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Abstract 

Many species of Anopheles mosquitoes (Diptera: Culicidae) are now recognized 

as species complexes whose members are often indistinguishable morphologically but 

identifiable based on ecological, genetic, or behavioural data. Because the members of 

species complexes often differ in their vector potential, accurate identification of vector 

species is essential for successful mosquito control. To investigate the cryptic species 

status of Anopheles mosquitoes in Canada, specimens were collected from across the 

country and examined using morphological, molecular, and ecological data. 

Six of the seven traditionally recognised species from Canada were collected from 

locations in British Columbia, Quebec, Newfoundland and Labrador, and throughout 

Ontario, including Anopheles barberi, An. earlei, An. freeborni, An. punctipennis, An. 

quadrimaculatus s.l., and An. walkeri. Variation in polymorphic traits within An. earlei, 

An. punctipennis, and An. quadrimaculatus s.l. were quantified and egg morphology 

examined using scanning electron microscopy. Morphological identification of adult and 

larval specimens suggested that two described cryptic species, An. perplexens and An. 

smaragdinus, were present in Canada. 

DNA sequence data were analysed for evidence of cryptic species using three 

molecular markers: COl, ITS2, and ITS!. Intraspecific COl variation was very low in 

most species «1 %), except for An. punctipennis with 2% sequence divergence between 

those from British Columbia (BC) and Ontario (ON), and An. walkeri with 7% sequence 

divergence between populations from Manitoulin Island (NO) and Long Point Provincial 

Park (LP). Similar patterns were also seen using ITS2 and ITS 1. Therefore, molecular 
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data revealed the presence of two putative cryptic species within two species examined 

(i.e., An. walkeri and An. punctipennis), corresponding to collection location (i.e., NO vs. 

LP and BC vs. ON, respectively). Surprisingly, there was no molecular support for the 

presence of either An. perplexens or An. smaragdinus in Canada despite the 

morphological assessments. 

Ecological data from all collection sites were recorded and are available in an 

online database designed to manage all collection and identification data. Current 

bionomic information, including regional abundance, larval habitat, and species 

associations, was determined for each species. This multidisciplinary study of Anopheles 

mosquitoes is the first detailed investigation of these potential disease vectors in Canada 

and demonstrates the importance of an integrated approach to anopheline systematics that 

includes molecular data. 
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Preface 

This PhD thesis was prepared in monograph format. I planned and completed all 

aspects of this research, with the help of many field and research assistants (see 

Acknowledgements), for which Dr. Hunter provided mentors hip and financial support. 

This thesis is organized into five chapters and includes an introductory chapter, three data 

chapters, and a concluding chapter, with manuscripts for each data chapter in preparation 

for submission to academic journals. Specimens and collection data were deposited in 

the Canadian National Collection of Insects, Agriculture and Agri-Food Canada in 

Ottawa, Ontario, Canada. 

Chapter One provides an introduction to systematic investigations of Anopheles 

(Diptera: Culicidae) mosquitoes and the significance of cryptic species within this 

medically important group of insects. It includes a general overview of mosquitoes and 

the systematics of these potential disease vectors, followed by a discussion of cryptic 

species, the methods used to distinguish isomorphic members of cryptic species 

complexes, and the importance of ecological data in such investigations. Also included is 

a discussion regarding the use of an integrated approach to Anopheles systematics, 

descriptions of all species known from or suspected to occur in Canada, and the objective 

of this study. 

Chapter Two is the first of three data chapters and involves the morphological 

analysis of Anopheles mosquitoes collected from across Canada. It provides background 

information on egg, larval, and adult morphology, and on potential cryptic species in 

Canada, and describes the methods used to collect and identify specimens for analysis. 

The results of morphological analyses for each species are discussed, followed by a 

summary and conclusions with respect to morphological data. 

Chapter Three is the second data chapter and involves the examination of 

molecular data for evidence of cryptic species within the Anopheles species present in 

Canada. It provides an introduction to molecular systematics of anophe1ines and the 

molecular markers used in this study, i.e., an 800bp portion of the mitochondrial 

cytochrome c oxidase I gene (COl) and the ribosomal internal transcribed spacer 

sequences 1 and 2 (ITS 1 and ITS2), followed by a review of molecular studies involving 
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Anopheles species present in Canada. The materials and methods used to analyse these 

molecular markers are described, including the primers and PCR conditions, how 

consensus sequences were determined, and analysis of the resulting nucleotide sequences. 

The results for each molecular marker examined are discussed, followed by a summary 

and the conclusions based on molecular data. 

Chapter Four is the third and fmal data chapter of this thesis and involves the 

analysis of ecological data associated with the larval habitats of Anopheles species in 

Canada. While these data were not analysed for evidence of cryptic species per se, they 

represent the first detailed analysis of the larval habitats of the Anopheles species present 

in Canada in the northern parts of these species North American ranges; Ecological data 

associated with larval and adult mosquito collections were recorded and an online 

database was designed to maintain this data. Chapter Four focuses on the analysis larval 

habitat data, including water body type, emergent and floating vegetation type, and 

species associations for each species examined in the study. The results for each larval 

habitat characteristic examined are discussed, followed by a summary of the analyses of 

ecological data. 

Chapter Five is the final chapter of this thesis and involves a comparison of the 

results of the different methods used to examine the cryptic species status of anophelines 

in Canada, i.e., morphological, molecular, and ecologicaL It includes a review of the 

results of each of these methods, highlighting similarities and incongruence among them. 

The importance of an integrated approach to Anopheles systematics is discussed, and the 

overall conclusions of the study provided. 
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Chapter One: 
Introduction to Anopheles systematics 

1.1. Introduction to Mosquitoes (Diptera: Culicidae) 

Mosquitoes are common insects throughout the world, well known for their 

potential to be pests and vectors of disease to humans and other animals because the adult 

females of most species require a blood meal to develop their eggs. While adult females 

feed on their hosts, salivary gland fluid containing compounds such as anticoagulants, 

antiplatelets, and vasodilators, and occasionally pathogenic organisms, is injected into the 

host while the mosquito imbibes her blood meal (Ribeiro and Francischetti 2003). 

Mosquitoes are involved in the transmission of a wide variety of diseases, most 

notably human malaria, which is spread by Anopheles mosquitoes primarily in tropical 

regions. The World Health Organization estimates that 243 million clinical cases of 

malaria occurred in 2008, leading to approximately 863,000 deaths (WHO 2009). In 

Canada, mosquitoes are potential vectors of viruses known to cause at least 5 human and 

animal diseases, including the Western Equine, Eastern Equine, California, and St. Louis 

encephalitis viruses (Calisher 1994), as well as the West Nile virus (Turell et al. 2001). 

Although malaria has been considered eradicated from Canada since the 1950s, 

competent malaria vectors are present in southern Canada in many densely populated 

regions, and current trends in climate change, international trade, and travel may lead to 

sporadic local transmission of the disease in the future (Berrang-Ford et al. 2010). When 

outbreaks of known or emerging diseases occur, the key to successful mosquito control is 

the ability to identify vector species accurately, so that resources can be targeted in the 

correct areas. 

Mosquitoes are members of the family Culicidae in the insect Order Diptera, or 

"true flies". They have two wings, long legs, and their elongate mouthparts form their 

most distinctive feature, called the proboscis (Figure 1.1). While only females use it to 

pierce the flesh of their hosts for a blood meal, both males and females use their 

proboscis to obtain water as well as floral nectar, an important energy source for both 

sexes (Clements 1992). Like other dipterans, the culicid life cycle involves complete 
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metamorphosis, a process with four main stages of development: egg, larva, pupa, and 

adult (Wood et al. 1979; Clements 1992). Eggs (Figure 1.2) are laid on the surface of 

standing water, or on moist soil that will eventually flood (such as the sides of roadside 

ditches and along the edges of ponds and marshes), and require contact with standing 

water in order to hatch (Wood et al. 1979). Embryonic development is completed within 

the egg and, after stimulated to hatch, the legless larva emerges into the water and begins 

to feed on particulate matter. Mosquito larvae (Figure 1.3) have elaborate mouthparts, 

which include a pair of labral brushes that they use to create a current and draw water 

containing food particles towards their mouth (Wood et al. 1979). 

Larvae swim through the water using side-to-side movements of their abdomen 

and development proceeds through four progressively larger instar stages (Wood et al. 

1979). After the fourth instar stage is complete, larvae then transform into pupae (Figure 

1.4), the stage during which the mosquito does not feed and the adult form of the 

mosquito develops inside the pupal casing. When development is complete, the adult 

splits the pupal casing open and works its way out, standing on the surface of the water 

and eventually flying away in search of food and a mate (Clements 1992). 

In Canada, mosquitoes develop in a wide variety of larval habitats, including 

forest pools, ponds and marshes, rock pools and tree holes, as well as artificial containers 

such as rain barrels and used tires. They employ various life cycle and overwintering 

strategies as well. For example, the eggs of many species of Aedes mosquitoes are laid in 

moist soil in areas that flood when the snow melts each spring, stimulating the eggs to 

hatch, and when the adults emerge, they mate, the females blood feed, lay their eggs in 

moist soil, and soon die (Wood et al. 1979). The eggs remain dormant until the next year 

when the snow melts and the cycle begins again. 

Most Anopheles mosquitoes overwinter as mated, but non-bloodfed, adult females 

in dark, moist environments (such as old basements, hollow trees and woodpiles), and, 

each spring, they emerge from their overwintering sites to obtain a blood meal, and lay 

their eggs on the surface of habitats such as ponds, marshes, and ditches (Wood et al. 

1979). The larvae hatch and develop into adults, repeating this cycle multiple times 

throughout the season, and, as the end of the season nears, the last females 
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Figure 1.1. Lateral view of an adult female mosquito, Anopheles earlei. Two wings 
extend posteriorly, and six legs ventrally, from the thorax. The proboscis can be seen 
below two elongate palpi, characteristic of Anopheles females. 
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Figure 1.2. Scanning electron micrograph of the ventral surface of a mosquito egg, 
Anopheles punctipennis (chorionic pattern more visible from dorsal aspect). 
Magnification x180. 
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Figure 1.3. Dorsal view of a fourth instar larva, Anopheles earlei. 
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Figure 1.4. Lateral view of a mosquito pupa, Anopheles punctipennis. (Note: reflection of 
the dorsal surface of pupa from the water's surface can be seen above the pupa). 
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to emerge mate and then locate an overwintering site where they remain mostly dormant 

until the following year (Wood et al. 1979). 

These are but a few of the many ways in which mosquitoes have adapted to the 

Canadian environment. Prior to the current study, eighty-two species in 10 genera of 

mosquitoes were known from Canada, which exist in diverse environments across the 

country, from the tiny pitcher-plant mosquito, Wyeomyia smith ii, whose larvae live in the 

water that collects inside the pitcher-shaped leaves of the Sarracenia purpurea plant 

found in northern bogs, to the extremely large livestock mosquito, Psor%ra ciliata, 

biters so voracious they are reputed to bite through heavy clothing (Wood et al. 1979; 

Thielman and Hunter 2007). Mosquitoes exhibit a wide variety of mating strategies, 

ecological associations and feeding behaviours, and occur throughout the country. 

Despite their potential to spread disease and reach population levels high enough to 

warrant mosquito abatement programs, surprisingly little is known about most mosquito 

species in Canada. 

1.2. Mosquito Systematics 

Systematics is the study of biological diversity and evolutionary relationships 

among organisms, extinct and extant, and is used to construct taxonomic groups (Brooker 

et al. 2010). It involves the discovery, naming and description of species and the 

development of hypotheses of the phylogenetic relationships among them. Traditionally, 

systematic investigations of mosquitoes have been based primarily on morphological 

data, but other types of data, including ecological, behavioural, and now molecular data, 

are also commonly used. Non-morphological data are particularly important when 

examining cryptic species complexes, i.e., groups of closely related but reproductively 

isolated species that are difficult or impossible to identify based on morphological 

characters (Collins and Paskewitz 1996). The discovery that isomorphic members of 

species complexes often varied in their vector potential led to rapid advances in the field 

of mosquito systematics, and alternative (non-morphological) methods of species 

identification were, therefore, developed (reviewed in Munstermann 1995; Krzywinski 

and Besansky 2003; Walton et al. 1999b; Munstermann and Conn 1997). This is 
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particularly true within the genus Anopheles because many of the vectors of human 

malaria belong to such cryptic species complexes, whose isomorphic members exhibit 

behavioural and/or ecological differences that affect their vectorial capacity (Collins and 

Paskewitz 1996; Besansky 1999). 

Anopheline systematists usually include data from at least two types of analyses 

including, but not limited to, morphological (egg, larval, pupal, or adult characters), 

genetic (hybridization experiments), cytological (polytene chromosome banding 

patterns), biochemical (cuticular hydrocarbon, allozyme data), molecular (DNA 

sequences), and ecological (larval habitat, host associations, etc.). Combinations of data 

have been used successfully to identify new species, elucidate cryptic species, and 

propose evolutionary relationships among species (reviewed in Krzywinski and Besansky 

2003, Munstermann and Conn 1997; for examples see Reinert et al. 1997, Lounibos et al. 

1998, Nicolescu et al. 2004, Reidenbach et al. 2009). 

Classical mosquito taxonomy was based primarily on morphological data until 

well into the 20th century. The discovery of polytene chromosomes in Anopheles 

mosquitoes during the 1940s and that they could distinguish among malaria vector and 

non-vector species in the Anopheles maculipennis complex (Frizzi 1947), led to the 

discovery of other important anopheline species complexes (Coluzzi et al. 1977; Foley 

and Bryan 1991; Ramirez and Desson 2000). Polytene chromosomes are also a source of 

phylogenetic information, as closely related species can often be differentiated, and the 

relationships among them determined, based upon chromosomal inversions (White 1978; 

Pape 1992). However, preparation of the chromosomes for analysis is labour intensive, 

requires considerable expertise, and is applicable only to the larval and adult female 

stages. Over the last few decades, molecular data generated by polymerase chain reaction 

(PCR)-based methods have proven to be valuable species identification and phylogenetic 

tools. This has led to their increased use in taxonomic and phylogenetic investigations of 

mosquitoes, particularly within the Anophelinae (Chen et al. 2003; Paredes-Esquival et . 

al. 2009; Sallum et al. 2002; Sallum et al. 2007; Sharpe et al. 2000; Wilkerson et al. 

2005). 

Apart from major malaria vectors, the systematics of Anopheles mosquitoes 

remained largely at the alpha taxonomy level (i.e., the discovery and naming of new 
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species) until the end of the 20th century (Krzywinski and Besansky 2003). However, 

recent studies have sought to understand the higher-level systematics of mosquitoes, 

including the Anophelinae (Harbach and Kitching 1998; Mitchell et al. 2002; Reidenbach 

et al. 2009). In a phylogeny based on morphological characters, Harbach and Kitching 

(1998) found that the Anophelinae are monophyletic and basal within Culicidae, similar 

to relationships suggested by the complete coding sequences of the mitochondrial genes 

cytochrome c oxidase I and n (i.e., COl and COn) (Mitchell et al. 2002). The results of a 

recent analysis using morphological and molecular data (i.e., six nuclear protein coding 

genes) (Reidenbach et al. 2009) also agree with those of the previous studies. While 

these studies include anophelines from outside the Nearctic region, the relationships 

among Nearctic Anopheles species were proposed based on the D2 variable region of28S 

ribosomal RNA, a phylogeny that includes most of species that occur in Canada and were 

examined in this study (Figure 1.5) (porter and Collins 1996). 

Taxonomically, the Anopheles mosquitoes are members of the dipteran family 

Culicidae, which is divided into two main lineages called subfamilies, the Anophelinae 

and the Culicinae (Harbach and Kitching 1998). The subfamily Anophelinae includes 

three genera: Anopheles, Bironella, and Chagasia (Harbach and Kitching 2005). Most 

anopheline species are assigned the genus Anopheles, which includes six subgenera: 

Anopheles, Cellia, Kerteszia, Lophopodomyia, Nyssorynchus, and Stethomyia (Harbach 

and Kitching 2005). Harbach (2004) published a working hypothesis for the 

classification and phylogenetic relationships of the genus Anopheles, including the 

subgenus Anopheles, to which all Canadian anopheline species belong. Harbach (2004) 

attempted to place species into increasingly smaller groups, from Subgenera to Section, 

then to Series, Group and, finally, to Complex and Species, where each taxonomic 

grouping is believed to be phylogenetically related based on morphological and genetic 

data. All Canadian anopheline species are members of the Anopheles Series of the 

Angusticom Section ofthe Subgenus Anopheles, and within the Anopheles Series, they 

are further subdivided into the Maculipennis, Plumbeus, and Punctipennis Groups (Figure 

1.6) (Harbach 2004). 
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Figure 1.5. Phylogeny of Nearctic Anopheles based on D2 region of28S rRNA (Fig. 3 of 
Porter and Collins 1996). Note that Anopheles occidentalis and An. aztecus do not occur 
in Canada. Anopheles bradleyi is a member of the An. crucians complex, and while An. 
crucians s.l. has been collected in southern Ontario (Thielman and Hunter 2007), no 
specimens were collected during the current study. Furthermore,An. barberi, which is 
present in Canada, was not included in the analyses of Porter and Collins (1996). 
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Subgenus Anopheles 
Angusticom Section 

Anopheles Series 
Maculipennis Group 

walkeri 
Quadrimaculatus Subgroup 

quadrimaculatus 
smaragdinus * 

FreebomiSubgroup 
earlei 
freeborni 
occidentalis * 

Punctipennis Group 
perplexens * 
punctipennis 

Crucians Complex 
crucians 

Plumbeus Group 
barberi 

Figure 1.6. Proposed classification of Anopheles mosquitoes from Canada. Groupings 
represent increasingly related species (adapted from Harbach 2004). * indicates species 
suspected to occur in Canada based on preliminary morphological identifications or close 
proximity oflmown distribution ranges to the Canadian border. 
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There is a major difference between the phylogenetic tree based on the D2 

fragment of28S rDNA (Porter and Collins 1996) and the relationships among species 

present in Canada based on morphological and molecular data as proposed by Harbach 

(2004). Based on D2, An. punctipennis (E and W forms) are more closely related to An. 

freeborni and An. earlei (porter and Collins 1996), followed by the An. quadrimaculatus 

species complex, and then An. walkeri (Figure 1.5). However, Harbach (2004) places An. 

punctipennis in their own Group, outside the Maculipennis Group, which includes An. 

earlei, An. freeborni, An. quadrimaculatus s.l., and An. walkeri (Figure 1.6). Cywinska 

et al. (2006) examined a portion ofthe COl gene in four species of Anopheles mosquitoes 

from Ontario and found that An. earlei and An. punctipennis sequences were most 

similar, followed by An. quadrimaculatus s.s., then An. walkeri, similar to the results of 

Porter and Collins (1996). Therefore, there is an apparent incongruence between 

phylogenies based on molecular data and those that include morphological data, which 

demonstrates the importance of using multiple types of data in the analysis of Anopheles 

mosquitoes. 

While many taxonomic and phylogenetic investigations include some of the 

anophelines present in Canada, none have included them all. In addition, while many 

species are now recognized as complexes of isomorphic species, particularly in regions 

where malaria or other important diseases occur, only two studies have attempted to 

examine the cryptic species status of species that are of relevance to the current thesis 

(Wilkerson et al. 2004, Reinert et al. 1997), but they did not include any specimens that 

were collected from Canada. Cywinska et al. (2006) examined the barcoding region of 

COl to assess its ability to identify mosquito species present in Canada, but included 

specimens collected only from Ontario, and many species have much broader distribution 

ranges. Therefore, cryptic species status has not yet been examined in the Anopheles 

mosquitoes of Canada, despite the medical and veterinary importance of these potential · 

disease vectors near the northern limits of their ranges. 
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1.3. Species Complexes and Cryptic Species 

Many terms are used when describing groups of closely related and/or cryptic 

species, which mayor may not be distinguishable on the basis of morphology alone. The 

isomorphic nature of such species occurs because speciation does not always involve 

morphological change (Bickford et al. 2006). Authors sometimes use these terms 

interchangeably and their definitions, as used in this thesis, are provided here for 

clarification. Cryptic species refer to two or more distinct species that are or were 

described as a single species because they are difficult or impossible to identify based on 

morphology (Bickford et al. 2006). Sibling species are cryptic sister species, i.e., each 

other's closest relatives which are difficult or impossible to distinguish morphologically 

(Bickford et al. 2006). The term species complex is used to describe groups of closely 

related species, and is usually used to describe more recently derived species that have 

few if any morphological differences among the members of the complex, such as the 

Anopheles quadrimaculatus Complex (Reinert et al. 1997). The term species group is 

used to describe groups of species whose members are more distantly related and often at 

least some of the members are distinguishable based on morphological characters, such as 

the Nearctic members of the Anopheles maculipennis Group (Porter and Collins 1996). 

Cryptic species complexes are common in mosquitoes (Walton et al. 1999b), 

including the genus Anopheles (Collins and Paskewitz 1996). Because the members of 

anopheline species complexes often differ in ecological or behavioural characteristics that 

affect their ability to transmit disease (Collins and Paskewitz 1996), the ability to 

accurately identify cryptic species is essential for implementing effective vector control. 

This is best illustrated using the "Anophelism without malaria" problem that hindered 

control of the disease in Europe during the early 1900s until it was discovered that the 

primary vector, An. maculipennis, was actually a group of isomorphic species (i.e., they 

had been dealing with An. maculipennis s.l.), whose members differed in their potential to 

transmit Plasmodium parasites, the causative agents of malaria (Walton et al. 1999). 

Since then, particularly in regions where malaria is endemic, many cryptic species 
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complexes have been discovered within the genus Anopheles (Collins and Paskewitz 

1996; Besansky 1999). 

The first reliable method for identifying cryptic species involved the use of 

polytene chromosomes (Collins and Paskewitz 1996). Polytene chromosomes are found 

in specialized cells (the ovarian nurse cells of adult females and salivary gland cells of 

fourth instar larvae) that are formed because the cells undergo repeated replication of the 

chromosomes without cell division, a process called endoreduplication (Clements 1992). 

This results in giant chromosomes with discernible banding patterns that can be used to 

distinguish among even closely related andlor isomorphic species (Clements 1992). 

