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Refinement of surface electromyographic (sEMG) techniques for recording 

voluntary muscle activity offers further opportunity for use as both a research and clinical 

tool. Recent efforts directed at using muscle fibre conduction velocity (MFCV) to assess 

neuromuscular disorders have had difficulty in achieving high test-retest reliability across 

multiple sessions. 

Three days of testing were conducted on 21 males and 19 females with at least 48 

hours between each session. Subjects performed three isometric contractions of the 

dorsiflexors at 100 percent maximal voluntary contraction. Maximum force, root-mean­

square sEMG amplitude, the frequency of mean power (MPF), and MFCV were obtained 

via single- (SD) and double differential (DD) recordings and then evaluated using the 

intraclass correlational analysis of variance technique. 

All measures exhibited high reliability coefficients (R=0.83 - 0.98), except for 

MFCV measured by DD recordings (R=0.65). It was thus concluded that the 

methodological procedures put in place were only effective utilizing single 

differentiation. 
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CHAPTER I 

DEVELOPMENT OF THE PROBLEM 

Introduction 

Surface electromyography (sEMG) is the measurement of muscle electrical 

activity from the skin surface. A number of techniques have been employed to explore 

the relationship between sEMG and muscle physiology. The thesis focused on the 

reliability of an EMG method used to measure muscle fibre conduction velocity (MFCV). 

Muscle fibre conduction velocity refers to the propagation of action potentials traveling 

from a neuromuscular junction or innervation zone along the muscle fibres, towards the 

tendon (Mase et aI., 2006). The range of values is between 2 and 6 mls and is associated 

with the range of muscle fibre diameters for the different motor unit types (Lange et aI., 

2002; Merletti et aI., 1995; Nishihara, 2005; Zwarts, 1989). 

Muscle fibre conduction velocity is altered with the gradation of muscle force, 

local muscular fatigue, and neuromuscular disorders. It is important to have confidence 

that changes in muscle fibre conduction velocity are associated with real physiological 

events and not measurement error. High reliability is particularly important when 

monitoring changes across multiple sessions (day-to-day) to assess the effects of an 

intervention or the clinical progression of neuromuscular disorders. While there appears 

to be similarity between reproducibility and reliability, there is a distinct difference 

between the two in the statistical domain. Reproducibility refers to the ability of a test or 

experiment to be repeated, regardless of the testing apparatus that is used, experimenter 
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or location, whereas reliability refers to the ability of a test or measurement to remain 

consistent over repeated testing sessions of the same subject while following an identical 

protocol (Farina et aI., 2004). Studies on the reliability ofMFCV across multiple test 

sessions have thus far produced mixed results (Farina et aI., 2004; Merletti et aI., 1995). 

Merletti and colleagues (1995) showed that only 83 of 150 electrically evoked 

contractions of the tibialis anterior (10 subjects) resulted in MFCV values within 

acceptable physiological limits (2-8 mls). Muscle fibre conduction velocity was 

determined using double differential electrodes and the cross-correlation function to 

measure the signal delay between detection surfaces. Even with the non-physiological 

values omitted from the analysis, the intraclass correlation coefficient was still "poor" 

(R=0.11). In contrast, Farina et aI. (2002) studied MFCV during submaximal (50%) 

isometric contractions of the biceps brachii and reported an intraclass correlation 

coefficient that was "good" (R=0.75). The increase in reliability may be attributed 0 a 

more sophisticated electrode detection system (matrix) combined with a signal processing 

technique (maximum likelihood) that allowed for more stable MFCV estimates. 

Despite the improvement in reliability associated with more sophisticated 

methodology, the reliability ofMFCV is still insufficient (R>0.90 required) to monitor 

changes across multiple sessions (day-to-day) to assess the effects of an intervention or 

the clinical progression of neuromuscular disorders (Kimura et al., 2001; Merletti et aI., 

1995). Both the study by Merletti and by Farina's group indicated the main source of 

error was a result of the day-to-day placement and "replacement" of surface electrodes in 

the same location so that they aligned with respect to the longitudinal axis of the muscle 

fibres. Off-axis alignment of the surface electrodes can result in the over estimation of 
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MFCV and is most likely the main source of non-physiological values (Farina et aI., 

2004; Sadoyama et at, 1985; Sollie et aI., 1985). 

There are two methods for determining electrode alignment with respect to the 

muscle fibres. The most prevalent method involves the use of an electrode array or 

matrix to visually inspect individual action potentials (Farina et aI., 2004; Merletti et aI., 

1995; Kleine et aI., 2001; Gazzoni et aI., 2005). Visual inspection involves maximizing 

one or more of the following criteria: (1) signal amplitude; (2) the signal delay between 

detection surfaces; and (3) the similarity in action potential shape across channels. The 

second method is to evoke a small twitch in the muscle fibres arid mark their orientation 

on the skin surface on the basis ofthe contraction (Zwarts & Arendt-Nielsen, 1988). 

Using a twitch contraction to identify the muscle fibre orientation is appealing because it . 

utilizes simple instrumentation that is readily available at the clinical level. 

Unfortunately, the reliability of MFCV obtained by twitch identification of muscle fibre 

orientation has not been studied. Technological advances in electrode detection systems 

and signal processing techniques do offer distinct advantages, but may not be necessary if 

a simple approach can be demonstrated to offer the same reliability of measurement. The 

main advantage would be widespread use of MFCV as a physiological measure to 

investigate andlor assess the neuromuscular system. 

Statement of the Problem 

The purpose of this study was to examine the reliability of MFCV in the tibialis 

anterior (TA) while using the twitch contraction to orient the surface electrodes with 

respect to the longitudinal axis of the muscle fibres. Muscle fibre conduction velocity 
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was calculated while participants performed isometric actions of the tibialis anterior at 

100 percent of maximal voluntary contraction (MVC) on three non-consecutive test 

sessions. A linear array of four electrodes spaced 5 mm apart was placed distally from 

electrically identified innervation zones towards the distal tendon. Muscle fibre 

conduction velocity was then calculated using the cross-correlation technique to identify 

the time delay between detection surfaces. 

Problem Hypotheses 

The following hypothesis was tested in this study: with sufficient methodological 

controls, MFCV obtained using a simple electrode array can exhibit good reliability as 

demonstrated by the intraclass correlational analysis of variance technique (R;?: 0.75). 

Significance of the Study 

There has been increased attention in sEMG research towards the development Of 

noninvasive diagnostic tools that can provide insight into the health status of the 

neuromuscular system (De Luca, 2006). The gold standard in EMG has been the use of 

needle electrodes as they circumvent the limitations associated with subcutaneous tissue, 

possess the ability to measure small muscles, and provide greater information about 

individual muscle activity. However, in situations where a patient may be sensitive to 

needle electrodes, a non-invasive technique may facilitate electrodiagnostic 

characterization of the neuromuscular system (van der Hoeven, 1995; Zwarts, 1989; 

Tiirker, 1993). The proposed study will contribute more generally to the refinement 

sEMG methodology so that it can be used as a clinical tool. More specifically, an 
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evaluation of the measurement properties of MFCV in a statistical sense will help 

promote its use in research related to the assessment of neuromuscular disorders. 

For example, Blijham et aI. (2004; 2006) examined MFCV and its diagnostic 

capabilities. In particular, they have noted that patients with inflammatory myopathies 

have a significantly lower MFCV than a healthy population (Blijham et aI., 2004). The 

authors hypothesized that the lower MFCV was due to an increase in the variability of 

both muscle fibre diameter and excitability of the sarcolemma, which are early signs of 

myopathic disease. In a second study, Blijham et al. (2006) performed a muscle biopsy 

investigation of the relationship between MFCV and fibre diameter in patients suffering 

from different neuromuscular disorders. Blijham et aI. (2006) confirmed that muscle 

fibre diameter was the most important factor in determining MFCV in their patient 

population. The two studies by Blijham et al. (2004; 2006) highlight the potential for a 

sEMG methodology to contribute to assessment of the neuromuscular system in a 

clinically meaningful way. 

Basic Assumptions 

The following assumptions affect the interpretation of the results: 

1. The interference pattern recorded at the skin surface represents the activity of 

motor units within the recorded volume of tissue. 

2. The cross-correlation method used to calculate MFCV provides an accurate 

representation of the signal delay between the successive waveforms as recorded 

by the electrode detection surfaces. 
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3. Dorsiflexion force is dominated by the tibialis anterior without substantial 

contribution from the toe extensor muscles (extensor digitorum longus and 

extensor hallucis longus). 

4. The resulting maximal voluntary contraction generated by participants truly 

represents 100 percent of the maximal voluntary effort. 

5. Coactivation from the triceps surae (soleus and gastrocnemius) during isometric 

dorsiflexion contractions is minimal. 

6. The experimental protocol does not result in significant muscular fatigue. 

Delimitations 

The following delimitations were placed upon the study: 

1. Only right leg dominant individuals between the ages of 19 and 35 years were 

studied. 

2. Only one type of muscle contraction was investigated which was isometric 

actions of the dorsiflexors. 

3. Only one contraction intensity, 100 percent of maximal voluntary contraction, 

was investigated. 

4. Only a one joint action was investigated and it consisted of dorsiflexion. 

5. The tibialis anterior was the only muscle studied. 
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Limitations 

The delimitations outlined above will impose the following limitations to the 

interpretation of the results and impact the generalizability of this study: 

1. Since only right leg dominant individuals between the ages of 19 and 35 years 

were tested in this study, the results may not apply to the non-preferred limbs, or 

to humans of a different age group. 

2. Since other types of muscle contractions involving complex joint actions were not 

investigated, the results may not apply to other contraction types (i.e., isotonic or 

isokinetic), at other contraction intensities, wherein more than one body segment 

is involved. 

3. Since the tibialis anterior was the only muscle that was studied, the results may 

not apply to other muscle groups. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Tibialis Anterior 

The tibialis anterior is illustrated in Figure 1 below. Its primary function is 

dorsiflexion and plantar flexion of the foot. The dorsiflexors contract concentrically 

during the swing phase of gait to decrease the angle at the ankle and eccentrically at the 

beginning of the stance phase to aid in control of the plantar flexion of the foot 

(Holmback et aI., 2003). The tibialis anterior is therefore of great biomechanical 

importance in activities of daily living. 

Figure 1. The tibialis anterior and other dorsiflexors. Luttgens, K. and Wells K.F. 

(1982). Kinesiology: scientific basis of human motion (7th Ed.). Philadelphia, PA: 

Saunders College Publishing, Figure 7-21, page 196. 
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A review of the literature on MFCV reveals that a disproportionate number of 

papers study the biceps brachii (Table 1) with relatively few examining the tibialis 

anterior (Table 2). The biceps brachii is an ideal candidate for MFCV research because it 

possesses long parallel (fusiform) fibres while the bipennate structure of the tibialis 

anterior discourages its use (Rababy et aI., 1989). Mesin et al (2007) conducted a 

modeling and simulation study ofMFCV and found that, when subcutaneous tissue is 

limited, the difference in estimation accuracy between unipennate and bipennate muscles 

is negligible. The study also confirmed the basic assumption that, as long as the 

electrode is placed in parallel with the muscle fibres, the tibialis anterior presents an 

excellent model for MFCV estimates (Mesin et aI., 2007). 

Another key characteristic associated with the tibialis anterior is the number of 

motor points associated with its relative surface area. Royet al. (1986) studied the effect 

of electrode location in relation to MFCV and median frequency (MDF) in the tibialis 

anterior. It was found that MDF was greatest at the innervation zone and muscle-tendon 

junction and decreased in proportion with the distance away from these areas. The same 

was true for the stability (repeatability) of measurement; the two measures were most 

variable at the innervations zone and muscle-tendon junction. The study concluded that 

the ideal and most stable/repeatable region for measurement was the area between the 

distal tendon and the adjacent innervation zone. The study also found that the tibialis 

anterior had a range of 1-5 motor points with an average of 2.44 motor points. Staying 

away from these motor points is an important consideration in obtaining reliable 

measures. Masuda and Sadoyama (1987) studied a number of skeletal muscles, including 

the tibialis anterior, to determine which muscles could be used to detect the propagation 
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ofMUAPs with a surface electrode array. The study demonstrated that the propagation 

of the action potential was best observed in the distal half to third of the muscle. The 

electrodes must therefore be placed between the most distal motor point and the distal 

tendon. 

Holmback and colleagues (2003) examined the structure and function of the 

dorsiflexors in males and females, 21 to 30 years old. The anatomic (aCSA) and 

contractile (cCSA) cross-sectional areas, the percentage of type I and II fibres, and their 

relative areas were measured in 15 male and 15 female participants. Magnetic resonance 

imaging and muscle biopsies revealed no significant difference 'in the proportion of type I 

and II fibres (77.8% in males and 76.9% in females). However, type I fibres occupied a 

greater relative percentage of the tibialis anterior cross-sectional area in females, 

suggesting that the type II fibres in males were greater in diameter. This observation was 

further supported by the cross-sectional area data as measured by both aCSA and cCSA. 

The CSA for males was 20% greater than that for females, which also corresponded with 

a proportionally greater MVC. 

The effect of the relationship between muscle fibre type and size on EMG 

variables was studied in isolated muscle preparations from the rat (Kupa et aI., 1995). 

Kupa et ai. (1995 were able to demonstrate a clear relationship between muscle fibre 

type, the size and shape of evoked potential, and resulting spectral parameters. The 

study also found a positive correlation (r = 0.78) between MFCV and the percentage of 

type II fibres. Because muscle fibre diameter is the basis of this relationship, in muscles 

wherein the distribution of fibre types is different between males and females, it may be 

expected that males would have greater MFCV values than females. This is not the case 

10 



with the tibialis anterior as the male and female population, as shown by Holmback et aL 

(2003). 

11 



Table I - Muscle fibre conduction velocity (MFCV) studies conducted on the biceps brachii. The type of contraction 

(voluntary or evoked), the percentage of maximal voluntary contraction (% MVC) that was used, the sex of the participants 

e.g. male (m) and female (j), and the MFCV values (mean ± standard deviation). 

