein sequence of 492 amino acids with a molecular weight 

of approximately 54 kDa
30

. The N-linked glycosylation site found in loop 1 is the most 

divergent region among species
30

. Overall, GLUT1 is a highly conserved isoform and 

exhibits 74-98% sequence identity among fish, chickens, humans, bovines, rats and 

mice
30

.  

     Despite intensive study, a crystal structure of GLUT1 has not been determined
31

. 

GLUT1 is thought to exist as homodimers or homotetramers in human erythrocytes 

where its conversion between the two forms is dependent on the redox state
32

. In a 

reducing environment, tetrameric GLUTl was found to dissociate into GLUT1 dimers
32

.  

Affinity 

     In Xenopus oocytes, GLUT1 has been shown to transport glucose with a Km of 

approximately 3 mM
33

. GLUT1 transports mainly glucose but can also transport 

galactose (Km 17 mM), mannose (Km 20 mM) and glucosamine (Km 2.5 mM)
33,34

. In 
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addition, it has been shown to transport the oxidized form of vitamin C, dehydroascorbic 

acid with a Km of 1.1 mM when using a Xenopus oocyte expression system
35

.  

Expression 

     GLUT1 is responsible for basal glucose uptake, therefore, is expressed in virtually all 

tissues under normal conditions
29

. It is referred to as the “Erythrocyte-Type Glucose 

Transporter” due to its high expression in erythrocyte cell membranes where it composes 

3-5% of total membrane protein
30

. High levels of GLUT1 can also be found in 

endothelial and epithelial cells from blood-tissue barriers in the brain, eye, peripheral 

nerve, placenta and lactating mammary gland
36,37

.    

1.3.2 GLUT3 

Structure/Affinity 

     GLUT3 consists of a protein sequence of 496 amino acids with a molecular weight of 

approximately 45 kDa
30

. GLUT3 transports glucose with a high affinity (Km 1.4 mM for 

2-deoxy-D-glucose)
46

. GLUT3 is also capable of transporting galactose (Km 8.5), 

dehydroascorbic acid (Km 8.5) and mannose and xylose, for which the Km values have 

not been described
15,35

. In primary cultured cerebellar granule neurons it was 

demonstrated that GLUT3 has a higher catalytic center activity than GLUT1, 853 sec
-1

 

versus 123 sec
-1

, suggesting it is the more active transporter
38

.  

Expression 

     GLUT3 mRNA is ubiquitously expressed in human tissues, however, its protein is 

primarily found in the brain and testis
15

. The calculated turnover rate of GLUT3 

compared to GLUT1 means that cells expressing GLUT3 have the capacity to transport 

seven times more glucose assuming an equal number of transporters on the plasma 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 15 

membrane
38

. This high transport capacity and affinity of GLUT3 for glucose are 

especially important because GLUT3 introduces glucose into neurons from the 

interneuronal space where its concentration is low
29

. GLUT3 is highly expressed in the 

membrane of human testis as well as the spermatozoa
39

.    

1.3.3 GLUT4 

Structure/Affinity 

     GLUT4 consists of a protein sequence of 509 amino acids with a molecular weight of 

approximately 55 kDa
30

. This protein is highly conserved in humans, bovines, rats and 

mice with 91-96% sequence similarity
30

. GLUT4 has a Km for glucose of approximately 5 

mM
30

. It can also transport dehydroascorbic acid (Km 0.98 mM) and glucosamine (Km 3.9 

mM)
35,40

.  

Expression 

     GLUT4 is highly expressed in the insulin sensitive tissues including brown and white 

adipose tissue and skeletal and cardiac muscle
15

. It is the major glucose transporter in 

these tissues and thus plays a critical role in whole body glucose homeostasis.    

Class III 

     The Class III facilitative glucose transporters are recently discovered and include 

GLUT6, GLUT8, GLUT10, GLUT12 and the H
+
/myo-inositol co-transporter HMIT. 

They are not as well characterized as the other glucose transporters. These transporters 

are expressed in humans and were identified as a consequence of sequencing the human 

genome. In general, little is known about their functions and substrates. 

1.3.4 GLUT12 

Structure/Affinity 
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     GLUT12 consists of a protein sequence of 617 amino acids with a molecular weight 

of approximately 67 kDa
30

. GLUT12 shows glucose transport activity but the affinity of 

the transporter for glucose remains unknown
26

. This glucose transport can be 

competitively inhibited by fructose, galactose and 2-DG
26

.   

Expression 

     GLUT12 expression is found in insulin-sensitive tissue including skeletal muscle, 

cardiac muscle and fat as well as the small intestine, prostate and placenta
41

. It was 

originally cloned in MCF-7 breast cancer cells. The expression of GLUT12 has been 

found to be stronger in ductal cell carcinoma in situ cells than in benign ducts of breast 

cancer tissues
42

. This suggests that although GLUT12 does not play a major role in 

glucose transport to healthy breast tissue, it becomes significant in providing sugars to 

malignant cells.  

 

1.4 Molecular Mechanisms Driving the Warburg Effect  

1.4.1 The PI3K-Akt Signaling Pathway  

    The phosphatidylinositol 3-kinases (PI3Ks) are a family of lipid kinases responsible 

for regulating growth and survival processes
43

. Three classes of PI3Ks exist based on 

structure and substrate specificity
44

. Class I enzymes consist of heterodimers that 

phosphorylate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), Class II enzymes 

consist of a single catalytic subunit and preferentially use phosphatidylinositol or 

phosphatidylinositol-4-phosphate as substrates and Class III enzymes consist of a single 

catalytic subunit that only produces phosphatidylinositol-3-phosphate
44

.  
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     Class I enzymes are further divided into Class IA PI3Ks which can be activated by 

receptor tyrosine kinases, G protein coupled receptors (GPCRs) and oncogenes while 

Class IB PI3Ks are activated exclusively by GPCRs
44

.     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The PI3K signaling pathway. The family of lipid kinases termed PI3Ks has been 

found to have a key role in regulating cell survival and proliferation. Mutations that 

constitutively activate this pathway are common in cancer
43-45

.  

 

     As seen in Figure 6, the Class IA PI3K pathway is initiated by a ligand binding to a 

cell surface receptor that recruits PI3K to the membrane by direct interaction of its Src 

homology domain 2 (SH2) domain, located within the p85 regulatory subunit, with  

tyrosine phosphate motifs on the activated receptor or adaptor proteins
44

. This removes 

inhibition of the p110 catalytic subunit which is then free to phosphorylate the membrane 
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phospholipids phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) to generate 

phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3)
44

. PIP3 serves as a plasma 

membrane docking site for proteins with pleckstrin-homology (PH) domains, including 

Akt, an oncoprotein that is frequently dysregulated in cancer
43

. Akt is a 57 kDa protein 

that exists in three isoforms (Akt1, Akt2, Akt3) all sharing a PH domain, a central kinase 

domain and a carboxy terminal regulatory domain
44

. In response to docking at the plasma  

membrane, Akt undergoes a conformational change exposing two amino-acid residues 

that must by phosphorylated for its full activation
44

. The first, Thr-308, is phosphorylated 

by the protein 3’- phosphoinositide- dependent kinase-1 (PDK-1) which is also recruited 

to the membrane by PIP3.  Ser-473 is the second amino-acid residue which is 

phosphorylated by the mammalian target of rapamycin complex 2 (mTORC2).   

     Mutations of the Class IA PI3Ks have been shown to occur frequently in cancer
45

. A 

common mutation occurs in the PIK3CA gene, encoding for the catalytic subunit p110 , 

which leads to the pathway being constitutively activated
45

. In addition, loss of the 

important tumour suppressor phosphatase and tensin homolog (PTEN) can result in 

uncontrolled PI3K signaling leading to cancer. This phosphatase is responsible for 

removing a phosphate group from PIP3 converting it back to PIP2 and thus preventing 

downstream signaling of the pathway.   

     Evidence indicates that Akt is involved in the Warburg Effect (Figure 7). Akt has 

been shown to promote glycolysis through a number of mechanisms. In both skeletal 

muscle and cancer cells, Akt has been shown to induce the expression of the glucose 

transporter (GLUT) proteins GLUT1 and GLUT3 and the translocation of GLUT4 to the 

plasma membrane, thereby allowing glucose to enter the cell
46-48

. Akt also  
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phosphorylates hexokinase, the enzyme of the first- and rate-limiting step in glycolysis
49

. 

Finally, in bovine heart tissue Akt has been shown to directly phosphorylate and activate 

phosphofructokinase-2 which catalyzes the formation of the product fructose-2,6- 

biphosphate (Fru-1,6-P2)
50

. Fru-1,6-P2 is responsible for allosterically activating the most 

important regulatory enzyme of glycolysis, phosphofructokinase-1 (PFK-1). The 

ability of Akt to increase glycolysis without increasing oxidative phosphorylation 

suggests it may play an important role in contributing to the Warburg Effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Akt in the Warburg Effect. Activation of the protein Akt through the PI3K pathway has 

been shown to promote glucose uptake and glycolysis in healthy and cancerous cells. This is 

achieved by inducing the expression and translocation of GLUT proteins
46-48

, activating the enzyme 

hexokinase
49

 and promoting the activation of PFK-1
50

. Because this pathway is frequently 

deregulated in cancer it is suggested these actions contribute to the Warburg Effect.   
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1.4.2 HIF-1 

     The mammalian target of rapamycin (mTOR) is a 250 kDa serine/threonine kinase 

that controls growth and regulates protein synthesis
2
. It exists in two distinct complexes 

termed mTORC1 and mTORC2
51

 (Figure 8). The mTORC1 complex consists of the 

mTOR catalytic subunit, regulatory associated protein of mTOR (raptor), proline-rich 

Akt substrate (PRAS40) and the protein mLST8. mTORC2 is composed of mTOR, 

rapamycin insensitive companion of mTOR (rictor), mammalian stress-activated protein 

kinase interacting protein 1 (MSIN1) and mLST8. Akt has been shown to activate the 

mTOR pathway by acting on two substrates
51

. Activated Akt phosphorylates the tuberous 

sclerosis complex (TSC) 2 and relieves the inhibitory effects of the tuberous sclerosis 

complex (TSC1/TSC2) upon the small G protein Rheb. When in the GTP-bound form, 

Rheb strongly activates mTORC1. Akt can also activate mTOR by phosphorylating 

PRAS40 to attenuate its inhibitory effects on mTORC1. This complex is responsible for  

regulating translation initiation and ribosome biogenesis through its downstream 

targets
51

.  

     The hypoxia-inducible factor- 1 (HIF-1) complex is responsible for activating the 

transcription of genes in response to changes in tissue oxygenation
52

. HIF-1 is a 

heterodimer consisting of a HIF-1  and HIF-  subunit (Figure 8). Although HIF-1  is 

synthesized in healthy cells under conditions of normal oxygen concentration, it is 

hydroxylated by prolyl hydroxylases resulting in its recognition by von Hippel-Lindau 

tumour suppressor (VHL) and subsequent degradation
2
.  Upon exposure to hypoxia, the 

HIF-1  and HIF-  subunits become rapidly stabilized
53

. Oncogenic mTOR activation or  
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Figure 8. HIF-1 in the Warburg Effect.  The overall effect of HIF-1 on metabolism is 

consistent with the Warburg phenotype in that it promotes glycolysis while preventing 

oxidative phosphorylation. Activation of HIF-1 has been shown to promote the 

transcription of glucose transporters
54

 and glycolytic genes
55,56

. Additionally, it increases 

expression of PDK1 thereby inhibiting the flow of products into the citric acid cycle
57

.  

 

mutations in the tumour suppressor VHL can lead to HIF1 stabilization under normoxic 

conditions
53

. This occurs through increased translation of the hypoxia-inducible factor- 1 

(HIF-1)  subunit of the HIF complex due to enhanced mTOR activity
52

. 

     Evidence indicates that HIF-1 contributes to the Warburg effect by stimulating a 

number of genes that mediate glycolysis (Figure 8). In embryonic stem cells, lack of the 

HIF-1  subunit resulted in reduced GLUT1 and GLUT3 mRNA levels
54

. Although the 

GLUT1 and GLUT3 protein levels were not measured in this study, these findings 
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suggest increased GLUT expression by HIF-1. HIF-1 has been shown to stimulate the 

transcription of a number of glycolytic genes that possess hypoxia-response elements in 

their promoters, these include aldolase, enolase or lactate dehydrogenase, and the enzyme 

6-phospho-2-kinase/fructose2, 6-biphosphatase
55,56

. In addition, HIF-1 stimulates mRNA 

and protein expression of pyruvate dehydrogenase kinase 1 (PDK1) which is responsible 

for phosphorylating and inhibiting the mitochondrial pyruvate dehydrogenase complex
57

. 

This prevents conversion of pyruvate into acetyl-CoA, leading to inhibition of the 

tricarboxylic acid cycle and enhancing production of lactate. 

 

1.4.3 Ras   

     Ras GTPases function as molecular switches in processes governing cell proliferation, 

survival, and differentiation
58

. The three mammalian ras genes encode the four classical 

Ras proteins of 21 kDa: H-Ras, K-Ras4A, K-Ras4B, and N-Ras. These proteins show 

remarkable similarity, they are identical over the 85 N-terminal residues, and their 

identity within the following 80 residues is up to 90%
58

. 

     A key function of Ras protein is to regulate the PI3K and the Mitogen Activated 

Protein Kinase (MAPK) signaling pathways. The Ras-MAPK signaling pathway can be 

seen in Figure 9. In the resting state, Ras binds to GDP. Ras proteins become active 

when bound to GTP, this occurs by tyrosine kinase receptor activation that inhibits 

GTPase activating proteins (GAPs) or activates guanine nucleotide exchange factors 

(GEFs)
58

. Most growth factors that signal through receptor tyrosine kinases (RTKs) or 

GPCRs activate Ras by recruiting the GEF Son of Sevenless (SOS) to the plasma  
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membrane
59

. SOS is found in a complex with the adaptor protein Growth Factor 

Receptor-Bound Protein-2 (GRB2). Similar to PI3K, the GRB2/SOS complex is 

translocated to the membrane by binding of GRB2 to phosphorylated tyrosine residues 

on RTKs or adaptor proteins
58

. GTP-bound Ras recruits and activates the serine/threonine 

kinase Raf. Activated Raf binds to and phosphorylates
 
the dual-specificity mitogen 

activated kinases (MEK1/2), which in turn, activate the extracellular regulated kinases 

 

 

Figure 9. The Ras-MAPK signaling pathway. Activation of the Ras-MAPK pathway by 

growth factors and mitogen leads to growth and differentiation
58

. While this pathway is 

essential to healthy cells, oncogenic mutations of Ras can result in uncontrolled 

growth
58,60

.  



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 24 

1/2 (ERK1/2) by phosphorylation within a conserved Thr-Glu-Tyr motif. Upon 

activation, ERK1/2 translocates into the nucleus where it phosphorylates substrates 

including the transcription factors c-jun, c-fos and c-myc
58

. Alternatively, activated Ras 

may activate the p110 catalytic subunit of PI3K, independently of p85, and lead to the 

subsequent activation of Akt as earlier described
59

. 

      In healthy cells Ras function is essential, however oncogenic mutations of Ras can 

lead to uncontrolled proliferation. Ras is found to be mutated in approximately 25% of 

human tumours
60

. Amino acid replacements at residue 12, and less commonly at residues 

13 and 61, lock Ras proteins in a GTP-bound state in which they signal to downstream 

effectors even in the absence of extracellular stimuli
58

.  

     In a study of NIH3T3 mouse fibroblasts transformed by an activated form of the K-ras 

oncogene, expression of lactate dehydrogenase and a number of glycolytic enzymes were 

found to be increased
60

. These cells consumed more glucose and produced more lactate 

than normal or reverted cells, providing evidence that Ras may play a role in the Warburg 

phenotype
60

.  

 

1.4.4 c-Myc 

     The MYC family of cellular oncogenes includes c-Myc, a transcription factor 

involved in the control of cell proliferation and death
61

. Myc also regulates genes 

involved in glucose metabolism. The targets of c-Myc are similar to HIF-1, in Rat-1 

fibroblasts, c-Myc has been shown to directly transactivate genes encoding GLUT1, 

phosphofructokinase, and enolase
62

. Furthermore, lactate dehydrogenase-A has been  
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identified as a c-Myc-responsive gene
63

. This suggests c-Myc and HIF-1 may cooperate 

together to enhance aerobic glycolysis and contribute to the Warburg effect (Figure 10).  

 

1.4.5 The tumour suppressor protein p53  

          Active p53 protein is composed of a tetramer made of four identical subunits, each 

consisting of an N-terminal transactivation domain, a proline-rich region, a DNA-binding 

core domain and, within the C-terminal regulatory domain, a tetramerization domain and 

an unstructured basic domain
64

. Wild type p53 is a sequence-specific DNA binding 

protein and transcription factor responsible for negatively regulating cell growth and 

division
65

. The p53 protein is activated by a variety of stress signals (Figure 11),  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. c-Myc in the Warburg Effect. The transcription factor c-Myc is suggested to 

contribute to the Warburg Effect by increasing the expression of genes that promote 

glycolysis
62

 and lactate production
63

 thereby enhancing aerobic glycolysis.  
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including DNA damage, and responds to the specific signal by initiation of cell cycle 

arrest, senescence or apoptosis among other outcomes
64

. The most common mutations of 

p53 are missense mutations that occur in the conserved DNA-binding domain in the 

central portion of the protein
64

. Most cancer-related mutations of p53 are clustered in the 

four 'hot spots' at codons 175, 248, 273 and 281/282
66

. In mutant p53 AS-30D hepatoma 

cells, overexpression of mutated p53 was found to significantly activate the promoter of 

hexokinase 2, the enzyme catalyzing the first step of glycolysis in which glucose is 

converted to glucose-6-phosphate
65

. In healthy cells, p53 blocks the glycolytic pathway 

by lowering levels of the glycolytic activator fructose-2,6-bisphosphate in cells through a 

gene identified as TP53-induced glycolysis and apoptosis regulator (TIGAR)
67

  (Figure 

12). This is also accomplished through inducing the expression of phosphatase and tensin 

homolog (PTEN), a tumour suppressor that inhibits activity of the PI3K pathway by  

 

 

 

 

 

 

 

 

 

Figure 11. The tumour suppressor protein p53. In healthy cells, the p53 protein is activated 

by stress signals and initiates responses to prevent the formation of tumours such as DNA 

repair, cell cycle arrest and apoptosis
64

.  Mutations in p53 are found in most cancers
64,66

.  
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removing a phosphate group from PIP3
68

. In mice with a homozygous (-/-) disruption of 

the TP53 gene, a significant decrease in oxygen consumption and mitochondrial 

respiration was observed
69

. These effects were found to be mediated by p53-induced 

transcription of synthesis of cytochrome c oxidase 2 (SCO2), which forms the 

cytochrome c oxidase complex of the electron transport chain
69

. Therefore, in addition to 

blocking glycolysis, p53 promotes oxidative phosphorylation. Loss of this gene may play 

an important role in contributing to the aerobic glycolysis observed in cancer cells.  

 

1.4.6 
18

Fluoro-deoxy-glucose positron emission tomography (FDG-PET) 

     Malignant cells show increased glucose uptake both in vitro and in vivo
70

. In order to 

achieve a glycolytic rate that is approximately 30 fold higher than normal, tumours must 

 

 

 

 

 

 

 

 

 

 

Figure 12. p53 in the Warburg Effect. In healthy cells, functional p53 induces the transcription of 

genes that promote oxidative phosphorylation and block glycolysis
64

. Cell with mutated or absent 

p53 lose these regulatory effects on metabolism
65,67-69

.   
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bring glucose into the cell at an elevated rate
70

. It is this characteristic that led to the 

development of a technique known as FDG-PET for tumour detection and monitoring
71

. 

18
Fluoro-deoxy-glucose is a positron emitter that can be detected by PET scanners. 

18
Fluoro-radiolabelled 2-deoxy-glucose analog is recognized as a substrate by glucose 

transporters. Tumour cells, with an increased rate of glycolysis, will have an increased 

uptake of FDG which serves as a substrate for hexokinase and is converted into its 6-

phospho derivative. The resulting compound is stable and will not be metabolized further, 

allowing its accumulation to be visualized. Since tumours have an increased rate of 

glucose uptake compared to normal cells, FDG-PET is able to detect tumours and 

differentiate them from healthy tissue. In this fashion, glucose uptake serves as a 

functional biomarker in cancer that allows physicians to determine the extent of the 

disease and to guide treatment.  

 

1.5 Regulation of Glucose Transporters  

1.5.1 Regulation of GLUT1 

     The serine/threonine kinase Akt has been shown to induce GLUT1 gene transcription. 

This was demonstrated in mouse hepatoma cells where a hydroxytamoxifen-regulatable 

form of Akt responded to stimulation by hydroxytamoxifen by increasing GLUT1 

transcription and protein accumulation
47

. Akt has also been implicated in the plasma 

membrane trafficking of GLUT1 in response to NF-κB transcription factors and cytokine 

stimulation
72-74

. 