Frizzi (1947) first used polytene chromosomes to elucidate members of the Anopheles 

maculipennis complex in Europe, and Coluzzi et al. (1977) for the members ofthe 

Anopheles gambiae complex in Africa, both of which contain major malaria vectors in 

the regions where they occur. Since their discovery, not only have polytene 

chromosomes been used to identify the cryptic members of many species complexes, they 

can be an important source of phylogenetic information and can be used to investigate 

population structure and speciation processes (Guelbeogo et al. 2005). 

The polytene chromosome method of elucidating cryptic species has a number of 

disadvantages. Preparation of the chromosomes and interpretation of the banding 

patterns are labour intensive and require considerable expertise (Collins and Paskewitz 

1996; A. Thielman,pers. obs.). Also, not all anophelines have discernible polytene 

chromosome patterns and not all anopheline sibling species have detectable differences in 

banding pattern (Krzywinski and Besansky 2003). This method is also applicable only 

to the larval and adult female stages (Krzywinski and Besansky 2003). Therefore, 

cytogenetic studies, once the most widely used technique for identifying cryptic 

anopheline species, are being replaced by molecular methods (Collins and Paskewitz 

1996). 

The first molecular methods of cryptic species identification involved protein 

electrophoresis of enzyme variants, or allozymes (Krzywinski and Besansky 2003), 

however, recently derived species do not always differ in allozyme profiles and proper 

preservation of material for such studies is often difficult (Walton et al. 1999). DNA­

based methods using PCR have many advantages over morphological, cytological and 
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biochemical methods, and have contributed to their almost universal use in studies of 

insect systematics today. DNA offers almost unlimited polymorphic markers and is 

easily preserved (Krzywinski and Besansky 2003). Only a minute amount of DNA, such 

as one leg (or part of a leg for larger insects) is required, allowing specimens to be 

retained for morphological vouchers, used in other types of analyses, or kept alive for 

crossing experiments (Krzywinski and Besansky 2003). Unlike protein, DNA is always 

detectable and it provides more sources of variation since it measures changes at the 

nucleotide level (Behura 2006). 

The success of molecular methods that use mitochondrial (mtDNA) and 

ribosomal DNA (rDNA) sequences to identify and elucidate cryptic anopheline species 

(Lunt et al. 1996; Collins and Paskewitz 1996) has led to their widespread use in studies 

of Anopheles systematics, and in the discovery of new species and species complexes 

(Porter and Collins 1991; Paskewitz et al. 1993; Cornel et al. 1996; Hackett et al. 2000; 

Foley et al. 2007; Paredes-Esquivel et al. 2009). 

1.4. Ecological Associations 

The importance of ecological traits in investigations of Anopheles systematics has 

long since been recognized (Kitzmiller 1959), and remains so for many reasons. 

Ecological associations, such as host feeding associations (e.g., humans vs. other 

animals) and larval habitat association (e.g., permanent vs. temporary pools), have a 

direct influence on disease transmission and are, therefore, important from a human 

health perspective. Many studies have ~ttempted to characterize the larval habitat of 

Anopheles species (e.g., habitat size, seasonal prevalence, and presence of aquatic 

vegetation) to "better understand the ecology of vector species and improve larval control 

measures in disease endemic regions (for examples, see Rejmankova et al. 1993; 

Manguin et al. 1996; Gimnig et al. 2001; Shililu et al. 2003). Coluzzi et al. (1979) 

proposed that speciation in the An. gambiae complex was related to adaptation to human­

induced environmental changes, and recent studies suggest that speciation in this 

medically important species complex may be due niche expansion (Constantini et al. 

2009; Gimonneau et al. 2010). 
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The ecological hypothesis of speciation has been recognized since the 1940s and 

was largely accepted by evolutionary biologists despite a lack of empirical evidence for 

its occurrence in nature (Schluter 2001). However, recent studies have begun to provide 

this evidence (McKinnon et al. 2004; Langerhans et al. 2007; Schluter 2009). Since 

evidence for ecological speciation exists, and the distribution of many anopheline species 

is related to ecological factors (e.g., larval habitat characteristics), the examination of 

ecological traits is important in investigations of cryptic species. For example, once 

species of the An. gambiae complex were identifiable based on polytene chromosome and 

hybridization data, the ecological differences among species were discovered, with larvae 

of An. gambiae s.s. and An. arabiensis present in fresh water habitats and those of An. 

melas and An. merus occurring in coastal salt water ones (Coluzzi et al. 1977). 

Characterization oflarval habitats associated with vector and non-vector species can 

improve the accuracy and efficiency of mosquito control efforts when required. 

Another example of ecological differences associated with cryptic species 

involves the larval habitat of the morphologically similar species An. punctipennis and 

An. perplexens. Larvae of An. punctipennis occur in a wide variety of temporary and 

permanent habitats including marshes, ponds, forest pools, rock pools, and artificial 

containers (Carpenter and LaCasse 1995; Wood et al. 1979), but those of An. perplexens 

are restricted to the highly calcareous water characteristic of limestone springs present 

throughout the type locality in southern Georgia, USA (Bellamy 1956). These cryptic 

taxa are considered good species based on polytene chromosome and hybridization data 

(Kreutzer and Kitzmiller 1971a; Kreutzer and Kitzmiller 1971a), but larval and adult 

morphological characters are unreliable (Bellamy 1956; Fritz et al. 1991). Studies of 

cryptic frog species in limestone habitats include the description of a new species from 

limestone forests in the Philippines, a habitat from which 28 cryptic species are now 

known from only three morphological species groups (Siler et al. 2010). Other 

Anopheles species are known from limestone habitats as well, including a new species, 

An. cucphuongensis, collected from limestone rock pools in Vietnam (Phan et al. 1990). 

Therefore, the analysis of ecological data, such as larval habitat associations, represents 

an important perspective from which to study Anopheles systematics. 
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1.5. Integrated approach to Anopheles systematics 

Mosquito taxonomy has traditionally been established based on morphology. 

Egg, larval, pupal, and adult characters are used in the development of dichotomous keys 

that allow identification to the species level. However, because cryptic species are 

common in mosquitoes, morphology alone is often insufficient to correctly identify the 

members of such groups. This is particularly important in Anopheles mosquitoes because 

successful control of cryptic vector species depends on their accurate identification. The 

members of cryptic species complexes don't necessarily differ in all possible ways (i.e., 

cytological, biochemical, ecological, and molecular). Therefore, a multidisciplinary 

approach to Anopheles systematics that integrates data from as many sources as possible 

is required to address the complexity that is often present among anophelines (Besansky 

1999), as well as increase the accuracy of hypotheses of phylogenetic relationships. 

Although morphology is often not enough when dealing with cryptic species, it 

remains the simplest, fastest, and least expensive method of identification when possible 

(White 1977). As quoted by leading Anopheles systematist Ralph Harbach when 

discussing its importance, " ... morphology is a prerequisite for identifying species to 

complex or group prior to the application of molecular and other methods. You need to 

get into the ball park before you can play the game" (Krzywinski and Besansky 2003, p. 

115). Also, once cryptic species are discovered based on other types of data (e.g., DNA 

sequence data), previously unrecognized minor morphological differences are sometimes 

discovered upon morphological comparisons of the resulting groups. Sometimes cryptic 

anophelines differ morphologically only in certain life stages (Linley and Kaiser 1994). 

Therefore, examination of morphological data is essential to investigations of Anopheles 

systematics. 

When morphological data alone are insufficient to identify cryptic species, other 

types of data (e.g., cytological, ecological, molecular) are required. While cytological 

data (i.e., polytene chromosome banding patterns) have successfully revealed the 

presence of many cryptic anopheline species, it is a labour-intensive technique and 

applicable only certain life stages, and, therefore, not ideal for routine species 

identification. Molecular data, particularly COl and ITS2 sequences, have been used 
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successfully to identify species and elucidate cryptic species, and their use has become 

standard in studies of Anopheles systematics. Since cryptic species often occupy 

different ecological niches, and the knowledge of larval habitats is important with respect 

to disease control, ecological data are often also examined. However, it is the use of 

multiple types of data that often provides the most insight when investigating the 

systematics of Anopheles mosquitoes (Reinert et al. 1997; Lounibos et al. 1998). The 

importance of an integrated approach has been recognized for decades (Faran 1979), as it 

can contribute significantly to the ability to accurately identify potential cryptic vectors of 

disease, and, therefore, can allow the correct species to be targeted in mosquito control 

programs when necessary. 

1.6. Anopheles species known from Canada 

Although malaria has not been present in Canada since the 1950s, native 

Anopheles species were involved in the transmission of human malaria in Upper Canada 

during the 1800s (Zucker 1996; Wood et al. 1979). Today, Anopheles species are 

potential vectors of the filarial worm Dirofilaria immitis that causes dog heartworm 

(Kartman 1953), the West Nile (WNv) virus (Turell et al. 2001), and other viruses 

(Calisher 1994) which can cause severe illness and death in humans, and recent studies 

have shown that malaria could recur in Canada in the future (Berrang-Ford et al. 2009). 

This thesis represents the first attempt to determine if cryptic species complexes are 

present among the traditionally recognized species of Anopheles mosquitoes in Canada, 

and to describe the morphological, molecular, and ecological differences among them. 

In Canada, most anophelines lay their eggs singly on the surface of standing 

water, usually permanent or semi-permanent ponds, marshes, sloughs and ditches with 

emergent aquatic vegetation (Wood et al. 1979). Anopheles larvae live at the surface of 

the water where they feed (Wood et al. 1979), usually resting on top of floating plant 

material, especially algae (A. Thielman, pers. obs.). Larval development usually takes a 

couple of weeks, undergoing multiple generations throughout the summer and, in 

autumn, non-bloodfed adult females locate hibemacula, overwintering in damp, dark 

places such as caves, hollow trees and unheated buildings (Wood et al. 1979). In early 
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spring, the females emerge and seek out a blood meal to begin the cycle over again. 

Host-seeking females are usually active from early evening and well into the night, and 

they can produce many offspring in their lifetime, up to 5 or more batches of ~ 100-200 

eggs (Wood et al. 1979). 

The mosquito genus Anopheles is one of 10 genera, and includes seven of the 82 

species, known to occur in Canada (Thielman and Hunter 2007). Native species include 

Anopheles barberi Coquillett, An. earlei Vargas, An. freeborni Aitken, An. punctipennis 

(Say), An. quadrimaculatus sensu lato Say, and An. walkeri Theobald (Wood et al. 

1979), as well as An. crucians sensu lato Wiedermann, a relatively recent record for 

Canada that was collected from locations in WindsorlEssex County in 2002 and 2003 

through West Nile virus (WNv) mosquito surveillance conducted at Brock University 

(Thielman and Hunter 2007). 

Therefore, to provide background information and a context for the investigation 

of cryptic species status among Anopheles species in Canada, a brief description of each 

anopheline known in Canada is provided herein. 

1.6.1. Anopheles barberi Coquillett, 1903 

Anopheles barberi is a small mosquito, distinct from the other Anopheles species 

in Canada in many ways. Larvae of An. barberi have been found primarily in tree holes 

in Point Pelee National Park (Smith and Trimble 1973) and around Perth, Ontario (Wood 

et al. 1979), but likely occur throughout southern Ontario wherever suitable habitat exists 

(Figure 1.7). A population was recently discovered in Niagara Falls, Ontario, in used 

tires that were placed in a woodlot by a colleague to study larval competition among 

Aedes mosquito species. Anopheles barberi is the only anopheline species in Canada that 

is included in the Plumbeus Subgroup (Figure 1.6) (Harbach 2004), and overwinters in 

the larval stage, likely as second instars (Woodet al.1979). Copeland (1987) found that 

laboratory colonies were easily established if sufficient larvae were present to create the 

first generation. Fourth instar larvae are predacious on small mosquito larvae, can 

consume large numbers of first instars (peterson et al. 1969), and have been observed to 

feed on both conspecific and heterospecific larvae (A. Thielman, pers. obs.). 
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1.6.2. Anopheles crucians sensu lato Wiedermann, 1828 

Anopheles crucians s.l. was first discovered in Canada during the WNv mosquito 

surveillance program at Brock University. One female was collected in Point Pelee 

Provincial Park in Leamington, Ontario in 2002 and another from the Toronto Zoo in 

2003 (Thielman and Hunter 2007). Its previous known distribution in the USA includes 

most southern states with northern limits recorded as Indiana, Illinois, Ohio, and the 

southern regions of Pennsylvania and New York (Figure 1.8) (Darsie and Ward 2005). 

An. crucians s.s. is the type member of a species complex that includes two other named 

species (i.e., An. bradleyi and An. georgianus), as well as three previously unrecognized, 

and (as of2011) still undescribed, species (Wilkerson et al. 2004). 

Since the specimens collected from Canada were identified based only on 

morphology (i.e., subcostal pale-scaled spot greatly reduced, not including the costal 

wing vein), they can be identified only as An. crucians s.l. The larval habitat of An. 

crucians s.l. includes permanent or semi-permanent ponds, swamps, and lake edges, and 

they are most abundant in the acidic water of cypress swamps in Florida and Georgia 

(Floore et al. 1976). Adults feed primarily on mammals, including humans, and usually 

feed outdoors at dusk; however, they do occasionally enter houses or bite during the day, 

especially on cloudy days or in the shade (Carpenter and LaCasse 1955). 

1.6.3. Anopheles earle; Vargas, 1943 
Anopheles maculipennis Heade, 1927 
Anopheles maculipennis occidentalis Aitken, 1945 

Anopheles earlei is present throughout Canada below the tree line, from Nova 

Scotia to British Columbia, and as far north as Churchill, Manitoba and northern Yukon 

(Figure 1.9) (Wood et al. 1979). Adult females are known to overwinter in many natural 

habitats such as mammal burrows, hollow logs and trees, and beaver lodges, as well as in 

buildings (Wood et al. 1979). They emerge on the first warm days of spring to seek out 

their first blood meal, and are probably capable of multiple generations throughout the 

season in more southern regions, but are likely univoltine in the northern part of their 

range (Wood et al. 1979). Larvae of An. earlei are usually found in cold, clear water in 
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Figure 1.7. Geographic distribution of Anopheles barberi in North America. Shaded area 
represents known range (adapted from Darsie and Ward 2005). 

Figure 1.8. Geographic distribution of Anopheles crucians sensu lato in North America. 
Shaded area represents known range and dots known collection locations (adapted from 
Darsie and Ward 2005). 
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the shallow margins of penn anent and semi-pennanent ponds with emergent and 

floating vegetation and occasionally in woodland pools and marshes (Carpenter and 

LaCasse 1955). Anopheles earlei females usually bite at dusk and shortly after dark, but 

are known to enter homes and feed during the night (Carpenter and LaCasse 1955). 

1.6.4. Anopheles freeborni Aitken, 1939 
Anopheles maculipennis spp. freeborni Aitken, 1939 
Anopheles quadrimaculatus Hearle 1927 and many authors before 1939 

The distributional range of An. freeborni includes most of the western USA, 

extending northward into Canada only in British Columbia (Figure 1.10) (Darsie and 

Ward 2005). Adult females overwinter in a variety of locations including abandoned 

buildings and mines, root cellars, animal burrows, and rock piles (Wood et al. 1979). 

Anopheles freeborni females emerge in early spring to seek out a blood meal and larvae 

are usually found in pools and sloughs fonned by creeks, large marshes and irrigation 

pastures (Wood et al. 1979). The females are most active at dusk and throughout the 

night, entering houses readily to feed on humans (Carpenter and LaCasse 1955). 

1.6.5. Anopheles punctipennis (Say, 1823) 
Culex punctipennis Say, 1823 
Culex hyemalis Fitch, 1847 
Anopheles stonei Vargas, 1941 

Anopheles punctipennis occurs across the southern parts of Canada with its range 

extending north from the USA into British Columbia, Manitoba, Ontario, Quebec, New 

Brunswick, and Nova Scotia (Darsie and Ward 2005) (Figure 1.11). Non-bloodfed 

females overwinter in sites similar to those listed for An. earlei and An. freeborni, and all 

three species often occur together in regions where their ranges overlap (Wood et al. 

1979). Adults emerge in early spring to seek a blood meal and lay eggs, a cycle they 

likely complete multiple times throughout the season, similar to An. earlei and An. 

freeborni (Wood et al. 1979). 

Larvae are found in a wide variety of habitats including ponds, temporary pools, 

stream edges, hog wallows, rain barrels, and other artificial containers (Carpenter and 
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Figure 1.9. Geographic distribution of Anopheles earlei in North America. Shaded area 
represents known range (adapted from Darsie and Ward 2005). 

Figure 1.10. Geographic distribution of Anopheles freeborni in North America. Shaded 
area represents known range (adapted from Darsie and Ward 2005). 
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LaCasse 1955). Females feed mostly at dusk, but will bite during the day if disturbed or 

in wooded areas (Carpenter and LaCasse 1955). Molecular studies of An. punctipennis in 

the USA have revealed eastern (E) and western (W) forms of this species based on the 

expansion D2 region of28S rDNA (Porter and Collins 1996), but examination of COl 

haplotypes present among samples collected from various locations throughout 

Connecticut did not reveal evidence of reproductively isolated populations based on 

geographic barriers or latitude (Fairley et al. 2000). 

1.6.6. Anopheles quadrimaculatus sensu stricto (Say, 1824) 
Anopheles quadrimaculatus Say, 1824 
Anopheles annulimanus Wulp 1867 

Until recently, An. quadrimaculatus sensu lata was considered to be a single 

species throughout its range, from the eastern USA extending northward into southern 

Ontario and Quebec (Wood et al. 1979)(Figure 1.12). In the 1970s, An. 

quadrimaculatus s.l. was the least common anopheline in Canada of the four large 

"marsh-breeding" species (i.e., An. earlei, An. punctipennis, An. quadrimaculatus s.I., and 

An. walkeri), with very little known about this species in Canada (Wood et al. 1979). 

Females are known to overwinter in hollow trees, cellars, caves, and similar habitats, and 

they emerge in spring to seek a blood meal and begin the fIrst of many generations for the · 

season (Wood et al. 1979). 

Larvae are found primarily in permanent fresh water, such as sluggish streams, 

canals, ponds, and lakes with emergent or floating vegetation (Carpenter and LaCasse 

1955). In 1997, Reinert et al. described An. quadrimaculatus as a complex of fIve sibling 

species: An. quadrimaculatus s.s., An. diluvialus, An. inundatus, An. maverlius, and An. 

smaragdinus. Their conclusions were based on multiple types of data, including 

morphological, cytological, biochemical, molecular, and ecological data (Reinert et al. 

1997). While the ranges of three of the newly recognized sibling species are believed to 

be restricted to the southern states, An. smaragdinus has an estimated distribution nearly 

as broad as An. quadrimaculatus s.s. (Figure 1.16), extending almost as far north as An. 

quadrimaculatus s.s. (Figure 1.12) (Levine et al. 2004). 
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Figure 1.11. Geographic distribution of Anopheles punctipennis in North America. 
Shaded area represents known range (adapted from Darsie and Ward 2005). 

Figure 1.12. Geographic distribution of Anopheles quadrimaculatus sensu lata in North 
America. Shaded area represents known range (adapted from Darsie and Ward 2005). 
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1.6.7. Anopheles walkeri Theobold, 1901 

Anopheles walkeri occurs throughout the eastern USA, extending north into 

Canada to Saskatchewan, Manitoba, Ontario, Quebec, New Brunswick, and Nova Scotia 

(Darsie and Ward 2005) (Figure 1.13). It is the only anopheline species in North 

America that overwinters in the egg stage, at least in the northern part of its range (Wood 

et al.1979). Eggs laid at the end of the season are larger and morphologically distinct 

from those laid earlier in the season and do not hatch in spring unless they experience a 

lengthy cold period, as in nature during the winter (Wood et al. 1979). Larvae of An. 

walkeri are usually found in ponds and marshes with stable water levels overgrown with 

emergent vegetation (Carpenter and LaCasse 1955; Wood et al. 1979). Adults tend to 

rest on vegetation along shorelines and will bite during the day if their resting site is 

disturbed (Wood et al. 1979), but are also known to enter houses during the night to feed 

on humans (Carpenter and LaCasse 1955). 

1.7. Anopheles suspected to occur in Canada 

In addition to these seven known species, three species are suspected to occur in 

Canada: An. occidentalis Dyar and Knab, An. perplexens Ludlow, and An. smaragdinus 

Reinert. Anopheles occidentalis is currently known from the western USA, and although 

early authors recorded this species from British Columbia, Wood et al. (1979) suggests 

that these specimens were likely misidentified since all the Canadian specimens they 

examined were the closely related and morphologically similar species, An. earlei. 

Anopheles perplexens is currently known from scattered locations throughout the eastern 

USA, with records approaching southern Ontario. Many of the adult mosquitoes 

collected from this region through WNv surveillance and the current study exhibited the 

pale-scaled wing spots greatly reduced in size that are usually characteristic of An. 

perplexens (Bellamy 1956; Darsie and Ward 2005). Anopheles smaragdinus is a 

relatively recently recognized species and member of the An. quadrimaculatus sibling 

species complex. Although three members of the complex are restricted to more southern 

states, the distribution of An. smaragdinus is predicted to approach the Canadian border 
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(Levine et al. 2004), and many specimens collected through the current study keyed out 

to An. smaragdinus based on morphological characters described by Darsie and Ward 

(2005). 

1.7.1. Anopheles occidentalis Dyar and Knab, 1906 
Anopheles maculipennis occidentalis Aitken, 1945 

Anopheles occidentalis is known from the western USA, including California, 

Oregon, and Washington (Figure 1.14) (Darsie and Ward 2005; Sames et al. 2007). 

Larvae occur in a variety of habitats, such as stagnant creeks, water troughs, and shallow 

hillside seepages along the Pacific coast, and are often found in the shallow edges of 

ponds in shade cast by cattails and other aquatic vegetation (Carpenter and LaCasse 

1955). Adults remain in the vicinity of the larval habitat and rarely feed on humans 

(Carpenter and LaCasse 1955). Although all potential specimens of An. occidentalis 

from British Columbia have since been identified as the closely related and 

morphologically similar native species An. earlei, the close proximity of its range to the 

province warrants more detailed examination of specimens from that region. There is 

potential for this species order to migrate into Canada in the future should its range 

expand northward with continued climate change. 