Authors Contraction %MVC Gender MFCV(m/s) 

Farina et aI., 2000 Voluntary 50 1m 3.62-4.05 

Hunter et aI., 1987 Voluntary 30 1m 5 

Kereshi et aI., 1983 Evoked 29 m, 13 f 2.8-5.5 

Krogh-Lund & Jorgensen, 1993 Voluntary 30 10m 3.9 ± 0.69 -5.1 ± 0.41 

Lange et aI., 2002 Voluntary 20 15m 3.53-4.81 

Lange et aI., 2002 Voluntary >50 15m 3.11-5.59 

Li & Sakamoto, 1996a Voluntary 20,40,60 12m 4.13 ± 0.23 -10.23 ± 1.30 

Li & Sakamoto, 1996b Voluntary 20,40,60 12m 4.12 ± 0.17 - 4.92 ± 0.22 

Lowery et aI., 2000 Voluntary 100 5 m, 3 f 3.08-2.78 

Masuda & Sadoyama, 1986 Voluntary 10-40 8m 3.4-3.5 

Naeije & Zorn, 1982 Voluntary 50 _8m,3f 4.4±0.4-3.7±0.7 

Nishihara et aI., 2005 Voluntary 50 6m,4f 3.93 ± 0.43 

Nishizono et aI., 1979 Voluntary <30 4m 4.2± 0.5 - 5.5 ± 0.5 

Sadoyama et aI., 1983 Voluntary 4,8, 12 kg 2m 4.05-4.28 
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Table I Continued 

Authors Contraction %MVC Sex MFCV(m/s) 

Sadoyama et al., 1985 Voluntary 30 1m 3.78 

Sadoyama & Masuda, 1987 Voluntary 0-100 2m 3.28-3.77 

Sakamoto & Li, 1997 Voluntary 30 10m 3.74 ± 0.19 - 10.14 ± 1.13 

Sollie et aI., 1985 Voluntary <30 unknown 3.98-4.23 

Troni et aI., 1991 Evoked 7m,8f 1.25 ± 0.28 - 3.91 ± 0.76 

van der Hoeven & Lange, 1994 Voluntary 50 10m 4.20 ± 0.09 - 4.31 ± 0.11 

van der Hoeven & Lange, 1994 Voluntary 100 10m 4.30 ± 0.09 - 4.40 ± 0.12 

van der Hoeven et aI., 1993 Voluntary 20,50 12m 4.08 ± 0.14 - 4.16 ± 0.11 

van der Hoeven et aI., 1993 Voluntary 100 12m 2.94 ± 0.12 - 4.50 ± 0.13 

Yaar & Niles, 1991 Evoked 16 (unknown) 4.60 ± 1.5 

Yaar & Niles, 1992 Evoked 130 m, 99 f 4.0 ± 1.2 - 4.2 ± 1.5 

Zwarts, 1989 Evoked 7m, 7 f 4.2 ± 0.5; 4.0 ± 0.3 
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Table 2 - Muscle fibre conduction velocity (MFCV) studies conducted on the tibialis anterior. The type of contraction 

(voluntary or evoked), the percentage of maximal voluntary contraction (% MVC) that was used, the sex of the participants 

e.g. male (m) andfemale (I), and the MFCV values (mean ± standard deviation). 

Authors Contraction %MVC Sex MFCVValues 

Andreassen & Arendt-Nielsen, 1987 Evoked 24 (unknown) 2.6-5.3 

Broman et aI., 1985a Voluntary 50 8m 3.37-4.87 

Farina et aI., 2002 Voluntary 25 8m,3 f 4.11 ± 0.3 - 4.32 ± 1.01 

Merletti et aI., 1995 Evoked 10m 2-8 m/s (poor repeatability) 

Royet aI., 1986 Voluntary 20 10m ~3-5 
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Muscle Fibre Conduction Velocity 

The examination of muscle fibre conduction velocity (MFCV) is appealing 

because it is one of the few electrophysiological measurements that do not involve 

interpretation of its meaning, and it can provide insight into a number of characteristics 

associated with muscle activity. Muscle fibre conduction velocity refers to the velocity 

of propagation of action potentials along the muscle fibres (Broman et aI., 1985a). This 

variable is measured by detecting the same myoelectric signal at two different locations 

along the muscle fibres, and estimating the delay in time between the two detection 

surfaces (Broman et aI., 1985a; Naeije & Zorn, 1982). The velocity of propagation is 

simply the interelectrode distance (m) divided by the delay time (s). 

Estimation Techniques 

Dips Analysis Technique. The first frequency domain technique used to 

determine MFCV was proposed by Lindstrom and Magnusson (1970) and is referred to 

as dips analysis. Dips analysis is based on calculating the power spectrum of the 

voluntary sEMG signal. It is important to remember that the voluntary sEMG is an 

interference pattern. The time-delay between signals reaching the two pairs of electrode 

detection surfaces result in a low energy "dip" in the power spectra the location of which 

corresponds to the MFCV(Figure 2). The bipolar electrode configuration behaves as a 

spatial filter. The transfer function is a "comb filter" that alternately passes some 

frequencies while canceling others (Figure 3). The spatial filtering properties of bipolar 

electrodes introduce dips into the power spectrum (Lindstrom & Magnusson, 1970; Sollie 

et aI., 1985; Farina & Merletti, 2004). 
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The frequencies of the sEMG power spectrum at which low (or, close to zero) 

energy dips will occur is therefore given by the filtering transfer function for bipolar 

electrodes: 

sine wd/v) ~ 0 

where w is the angular frequency (w = 2re[), and [ is frequency in Hertz, d is half the 

distance between electrodes, and v is muscle fibre conduction velocity. The argument of 

the sine function results in a zero value when: 

Wkd/v = kre, k = 0, 1,2, ... 

where k is the integer representing the dip number. The calculation ofMFCV depends 

on the location of the fIrst dip where the order k = 1. To find the dip frequency: 

Substituting for W1 = rev / d and rearranging: 

Additional dips may occur for higher orders (k > 1) at frequencies which are simple 

harmonics of [dip. 

The location of the first dip is dependent on the interelectrode distance and 

MFCV, and its sharpness is primarily dependent on the dispersion of the MFCV values 

(Farina & Merletti, 2004; Hunter et aI., 1987). The ability to identify a well-defined dip 

determines the accuracy of this technique. Electrode misalignment and tissue 
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inhomogeneities can make dip identification even more difficult (Yaar & Niles, 1992; 

Yaar & Niles, 1991; Arendt-Nielsen & Zwarts, 1989; Sinderby et aI., 1996; Farina & 

Merletti,2004). Dips analysis is not often used as it is effective primarily at lower force 

contractions (Yaar & Niles, 1992). However, it has played a large part in introducing 

another set oftechniques for estimation ofMFCV. 

80 160 240 

lmwJ 
10-40 

t·:·:::·:·:···:·:·:·:·:·:·:··········:·:·:···:·:·:·:·: .............. :.:.:.:.:.:.: ........ :.:.:.<;.:.j 

100 - 200 

Figure 2. The idealized power spectrum for the surface electromyogram. Dips may 

occur in the frequency range between 100 and 200 Hz. Basmajian, J.V., & DeLuca, C.J. 

(1985). Muscle alive: Their functions revealed by electromyography (5th Edition). 

Williams & Wilkins, Baltimore: MD. (Figure 3.13, page 91). 
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Figure 3. Surface electrode filter function for an inter-electrode distance of2 cm and 

muscle fiber conduction velocity of 4 m/s. Lindstrom, L,H., & Magnusson, R.I. (1977). 

Interpretation of myoelectric power spectra: a model and its applications. Proceedings of 

the IEEE, 65: 653-662. (Figure 3, page 655). 

The Zero Crossing Technique. The zero-crossing technique was fITst introduce~ 

by Lynn (1979) to overcome the limitation of dips analysis technique (Arendt-Nielsen & 

Zwarts, 1989). Lynn (1979) used the time delay between zero-crossings in the 

interference pattern and employed a digital filter to eliminate erroneous signal 

fluctuations (noise) that would otherwise create difficulty in matching two sEMG signals 

(Arendt-Nielsen & Zwarts, 1989). This technique was refined by Masuda and colleagues 

(1982) who introduced a threshold criterion for a zero-crossing to be considered 

significant. The first derivative of the waveform was high -pass filtered, followed by the 

estimation of peaks and the determination oftime lags (Arendt-Nielsen & Zwarts, 1989). 

However, this technique has still been found to be sensitive to noise and electrode 

orientation as shown by a paper by Sadoyama and colleagues (1985). 
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A recently introduced technique based on detecting the latency between the 

"same" peaks in the interference pattern recorded across electrodes pairs, is similar in 

practice to the latency between zero-crossings. Lange (2002) took the derivative of both 

signals sampled at 4000 Hz. Polarity was then marked at all the zero-crossings. The 

following criteria were required: 15 samples before the zero-crossing had to be positive 

and the 15 samples following the zero-crossing had to be negative, otherwise the peak 

would be excluded from analysis. The same peak is then identified within a window 

across the two signals. A determination of the delays between all the peaks across both 

signals provides a range or spread of muscle fibre conduction ve~ocities. The obtained 

values compared well with cross-correlation technique. There are other variants of the 

peak latency technique which differ in the threshold criteria for peak identification (Beck 

et aI., 2004; Nishihara 2005). The basic problem is to identify the "true" peak rather than 

the noise embedded within interference pattern. The obtained values compared well with 

the cross-correlation technique. Variants of the peak latency technique differ in the 

threshold criteria for peak identification (Beck et aI., 2004; Nishihara, 2005). The basic 

problem is to identify the ''true'' peak rather than the noise embedded within the 

interference pattern. 

Cross Correlation Technique. The majority of papers on MFCV have used the 

cross-correlation technique. Naeije and Zorn (1982) first demonstrated the technique 

with success in 1982. This technique involves two sEMG recordings that are similar but 

not identical, due to changes in the action potential shape as it propagates between the 

two electrodes (Figure 4, left panel). The cross-correlation method compares the two 

signals on a point-by-point basis. The lag time (7:) associated with the maximum value 
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corresponds to the amount of time that the signal in the first channel would have to be 

shifted-back so that the peaks between the two channels would be aligned. This time-

shift maximizes the cross-correlation between the two signals. Where the ® denotes the 

correlation, the cross-correlation Rxy(t) between the two signals x(t) and yet) is: 

co 

Rxy(t) = x(t) ® yet) = J x(r)y(t + r) dt 
00 

Consider the two sEMG signals in adjacent columns in an Excel spreadsheet. The 

function above is analogous to calculating the correlation betw~en x(t) and yet) as one 

of the two signals shifted down a row, one data point at a time. Since each sampled 

datum represents a point in time, the correlation between the two signals for that 

particular time-shift (r) is then determined. This process is repeated for each shifted 

data-point, for the length of the two signals. Plotting the resulting correlation for each 

time-shift reveals the cross-correlation as a function of time-shift, termed the cross 

correlation function. The peak correlation then gives an estimate of the time-delay 

between the two signals (Figure 4, right panel). This time delay is divided by the inter-

electrode distance to obtain the MFCV. 
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Figure 4. The same muscle fiber action potential recorded at two different electrodes on 

channell (CHI) and channel 2 (CH2), respectively (left). Channell is closer to the 

motor point. The cross-correlation function has a maximum value at a positive lag time 

(r), indicating that channel 2 is delayed with respect to channell (right). Arendt­

Nielsen, L., & Mills, K.R. (1985). The relationship between mean power frequency of the 

EMG spectrum and muscle fiber conduction velocity. Electroencephalography and 

Clinical Neurophysiology, 60, 130-134. (Figure 1, page 131). 

There are two ways to improve the precision of measurement that is limited by 

sampling rate. Farina and colleagues (2000) demonstrated improvement by employing a 

higher sampling rate, and by applying a simple interpolation function around the peak 

value. Roy and colleagues (1986) suggested a similar method wherein the cross­

correlation peak is interpolated by multiplying it with the function by sin(x)/x to preserve 

the frequency content of the frequency spectrum of the cross-correlation function itself 

(Royet aI., 1986). Yaar and Niles (1992) demonstrated the cross-correlation technique 
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was superior to the frequency domain based technique as it was less susceptible to 

experimental noise and misalignment of the electrodes. 

Electrode Considerations 

Typically, at least three silver or silver-chloride recording surfaces placed along 

the direction of motor unit potential propagation are used to detect the latencies of action 

potentials. The three detection surfaces are used to create at least two differentially 

recorded signals (Lowery et aI., 2002; Broman et aI., 1985a). An additional recording 

surface may be included to yield two double-differential signals (Royet al., 1986; Farina 

et aI., 2002). The double differentiation minimizes the presence of non-delayed activity 

which can result in non-physiological MFCV values (Broman et at, 1985b; Farina et aI., 

2002; Hogrel & Duchene, 2002): Stimulus artifact and far field potentials (muscle­

tendon end effects) are also greatly reduced by double differential electrodes (Fiorito et 

aI., 1994; Broman et aI., 1985b; Farina et aI., 2002). However, there is a trade-off 

between competing factors that must be considered. An inter-electrode distance of 5 mm 

minimizes changes in action potential shape between detection surfaces (Sadoyama et aI., 

1985; Sollie et aI., 1985; Farina et aI., 2004), and is minimally sufficient to prevent salt­

bridge formation with the use of electrolyte gel (Rababy et aI., 1989). 

Electrode Placement and Orientation 

The motor point is an electrically defmed region of the muscle. This dense 

collection of motor endplates may be identified electrically as a point on the skin surface 

where the lowest possible current will produce a muscle twitch (Roy et aI., 1986). If a 

dense collection of motor endplates lies close to the surface of the skin, there should be a 
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lower threshold for muscle activation. Because of branching of the motor nerves, it is not 

unusual for the motor point to reside within a more broadly defmed "innervation zone". 

The innervation zone is defined through electrode mapping. Motor unit action potentials 

are generated, then propagate simultaneously, bidirectionally away from the innervation 

zone (Masuda & Sadoyama, 1987). 

Sollie et al. (1985) and Sadoyama et aI. (1985) reported difficulty in detecting the 

latency between signals if the electrodes were placed on the motor point. Both research 

groups also noted that the cross-correlation values were significantly lower when the 

electrode was placed on, or in close proximity to, the motor point (Sollie et aI., 1985; 

Sadoyama et aI., 1985). In contrast, a distinct region between the motor point and tendon 

was observed wherein the cross-correlation values were highest and the MFCV values 

were relatively constant (Sollie et at, 1985; Sadoyama et aI., 1985). Sollie (1985) and 

colleagues were more specific and laid out a set of conditions that should be followed 

when examining conduction velocity via the cross-correlation method. As well, they 

found results similar to those of Sadoyama and colleagues (1985), where they found a 

distinct region where the highest correlation values were found and the conduction 

velocity calculated was near constant. 

Roy et aI. (1986) specifically addressed the issue of electrode placement relative 

to the motor point. They measured MFCV in the tibialis anterior and found that the 

highest cross-correlation values were obtained when the electrode was placed within a 3 

- 4 cm region between the motor point and distal the tendon. It was suggested that the 

high cross-correlations were due to the more symmetrical propagation of action potentials 

as the muscle tapered towards a common tendon below the most distal motor point (Roy 
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et aI., 1986). A number of investigators have confinued the findings of Roy et aI. (1986) 

to show that muscles have a distinct region where physiologically correct, 

repeatable/stable MFCV values may be obtained (Li & Sakamoto, 1996a; 1996b; Sollie 

et aI., 1985; Sadoyama et aI., 1985; Rababyet aI., 1989; Andreassen & Arendt-Nielsen, 

1987). Moreover there is a V-shaped function for MFCV values that extends from the 

motor point towards the tendon, with the highest, most unstable values at either end (Li & 

Sakamoto, 1996a; 1996b; Roy et aI., 1986; Sadoyama et aI., 1985). 