     Furthermore, expression of a kinase inactive Akt1 inhibited the ability of insulin to 

induce GLUT1 mRNA expression in the study by Barthel et al. (1999), suggesting that 
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Akt is an important mediator through which insulin regulates GLUT1 gene expression
47

. 

Chronic insulin stimulation has been shown to increase GLUT1 protein levels
75,76

; 

inhibition of the p70 S6 kinase with rapamycin almost completely abolished the increase 

in GLUT1 protein in response to insulin indicating activation of this downstream kinase 

from Akt is required in the process
75

.  

     There is evidence that the ovarian hormone estrogen is capable of inducing GLUT1 

expression. In MCF-7 breast cancer cells, treatment with estrogen was found to increase 

glycolysis via upregulation of GLUT1 protein
77

. A decreased rate of glycolysis and 

GLUT1 expression was observed due to the antiestrogenic effects of tamoxifen treatment.  

     Certain stressors have been shown to increase expression of GLUT1. Long-term 

treatment with hyperosmolarity (300 mM mannitol) was found to increase GLUT1 

protein expression by 70%, and similar to insulin, this was mediated by the p70 S6 

kinase
76

. Supporting the notion that GLUT1 is a stress inducible protein, exposure of L6 

myotubes to prolonged low grade oxidative stress induced by glucose or xanthine oxidase 

was also shown to increase GLUT1 mRNA and protein levels
78

. Treatment with 2,4-

dinitrophenol (DNP), an uncoupler of oxidative phosphorylation that depletes ATP 

production, was shown to induce a 150% increase in GLUT1 protein expression
76

. This 

evidence suggests GLUT1 may be an important transporter for uptaking glucose to 

provide energy in low oxygen conditions.  

     Indeed, GLUT1 expression has been shown to be regulated by hypoxia through HIF-

1
54

. Hypoxia response elements (HRE) located on the GLUT1 gene contain HIF-1 

binding sites with the consensus sequence 5-RCGTG-3
79

. This was demonstrated using 

placental cell lines in which deletion of an 184bp hypoxia-HR of the rat GLUT1 
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promoter was found to reduce GLUT1 expression, indicating an important role of HIF-1 

in modulating GLUT1 gene expression in response to low-oxygen conditions
79

.  

     GLUT1 expression is up regulated by a number of oncogenes. c-Myc was found to 

induce GLUT1 gene expression in rat fibroblasts and livers
62

. A Rat1 fibroblast line 

expressing a protein that fuses Myc to the estrogen receptor ligand binding domain 

(MycER) was used to demonstrate GLUT1 behaves as a direct target gene of c-myc. This 

system uses exposure of the MycER protein to estrogenic compounds, such as 4-

hydroxytamoxifen (4-HOTM), to translocate the ligand-bound MycER protein to the 

nucleus where it can activate target genes without new protein synthesis. After activation 

of MycER by 4-HOTM, expression of GLUT1 was found to be increased.  

     Colorectal cells with mutations in K-Ras or v-raf murine sarcoma viral oncogene 

homolog B1 (BRAF) were shown to upregulate the GLUT1 gene and display enhanced 

glucose uptake, glycolysis, and survival in low-glucose conditions
80

. Very few cells 

survived when wild-type KRAS alleles were subjected to a low-glucose environment. 

However, 4% of survivors acquired KRAS mutations that were not present in their 

parents. This finding suggests that glucose deprivation may select for mutant cells with 

KRAS mutations which can be a growth advantage because of increased GLUT1 

expression.   

     Expression of the GLUT1 gene is down-regulated by the tumour suppressor gene 

p53
81

. Cotransfection of osteosarcoma-derived SaOS-2 cells, rhabdomyosarcoma-derived 

RD cells and C2C12 myotubes with GLUT1-P-Luc or GLUT4-P-Luc promoter-reporter 

constructs and wild-type p53 expression vectors was found to dose dependently decrease 
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GLUT1 and GLUT4 promoter activity. This highlights the link between GLUT1 

overexpression observed in various cancers and mutations in p53. 

     In addition to increasing the expression of this transporter, insulin has been shown to 

promote GLUT1 translocation to the plasma membrane
82

. Evidence indicates that insulin-

like growth factor I (IGF-I) is capable of regulating localization of GLUTs. In L6 

myotubes, acute stimulation with IGF-I did not increase expression of GLUT1 protein, 

however an increase in GLUT1 protein in the plasma membrane enriched fraction of cells 

was seen
83

. The translocation of GLUT1 by IGF-1 was found to be similar to that of 

insulin with respect to the increase in cell surface GLUT1 over basal levels
84

.  

 

1.5.2 Regulation of GLUT3 

     The serine/threonine kinase Akt has been implicated in the regulation of GLUT3 

expression. This was demonstrated in L6 skeletal muscle cells in which cells 

overexpressing wild-type Akt or a constitutively active membrane-targeted Akt displayed 

a significant increase in glucose uptake. The increased transport of glucose into the cell 

was found to be mediated by the cellular synthesis of GLUT3
46

.  

     Like GLUT1, long-term insulin stimulation has been shown to increase mRNA and 

protein expression of GLUT3
75,76

. In L6 myotubes, this was suggested to occur in a 

MEK/ERK dependent manner as inhibitors of both proteins resulted in a large reduction 

in the insulin-stimulated increase in GLUT3 protein
76

. There is also evidence suggesting 

GLUT3 to be a stress induced protein which may be regulated by similar pathways as 

GLUT1.  p70 S6 kinase has also been implicated in the increase in GLUT3 protein levels 

after long-term hyperosmolarity treatment
76

. Furthermore, like GLUT1, GLUT3 was  
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Table 2. Summary of known contributors/mediators of GLUT1 expression   

Contributor/mediator Tissue Effect on regulation Pathway Involved Reference 

Akt activation  Mouse hepatoma 

cells (Hepa1c1c7)  

FL5.12 

hematopoietic 

myeloid cells 

Increases transcription  mTOR/Raptor  47 

 

72-74 

Insulin Mouse hepatoma 

cells (Hepa1c1c7)  

L6 muscle cells 

Increases mRNA and 

protein expression 

Akt/mTOR/4E-BP1 47 

 

75,76,82 

Estrogen MCF-7 breast cancer 

cells 

 

Increases protein 

expression 

N/A 77 

Stress 

Hyperosmolarity 

(300 mM mannitol) 

 

2,4-dinitrophenol 

(0.5 mM) 

 

Oxidative stress 

( 50 milliunits/ml 

glucose oxidase,  20 

milliunits/ml xanthine 

oxidase) 

 

L6 muscle cell 

 

L6 muscle cell 

 

L6 muscle cell 

 

Increases protein 

expression 

 

 

Increases mRNA and 

protein expression  

 

Increases mRNA and 

protein expression 

 

p70 S6 kinase and p38 

MAPK dependent  

N/A 

 

 

Increases GLUT1 

transcription rate  

 

76 

 

76 

 

78 

Hypoxia/HIF-1 Trophoblast-derived 

human (BeWo) and 

rat (Rcho-1) cells  

Induces mRNA 

expression 

HIF-1 binding site on 

hypoxia response 

element 5-RCGTG-3 

79 

c-Myc  Rat1 fibroblasts Induces mRNA 

expression 

Directly transactivates 

SLC2A1 gene 

62 

K-ras Colorectal cancer 

cells 

Induces mRNA 

expression 

Directly transactivates 

SLC2A1 gene 

80 

B-raf Colorectal cancer 

cells 

Induces mRNA 

expression 

Directly transactivates 

SLC2A1 gene 

80 

p53  SaOS-2 cells,  

rhabdomyosarcoma-

derived RD cells, 

C2C12 myotubes 

Downregulates mRNA 

expression  

Represses promoter 

activity 

81 

IGF-I L6 muscle cells Regulates translocation 

to the plasma 

membrane 

N/A 83, 84 
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shown to possess an HRE and expression of this gene was induced by formation of the 

HIF-1α complex in response to hypoxia
85

. This has been demonstrated in a number of 

models including neurons and carcinomas
86-88

. 

     In murine brain and mouse neuroblastoma cells, it was confirmed that phosphorylated 

cyclic AMP-regulatory element-binding (pCREB)1 protein binds the GLUT3 promoter 

region and activates GLUT3 expression in neurons
89

. Cyclic-AMP (cAMP) signaling 

involves a conserved second messenger pathway which is regulated by heterotrimeric G 

proteins. These proteins transduce extracellular signals via G protein-coupled receptors 

and activate the enzyme adenylyl cyclase. This enzyme is responsible for the conversion 

of ATP to cAMP which then activates the cAMP-dependent protein kinase A. The 

transcription factor CREB is activated by protein kinase A by phosphorylation on Ser-

133. In the study by Rajakumar et al. (2004) GLUT3 gene expression was transactivated 

by Ser-133 phosphorylation of CREB that led to enhanced binding to the site of the 

transcription factor activator protein 1 (AP-1) on the GLUT3 gene
89

. The Sp family of 

transcription factors was also implicated in the regulation of GLUT3 expression. These 

proteins bind to genes with a DNA control sequence T GGGCGGAAT, otherwise known 

as a GC box, to regulate expression of multiple target genes. In the case of GLUT3, Sp3 

was found to activate gene expression by binding to a site in the 5’-flanking region of the 

gene, while Sp1 was found to functions as a repressor of GLUT3 expression when 

binding in this region.  

     In p53−/− mouse embryonic fibroblasts, the loss of p53 was found to activate the NF-

κB transcription factor and increase the rate of aerobic glycolysis and upregulate 

GLUT3
90

. This expression was reduced by knockdown of the kinases IKKα and IKKβ 
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that allow for the activation of NF-κB, indicating that functional p53 may suppress the 

expression of GLUT3 by inhibiting this pathway. This is the first study demonstrating 

down-regulation of GLUT3 by the tumour suppressor GLUT3. Therefore, additional 

studies in other models are needed to clarify the regulation of this transporter by p53.  

     Acute insulin stimulation affects the localization of GLUT3 by inducing translocation 

to the plasma membrane
84

.  In comparison, IGF-I stimulation results in 67% greater cell 

surface levels of GLUT3 than insulin
84

. It is possible that IGF-I-mediated GLUT3 

translocation is responsible for the higher rate glucose uptake in the presence of IGF-I as 

compared to insulin. 

     The energy sensor AMP-activated protein kinase exists as a heterotrimer composed of 

a catalytic α subunit and regulatory β and γ subunits
91

. It is activated by metabolic 

stressors which deplete ATP and increase AMP levels, allowing AMP to bind to the γ 

subunit of AMPK. This induces a conformational change promoting phosphorylation on 

the AMPK α subunit by upstream kinases. Once activated, AMPK stimulates catabolic 

pathways while switching off anabolic pathways
91

. In neuronal cells, AMPK has been 

shown to facilitate the translocation of GLUT3 to the cell surface after excitation
92

. 

Indirect activation of AMPK by glutamate excitation resulting in an increased AMP:ATP 

ratio, or pharmacological activation of AMPK with  5-amino-1-β-D-ribofuranosyl-

imidazole-4-carboxamide (AICAR) resulted in increased GLUT3 surface expression. 

This was found to be prevented by inhibition of AMPK with compound C or knockdown 

with siRNA. However, in human embryonic kidney cells, AMPK was found to increase 

GLUT3-mediated glucose uptake in a manner that did not involve transporter 

translocation
93

. These findings suggest AMPK may have different regulatory effects on 
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GLUT3 depending on the cell type and stimulus. Further research to determine the 

mechanisms by which AMPK stimulates GLUT3-mediated glucose uptake is needed. 

Table 3. Summary of known contributors/mediators of GLUT3 expression   

Contributor/ 

mediator 

Tissue Effect on regulation Pathway Involved Reference 

Akt activation  L6 muscle cells Increases protein 

expression 

N/A 46 

Insulin  L6 muscle cells  Increases mRNA and 

protein expression  

MEK/ERK 

dependent  

 

75, 76  

Stress 

Hyperosmolarity 

(300 mM 

mannitol) 

 

 

L6 muscle cells 

 

Increases protein 

expression 

 

p70 S6 Kinase 

dependent  

 

76 

Hypoxia/HIF-1 Hep-G2 human 

hepatocellular carcinoma 

cells (ATCC HB 8095) 

L8 rat muscle cells, Hepa-

1c1c7 rat hepatoma cells, 

rat cerebrum and retina, 

BeWo choriocarcinoma 

cells 

Induces gene expression  HIF-1 binding site 

on hypoxia 

response element  

85-88 

cAMP-pCREB Mammalian neurons  Induces gene expression  Binding to 

transcription factor 

activator protein 1 

(AP-1) on the 

SLC2A3 gene 

89 

sp3 Mammalian neurons Induces gene expression  Binding to GC box 

on SLC2A3 gene 

89 

sp1 Mammalian neurons Represses gene 

expression  

Binding to GC box 

on SLC2A3 gene 

89 

p53 Mouse embryonic 

fibroblasts 

Downregulates mRNA 

expression 

Inhibition of NF-

κB pathway 

90 

IGF-I L6 muscle cells  Regulates translocation to 

the plasma membrane 

N/A 84 

AMPK 

activation 

Cerebellar granule 

neurons  

Human embryonic kidney 

cells (293T)  

Regulates translocation to 

the plasma membrane 

Increases activity of 

transporter  

N/A 92 

 

93 
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1.5.3 Regulation of GLUT4 

     A 2.4 kb DNA segment at the 5′ region of the GLUT4 gene is responsible for tissue-

specific expression of GLUT4 in adipose tissue, skeletal muscle, and cardiac muscle
95

. 

The myocyte enhancer factor 2 (MEF2) proteins are a family of transcription factors that 

play a role in muscle differentiation and development
94

. A MEF2 binding site has been 

identified in the GLUT4 promoter that is necessary for expression in skeletal muscle
94

. A 

region −742 to −712 relative to the initiation site for transcription, termed Domain I, has 

also been has been implicated in tissue-specific expression of GLUT4
95

. A factor termed 

GEF appears to operate in this region in association with MEF2A
96

.  

     Downregulation of GLUT4 expression occurs in adipose tissue in obesity. This has 

been shown in obese and obese patients with type 2 diabetes in which adipocyte GLUT4 

protein and mRNA levels were significantly decreased compared to lean body mass 

controls
97

. This study is supported by Sinha et al. (1991) where decreased levels of the 

muscle/fat GLUT4 isoform were found in adipose tissue of patients with type 2 

diabetes
98

.  

     Upregulation of GLUT4 in skeletal muscle has been observed in response to exercise. 

This can be achieved by a single session of exercise, as seen in rats that experienced a 2-

fold increase in GLUT4 mRNA and a 50% increase in GLUT4 protein expression 16 

hours after a prolonged exercise session
99

. This has also been demonstrated in humans, 

exercise training was shown to increase GLUT-4 gene expression immediately after 

exercise and it remained elevated three hours after the end of exercise
100

. These effects 

have been suggested to occur through activation of the energy sensor AMP-activated 
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protein kinase (AMPK), as increasing AMPK activity with the AICAR was shown to lead 

to transcriptional activation of the GLUT4 promoter in rats
101

.  

     Like GLUT1 and GLUT3, expression of the GLUT4 gene may be down-regulated by 

the tumour suppressor gene p53
81

. The inhibitory effect of p53 on transcriptional activity 

of GLUT4 was found to be significantly greater than its effect on GLUT1. The reason for 

this difference is not understood but may reflects differences in the expression of the 

transporters since GLUT1 is ubiquitous and GLUT4 is tissue-specific.     

     In conditions of low plasma insulin, GLUT4 is stored in intracellular tubulo-vesicular 

compartments. Two motifs are responsible for the association of the protein with this 

compartment: a dileucine motif in the C-terminus and a FQQI motif in the N-terminus
30

. 

Upon insulin binding to its receptor, the PI3K and MAPK signaling cascades are 

activated, as previously described. In response to insulin, GLUT4 is rapidly translocated 

from endosomal compartments to the plasma membrane resulting in an increase in 

glucose uptake
29

. The precise pathways by which insulin signaling pathways control 

GLUT4 trafficking are still not fully understood. However, this is suggested to occur 

through Akt phosphorylation of the GTPase activating protein AS160. Knockdown of 

AS160 in adipocytes using short-hairpin RNA was found to increase basal GLUT4 levels 

on the adipocyte surface, suggesting that the role of this protein is to retain GLUT4 

intracellularly and this hold is relieved upon insulin stimulation
102

. Disruption in the 

regulation of GLUT4 translocation by insulin is one of the key defects in insulin 

resistance and type 2 diabetes mellitus
31

.  

     Acute IGF-I stimulation in L6 myotubes was found to induce GLUT4 translocation to 

the plasma membrane without affecting the total cellular content of this protein
83

. 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 38 

Prolonged (8 hour) stimulation, however, was found to increase total GLUT4 protein 

levels and thus the level found in the cell surface. These findings suggest that similar to 

insulin, IGF-I has acute and chronic effects on glucose uptake that are mediated through 

glucose transporters.  

     In addition to increasing GLUT4 expression, AMPK has been implicated in GLUT4 

translocation that occurs after acute exercise. AICAR activation of AMPK is capable of 

increasing glucose uptake and GLUT4 translocation in skeletal muscle
103,104

. 

Table 4. Summary of known contributors/mediators of GLUT4 expression   

Contributor/

mediator 

Tissue Effect on regulation Pathway 

Involved 

Reference 

Obesity  Adipocytes Decreases mRNA and 

protein expression  

N/A 97, 98 

Exercise  Muscle Increases mRNA and 

protein expression  

N/A 99, 100 

 

AMPK 

activation 

Muscle Increases mRNA 

expression  

 

Regulates translocation to 

the plasma membrane 

Transcriptional 

activation of 

GLUT-4 promoter 

N/A 

101 

103, 104 

p53  SaOS-2 cells,  

rhabdomyosarcoma-

derived RD cells, 

C2C12 myotubes 

Downregulates mRNA 

expression  

Represses 

promoter activity 

81 

Insulin  Adiopocytes 

Muscle cells 

Regulates translocation to 

the plasma membrane  

Akt/AS 160 

dependent  

102, 48 

IGF-I 

(3-10 nM) 

L6 muscle cells Acute- Increases 

translocation to the plasma 

membrane 

Long-term- Increases 

protein expression   

N/A 83 
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1.5.4 Regulation of GLUT12  

     There is limited evidence regarding the regulation of GLUT12. Given that other 

GLUTs have been shown to be regulated by estrogen, the effects of the hormones 17 -

estradiol and dihydrotestosterone on GLUT12 expression were examined in MCF-7 

cells
16

. Treatment with 17 -estradiol for up to 24 hours was found to have no effect on 

GLUT12 mRNA expression, however a significant increase in GLUT12 protein was seen 

was seen after treatment with 17 -estradiol or dihydrotestosterone for 24 hours. These 

findings suggest the GLUT12 mRNA translation rate or protein half-life may be 

increased by hormone treatment.  

     Additionally, this study looked at the effect of epidermal growth factor (EGF), a 

known activator of proliferation in breast cancer cells, on GLUT12 expression. While 

GLUT12 mRNA expression was found to significantly decrease after eight hours of 

treatment with 60 ng/ml EFG, an increase in GLUT12 protein was observed after two 

hours of treatment which began to decrease after 24 hours. Therefore, GLUT12 

expression appears to be regulated at the mRNA and protein level by EGF, the 

mechanism by which this is achieved and possible negative feedback loops after long-

term EGF treatment remain to be examined.  

     Similar to the previously mentioned GLUTs, there is evidence to suggest that 

repression of the SLC2A12 gene occurs by the tumour suppressor p53. Using a small 

compound that re-activates p53, termed reactivation of p53 and induction of tumour cell 

apoptosis (RITA), p53 was pharmacologically reconstituted in cancer cell lines and 

HCT116 and HCT116 TP53-/- xenografts grown in immunodeficient mice
105

. Upon p53 

reactivation, significant repression of the SLCA12 gene in HCT116 xenografts occurred. 
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Using chromatin immunoprecipitation (ChIP) sequencing it was shown that upon RITA 

treatment, p53 binds to a consensus site in the SLC2A12 gene. Taken together, these 

findings suggest that SLC2A12 is a direct target of p53 and the expression of GLUT12 

that occurs in cancer may be due to the mutation or loss of this tumour suppressor.  

     It has been shown in various cell lines that endogenous and overexpressed GLUT12 

localizes to intracellular compartments and the plasma membrane
42,106,107

. GLUT12 

contains dileucine motifs at the N-terminus and C-terminus similar to GLUT4
41

. There 

does not appear to be a continuous cycling mechanism for GLUT12, as plasma 

membrane associated GLUT12 is not endocytosed. In human skeletal muscle, insulin was 

shown to be capable of inducing translocation of GLUT12 to the plasma membrane
108

. 

This was confirmed in L6 myoblasts in which insulin stimulation caused a shift of 

GLUT12 from an intracellular location to the plasma membrane fraction. Inhibition of 

PI3K was found to block GLUT12 translocation in these cells, suggesting that activation 

of this pathway may be responsible for the translocation of this transporter in muscle.  