1.7.2. Anopheles perplexens Ludlow, 1907 
Anopheles punctipennis Howard, Dyar and Knab 1917 

The species status of An. perplexens remained a source of contention for many 

years. Some specialists believed An. perplexens represented a valid species, whereas 

others considered this entity to represent a morphological variant of An. punctipennis 

(Bellamy 1956). Kreutzer and Kitzmiller (1971a, 1971b) conducted hybridization 

experiments that revealed sufficient differences in the polytene chromosomes and 

offspring viability to validate the specific status of An perplexens. SEM· studies of egg 

morphology subsequently revealed minor morphological differences that could be used to 

distinguish An. perplexens from An punctipennis (Linley and Kaiser 1994). Anopheles 

perplexens is known from locations scattered throughout the eastern USA, as far north as 

Ohio and New York (Figure 1.15) (Darsie and Ward 2005). Larvae of An. perplexens 
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Figure 1.13. Geographic distribution of Anopheles walkeri in North America. Shaded 
area represents known range (adapted from Darsie and Ward 2005). 

Figure 1.14. Geographic distribution of Anopheles occidentalis in North America. 
Diamonds represent the known collection locations (adapted from Darsie and Ward 2005; 
Sames et al. 2007). 
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are found mainly in alvar-type habitats, particularly the limestone sinkholes in Georgia 

(Bellamy 1956). However, many specimens with wing scale patterns similar to those of 

An. perplexens have been collected throughout Ontario during WNv surveillance. 

Although this character is known to be variable (Fritz et al. 1991), sufficient numbers 

were found with An. perplexens-type wing scale patterns to suggest the possibility that 

this species occurs in southern Ontario. 

1.7.3. Anopheles smaragdinus Reinert 1997 
Anopheles quadrimaculatus Say 1824 

Anopheles smaragdinus is a recently described species in the An. 

quadrimaculatus sibling species complex (Reinert et al. 1997). An integrated approach 

using multiple types of data, including morphological (egg, larva, and adult), cytological 

(polytene X chromosome), molecular (ITS2 sequence), genetic (hybridization), 

biochemical (allozyme), and ecological data, revealed the presence of five previously 

cryptic species in this complex (Reinert et al. 1997). Anopheles quadrimaculatus s.s. 

occurs throughout the entire range of the species complex (Figure 1.12), and the 

distributions of three members ofthe complex (An. diluvialus, An. inundatus, and An. 

maverlius) are restricted to southern states such as Florida, Louisiana, and Texas (Levine 

et al. 2004). The distribution of An. smaragdinus, however, is predicted to be almost as 

broad as that of An. quadrimaculatus s.s., occurring as far north as Pennsylvania, Ohio, 

and Indiana (Figure 1.16) (Levine et al. 2004). Larval and adult morphological 

characters used to distinguish the members of the An. quadrimaculatus species complex 

involve the number and branching of setae, and identification of An. quadrimaculatus s.l. 

specimens collected through the current study using the key of Darsie and Ward (2005) 

suggested the presence of An. smaragdinus in southern Ontario. 
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Figure 1.15. Geographic distribution of Anopheles perplexens in North America. 
Diamonds represent known collection locations (adapted from Darsie and Ward 2005). 

Figure 1.16. Estimated distribution of Anopheles smaragdinus in North America. Shaded 
area represents its predicted range (adapted from Levine et al. 2004). 
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1.8. Status of knowledge in Canada 

The greatest source of information regarding the mosquito species of Canada 

remains the work of Wood et al. (1979), the result of years of collection and 

morphological identification of specimens collected throughout the country. Wood et al. 

(1979) include anatomical illustrations, genus and species level keys, descriptions of 

species, distribution maps, and bionomic information. The largest collection of Canadian 

specimens is held in the Canadian National Collection of Insects (CNCI), Agriculture and 

Agri-Foods Canada, Ottawa, Ontario. While this collection is in the process of being 

added to a database at the CNCI, it is currently not publicly available online. 

With the introduction of West Nile virus to Canada, first detected in southern 

Ontario in 2001 (Drebot et al. 2003), mosquito surveillance programs were first 

developed in that province, and then established in other provinces as the disease spread. 

While most of these programs conducted surveillance from June to September, with 

identification of specimens to species level, they were conducted by pesticide and 

consulting companies and the results are unpublished. We recently completed a Species 

at Risk assessment of the mosquito species of Canada for the Canadian Wildlife Service 

and the Committee on the Status of Endangered Wildlife in Canada (Thielman and 

Hunter 2010), for which mosquito data were readily provided by some, but not all, 

provinces and/or territories. 

The Species at Risk project required the assignment of general status ranks at both 

the national and provinciallterritoriallevels for the mosquito species of Canada and it 

revealed a considerable lack of knowledge of mosquito biodiversity within Canada, 

particularly with respect to abundance levels. Although many provincial/territorial 

species lists were available, very few contained reference to abundance levels other than 

general descriptions such as "rare", "common", or "abundant". We compared what was 

known up to and including Wood et al. (1979), with any literature published after 1979, 

and with recent data obtained through West Nile virus surveillance (if available). This 

resulted in many new provincial/territorial species records and revealed some apparent 

losses of species from provinces and territories as well. The results of this study can be 

found on the Wild Species website (www.wildspecies.ca) (Thielman and Hunter 2010). 
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To date, there has been no attempt to use molecular data to investigate cryptic 

species of the genus Anopheles in Canada using either material in existing collections or 

newly collected material. Four of the seven species known from Canada have been 

examined using molecular data to assess the ability of the barcoding region of the COl 

gene to identify mosquito species in Canada (Cywinska et al. 2006). However, the study 

included only 4-15 specimens per species, included only Ontario material, and did not 

reveal the presence of cryptic species within the taxa examined (i.e., An. earlei, An. 

punctipennis, An. quadrimaculatus, and An. walkeri) (Cywinska et al. 2006). 

1.9. Summary 

In summary, Anopheles mosquitoes are potential vectors of disease and many 

anopheline species are now recognized as complexes of isomorphic species based on 

ecological, molecular, and other types of data. Members of species complexes often 

differ in ecological or behavioural traits, such as larval habitat or host-feeding 

associations, which influence their ability to transmit pathogens. This, in turn, influences 

whether they represent a risk to human and animal health. Investigations of the 

systematics of Anopheles mosquitoes are common wherever malaria occurs, but little is 

known about species that occur near the northern limits of their ranges in Canada, despite 

their potential for transmitting diseases to humans and animals. 

Therefore, my research· objective was to examine Anopheles mosquitoes using 

morphological, molecular, and ecological data for evidence of cryptic species within 

anopheline collections from across Canada. 
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Chapter Two: 
Morphological Analyses of Anopheles mosquitoes from Canada 

2.1. Introduction 

Classical taxonomic investigations of Anopheles mosquitoes were based primarily 

on morphology, which remained the main source of data for the identification of cryptic 

species until the development of cytological and biochemical methods in the mid-20th 

century (Collins and Paskewitz 1996). Early studies of systematics were often 

complemented with ecological, behavioural, and hybridization data, such as larval habitat 

association (fresh versus brackish water), host feeding preference (birds versus humans), 

and mating incompatibility (offspring sterility). In recent years, molecular methods of 

species identification based on mitochondrial (mtDNA) and ribosomal (rDNA) DNA 

sequence data have contributed substantially to the identification of cryptic Anopheles 

species and are now commonly used to infer phylogenetic relationships (Caterino et al 

2000; for examples see Wilkerson et al. 2005; Foley et a12007; Paredes-Esquivel et al. 

2009). However, morphological phylogenies provide the foundation upon which studies 

of evolutionary relationships at and above the species level should be based (Harbach 

2004). 

Species are often distinguishable in all life stages and sexes (egg, larva, pupa, 

male and female), but due to a high degree of morphological conservatism within the 

genus Anopheles, some species can only be recognized based on some life stages (White 

1977; Krzywinski and Besansky 2003). This is particularly true in the case of cryptic 

species, which are by definition difficult, if not impossible, to identify based on 

morphology alone (White 1977). For example, An. perplexens is morphologically similar 

to An. punctipennis (Bellamy 1956), and while morphological characters for identifying 

adults and larvae are known to be variable and unreliable (Bellamy 1956; Fritz et al. 

1991), these two species can be distinguished reliably on the basis of egg morphology 

(Linley and Kaiser 1994). Brief descriptions of the life stages of Anopheles mosquitoes 

are provided herein to introduce the morphological component of my thesis research. 
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2.1.1. Egg Morphology 

The taxonomic importance of egg morphology in mosquitoes was first recognized 

in the early 1900s when microscopic examination of mosquito eggs revealed 

morphological differences that could be used to identify species of Anopheles mosquitoes 

(White 1977). Egg characters were used in the elucidation of many species complexes 

and are often among the first morphological changes apparent in recently derived species 

(Kitzmiller 1959; White 1977). Horsfall (1970) described methods for the examination 

of egg morphology using scanning electron microscopy (SEM), which allowed minor 

structural differences between species to be detected. Egg structures commonly used to 

differentiate anopheline species include deck width, basal tubercles, float configuration, 

and chorionic patterning (Kitzmiller 1959; White 1977) (Figure 2.1). 

Previous SEM studies of the eggs of the two species suspected to occur in 

Canada, An. perplexens and An. smaragdinus, revealed structural differences that can be 

used to distinguish them from their cryptic counterparts (i.e., An. punctipennis and An. 

quadrimaculatus s.s., respectively). The eggs of sibling species An. punctipennis and An. 

perplexens differ in width of the deck (Linley and Kaiser 1994) (Figure 2.1). SEM 

analysis of the eggs of members of the An. quadrimaculatus species complex also 

revealed minor structural differences, which can be used to distinguish An. smaragdinus 

and An. quadrimaculatus s.s. (Linley et al. 1993) (Figure 2.2). 

Although not examined under SEM, the eggs of other anopheline species present 

in Canada have been described or illustrated in early publications (1900-1960s), which 

are listed in a recent bibliography of anopheline egg descriptions (Reinert 2010). An 

SEM is often required to visualize minor morphological differences that are characteristic 

of the eggs of closely related species, but because such facilities are expensive and often 

inaccessible, this method of identification is not common. Nonetheless, egg morphology 

represents a reliable method for accurately distinguishing An. perplexens and An. 

smaragdinus from morphologically similar native species (An. punctipennis and An~ 

quadrimaculatus s.s., respectively) (Linley et al. 1993; Linley and Kaiser 1994), and has 

potential to discover other previously unrecognized cryptic species. An SEM was 
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Figure 2.1. Eggs of Anopheles punctipennis and Anopheles perplexens (ventral view) 
(Figure 2 from Linley and Kaiser 1994). Deck is wide and slipper-shaped in An. 
punctipennis, with chorionic pattern not visible between deck and float (a). Deck is 
narrow in An. perplexens, with chorionic pattern of plastron cells visible between deck 
and float (b). 

Figure 2.2. Eggs of Anopheles quadrimaculatus s.s. and Anopheles smaragdinus (ventral 
view) (Figure 18 from Reinert et al. 1997). The number of posterior basal tubercles 
(indicated by circles) is five in eggs of An. smaragdinus (a) and seven in An. 
quadrimaculatus (b). 
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accessible at Brock University and eggs from wild-caught females were examined for 

evidence of cryptic species in this study. 

2.1.2. Larval Morphology 

Larval morphology is often used to identify anopheline species and has been 

described in great detail, including the complete chaetotaxy (i.e., description of all setae) 

(White 1977; Wood et al. 1979). Setae are hair-like projections that arise from sockets in 

the body surface, or integument (Wood et al. 1979). Identification keys require fourth 

instar larvae because diagnostic characters are unreliable in immature larvae. Thus, it is 

often easier to allow early instars to mature than to attempt identification directly (Wood 

et al. 1979). Species-level identification of mosquito larvae is based on the arrangement 

and numbers of setal branches. The larval body is divided into three main segments, 

including the head, thorax, and abdomen (Figure 1.3)~ over which setae are arranged 

symmetrically in pairs. 

Anopheles larvae differ from those of other mosquito genera that are present in 

Canada (except Uranotaenia) by the length of the respiratory siphon, which is greatly 

reduced in Anopheles, causing larvae to rest horizontal beneath the water's surface rather 

than hanging vertically from an elongated siphon (Figure 2.3). For setal nomenclature 

and detailed morphological descriptions of the Anopheles larvae in Canada, see Wood et 

al. (1979), and for descriptions of species previously known only from the USA, see 

Carpenter and LaCasse (1955). The types of setae commonly used in the identification of 

Canadian anophelines include: simple, branched, palmate, and plumose (Figure 2.4). 

When identifying An. earlei larvae, additional accessory tergal plates (ATPs) (i.e., 

round, darkly-pigmented spots) were observed on abdominal segments III-VII, which 

were located below the single ATPpresent on the abdominal tergites of all anopheline 

larvae (Figure 2.5). Additional ATPs are the diagnostic character for identification of An. 

freebomi in both available identification keys for the mosquitoes of Canada and North 

America, north of Mexico (Wood et al. 1979; Darsie and Ward 2005). Additional ATPs 

are not mentioned or included in any of the couplets or illustrations of An. earlei 
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l.5mm 1.5mm 

Figure 2.3. Respiratory siphon of Anopheles and Aedes larvae (lateral view). Circles 
indicate the reduced respiratory siphon of Anopheles larvae (a) and the elongated siphon 
of Aedes larvae .(b). 

Figure 2.4. Common types of setae in Anopheles larvae (dorsal view), indicated by 
circles, including: a) simple, b) branched, c) palmate, and d) plumose. 
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specimens in either key. However, Hampton and Lawson (1967) clearly show 3 pairs of 

ATPs on the dorsal surface of abdominal segments IV-VI in their illustrations of both An. 

earlei and An.freeborni larvae. Illustrations of abdominal segment IV in Pratt (1952) 

indicate their occurrence in both species, and in An. occidentalis and An. aztecus as well. 

An. earlei, An. freeborni, An. occidentalis, and An. aztecus are all members of the An. 

maculipennis complex (White 1978), which includes about nine additional isomorphic 

species in the Pale arctic region (Porter and Collins 1996). Since An. earlei is broadly 

distributed in the Nearctic region (Figure 1.9), the possibility of New World cryptic 

species must also be considered. Accordingly, morphological analyses included 

geographic comparisons of additional ATPs among An. earlei larvae collected from 

across Canada. 

In addition, because cryptic species that are suspected to be in Canada (An. 

occidentalis, An. perplexens and An. smaragdinus) can sometimes be distinguished from 

native cryptic species (i.e., An. earlei, An. punctipennis, and An. quadrimaculatus s.s., 

respectively) based on minor morphological differences in the larval stage, these 

characters were examined in larvae collected from various regions across their ranges. 

Detailed descriptions of these morphological characters are provided in section 2.1.4. 

Cryptic Species Potentially Occurring in Canada. 

2.1.3. Adult Morphology 

The morphology of adult mosquitoes has been thoroughly studied due to their 

importance as potential vectors of disease (see Chapter One). Anopheles adults differ 

from those of other mosquito genera in the structure of male genitalia and female palpi 

(White 1977; Wood et al. 1979). The thorax and abdomen of adult anophe1ines have 

numerous setae, but are almost completely devoid of scales and the palpi of Anopheles 

females are elongated (Figure 2.6). Although species-level identification of most male 

mosquitoes requires dissection and slide mounting of the internal portions of the 

genitalia, males of the anophelines present in Canada be identified based on the same 

external characters used for females (Wood et af. 1979). The characters used most often 

in the identification of Anopheles adults include presence or absence of dark-scaled spots 
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middorsal ATP 
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Figure 2.5. Additional accessory tergal plates (ATPs) inAn..freeborni and An. earlei 
larvae (dorsal view). All Anopheles larvae have a single ATP located mid-dorsally on 
each tergite. All An..freeborni larvae, and some An. earlei larvae, have additional ATPs 
located below the single A TP on tergites III-VI. 
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Figure 2.6. Morphology of Anopheles and Aedes adult females (lateral view). Anopheles 
females have elongated palpi (a), with thorax and abdomen without scales (b). Female 
mosquitoes of most other genera have reduced palpi (c), with scales covering thorax and 
abdomen (d). 
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on the wings (fonned by aggregations of scales near bifurcations of wing veins), as well 

as scale patterns on the leg and palpus (entirely dark-coloured scaled or with pale-scaled 

bands). 

As in the larval stage, the minor morphological differences used to distinguish 

cryptic species that potentially occur in Canada are described below, and were examined 

in adults to quantify the variation present. 

2.1.4. Cryptic Species Potentially Occurring in Canada 

In addition to the known species from Canada (An. barberi, An. earlei, An. 

freebomi, An. punctipennis, An, quadrimaculatus s.l., An. walkeri, and recently An. 

crucians s.l.), some anopheline species are suspected to occur in Canada. These include 

An. occidentalis in western Canada, and An. perplexens and An. smaragdinus in southern 

Ontario (see Chapter One for a description of these species and their potential to occur in 

Canada). These potentially occurring cryptic species can sometimes be distinguished 

from native species based on minor morphological characters, so detailed morphological 

analyses of larval and adult specimens were conducted to quantify the level of variation 

in diagnostic characters. 

Authors of early studies involving Anopheles mosquitoes in northwestern North 

America mistakenly reported An. occidentalis from British Columbia (Rempel 1950) or 

throughout North America (Pratt 1952). However, detailed examination ofthe specimens 

in question by Wood et al. (1979) revealed that the central portion of wing vein R2+R3 

was devoid of scales only on the upper side of the wing, as in An. earlei. Wood et al. 

(1979) hypothesize that, since the wings are transparent and scales on the lower side can 

be seen when viewed from above, early authors mistook them for scales on the dorsal 

surface of wing vein R2+R3, as in An. occidentalis. In Darsie and Ward (2005), the 

distinction between the two species is described as An. earlei with numerous erect scales 

on the dorsal surface of wing vein R2+R3 and decumbent (lying flat) scales on the ventral 

side ofR2+R3 which are not visible from dorsal aspect, and, in An. occidentalis, wing 

vein R2+R3 is usually bare on dorsal surface with decumbent scales on ventral surface 
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that are visible from dorsal aspect. To date there are no confirmed records of An. 

occidentalis from Canada (Wood et al. 1979; Belton 1983). 

In the larval stage, morphological differences between An. occidentalis and An. 

earlei are more obvious. The larvae of An. occidentalis are easily separated from those of 

An. earlei based on head setae 2-C, which are simple in An. occidentalis and forked in the 

distal half in An. earlei (Figure 2.7). However, using the key of Darsie and Ward (2005), 

An. occidentalis and An. perplexens larvae are distinguishable based only on collection 

location, with An. occidentalis present in the west and An. perplexens in the east. Both 

species have clypeal setae 2-C simple, with alveoli (cuticular pits from which setae 

originate) closer together than the diameter of one alveolus and setae 2-IV,V usually 

single. 

Anopheles perplexens was suspected to be present in Canada based on 

morphological identification of adult females collected in Ontario during 2005-2009 field 

seasons, as well as through WNv mosquito surveillance at Brock University from 2001-

2005. Pale-scaled wing spots are present in the adults of both species, but the size ofthe 

spot is usually reduced in An. perplexens (Figure 2;8). Darsie and Ward (2005) describe 

this difference as the subcostal pale spot (SCP) 0.5 or more the length of preapical dark 

spot (PAD) in An. punctipennis, and with SCP much reduced in An. perplexens, usually 

0.33 or less the length of the PAD. This description does not take into account specimens 

with intermediate SCP lengths (e.g., SCP 0.4 the length of PAD). In a study of wing spot 

patterns in An. punctipennis and An. perplexens, Fritz et al. (1991) found that most 

specimens had SCP lengths of between 0.33 to 0.5 the length of the PAD. Accordingly, 

the identity of such specimens was questionable, and the character was considered 

unreliable for distinguishing the two species. 

Larvae of An. perplexens and An. punctipennis can sometimes be distinguished by 

the number of branches of abdominal setae 2-IV and V, which are branched in An. 

punctipennis (usually 2-3) and usually single in An. perplexens (Figure 2.9); however, 

this character is known to be unreliable as An. perplexens larvae sometimes have setae 2-

IV, V branched, as in An. punctipennis (Darsie and Ward 2005). Therefore, examination 

oflarval setae 2-IV, V in An. punctipennis specimens was conducted andthe number of 

branches determined to quantify variation among specimens collected from Canada. 
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Figure 2.7. Larval head setae 2-C of An. earlei and An. occidentalis (dorsal view). Circles 
indicate setae 2-C, which are forked in the distal half in An. earlei ( a), and simple in An. 
occidentalis (b). (Note: the image in (b) is of An. punctipennis, which have setae 2-C 
simple as well, to show how setae 2-C would look in An. occidentalis). 

I I 

1.5mm 1.Smm 

Figure 2.8. Wing morphology of An. perplexens and An. punctipennis (dorsal view). The 
subcostal pale spot (SCP) along the anterior margin of the wing (costa and adjacent 
veins) is usually greatly reduced in An. perplexens, i.e., 0.33 or less the length of the 
preapical dark spot (PAD) (a). The SCP is usually larger in An. punctipennis, i.e., 0.5 or 
more the length of PAD (b). 
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The last species warranting in-depth analysis is An. quadrimaculatus s.l., now 

recognized as a complex of five sibling species in the southern USA: An. 

quadrimaculatus s.s., An. smaragdinus, An. maverlius, An. diluvialus, and An. inundatus 

(Reinert et al. 1997). Anopheles quadrimaculatus s.s. is the most broadly distributed 

member of the complex, extending north into southern Ontario and Quebec in Canada 

(Figure 1.12) (Levine et al. 2004). While most members ofthis complex have limited 

distributions in the southeastern US, An. smaragdinus has a broader range, predicted to 

extend as far north as southern New York and Pennsylvania, Ohio, and Indiana (Figure 

1.16) (Levine et al. 2004), not far from the Canadian border. 

Keys to the adult and larval members of the An. quadrimaculatus species complex 

are based on minor morphological differences, such as the number of setae arising from 

the thoracic scutal fossa and the combined number of branches of outer clypeal setae 3-C 

(Figure 2.10) (Reinert et al. 1997). An. quadrimaculatus s.s. adult females have 21 or 

more setae arising from the scutal fossa, while those of An. smaragdinus have 20 setae or 

less (Reinert et al. 1997). The combined number of branches of both head setae2-C of 

An. quadrimaculatus s.s. is >64 (bunched distally), whereas those of An. smaragdinus 

total <63 (widely spaced distally) (Darsie and Ward 2005). Therefore, these and other 

distinguishing characters were examined in An. quadrimaculatus s.l. specimens collected 

from southern Ontario for evidence that An. smaragdinus occurs in Canada. 