A simple misalignment of an electrode can also result in values that are nearly 

double the accepted physiological values. Sollie et aI. (1985) examined misalignment of 

the electrode relative to MFCV values. They found that misalignments of5, 10 and 15 

degrees in electrode placement relative to the muscle fibres resulted in overestimations of 

velocity of 1.7, 1.9 and 6.5%, respectively. This is due to the fact that the interelectrode 

distance is now multiplied by the cosine of the angle of misdirection, which is inherently 

a shorter distance (Sollie et aI., 1985; Sadoyama et aI., 1985; Farina et aI., 2004) (Figure 

5 &6). 
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Figure 5. Schematic diagram of electrode placement. Myoelectric potentials were led off 

bipolarly from the adjacent pairs of the contacts in the electrode array. The contacts were 

spaced at 5 mm intervals. Contact widths were (a) 1 mm, (b) 10 mm and (c) 20 mm. 

Sadoyama, T., Masuda, T., Miyata, H., & Katsuta, S. (1988). Fibre conduction velocity 

and fibre composition in human vastus lateralis. European Journal of Applied 

Physiology, 57, 767-771. (Figure 1, page 340). 
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Figure 6. Raw tracings of 12 myoelectric signals obtained by the 10 mm width electrode 

( a) placed along the datum reference line and (b) rotated at + 30° with respect to the 

datum reference line. Contraction was 30 per cent of the maximum voluntary 

contraction. Sadoyama, T., Masuda, T., Miyata, H., & Katsuta, S. (1988). Fibre 

conduction velocity and fibre composition in human vastus lateralis. European Journal 

of Applied Physiology, 57, 767-771. (Figure 2, page 340). 

Muscle Fibre Characteristics 

The relationship between MFCV and fibre diameter has been the subject of debate 

(Sadoyama et aI., 1988; Kupa et at, 1995; Blijham et al., 2006). Originally, Sadoyama et 

al. (1988) failed to show a relationship between the two variables. The investigators 

studied distance runners and sprinters for their obvious differences in muscle fibre type 

on the assumption that the low threshold type I fibres have smaller diameters than the 

higher threshold type II fibres. As might be expected, the two groups displayed 
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differences in fibre type composition. However, there was an increase in fibre size 

relative to the athletic endeavor which blurred the differences between groups. The 

sprinter's type II fibres were 89.7 Jlm in diameter and the distance runner's type I fibres 

were 85.3 JlID. A clear relationship between fibre diameter and MFCV was demonstrated 

more recently by Blijham and colleagues (2006) who showed a linear relationship 

between the two variables. It was also concluded that fibre diameter played the most 

important role in the determination ofMFCV. 

There are both physical and metabolic reasons why muscle fibre diameter is 

important in determining MFCV. The muscle fibre action potential (MF AP) can be 

represented by a traveling tripole (+ - +) (Loeb & Gans, 1986; Dumitru, 2000). The 

electrochemical events involved in generating the MF AP are illustrated in Figure 7. The 

electric potential associated with each electrochemical event is depicted immediately 

below the muscle fibre, as it would be recorded by an extracellular electrode. All these 

events are occurring at the same time as the action potential propagates along the muscle 

fibre, from left-to-right towards the electrode. However, imagine that we can freeze these 

events in time to explore the electrode recordings further. 

Focusing fIrst on the point of depolarization, when Na + ions rush into the muscle 

fibre, they leave behind a relatively strong negativity in the extracellular space. This 

strong negativity is called a current sink because positive charges are drawn to it. If an 

electrode is placed directly over the depolarization event, a negative potential is recorded 

with respect to the extracellular space (position #1). However, the current sink is so 

strong that it attracts positive ions from the membrane area in front of the depolarization 

event. This forward membrane area is called a weak current source area because it 
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provides the positive ions that are drawn to the current sink:. An electrode placed in front 

of the depolarization event would record a slight positivity (position #2). As positive 

ions leave the forward membrane area, the charge difference across the membrane 

decreases, which leads to passive depolarization of the muscle fibre. The ion channel­

mediated rush of positive ions (Kl outside the muscle fibre gives rise to the 

repolarization event and is a strong current source. An electrode placed directly over the 

repolarization event would record a large positivity (position #3). 

Propagation 

c=::===> 

Extracellular Fluid 

Leading Edge 

Figure 7. The electrochemical events associated with generating the muscle fiber action 

potential. Kamen, G., & Gabriel, D.A. (2009). Essential of electromyography. Human 

Kinetics, Champaign: IL. (Figure 2.5, page 26). 

As the MF AP propagates along the muscle fibre from left-to-right towards the 

electrode, the leading edge (weak: current source) is detected first, followed by the 

depolarization phase (current sink), and then the repolarization phase (strong current 
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source). The motor unit action potential (MUAP) is also triphasic because it is the linear 

sum of all its associated muscle fibres. 

Electrical stimulation of the peripheral nerve results in the activation of a large 

number of motor units simultaneously. The triphasic wave form is still apparent in the 

simultaneous depolarization and repolarization of the recruited motor units. The evoked 

potential is logically termed, the massed action potential (or, M -wave). It is also called 

the compound muscle action potential (CMAP) due to the linear summation of all the 

constituent MUAPs. The large number of muscle fibres involved in the evoked response 

results in an electric potential that is several millivolts in magnitude. 

A fundamental quantity in the electrophysiology of muscle and nerve fibresis the 

length constant (A.) (Nicholls et at, 2001). It is the segment length at which the axial and 

radial resistances are equal. At distances greater than A. the axial resistance is greater than 

the radial resistance and the majority of the current leaks through the membrane. The " 

formula for the length constant is: 

where (Pm) is the resistivity of the myoplasm (or, axoplasm), (Rm) is membrane 

resistance, (a) is muscle fibre diameter. The conduction velocity of action potentials 

depends on how quickly the membrane can be brought to threshold. If the area of the 

membrane in front of the active region is brought closer to threshold through the passive 

spread of positive charges, depolarization will have an earlier onset. The length of the 
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leading edge of the depolarizing current is dependent upon the length constant (A.), which 

is a function of the square root of the diameter (a1/ 2 ). 

Larger muscle fibres have a greater length constant, which means that the 

depolarizing current will travel farther forward, passively. Ultimately, this occurs 

because there is a decrease in axial resistance associated with an increase in fibre 

diameter. The action potential has a greater forward extent (or leading edge) that brings 

the membrane area farther ahead of the traveling dipole, closer to threshold. The 

membrane area will depolarize more rapidly. The result is an overall increase in 

conduction velocity with an increase in muscle fibre size. There is also a metabolic 

reason that an increase in muscle fibre diameter is associated with an increase in MFCV. 

Type II muscle fibres have larger diameters, but they also have a higher resting 

membrane potential and a greater action potential amplitude that is shorter in duration 

than type I fibres. Hanson (1974) suggested that the increased membrane excitability is 

attributed to higher intracellular [K+] and lower intracellular [Na +] for type II fibres. The 

mechanism appears to reside in a difference in the Na+-K + leak/pump ratio for type II 

versus type I fibres (Clausen et aI., 2004). 

Force of the Voluntary Contraction 

The relationship between force and MFCV remains a subject of debate. The main 

experimental paradigm used to explore the relationship between the two variables is the 

use of ramp or step isometric contractions at force levels varying from 0 to 100% of 

MVC. The assumption is that the gradation of muscle force will follow Henneman's 

(1957) size principle wherein the central nervous system recruits progressively larger 
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motoneurons. Both muscle and nerve fibre diameter for low threshold (type I) motor 

units are smaller than for higher threshold (type II) motor units (Andreassen & Arendt­

Nielsen, 1987). Thus, the expectation is that there would be a progressive increase in 

MFCV as higher threshold motor units are recruited to increase the force of the muscle 

contraction (Okajima et aI., 1998; Sadoyama & Masuda, 1987). 

Studies that have tested this hypothesis on the tibialis anterior (Broman et aI., 

1985a; Andreassen & Arendt-Nielsen, 1987) and biceps brachii (Zwarts & Arendt­

Nielsen, 1988; Lange et aI., 2002) have reported a progressive increase in MFCV with 

force as predicted. The increase generally plateaued towards the end of the recruitment 

range of the muscle, providing additional evidence that the increase in MFCV was indeed 

associated with the recruitment of higher threshold, larger diameter fibres. 

Unfortunately, counterexamples are found in the literature that suggest either no 

relationship or a weak one at best. Masuda et ai. (1996) reported a lack of relationship 

between MFCV and force in the biceps brachii while Rababy et al. (1989) observed a 

very mild increase. Interestingly, Masuda et al. (1996) studied two other muscles: MFCV 

in the vastus lateralis demonstrated a strong dependence on contraction force while the 

tibialis anterior exhibited a moderate increase. 

It is tempting to blame the discrepant fmdings on differences in the electrode 

detection systems, signal processing techniques, or type of contraction studied. However, 

the studies cited above followed well-accepted practices in the measurement ofMFCV. 

There is, however, evidence that the relationship between force and MFCV depends on 

the rate of increase in force. Sbriccoli el. (2003) investigated MFCV in the biceps brachii 

during ramp isometric contractions of the elbow flexors at 5, 10, and 20 MVC· s -}, from 0 
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to 100% of MVC. The MFCV values increased rapidly until the first two and one"'-half 

seconds ofthe contraction at 5 and 10 MVC' s-\ it then plateaued for the remainder of the 

trial until 100% ofMVC was reached. In contrast, there was a steady increase in MFVC 

from 0 to 100% ofMVC during the 20 MVC's-1 condition. Ifthe relationship between 

force and MFCV depends on the rate of increase in force, it is reasonable to argue that the 

main difference between studies was "how fast" participants achieved the target force. 

The focus of the study was on the reliability of MFCV using a simple electrode 

alignment technique. The MFCV of the tibialis anterior was assessed at the maximal 

voluntary force level. The logic behind the use of this contraction was that it would place 

our signal analysis at an optimal level of signal to noise ratio. 

Reliability 

General Principles 

Intraclass correlational analysis of variance involves a consideration of both the 

"consistency" and "stability" of the criterion measures (Lindquist, 1956; Feldt & McKee, 

1958; Hetherington, 1973). This section reviews these two basic concepts while the 

Statistical Analysis details their calculation. Consider the simple case in which reliability 

is assessed with the interclass correlation coefficient (pearson's "r"). The example is 

based on measuring the root-mean-square (RMS) sEMG amplitude for six participants 

during an isometric contraction of the tibialis anterior at 100% MVC, on two separate test 

sessions (Figure 8). 
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The interclass correlation coefficient (r = 0~93) would indicate that the measure is 

highly reliable when inspection of the graph would indicate otherwise. In this case, the 

high interclass correlation coefficient indicates that participants maintained their relative 

ranking within the distribution of scores. The measure lacks consistency "within 

subjects" because participants were unable to reproduce their own score; it was different 

across the two sessions. The measure also lacks stability because the means "between 

subjects" on session one versus session two exhibited an increase (A 0.31 mY). To 

clarify further, the term "between subjects" is taken from an analysis of variance 

(ANOV A) which would be used to examine the difference in m~ans "between" two or 

more groups of subjects. Although the same group of subjects is tested twice to yield two 

means, or a "repeated measure" on the group, the terminology is the same. Sole reliance 

upon the interclass correlation coefficient to determine reliability can therefore be very 

misleading. 

The second case illustrated in Figure 9 is equally troublesome. The means 

obtained on session one versus session two exhibit excellent stability because they are 

identical. However, these identical means were obtained because the differences in 

scores produced by one subject were compensated for by differences in scores produced 

by another subject. The "net result" is that there is no difference between means across 

the two sessions. Testing for significant differences to demonstrate that the criterion 

measure is stable and therefore reliable is necessary, but not insufficient. 

The ideal situation is depicted in Figure 10. That is, every subject can reproduce 

their own score perfectly. Perfect consistency results in an interclass correlation 

coefficient ofr = 1.0. The following are critical by-products of the fact that subjects can 
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reproduce their own score: (1) one subject is distinctly different from the next, and (2) 

each subject maintains their relative ranking within the distribution scores across the two 

sessions. In this way the correlation coefficient is used to assess only part of reliability, 

"consistency". The second half of reliability is the "stability" of means across test 

sessions. In the absence of any experimental manipulation, the group means should 

fluctuate very little across test sessions. 

Referring back to Figure 8, the high (0.93) interclass correlation coefficient would 

ordinarily indicate highly reliable scores. However, each subject exhibited an average 

increase of 0.31 m V while maintaining their relative rank withiri the distribution of 

scores. It should be evident from the graph that the increase in means across test sessions 

actually decreased the interclass correlation coefficient down from r = 1.0. Thus, a test of 

significant differences (i.e., t-test or ANOV A) in means across sessions is a very 

important diagnostic component in the assessment of reliability. The ANOV A model can 

be extended to any level of measurement that is desired. The study had two levels of 

measurement: days and trials. 
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Figure 8. Test-retest reliability for root-mean-square amplitude of surface 

electromyographic (sEMG) activity. There is a high interclass correlation coefficient (r = 

0.93) but with a difference in means between the first and second test sessions. 
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Figure 9. Test-retest reliability for root-mean-square amplitude of surface 

electromyographic (sEMG) activity. The interclass correlation is r = 0.00, but there is no 

difference in means between the fIrst and second test sessions. The regression line is 

perfectly horizontal. 
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Figure 10. Test-retest reliability for root-mean-square amplitude of surface 

1.1 1.2 

electromyographic (sEMG) activity. Perfect reliability (r = 1.00) is the ideal situation. In 

this case, each subject reproduces their own magnitude of sEMG activity across both test 

sessions. 

The Intraclass Correlation Coefficient 

The intraclass correlation coefficient is actually a ratio of mean squares extracted 

from the results of an ANOVA (Portney & Watkins, 1993; Weir, 2005). However, the 

ANOV A model used to calculate the intraclass correlation coefficient is different from 

the one generally used to assess stability. Starting from first principles, the observed 

score (x) can be viewed as the sum of the true score (T) and associated error (e): 

x=T+e 
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Since the true score for any individual is constant, any fluctuations in the observed score 

may be attributed to error. The error may be associated with either biological variability 

or measurement error, or some combination of the two. 

Restated in terms of an ANOV A framework, the total variance in a set of 

observed scores (u;) is the sum of the true score variance (uE) and error variance (u;). 

The error variance may be partitioned into various sources of measurement error (i.e., 

days and trials) and explored using the ANOVA model: 

The true score variance is not known, but it must be a fixed value because the true score 

for each individual is constant. Consider the case wherein the scores are perfectly 

reliable and there is no error variance (Figure 9). The differences between subjects are 

attributed only to the differences between their true scores, i.e., the true score variance. 