     In renal epithelial cells, it was demonstrated that treatment with high glucose (25 mM) 

and 10% serum causes translocation of endogenously expressed GLUT12 to the 

cytoplasm and plasma membrane
109

. GLUT12 was implicated in the increased glucose 

uptake observed after mitogen treatment and it was found that incubation with the mTOR 

inhibitor rapamycin decreased glucose uptake levels and restricted GLUT12 to a 

perinuclear location in these cells. The potential regulated trafficking of this transporter 

by mitogens and the mTOR pathway should be explored in additional tissues.          
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Table 5. Contributors/mediators of GLUT12 expression   

Contributor/mediator Tissue Effect on regulation Pathway Involved Reference 

Estrogen  MCF-7 

breast cancer 

cells  

Increases protein 

expression  

N/A 16 

 

Epidermal Growth 

Factor (EGF) 

(60 ng/ml) 

MCF-7 

breast cancer 

cells  

Transient increase in 

protein levels  

Long term decrease 

in mRNA and protein 

levels  

N/A 16 

 

p53 Various 

cancer cell 

lines  

Downregulates 

mRNA expression  

Binds to promoter 

of SCL2A12 gene  

105 

Insulin  Muscle Regulates 

translocation to the 

plasma membrane 

PI3K dependent  108 

mTOR activation Renal 

epithelial 

cells 

Regulates 

translocation to the 

plasma membrane 

N/A 109 

 

 

1.6 Cell Lines  

     Culture models are frequently used to investigate the physiology and biochemistry of 

cells. A primary culture can be established from a tissue that is fragmented, or dispersed 

by enzymatic or mechanical disruption. Once maintained in the appropriate growth 

medium, the first subculture will proliferate and these cells can be reseeded to give rise to 

a secondary culture, and so on.  Finite cell lines have no gross genetic changes and a 

diploid chromosomal number
110

. These cells show anchorage dependence and grow as a 

monolayer, ceasing growth once confluence has been reached
110

. Human cells grown in 
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culture generally divide 50-100 times before entering into a senescent phase in which 

there is an observed decline in cell number
111

.  

     Unlike finite cell lines, continuous cell lines have the ability to proliferate for an 

unlimited number of cell generations. Highly aggressive cancers that have accumulated 

genetic changes necessary for unlimited growth may spontaneously become continuous 

cell lines when cultured in vitro
110

. In order to expand the lifespan of cells, treatment with 

viral genes or carcinogenic chemicals may be used to sequester proteins inhibiting cell 

division and cause acquisition of mutations making the cells immortal
110

. Continuous cell 

lines may be aneuploid and have altered growth characteristics including anchorage 

independence and a loss of contact inhibition and density limitation on growth
110

.  

     The amount of tissue available for a number of cancers is limited because acquiring 

tumour tissue is invasive, and in some cases not possible due to the location of the 

tumour. Furthermore, tumour tissue may contain varying amounts of non-malignant cells 

and supporting tissues. Immortalized cancer cell lines are frequently used as in vitro 

models in cancer research. There are a number of advantages to using a cell culture 

model to understand cancer biology. These cells resemble the primary tumour population 

but offer a homogenous population of cells with an unlimited replicative ability. 

Furthermore, cells that are cultured in vitro are grown in a controlled environment that is 

free from external factors that may affect the expression of certain proteins. The 

properties of the cell lines studied can be seen in Table 6.  

MRC-5 

The MRC-5 cell line was established in 1966 from the normal lung tissue of a 14-week 

old male fetus
112

. Previous research has indicated these cells are capable of 42 to 46 
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population doublings before the onset of senescence
112

. A number of studies have used 

MRC-5 cells as an established model of non-cancerous human lung fibroblasts. 

SK-MES-1 

The SK-MES1 cell line was derived from the pleural effusion of a 65 year old Caucasian 

male with squamous cell carcinoma
113

.  

H460 

The H460 cell line was initiated in 1982 from the pleural fluid of a large cell lung cancer 

patient
114 

and is an established large cell lung cancer epithelial cell line.   

A549 

The A549 cell line was initiated in 1972 through in vitro cultivation of lung carcinoma 

tissue from a 58-year-old Caucasian male
115

. This is a human lung adenocarcinoma 

epithelial cell line.  

H1299 

The H1299 cell line was derived from the lymph node of a 43 year old Caucasian male 

with non-small cell lung cancer
116

.  

184B5 

The 184B5 cell line was established from normal mammary tissue from a 21 year old 

female obtained from a normal reduction mammoplasty
117

. This is a chemically 

transformed cell line that was established when cells from this tissue were exposed to 

benzo(a)pyrene, a carcinogenic polycyclic aromatic hydrocarbon. The 184B5 cell line 

appears to be immortal, but is not malignant. It is a human mammary epithelial cell line.  

 

 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 44 

MDA-MB-231 

The MDA-MB-231 cell line was isolated from pleural effusions of a 51 year old female 

Caucasian with breast cancer
118

. This cell line does not express estrogen receptors and 

therefore has been widely used to examine non-hormone sensitive breast cancer.  

MCF-7 

The MCF-7 cell line was initiated from the pleural effusion in a 69 year old female 

Caucasian with breast adenocarcinoma
119

. This cell line possess cytoplasmic estrogen 

receptors that are able to process estradiol and these cells are capable of forming domes 

as seen in differentiated mammary epithelium. MCF-7 is an established and widely used 

a human breast adenocarcinoma epithelial cell model. 

PNT1A 

The PNT1A cell line was initiated from the prostate of a 35 year old male at post-

mortem
120

. This is a noncancerous prostate epithelium cell line that has been 

immortalized with the Simian vacuolating virus 40 (SV40).  

22Rv1 

The 22Rv1 cell line was derived from a serially propagated xenograft in mice after 

castration-induced regression and relapse of the parental CWR22 xenograft
121

. This cell 

line has been shown to express the androgen receptor. 22Rv1 is a human prostate 

adenocarcinoma epithelial cell line. 

LNCaP 

The LNCaP cell line was established in 1977 from a needle aspiration biopsy of the left 

supraclavicular lymph node of a 50 year old Caucasian male with metastatic prostate 
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carcinoma
122

. This cell line is both androgen receptor- and estrogen receptor-positive and 

has been used extensively as a model of hormone sensitive prostate cancer.  

PC-3 

The PC-3 cell line was derived from a 62 year old Caucasian male from the bone 

metastasis of a grade IV prostatic adenocarcinoma
123

. These cells do not express the 

androgen receptor and therefore are a widely used in vitro model of hormone insensitive 

prostate adenocarcinoma.   

 

Table 6. Cell line properties  

Cell Line Histology Mutation Status/ 

Hormone Responsiveness 

SK-MES-1 Lung squamous cell carcinoma  p53 null 

H460 Lung large cell carcinoma KRAS mutant 

LKB1 null 

PIK3CA mutation 

A549 Lung adenocarcinoma KRAS mutant 

LKB1 null 

H1299 Lung adenocarcinoma p53 null 

MRC-5 Lung fibroblast  No known mutations  

MDA-MB-231 Breast adenocarcinoma p53 null 

KRAS mutant 

Estrogen receptor negative 

MCF-7 Breast adenocarcinoma PIK3CA mutation 

Estrogen receptor positive  

184B5 Mammary epithelium No known mutations 

22Rv1 Prostate adenocarcinoma p53 null 

Androgen responsive 

LNCaP Prostate adenocarcinoma PTEN null 

Androgen responsive 

PC-3 Prostate adenocarcinoma  p53 null 

PTEN null 

PNT1A Prostate epithelium No known mutations  
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1.6.1 Glucose Transporter Expression in Tumours and Cancer Cell Lines 

     Previous studies have suggested that increased glucose uptake in malignant cells is 

associated with an increased expression of glucose transporter proteins. The expression of 

select members of the GLUT family has been studied in various cancers. The following 

will review findings of GLUT expression in lung, breast and prostate tumours and cancer 

cell lines.  

 

1.6.2 Glucose Transporter Expression in Lung Tumours and Cancer Cell Lines  

     Compared to healthy cells, tumour cells have been shown to increase the expression of 

GLUTs with a low Km for glucose in order to meet demands
42

. GLUT1 and GLUT3 have 

high affinities for glucose and have been detected in various histological types of lung 

cancer at both the mRNA and protein level
124

. Ogawa et al. found GLUT1 to be 

amplified more than GLUT3 in lung tumours, however both proteins were correlated 

with proliferating cell nuclear antigen (PCNA), a nuclear protein that increases when 

DNA is being synthesized, indicating that GLUT-mediated glucose uptake may aid in the 

proliferation of cancer cells
124

. 

     GLUT1 and GLUT3 have been detected by immunohistochemistry in poorly and 

undifferentiated non-small-cell lung cancer (NSCLC) tumours
71

. These findings are 

supported by a study by Kurata et al. in which expression of GLUT1 was found to be 

significantly higher in primary lung tumours than in normal lung tissue
125

. Analysis of 

autopsy samples from primary lung and liver tumours, normal tissues and metastatic liver 

tumours using reverse transcriptase PCR revealed no differences in GLUT1 expression 

between primary lung tumours and metastatic liver tumours. However, the expression of 
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GLUT3 and GLUT5 were found to be significantly higher in metastatic liver tumours, 

suggesting different GLUT expression patterns may exist between primary and metastatic 

tumours. Studies comparing other types of primary cancers and their metastatic tumours 

are needed.  

     Little data exists regarding the expression of GLUTs in lung cancer cell lines. In 

agreement with the findings from lung cancer tissue samples, A549 and H226 cells were 

found to have low basal expression of GLUT1
126

. In comparison, this study found that 

H1299 and H1650 cells expressed higher levels of GLUT1
126

. This study is supported by 

detection of GLUT1 in A549 cells by western blotting by Ito et al. (2002)
127

.  

     The expression of glucose transporters in the lung cancer cell line H460 was 

determined using oligonucleotide DNA microarray
128

. Compared to a control pool of 

RNA, levels of GLUT1 in H460 cells were found to be increased and GLUT3 expression 

was 1.5-1.7 fold higher than the control. Further in vitro studies are required to establish 

the basal expression of GLUTs in lung cancer cell lines.  

 

1.6.3 Glucose Transporter Expression in Breast Tumours and Cancer Cell Lines   

     Mixed evidence exists in the literature in regards to GLUT1 expression and breast 

cancer. Younes et al. found GLUT1 expression in only 42% of tumours and their findings 

are supported by subsequent studies in which GLUT1 was detected in only a portion of 

breast cancer tumours
129-131

. Contrary to these reports, Godoy et al. reported positive 

staining in 91% of the invasive ductal carcinomas analyzed with immunohistochemistry 

and high expression has been reported in other studies as well
132-134

. It is possible these 
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conflicting results are due to the method used to detect GLUT1 (immunohistochemistry 

vs. PCR) or differences in the histological types of breast cancer examined. 

     Expression of glucose transporter proteins that are not present in corresponding 

healthy cells has been documented in breast cancer
107

. This was observed in a study by 

Rogers et al. (2003) where GLUT12 expression at the mRNA and protein level was 

found in primary human breast cancers but not normal breast epithelium
42

. Furthermore, 

GLUT5 is highly expressed in human breast cancer but is absent in normal human breast 

tissue
135

. The presence of a high affinity fructose transporter (GLUT5) in neoplastic 

breast tissue indicates human breast cancer cells may have a specialized capacity to 

transport fructose. GLUT3 was detected at the mRNA and protein level in breast cancer 

tumours and found to be expressed at significantly higher levels in poorly differentiated 

tumours
136

, suggesting this transporter may a useful marker in breast cancer staging.  

     Breast cancer cell lines are the most extensively studied with respect to GLUT 

expression. Hexose uptake assays and immunoblotting experiments have revealed that 

the breast carcinoma cell lines MCF-7 and MDA-468 express the glucose transporters 

GLUT1, GLUT2 and GLUT5
135

. GLUT1 expression is found more consistently in breast 

cancer cell lines than in tumours. When the invasiveness of the human breast cancer lines 

MCF-7, MDA-MB-435 and MDA-MB-231 was measured using an in vitro assay and 

compared with GLUT expression, it was found that GLUT1 protein levels increased with 

invasive potential
137

. GLUT2 and GLUT5, on the other hand, were found to be inversely 

associated with invasiveness
126

. GLUT3 was also detected in all three cell lines but did 

correlate with invasiveness.  Therefore, data regarding expression of specific GLUTs in 

cancer cell lines may be indicative of prognosis in breast cancers.  
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      Estrogen-receptor positive MCF-7 cells and estrogen-receptor negative MDA-MB-

231 cells are used to represent models of early- and late-stage breast cancer, respectively. 

Since both cell lines display high rates of fructose transport and increased levels of 

GLUT5 mRNA and protein, Chan et al. performed GLUT5 knockdown by antisense 

oligonucleotide and found a decrease in cell proliferation
138

. This suggests gene 

silencing/down regulation of GLUT5 as an attractive therapy for breast cancer because it 

was effective in both an early and late stage model of breast cancer. 

     The GLUT12 protein has been demonstrated in the breast cancer cell lines MCF-7 and 

T-47D
16,41

 while no detection was observed in the MDA-MB-231 and MDA-MB-435 cell 

lines. Expression of this transporter in other breast cancer cell lines remains to be 

investigated.  

 

1.6.4 Glucose Transporter Expression in Prostate Tumours and Cancer Cell Lines 

     Limited and conflicting evidence exists regarding GLUT expression in prostate 

cancer. A study using immunohistochemistry found that while healthy prostate tissue 

expressed GLUT3 and GLUT5, prostate carcinoma did not
132

. In this study GLUT1 was 

detected in prostate carcinoma at lower expression levels than in the normal tissue
132

, 

however other studies have failed to detect any GLUT1 protein expression in prostate 

tumours
139-141

. The protein responsible for glucose transport in prostate cancer may be 

GLUT12 as it was detected both at the mRNA and protein level in hyperplastic tissue 

sections
107

. Additionally, GLUT11 mRNA has been found to be up-regulated in prostate 

cancer as compared to benign prostate tissue
141

.  
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     The evidence regarding GLUT expression in prostate cancer cell lines is also 

extremely limited. GLUT1 mRNA has been detected in the DU145, PC-3 and LNCaP 

prostate cancer cell lines
142

. Additionally, a study using LNCaP cells and its derivatives 

C4, C4-2 and C4-2B indicated the presence of GLUT1 and GLUT12 mRNA in all cell 

lines examined
107

. Western blot analysis and immunofluorescence revealed the presence 

of the GLUT1 and GLUT12 proteins in these cell lines as well. These results are in 

contrast to the expression pattern observed in malignant prostate tissue which was 

negative for the GLUT1 protein
107

. Thus there is a need to address the relationship 

between GLUT expression in cancer cell lines and human tissues of the same cancer 

type.  

 

1.7 Rationale 

     It is well established that tumour cells display an increased rate of glucose uptake and 

utilization compared to non-cancerous cells
4,143

. Therefore, it is important to understand 

the mechanisms by which these processes are achieved. Tumour cells may compensate 

by upregulating GLUT proteins. This hypothesis is supported by evidence that elevated 

expression of glucose transporters has been observed in most cancers
144

. Moreover, some 

cancers also show an abnormal tissue expression pattern compared to healthy 

tissues
42,132,135

. Deregulated expression of GLUTs, with different hexose affinities, may 

allow cancer cells to optimize their energy supply providing a fundamental advantage for 

growth.  

     Elevated uptake of glucose allows tumours to be visualized using FDG-PET, currently 

used for the diagnosis and staging of cancers. Higher glucose uptake on FDG-PET scans 
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is often correlated with more aggressive and advanced-staged tumours
145.

. A positive 

relationship between tumour retention of FDG and GLUT1 expression has been observed 

in a number of cancer types
146-151

 suggesting that GLUT1 may serve as a prognostic 

biomarker in tumours. However, some studies have failed to find an association between 

FDG uptake and GLUT1 expression
152,153

. This indicates that other GLUTs may be 

responsible for the increased glucose uptake in these tumours and warrants the 

investigation of the expression of multiple GLUTs in cancer. 

     Another protein potentially responsible for the high rates of glucose uptake observed 

in cancer cells is the high affinity transporter GLUT3. Previous studies have detected this 

protein in various tumours
71,132,154

, however its expression in cancer cell lines is less 

clear. Given the stimulatory effect of mitogens and growth factors on cancer cell growth, 

it is also important to understand cancer expression patterns of GLUTs that are regulated 

by these substances. These include GLUT4, normally restricted to insulin-sensitive 

tissues, and GLUT12 which has been described in breast and prostate tumours
42,107

. It is 

possible stimulation by mitogens and/or growth factors increase the expression of these 

GLUTs and GLUT4- and GLUT12-mediated glucose uptake by cancer cells. 

Furthermore, GLUT4 and GLUT12 have been suggested to be transcriptionally repressed 

by the tumor suppressor p53, indicating these proteins may facilitate tumor growth in 

cancers with mutated p53
81,105

.  

     Limited data exists regarding the expression of GLUT4 in cancer. Previous studies 

show it has been sporadically detected in lung cancer tissue
140,152

, however its expression 

has not been investigated in cancer cell lines. Although GLUT12 was originally 

identified in a breast cancer cell line, little work has been done subsequently to 
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characterize its expression in other cancer cells. Although there is some evidence to 

indicate that GLUTs 5, 8, 10 and 11 are expressed in cancer
140

, the focus of this study 

was restricted to GLUT1, GLUT3, GLUT4 and GLUT12 due to the limited amount of 

commercially available products detecting GLUTs. Examining expression of the selected 

transporters in cancer cell lines will provide insight regarding which transporters may be 

facilitating the high rates of glucose uptake in tumours.  

     Support for GLUT expression as a prognostic indicator comes from studies that have 

found the expression of GLUTs to be associated with poor survival. This has been best 

studied with regards to GLUT1 and GLUT3. High expression levels of GLUT1 has been 

shown to be an indicator of poor survival in lung
71

, pancreatic
155

, colorectal
156

, ovarian
157

, 

breast
158

, bladder
159

 esophageal
160

 and oral cancer
161

 . A high level of GLUT3 expression 

has been shown to be associated with poor survival in lung
71

, laryngeal
162

 and oral 

cancer
161

. Furthermore, GLUT1 is an established marker of hypoxia which is a poor 

prognostic factor due its involvement in tumour resistance to radiotherapy and 

chemotherapy
163

. With increased knowledge about GLUT expression in aggressive 

cancers, these proteins can be used to help evaluate anticancer therapies by serving as 

biomarkers of tumour response to treatments. Therefore, understanding GLUT expression 

in cancer will aid in both monitoring tumours and planning a course of therapy. 

     Given that glucose uptake across the plasma membrane is considered the rate-limiting 

step for glucose consumption in tumour cells, this represents an ideal point to target for 

cancer therapy. Recent studies have focused on inhibiting the glucose transporter GLUT1 

in order to prevent cancer cell growth. Incubation with an anti-GLUT1 antibody was 

shown to decrease cell proliferation and induce apoptosis in NSCLC and breast cancer 
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cell lines
164

. In addition, the anti-GLUT1 antibody was found to have a synergistic effect 

with the anti-cancer drugs cisplatin, paclitaxel and gefitinib in enhancing apoptosis. The 

glucose transporter inhibitor fasentin has been shown to increase apoptosis in prostate 

cancer and leukemia cells by sensitizing these cells to the death ligand FAS
165

. 

Furthermore, the flavonoid apigenin has been found to inhibit proliferation of prostate 

cancer cells by decreasing GLUT1 expression at both the mRNA and protein level
166

. 

Taken together, the results of these studies suggest that preventing glucose uptake by 

blocking glucose transporters is an attractive therapeutic strategy for the treatment of 

various cancers. Identification of novel inhibitors of glucose transport is important and 

the small-molecule compounds WZB27 and WZB115 have recently been shown to 

inhibit glucose transport in lung, breast, colon and cervical cancer cells more potently 

than fasentin or apigenin
167

. 

     The increased dependence of tumour cells on sugars and the glycolytic pathway to 

generate ATP, along with the potential use of GLUTs as biomarkers and targets for 

therapeutics, provide important reasons to study GLUT expression in cancers. Although 

studies have indicated that cancer cells have increased and deregulated expression of 

GLUTs, a comprehensive understanding of the basal levels of glucose transporter 

expression in cancer is lacking. Expression and localization of the GLUTs in cancer cell 

lines has been studied less extensively than in tumour models. It is important to study 

GLUT expression in cell culture models as a first step in understanding the mechanism of 

glucose uptake by cancer cells and the function of these proteins. By using cancer cell 

lines, a uniform population of cells is available that will provide information about 

baseline expression patterns of GLUTs, not affected by hypoxia or treatment a patient 
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may be receiving. Established cancer cell lines are readily attainable and can be easily 

manipulated in future studies determining the function and regulation of GLUT proteins 

in cancer. Therefore, there are many advantages to studying GLUT expression in cancer 

cell lines rather than tumours.  