2.2. Methods 

2.2.1. Mosquito Collections 

Adult and larval mosquitoes were collected from widely separated locations 

across Canada to obtain specimens from as much of their range as possible. Collections 

were conducted in four representative regions including the West (British Columbia), 

Central (Ontario), North (Radisson, Quebec), and East (Newfoundland), and from four 

main and four incidental regions in Ontario including WindsorlEssex County, the Niagara 

Region, Manitoulin Island, and Ottawa, as well as Algonquin Provincial Park, the Bruce 

Peninsula, and Long Point Provincial Park (Figures 2.11, 2.12 and 2.13). 
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Figure 2.9. Larval abdominal setae 2-IV,V of An. perplexens and An. punctipennis (dorsal 
view). Circles indicate setae 2-IV,V with 2-3 branches in An. punctipennis (a) and are 
single in An. perplexens (b). (Note: the image in (b) is of An. quadrimaculatus, but is 
included to show what setae 2-IV,V would look like in An. perplexens.) 

Figure 2.10. Characters used in discrimination of An. quadrimaculatus s.s. and An. 
smaragdinus (dorsal view). Adults are distinguishable based on the number of setae 
arising from the scutal fossa (a), and larvae based on the combined number of branches of 
setae 3-C, visible above and extending past the labral brushes (b). 
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Figure 2.11. Four main Anopheles collection regions in Canada. The open circles 
indicate general collection locations. Site name and abbreviations listed in Appendix I. 

Figure 2.12. Four main and four incidental Anopheles collection locations in Ontario. 
Large, light grey circles represent regions from which multiple collections were made in 
two or more years. Small, light grey circles represent regions from which few collections 
were made in one year only. Site name and abbreviations listed in Appendix I. 
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Figure 2.13 . Adult trapping and larval dipping collection sites during 2005-2009 field 
seasons, with main collecting regions including: British Columbia (a), northern Quebec 
(b), Long Point (c), Newfoundland (d), Niagara (e), Manitoulin Island (t), Ottawa (g), and 
Windsor (h). Circles represent larval dipping collections and squares adult trap or landing 
aspiration collections. Site names and abbreviations listed in Appendix I. 
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for examination on a regional scale. Extra sampling effort was made in southern Ontario 

because almost all species present in Canada occur in that region and it is near known 

collection locations of suspected cryptic species An. perplexens and An. smaragdinus. 

Sampling region abbreviations are listed in Appendix I, and collection data are given in 

Appendix II. 

Larvae were collected from the surface of standing water, in a wide variety of 

habitats (see Chapter Four), using standard larval dippers, a large white plastic tray, a 

very large pipette, and Whirlpak® sample bags (www.enasco.com). The dipper was 

skimmed across the water to collect larvae resting or feeding at the surface and the 

contents emptied into the plastic tray. Larvae were removed from the tray using the 

pipette, and placed into a Whirlpak® bag half-filled with water from the collection site 

plus small bits of vegetation and plant matter, which is sealed with air trapped inside the 

bag for transport to the lab. The bags were placed in a cooler containing cool water to 

absorb shock during transport and ensure survival to the lab. 

Larvae were returned to the lab live in Whirlpak® bags and placed into mosquito. 

breeders (Bioquip®, California, USA) with water from the collection site to allow 

development to fourth instar and adult stages (Figure 2.14). If insufficient food was 

collected with water from the collection site, larvae were fed small amounts of preferably 

plant-based fish food (e.g., Nutrafin® spirulina flakes), but sometimes fish-based fish 

food (e.g., Nutrafm® tropical fish flakes). Fish food was ground into a fine powder so 

that it would float on the water's surface for as long as possible, as larvae seemed to feed 

primarily at the water's surface. Samples were checked for predators, which were 

removed immediately if found. If water became foul, larvae were removed to 

dechlorinated tap water and fed fish food for the remainder of their larval development to 

the fourth instar stage. Emerging adult mosquitoes flew up into the adult mosquito 

chamber above the larval chamber (Fig. 2.14), and were provided with cotton dental 

wicks (Richmond Dental, North Carolina, USA) soaked in water and ~ 10% sucrose 

solutions, and allowed to survive for at least 24 hours to allow proper hardening of the 

integument. 

To preserve larvae for morphological analysis, fourth instars were removed from 

breeders using small, disposable plastic pipettes and placed into hot water (60-70°C) for 
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approximately one minute prior to placing into glass scintillation vials filled with 80% 

ethanol for long term storage. Hot water treatment was used to prevent larvae from 

darkening over time, making morphological identification more difficult (Wood et al. 

1979). However, this process is therefore not recommended because it destroys DNA 

that could otherwise be used for molecular analyses, and did not always prevent larvae 

from darkening. Larvae for molecular analyses were killed and preserved by placement 

directly into 95% ethanol. Adults reared from larvae were frozen at -20°C to kill and 

preserve them for long-term storage, a process that also sufficiently preserves the DNA 

for molecular studies. 

Adult mosquitoes were collected during the 2005-2009 field seasons from 

locations throughout Canada (Figures 2.11, 2.12, and 2.13) using CDC light traps 

(Bioquip®, California, USA) and by landing aspirations. CDC light traps use ultraviolet 

light combined with dry ice (which releases a stream of carbon dioxide). This attracts 

mosquitoes, which are sucked into a retaining container by a fan (Figure 2.15). Traps 

were set up before dusk and collected after dawn the following day. Collection 

containers were kept cool and moist in coolers with freezer packs and paper towels to 

prevent desiccation and damage during transport, then returned live to the lab. Trap 

contents were placed into a freezer at -20°C to kill and preserve the insects, which were 

later sorted on a chill table (to keep frozen and preserve DNA) to separate Anopheles 

mosquitoes from other mosquitoes and insects. Specimens were returned to the freezer 

and stored at -20°C for storage until prepared for molecular analysis. Landing aspiration 

collections involved the use of hand-held aspirators to collect adult female mosquitoes 

from humans or indoor resting sites. Similar to adults obtained by other methods, those 

collected by landing aspirations were frozen at -20°C to kill and preserve them for 

subsequent analyses. 

2.2.2. Species Identification 

Larval and adult mosquitoes were identified using the keys of Wood et al. (1979) 

and Darsie and Ward (2005) under magnification with a Leica MS5 dissecting 

microscope. A character matrix was created (Table 2.1) and used for the identification of 
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Figure 2.14. Mosquito breeders used to rear Anopheles larvae and adults. Larvae and 
pupae develop in the water in the lower chamber and adults fly up through a funnel­
shaped barrier to rest and feed in the upper chamber. 

dry ice cooler 

dome with UV 
light and fan 

mosquito 
collection 
chamber 

----'~ 

Figure 2.15. CDC light traps used to collect adult females mosquitoes. 

property and 
risk sign 
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Table 2.1. Character matrix for the identification of Anopheles larvae. Traits in bold 
represent diagnostic characters for species identification (Carpenter and LaCasse 1955; 
Wood et al. 1979; Darsie and Ward 2005). Species abbreviations: barb = An. barberi, erue = 
An. erucians s.I., earl=An. earlei,jree = An.jreeborni,perp = An.perplexens,pune = An. 
punetipennis, quad = An. quadrimaeulatus s./., and walk = An. walkeri. 

head 
clypeal thoracic abdominal "float setae additional 

setae 
5-C to 

setae seta setae O-IV hairs" 2-IVand tergal 

7-C 
2-C I-P andO-V I-II 2-V plates 

simple, 
long, flattened 

barb simple 
close 

aciculate in minute into branched no 
outer half leaflets 

short, well flattened 
more 

simple, than 
erue plumose 

close 
aciculate developed, into 

three 
no 

near apex branched leaflets 
branches 

weak, 

earl plumose 
forked, single, or 

minute 
hair-like 

branched sometimes 
close branched in branches 

outer half 
weak, 

flattened 
free plumose 

simple, single, or 
minute into branched yes 

close branched in 
outer half 

leaflets 

usually 
weak, 

partial to 
single 

quad plumose 
simple, single, or 

minute fully 
but may 

no 
far branched in be 

outer half 
palmate 

double or 
triple 

weak, 
flattened 

perp plumose 
simple, single, or 

minute into single no 
close branched in 

outer half 
leaflets 

weak, 
flattened 

plumose 
simple, single, or 

minute into 
double or 

pune 
close branched in triple 

no 

outer half 
leaflets 

close, strong with 

walk plumose 
aciculate 3-5 

minute 
partially 

single 
in outer branches palmate 

no 

half from base 
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questionable specimens since larval characters were sometimes difficult to ascertain. 

A subset of An. quadrimaculatus s.l. larvae and adults were identified using the 

key to members of the An. quadrimaculatus species complex (Darsie and Ward 2005). 

All An. earlei larvae were examined for the presence of extra accessory tergal plates to 

see if there were any geographic patterns that might indicate the presence of a cryptic 

species. All An. punctipennis larvae and adults were examined for traits that usually 

distinguish them from those of An. perplexens (i.e., state of setae 2-IV,V and size of pale­

coloured wing spot). 

2.2.3. Scanning electron microscopy of eggs 

Because the cryptic species suspected of being in Canada - An. perplexens and An. 

smaragdinus - can be reliably identified on the basis of egg morphology (Linley and 

Kaiser 1994; Linley et al. 1993), eggs obtained from adult females collected throughout 

the Niagara Region were examined using SEM. In studies of An. perplexens from 

Georgia and Florida, where that species is sympatric with An. punctipennis, the two 

species are known to inhabit different larval breeding grounds, with An. perplexens larvae 

occurring in the clear waters of limestone springs and An. punctipennis in other larval 

habitat types in the surrounding area (Bellamy 1956). Because many specimens collected 

in the Niagara region were identified as putative An. perplexens based on the size of 

subcostal pale spot, and because many limestone water habitats occur in Niagara, eggs 

from field-collected females were examined using SEM to detennine whether this species 

actually occurs in southern Ontario. 

Adult mosquitoes were collected throughout the Niagara region from near 

potential limestone larval habitats (such as old quarries and limestone springs) and 

returned live to the lab (methods as described above). Trap contents were then released 

into mosquito cages (30cm x 30cm x 30cm) and female Anopheles removed using a 

mouth aspirator to an empty mosquito cage. These females were later provided with a 

blood meal for egg development. In 2008, guinea pigs were restrained in wire cages 

using strips of Velcro and placed into mosquito cages for 5-20 minutes. The use of 

guinea pigs for provision of blood meals to mosquitoes was approved by the Brock 
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University Animal Care and Use Committee (Animal Use Project Proposal #08-02-02). 

However, because the guinea pigs appeared to undergo significant stress during the 

blood-feeding procedure, and since many had already begun to feed upon my arms in the 

field before they could be aspirated, wild-caught mosquitoes were allowed to feed on my 

arm during the 2009 field season. This is standard practice in many mosquito studies and 

WNv activity was monitored throughout the season to minimize potential health risk. 

Blood fed females were isolated into separate oviposition chambers, made using a 

mosquito breeder with the plastic cone barrier between upper and lower chambers 

removed to allow females access to the entire chamber. Each chamber contained a small 

white plastic dish containing one cotton dental wick soaked in water and another soaked 

with a 10% sucrose-solution (water and food source), as well as a small black plastic dish 

containing water (dechlorinated tap water or water from larval habitat) as an oviposition 

substrate. Egg batches (~1 0-1 00 eggs) were left for at least 24 hours for the cuticle to 

harden properly. Then, ~5-20 eggs from each batch were removed from the water's 

surface for SEM analysis using a utensil made by taping a few paintbrush bristles to the 

end of a small wooden applicator stick. 

To prepare eggs for scanning electron microscopy, two different methods were 

employed. The first, in 2008, was based on methods described by Linley and colleagues 

for the description of Anopheles eggs (Linley et al. 1993; Linley and Kaiser 1994), which 

involved fixation of eggs in Bouin's solution, then dehydration using increasing 

concentrations of ethanol (75%, 85%, 95%, and 100%), followed by critical point drying. 

Because a critical point dryer was not available at Brock University for this final step, a 

chemical treatment involving hexamethyldisilazane (HMDS) was used instead (Brown 

1993). The eggs were then carefully oriented onto a carbon adhesive tab placed onto an 

Aluminum SEM stub. A conductive coating of gold/palladium was applied using a 

Polaron SC500 Sputter Coater, and the stubs then placed into the SEM by the technician. 

Using a secondary electron scintillation detector and 15kV accelerating voltage, images 

were processed using ORION Digital Image grabbing software. 

Although the HMDS method has been used successfully to preserve small insects for 

SEM (Brown 1993), eggs became shriveled and/or brittle, which-rendered them 

unsuitable for analysis using SEM. Therefore, in an attempt to obtain scanning electron 
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micrographs of eggs of sufficiently high quality, I tried using "fresh" eggs. Eggs were 

removed from the oviposition dish 24 hours after oviposition, placed directly onto black 

adhesive on an SEM stub, and then coated with gold/palladium and digital images were 

taken. This method, which resulted in significantly higher quality images that were 

sufficient for morphological analysis, was used thereafter. 

2.2.4. Isofemale Progeny Broods (IPBs) 

During the course of obtaining eggs for examination using the SEM, all eggs from one 

female were isolated and, after some were removed for SEM analysis, the rest were 

allowed to hatch and reared through the larval, pupal, and adult stages. This procedure 

resulted in ~20-200 siblings in what are known as isofemale progeny broods (IPBs), 

which allow for the comparison of egg, larval, and adult morphology. Specimens reared 

from An. punctipennis IPBs, including those identified as An. perplexens, were also 

examined to quantify variation in both the larval and adult characters used to identify 

these species (as described in Darsie and Ward 2005). 

2.3. Results and Discussion 

All species previously known from Canada were collected during the course of 

study, except An. crucians s.l., which was recently introduced to southwestern Ontario 

and known from only a few specimens (Thielman and Hunter 2007). Considerable effort 

was made to recollect An. crucians s.l. near known collection sites in the Windsor region, 

but without success. Details about the number of specimens of each species collected and 

the geographic regions from where they were collected are provided in Appendix II. 

Analysis of ecological data associated with larval and adult collections is provided in 

Chapter Four. For consistency, the following results and discussion of species 

identifications and morphological analyses are organized alphabetically by species, 

similar to the approach used in the molecular (Chapter Three) and ecological (Chapter 

Four) analyses. 
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2.3.1. Anopheles barberi 

Both the larvae and adults of An. barberi are morphologically very distinct from 

the other Anopheles species in Canada. In general, the larvae are smaller and have darker 

pigmentation than other anophelines, with the posterior end of the abdomen and the entire 

head, including antennae, very darkly pigmented (Figure 2.16). Anopheles barberi larvae 

are easily distinguished from those of other Canadian anophelines by the form of the head 

setae 5-C to 7-C, which are short and simple in An. barberi, but longer and plumose in 

other anophelines (Figure 2.16). Furthermore, abdominal lateral setae 6-IV to 6-VI are 

plumose in An. barberi, but are branched from the base in other anopheline larvae (Wood 

et al. 1979). 

Adults of An. barberi are also easily distinguished from those of the other 

anophelines present in Canada. In general, they are smaller than other anophelines, and 

are the only species without a pattern of spots on their wings formed by aggregations of 

dark-coloured scales (Figure 2.17). In addition, scutal setae are dark, long, and erect in 

An. barberi, but are short, curved, and pale in other anopheline adults (Wood et al. 1979). 

These distinctive morphological traits, combined with the equally specific larval habitat 

of An. barberi (i.e., tree holes); make this species easy to identify. 

2.3.2. Anopheles crucians s.l. 

Although no specimens of An. crucians s.l. were collected during the 2005-2009 

field seasons, a description of their morphology is included for completeness. Members 

of the An. crucians species complex are assigned to the Punctipennis Group (Figure 1 ~6), 

and although An. crucians s.l. shares similar morphologies with other members of this 

group (i.e., An. punctipennis and An. perplexens), they can be distinguished in both the 

larval and adult stages. 

Larvae of An. crucians s.l. share several diagnostic characters with An. 

punctipennis and An. perplexens, but are distinguishable from these and other 

anophelines based on abdominal setae O-IV and O-V (Table 2.2), which are well 

developed with multiple branches in An. crucians s.l., but minute in other 
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Figure 2.16. Head setae 5C-7C of An. barberi and An. quadrimaculatus s.l. larvae (dorsal 
view). Circles indicate head setae 5C-7C, which are short, simple, and gold-coloured 
(like labral brushes) in An. barberi, making them very difficult to see (a). Setae 5C-7C 
are larger, plumose, and dark-coloured in other anophelines (e.g., An. quadrimaculatus) 
(b). 

a 1.Smm 1.5 Plm 

Figure 2.17. Wings of adult An. barberi and An. walkeri (dorsal view). An. barberi 
adults have dark-coloured wing scales distributed evenly along all wing veins (a), while 
those of other anophelines have wing scales aggregated at multiple vein bifurcations, 
forming a pattern dark spots on the wing, as in An. walkeri (b). 

53 



Canadian species (Figure 2.18a) (Darsie and Ward 2005). Like other members of the 

Punctipennis Group, adults of An. crucians s.l. also have pale-coloured 

scales on their wings. However, the pale-coloured wing spot does not include the 

anterior wing vein (Figure 2.18b), as in An. punctipennis and An. perplexens (Darsie and 

Ward 2005). Anopheles crucians s.l. adults also have pale-coloured scales at the distal 

ends of each palpomere, which results in palpi having pale-scaled bands along their 

length (Darsie and Ward 2005). The only other anopheline in Canada with pale-banded 

palpi is An. walkeri, which, unlike An. crucians s.l., has completely dark-scaled wings 

(Figure 2.17b). 

2.3.3. Anopheles earlei 

Anopheles earlei is the most widely distributed anopheline in Canada, occurring 

in almost every province. It is also easily distinguished from the other Canadian 

anopheline species in both the larval and adult stages. Larvae of An. earlei have clypeal 

setae 2-C forked in the distal half, a trait that distinguishes them from larvae of other 

anophelines (Figure 2. 19a). Anopheles earlei adults are distinct with a patch of copper­

coloured fringe scales at the apex of their otherwise dark-scaled, spotted wings (Figure 

2.19b). Adults of closely related An. occidentalis (currently known only from the USA) 

also have a patch of copper wing fringe scales, but they can be distinguished from An. 

earlei based on the dorsal surface of wing vein R2+R3 (described above) (Darsie and 

Ward 2005). Anopheles occidentalis was previously known from California and Oregon 

(Figure 1.14) (Darsie and Ward 2005), and has recently been found further north in the 

state of Washington (Sames et at. 2007). Therefore, all An. earlei adults collected from 

BC were re-examined for this trait. 

Of the five specimens that were available for examination, three had erect scales 

visible on the dorsal surface of wing vein R2+R3 as in An. earlei, one had that part of the 

wing curled and vein R2+R3 not visible, and one appeared to have decumbent instead of 

erect scales on the dorsal surface ofR2+R3. However, this particular specimen was used 

in molecular analyses, which conf'rrmed its initial identification as An. earlei. So, while 

there are no confirmed records of An. occidentalis from BC, this trait should be examined 
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O.5mm 1.Smm 

Figure 2.18. Distinguishing characters of An. crucians s.l. larvae and adults. Open circles 
indicate location of setae O-IV,V in (a), which are well developed with multiple branches 
in An. crucians s.l., but are minute, in other anophelines. Adults of An. crucians s.l. have 
pale-coloured wing spots, indicated in (b) by an open circle, but pale scales do not extend 
to the anterior costal and subcostal veins. 

1.5mm 

Figure 2.19. Distinguishing characters of An. earlei larvae and adults. Larvae have head 
setae 2-C forked in the outer half (a). Adults have copper-coloured fringe scales at the 
apex of the wing (b). 
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in An. earlei-type specimens collected from the province to detennine whether the range 

of An. occidentalis has expanded northward into British Columbia. 

Anopheles earlei larvae were examined for the presence of additional accessory 

tergal plates (ATPs) on the dorsal surface of abdominal tergites. Unlike An. freeborni, 

which have 8 additional ATPs arranged in symmetrical pairs on tergites III-VI, the 

number of additional ATPs varied among An. earlei specimens from I-lOon tergites III­

VII. A total of 136 An. earlei larvae were identified and the number of additional ATPs 

recorded for each specimen. Specimens with and without additional ATPs were present 

in most regions, except Niagara (all larvae without ATPs) and Newfoundland (all larvae 

with ATPs), but samples sizes were very low in both regions (n=3 and n=4, respectively) 

(Table 2.2). Of the four other regions (AL, BC, NO, and OT), additional ATPs were 

present in 50.0-76.5% of specimens from each region (Table 2.2). 

Overall, additional ATPs were present in 65.4% oflarvae examined, but the 

number of ATPs per specimen was highly variable (Table 2.2). Unlike An. freeborni, the 

number and arrangement of ATPs in An. earlei were not consistent; they could be present 

on any oftergites III to VII, were not necessarily located on adjacent tergites, and were 

not always arranged in symmetrical pairs (Figure 2.20). For example, a specimen with 6 

ATPs may have 3 pairs of ATPs on tergites IV-VI, 3 pairs on tergites IV, V, and VII, or 

with 2 ATPs on tergite IV, Ion tergite V, 1 on tergite VI, and 2 on tergite VII, etc. 

However, ATPs were only found on tergites III-VII, and none on tergites II or I. This is 

the first report of such non-symmetrical organization of ATPs in An. earlei, or any other 

anopheline species. 

There were no obvious patterns in the presence or absence of additional A TPs 

based on region of collection (i.e., specimens with and without ATPs were found in all 

regions with samples sizes greater than seven) or collection location (i.e., from the same 

larval dipping or adult trap collection). Therefore, this particular morphological trait does 

not appear to be indicative of a cryptic species within An. earlei in Canada. 
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Table 2.2. Number of additional accessory tergal plates present in An. earlei larvae. 
Region codes are listed in Appendix I. 