Similarly, if the true score is a fixed value, then any fluctuation would be due to error 

variance. The introduction of error to each true score would then obscure the differences 

between subjects, and decrease the reliability of the measure. Reliability is conceived as 

a ratio between the true score variance (uE) and the total variance (ut + u;). The 

smaller the error variance, the closer the total variance approaches the true score variance 

and the ratio (R) tends toward unity: 

In this theoretical formula, R is proportional to the Between Mean Squares where 

it is inversely proportional to the Error Mean Squares. It should also be noted that in 
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typical cases, 0:::; R:::; 1.0; in some cases where sample size is insufficient, R may fall 

below 0, however the value is usually rounded to O. It is important to remember that the 

differences between subjects is linked with the true score variance. The true score 

variance is the between-subjects mean squares (BMS) in the repeated measures ANOV A. 

Consider a data matrix wherein each row represents a series of scores for a given subject 

(Table 3). The between-subjects mean squares is based on the differences between rows. 

lfthe series of scores for each subject are very "consistent", the rows will be distinctly 

different from one another and the between-subjects mean squares will be high. The 

differences between subjects can then be attributable to the differences between each 

subjects' true score. Since the fluctuation of scores within each subject is due to error, 

differences between scores within rows results in the error variance. The error variance 

is the within-subjects mean squares (EMS) in the repeated measures ANOV A. 

The theoretical formula is translated to a practical method for calculating the 

intraclass correlation coefficient by using the mean squares from the most basic one-way 

repeated measures ANOV A model: 

BMS i 
R i = BMS i +EMS J, 

As subjects become better at reproducing their own score, they become distinctly 

different from each other, resulting in an increase in the between subjects mean squares. 

At the same time, the scores within subjects fluctuate less, decreasing the error mean 

squares. The result is an overall increase in the intraclass correlation coefficient. A 

criterion measure that is highly reliable has a true score variance that accounts for the 

greatest percentage of the total variance. 
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Table 3 - Data matrix for a one-way repeated measure analysis of variance. 

Subjects (SS) Session 1 Session 2 Session 3 Session 4 Session 5 

Sl Xl,l Xl,2 Xl,3 Xl,4 Xl,S 

S2 X2,1 X2,2 X2,3 X2,4 X2,S 

S3 X3,1 X3,2 X3,3 X3,4 X3,S 

S4 X4,1 X4,2 X4,3 X4,4 X4,S 

S5 XS,l XS,2 XS,3 XS,4 Xs,S 

S6 X6,1 X6,2 X6,3 X6,4 X6,S 

Reliability of Muscle Fibre Conduction Velocity 

Several investigators have struggled with obtaining reliable MFCV measurement. 

Despite sophisticated signal processing techniques and state of the art instrumentation, 

the studies conducted thus far have attributed electrode replacement as the single 

dominant factor in obtaining low reliability (Farina et aI., 2004; Merletti et aI., 1995; 

Merletti, et aI., 1998). Obtaining highly reliable sEMG measures is certainly possible, 

even when the electrodes placement is required over multiple sessions. The 

Electromyographic Kinesiology Laboratory has repeatedly demonstrated high intraclass 

correlations for sEMG (H-Reflex, M-Wave) produced by electrical stimulation of the 

peripheral nerve (R> 0.90) and voluntary contractions (R > 0.80) (Christie et aI., 2004; 

2005; Calder et aI., 2005; 2007). 

Merletti et al. (1998) reported a low intrac1ass coefficient (R = 0.36) for MFCV in 

the tibialis anterior. There were two potential sources of error. One possibility was the 

use of a large (10 mm) inter-electrode distance. Farina et ai. (2005) noted that a 10 mm 
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inter-electrode distance can decrease the standard deviation ofthe measurement, but it 

also can increase the dissimilarity between action potential shapes recorded at electrode 

pairs. Dissimilar action potential shapes would increase the measurement error in the 

MFCVestimate. Merletti et al. (1995; 1998) studied the MFCV associated with evoked 

potentials. It was suggested that error in repositioning the stimulation probes across test 

sessions could have also contributed to lowering the reliability. 
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CHAPTER III 

METHODS 

Subjects 

Forty college-age individuals (21 males and 19 females) participated in this study. 

Only right leg dominant individuals with a body mass index under 25 were used. 

Participants signed an informed consent document (REB #02-283) that complied with 

Brock University Research Ethics Board (Appendix A). All testing occurred within a 

Faraday cage housed in the Electromyographic Kinesiology Laboratory in Welch Hall, 

room 18. 

Preliminary Test Procedures 

Each participant was introduced to the lab prior to the first test session. They 

were verbally acquainted with the testing device, associated instrumentation, and the 

demands of the task at that time. Each participant was then asked to complete an 

informed consent document and the PAR-Q (Appendix B). The informed consent 

document also included typed written instructions that reinforce the requirements of 

testing. The following anthropometric measurements were also obtained: height, weight, 

length and girth of the right lower leg (Appendix C). 

Electromyography 

The participant then lied down supine on a gurney for motor point determination. 

A constant-current (150 rnA) source was used to find the motor point using the lowest 
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possible voltage. The cathode and anode electrodes were connected in series with an 

isolation unit (Grass Telefactor SUI8, Astro-Med, Inc., West Warwick, RI) and a 

stimulator (Grass Telefactor S88, Astro-Med Inc., West Warwick, RI) to deliver a square­

wave pulse, 1 msec in duration at a rate of 10 pps (Calder et aI., 2005). A self-adhesive 

anode (Pals Plus, 5.0 em, Axelgaard, Fallbrook, CA) was then secured on the 

gastrocnemius while a stainless-steel cathode probe (3 mm) was used to systematically 

explore the skin surface of the tibialis anterior until a barely perceptible muscle twitch 

was observed beneath the skin (Roy et aI., 1986). Once the motor point had been 

determined, the stimulus intensity was then increased to produc~ a clearly visible, 

localized muscle twitch at 1 pps. The orientation of the muscle fibres was extrapolated 

along a "best fit line" and marked with indelible ink. The procedure was repeated before 

the recording session on each test day. 

The lower leg was shaved, abraded (NuPrep®, Weaver and Company, Aurora, 

CO), and cleansed with alcohol to reduce the impedance at the skin-electrode interface. 

The electrode was then prepared with two-sided tape and electrolyte gel (Signa Gel®, 

Parker Laboratories, Inc., Fairfield, NJ). The recording electrodes consisted of four 

stainless-steel tubular surfaces, each I mm in diameter and 10 mm long, mounted within 

a rigid plastic structure with a centre-to-centre interelectrode distance of 5 mm. The 

electrodes were configured to yield three sets of bipolar signals via single differentiation. 

Initial pPlacement was in line with the muscle fibres, 5 mm below the most distal motor 

point towards the distal tendon. The ground electrode (CF5000, Axelgaard, Fallbrook, 

CA) was located on the lateral malleolus. 
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Once the electrodes were secured to the skin surface, the impedance was assessed 

(Grass EZM Electrode Impedance Meter, Astro-Med Inc., Warwick, RI) to ensure that it 

was lower than 10 kQ and no further preparation was necessary. Temperature was also 

recorded pre-recording and post-recording to ensure that the value did not significantly 

differ from the previous visit. The location and orientation of the electrode was then 

traced with an indelible ink marker. Participants were also sent home with an indelible 

ink marker to maintain the electrode outline between testing sessions. Since the sessions 

were only 48 hours apart, it was not anticipated that fading would occur to the degree that 

the electrode cannot be placed in its previous location (Calder e~ aI., 2005). The 

procedure for identification of the motor point was repeated before each testing session. 

And the electrode was replaced in the outline trace from the previous session. This 

placement was merely a guideline that provided a means of minimizing the procedure 

associated with optimizing electrode placement. 

Participants next sat in a testing chair that was incorporated into a jig designed to 

isolate the action ofthe dorsiflexors in an isometric contraction (Figure 11). The position 

of the testing chair within the jigg could be adjusted so that the hip and knee joints were 

at 90 degrees. A load-cell (JR3 Inc., Woodland, CA) was secured beneath a foot-plate so 

that the ankle joint was placed at 110° (slight plantar flexion). Dorsiflexion forces were 

applied perpendicular to the load cell through an adjustable mount. A metal bar was 

placed over the top of the bare foot at the 5th metatarsal to secure the foot to the foot­

plate/load-cell assembly. Participants performed dorsiflexion against the metal bar to 

transmit forces to the load-cell. A foam cushion between the metal bar and the top ofthe 
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foot ensured that the participant was comfortable and the foot was secure. Belts were 

used to help stabilize the participant within the chair. 

Figure 11. Subject test position and experimental set-up. The load cell was at the bottom 

of the foot-plate. There were separate belts for the thighs and waist to secure the legs and 

hips, respectively. 

Measurement Schedule 

There were a total of 3 days of testing with at least 48 hours between each 

session. The maximum time between testing sessions was 7 days. The following 

procedures were performed on each test day. Participants sat in the testing chair located 
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within the Faraday cage, and they once again read type-written instructions of the 

demands of the testing while skin temperature (Electrotherm TM99A - Cooper 

Instrument Corp., Middlefield, CT) was taken. Prior to the first recordings, electrically 

evoked potentials were elicited to ensure that electrode placement maximized action 

potential shape similarity between channels, as well as delay between signals (Farina et 

aI.,2004). At this point, there was a check to ensure that the muscle fiber conduction 

velocity values for the subsequent voluntary contractions fell within physiological range 

between 2 and 13 mls (Hunter etal., 1987). If the value did not fall within an acceptable 

range, or any of the conditions previously established were unsatisfactory, repositioning 

of the electrode continued until a satisfactory position was obtained. 

Participants then performed three maximal isometric contractions of the 

dorsiflexors. The procedures for determining the dorsiflexion MVC were based on 

Baratta et al. (1998). The contractions were 5-seconds in duration with a 3-minute rest 

interval. A target was presented as a horizontal line on an oscilloscope (Hitachi, VC-

6525) placed in front ofthe subject. The target was a voltage that represented 110% of 

the mean peak value of the previous three contractions. If participants were able to reach 

the target line during the fourth trial, the MVC value was updated. Electrode impedance 

and skin temperature were once again assessed following completion of the last trial. 

Data Recording 

The three single differentiated sEMG signals and 2 double differentiated were 

band-pass between 10 and 1000 Hz and amplified (Grass P511, Astro-Med Inc., West 

Warwick, RI) to maximize its resolution on the 16 bit analogue-to-digital converter (NI 
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PCI-6052E, National Instruments, Austin, TX). The force and sEMG signals were sent 

to the connector block (BNC-211O, National Instruments, Austin, TX) associated with the 

analogue-to-digital conversion board. All signals were sampled at 5 kHz using a 

computer-based data acquisition system (DASYLab, DASYTEC National Instruments, 

Amherst, NH). The datum was stored on a Celeron PC for off-line processing (Dell, 

Round Rock, TX). 

Data Reduction 

The detection surfaces and the associated sEMG signals from a representative 

subject are show in Figure 10. The sEMG signals were normalized by taking the z-score 

value of each datum to ensure each channel had zero mean and unit variance (Figure 13). 

Normalization is designed to minimize the impact of amplitude differences on the peak 

magnitude of the cross-correlation function (Hunter et aI., 1987). The force and sEMG 

signals were analyzed from a 500 msec window, immediately prior to the middle ofthe 

contraction, where the force-time curve was most stable (Farina et aI., 2004). The sEMG 

signals were up-sampled to 25 kHz prior to calculating the cross-correlation function to 

increase the precision of measurement (Farina & Merletti, 2004). All cross-correlation 

functions had a coefficient of 0.80 or higher as recommended by Arendt-Nielsen and 

Zwarts (1989) (Figure 14). Muscle fibre conduction velocity was calculated based on the 

delay-time identified by the cross correlation function and the known interelectrode 

distance of 0.5 cm. This was done for the first two single-differential recordings (SD 1 

and SD2) and for the double-differential signals (DDI and DD2), which were created off­

line (Lowery et aI., 2002). 
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The root-mean-square (RMS) amplitude and the frequency of the mean power 

(MPF) were also calculated for SD2 from the same data window according to the 

formulae outlined by Kamen and Gabriel (2009). These measures are well established in 

the literature and offer a basis of comparison for the general reliability of the sEMG 

methodology. 
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Figure 12. The surface electromyographic activity associated with a 30 percent maximal 

voluntary contraction condition as recorded by both single and double differential 

detection surface, SD and DD, respectively. The double differential signals were created 

by software, off-line. Notice that the additional spatial filtering of the DD signals 

enhances the identification of individual motor unit action potentials. 
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Figure 13. The z-score amplitude for two single differential surface electromyographic 

(sEMG) signals from a representative subject. 
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Figure 14. The cross-correlation function for the two single differential surface 

electromyographic signals depicted in Figure 11. 
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Statistical Analysis 

Intrac1ass correlational analysis of variance for reliability estimation, as originally 

conceived by Feldt and McKee (1958), involved the use of a fully nested ANOVA model 

with two dimensions. In this scheme, "Test Days" represents the first dimension while 

"Subjects" is the second dimension. The repeated measurements (trials) on each subject 

within each test day constitute a "Within-Cells" replication of measures. The error term 

in this model is the Within-Cells error variance. Feldt and McKee (1958) considered the 

trial-to-trial variance Within-Cells as random measurement error in the experimental 

design. 

The model used for the analysis reported in Table 3 was used by Kroll (1962; 

1963a; 1963b) for test-retest reliability estimation. The mean squares from the ANOVA 

model presented in Table 4 were then used to calculate the sample estimates for the 

variance components given in Table 5. The intrac1ass correlation coefficient described," 

by Feldt and McKee (1958) is defined as the ratio of the true score variance (crtue) to the 

sum of the variance due to true scores and error. The error variance is further partitioned 

into error attributed to both day-to-day (cr;2) and trial-to-trial (cr;J sources. The values 

derived from the equations in Table 4 permit the reliability of a mean from any 

combination of days (a) and trials (n) within a testing period to be estimated using the 

following formula for the intrac1ass correlation coefficient: 
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Table 4 - Intraclass correlational analysis of variance (nested model). A representative 

analysis of variance (ANOVA) table for force generated during the maximal isometric 

actions of the dorsiflexors. 

Source df 

Subjects N - 1 = 39 

Days(Subjects) N(a- 1) = 80 

Within-Cells aN(n - 1) = 240 

Total aNn- 1 = 359 

E (MS) Model II MS 

34212.082 (MSs) 

573.631 (MSD:S) 

76.719 (MSwc) 

N = subjects (40); n = trials on each test day (3); a = test days (3) 

Table 5 - Components of variance necessary to calculate the intraclass correlation 

coefficient. 

Component 

atue - Subjects 

Equation 

MSwc 

MSD:S-MSwc 
a 

MSs-MSD:S 
a·n 

N = number of subjects; n = number of trials each day; a = number oftest days 
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A second (companion) ANOVA model was used to examine the "stability" of the 

means across test days. This ANOVA model still has two factors (Days x Subjects). The 

repeated measurements (trials) on each subject in each day constitute a "within-cells" 

replication of measures (Lindquist, 1956; Feldt & McKee, 1958; Hetherington, 1973). 