     As certain mutations have been shown to affect glucose transporter expression and 

distribution (See Regulation of Glucose Transporters), it is important to include cancer 

cells with different mutation statuses in the analysis of GLUT expression in cancer. The 

investigation of glucose transporter expression in a number of cancer cell lines, with 

different mutations and histologies, is important to provide a clear understanding of the 

role of GLUT proteins in cancer cell metabolism. 

 

1.8 Hypotheses  

In the present study it is hypothesized that: 

1) Lung, breast and prostate cancer cells display an increased and abnormal pattern 

of GLUT expression compared to non-cancerous cells of the corresponding tissue 

type  

2) Mutation status of oncogenes and tumour suppressor genes mediates specific 

patterns of GLUT expression  

3) Epithelial tumour cells may express multiple GLUTs  

4) Expression patterns of GLUTs in human tumours will be similar to that detected 

in tissue culture models of cancer  
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1.9 Objectives  

The primary objectives of the study are to: 

1) Examine the expression of the glucose transporters GLUT1, GLUT3, GLUT4 and 

GLUT12 at the mRNA level in lung, breast and prostate cancer cell lines as well 

as the corresponding non-cancerous cell lines of that tissue  

2) Examine the expression of the glucose transporters GLUT1, GLUT3, GLUT4 and 

GLUT12 at the protein level in lung, breast and prostate cancer cell lines as well 

as the corresponding non-cancerous cell lines of that tissue 

3) Determine the expression of GLUT1 and GLUT3 in tumours from nude mice 

xenografted with cancer cell lines  
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CHAPTER 2: METHODOLOGY 

2.1 Materials 

All tissue culture materials including Dulbecco’s Modified Eagle Medium (D-MEM), 

Roswell Park Memorial Institute (RPMI)-1640 medium, fetal bovine serum (FBS), 

trypsin and antibiotic were purchased from GIBCO Life Technologies (Burlington, ON). 

Antibodies against GLUT3, GLUT4 and GLUT12 were purchased from Abcam 

(Cambridge, MA) and antibodies against GLUT1 and GLUT4 were purchased from 

Serotec (Toronto, ON). HRP-conjugated anti-rabbit secondary antibody and actin 

antibody were purchased from New England Biolabs (Mississauga, ON). Alexa Fluor 

568 antibody was obtained from Molecular Probes (Hamilton, ON). The ECL Western 

Blotting Analysis System and SYBR Premix Ex TAQ DNA were obtained through 

Thermo-Fischer (Ottawa, ON). Polyvinylidene difluoride (PVDF) membranes, molecular 

weight protein standards and electrophoresis reagents were purchased from BioRad 

(Mississauga, ON). The RNeasy Mini Kit was purchased from Qiagen (Mississauga, ON) 

and SuperScript III First-Strand Synthesis SuperMix from Invitrogen (Burlington, ON). 

DNA-free was obtained from Ambion (Austin, TX). Vector biotinylated secondary, ABC 

reagent and Novared were obtained from Vector Laboratories (Burlington, ON). All other 

chemicals, including NaOH, HCL, NaCl and albumin bovine serum (BSA) were 

purchased from Sigma (St. Louis, MO). The MRC-5, SK-MES, H460, A549, H1299, 

184B5, MDA-MB-231, MCF-7, PNT1A, 22Rv1, LNCaP and PC-3 cells were purchased 

from American Type Culture Collection (ATCC). The L6 cells were a kind gift of Dr. A. 

Klip (Hospital for Sick Children, Toronto, ON). The C2C12 cell lysate was a kind gift 

from Dr. Jeff Stuart (Brock University, St. Catharines, ON).  The anti-GLUT1, -GLUT3 
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and -GLUT4 small interfering RNA (siRNA) transfection kit was obtained from Qiagen 

(Mississauga, Ontario, Canada). 

 

2.2 Buffers and Solutions  

The composition of each buffer and solution that will be used to perform the experiments 

is presented below: 

Cell Lysis: 

PBS Washing Buffer: 137mM NaCl, 2.7mM KCl, 1.5mM KH2PO4, 8.1mM NA2HPO4, 

0.68mM CaCl2, 0.49mM MgCl2, add water to 1L and adjust pH to 7.4.  

SDS Sample Buffer: 62.5mM Tris-HCl (pH 6.8), 10% glycerol 2% w/v SDS,  

0.01% bromophenol blue, add 0.05% β-mercaptoethanol before use. 

 

Cell Lysis Buffer: 20mM Tris (pH 7.5), 150mM NaCl, 1mM EDTA, 1mM EGTA, 1% 

Triton X-100, 2.5mM sodium pyrophosphate, 1mM β-glycerolphosphate, 1mM Na3VO4, 

1µg/ml leupeptin, and add 1mM PMSF before use and chill on ice.  

 

Western Blotting: 

1.5M Tris-HCl Buffer (pH 8.8): 27.23g Tris base (18.15g/100ml), 80ml deionized water, 

adjust to pH 8.8 with 6N HCl. Bring to total volume 150ml with deionized water. 

0.5M Tris-HCl Buffer (pH 6.8): 6g Tris base, 60ml deionized water, adjust to pH 6.8 with 

6N HCl and bring total volume to 100ml with deionized water. 

Resolving Gel Buffer: 33% v/v of 30% Acrylamide/ Bis Solution, .38M Tris-HCl, pH 

8.8, .l% w/v SDS, bring to total volume 30ml with deionized water. Right before pouring 

the gel, add 150µl 10% APS made fresh daily and 15µl TEMED and swirl.  

Stacking Gel Buffer: 13.3% v/v of 30% Acrylamide/ Bis Solution, .13M Tris-HCl, pH 

6.8, .1% w/v SDS, bring to total volume 30ml with deionized water. Right before pouring 

the gel, add 150µl 10% APS made fresh daily and 30µl TEMED and swirl. 

10x TBS (Tris-buffered saline): .20M Tris base, 1.65M NaCl, adjust pH to 7.6 with HCl. 

Use at 1x TBS. Dissolve in 1L of water.  

Blocking Buffer:1x TBS, 0.1% Tween- 20 (100%), 5% w/v nonfat dry milk. Dissolved in 

water.  
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Wash Buffer TBS/T: 1x TBS and 0.1% Tween- 20 

Primary Antibody Dilution Buffer: 5% w/v nonfat dry milk in TBS/T 

10x Electrode Running Buffer: .13M Tris base, .96M Glycine, .017M SDS. Dissolve and 

bring volume to 500ml with DD water. Do not adjust pH with acid or base. Dilute 50ml 

of 10x stock with 450ml water before use. 

Transfer Buffer: 25mM Tris base, 0.2M glycine, 20% methanol, dissolved in 800ml of 

water.  

Polymerase Chain Reaction (PCR): 

cDNA Synthesis Mix: 2 l 10X Reverse Transcriptase (RT) Buffer, 4 l 25mM MgCl2, 2 

l 0.1 M Dithiothreitol (DTT), 1 l RNaseOUT (40 U/ l) and 1 l Superscript III RT 

(200 U/ l) per reaction.   

Primer Pair Master Mix: 0.5 l of 10 pmol/ l primer FORWARD, 0.5 l of 10 pmol/ l 

primer REVERSE, 2.75 l H20 and 6.25 l SYBR Green Premix per reaction.  

 

2.4 Cell Culture Techniques 

A549, H1299, H460, PC-3, PNT1A and 22Rv1 cell lines were grown in RPMI media 

supplemented with 10% (v/v) FBS and 1% (v/v) antibiotic-antimycotic solution (100 

U/ml penicillin, 100 g/ml streptomycin and 250 ng/ml amphotericin B). LNCaP cells 

were grown in RPMI media supplemented with 10% (v/v) FBS 1% (v/v) antibiotic-

antimycotic solution, 10 mM HEPES buffer and 1 mM sodium pyruvate. SK-MES, 

MRC-5, MCF-7 and MDA-MB-231 cell lines were grown in D-MEM media 

supplemented with 10% (v/v) FBS, and 1% (v/v) antibiotic-antimycotic solution. The 

cells were maintained until they reached 80-90% confluency with the media replaced 

every 2-3 days.  
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2.5 Cell Pellet Preparation  

All cell lines were grown in 75cm
2
 flasks and two flasks per passage per cell line were 

collected as cell pellets. Once 80-90% cell confluency was reached, cells were washed 

twice with PBS. Two milliliters of trypsin was added to each flask to detach cells which 

were collected in PBS and centrifuged at 10,000 rpm for 5 minutes. The PBS was 

aspirated from each tube and the cell pellet was washed by adding 1 mL of PBS to each 

tube and breaking the pellet. The cells in PBS were centrifuged again at 4,000 rpm for 5 

minutes. The PBS was aspirated from the tube and the samples were stored immediately 

at -80°C for further use in Real-Time PCR.  

 

2.6 Real-Time PCR 

Total RNA was purified from cell pellets using the Qiagen RNeasy Mini Kit following 

the manufacturer’s protocol. After RNA was eluted it was treated with the DNA-free kit 

by Ambion to eliminate any DNA contamination within the RNA samples. Next, a 

spectrometer was used to determine the concentration of the RNA samples. Equal 

amounts of RNA (up to 5 g) were used to synthesize cDNA using the SuperScript III 

First-Strand Synthesis Supermix protocol by Invitrogen. Previously designed forward 

(FOR) and reverse (REV) primers were used to amplify human GLUT3, GLUT4, 

GLUT12, RPII-1 and RPII-2. These primers were designed based on modifications to 

existing PCR primer pairs for gene expression detection and quantification listed in 

PrimerBank, with annealing temperatures of 60°C (http://pga.mgh.harvard.edu/primer- 

bank/index.html). The GLUT 1 FOR and REV primers were designed with assistance 

from a post-doctorate fellow using Primer Bank. These primers have been efficiency 

http://pga.mgh.harvard.edu/primer-%20bank/index.html
http://pga.mgh.harvard.edu/primer-%20bank/index.html
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tested and the integrity of the product has been verified by gel electrophoresis (Figure 

s.1). 

The sequence of the primers used are as follows:  

GLUT1: FOR 5’-CCTGCAGGAGATGAAGGAAG-3’  

REV 5’-TCGAAGATGCTCGTGGAGTA-3’ 

GLUT3: FOR 5’-GCTGGGCATCGTTGTTGGA -3’  

REV 5’-GCACTTTGTAGGATAGCAGGAAG -3’ 

GLUT4: FOR 5’-TCG GGC TTC CAA CAG ATA GG -3’  

REV 5’-AGC CAC GTC TCA TTG TAG CTC -3’ 

GLUT12: FOR 5’-CGG TTT CTG GTG ATG AAA GG -3’  

REV 5’-TCC GCA TGT TGT CTT TTG AA -3’ 

RPII-1: FOR 5’-GGGTG CTGAGTGAGAAGGAC-3’  

REV 5’-AGCCAT CAAAGGAGATGACG-3’  

RPII-2: FOR 5’- GAAACGGTGGACGTGCTTAT-3’  

 REV 5’-TCTC CATGCCATACTTGCAC-3’  

     The cycling conditions used are as follows: 95°C for 1 min, 40 total cycles of 95°C for 

10 sec, 60°C for 25 sec, and melt peak determination (95°C for 15 sec, increasing from 

65°C to 95°C with 0.5°C increments for 5 sec each). Parallel reactions were carried out 

for the RPII housekeeping gene to calculate relative mRNA levels by real time PCR 

using the 2
-[Δ][Δ]Ct

 method. RPII-1 was used for GLUT3, GLUT4 and GLUT12, and RPII-

2 was used for GLUT1.  
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2.7 Cell Lysis  

All cell lines were grown in 75cm
2
 flasks and two flasks per passage per cell line were 

collected for cell lysates. Once 80-90% cell confluency was reached, cells were washed 

twice with PBS and placed on ice. PBS was removed and 1.5 mL of lysis buffer was 

added to each flask. Cells were lysed and collected into 1.5 mL eppendorf tubes and 

stored at -20°C. 

 

2.8 Protein Assay 

Protein assay dye (BioRad) was prepared and filtered for protein concentration 

determination. A standard protein curve was created using BSA protein standards at 0, 

0.1, 0.2, 0.4, 0.6, 0.8, 0.9 and 1.0mg/ml. 10 l of each protein standard and the same of 

each of cell lysate was transferred in triplicate into separate wells of a 96-well plate. 

200 l of protein assay dye was then added to each well. A microplate was used to 

measure absorbance at 595nm and the final concentration of the protein samples was 

determined.  

 

2.9 Western Blotting  

An equal amount of SDS sample buffer was added to each cell lysate and the samples 

were then boiled for 5 minutes followed by centrifugation for 5 minutes. A total of 30-50 

μg of each protein was subjected to SDS-PAGE electrophoresis on 10% polyacrylamide 

gels. Samples were then transferred from the gel to a PVDF membrane and incubated in 

blocking buffer for 1 h at room temperature. The membrane was then incubated in 

primary antibody solution overnight at 4°C. After washing in TBS/T, the membrane was 
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incubated with the appropriate HRP-conjugated secondary antibody for 1h at room 

temperature. Signals were detected using the ECL Plus Western Blotting Detection 

System and exposure to film. Densitometric analysis was performed using ImageJ 

software. 

 

2.10 Immunohistochemistry 

Tumour tissues fixed in formalin from Balb/c nude mice xenografted with A549, H1299 

and PC-3 cells were obtained from the Translational Biology lab at the Juravinski Cancer 

Centre, Hamilton, ON. Four µm thick tumour sections were mounted onto slides and then 

deparaffinized by washes in xylene, ethanol and distilled water, respectively. Antigen 

unmasking was performed by boiling slides in 10 mM sodium citrate buffer for 30 

minutes. Slides were then blocked with 5% normal goat serum in TBS/T at room 

temperature for one hour followed by incubation with primary antibody against GLUT-1 

(1:250 dilution) or GLUT-3 (1:100 dilution) overnight at 4°C. Slides were incubated in 

Vector biotinylated secondary for 30 minutes, washed in TBS/T and then incubated in 

Vector ABC reagent for an additional 30 minutes. Vector Novared was used to stain 

slides that were then washed in distilled water and counterstained with hematoxylin. 

Slides were dehydrated with washes in ethanol followed by xylene and then mounted. 

Signals of antibody localization in the plasma membrane and cytoplasm were evaluated 

by a trained pathologist.  
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2.11 Immunofluorescence Microscopy  

Cells were grown on coverslips in 6-well dishes then washed with cold PBS and fixed 

with 4% formaldehyde in PBS for 20 minutes at room temperature. Cells were washed 

with PBS then permeabilized and blocked with 0.5% triton-X and 5% FBS in PBS for 

one hour at room temperature. The cells were then incubated with primary antibody 

against GLUT-4 (1:100 dilution) overnight at 4°C. The slides were washed with PBS and 

incubated with anti-rabbit secondary antibody conjugated to Alexa Fluor 568 for one 

hour in the dark. After staining with DAPI for 5 minutes, the slides were mounted and 

examined immediately using appropriate excitation wavelength.  

 

2.12 Small Interfering RNA (siRNA) 

Cells were incubated with Hyperfect transfection reagent without or with siRNA against 

GLUTs for 24 hours. The transfection reagent was removed and cells were incubated for 

an additional 72 hours before collection or fixation.  

 

2.13 Statistical Analysis  

Real time PCR Ct values were normalized first to the housekeeping gene RPII-1 

(GLUT3, GLUT4, GLUT12) or RPII-II (GLUT1). Values were then normalized to the 

appropriate noncancerous cell line (Figures 13-21) or to MRC-5 (Figures s.4-7) or the 

lowest GLUT expressed within that cell line (Figures s.8-10). Arbitrary densitometric 

values obtained from western blots were normalized first to the corresponding actin 

bands, then normalized to the appropriate noncancerous cell line. Statistical analysis was 

performed using SPSS v19.0 software. The results are presented as a mean +/- SEM of at 
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least three separate experiments. The assumptions of analysis of variance (ANOVA) were 

checked and data was analyzed by one-way ANOVA followed by a Tukey post-test to 

determine statistical differences between mean expression in cancer cells and the 

respective control cell line. Statistical significance was assumed at P<0.05.  
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CHAPTER 3: RESULTS 

3.1 GLUT1 Expression in Cancer Cells  

3.1.1 Lung Cancer Cells 

     The expression of GLUT1 was evaluated at the basal mRNA level through 

quantitative Real-Time PCR in SK-MES-1, H460, A549 and H1299 epithelial lung 

cancer cell lines and the noncancerous lung fibroblast line MRC-5 (Figure 13 A). 

Relative quantification revealed that GLUT1 mRNA levels were elevated in SK-MES-1 

cells compared to MRC-5 cells (4.30  0.61, p<0.01). GLUT1 mRNA levels were also 

higher in H460 cells (1.93  0.63, NS), while A549 (0.7  0.059, NS) and H1299 (.12  

0.004, NS) cells showed lower levels of GLUT1 mRNA in comparison to the MRC-5 cell 

line.  

     GLUT1 protein expression has been documented in a number of cancers
16, 29, 132

. 

Western blotting was performed to examine whether the observed mRNA expression of 

GLUT1 in the lung cancer cell lines corresponded with expression of the GLUT1 protein  

(Figure 13 B). Similar to the mRNA data, SK-MES-1 cells had higher levels of GLUT1 

protein compared to the MRC-5 cell line (193.75%  9.87%, p<0.01). Similar patterns 

were observed between the mRNA and protein expression of GLUT1 in the H460 

(138.84  27.53%, NS) and A549 (55.17  13.78%, NS) cell lines. In contrast to the low 

mRNA expression of GLUT1 in the H1299 cell line, expression of GLUT1 protein was 

88% higher compared to MRC-5 cells (188.67  6.79%, p<0.05).    

3.1.2 Breast Cancer Cells 

     GLUT1 mRNA expression in the breast cancer cell lines MDA-MB-231 and MCF-7 

was normalized to the mammary epithelial cell line 184B5 (Figure 14 A). The estrogen- 
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independent cell line MDA-MB-231 showed 1.57 fold higher GLUT1 mRNA expression 

compared to 184B5 cells (1.57  0.32, NS), while estrogen-responsive MCF-7 cells had 

lower expression than the noncancerous mammary cell line (0.33  0.037, NS).  

 

 

 

Figure 13. GLUT1 expression in lung cancer cells. A) Basal GLUT1 mRNA levels were 

determined by Real Time PCR and are expressed as a fold change of the lung fibroblast 

cell line MRC-5. B) Whole cell lysates were used in immunoblotting with a specific 

antibody that recognizes GLUT1. A representative immunoblot is shown. The 

densitometry of the bands expressed in arbitrary units was calculated using Image J 

software. Protein levels are expressed as a percentage of the MRC-5 cell line. Results 

represent the mean ± SEM of three to four independent experiments. (*p<0.05, 

**p<0.01).  
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     GLUT1 protein expression in the breast cancer cell lines was analyzed as arbitrary 

values (Figure 14 C) and normalized to the noncancerous cell line MRC-5 (Figure 14 D)    

 as it was not possible to obtain 184B5 cells for cell lysate preparation during the course 

of the study. Densitometric analysis of western blotting revealed that like the mRNA 

data, the MDA-MB-231 cell line showed a stronger expression of the GLUT1 protein 

than MCF-7 cells . When compared to the MRC-5 cell line, the MDA-MB-231 (232.9  

 

Figure 14. GLUT1 expression in breast cancer cells. A) Basal GLUT1 mRNA levels were 

determined by Real Time PCR and are expressed as a fold change of the mammary epithelial 

cell line 184B5. B) Whole cell lysates were used in immunoblotting with a specific antibody 

that recognizes GLUT1. A representative immunoblot is shown. C) The densitometry of the 

bands expressed in arbitrary units was calculated using Image J software. Protein levels are 

expressed as a comparison of arbitrary units between the MDA-MB-231 and MCF-7 cell line. 

D) Protein levels are expressed as a percentage of the lung fibroblast MRC-5 cell line. Results 

represent the mean ± SEM of three to four independent experiments. 
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86.27, NS) cell line showed a 2.3-fold higher level of GLUT1 protein while the MCF-7 

cell line (25.57  12.39, NS) expressed GLUT1 at a lower level than the lung fibroblast 

line.   

3.1.3 Prostate Cancer Cells 

     GLUT1 mRNA expression was examined in the prostate cancer cell lines 22Rv1, 

LNCaP and PC-3 and expressed as a fold of the noncancerous prostate epithelial cell line 

PNT1A (Figure 15 A). GLUT1 expression was determined to be higher in all prostate 

cancer cell lines than in PNT1A cells. The androgen responsive cell lines 22Rv1 (1.83  

0.42, NS) and LNCaP (2.34  0.68, NS) showed higher GLUT1 mRNA levels while the 

androgen insensitive cell line PC-3 showed an 8.88 fold increase in GLUT1 expression 

(8.88  1.21, p<0.001).  