No. % % 
specImens ATPs ATPs 
examined 0 1-2 3-4 5-6 7-8 9-10 absent ,Qresent 

AL 17 4 1 1 5 6 0 23.5 76.5 
Be 8 4 0 2 0 1 1 50.0 50.0 
NF 4 0 1 1 0 2 0 0.0 100.0 
NI 3 3 0 0 0 0 0 100.0 0.0 
NO 88 32 14 8 10 13 11 36.4 63.6 
OT 16 4 3 1 1 5 2 25.0 75.0 

Total 136 47 19 13 16 27 14 

Figure 2.20. Possible arrangements of additional ATPs in An. earlei larvae. 
Examples of variable numbers of ATPs present in An. earlei larvae, indicated by open 
circles, including: one (a), six (b), and eight (c). ATPs were not always in organized in 
symmetrical pairs, sometimes with only one unsymmetrical ATP present per tergite (a). 
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2.3.4. Anophelesfreeborni 

The range of An. freeborni in Canada is relatively small, restricted to the southern 

interior of British Columbia (Figure 1.10), and morphological examination of larval and 

adult specimens collected did not reveal the presence of cryptic species. Anopheles 

freeborni larvae are easily distinguished from those of the other anopheline species 

present in Canada. They have two additional ATPs on segments IV-VII, which are 

considered diagnostic for this species in both available identification keys (Figure 2.21a) 

(Wood et al. 1979; Darsie and Ward 2005). Most specimens examined had the same 

spots on tergite III as well, for a total of 10 extra accessory tergal plates~ However, as 

mentioned in the section above, additional ATPs are also present in An. earlei, which is 

sympatric with An. freeborni in BC, though the two species differ in head setae 2-C, 

which is forked in the distal half in An. earlei (Figure 2.19a) and simple in An.freeborni 

(Figure 2.21b) (Wood et al. 1979; Darsie and Ward 2005). 

Anopheles freeborni adults are similar to those of An. quadrimaculatus s.I., with 

wings and palpi entirely dark-scaled, and aggregations of dark wing scales forming a 

pattern of spots (Figures 2.22a). Darsie and Ward (2005) include a minor morphological 

difference between these two species based on the shape of scales located at the base of 

the cubital wing vein, which are linear and truncate apically in An. freeborni (Figure 

2.22b), but are more oval-shaped and rounded apically in An. quadrimaculatus s.l. 

(Figure 2.28b). However, these two species are easily distinguished in Canada based on 

locality information as An. freeborni occurs in the west (Figure 1.10), whereas An. 

quadrimaculatus s.l. occurs in the east (Figure 1.12). 

2.3.5. Anopheles punctipennis 

Anopheles punctipennis is present in the southern parts of most provinces (Figure 

1.11), with the larvae more easily confused with those of other anophelines from Canada 

compared to the adults. The larval identification key of Wood et al. (1979) requires the 

use of mounted specimens and a compound microscope to visualize the difference in 
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Figure 2.21. Distinguishing characteristics of An. freeborni larvae. Circles indicate 
Abdominal tergites IV-VII have additional ATPs (a). Clypeal setae 2-C are simple (b). 

a 1.5mm 

Figure 2.22. Distinguishing characteristics of An. freeborni adults. Legs, palpi, and wings 
are entirely dark-scaled, wing with aggregations of scales at vein bifurcations, forming 
pattern of spots (a). Wings are similar to those of An. quadrimaculatus s.l., but can be 
distinguished by basal scales of the cubital vein, which are linear and truncate apically in 
An.freeborni (b), and more oval-shaped and rounded apically in An. quadrimaculatus s.l. 
(Figure 2.28b). 
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setae 2-C between An. punctipennis and An. walkeri, which are simple in An. 

punctipennis and aciculate near apex in An. walkeri (Figure 2.23). However, thoracic 

seta I-P is also distinctive in An. walkeri larvae (Darsie and Ward 2005), providing a 

reliable character that can be used to distinguish these two species without the aid of 

higher magnification (Figure 2.24). Therefore, this character has been incorporated into 

the character matrix designed to aid in the identification of questionable larval specimens 

(Table 2.1). 

Anopheles punctipennis adults are easily distinguished from most of the 

remaining Anopheles species present in Canada by the presence of pale scales on the 

wing that form a pattern of spots. Since the discovery of An. crucians s: I. in southern 

Ontario (Thielman and Hunter 2007), they are no longer the only species in Canada with 

pale-coloured wing scales. However, the main pale-coloured spot includes the costal 

vein in An. perplexens and An. punctipennis (Figure 2.8), but not in An. crucians s.l. 

(Figure 2. 1 8b). Furthermore, identification of this species is complicated by the presence 

of An. perplexens-type specimens in southern Ontario. While the character used to 

discriminate An. perplexens and An. punctipennis (i.e., SCP size; Figure 2.8) is not 

completely reliable (Bellamy 1956; Fritz et al. 1991), variation within this trait was 

quantified and analysed to determine if geographic patterns were present. 

Darsie and Ward (2005) describe the difference between the two species as the 

SCP 0.50 or more the length of PAD in An. punctipennis, and 0.33 or less the length of 

PAD in An. perplexens, which does not take into account intermediates, i.e., those with 

SCPs 0.34 to 0.49 the length of PADs. For the purpose of this study, adult anophelines 

were identified as An. punctipennis if the SCP was greater than 0.33 the length of the 

PAD, and as An. perplexens ifSCP was less than 0.33 the length ofthe PAD. 

In total, 135 of 1478 adults (9.1 %) reared from larval dipping collections were 

identified as An. perplexens (Table 2.3). Sample sizes were low in four ofthe incidental 

collection regions (AL, BP, FN, and HL) and are therefore excluded from the following 

discussion. The relative proportion of specimens identified as An. perplexens and An. 

punctipennis varied depending on the region of collection. The highest proportion of 

adults identified as An. perplexens was found in OT (14.7%) and the lowestin Be and 

WE (0%) (Table 2.3). In their type locality, An. perplexens larvae are specific to alvars, 
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Figure 2.23. Larval head setae 2-C of An. punctipennis and An. walkeri (dorsal view). 
Circles indicate setae 2-C, which originate close together in both An. walkeri and An. 
punctipennis (closer than the diameter of one alveolus), but the apices of2-C are 
aciculate in An. walkeri (a) and simple in An. punctipennis (b), a character not easily seen 
with a dissecting microscope. 

Figure 2.24. Larval thoracic setae 1-P of An. punctipennis and An. walkeri (dorsal view). 
Circles indicate setae 1-P, which are single in An. punctipennis (a), and well developed 
with 3-5 strong branches from base in An. walkeri (b). 
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bodies of water that form by seepage up through limestone (Bellamy 1956). Known 

alvars are located throughout NO and OT, and a number of alvars and alvar-type habitats 

were located in NI during the current study that were not recognized by the International 

Alvar Conservation Initiative (Reschke et al. 1999). In the five main regions in which An. 

punctipennis was found, An. perplexens-type adults were collected mainly from the 

regions where alvar habitats are known (NI, NO, and OT) (Reschke et al. 1999), which 

suggested that An. perplexens may be present in these areas (see Chapter Four). 

In addition to adults reared from field-collected larvae, larvae and adults were 

reared from eggs obtained from females collected in the Niagara region for egg 

morphology studies. Larvae were identified as An. punctipennis ifallsetae 2-IV,V had 

two or more branches, and An. perplexens if even one of setae 2-IV, V was single. Of 282 

larvae, 57 (20.2%) were identified as An. perplexens, as well as 89/509 (17.5%) of the 

adults (Table 2.4). A total of791 larvae and adults were obtained from the eggs of26 

females, 25 of which were identified as An. punctipennis and one as An. perplexens 

(Table 2.5). Four of the eggs batches (15.4%) produced only An. punctipennis offspring, 

most egg batches (84.6%) produced offspring identified as both species, and none 

produced only An. perplexens. In addition, a wide range of SCP ratios were observed 

within single IPBs that produced both types of offspring (Figure 2.25). These data 

suggest that the variation observed in this trait likely represents intraspecific 

morphological variation within An. punctipennis, and cannot confirm the presence of 

cryptic species An. perplexens in the Niagara region. However, due to the low number of 

IPBs obtained from An. perplexens females, results of morphological analyses are 

inconclusive. 

The large number of larvae and adults from regions where limestone larval 

habitats are present that were identified as An. perplexens based on the morphological 

characters suggested the potential presence of this species in southern Ontario (see 

Chapter Four). However, because both larval and adult morphology are known to be 

unreliable in the identification of this cryptic species, analyses of egg morphology (see 

below) and molecular data (see Chapter Three) were conducted to confirm the presence 

or absence of An. perplexens in southern Ontario. 
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Table 2.3. Relative proportion of specimens reared from larval dipping collections 
identified as An. punctipennis and An. perplexens using the key ofDarsie and Ward 
(2005). 

Region Total An. punctipennis An. perplexens 
n % n % 

AL 28 24 85.7 4 14.3 
BC 141 141 100.0 0 0.0 
BP 3 3 100.0 0 0.0 
FN 5 4 80.0 1 20.0 
HL 32 24 75.0 8 25.0 
NI 657 566 86.1 91 13.9 
NO 445 430 96.6 15 3.4 
OT 109 93 85.3 16 14.7 
WE 58 58 100.0 0 0.0 

Total 1478 1343 90.9 135 9.1 

Table 2.4. Relative proportions of larvae and adults reared from isofemale progeny 
broods that were identified as An. perplexens and An. punctipennis. Identifications of 
maternal females listed in Table 2.6. 

Total An. punctipennis An. perplexens 
n % n % 

Larvae 282 225 79.8 57 20.2 
Adults 509 420 82.5 89 17.5 
Total 791 645 81.5 146 18.5 

Figure 2.25. Wing pattern variability among three An. punctipennis siblings. Wide ranges 
in SCP lengths relative to the PADs were present among adult females reared from same 
the IPB, for example: 0.28 (a), 0.40 (b), and 0.67 (c). 
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Table 2.5. Identifications of An. punctipennis and An. perplexens-type females that 
produced IPBs, including SCP length and egg identifications (* indicates eggs with 
plastron visible between deck and float, but deck not as narrow as in An. perplexens). 

Code Parental Female SCP length EggID 

NI203-3 An. punctipennis 1.00 An. punctipennis 
NI216-3 An. punctipennis 1.00 An. punctipennis 

NI216-12 An. punctipennis 0.80 An. punctipennis 
NI216-10 An. punctipennis 0.80 An. punctipennis 
NI216-8 An. punctipennis 0.80 An. punctipennis 
NII09-1 An. punctipennis 0.80 An. punctipennis 
NI160-3 An. punctipennis 0.80 An. punctipennis 
NI203-S An. punctipennis 0.67 An. punctipennis 
NI203-7 An. punctipennis 0.67 An. punctipennis 

NI206-18 An. punctipennis 0.67 An. punctipennis 
NI206-2 An. punctipennis 0.67 An. punctipennis 
NI211-1 An. punctipennis 0.67 An. punctipennis 
NI203-6 An. punctipennis 0.57 An. punctipennis 
NI206-S An. punctipennis 0.S7 An. punctipennis 

NI206-13 An. punctipennis O.SO An. punctipennis * 
NI216-16 An. punctipennis 0.50 An. punctipennis 
NI216-13 An. punctipennis 0.44 An. punctipennis 
NI216-1S An. punctipennis 0.44 An. punctipennis 
NI1S1-S An. punctipennis 0.44 An. punctipennis 
NI177-2 An. punctipennis >0.40 An. punctipennis 
NI177-1 An. punctipennis >0.40 An. punctipennis 
NI211-4 An. punctipennis >0.40 An. punctipennis 

ALL LP-2 An. punctipennis 0.40 An. punctipennis 
NI136-1 An. punctipennis 0.40 An. punctipennis 
NI136-4 An. punctipennis 0.40 An. punctipennis 
NI216-7 An. perplexens 0.33 An. punctipennis * 
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2.3.6. Anopheles quadrimaculatus s.l. 

Until recently, An. quadrimaculatus s.l. was known as a single species in eastern 

North America from Texas and Florida to southern Ontario and Quebec (Figure 1.12). 

Anopheles quadrimaculatus s.l. is now recognized as a complex of five sibling species, 

An. diluvialus, An. inundatus, An. maverlius, An. smaragdinus, and An. quadrimaculatus 

s.s. (Reinert et al. 1997). However, because examination of the morphological structures 

used to distinguish the species of this complex required a considerable amount of time, 

only a subset of all An. quadrimaculatus s.l. specimens collected was identified to the 

species level. 

Larvae of An. quadrimaculatus s.l. are easily distinguished from those of all other 

anophelines present in Canada by c1ypeal setae 2-C, the bases of which are separated 

from each other by a distance greater than or equal to the diameter of the cuticular pits 

(also called alveoli) from which they originate in An. quadrimaculatus s.l., and by less 

than the diameter of one cuticular pit in all other species (Figure 2.26). In addition to 

setae 2-C, An. quadrimaculatus s.l. larvae can be distinguished from those of other 

anophelines based on abdominal setae I-II (known as "float hairs"), which are usually 

partially/fully palmate only in An. quadrimaculatus s.l. (pers. obs.) (Figure 2.27). Thus, 

this trait has been incorporated into the character matrix (Table 2.1). The float hairs in 

An. quadrimaculatus s.l. larvae appear to become more palmate as they progress through 

the fourth instar stage, i.e., they are barely palmate upon molting into the fourth instar and 

fully palmate before the final molt into the pupal stage. 

The adults An. quadrimaculatus s.l. have both wings and palpi entirely dark­

scaled, wings with aggregations of scales forming a pattern of spots (Figure 2.28a), 

characteristics shared only with An. freeborni, from which it is easily distinguished based 

on collection location (see above). However, they can also be separated based on the 

shape ofthe scales located at the base of the cubital wing vein, which are-oval-shaped and 

rounded apically in An. quadrimaculatus s.l. (Figure 2.28b). 

Because An. quadrimaculatus s.l. is now known as a complex of five sibling 

species in the USA, distinguishable based on minor morphological difference in the larval 

and adults stages (Figure 2.10), and the predicted range of sibling species An. 
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Figure 2.26. Alveoli of setae 2-C in An. quadrimaculatus s.l. and An. punctipennis (dorsal 
view). Circles indicate alveoli of setae 2-C, which are separated by a distance greater 
than the diameter of one alveolus in An. quadrimaculatus s.l. larvae, and separated by a 
distance less than the diameter of one alveolus in the larvae of all other anophelines 
present in Canada, as in An. punctipennis (b). 

Figure 2.27. Abdominal setae I-II of An. quadrimaculatus s.l. and An. walkeri larvae 
(dorsal view). Larvae of An. quadrimaculatus s.l. usually have abdominal setae I-II 
partially or fully palmate (a), unlike all other anophelines in Canada, with setae I-II 
flattened into leaflets or branched from base, as in An. walkeri (b). 
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smaragdinus approaches southern Ontario, the characters used to identify members of the 

complex were examined for evidence of cryptic species within this taxon in Canada. A 

subsample of larval (n=79) and adult female (n=160) An. quadrimaculatus s.l. specimens 

was identified to sibling species level using the key of Darsie and Ward (2005). 

Of79 An. quadrimaculatus s.l. larvae, most were identified as An. 

quadrimaculatus S.s., but a significant proportion were identified as An. smaragdinus, 

some as An. diluvialus, and one as An. maverlius (Table 2.6). The number of specimens 

identified as An. diluvialus and An. maverlius is relatively small, possibly representing 

abnormalities within An. quadrimaculatus s.s. However, the proportion of specimens 

identified as An. smaragdinus was much higher (~37%). Combined with its distribution 

predicted to approach the Canadian border (Figure 1.16), these data suggested the 

potential presence of this cryptic species in southern Ontario. 

Identification of 160 An. quadrimaculatus s.l. adult females to the sibling species 

level using the key of Darsie and Ward (2005) resulted in a similar pattern to that 

observed for An. quadrimaculatus s./larvae. Most specimens were identified as An. 

quadrimaculatus s.s. (72.5%), but other members of the sibling species complex were 

also identified, including An. smaragdinus (25.6%), An. diluvialus (1.3%), and An. 

inundatus (0.6%) (Table 2.7). The number of specimens identified as An. diluvialus and 

An. inundatus was small enough to be considered possible· examples of abnormalities 

within An. quadrimaculatus S.s., but the relatively high number of An. smaragdinus 

specimens, again, suggested the possible occurrence of this member of the An. 

quadrimaculatus sibling species complex in Canada. Therefore, alternative methods of 

identification, such as egg morphology (see below) or molecular data (see Chapter 

Three), were also conducted in an attempt to confirm the presence of this species in 

Canada. 

2.3.7. Anopheles walkeri 

In the larval stage, An. walkeri is easily confused with other anophelines using the 

key in Wood et al. (1979), as the character used to distinguish it from the remaining 

species usually requires slide mounting of specimens and examination using a compound 
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l~Smm 

Figure 2.28. Distinguishing characteristics of An. quadrimaculatus s.l. adults. Legs, palpi, 
and wings entirely dark-scaled, wing with a pattern of spot, similar to those of An. 
freeborni except for basal scales of the cubital vein, which are oval-shaped and rounded 
apically in An. quadrimaculatus s.l., indicated by the circle in (b), and more linear and 
truncate apically in An .freeborni (Figure 2.22b). 

Table 2.6. Number and relative proportion of An. quadrimaculatus s.l. sibling species 
(larvae) identified using the key of Darsie and Ward (2005). Specimens collected from 
southern Ontario, mainly in Niagara, but some from Ottawa and Windsor regions as well. 

Number % Total 
An. quadrimaculatus s.s. 42 53.2 

An. smara~dinus 29 36.7 
An. diluvialis 7 8.9 
An. maverlius I 1.3 
An. inundatus 0 0.0 

Total 79 
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microscope (i.e., abdominal setae O-IV and O-V with multiple branches and apex of 

clypeal seta 2-C aciculate). In particular, setae 2-C are minutely plumose at the apex in 

An. walkeri, but simple in An. punctipennis, which is sometimes visible with a dissecting 

microscope (Figure 2.23), but not usually. Therefore, it is difficult to distinguish these 

two species based only on setae 2-C. However, Darsie and Ward (2005) include another 

character which is useful in separating the larvae of An. walkeri from those of all other 

Canadian anophelines, i.e., seta I-P is well-developed with 3-5 branches in An. walkeri, 

and weak, single, or branched in outer half in all others (Figure 2.24). Thus, this 

character has also been included in the Anopheles larvae character matrix (Table 2.1). 

Adults of An. walkeri are easily distinguished from most other anopheline species 

that occur in Canada by narrow bands of pale scales present at the apices of the second to 

fifth palpomeres (Figure 2.29). Although the palpi of An. crucians also have pale­

coloured bands, they also have pale-coloured wing scales (Figure 2.18b), which are 

entirely dark-scaled in An. walkeri (Figure 2.17b). Overall, very few larvae of An. 

walkeri were collected for morphological analysis, and identification of adult males and 

females did not reveal any differences that might suggest the potential presence of cryptic 

species within this taxon in Canada. 

2.3.8. SEM Egg Data 

Egg morphology is often among the first morphological differences to be 

recognized when comparing specimens of closely related species, and can be used to 

distinguish suspected cryptic species, An. perplexens and An. smaragdinus, from 

isomorphic species known from Canada (An.punctipennis and An. quadrimaculatus s.s., 

respectively). Therefore, eggs were obtained from wild-caught females and examined 

using scanning electron microscopy. In 2008, a total of 67 blood-fed Anopheles females 

were obtained, and, of those, 39 either died before oviposition or resorbed their eggs. 

Resorption of eggs can occur in mosquitoes when a suitable oviposition site is not 

available (Clements 1992). Of the 28 egg batches (or IPBs) obtained, only half (n=14) 

resulted in SEM images of eggs of sufficient quality for analysis due to initial difficulty 

in preparing the eggs for SEM analysis. 
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Table 2.7. Number and relative proportion of An. quadrimaculatus s.l. sibling species 
(adults) identified using the key of Darsie and Ward (2005). Specimens collected from 
southern Ontario, mainly Niagara, but some from Ottawa and Windsor regions. 

NumberID % Total 
An. quadrimaculatus s.s. 116 72.5 

An. smaragdinus 41 25.6 
An. diluvialis 2 1.3 
An. maverlius 0 0.0 
An. inundatus 1 0.6 

Total 160 

a 1.0mm 1.Omm 

Figure 2.29. Palpi of An. walkeri and An. quadrimaculatus s.l. (lateral view). Apices of 
palpomeres 2-5 with pale scales in An. walkeri (a), while adults of other anophelines from 
Canada (except An. crucians s.l.) have uniformly dark-scaled palpi, as in An. 
quadrimaculatus s.l. (b). 
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The chemical method employed for egg preparation resulted in shriveled and 

brittle eggs that were too damaged to warrant examination with SEM, but eggs not 

subjected to fixation procedures resulted in much better quality images. While poor in 

quality, images that allowed species identification of the eggs were obtained for 7 egg 

batches that had been preserved using the chemical preservation method. However, the 

images of non-preserved eggs obtained for the other 7 egg batches were of much better 

quality, easily allowing identification to species, and sibling species in the case of An. 

quadrimaculatus s.l. specimens. 

In 2009, fewer blood-fed Anopheles females were collected (n=60), but a greater 

proportion of those (62% in 2009 versus 42% in 2008) successfully oviposited in the lab 

(n=37). Fresh eggs were used for SEM imaging for 26 IPBs in 2009, all but two of which 

resulted in good quality images that permitted identification of the eggs to the species 

level. 

Overall, SEM images were obtained from the eggs of 26 females identified 

morphologically as An. punctipennis and one as An. perplexens (Table 2.6). Although 

most An. punctipennis females had SCP ratios of 0.5 or more, similar to the results of 

Fritz et al. (1991),6 (23%) had intermediate SCP ratios, i.e., between 0.33 and 0.5. 

However, the eggs of all An. punctipennis IPBs obtained, as well as those of the female 

identified morphologically as An. perplexens (NI216-7), were identified as An. 

punctipennis (Table 2.6), with wide decks and plastron not visible between the deck and 

float (Figure 2.30a). There were two cases in which the plastron was slightly visible 

between the deck and float (Figure 2.30b), but not nearly as much as in An. perplexens 

(Fig. 2.30c), and decks were wider than in An. perplexens (Figures 2.30b and 2.30c). 