The mean squares for the second ANOV A model for force during the maximal isometric 

actions of the dorsiflexors are presented in Table 6 to see the relationship between the 

two ANOV A models used in this thesis. These two specific ANOV A models are 

therefore supposed to be used together to allow a diagnostic approach to the sources of 

error and their impact upon reliability (Feldt & McKee, 1958; Kroll, 1962; 1963a; 

1963b). A measure must therefore exhibit both "consistency" and "stability" to be 

considered reliable. 

Table 6 - Analysis of variance model used to evaluate the stability of means across test 

days. A representative analysis of variance (ANOVA) table for force generated during., 

the maximal isometric actions of the dorsiflexors. 

Source df E (MS) Model II 

Days a- 1 = 2 a; + na~N + nNa~ 

Subjects N -1 = 39 2 + 2 + 2 ae naaN naaN 

Day x Subjects (N -1)(a- 1) = 78 2 + 2 ae naaN 

Within Cell aN(n - 1) = 240 a; 

Total aNn- 1 = 359 

MS 

2132.466 (MSD ) 

34212.082 (MSs) 

533.661 (MSDS) 

76.719 (MSwc) 

N = number of subjects; n = number of trials each day; a = number of test days 
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For the purposes of this thesis, the scale used by Bartko (1966) was used to 

evaluate the quality of the intraclass correlation coefficients in terms of reliability .. A 

measure with an intraclass coefficient in the range ofO.SO-1.00 was considered to have 

"excellent reliability" while a range of 0.60 to O.SO was deemed to be "good reliability". 

It is possible however, to have very stable means across test days and the measure have 

an intraclass correlation coefficient below 0.60 due to a "range oftalent" effect (Kroll, 

1967). That is, the differences between subjects are difficult to detect in a naturally 

homogeneous group. The standard error of measurement (SEM) served as an additional 

diagnostic tool should a limited range of scores artificially deflate the intraclass 

correlation coefficient (Calder et aI., 200S). The SEM has the benefit of providing an 

assessment of reliability "within subjects" in terms of the actual units of measurement 

CVVeir,2005). The standard error of measurement was calculated as follows: 

SEM = SD..JI-R 

where the SD is the standard deviation of the scores as determined from the nested 

ANDV A model. The standard deviation of the scores will be derived from the total sum 

of squares error (SStotal): 

SD= 
SStotal 

N-l 
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CHAPTER IV 

RESULTS 

The primary objective of this study was to examine the reliability of muscle fibre 

conduction velocity (MFCV) in the tibialis anterior during isometric voluntary 

contractions. This was done at 100 percent of maximal voluntary contraction. The 

variable of MFCV was assessed by single- and double differential electrode 

configurations involving the cross-correlation technique. 

Subject Characteristics 

The means and standard deviations for the physical characteristics of the 

participants (21 males and 19 females) are presented in Table 7. 

Data Screening 

The data were pre-screened for outliers during the data collection phase. 

Verification of electrode placement by stimulating the peripheral nerve and evaluating 

the separation of peaks in the compound muscle actions potentials associated with the 

different detection surfaces ensured that range of values was between 2.5 and 10.5 mls. 

One subject had a maximum muscle fiber conduction velocity value (13.8 mls) that was 

just outside the upper limit of 13 mls (Hunter et aI., 1987). This value was retained in the 

analysis as it occurred mice on two separate test sessions and the ultimate goal of the 

thesis is to document the error of measurement. 
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Table 7 - Means (M) and standard deviations (SD) for the physical characteristics of the 

participants. 

Physical Characteristic M±SD 

Age (years) 23.55 ±2.85 

Height (m) 1.72 ± 0.12 

Weight (kg) 68.47 ± 13.95 

Body Mass Index (kg·m-2
) 22.90±2.26 

Foot Length (cm) 26.26±2.76 

Leg Length (cm) 43.46 ±4.65 

Leg Girth (cm) 38.86 ± 2.80 

Statistical Assumptions 

Application of the intrac1ass correlation coefficient requires the data exhibit 

congruency with the mathematical model upon which it is based. The data must 

therefore confonn to the standard univariate assumptions that underlie the use of repeated 

measures analysis of variance. Violation of these assumptions results in a lower estimate 

of reliability (Kroll, 1962). There are two sets of statistical assumptions: those associated 

with the F-test itself and those associated with the experimental design model. Since the 

two sets of assumptions basically overlap (Kirk, 1995), they will be reviewed and 

evaluated together for the sake of simplicity. 

A nested ANDV A was used to generate the mean squares necessary for the 

calculation of the intrac1ass correlation coefficient to evaluate the consistency of scores 

within subjects: 
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The fIrst assumption is that an observation can be thought of as the simple sum of four 

components where Xk(ij) is the value of the dependent variable, J1. is the grand mean of 

the dependent variable, ai is the differences between subjects, Pj(i) is the differences 

between test days nested within subjects, and ek(ij) is the differences between trials 

nested within each test day, nested within subjects. The error term in this model is the 

within-cells error variance. 

The second assumption is that ek(ij) is (a) independent of all other ek(ij) 's and (b) 

normally distributed within the population, with (c) a mean equal to zero, and (d) 

variance equal to (1;. Because eic(ij) is the only source of variation in the linear model, 

the normality assumption can be tested by evaluating the raw scores (Kirk, 1995). All 

measures examined in this study exhibited skewness values less than 2 and kurtosis 

values less than 3 and were therefore deemed to be normally distributed. Glass, 

Peckham, and Sanders (1972) have demonstrated that the analysis of variance is robust to 

mild departures from normality for balanced designs with moderate sample sizes. Robust 

refers to the fact that the probability of type I and type II errors for the F-test remain 

relatively unchanged. 

The assumption of independence of errors is no longer applicable in repeated 

measures ANDV A because the same participants produce multiple scores; the errors are 

by necessity correlated. In practice, the assumption of the independence of errors is 

replaced by the assumption of sphericity (Tabachnick & Fidell, 2007). Sphericity is 
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sometimes called the "homogeneity-of-variances-of-differences" assumption, because the 

variance of the difference scores between any two levels of a within-subjects factor is 

supposed to have the same magnitude regardless of which two levels are chosen. There 

are three levels of the independent variable in this thesis, test days one through three. 

The difference scores are calculated between test days one and two, test days two and 

three, and test days one and three. The sphericity assumption assumes that that the 

variance of these difference scores is not significantly different. The SAS® program 

allows the Mauchly's sphericity test to be conducted prior to the within-subjects tests. If 

the Chi-square approximation associated with the Mauchly's tes,t has an associated 

probability value less than the selected alpha level, the sphericity assumption has been 

violated. Sphericity was however upheld for each of the criterion measures evaluated in 

this study. Correction of the degrees of freedom for the F-tests based on either the 

Greenhouse-Geisser Epsilon (G-G) or the Huynh-Feldt Epsilon (H-F) was deemed 

unnecessary. 

There is an additional assumption, the stricter assumption of compound 

symmetry. Compound symmetry involves two conditions. The first condition is 

homogeneity of variances as in the case of non-repeated measures ANOVA. This means 

that there is equal variability of scores across treatment levels (i.e., Days). Given there 

are the same number of observations at each treatment level and the data come from the 

same subjects, the homogeneity of variance assumption is not likely to be violated 

(Cohen, 2008). The second condition concerns the degree to which subjects maintain 

their relative standing within the various conditions as defmed by the repeated factor (i.e., 

Days). The consistency observed for any pair of treatment conditions is the same for all 
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possible pairs of treatment conditions, so that there is homogeneity of the covariance 

between pairs of treatment conditions (Keppel, 1973). This has particular implications 

for the additivity assumption described below. Homogeneity of the covariance is usually 

violated with repeated measures ANOV A, and it is not a "necessary" condition. A 

violation of the stricter condition of compound symmetry does not necessarily mean that 

the sphericity assumption has been violated, which is a necessary condition (Hayes, 

1994). 

A second repeated measures ANOVA was used to evaluate stability of the means 

across test days: 

This second model is by necessity complimentary to the nested ANOV A present above; it 

still has two factors but incorporates the Subjects x Days interaction term (aPij). The 

repeated measurements (trials) on each subject in each day constitute a "within-cells" 

replication of measures and is the error term (eijk)' 

All of the assumptions outlined above hold true for this second ANOV A model. 

There is one additional assumption that applies to the interaction term, additivity. It is 

assumed that any variation in the difference between test days is due to error variation. It 

is possible that the effect oftest days is different between subjects, thus there is truly an 

interaction between subjects and days and not error variation. Some of what should be 

considered random error when calculating the interaction term is "systematic error" due 

to subjects responding differently across test days. The additivity assumption is that there 
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is no interaction between the subjects and test days that is not error (interactions are 

multiplicative or "nonadditive"). For a random effects ANOV A model as employed in 

this study, non-additivity results in a less powerful F-test for the main effects. Non­

additivity also implies that the homogeneity of the covariance is violated. However, this 

was not the case for the present study. Glass, Peckham and Sanders (1972) further 

indicate that non-additivity should be of no concern. 

Stability and Consistency 

Force. Maximal isometric dorsiflexion force is being presented first because it 

represents a nearly ideal example of what constitutes a highly reliable measure. There 

was a significant (p<0.01) increase from 173.06 ± 60.75 N to 179.40 ± 64.42 N across the 

three test sessions (Table 8). This increase was small (3.9%) and the differences between 

means across test days accounted for only 4.16% ofthe total variance (Table 9). Figure 

15 depicts the mean and standard deviation of the scores for each subject. The spread of 

force scores for each subject was generally grouped tightly around its own mean. 

Equally important, the low spread of scores within each subject resulted in little overlap 

of the forces scores between different subjects so that the between subjects variance (true 

score variance) was high (:::::::94%). lfthe true score variance accounts for the greatest 

proportion of the variance in the ANOVA model, the intraclass correlation coefficient is 

going to be high. The overall result was an intraclass correlation coefficient of 0.98. 

Root-Mean-Square Amplitude. Table 8 shows that the magnitude of sEMG 

activity increased from 197.11 ± 92.68 J.lV to 205.83 ± 93.10 J.lV. While statistically 

significant (p<0.01), the magnitude of the increase was small (4.4%). The error variance 
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due to trials (8.02%) and days (19.30%) together accounted for a total of 27.32%, so that 

the remaining true score variance was 78.68% (Table 9). Figure 16 illustrates the mean 

and standard deviation of scores for each subject. The grand mean was 203.42 !J. V with 

standard error of measurement (SEM) of 90.17 !J. V. In general, the spread of scores for 

each subject appears to be quite moderate. However, relative to the overall range of 

mean scores for the sample, the differences between subjects was not as obvious as it was 

for maximal isometric dorsiflexion force. The intraclass reliability correlation coefficient 

was 0.91; while still considered to excellent, it is lower than that for maximal isometric 

dorsiflexion force. 

Frequency of Mean Power. Table 8 shows that the frequency of sEMG activity 

increased from 118.78 ± 28.00 Hz to 123.33 ± 29.23 Hz. The small (3.8%) increase was' 

statistically significant (p<0.01). The error variance due to trials (6.03%) and days 

(10.76%) together accounted for a total of 16.79% while the true score variance was 

83.21 % (Table 9). Figure 17 illustrates the mean and standard deviation of scores for 

each subject. The grand mean was 121.10 Hz with standard error of measurement (SEM) 

of 19.64. In general, the spread of scores for each subject appears to be quite low relative 

to the overall range of mean scores for the sample. Thus, similar to maximal isometric 

dorsiflexion force, the differences between subjects is more obvious than it was for root­

mean-square amplitude. As a result, the intraclass reliability correlation coefficient was 

'0.95. 

Muscle Fibre Conduction Velocity. Table 8 shows that muscle fibrE conduction 

velocity for single differential electrode detection decreased from 5.19 ± 1.31 mls to 5.05 
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± 1.39 mls. The small (2.7%) decrease in means was statistically significant (p<0.01). 

The error variance due to trials (5.37%) and days (34.96%) together accounted for a total 

of 40.33% while the true score variance was 59.67% (Table 9). Figure 18 illustrates the 

mean and standard deviation of scores for each subject. The grand mean was 5.14 mls 

with standard error of measurement (SEM) of 1.65 mls. In general, the spread of scores 

for each subject appears to be high relative to the overall range of mean scores for the 

sample, so that it is more difficult to visually discern the differences between subjects. In 

this case, the standard error of measurement is not high but the range of mean scores for 

the majority of subjects is low. Thus, the sample is relatively more homogeneous with 

respect to this particular measure. That is, the mean scores for subjects were close to the 

group mean, resulting in a kurtosis of 1.51 for this distribution. However, the true score 

variance was still the largest proportion of the total variance; the intraclass correlation 

coefficient was 0.83, which is still considered excellent. 

There was an adverse interaction between the standard error of measurement and 

a homogeneous sample of scores for double differential electrode detection. Table 8 

shows that the means for muscle fibre conduction velocity detected by the double 

differential electrode fluctuated between 4.93 ± 1.36 mls and 5.26 ± 2.05 mls for a 

significant main effect for test days (p<0.01). The error variance due to trials (6.02%) 

and days (57.32%) accounted for the large majority of the total variance (63.34%) while 

the true score variance was only 36.66% (Table 9). The grand mean was 5.06 mls and 

the standard error of measurement was 3.04 mls. Inspection of Figure 19 reveals that the 

mean scores for subj ects were very close to the group mean, resulting in a kurtosis value 

of2.89. The between subjects variance (true score variance) is low because the limited 
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range of mean scores coupled with a large standard error of measurement, made it very 

difficult to differentiate between individual subjects. The intraclass correlation 

coefficient was 0.65. 
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Table 8 - Analysis of variance for 100% maximal voluntary contractions. The units for Force are in Newtons (N), the units for 

Conduction Velocity (CV) are in metres per second (m·s-1
), the units for Mean Power Frequency (MPF) are in Hertz (Hz) and 

the unitsfor Root Mean Square (RMS) are in microvolts (f.JV). 

Force RMS MPF Single CV Double CV 

(N) (klV) (Hz) (m· sec-1 ) (m· sec-1 ) 

Test Day M±SD M±SD M±SD M±SD M±SD 

1 173.06 ± 60.75 197.11 ± 92.68 118.78 ± 28.00 5.19 ± 1.31 4.93 ± 1.36 

2 180.56 ± 62.28 207.3'0 ± 108.58 121.03 ± 90.80 5.18 ± 1.26 5.26 ± 2.05 

3 179.40 ± 64.42 205.83 ± 93.10 123.33 ± 29.23 5.05 ± 1.39 4.99 ± 1.60 

Percent Change 6.34 (3.9%) 8.71 (4.4%) 4.55 (3.8%) 0.13 (2.7%) 0.055 (1.2%) 

Difference of 
Means 

Day 1-2 -7.50 -10.18 -2.25 0.00049 -0.32 

Day 2-3 1.16 1.47 -2.29 0.13 0.27 

Day 1-3 -6.34 -8.71 -4.55 0.13 -0.055 

Days x Subjects 78 533.66* 0.0065* 329.00* 1.98* 5.21* 

Within Cells 240 

* Significant at the 0.01 probability level 
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Table 9 - Intraclass correlation analysis of variance for 100% maximal voluntary contractions. Below are the mean squares 

(MS), variance components, and the mean, standard error of measurement (SEM), and the resultant intraclass correlation 

coefficients (R) for Force, Conduction Velocity (CV), Mean Power Frequency (MPF) and Root Mean Square (RMS). 