     Different patterns were observed with respect to protein expression, the 22Rv1 (8.82  

1.07%, p<0.05) cell line was found to express the GLUT1 protein at a lower level than 

the PNT1A cell line and the LNCaP (37.22  16.0%, p=0.077) cell line showed low 

GLUT1 expression compared to PNT1A as well (Figure 15 B). Consistent with the 

mRNA data, PC-3 cells showed higher GLUT1 expression compared to PNT1A cells 

(154.49  26.08%, NS).  

     In order to determine the specificity of the GLUT1 antibody used in western blotting, 

siRNA was used to silence GLUT1 in H1299 cells. Transfection with GLUT1 siRNA 

resulted in down-regulation of a band at 50 kDa suggesting this to be the specific band 

for the protein (Figure s.2 A). 
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3.2 GLUT3 Expression in Cancer Cells  

3.2.1 Lung Cancer Cells  

     GLUT3 mRNA has been reported to be ubiquitously expressed in cells
15

. The H460 

(5.05  0.44, p<0.01) and A549 (2.62  0.18, p<0.05) lung cancer cell lines showed 

higher levels of GLUT3 mRNA compared to the MRC-5 cell line (Figure 16 A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. GLUT1 expression in prostate cancer cells. A) Basal GLUT1 mRNA levels 

were determined by Real Time PCR and are expressed as a fold change of the prostate 

epithelial cell line PNT1A. B) Whole cell lysates were used in immunoblotting with a 

specific antibody that recognizes GLUT1. A representative immunoblot is shown. The 

densitometry of the bands expressed in arbitrary units was calculated using Image J 

software. Protein levels are expressed as a percentage of the PNT1A cell line. Results 

represent the mean ± SEM of three to four independent experiments. (*p<0.05, 

***p<0.001).  
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Figure 16. GLUT3 expression in lung cancer cells. A) Basal GLUT3 mRNA levels were 

determined by Real Time PCR and are expressed as a fold change of the lung fibroblast 

cell line MRC-5. B) Whole cell lysates were used in immunoblotting with a specific 

antibody that recognizes GLUT3. A representative immunoblot is shown. The 

densitometry of the bands expressed in arbitrary units was calculated using Image J 

software. Protein levels are expressed as a percentage of the MRC-5 cell line. Results 

represent the mean ± SEM of three to four independent experiments. (*p<0.05, 

**p<0.01,***p<0.001).  

 

Both SK-MES-1 (0.87  0.38, NS) and H1299 (0.85  0.15, NS) cells expressed GLUT3 

mRNA at a level lower than that found in the MRC-5 cell line.   

     GLUT3 protein was not detected in the MRC-5 cell line, this is consistent with reports 

of GLUT3 expression primarily in the brain and testis
15

 (Figure 16 B). In contrast, 

GLUT3 protein was detected in all of the lung cancer cell lines (Figure 16 B).  The SK-

MES-1 (398.67  58.78%, NS) and A549 (943.47  212.38%, NS) cancer cell lines were  
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found to have the lowest expression of the GLUT3 protein. H460 (2143.71  367.34%, 

p>0.01) cells showed approximately 21-fold higher levels of GLUT3 protein compared to 

MRC-5, and the H1299 (6976.23  600.49%, p>0.001) cell line showed the highest 

expression of GLUT3 at 70-fold higher than the noncancerous lung fibroblast cells.  

3.2.2 Breast Cancer Cells 

     GLUT3 mRNA expression in the MDA-MB-231 breast cancer cell line was similar to 

that found in the noncancerous 184B5 mammary cells (1.05 0.11, NS) (Figure 17 A). 

MCF-7 cells showed minimal GLUT3 mRNA expression that was lower than the levels 

found in the 184B5 cell line (0.001  0.0005, p<0.001). 

     Both breast cancer cell lines displayed GLUT3 expression at the protein level (Figure 

17 B). In contrast to the low GLUT3 mRNA levels in MCF-7 cells, this cell line 

expressed the protein at a similar level to the MDA-MB-231 cell line. When expressed as 

a percentage of the MRC-5 cell line, both the MDA-MB-231 (1690.93  213.31, 

p<0.001) and MCF-7 (1189.86  170.22, p<0.01) breast cancer cell lines showed higher 

expression of the GLUT3 protein.  

3.2.3 Prostate Cancer Cells  

     Expression of GLUT3 mRNA was higher in the 22Rv1 prostate cell line compared to 

the noncancerous PNT1A prostate epithelial cells (9.11  3.01, p<0.05) (Figure 18 A). 

Both the LNCaP (0.029  0.018, NS and PC-3 cell lines showed little expression of 

GLUT3 mRNA (0.0006  0.0002, NS). 

     GLUT3 protein was detected in the PNT1A cell line (Figure 18 B), although this has 

not been reported in previous studies, healthy prostate tissue was shown to express 
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Figure 17. GLUT3 expression in breast cancer cells. A) Basal GLUT3 mRNA levels were 

determined by Real Time PCR and are expressed as a fold change of the mammary 

epithelial cell line 184B5. B) Whole cell lysates were used in immunoblotting with a 

specific antibody that recognizes GLUT3. A representative immunoblot is shown. C) The 

densitometry of the bands expressed in arbitrary units was calculated using Image J 

software. Protein levels are expressed as a comparison of arbitrary units between the MDA-

MB-231 and MCF-7 cell line. D) Protein levels are expressed as a percentage of the lung 

fibroblast MRC-5 cell line. Results represent the mean ± SEM of three to four independent 

experiments.  (**p<0.01,***p<0.001).  

 

GLUT3 through immunohistochemistry
132

. Unlike the high GLUT3 expression that was 

seen at the mRNA level, there was very low detection of the GLUT3 protein in the 

22Rv1 cell line (19.39  9.51%, NS) (Figure 18 B). LNCaP cells were also found to 

express GLUT3 at a lower level than the PNT1A cell line (48.12  20.3%, NS). The PC-3 
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cell line, with low GLUT3 mRNA expression, had the greatest GLUT3 protein 

expression at 1.82-fold higher than that found in PNT1A cells (182.140  45.75%, NS).  

     The specificity of the GLUT3 antibody used was also tested. When siRNA was used 

to silence GLUT3 in H1299 cells this resulted in down-regulation of a band at 45 kDa 

suggesting this to be the specific band for the protein (Figure s.2 B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. GLUT3 expression in prostate cancer cells. A) Basal GLUT3 mRNA levels 

were determined by Real Time PCR and are expressed as a fold change of the prostate 

epithelial cell line PNT1A. B) Whole cell lysates were used in immunoblotting with a 

specific antibody that recognizes GLUT3. A representative immunoblot is shown. The 

densitometry of the bands expressed in arbitrary units was calculated using Image J 

software. Protein levels are expressed as a percentage of the PNT1A cell line. Results 

represent the mean ± SEM of three to four independent experiments. (*p<0.05).  
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3.3 GLUT4 Expression in Cancer Cells  

3.3.1 mRNA Expression 

     GLUT4 mRNA expression is largely restricted to brown and white adipose tissue, 

skeletal and cardiac muscle
15

. GLUT4 mRNA was detected in the MRC-5 lung fibroblast 

cell line and to a lower extent in the H460 lung cancer cell line (0.53  0.038, NS) 

(Figure 19 A). A 3-fold increase in GLUT4 mRNA was seen in the SK-MES-1 (3.25  

0.44, p<0.01), A549 (3.37  0.63, p<0.05) and H1299 (3.51  0.45, p<0.01) lung cancer 

cell lines compared to MRC-5 cells.  

     GLUT4 mRNA was detected in the 184B5 mammary cell line and at similar levels in 

the MDA-MB-231 breast cancer cell line (0.9  0.24, NS) (Figure 19 B). MCF-7 cells 

showed 1.5-fold higher GLUT4 mRNA levels compared to the 184B5 cell line (1.5  

0.56, NS). 

     The 22Rv1 (7.39  2.46, NS) and LNCaP (31.67  4.83, p<0.001) prostate cancer cell 

lines showed markedly higher GLUT4 mRNA expression compared to the noncancerous 

PNT1A prostate epithelial cell line (Figure 19 C). PC-3 cells displayed low GLUT4 

expression at the mRNA level (0.59  0.082, NS).   

3.3.2 Protein Expression  

     There was no detection of the GLUT4 protein using western blotting in both whole 

cell lysates (Figure 20 A) and total membrane fractionations (data not shown) of the  

lung, breast and prostate cancer cell lines and the corresponding noncancerous epithelial 

cell lines. GLUT4 protein was detected in a mouse C2C12 myotube sample (Figure 

20A).  

      



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. GLUT4 mRNA expression in cancer cells. A) Basal GLUT4 mRNA levels 

were determined in lung cancer cell lines by Real Time PCR and are expressed as a fold 

change of the lung fibroblast cell line MRC-5. B) Basal GLUT4 mRNA levels were 

determined in breast cancer cell lines by Real Time PCR and are expressed as a fold 

change of the mammary epithelial cell line 184B5. C) Basal GLUT4 mRNA levels were 

determined in prostate cancer cell lines by Real Time PCR and are expressed as a fold 

change of the prostate epithelial cell line PNT1A. Results represent the mean ± SEM of 

three to four independent experiments. (*p<0.05, **p<0.01,***p<0.001).     

      

     In order to determine if cancer cell lines expressed GLUT4 at the protein level, 

immunofluorescence microscopy was employed as another method of protein detection.   

A549 lung cancer cells and MCF-7 breast cancer cells were found to display cytoplasmic 

GLUT4 staining (Figure 20 B-C). L6 rat skeletal muscle cells were examined as a  
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Figure 20. GLUT4 protein expression in cancer cells. A) Whole cell lysates were used in 

immunoblotting with a specific antibody that recognizes GLUT4. This protein was not 

detected in the human cancer cell lines, however the antibody recognized GLUT4 in a 

C2C12 mouse skeletal muscle sample.  A representative immunoblot is shown. A549 (B), 

MCF-7 (C) and L6 rat myotube cells (D) were immunostained with GLUT4 and images 

were obtained from a widefield fluorescent microscope. A representative section from 

each sample is shown. Results are representative of two independent experiments.    

 

positive control and found to also display strong cytoplasmic GLUT4 staining (Figure 20 

D).  

 

3.4 GLUT12 Expression in Cancer Cells  

3.4.1 mRNA Expression  

     GLUT12 mRNA expression is found in insulin-sensitive tissues as well as the small 

intestine, prostate and placenta and mammary gland
41,42

. The SK-MES-1 lung cancer cell 

line showed higher levels of GLUT12 mRNA compared to the MRC-5 cell line (3.22  
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1.26, NS) (Figure 21 A). The H460 (0.124  0.05, NS), A549 (0.44  0.13, NS) and 

H1299 (0.002  0.001, NS) cell lines were found to express low GLUT12 mRNA levels 

compared to MRC-5 cells.  

      In comparison to the 184B5 cell line, MDA-MB-231 (3.42  0.26, p<0.001) breast 

cancer cells showed 3-fold higher levels of GLUT12 mRNA expression (Figure 21 B). 

The GLUT12 transporter was first described in MCF-7 breast cancer cells, consistent 

with these reports GLUT12 mRNA was detected in the MCF-7 (0.07  0.006, p<0.05) 

cell line, however, this was at lower levels than in the 184B5 cell line.  

     Within the prostate cancer cell lines, 22Rv1 (0.16  0.065, NS) cells expressed lower 

GLUT12 mRNA levels than the PNT1A epithelial cell line (Figure 21 C). Both the 

LNCaP (8.58  2.88, p<0.05) and PC-3 (2.47  0.68, NS) cell lines showed higher 

GLUT12 mRNA expression at approximately 8- and 2-fold higher than the noncancerous 

PNT1A cells, respectively.  

 

3.5 GLUT Expression in Xenograft Tumours  

     In order to determine the in vivo expression of GLUT proteins, tumours from Balb/c 

nude mice xenografted with H1299, A549 and PC-3 human cancer cells were 

immunohistochemically examined for the presence of GLUT1 and GLUT3. Faint 

cytoplasmic and discontinuous membrane staining of GLUT1 was observed in the H1299 

tumours (Figure 22 A). This staining appeared to be stronger in the A549 and PC 

tumours (Figure 22 B-C). GLUT3 staining was detected in all three tumour types 

(Figure 23 A-C). The H1299 and A549 tumours showed signs of both faint cytoplasmic 

and discontinuous membrane staining (Figure 23 A-B) while the GLUT3 protein in the  
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Figure 21. GLUT12 mRNA expression in cancer cells. A) Basal GLUT12 mRNA levels 

were determined in lung cancer cell lines by Real Time PCR and are expressed as a fold 

change of the lung fibroblast cell line MRC-5. B) Basal GLUT12 mRNA levels were 

determined in breast cancer cell lines by Real Time PCR and are expressed as a fold 

change of the mammary epithelial cell line 184B5. C) Basal GLUT12 mRNA levels were 

determined in prostate cancer cell lines by Real Time PCR and are expressed as a fold 

change of the prostate epithelial cell line PNT1A. Results represent the mean ± SEM of 

three to four independent experiments. (*p<0.05,***p<0.001).     

 

PC-3 tumours appeared to be mainly cytoplasmic (Figure 23 C). There was no signal 

detected in the slides that were not incubated in primary antibody as a control (Figures 

s.3-4). The specificity of immunohistochemistry staining was confirmed by a clinically 

trained pathologist. 
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Figure 22. GLUT1 expression in tumours from nude mice xenografted with cancer cell lines. Paraffin-

embedded sections of H1299 (A), A549 (B) and PC-3 (C) tumours were incubated with anti-GLUT1 

antibody and analyzed by immunohistochemistry . Representative images of three independent experiments 

are shown. Magnification=18.4X   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. GLUT3 expression in tumours from nude mice xenografted with cancer cell lines. Paraffin-

embedded sections of H1299 (A), A549 (B) and PC-3 (C) tumours were incubated with anti-GLUT3 

antibody and analyzed by immunohistochemistry. Representative images of three independent experiments 

are shown. Magnification=18.4X 
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Table. 7 Summary of GLUT Expression in Cancer Cell Lines by Mutation Status 

Mutation status  Cell Lines  mRNA Expression*   Protein Expression**  

p53 null SK-MES-1  

(Lung squamous cell 

carcinoma) 

GLUT1 (p<0.01) 

 GLUT3 

 GLUT4 (p<0.01) 

 GLUT12 

GLUT1 (p<0.01) 

GLUT3 

H1299 

(Lung 

adenocarcinoma) 

GLUT1 

GLUT3 

GLUT4 (p<0.01) 

GLUT12 

GLUT1 (p<0.05) 

GLUT3 (p<0.001) 

MDA-MB-231 

(Breast 

adenocarcinoma) 

GLUT1 

GLUT3  

GLUT4  

GLUT12 (p<0.001) 

GLUT1 

GLUT3 

22Rv1 

(Prostate 

adenocarcinoma) 

GLUT1 

GLUT3 (p<0.05) 

GLUT4 

GLUT12 

GLUT1 (p<0.05) 

GLUT3 

PC-3 

(Prostate 

adenocarcinoma) 

GLUT1 (p<0.001) 

GLUT3 

GLUT4 

GLUT12 

GLUT1 

GLUT3 

KRAS mutant H460 

(Lung large cell 

carcinoma) 

GLUT1 

 GLUT3 (p<0.01) 

GLUT4 

 GLUT12 

GLUT1 

GLUT3 (p<0.01) 

A549 

(Lung 

adenocarcinoma) 

GLUT1 

GLUT3 (p<0.05) 

GLUT4 (p<0.05) 

GLUT12 

GLUT1 

GLUT4 

MDA-MB-231 

(Breast 

adenocarcinoma) 

GLUT1 

GLUT3  

GLUT4  

GLUT12 (p<0.001) 

GLUT1 

GLUT3 

PIK3CA 

mutant 

H460 

(Lung large cell 

carcinoma) 

GLUT1 

 GLUT3 (p<0.01) 

GLUT4 

 GLUT12 

GLUT1 

GLUT3 (p<0.01) 

MCF-7 

(Breast 

adenocarcinoma) 

GLUT1 

GLUT3 (p<0.001) 

GLUT4  

GLUT12 (p<0.05) 

GLUT1 

GLUT3  

GLUT4 
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PTEN null LNCaP 

(Prostate 

adenocarcinoma) 

GLUT1  

GLUT3  

GLUT4 (p<0.001) 

GLUT12 (p<0.05) 

GLUT1 

GLUT3 

PC-3 

(Prostate 

adenocarcinoma) 

GLUT1 (p<0.001) 

GLUT3 

GLUT4 

GLUT12 

GLUT1 

GLUT3 

*If no p value provided, the GLUT mRNA was detected in the cell line but not significantly different than 

the corresponding noncancerous cell line  

** If no p value provided, the GLUT protein was detected in the cell line but not significantly different than 

the corresponding noncancerous cell line 
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CHAPTER 4: DISCUSSION 

     Given that cancer cells display an increased rate of glucose uptake and consumption 

compared to healthy cells, it is important to understand the role of glucose transporter 

proteins in cancer cell metabolism. Although previous studies have suggested that 

GLUTs are over expressed in cancer, GLUT expression in a number of cell lines, with 

different mutations and histologies, has not been characterized. The current study 

revealed a number of new findings regarding GLUT detection in cancer cell lines and 

confirmed the findings of previously reported GLUT expression. 

 

4.1 GLUT1 Expression in Cancer Cells  

     In support of previous research that has highlighted an important role of GLUT1 in the 

increased glucose uptake by cancer cells
16,70,132

,
 
GLUT1 was found to be the most highly 

expressed GLUT at the mRNA level in six out of the nine cancer cell lines studied 

(Figures s.9-11).  In comparison to the MRC-5 lung fibroblast line, higher GLUT1 

expression was observed at the mRNA and protein level in SK-MES lung cancer cells 

and at the protein level in the H1299 cell line (Figure 13). This is consistent with 

previous reports of elevated GLUT1 expression in primary lung tumours as compared to 

normal lung tissue
168-170

. Suzawa et al. (2011) found a higher degree of GLUT1 protein 

overexpression in squamous cell carcinomas than adenocarinomas
171

. While the SK-MES 

squamous lung cancer cell line in this study had significantly increased GLUT1 mRNA 

and protein levels, the A549 adenocarcinoma cell line had comparatively lower 

expression and the H1299 adenocarcinoma showed significant GLUT1 overexpression 

only at the protein level. Therefore, some types of lung adenocarcinomas may have a 
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greater degree of GLUT1 upregulation than others. Indeed, a study by Rastogi et al. also 

demonstrated higher GLUT1 expression in the H1299 cell line than in A549 cells
164

. 

Elevated GLUT1 levels are also apparent in large cell lung cancer as the H460 cell line 

showed increased mRNA and protein levels compared to MRC-5 cells, this is supported 

by a study showing higher GLUT1 mRNA expression in the H460 cell line as compared 

to a control cell pool
128

. Therefore, GLUT1 overexpression was detected in all types of 

lung cancer studied suggesting this transporter may play an important role in providing 

nutrients to lung cancers.  

     Despite the lack of GLUT1 detection in breast cancer tumours in previous studies
129-

131
, both breast cancer cell lines investigated were found to express GLUT1 at the mRNA 

and protein level (Figure 15). The more aggressive estrogen-independent breast cancer 

cell line MDA-MB-231 was found to express greater GLUT1 mRNA and protein than the 

estrogen receptor positive cell line MCF-7. This was also noted in the study by Grover-

McKay et al. 1998 in which cell surface GLUT1 expression was found to be associated 

with the invasive ability of the breast cancer cell lines studied
172

. This suggests GLUT1 

expression may be useful in identifying more aggressive and invasive types of breast 

cancer.    

     The present study provides the first comparison of glucose transporter expression 

between a noncancerous prostate epithelial cell line and various cancer cell lines. The 

finding that GLUT1 mRNA expression was elevated in all of the prostate cancer cell 

lines compared to PNT1A suggests that upregulation of this transporter may be 

characteristic of cancerous prostate cells (Figure 16). These findings are in accordance 

with previous reports of GLUT1 mRNA detection in LNCaP and PC-3 cells
139,142

. While 
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studies of malignant prostate tissue have been negative for GLUT1
139-141

, here the protein 

was detected at variable levels in all of the cancer cell lines. Interestingly, GLUT1 

expression at the mRNA and protein level was highest in the androgen-insensitive line 

PC-3 compared to the other cell lines that are better differentiated. This is supported by 

Effert et al. (2004) who also found higher GLUT1 mRNA expression in the PC-3 cell line 

than LNCaP cells
142

. In derivatives of LNCaP cells, however, no relationship was found 

between tumour progression and the level of GLUT1 expression
139

. Therefore, more 

work is needed to clarify if GLUT1 expression increases with the degree of prostate 

cancer malignancy.  