Although eggs from field-collected An. quadrimaculatus s.l. females were also to 

be examined by SEM for evidence of potential cryptic species An. smaragdinus, even 

fewer specimens were obtained. Atotal of34 blood-fed An. quadrimaculatus s.l. females 

were collected from NI, BP, and LP, and eggs obtained from ·15 of them. Good quality 

SEM images were obtained for a total of 11 IPBs, and most were identified as An. 

quadrimaculatus s.s. (Table 2.8). However, eggs of four IPBs could not be identified to 

sibling species level because the diagnostic character (i.e., basal tubercles) was not visible 

in the SEM images. Eggs were identified as An. quadrimaculatus s.s. if the number of 
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tubercles located at the anterior or posterior end totaled six or more, and as An. 

smaragdinus if five or less (Figure 2.31a). Sometimes eggs attached to SEM stubs on a 

slight angle, making counting of all the tubercles at either end impossible (Figure 2.31 b). 

Again, an insufficient number of An. quadrimaculatus s.l. IPBs was obtained for SEM 

analysis and, egg morphology could not, therefore, confirm the presence or absence of 

cryptic species An. smaragdinus in Canada. 

2.4. Conclusions and Summary 

To identify larval and adult Anopheles specimens, the identification key for North 

American mosquito species (Darsie and Ward 2005) was used instead of that for 

Canadian species (Wood et al. 1979), to ensure that species currently known only from 

the USA, and newly introduced An. crucians s.l., were not overlooked. Based on the 

morphological characters described in this key, many specimens were identified as An. 

perplexens and An. smaragdinus, suggesting their potential presence in Canada. 

All An. perplexens- and An. punctipennis-type specimens (those with pale wing 

scales that extend to the costa) were identified as either An. punctipennis or An. 

perplexens based on subcostal pale spot and preapical dark spot lengths. An. perplexens­

type females were collected from the three main regions in Ontario, which, interestingly, 

is where known alvars or alvar-type habitats exist, i.e. NI, OT and NO. An. perplexens­

type females were not obtained in the other two main collecting regions (WE and BC), 

despite similar sampling effort and sizes in these locations. The presence of alvars near 

collecting sites in BC was not determined, and only one is known from the WE area, but 

is located on Pelee Island, where very limited sampling was conducted only once. 
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Figure 2.30. Eggs of An. punctipennis and An. perplexens (ventral view). Plastron cells 
are not visible between deck and float in eggs of An. punctipennis (a), but they are visible 
between the deck and float in eggs of An. perplexens (c, Fig. 2 from Linley and Kaiser 
1994). The eggs of one female identified morphologically as An. perplexens had some 
plastron cells visible between the deck and the float (b), but not as much as in An. 
perplexens (c), and deck was wider, as in An. punctipennis (a). 

Table 2.8. Identifications of An. quadrimaculatus s.l. females that produced IPBs, 
including number of tubercles and egg identifications. 

Basal 
Code Parental Female Tubercles Egg Identification 

NI206-11 An. quadrimaculatus s.s. >6 An. quadrimaculatus s.s. 
NI206-3 An. quadrimaculatus s.s. ? An. quadrimaculatus s.l. 

NI206-17 An. quadrimaculatus s.s. ? An. quadrimaculatus s.l. 
NI206-7 An. quadrimaculatus s.s. ? An. quadrimaculatus s.l. 

NI216-14 An. quadrimaculatus s.s. >6 An. quadrimaculatus s.s. 
NI203-2 An. quadrimaculatus s.s. >6 An. quadrimaculatus s.s. 
NI206-1 An. quadrimaculatus s.s. >6 An. quadrimaculatus s.s. 
NI159-1 An. quadrimaculatus s.l. ? An. quadrimaculatus s.l. 
NI158-3 An. quadrimaculatus s.l. >6 An. quadrimaculatus s.s. 
NI158-2 An. quadrimaculatus s.l. >6 An. quadrimaculatus s.s. 
NI172-1 An. quadrimaculatus s.l. >6 An. quadrimaculatus s.s. 
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Figure 2.31. Eggs of An. quadrimaculatus s.s. (ventral view). An. quadrimaculatus s.s. 
and An. smaragdinus can be distinguished based on the number of posterior basal 
tubercles, which total six or more in An. quadrimaculatus s.s. (a) and five or less in An. 
smaragdinus. However, species identification of An. quadrimaculatus s.l. eggs was 
difficult when placed on SEM stubs at an angle (b), which prevented the counting of all 
tubercles. 
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With respect to An. quadrimaculatus s.l., and the potential presence of An. 

smaragdinus, specimens collected from southern Ontario were identified to the species 

level. Among both larvae and adults, few specimens were identified as the more 

southerly members of the complex (i.e. An. diluvialus, An. inundatus, andAn. maverlius), 

but a significant proportion was identified as An. smaragdinus, the sibling species whose 

range most closely approaches southern Ontario. 

Since both An. perplexens and An. smaragdinus can be reliably identified on the 

basis of egg morphology, SEM analysis of eggs obtained from females collected in 

southern Ontario was conducted for evidence of these or other cryptic species. 

Unfortunately, a sufficient sample size of eggs from An. perplexens- orAn. smaragdinus­

type females was not obtained, and the presence of these species in Canada based on 

morphological data could not be confirmed. 

In addition to An. punctipennis and An. quadrimaculatus s.l., detailed 

morphological examination for evidence of cryptic species was conducted for An. earlei 

as well. Many An. earlei larvae were observed with additional ATPs on abdominal 

tergites III-VII, the diagnostic character for An. freeborni in both available keys (Darsie 

and Ward 2005; Wood et al. 1979). Examination ofthis trait in An. earlei revealed high 

levels of variation, with approximately equal amounts without spots (0 additional ATPs), 

fully spotted (8 or more additional ATPs), or an intermediate number (1 to 7 additional 

ATPs), with no obvious geographic pattern. 

In addition to An. earlei and An. freeborni in Canada, additional ATPs are also 

present in other Nearctic members of the An. maculipennis complex, including An. 

occidentalis and An. aztecus (pratt 1952), as well as the Palearctic type species of the 

complex, An. maculipennis (Linton et al. 2003). However, the use of ATPs as a 

distinguishing character for the identification of An. freeborni larvae in both Wood et al. 

(1979) and Darsie and Ward (2005), with no mention of its occurrence in An. earlei 

larvae, may cause confusion for Canadian identifiers, particularly in British Columbia 

where both species occur. 

75 



In conclusion, morphological examination of larval and adult anophelines 

collected from across Canada revealed high levels of variation in some traits, suggesting 

the potential presence of cryptic species within some native taxa, and relative 

morphological uniformity in others. An. barberi, An. freebomi, and An. walkeri are all 

known from relatively smaller distributions in Canada, and within each species, no 

obvious morphological variations were observed. This suggests that An. barberi, An. 

freebomi, and An. walkeri likely represent single species throughout their range in 

Canada. 

However, larvae and adults of An. earlei, An. punctipennis, and An. 

quadrimaculatus s.l. exhibited high levels of morphological variation, suggesting that 

cryptic species An. perplexens, An. smaragdinus, or others might be present in Canada. 

Variation in the number of additional ATPs among An. earlei larvae collected from 

across Canada was quantified, and those with and without additional ATPs were collected 

from all main collection regions from where a sufficient number of specimens was 

collected for analysis. Whether this trait is indicative of a cryptic species within this 

taxon is unclear, but if so, it is likely due to ecological (e.g., larval habitat) differences as 

opposed to geographic location. 

Morphological variation among larvae and adults of An. punctipennis and An. 

quadrimaculatus s.l. suggested the potential presence of cryptic species An. perplexens 

and An. smaragdinus, respectively. While larval and adult characters for An. perplexens 

are known to be unreliable in some cases, so too are those described for An. smaragdinus, 

with features used in the ·larval and adults keys successfully distinguishing from 80-100% 

of specimens, depending on the charact~r and sibling species in question (Reinert et al. 

1997). Since egg morphology is a more reliable method of species identification in the 

case of An. punctipennis and An. perplexens, and is also useful for members of the An. 

quadrimaculatus sibling species complex, an attempt to examine the eggs of field­

collected specimens was made. Unfortunately, a sufficient number ofIPBs was not 

obtained from An. perplexens- and An. smaragdinus-type females to confirm their 

presence or absence in Canada. Because cryptic species can often be recognized based 

on other types of data, molecular (see Chapter Three) and ecological (see Chapter Four) 

data were also examined for evidence of cryptic anopheline species in Canada. 
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Chapter 3: Comparison of ribosomal and mitochondrial DNA 
in Anopheles (Diptera: Culicidae) mosquitoes from Canada 

3.1. Introduction to molecular systematics 

Anopheles mosquitoes are known for both strong morphological similarity among 

species, and pronounced morphological variation within species (Krzywinski and 

Besansky 2003). Isomorphic species complexes are common in Anopheles and the 

members of anopheline species complexes often differ in ecological or behavioural 

characteristics, which affect their ability to transmit disease (Collins and Paskewitz 

1996). The discovery that members of cryptic species complexes can differ in their 

ability to transmit disease has driven development of alternative methods for reliable 

identification of Anopheles species, particularly in regions where malaria is endemic 

(Krzywinski and Besansky 2003). Polytene chromosome studies have revealed species­

specific banding patterns that have been used successfully to elucidate the members of 

species complexes in many medically important groups of Anopheles mosquitoes (e.g., 

Frizzi 1947; Kreutzer and Kitzmiller 1971a; Coluzzi et al. 1977; Green and Baimai 1985; 

Foley and Bryan 1991; Ramirez and Desson 2000). However, this cytological technique 

has major limitations: a) it requires considerable expertise; b) not all Anopheles species 

have polytene chromosomes with reliable banding patterns; c) some species have been 

identified based on mating incompatibility that did not differ in chromosomal banding 

patterns (Collins and Paskewitz 1996); and d) it is applicable only to certain life stages 

and sexes (i.e., fourth instar larvae andlor gravid females). 

Advances in other types of genetic techniques during the first half of the 20th 

century led to the development of biochemical-based assays, such as the analysis of 

species-specific enzymes by gel electrophoresis, which remained widely used in insect 

systematics until the 1980s (Berlocher 1984). Since then, development of the polymerase 

chain reaction (PCR) method and automated sequencing to provide genomic DNA 

sequences for analysis has led to new techniques that can be used: a) to identify species; 

b) elucidate cryptic members of species complexes; c} examine population sn:ucture 

within species; and d) establish phylogenetic relationships (Caterino et al. 2000, Roe and 

Sperling 2007). Common molecular methods applied to the identification of mosquito 
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species include random amplified polymorphic DNA (RAPD), restriction fragment length 

polymorphism (RFLP), and PCR amplification and sequencing of genomic DNA 

(reviewed in Munstermann and Conn 1997; Walton et al. 1999b). 

RAPD uses multiple primers to randomly amplify sections of the genomic DNA 

(gDNA) followed by gel electrophoresis of the resulting DNA fragments to visualize 

differences among species, populations, etc. RFLP involves PCR amplification of gDNA 

followed by digestion with one or more restriction enzymes to cleave it into smaller DNA 

fragments, which are then run on a gel to detect species- or population-specific patterns. 

In recent decades, the use of PCR amplification and sequencing of specific DNA 

sequences for species identification and phylogenetic analysis has become the method of 

choice for many researchers and molecular markers are commonly used in studies of 

insect systematics (reviewed in Munstermann and Conn 1997; Walton et al. 1999b; 

Caterino et al. 2000; Krzywinski and Besansky 2003). 

Molecular methods for species identification are useful because they require a 

small amount oftemplate DNA, which permits retention of specimens for use in other 

types of analyses or to be kept as vouchers (Krzywinski and Besansky 2003). Unlike 

morphological and cytological methods, molecular methods are applicable to all sexes 

and life stages, which allows for the identification of isomorphic, immature and other 

difficult specimens. Through comparison of the nucleotide composition of certain genes 

or DNA sequences, differences among species, populations, and even individuals can be 

determined. Fairly long stretches of DNA (up to ~1000bp) are now easily sequenced, 

allowing nucleotide differences to be easily detected manually or using computer 

software programs, many of which are available online for free (e.g., MEGA, Clustal, 

BioEdit). While morphological identification is often the fastest and least expensive 

method of identifying many Anopheles species (Krzywinski and Besansky 2003), it 

requires taxonomic expertise and many species are difficult to identify based on 

morphology alone. Therefore, the use of molecular markers for identification at and 

below the species level has increased dramatically in the field of mosquito systematics 

(reviewed in Munstermann and Conn 1997; Walton et al. 1999b; Caterino et al. 2000; 

Krzywinski and Besansky 2003). 
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The primary molecular markers used to identify species and elucidate cryptic 

members of species complexes within Anophelinae include the mitochondrial genes 

(mtDNA) cytochrome c oxidase I and II (COl and COIl), as well as the nuclear ribosomal 

DNA (rDNA) internal transcribed spacer sequence 2 (ITS2). These regions are useful 

because they contain highly variable regions flanked by highly conserved regions for 

which universal primers have been designed to amplify and sequence the variable, and 

often species-specific, sequences located between them (Lunt et al. 1996; Collins and 

Paskewitz 1996). The members of many cryptic anopheline species complexes or groups 

are distinguishable based on one or more of these markers, such as the Anopheles 

barbirostris subgroup in southeast Asia (Paredes-Esquivel et al. 2009), the Anopheles 

gambiae species complex in Africa (paskewitz et al. 1993), the An. maculipennis group 

in Europe (Proft et al. 1999), and the Anopheles quadrimaculatus complex in 

southeastern North America (Cornel et al. 1996), all of which include major malaria 

vectors in the regions where they occur, except in North America where malaria has been 

eradicated since the 1950s (Zucker 1996). 

The mitochondrial DNA gene COl has been the focus of many investigations 

involving insect systematics including taxonomic, population and evolutionary studies 

(Lunt et al. 1996). Its potential for use as a species identification tool across a broad 

range of taxa (including Insecta) has been well established through the Barcoding of Life 

Project (Hebert et al. 2003a, Hebert et al. 2003b). In addition; different portions of the 

~ 1500bp COl gene have been used in phylogenetic analyses of various Anopheles species 

(Mitchell et al. 2002; Sallum et al. 2002; Foley et al. 2007; Paredes-Esquivel et al. 2009). 

However, analyses using rDNA sequences, particularly ITS2, have become the 

primary molecular markers used for studies involving the taxonomy and phylogenetics of 

anophelines since Collins and Paskewitz (1996) reviewed its use to differentiate among 

cryptic Anopheles species. Many cryptic members of Anopheles species complexes 

species have since been identified using ITS2, including the Anopheles dirus .complex in 

Thailand (yValton et al. 1999a), the Anopheles annularis group in southern Asia (Walton 

et al. 2007a), the Anopheles barbirostris subgroup in southeast Asia (Paredes-Esquivel et 

al. 2009), the Anopheles maculatus group in southeast Asia (Walton et al. 2007b), and 

the Anopheles maculipennis complex in Europe (Proft et al. 1999), to name just a few. In 
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North America, similar studies using ITS2 have elucidated the members of species 

complexes such as the Anopheles crucians (Wilkerson et al. 2004) and Anopheles 

quadrimaculatus (Cornel et al. 1996) complexes in the southeastern United States, and 

sibling species An. freeborni and Anopheles hermsi in the western US (Porter and Collins 

1991). Although dozens of studies have concentrated on the ITS2 sequences of more 

than 30 anopheline species, very few instances of intraspecific variation have been 

observed (but see Onyabe and Conn 1999; Wilkerson et a12004; Fairley et al. 2005; Li 

and Wilkerson 2007). 

While the use of COl and ITS2 for molecular analyses of Anopheles has 

dominated the literature over the past two decades, studies involving the use ofITS 1 are 

not common. However, ITSI sequences are known to vary extensively in both sequence 

and length (LaRue et al. 2009) and have been used successfully to identify cryptic species 

within other groups, including insects. Analysis of ITS 1 sequences in the jellyfish 

Aurelia aurita (Cnidaria, Scyphozoa) revealed the presence of cryptic species now 

recognized as members of a species complex that exhibit reproductive isolation despite a . 

lack of physical barriers to gene flow (Dawson and Jacobs 2001). Examination ofITSI 

sequences within species of biting flies (Culicoidesspp.) revealed species-specific 

differences, as well as evidence that one population of Culicoides impunctatus was 

genetically more similar to a related species, Culicoides imicola (Ritchie et al. 2004). A 

study of the ITSI rDNA in 15 species from five genera of black flies found high levels of 

intraspecific variation in this region, indicating its potential for population-level studies 

of Simuliium spp. (LaRue et al. 2009). 

Although few authors have examined ITS 1 sequences in mosquitoes, preliminary 

results indicate that, unlike the ITS2 region, ITS 1 contains considerable intraspecific 

and/or intraindividual variation (Wesson et al. 1992; Paskewitz et al. 1993; Fairley et al. 

2005; Bower et al. 2008, Bower et al. 2009), making its analysis more complicated. The 

ITS 1 sequences of Anopheles species whose ranges extend into Canada, or related 

Pale arctic members ofthe An. maculipennis complex, have not yet been published. 

For molecular data to be useful in taxonomic and phylogenetic comparisons 

across a wider range of taxa, and to be able to make sense of the vast amounts of 

molecular data being generated by research groups around the world, the need for 
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consistency in the type of sequence data obtained through molecular investigations is 

becoming increasingly apparent (Caterino et al. 2000). 

Therefore, for this thesis I chose COl and ITS2 (commonly used in investigations 

of anopheline systematics), as well as ITS 1 (potentially informative beyond the species 

level), as the molecular markers to examine Canadian anophelines. COl, ITS2, and ITS 1 

sequences from An. barberi, An. earlei, An. freeborni, An. punctipennis, An. 

quadrimaculatus s.l., and An. walkeri specimens collected from various geographic 

regions throughout their range in Canada were examined for evidence of cryptic species 

near the northern limits of these species' ranges. 

3.1.1. Mitochondrial COl 

Mitochondrial DNA are small, circular, extrachromosomal DNA molecules that 

are present in hundreds of copies inside mitochondria and, thus, are inherited from the 

female parent only. The mitochondrial genes COl and COIl are among the most widely 

used molecular markers for studies of insect taxonomy and phylogenetics, particularly 

COl (Lunt et al. 1996; Hebertet al. 2003a; Roe and Sperling 2007). The degree of 

sequence variation within these genes has proven useful for both genus- and species-level 

investigations (Simon et al. 1994). Features of COl that make it particularly suitable for 

such studies include: a) ease of isolation and high copy number, b) the close association 

of highly conserved and variable regions within the gene which allows universal primers 

to amplify and sequence the more variable parts of the COl gene across a wide range of 

insect taxa, and c) its large size which allows the sequencing of hundreds ofnucleotides 

for comparison (Lunt et al. 1996). In2003, Hebert and colleagues proposed a method for 

species identification that involved the amplification and sequencing of a standardized 

650bp portion of the COl, located at the 5/end ofthe gene (Figure 3.1), which they called 

the barcode region (Hebert et al. 2003a, Hebert et at. 2003b). This led to the 

development of the International Barcoding of Life Project (http://www.ibolproject.org), 

a global effort whose aim is to establish DNA barcodes for all species of life on earth and 

ultimately allow even non.,.taxonomic experts to identify species rapidly and accurately. 

The barcoding region of COl has since been used successfully to identify species in many 
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arthropod groups such as mayflies (Ball et al. 2005), spiders (Barret and Hebert 2005), 

and bees (Sheffield et al. 2009), as well as biting flies such as deer and horse flies 

(Cywinska et al. 20 I 0), black flies (Ilmonen et al. 2009; Rivera and Currie 2009), and 

mosquitoes (Cywinska et al. 2006). 

In addition to species identification, COl barcoding has also been used to 

elucidate cryptic members in some species complexes, including the butterfly Astraptes 

fulgerator (Hebert et al. 2004) and multiple tachinid fly species (Smith et al. 2007). 

While the barcoding region of COl has been used successfully to identify species and 

members of cryptic species complexes, others caution that there is no single 

diagnostically informative region within COl, and that other locations downstream from 

the barcoding region may even be better, depending on the particular group of insects 

being examined (Roe and Sperling 2007). 

In fact, recent studies have shown that other portions of CO I located in the 3' end 

of the gene may offer more phylogenetically informative characters than the barcoding 

region located at the 5' end of the gene (Figure 3.1), such as the cryptic mayfly Baetis 

rhodani species complex (Ephemeroptera, Baetidae) (Williams et al. 2006) and the black 

fly group Simulium vernum (Ilmonen et al. 2009). A recent study of An. punctipennis 

specimens collected from various geographical locations throughout Vermont showed 

that the last 450bp atthe 3' end ofthe COl gene was informative at the population level 

(Fairley et al. 2000). 

Cywinska et al. (2006) examined the COl barcodes from 37 species of mosquitoes 

in Canada and established their ability to distinguish species identified based on previous 

morphological work, including five of the six Anopheles species known to occur in 

Canada based on morphological characters at that time. This study included specimens 

collected mainly from Ontario, but many species have much broader distribution ranges, 

including two species whose ranges extend from coast to coast, An. earlei and An. 

punctipennis. 

Therefore, although some studies using COl have included Anopheles species 

whose ranges extend into Canada, the data are limited primarily to the barcoding region 

of COl and to specimens collected from Ontario. In their examination of the full COl and 

COIl sequences from a wide variety of insect species (including two Anopheles species), 
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Roe and Sperling (2007) recommend maximizing sequence length to improve the 

probability of including an informative region within the chosen sequence. Therefore, in 

the current study, the larger ~800bp fragment located at the 5' end of the gene was 

selected as one of three DNA sequences to be examined for evidence of cryptic species 

within anophelines collected from across Canada. 

3.1.2. RibosomalITS2 and ITS1 

The chromosomal complement of Anopheles mosquitoes consists of 3 pairs of 

chromosomes (2n=6): the X!Y (sex differentiating) chromosomes, and two (autosomal) 

chromosomes, termed chromosomes 2 and 3 (Beckingham 1982). The highly conserved 

ribosomal genes, responsible for the formation of ribosomes, are located in 

heterochromatic regions of the X and Y chromosomes called the nucleolar organizers 

(NORs) (Marchi and Pili 1994). These rDNA genes are organized into hundreds of 

repeating units, each consisting of an external transcribed spacer (ETS) and three 

transcribed rDNA subunits (18S, 5.8S, and 28S) separated by two transcribed spacer 

sequences (lTSI and ITS2), with each repeating unit separated by a highly variable non­

transcribed spacer sequence called the intergenic spacer (IGS) (Beach et al. 1989) (Figure 

3.2). 