Source df Force RMS MPF Single CV DoubleCV 

Subjects 39 34212.00 70697.63 6908.00 11.44 14.74 

Day(Subjects) 80 573.63 6.472.56 336.30 1.95 5.16 

Within Cell 240 

(ub - Trials) 76.72 (1.93%) 787.03 (8.02%) 52.95 (6.03%) 0.09 (5.37%) 0.17 (6.02%) 

U:2 - Days 165.64 (4.16%) 1895.17 (19.30%) 94.45 (10.76%) 0.62 (34.96%) 1.66 (57.32%) 

ul- True 3737.61 (93.91%) 7136.12 (72.68%) 730.19 (83.21 %) 1.05 (59.67%) 1.06 (36.66%) 

Grand Mean 177.67 203.42 121.05 5.14 5.06 

SEM 24.52 90.17 19.64 1.65 3.04 

R 0.98 0.91 0.95 0.83 0.65 
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CHAPTER V 

DISCUSSION 

More recent reliability studies on force and sEMG variables have moved away 

from the traditional use of intra class correlational analysis of variance. There is an 

increasing trend to only report the proportion of variance accounted for by each level of 

measurement, without the actual coefficient. The basic idea is that the most important 

aspect of the criterion measure is that the between subjects variance accounts for a much 

greater proportion of total variance than the error components. The Pearson's interclass 

correlation coefficient, Bland-Altman plots, and the standard error of measurement then 

form the primary basis upon which reliability analysis is performed (Ng & Richardson, 

1996; Kollmitzer et aI., 1999; Merletti et aI., 1995; 1998; Rainoldi et aI., 1999; 2001; 

Falla et aI., 2002). Complicating any potential comparisons further, several reliability 

studies have employed evoked contractions (Merletti et aI., 1995; 1998), submaximal " 

contractions (Bilodeau et aI., 1990; Rainoldi et aI., 1999; 2001), and/or analyzed the 

sEMG data normalized to the maximal voluntary contraction (Yang & Winter, 1983). In 

the following paragraphs, the theoretical implications and practical application of the 

present findings will be discussed in relation to the literature that most closely matches 

both the experimental design and measures used in the current work. 

A grand mean of 177.7 ± 62.177 N for maximal isometric dorsiflexion force was 

observed in the current study. The group means for males and females will be considered 

to facilitate a comparison with the literature. Males had a maximal isometric dorsiflexion 
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force of225.88 ± 43.54 N while it was 124.39 ± 26.29 N for females. These values are 

similar in magnitude to those reported by Lenhardt et aI. (2009) from this laboratory. 

Males and females in that study had maximal isometric dorsiflexion force values of 269 ± 

6lN and 191 ± 51 N, respectively. Kent-Braun and Ng (1999) observed a maximal 

isometric dorsiflexion force of 262 ± 19 N for males and 136 ± 15 N for females while 

Patten and Kamen (2000) reported 251 ± 8 N for males and 150.9 ± 4.2 N for females. 

Two studies by Bromen at aI. (1985; 1995) highlight the role of joint position in 

explaining the differences between studies with respect to maximal force values. The 

apparatus in these studies also included inversion of the ankle at 15°, which most likely 

increased force output at the joint to values ranging from 480 to 743 N. 

Concern with cross-talk motivated a critical methodological control in the study 

that may have resulted in "slightly" lower force values (Solomonow et aI., 1994; De Luca 

& Merletti, 1988). Electrical stimulation of the peripheral nerve was conducted to align 

the electrode on the basis of maximum temporal separation between identical compound 

muscle action potentials across electrodes detection surfaces. However, subsequent 

testing using voluntary contractions resulted in excessively high (> 15 mls) muscle fibre 

conduction velocity values. Extensive pilot testing revealed that subjects were using the 

toe extensors to augment dorsiflexion force (Marsh et aI., 1981; Belanger et aI., 1981). It 

is hypothesized that volume conducted sEMG activity from the long extensors ofthe toes 

contaminated the muscle fibre conduction velocity estimates. As evidence, once great 

care was taken to minimize toe extension during the task, estimates immediately fell to 

within normal values and were indeed highly stable and consistent within subjects. 

Nevertheless, controlling for toe extension also reduced the overall dorsiflexion force. 
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Maximal dorsiflexion force was presented fITst because it has all of the theoretical 

characteristics of a highly reliable measure as defined by intraclass correlational analysis 

of variance. It has been known since the seminal work of Kroll in 1962 that maximal 

isometric strength scores exhibit remarkable consistency with intrac1ass correlation 

coefficients that are typically greater than 0.90. This has been demonstrated for the wrist 

flexors (Kroll, 1962; 1963), elbow flexors (Carlson & Kroll, 1970; Gabriel & Kroll, 

1991), plantar flexors (Kamen, 1983), and knee extensors (Kroll, 1973; Warshal, 1979; 

Zech et at, 2008). The current work extends these fmdings with an observed intrac1ass 

correlation coefficient of 0.98 for the ankle dorsiflexors. A review of the related 

literature revealed no other reliability study for maximal isometric actions of the 

dorsiflexors to offer a basis of comparison. 

Reliability assessment using the intrac1ass correlational analysis of variance is 

based on the assumption that errors are random and uncorrelated to the magnitude of the 

score. The more consistent someone is at reproducing their own score, the tighter the 

spread of scores will be around their own mean (true score). As a result, the within 

subject variance (error variance) will be low. Further, the spread of scores around each 

subjects' own mean must be sufficiently small so that there are distinct differences 

between subjects. That is, the scores for one subject do not overlap with the scores of 

another subject. It is an important part of measurement theory that a test reveals 

individual differences between subjects (Henry, 1959). If the mean of one subject is 

distinctly separated from that of another because the within subjects variance is low, the 

differences between subjects will be high, unless the range of mean scores is limited. 

Recall, the between subjects variance is the true score variance. If the between subjects 
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variance (true score variance) is high relative to the within subjects variance (error 

variance), the intraclass correlation coefficient will indicate a high level of consistency as 

demonstrated in this thesis. The true score variance for maximum isometric dorsiflexion 

strength was approximately 94% of the total variance with the remaining 6% distributed 

across days and trials. 

While consistency is a necessary characteristic for a reliable measure, it is not 

necessarily sufficient. A highly reliable measure must also exhibit stability in the group 

mean across repeated measurements. Stability can be problematic without taking the 

appropriate precautions with respect to the measurement schedule. Kroll (1962; 1963) 

observed that repeated maximal isometric strength testing is typically associated with a 

significant increase in strength (up to 15%) due to the measurement schedule alone, 

without any specific training between sessions. It was suggested that the measurement 

schedule elicited a motor learning effect because these strength gains occurred in the 

absence of any overt hypertrophic changes. A number of potential neural mechanism 

have therefore been investigated: (1) increased agonist activation; (2) reduced antagonist 

coactivation; (3) increased recruitment of synergists; and/or (4) alterations in motor unit 

activity patterns (i.e., rate coding and recruitment) (Calder & Gabriel, 2007; Rutherford 

& Jones, 1986; Carolan & Cafarelli, 1992; Kamen & Knight, 2004). 

Further reliability analysis led to the general practice of including at least one pre­

test session to "subtract-out" the initial strength gains associated with motor learning 

(Calder & Gabriel, 2007). Because the intraclass correlation coefficient is sensitive to the 

mean square error associated with days, stabilizing the means by subtracting-out the 

learning effect resulted in a substantial increase in reliability (Kroll, 1963). The 
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measurement schedule included multiple test days with the expectation that there would 

be a significant increase in strength. There was a small (3%) but statistically significant 

increase across the three test sessions that is much lower in magnitude than the expected 

change (8 - 15%) reported in the literature (Kamen & Knight, 2004; Calder & Gabriel, 

2007). The blunted response goes to one of the proposed mechanism involved in the 

neuromotor aspects of strength gains. That is, learning how to co activate synergist 

muscles involved in the task (Rutherford & Jones, 1986). Participants were constantly 

monitored and discouraged from recruiting the long extensors of the toes during 

dorsiflexion. They were therefore trained not to recruit an important synergist involved 

in the task. The stable means for maximal dorsiflexion force observed in this study 

contributed to extremely high (0.98) intraclass correlation coefficient. 

Root-Mean-Square Amplitude 

It is very difficult to compare actual sEMG values from the same muscle across 

studies as there a myriad of factors that affect the observed amplitude. There are 

technical factors associated with the electrode detection system that include the geometry, 

recording surface area, interelectrode distance, pre-amplification and the resistance 

associated with the length of the electrode leads, and movement of the muscle underneath 

the electrode. Methodological issues such as skin preparation and the degree of 

electrode-skin input resistance, electrode orientation in relation to the muscle fibres, and 

placement of the electrodes relative to the motor point, and temperature also affect the 

magnitude of sEMG. The amount of subcutaneous tissue and the training status of the 

sample are biological factors that can have a significant impact on the magnitude of 

sEMG (Winkel & J0rgensen, 1991; Knutson et aI., 1994; Mathiassen et aI., 1995; 
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Lehman & McGill, 1999; Burden & Bartlett, 1999; Barr et aI., 2001; Nordander et aI., 

2003; Beck et aI., 2009; Vera-Garcia et aI., 2010). 

For example, even in the same laboratory, the observed root-mean-square 

amplitude sEMG differed markedly from the study by Lenhardt et al. (2009). Exactly the 

same testing apparatus and sEMG methodology were applied to an identical convenience 

sample. Yet, the mean value obtained in this study was 203.42 ± 95.78 JlV compared to 

516 ± 32.20 JlV observed by Lenhardt et aI. (2009). The main differences were that the 

current study used bar versus the disk electrodes and the inter-electrode distance (0.5 cm) 

was half that used in the Lenhardt et aI. (2009) study. While electrode geometry and 

surface certainly contribute to this difference, interelectrode distance is a dominating 

factor. The detection volume of tissue below the electrodes may be conceived as a semi-

sphere centered between the two electrodes whose radius is equal to the interelectrode 

distance (Lynn, 1978). Thus, a larger inter-electrode distance will have a larger detection 

" 

volume that includes more electrically active tissue. The electrode spatial filtering effects 

associated with a larger interelectrode distance can also result in an increase in sEMG 

amplitude (Kamen & Gabriel, 2009). 

The debate over ipsative versus normative scaling in sEMG methodology centers 

on biological factors that can vary between subjects and methodological factors that can 

vary within subjects across test days (Yang & Winter, 1983; Burden & Bartlett, 1999; 

Lehman & McGill, 1999). These factors not only affect the magnitude of the observed 

sEMG activity but also the variability of any measure extracted from the signal. In the 

case of normative scaling, the sEMG signal may be divided by the net force exerted 

during a maximal voluntary contraction of the muscle or the peak-to-peak amplitude of 
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the electrically evoked compound muscle action potential, just to name two possibilities 

(Yang & Winter, 1983; Pucci et at, 2005). Ipsative scaling for sEMG activity using the 

raw units of microvolts was used in the current work. 

This study demonstrated that the variability of the sEMG signal was sufficiently 

low so that the spread of scores around each subjects' own mean was small enough to 

reveal differences between subjects. The error variance due to days and trials (27.32%) 

was a much smaller percentage oftotal than the true score variance (72.68%). There is 

an inherent relationship between force and the magnitude of sEMG activity 

(Staudenmann et aI., 2010). As a result, the sEMG means across test days generally 

mirrors any changes in force (Hakkinen & Komi, 1983; Calder & Gabriel, 2007). The 

force values in this study were quite stable across the three test days. The same was true 

for root-mean-square sEMG amplitude which ranged from 197.11 ± 92.68 J-lV to 207.30 

± 108.58 J-lV from the ftrst to third test days, respectively. Similar to maximal isometric 

dorsiflexion force, there was a small (3.8%) but statistically signiftcant increase in root­

mean-square sEMG amplitude. This magnitude of change is less than expected «25%) 

when repeated testing results in strength gains (Gabriel et aI., 2001; Calder & Gabriel, 

2007). Thus, the consistency of scores within subjects and the stability of the means 

across test sessions resulted in a high intraclass correlation coefftcient (0.91). 

A review of the related literature revealed no reliability studies for root-mean­

square sEMG amplitude in tibialis anterior during maximal isometric dorsiflexion. 

However, excellent reliability (R>0.80) of raw, non-normalised root-mean-square sEMG 

amplitude is not surprising as the current study replicates the same fmdings for other 

muscle groups during maximal effort contractions: these muscles include the elbow 
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extensors (Gabriel et aI., 2001) and flexors (Gabriel & Kroll, 1991; Ollivier et aI., 2005), 

knee extensors (Zakaria, Kramer, & Harbum, 1996; Larsson et aI., 2003), and back 

extensors (Pitcher, Behm, & MacKinnon, 2008). The intrac1ass reliability coefficients 

for the average rectified value (ARV) of elbow (Raino1di et aI., 1999) and neck (Falla et 

aI., 2002) flexors have been demonstrated to be slightly lower (0.60 - 0.80) than what has 

been reported above for the root-mean-square sEMG amplitude. The average rectified 

value is related to the root-mean-square amplitude, but it is more affected by wave 

cancellation during the generation of the sEMG interference pattern (De Luca & Van 

Dyk, 1975; De Luca, 1979; Lowery & O'Malley, 2003). 

Thus, while the various potential sources of error in recording the sEMG signal 

are cause for legitimate concern, this study and others demonstrated that extremely 

careful methodological controls can result in highly reliable raw sEMG measures. 

Normalization is not only an unwarranted data transformation, it is inappropriate because 

factoring the data by a different value for each subject changes the rank order of the 

distribution and narrows the distribution of scores (Tanner, 1949; Lindquist, 1953). The 

exception to this rule would be ifthere were a perfect correlation (r=l.O) between the 

factor and the dependent variable. This ,would be the same as factoring all the data by the 

same constant, which is highly unlikely for force and sEMG data as anthropometric and 

other quantities vary between subjects (Tanner, 1949). In support, intrac1ass correlational 

analysis of variance has been conducted on force-normalized sEMG amplitude and lower 

reliability coefficients were often observed compared to the non-normalized data (Zakaria 

et aI., 1996; Finucane et aI., 1998; Arnall et aI., 2002; Mathur et aI., 2005). 
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Frequency of Mean Power 

The same technical, methodological and biological factors that affect the root­

mean square sEMG amplitude also affect the mean power frequency of signal (Winkel & 

Jergensen, 1991; Knutson et aI., 1994; Mathiassen et aI., 1995; Lehman & McGill, 1999; 

Burden & Bartlett, 1999; Barr et aI., 2001; Nordander et aI., 2003; Beck et aI., 2009; 

Vera-Garcia et aI., 2010). Thus, a direct comparison of absolute values across studies can 

prove difficult. A grand mean of 121.05 ± 28.81 Hz was observed in the current work, 

which is higher than the 108.00 ± 28.00 Hz reported by Lenhardt et aI. (2009). However, 

the difference in absolute magnitude may be predicted by the 0.5 em smaller 

interelectrode distance used in this study. Larger interelectrode distances are associated 

with a broader frequency spectrum that results in a lower mean power (Lynn, 1978; Zipp, 

1978; Sinderby et aI., 1996; Beck et aI., 2005). 