 

4.2 GLUT3 Expression in Cancer Cells  

     Several studies have reported GLUT3 protein expression in lung cancer 

tumours
140,170,171,173

. Unlike the results of Suzawa et al. (2011) that showed a significantly 

higher expression of GLUT3 in lung squamous cell carcinomas than adenocarcinomas, in 

this study the SK-MES cell line was found to have lower mRNA and protein expression 

of this transporter compared to the adenocarcinoma cell lines (Figure 17). Evidence for 

use of GLUT3 as an indicator of cancer can be seen by the absence of the GLUT3 protein 

in the noncancerous MRC-5 cell line and its consistent expression in the lung cancer cell 

lines. The differences in GLUT3 protein between MRC-5 cells and H460 and H1299 cell 

lines were striking at 21-fold or 70-fold higher, respectively. Interestingly, the H1299 cell 

line was shown to possess more GLUT3 than GLUT1 mRNA (Figure s.9), suggesting an 

important role of this transporter in the cell line. The limited data available regarding 

GLUT3 expression in lung cancer cell lines supports the finding of significantly elevated 
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GLUT3 mRNA in the H460 and A549 cell lines as Cao et al. (2007) reported a 1.5-1.7 

fold mRNA increase in H460 cells compared to a control cell pool and increased 

expression in A549 cells
128

.  

     Fewer studies have examined GLUT3 expression in breast cancer tumours. The 

reports consist of low levels of expression in these tumours or a failure to detect the 

protein
136,140,154

. In contrast, this study detected GLUT3 at the protein level in both breast 

cancer cell lines investigated (Figure 18 B). In support of these results, Grover-McKay et 

al. (1998) also found GLUT3 protein to be present in the MDA-MB-231 and MCF-7 cell 

lines
172

. Although this group did not observe a correlation between GLUT3 expression 

and cell line invasiveness, Krzeslak et al. (2012) found a significantly higher expression 

in poorly differentiated tumours
136

. Protein expression between the MDA-MB-231 and 

MCF-7 cell lines was found to be similar in this study suggesting potential differences in 

GLUT3 regulation between breast cancer cells in vitro and in vivo.  

     The present study is the first to report mRNA and protein expression of GLUT3 in 

prostate cancer cell lines. Discrepancies between the mRNA and protein data were 

apparent, as the 22Rv1 cell line had significantly elevated GLUT3 mRNA and negligible 

protein expression and the PC-3 cell line showed elevated protein, but not mRNA, 

expression (Figure 19). GLUT3 does not appear to be consistently overexpressed in 

different types of prostate cancer.  

 

4.3 GLUT4 Expression in Cancer Cells  

     A growing body of evidence links circulating insulin levels to the development of 

cancer
174

. In order to better understand the relationship between insulin and cancer 
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progression, the expression of the insulin-sensitive glucose transporter GLUT4 must be 

established in various cancers to determine if the metabolism of these cells may include 

insulin-mediated glucose uptake. Although GLUT4 has been sporadically detected in 

lung cancer tissue
140,152

, previous studies have not determined the expression of this 

transporter in cancer cell lines. A number of cell lines displayed increased mRNA 

expression of GLUT4 in this study. In the lung cancer cell lines, both A549 and H1299 

adenocarcinoma cell lines and the squamous cell line SK-MES had approximately 3-fold 

higher expression of GLUT4 (Figure 20 A). As well, the 22Rv1 and LNCaP prostate 

cancer cell lines had 7- and 31-fold increases in GLUT4 mRNA compared to the 

noncancerous prostate cell line, respectively. The upregulation of this gene in a number 

of cancer types suggests tissues that are typically not considered insulin-sensitive may 

express this transporter when they become malignant. The GLUT4 protein was not 

detected through western blotting in any of the cell lines (Figure 21 A), this is likely due 

to the nature of this technique and the difficulty of the antibody recognizing the linear 

form of the epitope of the protein. Immunofluorescence microscopy showed cytoplasmic 

staining of GLUT4 in both A549 and MCF-7 cells indicating that GLUT4 is also present 

at the protein level in these cells. Although GLUT4 protein expression in the remaining 

cell lines was not determined, this is an interesting finding and the phenomenon of 

GLUT4 expression at the mRNA and protein level in tissues that are not known to be 

insulin sensitive should be further investigated. The role of growth factors in 

carcinogenesis is well established but the influence of growth factors on GLUT 

expression and activity in cancer cells is less clear. Whether growth factors influence 
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proliferation of cancer cells through upregulation and translocation of GLUTs remains to 

be examined.  

 

4.4 GLUT12 Expression in Cancer Cells  

     The GLUT12 transporter was first identified and cloned in the MCF-7 breast cancer 

cell line and has subsequently been shown to be expressed more strongly in breast 

carcinoma than benign tissue
41,42

. To date, few studies have examined the expression of 

GLUT12 in cancer tissues and cell lines. The results of the current study reveal increased 

mRNA expression of GLUT12 in select cancer cell lines, those being SK-MES, MDA-

MB-231, LNCaP and PC-3 (Figure 22). Consistent with the reports of Rogers et al. 

(2002) GLUT12 mRNA was detected in the MCF-7 cell line
41

. Given that previous 

findings have shown GLUT12 protein expression to be increased in response to estrogen, 

it is interesting that the estrogen receptor negative MDA-MB-231 breast cancer cell line 

showed a marked increase in GLUT12 mRNA expression. The protein expression of this 

transporter was not determined in this study due to the lack of a commercially reliable 

GLUT12 antibody. In the study by Macheda et al. (2005)
16

, GLUT12 protein was not 

detected in the MDA-MB-231 cell line, suggesting that while breast cancer cells show 

increased mRNA expression of GLUT compared to healthy breast cells, translation of 

this mRNA may be dependent on sex hormones. This has implications for therapeutic 

treatment as hormone therapies for cancers may modulate glucose uptake by GLUT12. 

The androgen sensitive LNCaP cell line had the highest GLUT12 mRNA expression over 

its corresponding noncancerous cell line with an 8-fold increase over PNT1A. The study 

by Chandler et al. (2003) also examined GLUT12 expression in this cell line and found it 
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to be detected at the mRNA and protein level
107

. The protein expression of GLUT12 in 

these cells lines, and the correlation between mRNA and protein levels, is an important 

issue to address in future research.   

 

4.5 Discrepancies between GLUT mRNA and Protein Expression  

 

     Although the mRNA and protein expression of the glucose transporters were 

associated in most instances, there are some cell lines in which discrepancies exist. Many 

studies have found the correlation between mRNA and protein expression to be weak
175, 

176
. The most recent large scale study of more than 5,000 mammalian genes by 

Schwanhausser et al. (2011) suggests that approximately 40% of the variance in protein 

levels can be explained by mRNA levels
177

. This study found that protein levels are best 

predicted by translation efficiency rather than transcription rates. Thus, in cell lines that 

showed abundant mRNA expression of a specific transporter, regulation of translation 

may have prevented the mRNA from ever being translated into protein resulting in low or 

absent protein expression. In the case of GLUT3 it is known that in most tissues mRNA 

is expressed but not translated into protein
178

, therefore it is possible this also occurs with 

other glucose transporters in cancer. In cell lines that show relatively low GLUT mRNA 

expression with high protein levels (ie. H1299) with respect to GLUT1 and GLUT3 

(Figures 14 and 17), high translation rates may account for this discrepancy. 

Schwanhausser’s study found that proteins are approximately 900 times more abundant 

than corresponding transcripts, therefore small changes in mRNA expression may result 

in significant differences at the protein level.  
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4.6 The Cell Culture Environment  

 

     Although there are a number of advantages to using a cell culture model to determine 

expression patterns in cancer, there are certain limitations that should be considered when 

interpreting results. Cells grown in vitro have an unlimited supply of nutrients and 

oxygen, both of which have been shown to affect glucose transporter expression. Cell 

culture studies have shown that GLUT1 expression is higher in cells that are deprived of 

glucose
179

, and hypoxia, which frequently occurs in solid tumours, has been shown to 

upregulate the expression of GLUT1 and GLUT3
85

. Therefore, the degree of GLUT 

expression in cancer may be underestimated in this study compared to tumours in which 

inadequate blood supply, and a lack of glucose and oxygen, would be common.  

 

4.7 GLUT Expression In Vivo 

 

     Despite the potential limitations of using a cell culture model, in vivo data supported 

the findings of the present study regarding GLUT protein expression in vitro. The 

expression of GLUT1 and GLUT3 in tumours from nude mice xenografted with H1299, 

A549 and PC-3 cancer cells demonstrated that glucose transporter expression in cancer 

cell lines is not a phenomenon only seen in cell culture. The GLUT1 protein was found to 

be localized to the cytoplasm and the plasma membrane in the lung and prostate tumours. 

The discontinuous membrane staining observed is likely due to areas of hypoxia and 

differing vascularization within the tumour. Future examination of hypoxia and 

angiogenesis markers in these samples would provide a clearer understanding of glucose 

transporter expression patterns in tumours. In contrast to the western blotting results of 

the lung cancer cell lines, the lowest GLUT1 expression appeared in the H1299 tumours, 

It is possible other glucose transporters play a more prominent role for these cancer cells 
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in vivo. Indeed, H1299 tumours had roughly equal expression of GLUT1 and GLUT3. 

This protein was also detected in the cytoplasm and plasma membrane of the cancer cells. 

A549 and PC-3 tumours appeared to have a lower extent of GLUT3 expression compared 

to GLUT1, this is supported by the mRNA data for these cell lines (Figures s.9 D and 

s.11 D). Few studies have looked at GLUT expression in xenograft models and based on 

findings from this research, this may be a useful model for studying GLUT proteins.  

 

4.8 Additional Nutrients Used by Cancer Cells  

     The GLUT family has an ability to transport substrates other than glucose, therefore, it 

is possible overexpression of GLUTs in cancer may be due to increased needs for other 

sugars. For example, GLUT1 transports glucose as well as galactose, mannose, 

glucosamine and dehydroascorbic acid (Table 1). The glucose uptake of the cancer cell 

lines in this study was not measured, therefore it cannot be determined whether an 

increase in the expression of specific GLUTs correlates with an increase in glucose 

uptake. The findings of elevated GLUT expression in cancers that have high FDG-PET 

accumulation suggests a similar relationship may be seen in cancer cell lines, however 

this should be addressed in future research.  

     There is evidence that tumours have increased demands for nutrients other than 

glucose. Cancer cells appear to take up high levels of essential and non-essential amino 

acids, specifically the amino acid glutamine
180

. In addition, changes in fatty acid 

metabolism have been observed in some cancers. It has been demonstrated that fatty acid 

uptake is dominant over glucose uptake in the prostate cancer cell lines LNCaP and PC-

3
181

. Furthermore, FDG-PET has been shown to have limited accuracy in the diagnosis 
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and staging of prostate cancer, indicating glucose uptake may not be more important for 

prostate cancer than healthy tissue
182

. In this study, significant differences in GLUT 

expression were found between the prostate cancer cell lines and the noncancerous 

PNT1A cell line and high GLUT levels were also seen in a comparison with the lung and 

breast cancer cell lines (Figures s.4-7). Given the limited clinical applicability of FDG-

PET in prostate cancer it is unclear why GLUTs are upregulated in prostate cancer cell 

lines. Whether the expressed glucose transporters may be used to transport other hexoses, 

or whether they have limited transport activity, remains to be examined.  

 

4.9 Mutation Status and Expression of GLUTs 

 

     Given what is known about the potential oncogenic regulation of GLUTs and 

suppression of these transporter genes by tumour suppressors, it is expected that cell lines 

with the same mutation status will show similar patterns of GLUT expression. The 

tumour suppressor p53 has been previously reported to downregulate the expression of 

GLUT1, GLUT3, GLUT4 and GLUT12
81,90,105

. In the cancer cell lines examined, those 

harbouring a mutation in p53 (SK-MES, H1299, MDA-MB-231 and PC-3) were shown 

to overexpress GLUT1 in comparison to the corresponding noncancerous cell line of that 

tissue.  

     The regulation of GLUTs appears to be complex, not all cancer cell lines with p53 

mutations had upregulation of the same GLUTs and those with elevated mRNA levels 

did not always show the same pattern at the protein level. This was seen in the 22Rv1 cell 

line that had significantly increased GLUT3 mRNA levels without a subsequent increase 

in protein expression. It is possible that while loss of p53 function can relieve the 

inhibitory effects on GLUT3 transcription, there are other factors influencing whether 
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translation of this mRNA will occur. Likewise, GLUT12 mRNA expression was seen in 

two of the p53 mutant cell lines studied, the SK-MES and MDA-MB-231 cell lines, and 

Macheda et al. (2005) have previously shown that MDA-MB-231 cells do not express the 

GLUT12 protein
16

.  

     In support of the evidence implicating an inhibitory effect of p53 on the transcriptional 

activity of GLUT4, significant increases in GLUT4 mRNA expression were seen in the 

p53 mutant cell lines SK-MES and H1299, and the 22Rv1 cell line showed a 7-fold 

increase in mRNA expression. In this study the expression of GLUT4 protein in these 

cell lines was not measured, however, this remains an important issue to address to 

determine if pharmacological reactivation of p53 may be useful for preventing the growth 

of these cancer cells. 

     Both mutations in the PIK3CA gene and the tumour suppressor PTEN lead to the 

kinase Akt being constitutively activated. Akt has been shown to increase expression of 

both GLUT1 and GLUT3 and translocation of GLUT4
46-48

.  In the H460 cell line, which 

harbours a PIK3CA mutation, GLUT1 and GLUT3 were increased at both the mRNA 

and protein level. In comparison, the MCF-7 cell line showed elevated GLUT1 mRNA 

and GLUT3 protein. Similar effects on the expression of GLUT1 and GLUT3 would 

therefore be expected in the PTEN mutant cell lines LNCaP and PC-3. Interestingly, 

these cell lines both show increased GLUT12 mRNA levels and GLUT4 mRNA 

expression was significantly elevated in the LNCaP line. Whether GLUT12 and GLUT4 

gene expression is also suppressed by PTEN is worthy of investigating, it is possible that 

tumour suppressors play an important role in down-regulating GLUT expression in 

healthy tissue.  
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     Additionally, cancer cells with K-ras mutations have been shown to have elevated 

glucose uptake and upregulation of GLUT1 mRNA
80

. Of the three Kras mutant cell lines 

studied, increased GLUT1 mRNA and protein levels were observed in the H460 and 

MDA-MB-231 cell lines. The breast cancer MDA-MB-231 cell line had the highest 

GLUT1 mRNA expression of all cancer cell lines studied (Figure s.5) suggesting that the 

presence of both p53 and K-ras mutations in this cell line may lead to substantial 

upregulation of this transporter. An increase in GLUT3 mRNA was seen in the K-ras 

mutant lung cancer cell lines A549 and H460, with a significant increase in GLUT3 

protein in the H460 cell line. The potential regulation of GLUT3 by K-ras mutations in 

cancer should be further explored.  

     Another mutation that may be relevant to the GLUT expression observed in cancer 

cells studied is loss of the tumor suppressor LKB1. This protein was originally identified 

as a tumor suppressor in humans because it is mutated in Peutz-Jeghers syndrome (PJS). 

Subjects with PJS develop benign tumors in the gastrointestinal tract and have an 

increased risk of developing malignant tumors at other sites
91

. The LKB1 protein is the 

major upstream kinase responsible for regulating AMPK
91

. Given that AMPK is involved 

in regulation of the transcription and localization of several GLUTs, loss of LKB1 may 

lead to deregulation of GLUT expression in cancer. The lung cancer cell lines A549 and 

H460 lack functional LKB1 and show high levels of GLUT3 at the mRNA and protein 

level. Although AMPK has been demonstrated to cause translocation of GLUT3 to the 

plasma membrane and increase its activity
92,93

, its role in regulating this transporter in 

lung cancer cells is unclear. Whether the elevated expression of GLUT3 in these cell 
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lines is due to decreased AMPK activation because of the loss of LKB1 remains to be 

examined.  

     The regulation of multiple GLUTs by the same mutations and pathways may explain 

the redundancy that is seen in some cancer cell lines where high expression levels of 

more than one GLUT is seen. Studies determining whether all of the glucose transporters 

expressed in the cancer cell line are active in taking up glucose, and if this happens 

simultaneously or if some GLUTs are preferred under certain conditions, will aid in our 

understanding of the potential role of GLUT proteins in cancer growth and survival.   

 

4.10 Significance of the Present Study 

     Previous research has indicated that expression of certain GLUTs may be upregulated 

in cancer. While the majority of these studies have used tumour models, the present study 

examined GLUT expression in vitro using a number of cancer cell lines with different 

mutations and histologies. Additionally, this study included the comparison of a 

noncancerous cell line of the corresponding tissue type in order to determine GLUT 

expression patterns that were specific to cancer cell lines.  

     The findings of this study can serve as a reference for authors wishing to select an 

appropriate in vitro model to study GLUT1, GLUT3, GLUT4 or GLUT12. It also 

provides evidence that GLUTs are expressed in the cell lines studied both in vitro and in 

vivo as expression of GLUT1 and GLUT3 were detected in xenografts grown in 

immunodeficient mice. The results presented provide a baseline for further investigation 

of GLUTs as biomarkers of cancer progression and potential targets for therapeutics.  
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4.11 Future Directions  

 

     Recent attempts to inhibit GLUT-mediated glucose uptake in cancer cells have 

focused on GLUT1. The present study suggests that GLUT3, GLUT4 and GLUT12 may 

also serve as potential candidates for targeting in cancer. Once the expression of the 

glucose transporters within a specific cancer/tumour has been established, future research 

should focus on determining the activity of these transporters and whether they play a 

functional role in providing energy and nutrients to the cancer cell. This will provide 

stronger evidence to target GLUTs for anti-cancer therapy than expression patterns alone.  

   Additional studies are required to better understand the complex regulation of GLUTs 

and to explain the discrepancies observed in this study between mRNA and protein 

expression of some GLUTs. The relationship between tumour suppressor genes and the 

regulation of GLUTs should be explored in detail to determine if p53 inhibits aerobic 

glycolysis by downregulating the expression of multiple GLUTs and if PTEN may play a 

similar role.  

     The potential modulation of GLUT expression by current cancer therapeutics has not 

been studied and should be investigated to better understand how these therapies affect 

cancer cell metabolism. Using agents that decrease GLUT translocation and/or 

expression while also acting on pathways to inhibit proliferation may represent attractive 

strategies for the treatment of cancer. Furthermore, GLUTs could serve as biomarkers of 

tumour response to these agents.  

    Expression patterns of additional members of the GLUT family should be examined in 

cancer cell lines and tumour samples. Potential GLUTs of interest may include the 

fructose transporters GLUT2, GLUT5, GLUT7 and GLUT11 since increased rates of 
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fructose uptake have been observed in some cancers
183,184

 and GLUT8 as this transporter 

has been suggested to be important during development
185  

and has recently been 

described in multiple myeloma and endometrial cancers
186,187

.  
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CHAPTER 5: CONCLUSIONS 

1) The present study examined the expression of the glucose transporters 

GLUT1, GLUT3, GLUT4 and GLUT12 at the mRNA level in lung, breast 

and prostate cancer cell lines as well as the corresponding non-cancerous cell 

lines of that tissue. SK-MES-1 lung cancer cells and PC-3 prostate cancer 

cells were found to have higher GLUT1 mRNA expression than non-

cancerous cells of that tissue. H460 and A549 lung cancer cells, and 22Rv1 

prostate cancer cells had high levels of GLUT3 mRNA, while in MCF-7 

breast cancer cells the levels were lower than that found in non-cancerous 

cells.  High GLUT4 mRNA expression was found in SK-MES-1, A549 and 

H1299 lung cancer, and LNCaP prostate cancer cells. The MDA-MB-231 

breast and LNCaP prostate cancer cell lines were found to have high levels of 

GLUT12 mRNA compared to non-cancerous cells.  

2) Next, the present examined the protein expression of GLUT1, GLUT3, 

GLUT4 and GLUT12 in the aforementioned cancer cell lines. SK-MES-1 and 

H1299 lung cancer cells were found to have higher GLUT1 protein expression 

than non-cancerous lung fibroblast cells, while 22Rv1 prostate cancer cells 

expressed GLUT1 at lower levels than non-cancerous prostate epithelial cells. 

The lung cancer cells H460 and H1299, and the breast cancer cells MDA-MB-

231 and MCF-7 had higher GLUT3 protein expression compared to the lung 

fibroblast cell line MRC-5. GLUT4 protein was not recognized in human 

cancer cell lines using western blotting, however, when selecting the cancer 

cell lines A549 and MCF-7 for use in immunofluorescence microscopy, 
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GLUT4 protein was detected in the cytoplasm of these cells. GLUT12 protein 

expression was not examined due to the unavailability of a specific antibody.  

3) In order to determine the in vivo expression of GLUTs in cancer cells, 

expression of GLUT1 and GLUT3 was examined in tumours from nude mice 

xenografted with cancer cell lines. In agreement with the expression of 

GLUT1 and GLUT3 protein observed in tissue culture models of H1299, 

A549 and PC-3 cells, both transporters were also detected in tumour 

xenografts of these cells lines.  

     In summary, the present study revealed new findings of GLUT detection in cancer 

cells and describes basal GLUT expression patterns in a number of cancer cells with 

different mutations and histologies. The study of GLUT protein expression in cancer is 

important for understanding cancer metabolism and may lead to identification of 

biomarkers of cancer progression and development of target therapies. 