The rDNA genes produce rRNA molecules that are involved in the formation of 

ribosomes and, due to functional constraints, are highly conserved even among distantly 

related organisms (Hillis and Dixon 1991). Apart from some short homologous domains 

involved in rRNA processing (Hillis and Dixon 1991; Wesson et al. 1992), the internal 

transcribed spacers are not functionally constrained and, thus, evolve more rapidly, and 

can be used to distinguish among even closely related species (Paskewitz and Collins 

1996). The highly conserved 18S, 5.8S and 28S genes sequences have allowed the 

design of universal primers to amplify the highly variable ITS 1 and ITS2 sequences 

between them (Porter and Collin 1991). 

ITS2 has become the most widely used molecular marker in taxonomic and 

phylogenetic studies of Anopheles mosquitoes since Porter and Collins (1991) published 
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650bp 
barcode 

~1500bp COl 

Figure 3.1. Schematic diagram ofmtDNA genes COl and COIl. The ~650bp barcode 

region is located at the 5' end of the COl gene, and the 806bp region used in the current 

study at the 3' end. Locations of universal primers binding sites (A -forward primer; 

-reverse primer) are shown (adapted from Roe and Sperling 2007). 
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18S IT.Sl 5.88 ITS2 28S IGS 

Figure 3.2. Schematic diagram ofrDNA subunits and spacer sequences. Highly variable 

ITSI and ITS2 regions are flanked by highly conserved 18S, 5.8S, and 28S rDNA 

subunits (adapted from Hillis and Dixon 1991). 

B 
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the primers that amplified species-specific ITS2 sequences of two isomorphic anopheline 

species (for examples see Paskewitz et al. 1993; Cornel et al. 1996; Marinucci et al. 

1999; Hackett et al. 2000; Walton et al. 2007b). In 1996, Collins and Paskewitz 

reviewed the use of ITS2 to differentiate cryptic Anopheles species and outlined several 

factors that make ITS2 a useful marker for such studies, such as the short length 

«1000bp) of most sequences (which makes amplification and sequencing 

straightforward), and lower level of ITS2 sequence variation within species than between 

them. In the past two decades, many studies of Anopheles mosquitoes have used ITS2 to 

describe cryptic species, propose phylogenies, and develop PCR assays for molecular 

identification of isomorphic species (for examples see Fritz et al. 1994, Hackett et al 

2000, Kampen 2005, Linton et al. 2003, Malafronte et al. 2007, Marinucci et al. 1999, 

Proft et al. 1999, Walton et al. 1999, Walton et al. 2007a, Walton et al. 2007b). 

Studies of North American anophelines have used ITS2 data to elucidate cryptic 

members of species complexes, but they used specimens collected only from more 

southern locations within the USA (Porter and Collins 1991; Cornel et al. 1996; 

Wilkerson et aL 2004). Porter and Collins (1991) described species-diagnostic 

differences in the ITS2 sequences of two morphologically indistinguishable species, An. 

freebomi and An. hermsi, from California. These same primers were later used to 

elucidate the cryptic members of two species complexes in the southeastern United 

States, the An. quadrimaculatus complex (Cornel et al. 1996), and the An. crucians 

complex (Wilkerson et al. 2004). Therefore, ITS2 was selected as the second ofthree 

molecular markers to be examined in the current study for evidence of cryptic species 

within anophelines collected from across Canada. 

The other internal rDNA transcribed spacer sequence, ITS1, has not been as well 

examined, especially within Anopheles. In their analysis of ITS 1 sequences in the 

mosquito Aedes aegypti, Wesson et al. (1992) showed that both intraspecific and 

intragenomic variation were present in this species, indicating that ITS I varies not only 

among individuals but within them as well. Similar studies have revealed intragenomic 

variation in ITS 1 sequences within some members of the African An. gambiae complex 

(paskewitz et al. 1993), as well as in Australian species An.farauti (Bower et al. 2008) 

and the An. punctulatus group (Bower et al. 2009). Within the An. gambiae complex, 
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multiple ITSI spacer lengths were prevalent in An. merus and An. melas (up to 14 

variants each), due to varying numbers in a 250bp internal repeat, which results in ITS 1 

lengths ranging from 1.8 to 5.5kb and 1.25 to 4.5kb, respectively (Paskewitz et al. 1993). 

Australian species An. farauti and members of the An. punctulatus group revealed similar 

patterns of ITS 1 intraspecific and intragenomic variability due to complex patterns of 

repeating subunits, from small 21bp repeats to large ~360bp repeats, which result in 

multiple spacer lengths (Bower et al. 2008, Bower et al. 2009). Therefore, although ITS 1 

sequences appear to be longer and more complex than those of ITS2 within Anopheles, 

variation in ITSI sequences may provide cryptic species-level information not possible 

using COlor ITS2. Therefore, ITS 1 was chosen as the third molecular marker to be 

examined for evidence of cryptic species within the Anopheles species whose ranges 

include Canada. 

3.1.3. Canadian anophelines 

Detailed descriptions of the seven species previously known from Canada based 

on morphological data (Wood et al. 1979; Thielman and Hunter 2007) (i.e., An. barberi, 

An. crucians, An. earlei, An. freeborni, An. punctipennis, An. quadrimaculatus, and An. 

walkeri) were provided in Chapter One, as well as other species whose ranges could 

potentially extend into Canada (i.e., An. occidentalis, An. perplexens, and An. 

smaragdinus). Since Anopheles mosquitoes are potential vectors of pathogens of medical 

and veterinary importance, and represent a risk to both human and animal health, accurate 

identification at and below species level is essential for mosquito surveillance and control 

programs to be successful. Anopheles specimens from Canada have not yet been 

included in any systematics or phylogenetic analyses using molecular data, except for 

COl barcoding of specimens from Ontario (Cywinska et al. 2006). 

Therefore, the objective of this study was to characterize the ITS2, ITS1, and 3' 

800bp COl regions of anopheline specimens collected from locations across Canada and 

to examine the resulting sequences for molecular evidence of cryptic species here at the 

northern limits of their ranges. 
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3.2. Materials and Methods 

3.2.1. Mosquito collections and identification 

Anopheline larvae and adults were collected from May until October during the 

2005-2009 field seasons from a variety oflocations throughout Canada (Figures 2.11, 

2.12, and 2.13). Methods for the collection, rearing, and preservation oflarval and adult 

specimens were described in Chapter Two. Larvae and adults were identified 

morphologically to species using the keys of Wood et al. (1979) and Darsie and Ward 

(2005). Specimens used in molecular analyses, and their associated collection data (e.g., 

species identification, date of collection, and collection location) are listed in Appendix 

III. 

3.2.2. Specimen preparation and DNA extractions 

DNA was extracted from single mosquitoes. To prepare larval mosquitoes, the 

head and abdomen of each larva were separated from the thorax using a clean, sterile 

scalpel blade and placed in a 2mL cryogenic vial filled with 95% ethanol to retain for 

morphological verification of molecular species identification. The thorax was either 

placed in a separate vial of 95% ethanol for use in future molecular studies or placed 

directly into the lysis buffer solution (Lysis T) of the GeneElute™ Mammalian Genomic 

DNA Extraction Kit (Sigma-Aldrich, St. Louis, MO, USA) and used immediately in the 

DNA extraction procedure. This DNA extraction kit was known to work well for 

mosquitoes (A. Cywinska, pers. comm.). This method of specimen preparation worked 

well for Anopheles larvae as most diagnostic characters are located on the head and 

abdomen, and a large amount of genomic (gDNA) for use in molecular analyses is 

extracted from the thorax. 

To prepare adult specimens for molecular analyses, mosquitoes were removed 

from freezer and three legs (including as much of the coxae as possible) were removed 

from the rest of the mosquito using clean, sterile forceps and either placed into a 

cryogenic vial with 95% ethanol for future use or placed directly into the tissue lysis 
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solution of the GeneElute™ DNA extraction kit and used immediately in the DNA 

extraction procedure. 

The gDNA from adult legs or larval thoraces was eluted into 30/-lL-40/-lL of the 

Sigma GeneElute™ Elution Solution (lOmM Tris-HCl. 0.5mM EDTA, pH 9.0) and 

stored at 4°C for use in PCR reactions within one week, or frozen at -20°C for long term 

storage and future use. 

3.2.3. Primers and peR Conditions 

PCR reactions were prepared the same for all DNA sequences to be amplified 

(i.e., COl, ITS2, and ITS1) (Table 3.1). The same volumes of reagents were used for all 

PCR reactions, but the volumes of gDNA and molecular grade water varied depending on 

the source and age of the gDNA. Extractions from larval thoraces resulted in greater 

amounts of gDNA compared to those from three adult legs, so less gDNA was required in 

PCR reactions when from larvae (4.0/-lL) than from adults (5.0/-lL). Also, gDNA samples 

stored for long periods (one year or more) tended to decrease in quality over time, so 

more gDNA was required for PCR reactions involving older samples (5.0-6.0/-lL). As all 

PCR reactions were carried out in a total volume of25/-lL, the volume of water used in 

each reaction was adjusted accordingly. To amplify ~800bp partial COl sequences, the 

primers Cl-J-2l95 (Simon et al. 1994) and UEAlO (Lunt et al; 1996) were used (Table 

3.2). PCR conditions for COl reactions were as follows: 95°C for 2min (initial 

denaturation step), followed by 35 cycles of: 95°C for 30s, 51°C for 45s, 72°C for lmin, 

then a final extension step at 72°C for 10min. These primers successfully amplified the 

~800bp COl region successfully in all specimens examined. 

To amplify the ITS2 region, the primers ITS2F and ITS2R (Wilkerson et al. 2004) 

were used (sequences listed in Table 3.2). PCR conditions were as follows: 95°C for 

2min (initial denaturation step), followed by 40 cycles of: 95°C for 30s, 61°C for 30s, 

72°C for Imin, then a fmal extension step at 72°C for lOmin. The ITS2F and ITS2R 

primers resulted in single bands from ~300-400bp for all species examined, except An. 
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earlei. Anopheles earlei produced single but much larger (~800bp) ITS2 PCR products 

than all other species examined in this study. 

Table 3.1. Volumes and concentrations of solutions used in preparation of PCR reactions 
for amplification of COl, ITS2 and ITSI sequences. 

a) peR Master Mix 

lOX Thermopol II Buffer! 
50mMMgS04 
10mM Forward Primer 
10mM Reverse Primer 
10mMdNTPs2 

Tag polymerase3 

Master Mix 

b) peR reactions 

Master Mix = 4.7~1 

= 2.30~1 
= 1.30~1 
= 0.25~1 
= 0.25~1 
= 0.30~1 
= 0.301JI 
= 4.70J.1I 

Sample gDNA 4 
= 4.0-6.0/!1 

Sterile H20s = 14.3-16.3IJI 
Total volume = 25.0J.1I 

110X Thermopol II (Mg-free) Buffer: 10mM KCI, 10mM (NH4)2S04, 20mM Tris-HCI, 
0.1 % Triton X-I00, pH 8.8 at 25°C (New England BioLabs) 
2 dNTPs: 100mM dATP, dCTP, dGTP, and dTTP (GE Healthcare Canada) 
3 Taq polymerase: 5000U/ml (New England BioLabs) 
4 volume of DNA varied depending on source (larva/adult) and age of the gDNA 
5 volume of H20 adjusted for total volume of 25.0~1 
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The same primers used to amplify ITS2 fragments were used successfully for 

sequencing of the resulting fragments in all species examined, again except An. earlei. 

The ITS2F primer successfully sequenced the first ~350bp of the ITS2 sequence until the 

appearance of a GA dinucleotide repeat, and then the sequence quality becomes too poor 

to generate a reliable sequence. The ITS2R primer successfully amplified the ITS2 

fragment of An. earlei, but could not generate a reliable reverse sequence to include in 

analysis. Therefore, two new primers were designed based on An. freeborni ITS2 

sequences (a close relative of An. earlei; both species belong to the Maculipennis Group), 

slightly internal to the binding location oflTS2R (i.e., ITS2earlR2a and ITS2earlR2b, 

Table 3.2). 

Both ITS2earlR2a and ITS2earlR2b primers sequenced the first ~200bp in the 

reverse direction better than the ITS2R, and the GA repeat that interferes with the 

forward sequencing reaction was visible in the reverse reaction, which allowed the first 

~318bp of the forward sequence to be combined with the last ~450bp for a total sequence 

length of about~ 780bp. However, the sequence quality of the last ~450bpwas often still 

very poor, due to a series of runs and dinucleotide repeats in this region. Therefore, the 

3l8bp portion located near the 5' end of the 800bp sequence (the only fully reliable 

section) was used in analyses of An. earlei ITS2 sequences. 

To amplify the ITS 1 region, two sets of primers were designed based on a 

combination of sequences obtained both from this study and from Genbank. The first 

forward ITSl primer (ITS IF) was based on the 18S sequence of An. quadrimaculatus 

from Genbank (accession number A Y988423)and the reverse, complementary sequence 

for the forward ITS2 primer (ITS2F, located within the 5.8S subunit) was used for the 

ITS 1 reverse primer (ITS lR). These primers successfully amplified single bands from 

An. quadrimaculatus and An. walkeri specimens, but no bands were produced for all 

other species tested (An. barberi, An. earlei and An. punctipennis). Therefore, the An. 

quadrimaculatus and An. walkeri ITS 1 sequences obtained with the first set of ITS 1 

primers were aligned using ClustalW2 sequence alignment software 

(http://www.ebi.ac.uklTools/clustalw2) and new primers were selected where both 

sequences matched, slightly internal to the first pair (ITS 1 ver2F and ITSl ver2R). These 

primers successfully amplified the ITS 1 regions in all species examined, except An. 
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Table 3.2. List of primers used to amplify and sequence COl, ITS2, and ITSl sequences. (* length 
and ITSl fragments vary depending on species). 

Locus Sequel 
(Genome) Primers Sequence Reference Lengl 

COl CI-J-2195 5' TIGATTTTTTGGTCATCCAGAAGT 3' Simon et al. 1994 806 
(mtDNA) UEAlO 5' TCCAATGCACTAATCTGCCATATTA 3' Lunt et al. 1996 

ITS2 ITS2F 5' TGTGAACTGCAGGACACATGAA3' Wilkerson et al. 2004 300-80C 
(rDNA) ITS2R 5' ATGCTTAAATITAGGGGGTAGTC 3' Wilkerson et al. 2004 

ITS2earlR2a 5' CATGTACTCCCGCAGCTAGG3' this study 
ITS2ear1R2b 5' ATTTGAGGCCCATGTACTCCCG3' this study 

500· 
ITS 1 ITS1(18S)Fd 5' ATGTGGGTATCAGCGTGTCTCC 3' this study 4500b 

(rDNA) ITS 1 (5.8S)Rd 5' ATCGGTGTICTTCATGTGTCCTC3' this study 
ITSlver2F 5' GCAATGGTCCATACGAACTC3' this study 
ITSlver2R 5' TTGTGACGCGCATTTAGCT3' this study 



barberi, the only species that belongs to the Plumbeus Group instead the Maculipennis 

Group (Figure 1.6), and thus may contain sufficient nucleotide differences in the 18S 

and/or 5.8S primer binding sites to go unrecognized by ITS 1 ver2F, ITS2ver2R, Of both. 

3.2.4. PCR products and Sequencing 

PCR products were stored at 4°C while subsamples of each PCR reaction were 

separated using gel electrophoresis to ensure successful amplification of the desired 

sequence. A 4f.!L aliquot from each 25f.!L PCR reaction was combined with 4f.!L of 3X 

or 6X Loading Dye (Fermentas Canada, Inc) and run on a 1-2% agarose gel containing 

0.5-1.0f.!L ethidium bromide at ~ 105 volts for about 30min (COl) or 1.5hrs (ITS2 and 

ITS1). For each row of samples on the gel, 1-3 lanes of appropriate DNA ladder were 

included to determine the size ofPCR fragments: COl - PCR Sizer (lOO-I,OOObp); ITS2 

and ITSl- High Ranger (300-1O,000bp) or Full Ranger (l00-5,000bp) (all from Norgen 

Biotek Corporation, Inc., St. Catharines, Ontario, Canada). Bands were visualized using 

UV light and images of the gels were obtained to determine the size of PCR products 

based on the bands of known size in lanes containing DNA ladders. 

For PCR reactions that produced single bands of expected sizes for the molecular 

marker used, the remaining ~20f.!L ofunpurified PCR products were sent for purification 

and direct sequencing to Genome Quebec at the McGill University Innovation Centre in 

Montreal, Quebec. 

3.2.5. Consensus sequence determination 

All PCR products were sequenced in both directions using the same forward and 

reverse primers for sequencing that were used to amplify the fragment, except for the 

ITS2 sequences of An. earlei, for which species-specific primers for sequencing were 

designed (see above). Electropherograms were downloaded from the Genome Quebec 

website and examined using the DNA sequence editing program Four Peaks version 1.7.2 

(A. Griekspoor and Tom Groothuis, mekentosj.com). Those with strong, clear signals 

and few to no questionable base calls were exported as text files and copied into a Word 
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document. Forward and reverse sequences for each specimen were aligned using the 

sequence alignment program, ClustalW2 (www.ebi.ac.uklTools/clustalw2/index.html). 

and any differences between the forward and reverse sequences were analyzed and edited 

only if a reliable nucleotide could be determined for that location using at least one of the 

original electropherograms. 

In general, most consensus sequences (final sequence after forward and reverse 

sequences were aligned and the ends had been shortened to the nearest reliable 

nucleotide) were established using the first half of the reverse sequence and the second 

half of the forward sequence. Some sequences were poorer in quality and required 

careful editing throughout the entire length of sequence using the Clustal alignment and 

original e1ectropherograms. Once all consensus sequences for a given molecular marker 

were determined, they were aligned using ClustalW2 to determine common start and stop 

points for each sequence (to allow comparisons both within and between species). The 

start and stop points selected were the first and last nucleotides in common among all 

species for a particular marker (to maximize the number ofnucleotides available for 

comparison). 

3.2.6. Data Analyses 

COl sequences were aligned and analyzed using the molecular evolutionary 

genetic analysis software program MEGA version 4.0 (Tamura et al. 2007). Nucleotide 

compositions of each sequence were generated and the GC content calculated. Sequence 

divergences were determined using the Kimura two-parameter (K2P) · distance model 

(Kimura 1980). Neighbour-joining (NJ) trees were built with the K2P model, with 

pairwise deletion of missing data and inclusion of all codon positions and substitution 

type, and with branch support assessed by bootstrapping with 500 replicates. A Bironella 

gracilis COl sequence, obtained from Genbank (Accession number AF417725.1), and a 

Bironella hollandi ITS2 sequence (EF619445.1) were used as outgroup species. ITS2 

and ITSI sequences were also analysed manually, using ClustalW2, and MEGA 4.0. 
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3.3. Results 

3.3.1. COl 

A total of224 COl sequences were obtained for analysis, each 806bp in length 

(specimens summarized by species and collection location in Table 3.3). COl sequences 

had a strong A+T bias in all species examined (average ~70% for all codons and species), 

with the average GC content ranging from 29.1 % in An. earlei and An. punctipennis to 

30.8% in An. walkeri (Table 3.4). 

Nucleotide differences among samples identified as An. punctipennis and An. 

perplexens were present, but they did not correspond to morphological identifications of 

specimens. The same was true for specimens identified as either An. quadrimaculatus s.s. 

An. quadrimaculatus s.l., or An. smaragdinus. However, original species names (based 

on morphology) were kept the same to reflect the initial morphological identification of 

specimens, and to facilitate comparison of sequences from each morphological type. 

Levels of intraspecific variation were very low in all species examined, except An. 

punctipennis and An. walkeri. Average pairwise sequence divergences ranged from 0.0% 

(An. freebomi) to 0.9% (An. punctipennis including those identified as An. perplexens), 

but were much higher (4.6%) in An. walkeri (Table 3.5). Since morphological 

identifications of suspected cryptic species did not correspond to distinct clusters based 

on molecular results, they were grouped together with their respective isomorphic native 

counterparts (i.e., An. punctipennis and An. quadrimaculatus s.s.) for all remaining 

analyses. 

Anopheles barberi COl 

All 16 An. barberi specimens were collected from the same woodlot in Niagara 

Falls, Ontario, despite effort to collect this species from other locations within their 

known range, including Point Pelee National Park in Leamington, ON (Smith and 

Trimble 1973) and Perth, ON (Wood et al. 1979). Intraspecific sequence divergence 
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Table 3.3. Number of specimens for each species from each collection region for which 
COl sequences were obtained. Region codes listed in Appendix I. 