The relationship between force and the mean power frequency of the sEMG 

signal is somewhat more ambiguous than it is for root-mean-square sEMG amplitude. 

Mean power frequency has been observed to increase up to between 60 and 80% of 

maximal voluntary contraction (Hagberg & Ericson, 1982; Gerdle et aI., 1990; Bilodeau 

et aI., 1992; Sanchez et aI., 1993; Sbriccoli et aI., 2003; Beck et aI., 2005; Lenhardt et aI., 

2009). It has been suggested that the increase is due to Henneman's Size Principle as 

higher threshold motor units with faster conduction velocities are progressively recruited 

(Henneman, 1981; Moritani & Muro, 1987; Solomonow et al., 1990; Kupa et al., 1995). 

Higher threshold motor units have larger amplitude, shorter duration action potentials 

(Boe et aI., 2005). Mean power frequency therefore increases because the spectrum of 

sEMG signal is dominated by the shape of the motor unit action potentials (Mills, 1982) 
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while motor unit firing rate statistics impact the band between 10 and 40 Hz ( Lago & 

Jones, 1977; 1981; Van Boxtel & Schomaker, 1984). 

The break point in the force versus sEMG mean power frequency curve tends to 

be between 60 and 80% of maximal voluntary contraction, close to the limit of the 

recruitment range for this particular muscle (Christie et aI., 2009). After that point, mean 

power frequency tends to either plateau or exhibit a slight decrease (Gabriel & Kamen, 

2009). Thus, the mean power frequency of the sEMG signal can be relatively resistant to 

changes in maximum isometric strength as would occur during repeated maximum force 

testing (Gabriel et aI., 2001). In contrast, the mean power frequency is sensitive to 

changes in neuromuscular status (Muro et aI., 1982; Latash, 1988a; 1988b) and in the 

detection of muscular fatigue, where metabolic alterations decrease muscle fibre 

conduction velocity (Mills, 1982; Kranz et aI., 1985; Merletti et aI., 1990; Luttmann et 

aI., 2000). 

The spread of scores around each subjects' own mean was sufficiently small so 

there were large, distinct differences between each subject. As a result the true score 

variance (83.21 %) was much greater than the sum of the error variances (16.79%). No 

similar reliability studies exist for mean power frequency of the sEMG signal from the 

tibialis anterior during maximal voluntary isometric dorsiflexion contractions. There are, 

however, several studies that have assessed reliability suing the intraclass correlational 

analysis of variance approach for other muscles and have reported similar results. High 

intraclass reliability coefficients have been reported for the elbow extensors (R=0.93; 

Gabriel et aI., 2001), elbow flexors (R=0.99; Daanen et aI., 1990), and knee extensors 

80 



(R's>0.80; Larsson et aI., 2003) during maximal voluntary contractions of the muscle· 

group. 

The reliability observed in this study is higher than what has generally been 

observed (R's<0.90) for median power frequency of the sEMG signal from the knee 

extensors (Pincivero et aI., 2000; Mathur et ai., 2005) and back extensors (Ng & 

Richardson, 1996; Elfving et aI., 1999; Arnall et aI., 2002; Peach et aI., 1998). The mean 

and median power frequencies are mathematically related to each other (Farina & 

Merletti, 2000). Some investigators prefer the median frequency for specific applications 

in assessment oflow-back musculature as it is less affected by noise in the sEMG signal 

and is more sensitive to muscle fatigue (Merletti et aI., 1990; Stulen & De Luca, 1981; 

Hof, 1991). The sensitivity to fatigue is due to the fact that the sEMG power spectrum is 

positively skewed and becomes even more so due the spectral compression associated 

with a reduction in muscle fibre conduction velocity (Farina & Merletti, 2000). 

Muscle Fibre Conduction Velocity 

Early sEMG studies of muscle fibre conduction velocity involved a minimum 

array of three electrode detection surfaces to examine the delay time between two single­

differentiated sEMG signals (Naeije & Zorn, 1982; Sollie et aI., 1985). A fourth 

detection surface then allowed double-differential recording of sEMG signals. The 

additional spatial filtering helped to minimize environmental noise and non-propagating 

activity, which reduced the overall error in the muscle fibre conduction velocity estimates 

(Broman et aI., 1985b). This additional spatial filtering has led to the linear electrode 

array giving way to matrix-grid electrodes, combined with sophisticated filtering and 
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signal decomposition software (Rau & Disselhorst-Klug, 1997; Farina et aI., 2004). 

However, both the instrumentation and software are not routine to the average 

electromyographic kinesiology or clinical electrophysiology laboratory. The main 

purpose of this thesis was to determine if methodological procedures could be developed 

for a smaller electrode array, to minimize errors in the cross-correlation method for delay 

determination and conduction velocity calculation. 

It is common practice to reject data that fall outside a specific range because the 

values would easily be detected and rejected in the clinical situation as non-physiological 

(Lange et aI., 2002; Beck et aI., 2004). The rejection criteria are based the range of 

normal values extracted from the frequency distribution histogram of conduction 

velocities of individual motor unit action potentials obtained during evoked and voluntary. 

contractions recorded by both surface an indwelling recordings (Troni et aI., 1983; 

Kereshi et at, 1983; Andreassen & Arendt-Nielsen, 1987; Martinez, 1989; Nishizono et 

aI., 1990; Vogt & Fritz, 2006), which are known to yield different estimates (Zwarts, 

1989). 

Focusing most closely on the study related to the present work, Merletti et al. 

(1995) eliminated values outside the range of2 to 8 m/s for evoked contractions of the 

tibialis anterior. In contrast, the current work included higher muscle fibre conduction 

velocity values up to 13 m/s based on the probability density function reported by Hunter, 

Kearney and Jones (1987). The investigators employed the impulse-response method to 

calculate the probability density function of the muscle fibre conduction velocities 

contributing to the sEMG signal during a voluntary contraction. The impulse-response 
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approach avoids the errors associated with the more recent peak identification methods 

(Lange et aI., 2002; Beck et aI., 2004). 

The decision to increase the upper limit of acceptable muscle fibre conduction 

velocity was based on both theoretical and practical considerations. Practically, when the 

voluntary muscle contraction is greater than 60 percent of maximum and the electrodes 

are close to either the tendon or innervation zone, values up to 12 mls have been observed 

(Li & Sakamoto, 1996; Hogrel et aI., 1998). Every effort was made to place the 

electrodes away from electrically identified motor points. In subjects with a smaller 

tibialis anterior surface territory, the electrode "might" have been placed close to another 

unidentified innervation zone or tendon. This leads to the more theoretical motivation 

that it is important to include all data in a realistic assessment of errors and their impact 

upon reliability (Henry, 1950). 

The grand mean value of single-differential conduction velocity across the three 

days of testing was 5.14 ± 1.30 mls. There are no other studies in the literature that 

report means and standard deviations for tibialis muscle fibre conduction velocity during 

maximal isometric dorsiflexion contractions. Andreassen and Arendt-Nielsen (1987) 

used micro stimulation of the motor units in the tibialis anterior to record evoked 

responses with single differential electrodes and observed 3.7 ± 0.7 mls. Broman et aI. 

(1985a) used double differential electrodes to monitor voluntary tibialis muscle activity 

during isometric dorsiflexion at 50% of maximal voluntary contraction and observed 4.14 

± 0.52 mls. Double differential recording in the current work resulted in a grand mean of 

5.06 ± 1.66 mls. 
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The magnitudes of the differences between·studies are quite reasonable based on 

the experimental designs employed. It is well known that voluntary contractions yield 

higher muscle fibre contraction velocity values than evoked (non-voluntary) contractions. 

The motor unit firing rates associated with voluntary contractions alter the absolute 

refractory period of the muscle fibre membrane resulting in faster conducting action 

potentials (Zwarts, 1989). Muscle fibre conduction velocity is also higher for maximal 

versus submaximal contractions because higher threshold motor units with faster 

conduction velocities are recruited (Masuda & De Luca, 1991; Sbriccoli et aI., 2003), in 

addition to potential changes with increased motor unit firing ra:tes (Arendt-Nielsen & 

Zwarts, 1989). In support, the mean maximal value reported by Zwarts and Arendt­

Nielsen (1988) for vastus lateralis muscle fibre conduction velocity at 100% of maximal 

voluntary contraction was 5.11 mis, which is almost identical to what was observed in the 

current work. In fact, mean values slightly less than or greater than 5.0 mls are not 

uncommon, depending on the experimental conditions (Lange et aI., 2002). 

The difference between single- and double-differential values is consistent with 

the hypothesised benefit of additional spatial filtering. Non-propagating sEMG activity 

associated with muscle-tendon end effects (also known as far-field potentials or standing 

waves) is detected by all electrodes simultaneously, increasing the muscle fibre 

conduction velocity estimates (Broman et aI., 1985b). Reduction of the non-propagating 

waves resulted in lower values for the double-differential recordings. 

The coefficient of variation (calculated by dividing the standard error of 

measurement by the mean and the result multiplied by 100) will be used to provide a 

basis of comparison. Using maximum isometric force as the gold-standard measure, a 
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coefficient of variation of 13.8% was observed indicating remarkable consistency within 

subjects. The low coefficient of variation translated to a very high intraclass correlation 

coefficient (0.95). The coefficient of variation for muscle fibre conduction velocity 

obtained by single-differential recordings was 32.0%. Visual inspection of the spread of 

scores around each subjects' own mean indicates that this was still quite reasonable 

(Figure 16). There is much more overlap in the scores between different subjects than 

observed for force, but the differences between subjects can still be observed. Because 

the true scores (59.67%) dominated the total variance, the intraclass correlation 

coefficient is still very good (0.83). 

The means across test sessions changed less than 3% from 5.05 ± 1.39 mls to 5.19 

± 1.31 mis, indicating excellent ~tability. In this case, the lower intraclass reliability 

coefficient (0.83) was most likely due to the restricted range effect (Kroll, 1967). This 

makes teleological sense because "normal values" for a physiological measure such as 

conduction velocity tend to have a narrow range upon which a clinical diagnosis is made 

(preston & Shapiro, 2005). The standard error of measurement was 8.9% of the total 

range of force scores versus 18.9% for muscle fibre conduction velocity. Nevertheless, 

the methodology utilized in the current work resulted in the highest intraclass reliability 

coefficient reported to date. This compares to 0.75 and 0.80 for the biceps brachii using a 

grid matrix of electrodes (Farina et aI., 2004) and recording configuration of two bipolar 

electrodes (Ollivier et at, 2005), respectively. 

The study by Merletti et aL (1995) was the closest in nature to the current work. 

The investigators reported an intraclass correlation coefficient of 0.11 for tibialis muscle 

fibre conduction velocity during evoked contractions. Given the careful methodological 
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controls used in the study, the low intraclass correlation coefficient is rather difficult to 

explain. One possibility is that data from only six subjects was used to determine muscle 

fibre conduction velocity. Carlson and Kroll (1970) showed unequivocally that the 

intraclass correlational analysis of variance technique is sensitive to the number of 

subjects and not the degrees of freedom involved the F-tests. In support of this 

hypothesis, Merletti et al. (1995) used the data from ten to calculate dorsiflexion torque 

and all other sEMG measures and they reported intraclass correlation coefficients 

between 0.78 and 0.88. 

A common rmding for both force and sEMG measurement is that the day-to-day 

error variance is the second largest portion ofthe total variance (Merletti et aI., 1998; 

Rainoldi et aI., 1999; 2001; Gabriel et aI., 2001; Farina et aI., 2004; Calder et aI., 2005; 

Christie et aI., 2005). The largest potential sources of day-to-day error are changes in 

subject test position, muscle temperature, skin preparation, and electrode placement, all 

of which remain constant across trials within each day (Daanen et aI., 1990). All the 

measures in this study followed this same distribution of variance and re-affirms the 

notion that, if strict methodological controls are followed, the day-to-day error variance 

can be much smaller in magnitude than the variance between subjects (true score 

variance), affording a high reliability coefficient. 

There was a 5.4% change in muscle fibre conduction velocity group means across 

test days for double-differential recordings. The values ranged from 4.99 ± 1.60 mls to 

5.26 ± 2.05 mls across the three test sessions, which is fairly stable. The day-to-day error 

variance was however the greatest proportion of the total variance (57.32%). The 

"relatively" stable group means across test sessions but high day-to-day error variance 
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within subjects suggest that changes in rank across days by one subject were 

compensated for by changes in rank by another subject. The day-to-day error also 

contributed to a much larger standard error of measurement (3.04 m/s) that resulted in a 

coefficient of variation of 60% of the grand mean, which is quite high. If the one 

extreme value (13.8 m/s) is eliminated from the double-differential recording data, the 

"true" range of values was from 2.71 to 8.33 m/s. The standard error of measurement 

was then 54.1 % of the total range of scores, making is very difficult to observe 

differences between subjects (Figure 17). The low true score variance resulted in an 

intraclass reliability coefficient (0.65) that would be deemed ad~quate at best. 

The low intraclass reliability coefficient is perplexing given that the day-to-day 

error variance, which is the largest potential source of error variance, "should have" been 

the same between single- and double-differential recordings. One possible explanation is 

that the increased selectivity of double-differential recordings is a "double-edged sword". 

Olliver et aI. (2005) reported a similar finding when comparing muscle fibre conduction 

velocity estimates for the biceps brachii at 100% of maximal voluntary contraction 

obtained from bipolar and Laplacian electrode configurations. The bipolar electrode 

configuration was highly reliable (R=0.80) while the Laplacian electrode configuration 

was not (R=O.ll). The investigators argued that the increased selectivity of the Laplacian 

electrode configuration increases the sensitivity to slight displacements of the muscle 

underneath the electrodes or small alterations in motor unit activity patterns that would 

modify the sEMG signal (Ollivier et aI., 2005). Heightened sensitivity to alterations in 

motor unit activity patterns would increase the day-to-day error variance with slight 

differences in test position and mechanical advantage of the lower leg. However, a 
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higher trial-to-trial error variance would also be expected as subjects would recruit the 

tibialis slightly differently from one trial to next (Rummel, 1974; Gabriel, 2000; Merletti 

et aI., 1995). This was not the case as the trial-to-trial error variances for muscle fibre 

conduction velocity were similar between the single- and double-differential recordings. 

Koh and Grabiner (1993) reported similar findings for the variability in the amplitude of 

sEMG activity. 