 

 

 

 

 

 

 

 

 

 

 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 99 

REFERENCES 

 

1. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 

2011;144(5):646-674. 

 

2. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer 

2011;11(2):85-95. 

 

3. Rich PR. The molecular machinery of keilin's respiratory chain. Biochem Soc Trans 

2003;31(Pt 6):1095-1105. 

 

4. Warburg O. The metabolism of tumours. 1930. London: Constable and Company.  

 

5. Schwartz MK. Enzymes as prognostic markers and therapeutic indicators in patients 

with cancer. Clin Chim Acta 1992;206(1-2):77-82. 

 

6. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link 

between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 

2006;9(6):425-434. 

 

7. Bonnet S, Archer SL, Allalunis-Turner J et al. A mitochondria-K+ channel axis is 

suppressed in cancer and its normalization promotes apoptosis and inhibits cancer 

growth. Cancer Cell 2007;11(1):37-51. 

 

8. Weinberg F, Hamanaka R, Wheaton WW et al. Mitochondrial metabolism and ROS 

generation are essential for kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 

2010;107(19):8788-8793. 

 

9. Fogal V, Richardson AD, Karmali PP et al. Mitochondrial p32 protein is a critical 

regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol Cell 

Biol 2010;30(6):1303-1318. 

 

10. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the warburg effect: 

The metabolic requirements of cell proliferation. Science 2009;324(5930):1029-1033. 

 

11. Stern R, Shuster S, Neudecker BA, Formby B. Lactate stimulates fibroblast  

expression of hyaluronan and CD44: The warburg effect revisited. Exp Cell Res 

2002;276(1):24-31. 

 

12. Baumann F, Leukel P, Doerfelt A et al. Lactate promotes glioma migration by TGF-

beta2-dependent regulation of matrix metalloproteinase-2. Neuro Oncol 2009;11(4):368-

380. 

 

13. Wilson-O'Brien AL, Patron N, Rogers S. Evolutionary ancestry and novel functions 

of the mammalian glucose transporter (GLUT) family. BMC Evol Biol 2010;10:152. 

 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 100 

14. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. 

Physiol Rev 2011;91(2):733-794. 

 

15. Uldry M, Thorens B. The SLC2 family of facilitated hexose and polyol transporters. 

Pflugers Arch 2004;447(5):480-489. 

 

16. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose 

transporter (GLUT) proteins in cancer. J Cell Physiol 2005;202(3):654-662. 

 

17. Olsowski A, Monden I, Krause G, Keller K. Cysteine scanning mutagenesis of 

helices 2 and 7 in GLUT1 identifies an exofacial cleft in both transmembrane segments. 

Biochemistry 2000;39(10):2469-2474. 

 

18. Schurmann A, Doege H, Ohnimus H et al. Role of conserved arginine and glutamate 

residues on the cytosolic surface of glucose transporters for transporter function. 

Biochemistry 1997;36(42):12897-12902. 

 

19. Sato M, Mueckler M. A conserved amino acid motif (R-X-G-R-R) in the Glut1 

glucose transporter is an important determinant of membrane topology. J Biol Chem 

1999;274(35):24721-24725. 

 

20. Garcia JC, Strube M, Leingang K et al. Amino acid substitutions at tryptophan 388 

and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity 

and targeting to the plasma membrane in xenopus oocytes. J Biol Chem 

1992;267(11):7770-7776. 

 

21. Schurmann A, Keller K, Monden I et al. Glucose transport activity and photolabelling 

with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl (IAPS)-forskolin of two 

mutants at tryptophan-388 and -412 of the glucose transporter GLUT1: Dissociation of 

the binding domains of forskolin and glucose. Biochem J 1993;290 ( Pt 2)(Pt 2):497-501. 

 

22. Mori H, Hashiramoto M, Clark AE et al. Substitution of tyrosine 293 of GLUT1 

locks the transporter into an outward facing conformation. J Biol Chem 

1994;269(15):11578-11583. 

 

23. Wandel S, Schurmann A, Becker W et al. Substitution of conserved tyrosine residues 

in helix 4 (Y143) and 7 (Y293) affects the activity, but not IAPS-forskolin binding, of the 

glucose transporter GLUT4. FEBS Lett 1994;348(2):114-118. 

 

24. Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport 

facilitators: Nomenclature, sequence characteristics, and potential function of its novel 

members (review). Mol Membr Biol 2001;18(4):247-256. 

 

25. Asano T, Takata K, Katagiri H et al. The role of N-glycosylation in the targeting and 

stability of GLUT1 glucose transporter. FEBS Lett 1993;324(3):258-261. 

 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 101 

26. Augustin R. The protein family of glucose transport facilitators: It's not only about 

glucose after all. IUBMB Life 2010;62(5):315-333. 

 

27. Mueckler M, Weng W, Kruse M. Glutamine 161 of Glut1 glucose transporter is 

critical for transport activity and exofacial ligand binding. J Biol Chem 

1994;269(32):20533-20538. 

 

28. Doege H, Schurmann A, Ohnimus H et al. Serine-294 and threonine-295 in the 

exofacial loop domain between helices 7 and 8 of glucose transporters (GLUT) are 

involved in the conformational alterations during the transport process. Biochem J 

1998;329 ( Pt 2)(Pt 2):289-293. 

 

29. Calvo MB, Figueroa A, Pulido EG et al. Potential role of sugar transporters in cancer 

and their relationship with anticancer therapy. Int J Endocrinol 2010;2010:205357. Epub 

2010 Jul 18. 

 

30. Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. 

Curr Genomics 2007;8(2):113-128. 

 

31. Thorens B, Mueckler M. Glucose transporters in the 21st century. Am J Physiol 

Endocrinol Metab 2010;298(2):E141-5. 

 

32. Hebert DN, Carruthers A. Glucose transporter oligomeric structure determines 

transporter function. reversible redox-dependent interconversions of tetrameric and 

dimeric GLUT1. J Biol Chem 1992;267(33):23829-23838. 

 

33. Uldry M, Ibberson M, Hosokawa M, Thorens B. GLUT2 is a high affinity 

glucosamine transporter. FEBS Lett 2002;524(1-3):199-203. 

 

34. Bell GI, Burant CF, Takeda J, Gould GW. Structure and function of mammalian 

facilitative sugar transporters. J Biol Chem 1993;268(26):19161-19164. 

 

35. Rumsey SC, Kwon O, Xu GW et al. Glucose transporter isoforms GLUT1 and 

GLUT3 transport dehydroascorbic acid. J Biol Chem 1997;272(30):18982-18989. 

 

36. Takata K, Kasahara T, Kasahara M et al. Erythrocyte/HepG2-type glucose transporter 

is concentrated in cells of blood-tissue barriers. Biochem Biophys Res Commun 

1990;173(1):67-73. 

 

37. Zhao FQ, Glimm DR, Kennelly JJ. Distribution of mammalian facilitative glucose 

transporter messenger RNA in bovine tissues. Int J Biochem 1993;25(12):1897-1903. 

 

38. Maher F, Davies-Hill TM, Simpson IA. Substrate specificity and kinetic parameters 

of GLUT3 in rat cerebellar granule neurons. Biochem J 1996;315 ( Pt 3)(Pt 3):827-831. 

 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 102 

39. Haber RS, Weinstein SP, O'Boyle E, Morgello S. Tissue distribution of the human 

GLUT3 glucose transporter. Endocrinology 1993;132(6):2538-2543. 

 

40. Rumsey SC, Daruwala R, Al-Hasani H et al. Dehydroascorbic acid transport by 

GLUT4 in xenopus oocytes and isolated rat adipocytes. J Biol Chem 

2000;275(36):28246-28253. 

 

41. Rogers S, Macheda ML, Docherty SE et al. Identification of a novel glucose 

transporter-like protein-GLUT-12. Am J Physiol Endocrinol Metab 2002;282(3):E733-8. 

 

42. Rogers S, Docherty SE, Slavin JL et al. Differential expression of GLUT12 in breast 

cancer and normal breast tissue. Cancer Lett 2003;193(2):225-233. 

 

43. Wong KK, Engelman JA, Cantley LC. Targeting the PI3K signaling pathway in 

cancer. Curr Opin Genet Dev 2010;20(1):87-90. 

 

44. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase 

pathway in cancer. Nat Rev Drug Discov 2009;8(8):627-644. 

 

45. Samuels Y, Wang Z, Bardelli A et al. High frequency of mutations of the PIK3CA 

gene in human cancers. Science 2004;304(5670):554. 

 

46. Hajduch E, Alessi DR, Hemmings BA, Hundal HS. Constitutive activation of protein 

kinase B alpha by membrane targeting promotes glucose and system A amino acid 

transport, protein synthesis, and inactivation of glycogen synthase kinase 3 in L6 muscle 

cells. Diabetes 1998;47(7):1006-1013. 

 

47. Barthel A, Okino ST, Liao J et al. Regulation of GLUT1 gene transcription by the 

serine/threonine kinase Akt1. J Biol Chem 1999;274(29):20281-20286. 

 

48. Wang Q, Somwar R, Bilan PJ et al. Protein kinase B/Akt participates in GLUT4 

translocation by insulin in L6 myoblasts. Mol Cell Biol 1999;19(6):4008-4018. 

 

49. Gottlob K, Majewski N, Kennedy S et al. Inhibition of early apoptotic events by 

Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial 

hexokinase. Genes Dev 2001;15(11):1406-1418. 

 

50. Deprez J, Vertommen D, Alessi DR et al. Phosphorylation and activation of heart 6-

phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin 

signaling cascades. J Biol Chem 1997;272(28):17269-17275. 

 

51. Manning BD, Cantley LC. AKT/PKB signaling: Navigating downstream. Cell 

2007;129(7):1261-1274. 

 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 103 

52. Majumder PK, Febbo PG, Bikoff R et al. mTOR inhibition reverses akt-dependent 

prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent 

pathways. Nat Med 2004;10(6):594-601. 

 

53. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: 

Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008;7(1):11-

20. 

 

54. Iyer NV, Kotch LE, Agani F et al. Cellular and developmental control of O2 

homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 1998;12(2):149-162. 

 

55. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3(10):721-

732. 

 

56. Obach M, Navarro-Sabate A, Caro J et al. 6-phosphofructo-2-kinase (pfkfb3) gene 

promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation 

in response to hypoxia. J Biol Chem 2004;279(51):53562-53570. 

 

57. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of 

pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to 

hypoxia. Cell Metab 2006;3(3):177-185. 

 

58. Karnoub AE, Weinberg RA. Ras oncogenes: Split personalities. Nat Rev Mol Cell 

Biol 2008;9(7):517-531. 

 

59. Castellano E, Downward J. RAS interaction with PI3K: More than just another 

effector pathway. Genes Cancer 2011;2(3):261-274. 

 

60. Chiaradonna F, Sacco E, Manzoni R et al. Ras-dependent carbon metabolism and 

transformation in mouse fibroblasts. Oncogene 2006;25(39):5391-5404. 

 

61. Dang CV. Rethinking the warburg effect with myc micromanaging glutamine 

metabolism. Cancer Res 2010;70(3):859-862. 

 

62. Osthus RC, Shim H, Kim S et al. Deregulation of glucose transporter 1 and glycolytic 

gene expression by c-myc. J Biol Chem 2000;275(29):21797-21800. 

 

63. Shim H, Dolde C, Lewis BC et al. c-myc transactivation of LDH-A: Implications for 

tumor metabolism and growth. Proc Natl Acad Sci U S A 1997;94(13):6658-6663. 

 

64. Laptenko O, Prives C. Transcriptional regulation by p53: One protein, many 

possibilities. Cell Death Differ 2006;13(6):951-961. 

 

65. Mathupala SP, Heese C, Pedersen PL. Glucose catabolism in cancer cells. the type II 

hexokinase promoter contains functionally active response elements for the tumor 

suppressor p53. J Biol Chem 1997;272(36):22776-22780. 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 104 

66. Kawamura M, Yamashita T, Segawa K et al. The 273rd codon mutants of p53 show 

growth modulation activities not correlated with p53-specific transactivation activity. 

Oncogene 1996;12(11):2361-2367. 

 

67. Bensaad K, Tsuruta A, Selak MA et al. TIGAR, a p53-inducible regulator of 

glycolysis and apoptosis. Cell 2006;126(1):107-120. 

 

68. Stambolic V, MacPherson D, Sas D et al. Regulation of PTEN transcription by p53. 

Mol Cell 2001;8(2):317-325. 

 

69. Matoba S, Kang JG, Patino WD et al. P53 regulates mitochondrial respiration. 

Science 2006;312(5780):1650-1653. 

 

70. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: Relevance 

to warburg hypothesis and beyond. Pharmacol Ther 2009;121(1):29-40. 

 

71. Younes M, Brown RW, Stephenson M et al. Overexpression of Glut1 and Glut3 in 

stage I nonsmall cell lung carcinoma is associated with poor survival. Cancer 

1997;80(6):1046-1051. 

 

72. Sommermann TG, O'Neill K, Plas DR, Cahir-McFarland E. IKKbeta and NF-kappaB 

transcription govern lymphoma cell survival through AKT-induced plasma membrane 

trafficking of GLUT1. Cancer Res 2011;71(23):7291-7300. 

 

73. Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose 

uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. 

Mol Biol Cell 2007;18(4):1437-1446. 

 

74. Wofford JA, Wieman HL, Jacobs SR et al. IL-7 promotes Glut1 trafficking and 

glucose uptake via STAT5-mediated activation of akt to support T-cell survival. Blood 

2008;111(4):2101-2111. 

 

75. Taha C, Liu Z, Jin J et al. Opposite translational control of GLUT1 and GLUT4 

glucose transporter mRNAs in response to insulin. role of mammalian target of 

rapamycin, protein kinase b, and phosphatidylinositol 3-kinase in GLUT1 mRNA 

translation. J Biol Chem 1999;274(46):33085-33091. 

 

76. Taha C, Tsakiridis T, McCall A, Klip A. Glucose transporter expression in L6 muscle 

cells: Regulation through insulin- and stress-activated pathways. Am J Physiol 

1997;273(1 Pt 1):E68-76. 

 

77. Rivenzon-Segal D, Boldin-Adamsky S, Seger D et al. Glycolysis and glucose 

transporter 1 as markers of response to hormonal therapy in breast cancer. Int J Cancer 

2003;107(2):177-182. 

 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 105 

78. Kozlovsky N, Rudich A, Potashnik R et al. Transcriptional activation of the Glut1 

gene in response to oxidative stress in L6 myotubes. J Biol Chem 1997;272(52):33367-

33372. 

 

79. Hayashi M, Sakata M, Takeda T et al. Induction of glucose transporter 1 expression 

through hypoxia-inducible factor 1alpha under hypoxic conditions in trophoblast-derived 

cells. J Endocrinol 2004;183(1):145-154. 

 

80. Yun J, Rago C, Cheong I et al. Glucose deprivation contributes to the development of 

KRAS pathway mutations in tumor cells. Science 2009;325(5947):1555-1559. 

 

81. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 

down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 

2004;64(7):2627-2633. 

 

82. Piper RC, Hess LJ, James DE. Differential sorting of two glucose transporters 

expressed in insulin-sensitive cells. Am J Physiol 1991;260(3 Pt 1):C570-80. 

 

83. Bilan PJ, Mitsumoto Y, Ramlal T, Klip A. Acute and long-term effects of insulin-like 

growth factor I on glucose transporters in muscle cells. translocation and biosynthesis. 

FEBS Lett 1992;298(2-3):285-290. 

 

84. Wilson CM, Mitsumoto Y, Maher F, Klip A. Regulation of cell surface GLUT1, 

GLUT3, and GLUT4 by insulin and IGF-I in L6 myotubes. FEBS Lett 1995;368(1):19-

22. 

 

85. Zelzer E, Levy Y, Kahana C et al. Insulin induces transcription of target genes 

through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO J 1998;17(17):5085-

5094. 

 

86. Badr GA, Zhang JZ, Tang J et al. Glut1 and glut3 expression, but not capillary 

density, is increased by cobalt chloride in rat cerebrum and retina. Brain Res Mol Brain 

Res 1999;64(1):24-33. 

 

87. Vannucci SJ, Reinhart R, Maher F et al. Alterations in GLUT1 and GLUT3 glucose 

transporter gene expression following unilateral hypoxia-ischemia in the immature rat 

brain. Brain Res Dev Brain Res 1998;107(2):255-264. 

 

88. Baumann MU, Zamudio S, Illsley NP. Hypoxic upregulation of glucose transporters 

in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. Am J Physiol 

Cell Physiol 2007;293(1):C477-85. 

 

89. Rajakumar A, Thamotharan S, Raychaudhuri N et al. Trans-activators regulating 

neuronal glucose transporter isoform-3 gene expression in mammalian neurons. J Biol 

Chem 2004;279(25):26768-26779. 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 106 

90. Kawauchi K, Araki K, Tobiume K, Tanaka N. p53 regulates glucose metabolism 

through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 

2008;10(5):611-618. 

 

91. Hardie DG. AMP-activated protein kinase: A cellular energy sensor with a key role in 

metabolic disorders and in cancer. Biochem Soc Trans 2011;39(1):1-13. 

 

92. Weisova P, Concannon CG, Devocelle M et al. Regulation of glucose transporter 3 

surface expression by the AMP-activated protein kinase mediates tolerance to glutamate 

excitation in neurons. J Neurosci 2009;29(9):2997-3008. 

 

93. Cidad P, Almeida A, Bolanos JP. Inhibition of mitochondrial respiration by nitric 

oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5'-

AMP-activated protein kinase. Biochem J 2004;384(Pt 3):629-636. 

 

94. Liu ML, Olson AL, Moye-Rowley WS et al. Expression and regulation of the human 

GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice. J Biol Chem 

1992;267(17):11673-11676. 

 

95. Oshel KM, Knight JB, Cao KT et al. Identification of a 30-base pair regulatory 

element and novel DNA binding protein that regulates the human GLUT4 promoter in 

transgenic mice. J Biol Chem 2000;275(31):23666-23673. 

 

96. Knight JB, Eyster CA, Griesel BA, Olson AL. Regulation of the human GLUT4 gene 

promoter: Interaction between a transcriptional activator and myocyte enhancer factor 

2A. Proc Natl Acad Sci U S A 2003;100(25):14725-14730. 

 

97. Garvey WT, Maianu L, Huecksteadt TP et al. Pretranslational suppression of a 

glucose transporter protein causes insulin resistance in adipocytes from patients with non-

insulin-dependent diabetes mellitus and obesity. J Clin Invest 1991;87(3):1072-1081. 

 

98. Sinha MK, Raineri-Maldonado C, Buchanan C et al. Adipose tissue glucose 

transporters in NIDDM. decreased levels of muscle/fat isoform. Diabetes 

1991;40(4):472-477. 

 

99. Ren JM, Semenkovich CF, Gulve EA et al. Exercise induces rapid increases in 

GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage 

in muscle. J Biol Chem 1994;269(20):14396-14401. 

 

100. Kraniou Y, Cameron-Smith D, Misso M et al. Effects of exercise on GLUT-4 and 

glycogenin gene expression in human skeletal muscle. J Appl Physiol 2000;88(2):794-

796. 

 

101. Zheng D, MacLean PS, Pohnert SC et al. Regulation of muscle GLUT-4 

transcription by AMP-activated protein kinase. J Appl Physiol 2001;91(3):1073-1083. 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 107 

102. Eguez L, Lee A, Chavez JA et al. Full intracellular retention of GLUT4 requires 

AS160 rab GTPase activating protein. Cell Metab 2005;2(4):263-272. 

 

103. Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP-

activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J 

Physiol 1997;273(6 Pt 1):E1107-12. 

 

104. Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW. 5' AMP-activated 

protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 

1999;48(8):1667-1671. 

 

105. Zawacka-Pankau J, Grinkevich VV, Hunten S et al. Inhibition of glycolytic enzymes 

mediated by pharmacologically activated p53: Targeting warburg effect to fight cancer. J 

Biol Chem 2011;286(48):41600-41615. 

 

106. Flessner LB, Moley KH. Similar [DE]XXXL[LI] motifs differentially target GLUT8 

and GLUT12 in chinese hamster ovary cells. Traffic 2009;10(3):324-333. 

 

107. Chandler JD, Williams ED, Slavin JL et al. Expression and localization of GLUT1 

and GLUT12 in prostate carcinoma. Cancer 2003;97(8):2035-2042. 

 

108. Stuart CA, Howell ME, Zhang Y, Yin D. Insulin-stimulated translocation of glucose 

transporter (GLUT) 12 parallels that of GLUT4 in normal muscle. J Clin Endocrinol 

Metab 2009;94(9):3535-3542. 

 

109. Wilson-O'Brien AL, Dehaan CL, Rogers S. Mitogen-stimulated and rapamycin-

sensitive glucose transporter 12 targeting and functional glucose transport in renal 

epithelial cells. Endocrinology 2008;149(3):917-924. 