The interelectrode distance used in the present study was 0.5 cm which translates to 

the muscle fibre action potentials traveling 2 cm from the fITst to last detection surface. 

Every effort was made to select an electrode placement that maXimized shape similarity 

and delay across the three single-differential signals during the evoked contractions. 

While the conditions may have been optimal for the first two single-differential signals, it 

may not have been the case for the third differential signal. That is, the first two or three 

detection surfaces were "more" in line with the muscle fibres than the last one. This 

might be expected due to the curvature of the lower leg. Hagg (1993) observed a similar 

problem when trying to align an electrode array of four detection surfaces spaced 0.5 cm 

apart on the trapezius. This type of error could differ markedly from day-to-day. One 

possibility is to use smaller (i.e., 0.25 cm) interelectrode distances, with wider detection 

surfaces as they appear to be less sensitive to misalignment of the electrode in respect to 

the muscle fibre orientation (Sadoyama et aI., 1985; Sollie et aI., 1985; Farina et aI., 

2004). 

The methodological controls placed upon this study may place the ecological 

validity of this study under criticism. These controls includes participant exclusion 

criteria, the use of a Faraday Cage, as well as the complexity of the technique utilized for 
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ensuring maximum delay between waveforms. The use of voluntary contractions as 

opposed to evoked potentials is another consideration. These claims are to a certain 

extent justified, but are secondary to demonstrating that the reliability measurement of 

MFCV can be obtained. 

Summary and Conclusions 

The purpose of this thesis was to develop procedures using simple 

instrurilentation to measure muscle fibre conduction velocity during maximal effort 

contractions. The efficacy of the procedures was assessed using intraclass correlational 

analysis of variance technique. It was assumed that a high intraclass correlation 

coefficient would indicate that the procedures were indeed reliable and therefore useful. 

The reliability of maximal force and other sEMG variables were evaluated as benchmark 

measures for the experimental techniques used in this thesis, to offer a basis of 

companson. 

The mean squares used to calculate the intraclass correlation coefficient are 

sensitive to the day-to-day error variances. The group means across test days for all 

measures exhibited very slight changes «5%, at most) and were therefore considered 

very stable. All measures also exhibited remarkable consistency within subjects as 

indicated by high reliability coefficients (0.83 - 0.98), except for muscle fibre conduction 

velocity measured by double-differential recordings (R=0.65). The reliability of muscle 

fibre conduction velocity measured by single-differential electrodes was higher than what 

has been reported using more sophisticated instrumentation and software (R=0.83). 
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The methods section of this thesis outlines all the traditional sEMG 

methodological controls that were followed. It may be concluded that the following 

additional procedures can result in highly reliable muscle fibre conduction velocity using 

only single-differential sEMG signals: (1) electrical identification of motor points prior to 

electrode placement, (2) twitch identification of muscle fibre orientation to guide initial 

electrode placement, (3) placement verification to maximize the similarity and delay of 

evoked potentials across all detection surfaces, and (4) minimization of synergistic 

activity during voluntary contractions. 
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Consent Form 

INFORMED CONSENT DOCUMENT 

Title of Project: Reliability of Muscle Fibre Conduction Velocity in the Tibialis Anterior 

Principle Investigator: Kyle McIntosh 
MSc candidate 
Department of Physical Education and Kinesiology 
Brock University 
500 Glenridge Avenue 
St. Catharines, Ontario, Canada 
L2S 3AI 

Phone: 905 688 5550 ext. 3965 
E-mail: km03ki@brocku.ca 

David A. Gabriel, Ph.D., F ACSM 
Associate Professor Biomechanics 
Department of Physical Education and Kinesiology 
Brock University 
500 Glenridge Avenue 
St. Catharines, Ontario, Canada 
L2S 3Al 

Phone: 905-688-5550 ext. 4362 
E-mail: dgabriel@brocku.ca 

This study has been reviewed and approved by the Brock Research Ethics Board 
(#02-283). The Brock Research Ethics Board requires written informed consent 
from participants prior to participation in a research study so that they can know 
the nature and risks of participation and can decide to participate or not to 
participate in a free and informed manner. You are asked to read the following 
material to ensure that you are informed of the nature of this research study and 
how you will participate in it if you consent to do so. Signing this form will 
indicate that you have been so informed and that you give you consent. 
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Introduction 

You are being asked to participate in research being conducted by Kyle McIntosh and 
supervised by David Gabriel Ph.D. The electrical signal of skeletal muscle is measured 
from the skin surface, similar to electrocardiography (ECG) which measures the electrical 
activity of cardiac (heart) muscle. The electrical signal representative of skeletal muscle 
is termed, electromyography (EMG). The electromyogram is recorded via electrodes 
placed on the skin and can be analyzed in a number of different ways to evaluate muscle 
activation. 

You will come to the Electromyographic Kinesiology Laboratory (WH2I), where a series 
of five testing sessions will be conducted, each separated by a minimum of 48 hours. 
Each of these sessions will be approximately an hour and a half in duration. You are 
requested to refrain from any strenuous activity for a period of 24 hours prior to testing. 

Plan and Procedures 

All testing will be conducted by Kyle McIntosh who will implement the following 
protocol. You will be asked to complete the PAR -Q assessment of physical health status 
to ensure that you are not at health risk during the following experiment. 

Upon completion of the assessment, the right leg will be prepared for testing. Small 
superficial areas of the tibialis anterior and soleus will be shaved, lightly abraded and 
cleansed with alcohol. These areas correspond to the location of the electrodes that will 
be taped to the skin surface. The electrodes will measure the electrical activity of tibialis 
anterior and soleus. 

We will locate the motor point (neuromuscular junction) with a mild electrical 
stimulation ofthe tibialis anterior. A linear 4-bar electrode array will be placed 10 
millimeters distal to the most distal motor point. 

The protocol will begin with five maximal voluntary contractions (MVCs) of the 
dorsiflexors that will be separated by three minutes of rest between each contraction. 
This will be followed by three MVCs of the plantar-flexors once again separated by three 
minutes' rest. Following the final rest period another seven voluntary contractions will 
take place at 30% ofMVC. Three minutes of rest will again separate each of these 
contractions. Finally the testing session will conclude with another set ofthree MVCs. 

Recording Voluntary Muscle Activity 

Before electrode placement, the skin surface will be shaved, lightly abraded, and 
cleansed with alcohol to reduce the skin-electrode impedance. A bipolar surface· 
electrode array will record voluntary muscle activity at the skin surface of the tibialis 
anterior while 2 Ag Ag-CI electrodes will be placed on the soleus. The positions of the 
electrodes will be marked with indelible ink to ensure the consistency of the placement. 
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Risks and Discomforts 

1. It is not possible to predict all possible risks or discomforts that volunteer participants 
may experience in any research study. Based upon previous experience, the 
investigator anticipates no major risks or discomforts will occur in the present project. 

2. Participants sometimes experience mild discomfort when the skin is gently cleaned 
and rubbed with a mild abrasive in preparation for electrode placement. On occasion, 
some subjects may experience skin irritation associated with the placement ofthe~ 
electrodes. This is usually very mild and goes away in a few hours, or a day. 

3. There may be discomfort related to the delayed onset of muscle soreness associated 
with isometric contractions of the leg muscles. If muscle soreness does occur, it is 
usually very mild and should dissipate within 72 hours. 

4. Maximal effort isometric contractions are associated with an increase in blood 
pressure. You must make sure that you do NOT hold your breath during maximal 
exertions. If you have received medical clearance and/or are already physically 
active, the risks are minimal. 
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Voluntary Participation 

Participation in this study is voluntary. Refusal to participate will not result in loss of 
access to any services or programs at Brock University to which you are entitled. You 
will inform the investigator, Kyle McIntosh, of your intention to withdrawal prior to 
removing yourself from this study. 

Discontinuation of Participation 

Participation in this research study may be discontinued_under the following 
circumstances. The investigator, Kyle McIntosh or supervising faculty David A. Gabriel, 
Ph.D., may discontinue your involvement in the study at any time ifit is felt to be in your 
best interest, if you do not comply with study requirements, or if the study is stopped. 
You will be informed of any changes in the nature of the study or in the procedures 
described if they occur. It is important to remember that. you are free to terminate your 
participation at any time, for any reason. 

Potential Benefits 

Participants will receive no direct benefits from participating in this study. However, 
participants should know that their willingness to serve as a subject for this experiment 
will help a Brock University researcher and other scientists develop new theories of 
exercise that will benefit individuals in the future. 

Costs and Compensation 

The cost of the test and procedures are free. You will not receive any form of 
compensation for your participation in this study. 

Confidentiality 

Although data from this study will be published, confidentiality of information 
concerning all participants will be maintained. All data will be coded without personal 
reference to you. Any personal information related to you will be kept in a locked office, 
to which only the investigator has access. The investigators will have access to the data, 
however, names of participants or material identifying participants will not be released 
without written permission except as such release is required by law. 

Persons to Contact with Questions 

The investigator will be available to answer any questions concerning this research, now 
or in the future. You may contact the investigators, Kyle McIntosh by telephone 905-
688-5550 ext. 3965 or bye-mail atkm03ki@brocku.ca. If questions arise about your 
rights as a research subject, you may contact the Office of Research Services at 905-688-
5550 ext. 3035. If you wish to speak with someone not involved in the study, please call 
the Chair of the Department of Physical Education and Kinesiology at 905-688-5550 ext. 
4361. 
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Consent to Participate 

Certify that you have read all the above, asked questions and received answers 
concerning areas you did not understand, and have received satisfactory answers to these 
questions. Furthermore, you have completed the P AR-Q questionnaire indicating that 
you are physically able to participate. You willingly give consent for participation in this 
study. (A copy of the consent form will be given to you). 

Name of Participant (Please Print): ___________ _ 

Signature of Participant Date (day/month/year) 

In addition to the considerations described in this document, the investigator fully 
intends to conduct all procedures with the subject's best interest uppermost in mind, to 
insure the subject's safety and comfort. 

I have fully explained the procedures of this study to the above volunteer. I believe that 
the person signing this form understands what is involved in this study and voluntarily 
agrees to participate. 

Date (day/month/year) Kyle McIntosh (M.Sc. candidate) 
of Physical and 
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Electromyographic Kinesiology Laboratory 

Brock University, St. Catharines, Ontario, Canada, L2S 3Al 

PAR-Q 

(A QUESTIONNAIRE FOR PEOPLE AGED 15 TO 69) 

Regular physical activity is fun and healthy, and increasingly more people are starting to 

become more active every day. Being more active is very safefor most people. However, 

some people should check with their doctor before they start becoming much more 

physically active. If you are planning to become much more physically active than you 

are now, start by answering the seven questions in the box below. If you are between the 

ages of 15 and 69, the PAR - Q will tell you if you should check with your doctor before 

you start. If you are over 69 years of age, and you are not used to being very active, 

check with your doctor. 

Common sense is your best guide when you answer these questions. Please read the 
questions carefully and answer each one honestly: check YES or NO. 

YES NO 

0 0 1. Has your doctor ever said that you have a heart condition and that 
you should only do physical activity recommended by a doctor? 

0 0 2. Do you feel pain in your chest when you do physical activity? 

0 0 3. In the past month, have you had chest pain when you were not doing 
physical activity? 

0 0 4. Do you lose your balance because of dizziness or do you ever lose 
consciousness? 

0 0 5. Do you have a bone or joint problem that could be made worse by a 
change in your physical activity? 

0 0 6. Is your doctor currently prescribing drugs (e.g. water pills) for your 
blood pressure or heart condition? 
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o 0 7. Do you know of any other reason why you should not do physical 
activity? 

Talk with your doctor by phone or in person BEFORE you start becoming much more 
physically active or BEFORE you have a fitness appraisal. Tell your doctor about the 
PAR - Q and which questions you answered YES. 

You may be able to do any activity you want - as long as you start and build up 
gradually. Or, you may need to restrict your activities to those which are safe for you. 
Talk with your doctor about the kinds of activities you wish to participate in and follow 
hislher advice. 

Find out which community programs are safe and helpful for you. 

If you answered NO honestly to all PAR - Q questions, you can be reasonably sure that 
you can: 

1. Start becoming much more physically active - begin slowly and build up gradually. 
This is the safest and easiest way to go. 

2. Take part in a fitness appraisal - this is an excellent way to determine your basic . 
fitness so that you can plan the best way for you to live actively. 

If you are not feeling well because of a temporary illness such as a cold or a fever - wait 
until you feel better; or take part in a fiPless appraisal. This is an excellent way to -
determine your basic fitness so that you can plan the best way for you to live actively. 

If your health changes so that you then answer YES to any of above questions, tell your 
fitness or health professional. Ask whether you should change your physical activity 
plan. 
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I have read, understood and completed this questionnaire. Any questions I had 
were answered to my full satisfaction. 

NOTE: The responsibility is yours to fill in the PAR - Q and participate within your own 
limitations, as this is individual, unsupervised activity. If the PAR - Q is being given to 
a person before he or she participates in a physical activity program or a fitness appraisal, 
this section may be used for legal or administrative purposes. 

Informed Use of the PAR - 0: The Canadian Society for Exercise Physiology, Health 
Canada, and their agents assume no liability for persons who undertake physical activity, 
and if in doubt after completing this questionnaire, consult your doctor prior to physical 
activity. 

Name of Participant (Please Print): ___________ _ 

Signature of Participant Date (day/month/year) 

Witness: 

Name of Witness (Please Print): ___________ _ 

Signature of Witness Date (day/month/year) 
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Subject Data Collection Sheet 

Personal Contact Information 

Please fill out your personal information in case the researchers need to contact you after 
completing the collection process. 

First name: -------------------
Surname: ----------------------
Age: __ _ Sex: __ 

E-mail: ______________________ _ 

Physical Activity Background 

1. How many hours a week do you spend weight training? __________ _ 

2. How many years of weight training experience do you have? (minimum lyr) 

3. How many hours a week are you physically active (aside from weights)? __ __ 

4. What is the most frequent mode of exercise you engage in? ________ _ 

Anthropometric Measurements 

1. Height 

2. Weight ___ _ 

3. BMI (Weight in kg / Height2 in metres) __ _ 

4. Lower Leg Circumference (widest point) ___ _ 

5. Lower Leg Length (lateral head of the fibula -lateral malleolus) ___ _ 

6. Foot Length __ _ 
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Date: Pre-Q: Post-Q: ------- -----

Subject #: Pre-temp: ___ _ Post-temp: __ _ 

Trial 1 Trial 2 Trial 3 

FORCE (mV) 100% 

Amplification 

MPF 

RMS 

CV -Single 

x-corr 

CV -Double 

x-corr 

FORCE (mV) 30% Trial 1 Trial 2 TriaI3 Trial 4 Trail 5 

Amplification 

MPF 

RMS 

CV -Single 

x-corr 

CV -Double 

x-corr 

Trial 1 Trial 2 Trial 3 

FORCE (mV) 100% 

Amplification 

MPF 

RMS 

CV -Single 

x-corr 

CV-Double 

x-corr 
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