 

110. Butler M. Mammalian cell biotechnology: A practical approach. USA: Oxford 

University Press, 1991. 

 

111. Primrose SB. Molecular biotechnology. Oxford, United Kingdom: Blackwell 

Scientific Publications, 1991. 

 

112. Jacobs JP, Jones CM, Baille JP. Characteristics of a human diploid cell designated 

MRC-5. Nature 1970;227(5254):168-170. 

 

113. Fough J. Human tumor cells in vitro. New York:Plenum Press, 1975. 

 

114. Banks-Schlegel SP, Gazdar AF, Harris CC. Intermediate filament and cross-linked 

envelope expression in human lung tumor cell lines. Cancer Res 1985;45(3):1187-1197. 

 

115. Giard DJ, Aaronson SA, Todaro GJ et al. In vitro cultivation of human tumors: 

Establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 

1973;51(5):1417-1423. 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 108 

116. Phelps RM, Johnson BE, Ihde DC et al. NCI-navy medical oncology branch cell line 

data base. J Cell Biochem Suppl 1996;24:32-91. 

 

117. Stampfer MR, Bartley JC. Induction of transformation and continuous cell lines 

from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc 

Natl Acad Sci U S A 1985;82(8):2394-2398. 

 

118. Cailleau R, Young R, Olive M, Reeves WJ,Jr. Breast tumor cell lines from pleural 

effusions. J Natl Cancer Inst 1974;53(3):661-674. 

 

119. Soule HD, Vazguez J, Long A et al. A human cell line from a pleural effusion 

derived from a breast carcinoma. J Natl Cancer Inst 1973;51(5):1409-1416. 

 

120. Cussenot O, Berthon P, Berger R et al. Immortalization of human adult normal 

prostatic epithelial cells by liposomes containing large T-SV40 gene. J Urol 

1991;146(3):881-886. 

 

121. Sramkoski RM, Pretlow TG,2nd, Giaconia JM et al. A new human prostate 

carcinoma cell line, 22Rv1. In Vitro Cell Dev Biol Anim 1999;35(7):403-409. 

 

122. Murphy GP, ed. Models for prostate cancer. New York:Liss, 1980. 

 

123. Kaighn ME, Narayan KS, Ohnuki Y et al. Establishment and characterization of a 

human prostatic carcinoma cell line (PC-3). Invest Urol 1979;17(1):16-23. 

 

124. Ogawa J, Inoue H, Koide S. Glucose-transporter-type-I-gene amplification 

correlates with sialyl-lewis-X synthesis and proliferation in lung cancer. Int J Cancer 

1997;74(2):189-192. 

 

125. Kurata T, Oguri T, Isobe T et al. Differential expression of facilitative glucose 

transporter (GLUT) genes in primary lung cancers and their liver metastases. Jpn J 

Cancer Res 1999;90(11):1238-1243. 

 

126. Rastogi S, Banerjee S, Chellappan S, Simon GR. Glut-1 antibodies induce growth 

arrest and apoptosis in human cancer cell lines. Cancer Lett 2007;257(2):244-251. 

 

127. Ito S, Fukusato T, Nemoto T et al. Coexpression of glucose transporter 1 and matrix 

metalloproteinase-2 in human cancers. J Natl Cancer Inst 2002;94(14):1080-1091. 

 

128. Cao X, Fang L, Gibbs S et al. Glucose uptake inhibitor sensitizes cancer cells to 

daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol 

2007;59(4):495-505. 

 

129. Younes M, Brown RW, Mody DR et al. GLUT1 expression in human breast 

carcinoma: Correlation with known prognostic markers. Anticancer Res 

1995;15(6B):2895-2898. 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 109 

130. Kang SS, Chun YK, Hur MH et al. Clinical significance of glucose transporter 1 

(GLUT1) expression in human breast carcinoma. Jpn J Cancer Res 2002;93(10):1123-

1128. 

 

131. Ravazoula P, Batistatou A, Aletra C et al. Immunohistochemical expression of 

glucose transporter Glut1 and cyclin D1 in breast carcinomas with negative lymph nodes. 

Eur J Gynaecol Oncol 2003;24(6):544-546. 

 

132. Godoy A, Ulloa V, Rodriguez F et al. Differential subcellular distribution of glucose 

transporters GLUT1-6 and GLUT9 in human cancer: Ultrastructural localization of 

GLUT1 and GLUT5 in breast tumor tissues. J Cell Physiol 2006;207(3):614-627. 

 

133. Alo PL, Visca P, Botti C et al. Immunohistochemical expression of human 

erythrocyte glucose transporter and fatty acid synthase in infiltrating breast carcinomas 

and adjacent typical/atypical hyperplastic or normal breast tissue. Am J Clin Pathol 

2001;116(1):129-134. 

 

134. Brown RS, Wahl RL. Overexpression of glut-1 glucose transporter in human breast 

cancer. an immunohistochemical study. Cancer 1993;72(10):2979-2985. 

 

135. Zamora-Leon SP, Golde DW, Concha II et al. Expression of the fructose transporter 

GLUT5 in human breast cancer. Proc Natl Acad Sci U S A 1996;93(5):1847-1852. 

 

136. Krzeslak A, Wojcik-Krowiranda K, Forma E et al. Expression of GLUT1 and 

GLUT3 glucose transporters in endometrial and breast cancers. Pathol Oncol Res 2012. 

 

137. Grover-McKay M, Walsh SA, Seftor EA et al. Role for glucose transporter 1 protein 

in human breast cancer. Pathol Oncol Res 1998;4(2):115-120. 

 

138. Chan KK, Chan JY, Chung KK, Fung KP. Inhibition of cell proliferation in human 

breast tumor cells by antisense oligonucleotides against facilitative glucose transporter 5. 

J Cell Biochem 2004;93(6):1134-1142. 

 

139. Chandler JD, Williams ED, Slavin JL et al. Expression and localization of GLUT1 

and GLUT12 in prostate carcinoma. Cancer 2003;97(8):2035-2042. 

 

140. Godoy A, Ulloa V, Rodriguez F et al. Differential subcellular distribution of glucose 

transporters GLUT1-6 and GLUT9 in human cancer: Ultrastructural localization of 

GLUT1 and GLUT5 in breast tumor tissues. J Cell Physiol 2006;207(3):614-627. 

 

141. Reinicke K, Sotomayor P, Cisterna P et al. Cellular distribution of glut-1 and glut-5 

in benign and malignant human prostate tissue. J Cell Biochem 2012;113(2):553-562. 

 

142. Effert P, Beniers AJ, Tamimi Y et al. Expression of glucose transporter 1 (glut-1) in 

cell lines and clinical specimens from human prostate adenocarcinoma. Anticancer Res 

2004;24(5A):3057-3063. 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 110 

143. Hatanaka M. Transport of sugars in tumor cell membranes. Biochim Biophys Acta 

1974;355(1):77-104. 

 

144. Isselbacher KJ. Sugar and amino acid transport by cells in culture--differences 

between normal and malignant cells. N Engl J Med 1972;286(17):929-933. 

 

145. Khan MA, Combs CS, Brunt EM et al. Positron emission tomography scanning in 

the evaluation of hepatocellular carcinoma. J Hepatol 2000;32(5):792-797. 

 

146. Ma WW, Jacene H, Song D et al. 18F]fluorodeoxyglucose positron emission 

tomography correlates with akt pathway activity but is not predictive of clinical outcome 

during mTOR inhibitor therapy. J Clin Oncol 2009;27(16):2697-2704. 

 

147. Riedl CC, Akhurst T, Larson S et al. 18F-FDG PET scanning correlates with tissue 

markers of poor prognosis and predicts mortality for patients after liver resection for 

colorectal metastases. J Nucl Med 2007;48(5):771-775. 

 

148. Gu J, Yamamoto H, Fukunaga H et al. Correlation of GLUT-1 overexpression, 

tumor size, and depth of invasion with 18F-2-fluoro-2-deoxy-D-glucose uptake by 

positron emission tomography in colorectal cancer. Dig Dis Sci 2006;51(12):2198-2205. 

 

149. Higashi K, Ueda Y, Sakurai A et al. Correlation of glut-1 glucose transporter 

expression with. Eur J Nucl Med 2000;27(12):1778-1785. 

 

150. Yen TC, See LC, Lai CH et al. 18F-FDG uptake in squamous cell carcinoma of the 

cervix is correlated with glucose transporter 1 expression. J Nucl Med 2004;45(1):22-29. 

 

151. Kurokawa T, Yoshida Y, Kawahara K et al. Expression of GLUT-1 glucose transfer, 

cellular proliferation activity and grade of tumor correlate with [F-18]-

fluorodeoxyglucose uptake by positron emission tomography in epithelial tumors of the 

ovary. Int J Cancer 2004;109(6):926-932. 

 

152. Brown RS, Leung JY, Kison PV et al. Glucose transporters and FDG uptake in 

untreated primary human non-small cell lung cancer. J Nucl Med 1999;40(4):556-565. 

 

153. Avril N, Menzel M, Dose J et al. Glucose metabolism of breast cancer assessed by 

18F-FDG PET: Histologic and immunohistochemical tissue analysis. J Nucl Med 

2001;42(1):9-16. 

 

154. Younes M, Lechago LV, Somoano JR et al. Immunohistochemical detection of 

Glut3 in human tumors and normal tissues. Anticancer Res 1997;17(4A):2747-2750. 

 

155. Sung JY, Kim GY, Lim SJ et al. Expression of the GLUT1 glucose transporter and 

p53 in carcinomas of the pancreatobiliary tract. Pathol Res Pract 2010;206(1):24-29. 

 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 111 

156. Haber RS, Rathan A, Weiser KR et al. GLUT1 glucose transporter expression in 

colorectal carcinoma: A marker for poor prognosis. Cancer 1998;83(1):34-40. 

 

157. Cantuaria G, Fagotti A, Ferrandina G et al. GLUT-1 expression in ovarian 

carcinoma: Association with survival and response to chemotherapy. Cancer 

2001;92(5):1144-1150. 

 

158. Kang SS, Chun YK, Hur MH et al. Clinical significance of glucose transporter 1 

(GLUT1) expression in human breast carcinoma. Jpn J Cancer Res 2002;93(10):1123-

1128. 

 

159. Hoskin PJ, Sibtain A, Daley FM, Wilson GD. GLUT1 and CAIX as intrinsic 

markers of hypoxia in bladder cancer: Relationship with vascularity and proliferation as 

predictors of outcome of ARCON. Br J Cancer 2003;89(7):1290-1297. 

 

160. Tohma T, Okazumi S, Makino H et al. Overexpression of glucose transporter 1 in 

esophageal squamous cell carcinomas: A marker for poor prognosis. Dis Esophagus 

2005;18(3):185-189. 

 

161. Ayala FR, Rocha RM, Carvalho KC et al. GLUT1 and GLUT3 as potential 

prognostic markers for oral squamous cell carcinoma. Molecules 2010;15(4):2374-2387. 

 

162. Baer S, Casaubon L, Schwartz MR et al. Glut3 expression in biopsy specimens of 

laryngeal carcinoma is associated with poor survival. Laryngoscope 2002;112(2):393-

396. 

 

163. Chung FY, Huang MY, Yeh CS et al. GLUT1 gene is a potential hypoxic marker in 

colorectal cancer patients. BMC Cancer 2009;9:241. 

 

164. Rastogi S, Banerjee S, Chellappan S, Simon GR. Glut-1 antibodies induce growth 

arrest and apoptosis in human cancer cell lines. Cancer Lett 2007;257(2):244-251. 

 

165. Wood TE, Dalili S, Simpson CD et al. A novel inhibitor of glucose uptake sensitizes 

cells to FAS-induced cell death. Mol Cancer Ther 2008;7(11):3546-3555. 

 

166. Melstrom LG, Salabat MR, Ding XZ et al. Apigenin inhibits the GLUT-1 glucose 

transporter and the phosphoinositide 3-kinase/Akt pathway in human pancreatic cancer 

cells. Pancreas 2008;37(4):426-431. 

 

167. Liu Y, Zhang W, Cao Y et al. Small compound inhibitors of basal glucose transport 

inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like 

mechanisms. Cancer Lett 2010;298(2):176-185. 

 

168. Kurata T, Oguri T, Isobe T et al. Differential expression of facilitative glucose 

transporter (GLUT) genes in primary lung cancers and their liver metastases. Jpn J 

Cancer Res 1999;90(11):1238-1243. 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 112 

169. Younes M, Lechago LV, Somoano JR et al. Wide expression of the human 

erythrocyte glucose transporter Glut1 in human cancers. Cancer Res 1996;56(5):1164-

1167. 

 

170. Younes M, Brown RW, Stephenson M et al. Overexpression of Glut1 and Glut3 in 

stage I nonsmall cell lung carcinoma is associated with poor survival. Cancer 

1997;80(6):1046-1051. 

 

171. Suzawa N, Ito M, Qiao S et al. Assessment of factors influencing FDG uptake in 

non-small cell lung cancer on PET/CT by investigating histological differences in 

expression of glucose transporters 1 and 3 and tumour size. Lung Cancer 2011;72(2):191-

198. 

 

172. Grover-McKay M, Walsh SA, Seftor EA et al. Role for glucose transporter 1 protein 

in human breast cancer. Pathol Oncol Res 1998;4(2):115-120. 

 

173. Kurata T, Oguri T, Isobe T et al. Differential expression of facilitative glucose 

transporter (GLUT) genes in primary lung cancers and their liver metastases. Jpn J 

Cancer Res 1999;90(11):1238-1243. 

 

174. Pollack MN. Insulin, insulin-like growth factors, insulin resistance, and neoplasia. 

Am J Clin Nutr 2007;86(3):s820-2. 

 

175. Maier T, Guell M, Serrano L. Correlation of mRNA and protein in complex 

biological samples. FEBS Lett 2009;583(24):3966-3973. 

 

176. de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C. Global signatures of protein 

and mRNA expression levels. Mol Biosyst 2009;5(12):1512-1526. 

 

177. Schwanhausser B, Busse D, Li N et al. Global quantification of mammalian gene 

expression control. Nature 2011;473(7347):337-342. 

 

178. Simpson IA, Dwyer D, Malide D et al. The facilitative glucose transporter GLUT3: 

20 years of distinction. Am J Physiol Endocrinol Metab 2008;295(2):E242-53. 

 

179. Klip A, Tsakiridis T, Marette A, Ortiz PA. Regulation of expression of glucose 

transporters by glucose: A review of studies in vivo and in cell cultures. FASEB J 

1994;8(1):43-53. 

 

180. Tennant DA, Duran RV, Gottlieb E. Targeting metabolic transformation for cancer 

therapy. Nat Rev Cancer 2010;10(4):267-277. 

 

181. Liu Y, Zuckier LS, Ghesani NV. Dominant uptake of fatty acid over glucose by 

prostate cells: A potential new diagnostic and therapeutic approach. Anticancer Res 

2010;30(2):369-374. 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 113 

182. Apolo AB, Pandit-Taskar N, Morris MJ. Novel tracers and their development for the 

imaging of metastatic prostate cancer. J Nucl Med 2008;49(12):2031-2041. 

 

183. Levi J, Cheng Z, Gheysens O et al. Fluorescent fructose derivatives for imaging 

breast cancer cells. Bioconjug Chem 2007;18(3):628-634. 

 

184. Liu H, Huang D, McArthur DL et al. Fructose induces transketolase flux to promote 

pancreatic cancer growth. Cancer Res 2010;70(15):6368-6376. 

 

185. Pinto AB, Carayannopoulos MO, Hoehn A et al. Glucose transporter 8 expression 

and translocation are critical for murine blastocyst survival. Biol Reprod 

2002;66(6):1729-1733. 

 

186. McBrayer SK, Cheng JC, Singhal S et al. Multiple myeloma exhibits novel 

dependence on GLUT4, GLUT8, and GLUT11: Implications for glucose transporter-

directed therapy. Blood 2012. 

 

187. Goldman NA, Katz EB, Glenn AS et al. GLUT1 and GLUT8 in endometrium and 

endometrial adenocarcinoma. Mod Pathol 2006;19(11):1429-1436. 

 

 

 
 

 

 

 
 

 

 
 

 
 

 

 

 

 



Investigation of the Expression of Glucose Transporter Proteins in Human Cancer Cells 114 

APPENDIX 
 

Supplemental Figures 

 

Figure s.1. Efficiency testing of GLUT1 primer. A) Amplification of cDNA synthesized from different amounts of 

RNA. Serial dilutions of cDNA were amplified by real-time PCR to determine the efficiency of amplification of the 

GLUT1 gene and internal control (RPII-2). The Ct values at each cDNA dilution were plotted for each gene and 

slope of the line was determined to be similar, indicating that the GLUT1 primer has a similar efficiency to the 

reference gene primer and the 2
-[Δ][Δ]Ct

 calculation for the relative quantification of target may be used. B) The 

differences between the Ct value of GLUT1 and RPII-2 were plotted against the log of the concentration of cDNA 

samples. A delta Ct slope of less than 0.1 indicates similar efficiencies of the target and reference genes, therefore, 

since the delta Ct slope was determined to be 0.0645 it can be inferred that the GLUT1 and RPII-2 primers have 

similar efficiencies. C) The amplified PCR product collected when using the GLUT1 primer was run on an agarose 

gel and a strong band appeared under the 200 bp standard marker. This is consistent with the expected size of the 

product of 189 bp. 
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Figure s.2. siRNA knockdown of GLUT1 and GLUT3 in H1299 cells. H1299 cells were incubated with 

transfection reagent (TR) or transfection reagent + GLUT1 (A) or GLUT3 (B) siRNA to transiently knock 

down these transporters. The specificity of the GLUT antibodies was examined by immunoblotting with 

whole cell lysates from each group.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure s.3. Immunohistochemistry analysis of no-primary GLUT1 controls. Parrafin-embedded sections of 

H1299 (A), A549 (B) and PC-3 (C) tumours were not incubated with an anti-GLUT1 antibody and then 

analyzed by immunohistochemistry . No signal was detected in these tumours. Representative images of 

three independent experiments are shown. Magnification=18.4X 
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Figure s.4. Immunohistochemistry analysis of no-primary GLUT3 controls. Parrafin-embedded sections of 

H1299 (A), A549 (B) and PC-3 (C) tumours were not incubated with an anti-GLUT3 antibody and then 

analyzed by immunohistochemistry . No signal was detected in these tumours. Representative images of 

three independent experiments are shown. Magnification=18.4X 
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Figure s.5. GLUT1 mRNA expression in cancer cell lines normalized to MRC-5. Basal GLUT1 mRNA 

levels were determined in lung, breast and prostate cancer cell lines by Real Time PCR and expressed as a 

fold change of the lung fibroblast cell line MRC-5. Results represent the mean ± SEM of three to four 

independent experiments. 
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Figure s.6. GLUT3 mRNA expression in cancer cell lines normalized to MRC-5. Basal GLUT3 mRNA 

levels were determined in lung, breast and prostate cancer cell lines by Real Time PCR and expressed as a 

fold change of the lung fibroblast cell line MRC-5. Results represent the mean ± SEM of three to four 

independent experiments.  
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Figure s.7. GLUT4 mRNA expression in cancer cell lines normalized to MRC-5. Basal GLUT4 mRNA 

levels were determined in lung, breast and prostate cancer cell lines by Real Time PCR and expressed as a 

fold change of the lung fibroblast cell line MRC-5. Results represent the mean ± SEM of three to four 

independent experiments.  
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Figure s.8. GLUT12 mRNA expression in cancer cell lines normalized to MRC-5. Basal GLUT12 mRNA 

levels were determined in lung, breast and prostate cancer cell lines by Real Time PCR and expressed as a 

fold change of the lung fibroblast cell line MRC-5. Results represent the mean ± SEM of three to four 

independent experiments.  
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Figure s.9. GLUT expression within each lung cell line normalized to the lowest expressed GLUT. A) 

GLUT expression in the MRC-5 cell line normalized to GLUT4. B) GLUT expression in the SK-MES-1 

cell line normalized to GLUT4. C) GLUT expression in the H460 cell line normalized to GLUT4. D) 

GLUT expression in the A549 cell line normalized to GLUT4. E) GLUT expression in the H1299 cell line 

normalized to GLUT12.  
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Figure s.10. GLUT expression within each breast cell line normalized to the lowest expressed GLUT. A) 

GLUT expression in the 184B5 cell line normalized to GLUT4. B) GLUT expression in the MDA-MB-231 

cell line normalized to GLUT4. C) GLUT expression in the MCF-7 cell line normalized to GLUT3.   
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Figure s.11. GLUT expression within each prostate cell line normalized to the lowest expressed GLUT. A) 

GLUT expression in the PNT1A cell line normalized to GLUT4. B) GLUT expression in the 22Rv1 cell 

line normalized to GLUT12. C) GLUT expression in the LNCaP cell line normalized to GLUT3.  D) 

GLUT expression in the PC-3 cell line normalized to GLUT3.  

 

 

 

 

 

 