WE NO OT 
An. barberi 

!----, 

An. earlei 
-~ ... ------.. -- ---t---t---+-

An. freeborni 
r----_A_n_ .. perplexens 
_~_'!:.: l!unctipennis 

~~~,:_~L~{!,~::~.,!,aC:_l!{'!~.~~ .... ~ ... ~. + ...... . 
_ !i:!!.::-s"!:aragdinus I 

An. walkeri ' 
Total 

AL HL BpTTotall 
16 

8 40 
30 

Table 3.4. Average base composition (over all codons) of COl for each species examined, 
including combined GC content. 

T C A G GC% 
An. barberi 39.5 15.5 31.2 13.9 29.4 
An. earlei 38.4 14.9 32.4 14.2 29.1 

An. freeborni 38.3 15.2 32.3 14.1 29.3 
An. perplexens 38.1 15.2 32.8 14 29.2 

An. punctipennis 38.1 15.1 32.8 14 29.1 
An. quadrimaculatus s.l. 37.8 15.9 31.7 14.6 30.5 

An. smaragdinus 37.8 15.9 31.8 14.5 30.4 
An. walkeri 38.6 15.9 30.6 14.9 30.8 

Average 38.3 15.5 32 14.3 29.7 
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among the 16 specimens was very low, ranging from 0.0-0.4% with a mean of 0.1 %, and 

with seven haplotypes and 7/806 variable sites (Table 3.5). Neighbour-joining (NJ) 

analysis did not reveal any significant clusters (Figure 3.3). 

Anopheles earle; CO] 

A total of 40 An. earlei sequences were obtained from specimens collected from a 

wide variety of locations across Canada, including British Columbia, Manitoulin Island 

(ON), Radisson (QC), and Newfoundland (NF), among others (Table 3.3). K.2P sequence 

divergence ranged from 0-0.6% with an average of 0.2%, with 21 haplotypes and a total 

of211806 variable sites identified among the 40 sequences (Table 3.5). NJ analysis of 

K.2P distances of An. earlei COl sequences did not reveal strong support for distinct 

clusters of specimens based on collection region (Figure 3.4). However, there was weak 

support for one cluster of specimens (bootstrap value 67%), which included all four 

specimens from BC plus three from AL, but there were five more specimens from AL 

that were not included in this cluster (Figure 3.4) . . 

Anopheles freeborn; CO] 

COl sequences were obtained from 30 An. freeborni specimens, all collected from 

British Columbia, the only region in Canada where they occur (Table 3.3). Although 

sampling was conducted from a wide variety of locations throughout the province, An. 

freeborni is present mainly in the Kootenay region, Oliver, Vernon, and in Kamloops, 

and most specimens examined were from a pond on a farm in Kamloops in which all 

three anopheline species known from BC co-occur. Intraspecific variation was lowest in 

this species, with K.2P sequence divergence levels ranging from 0-0.2%, with a mean of 

0% (Table 3.5). Only four haplotypes were present among the 30 specimens with even 

fewer variable sites (3/806). All samples formed a single cluster according to NJ analysis 

ofK.2P distances (Figure 3.5). 
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Table 3.5. Kimura two-parameter (K2P) sequence divergence levels in COl sequences for 
each species examined. Includes the number of specimens sequenced, the minimum, 
maximum, and average pairwise sequence divergences, and the number of haplotypes and 
variable sites found within the COl sequences for each species. Note: suspected cryptic 
species An. perplexens and An. smaragdinus were grouped with their isomorphic native 
counterparts (An. punctipennis and An. quadrimaculatus s.s., respectively). 

11\1(221).;21 barb COl 

INI221).;22 barb COl 

IN1221).;20 barb COl 

1----- ---------NSOlJ&.10barbCOI 

1-------------- INI225-18 barb COl 

NS004-1 o barb COl 

IN1218-53 barb COl 

r----'-----i INl218-52 barb COl 

IN1218-51 barb COl 

IN1225-17 barb-COl 

1--------------NHQ09-1 barb COl 

INI225-16 barb COl 

1--- -----------INI225-13bartrCOI 

IN1225-23 barb COl 

'----------------INI225-t9 barb cot 

L.-_________________ --lIINI225-14 barb COl 

I.lN122~15barb COl 

Figure 3.3. Neighbour-joining analysis ofK2P distances of An. barberi COl sequences. 
Note: collection locations (NI, NH, and NS) are all from the same woodlot in Niagara. 
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IN03~7earICOI 

o IRQ24 .. 4 .earl COl 
IRQ 11 . 1 earl 001 

j--~ IRQ25-1 0 eal'l COl 

IN05-3 earl Cal 

o 10:'[344 earl COl . 
1------'-INF2-18earl COl 

- - IN03-6earl COl 

IRQ24-2earrCOI 

o IOT3-13 earl Cal 
,IN05·2 earl COl 

---6s1INo&-5 earl COl 
.... -.-~. IN012-11 eatlCOI 

4IN05 .. 4earlQQI 
j--~ IN012~tO earl COl 

IN049-1.earI001 
lAL21.;8ea.rlOOI 

o IBC55.gearICOI 

IIBC44-1earl 001 

--- ------d IBC55-6 .earl COl 
62, t .. -.-.-.··.IS ... C.1 .. 6. -.1 .e ... a. rI 0 ..•.... 0 .•... ' .----~ IAL21 .• 5earl COl 

12 ____ -J IAL20-1 earl COl 
6511AL21-4 earl COl 

IN040-5earICOI 
41·················· .. ··· 10:r3-12earl COl 

'. r=_,~~J!§..1 'AL22.1 OeaFI COl 
'1--~64.....,i . IAL22~ 11earl<COI 

i1N039.;3ear1COJ 

IAL22-4earl 001 

3 

--- -INQ40~3ear1001 

IAL21·1 earl COl 
1---- 10:'[3-10 earl 001 

IOT3·11 earl COl 
-- IRQ24 .. 3earl COl 

IN012·t2earl COl 

6,001 

.dO,-·-------- IN04D-4earl COl 

IOT3-17 earl COl 
, ...... ·--...... · .. _·--_ .. _··-....... _--...... _·· IOT3-15 earl COl 

IOT3-16 earl COl 

Figure 3.4. Neighbour-joining analysis ofK2P distances of An. earlei COl sequences. 
Region codes are listed in Appendix I. 
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IBC57",32 free ' cal 
IB055,.7 free COl 
IBC24-1free~·COI 

IB05T·46 free COl 
IBC55,;;33 free. cal 
18057-38 free Cal 
IBC55-36 free cal 
IB057-14 freEn:;OI 
18057-26 free COl 
IBC57~,13ftee': COl 
18057-39 free COl 
IBC57~29 free 001 
18C57 -1 f free COl 
18C57;.43 ftee.COI 
IBC57;.1 0 free. COl 
f--- ----- 18.c57:.1a free COl 
IBC57~44free COl 
I B057.; 7fre~OOJ 
IBC5745 fr,ee COl 
IB057-6freeCOI 
IB057 -5free:COI 
IBC51.;31 free cal 
1------ - - IBC57-40"free COl 

IBC55·$ free Cal 
IB05545 free cal 
IBC57;.9 free COl 

o IBC57~8 free cal 
IB057"12 free cal 

L-----~-l 

65 IBC57~2t free cal 
18,057.;28 free COl 

(1.001 

Figure 3.5. Neighbour~joining analysis ofK2P distances of An. Jreeborni COl sequences. 
Region codes are listed in Appendix I. 
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Anopheles punctipennis and An. perplexens COl 

COl sequences were obtained from 79 An. punctipennis- and An. perplexens-type 

larvae and adults collected from a wide variety of locations across Canada, with 32 

specimens identified morphologically as An. perplexens and 47 as An. punctipennis 

(Table 3.3). K2P sequence divergences were relatively high, ranging from 0-2.7% with a 

mean of 0.9%, with 57 haplotypes and 70 variable sites present among the 79 sequences 

(Table 3.5). NJ analysis ofK2P distances revealed two distinct clusters within An. 

punctipennis and An. perplexens samples: a) those collected from BC, and b) those from 

various regions throughout Ontario, including WE, Nl, HL, NO, AL and BP (Figure 3.6). 

Little variation was present within An. punctipennis samples from British Columbia 

(three haplotypes among 14 specimens) compared to those from Ontario (53 haplotypes 

among 67 specimens). Sequence divergence levels were significantly greater between 

the two groups, from 1.7-2.6%, compared to within them; pairwise sequence divergences 

within BC specimens ranged from 0-0.4%, and from 0-1.2 % within those from ON. 

Within the ON group, distinct clusters of specimens based on either morphological 

identification (An. perplexens or An. punctipennis) or region of collection (WE, NI, HL, 

NO, AL and BP) were not present (Figure 3.6). 

Anopheles quadrimaculatus s.L COl 

COl sequences were obtained from 60 An. quadrimaculatus and An. smaragdinus 

larvae and adults collected from various regions in Ontario (Nl, WE, and OT), with 52 

specimens identified morphologically as An. quadrimaculatus and 8 as An. smaragdinus 

(Table 3.3). There were 46 haplotypes, and 52/806 variable sites, among the 60 COl 

sequences, which had K2P sequence divergences ranging from 0-1.2% with an average 

sequence divergence of 0.6% (Table 3.5). NJ analysis of all An. quadrimaculatus s.l. and 

An. smaragdinus COl sequences did not reveal any distinct clusters based on 

morphological identification or collection location (Figure 3.7). 
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ue, iN64.1peJpCOI 
'1N04-2 petp COl 

INI26-3 perpCOI 
-, INI26-4 peJp COl 

09.2·plincCOI 
- INI84-6 pune COl 

,-. INI217;2perp COl 

I ::'~';~,~~;~~!~ bar coi 
UWE45-4'PUncCO! 

i =- 'HL3.$ PeP' COl 
: ,1N126-5peJpCOI 
Ml' 1I'll93.4pune COl 
~~-, INl222·2 pune cal 
: 55, -----· INI8S-3 pun¢ COl 
: ~ L ,~ IN03-SperpCOI 

2~~ : INI21.3'2 pune COl 
:;I21 '~ IN1226-1 perpCOI 
" .53'-·INI226.l/pcrp COl 

or- IAL24.1 perpCO! 
i IBPQ9-2 pline CO! 

EBP19.1 ptineCO! 
.. INI21$-Sj)unc COl 

INizI7-S perp COl 
NI92-10 punecOI 
NI21.? -4 pune ,COl 

perpCOI 
9 perp COl 

.. puri<:,COI 
INI9.2-3 M"PCOI 

INi2.6-2peip cOl 
37,--- INI23-fpunc'CO! 

140L._ .. - .INI!j4' lopuncCOI 
, 1.;3 pune COl 

1Al,24CS perp COl 
-- INI21?'2 pune Cal 

-- IN04.:3·perpCO! 
~ INI89'4 perpCOI 
INIZ6-1 p€!rpCOI 
..-'·INI92.5 perpcOl 
IBPl4,fpuncCOI 

132.' 1 pUncCOI 
,3puncCOI 
7·i,i>erpcor 

'[INJ2t3c1 puncCOI 
.. : iNI~26.-3perpCQI 
~, i N120~ 7-1 "",pCOI 
,~5-, - 1N!215-6perpCOI 
iiJ' ---" Ni20901 puneCOI 
'S! ; ·-~--- IN!91.2Pun!),COI 

:: is'f···· ,N!8 .. 9.'. perp. p.O. I 
I: 20 _'_I· 'NI~14PunccOI 

51 ' .53 --'NI84~7 punc.Cql 

1

,.-· --IHlM.S parp COl 
l30",--~""'INI9i!-7 parp COl 
! ' !N 121~;3 perp Coi 

21 ' r---- /WE13Z-2. PlIflC dOl 
i ~----- I.NI217-1 perpCOI 
i r L- INI~15;3puncicbl 

•. ~PI;. ·· IWE10' -1 puncCO! 
.... IN184'8 pune COl 

. 1,-- ----:- iN192'8 parpCOI 
; lril __ ~ INI91·' pUIlC COl 
i 67~- /WE42;S pone COl 
'-- IWE103-;1 poneCO! 

• iElC55-1 0 puneCOI 
: 10055.-12pUoc COl 
: ISCSS'2. pOOCCOI 
!iSC67'20p~ncCOI 

...•. J IBC55'Z1 puncCOI 
1 OO! ISC57-15 puncCOI 

11!lC55-11 puncCOJ 
: l!jC55'~Opunc COl 
1 l'BC5!l<1 puhi:CDl 

2~ .ISC57-16punc COl 
62.1Bq57-19 puneCOI 

I'B05747 pune COl 
!!r -··· IBC67.21 pUnc.COI 

15JSC57'22punc COl 

Figure 3.6. Neighbour-joining analysis ofK2P distances of COl sequences from An. 
punctipennis (punc) and An. perplexens (perp) specimens. Region codes listed in 
Appendix I. 
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21r ·--····-- INI215-1 quad cal 
~--- .... IWE104-1quad COl 
IIN145-2 quad Cal 

2~INi64-1quad cal 
IN185-1 quad COl 

9 quad Cal 
slNI64-8 quad Cal 

1

-·- - · INI76-1 q.oad Cal 
,IWE35-7 q4ad,COI 

241 62 IN1213-3 quad cal 

n~INI58'5 quad cal , ! L INI64-7 quad COl 
2~4L INI222·1 quad.COI 
n 33'--- .... . '. .. IN1222,6 ,quad cal 
1 : ,_.,?7j INI6o,2 quad Cal 
Ii ' 1lNI6O,5 quad Cal. 

I ~ ' ~ JNI904quadCQI 
I :~1 r -... IN. 182. -S. qUad .C .. 01 
I '21 rL --. -" INl94-Squad COl 

j , __ J S4jINI73-3 smarCO.1 
22, 1---- ~·I INI74-2 quad COl 
: i iINI73-2' smiuCOI 
35~---- INI9(),.5 quad cal 

~
INI215-4 quad Cal 

21 -.. - . INII6-2 quad COl 
i 1 . INl64,6quad cal 
!~, - -' lOTS-ltquad:COI 
l' 43, ' ······ INI60·11 quad COl 
~ I L IWE29-11 quad cal 

I' ..... 43t:I;~;$4:f;!:;6~~d Cal 

I 56- · - · ""-,, IOT6.-10 quad Cal 
, f,,·--- INI91.7quadCOI 

lh9i.L NI206-.1-4~uad cal Ii . 60 ,-- INI222·5 quad cal 

I
, j 24r---- INtn·1 quad COl I n ' .. ' "I ,_ .. ·_· .. ··_ -_····· ·· IWE;103-2 qulld cal 

11I1 24
1
- .... - IN173·5 smllrCOI 

j L ,- lWE26-2 quad cal 

III r~ INI4Mq~~~I:: quad COl 

I ~ 1 i j INI60-5 quad cal 
i l ' -: 'INISo..21 quad COl 
I . ' ,- ~- N12os.1 ;3 quad C. 01 g , '.. ... __ . __ J. : , " . i 50' IWE110·1tjuad COl 
I -, - IWE314quad cal 

! 44' r--:- 1VVE29-10 quad cal 

I L _ .... 

E
J.NI60 •• 1.0. qUa.dCOI i 30 INI94.12 smart;:OI 

I 45 IN1215·2 quadeOI 

~ 
l ' 1WE26-1 quad Cal 

1 3 ,INI94.16 sniar COl 

'I ----sa: iWE35,.f! quad COl 
INi6<i-:12 slTiarCOI 

[---- INI64-2 smar Cal 
I IWE35-5 quad cal I '1Nf74clquad cal 

L_ ' --,,-, IN180-6 qU,adCOI 
621.---" IN118-1 quad tal 

Figure 3.7. Neighbour-joining analysis ofK2P distances of An. quadrimaculatus s.l. and 
An. smaragdinus COl sequences_ Collection locations include; NI - Niagara, WE­
Windsor/Essex County, OT - Ottawa. 
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Anopheles walkeri COl 

COl sequences were obtained from 12 An. walkeri adults collected from two 

regions in southern Ontario; six from LP and six from NO (Table 3.3). Intraspecific 

variation was highest in this species, with K2P sequence divergences ranging from 0-

8.2% with an average of 4.6% (Table 3.5). Sequence divergence was lower within each 

geographic group than between them, ranging from 0.4-3.1 % within LP specimens and 

from 0-2.0% within those from NO. Between the two groups, sequence divergences 

ranged from 6.7-8.2% (Figure 3.8). 

Combined COl analysis of all species 

In addition to intraspecific analyses of COl sequences for each species included in 

the study, interspecific differences were analysed as well. Interspecific variation was 

significantly greater than intraspecific variation (ranged from 0 to ~2.0% in most species, 

but was higher, 3.1 %, within the LP An. walkeri group). Sequence divergence between 

species ranged from 6.7% (An.freeborni and An. punctipennis) to 13.9% (An. barberi 

andAn. quadrimaculatus s.l.) (Table 3.6). Within the anopheline species, sequence 

divergence levels were highest in An. barberi, ranging from 11.4-13.9% between An. 

barberi and the remaining species. Sequence divergence levels between An. barberi and 

the other (marsh) species were almost as high as those between Culex territans and all 

anophelines included in the current study (i.e., 14.5-16.3%) (Table 3.6). Excluding An. 

barberi (the only non-marsh species included in the current study), sequence divergence 

levels were lowest among An. earlei, An. freeborni, and An. punctipennis (including 

specimens identified as An. perplexens and those from BC that likely represent a cryptic 

species within this taxon), ranging from 6.7-7.2%. The next highest sequence divergence 

levels were seen between An. quadrimaculatus s.l. (including specimens identified as An. 

smaragdinus) and the other species, ranging from 8.2% (An. punctipennis) to 12.3% (An. 

walkeri). An. walkeri (including specimens from LP and NO that likely represent cryptic 

species within this taxon) exhibited the highest levels of sequence divergence, from 

10.4% (An. punctipennis) to 12.3% (An. quadrimaculatus s.l.) (Table 3.6). 
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LP01-16 walk COl 

89 LP0'1-12 walk COl 

LP01-10 walk 001 
99 LP01-11 walkeOI 

'-------- LP01 .. 18 walk CQI 

IN013-5:walk cor 

85 INC>13-6 walk cal 
100 IN07-4 walkeOI 

85 IN013-9walk COl 
IN013-10 walkeOI 

98 INo'11.:3 Walk COl 

Figure 3.8. Neighbour-joining analysis ofK2P distances of COl sequences from 
An. walkeri specimens. Collection locations include; LP - Long Point Provincial Park, 
NO - Manitoulin Island. 

Table 3.6. Kimura two-parameter (K2P) COl sequence divergence levels between each 
known Anopheles species examined, and one Culex species, ex. territans (as an 
outgroup). 

B E F P Q w 
An. barberi 
An. earlei 0.121 

An. freeborni 0.128 0.072 
An. punctipennislperplexens 0.114 0.070 0.067 

An. quadrimaculatuslsmaragdinus 0.139 · 0.094 0.100 0.082 
An. walkeri 0.134 0.108 0.107 0.104 0.123 
Cx. territans 0.163 0.162 0.145 0.145 0.149 0.159 
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Neighbour-joining analysis of all unique COl haplotypes obtained revealed eight 

distinct anopheline groups (branch support SO% or higher): An. barberi, An. earlei, An. 

freeborni, An. punctipennis (BC group), An. punctipennis (ON group, including 

specimens identified as An. perplexens), An. quadrimaculatus s.s. (including specimens 

identified as An. smaragdinus), An. walkeri (NO group), and An. walkeri (LP group) 

(Figure 3.9). Similar to the results of Porter and Collin (1996), An. earlei and An. 

freeborni form sister taxa, which are closely related to An. punctipennis (BC and ON 

groups). Next is An. quadrimaculatus, followed by An. walkeri (NO and LP groups). 

The species with the most divergent COl sequences was An. barberi, the tree hole 

specialist that was most distinct in each of the twes of data analysed. 

3.3.2.ITS2 

A total of254 ITS2 sequences were obtained for analysis (Table 3.7). Since ITS2 

rDNA is not protein coding, insertions and deletions (indels) are free to accumulate, and 

processes such as concerted evolution usually ensure that mutations in one rDNA subunit 

spread to all of the tandemly repeated rDNA units quickly, resulting in uniformity of 

subunits within the rDNA array. Therefore, the lengths of the ITS2 fragments were 

varied and species-specific. ITS2 PCR products of all species examined were single 

bands ranging in size from ~400-S00bp in length (Figure 3.10). 

Total length of the ITS2 fragments examined (excluding An. earlei) ranged from 

374bp (An. punctipennis) to 422bp (An. freeborni), which contained 77bp of5.SS rDNA 

at the 5' end and 27bp of2SS rDNA on the 3' end. Thus, the length of the ITS2 sequence 

only (i.e., 5.SS and ISS rDNA nucleotides removed) in most species ranged from 270bp 

(An. punctipennis) to 3lSbp (An. freeborn i) (Table 3.S), but was difficult to determine 

exactly in An. earlei due to difficulty sequencing the last ~450bp of the ITS2 sequence. 

All An. earlei ITS2R sequences (n=41) resulted in clear signals for the fIrst ~200bp when 

a second signal becomes very strong, resulting in a large number of questionable base 

calls that can't be resolved using the forward sequence. Therefore, only the first 31Sbp of 

the ITS2 sequence of An. earlei was included in the following analyses. 
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IRQ24-2earlCOI (4) 

100 JN05c2earIOCI(2) 
r-------------~ 

100 

99 

IB044-1 earl 00.1 (3) 

IBCST-517 free CO.l (4) 

· IBC57-18 free CO.l 

59 
IBC5.7'40 free CO.l 

IB058-1 punc 00.1 (5) 
100 

IBc57-21 pun~CCI 

NI203-7-1 perp CO.l (5) 

99 INI217-3 perpCCI [7) 

62 
rl'VElO1-.:1 pun COOl 

INIT3-3 smarCCI (3) 

INOl3-6 walk CO.l 
100 

INC7 -4 walk 00.1 

.------LPOl-17 walk CO.l 

100 
'---- LP01-18 walk CO.l 

lN1225-18 barb CO.l 

100 

INI225-19 barb CO.l 

IN1225-21 barb CO.l (10) 

'-----------------------------------------·.E3iiOQellaWJ¢ilisc:;QI 

Figure 3.9. Neighbour-joining analysis of Kimura 2-parameter (K2P) distances of 
representative COl sequences from Anopheles mosquitoes collected in Canada and one 
Bironella gracilis (outgroup species). When multiple sequences shared the same 
haplotype, the number of sequences that shared each one is included in parentheses. 
Region codes are listed in Appendix 1. 
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Table 3.7. Number of individuals of each species from each region for which ITS2 
sequences were obtained. Region codes listed in Appendix 1. Note: "An. smaragdinus" 
includes two specimens identified morphologically as other members of An. 
quadrimaculatus complex; one An. inundatus and one An. diluvialus. 

An. barberi 
An. earlei I 5 

An. j reebo; -i -0-126' 
l--_An_. perp,-l_ex_,en_s _ _ -+-__ 

~_A_n_.£~nctie_en_n_. ~ __ ~_ 
n. uadrimaculatus s.l . 
..!i!!.:~!!lara83.!.,_nu; __ _ 

An. walkeri 
Total 

15 7 

5 5 
22 25 12 5 

Figure 3.10. ITS2 peR products for five Anopheles species. Lanes 1, 14, 18, and 31 are 
DNA band size ladders, labeled bands in base pairs (bp). Lanes 2-7 = An. earlei, lanes 8-
10 = An. freeborni, lanes 11-13 = An. punctipennis, lanes 18-23 = An. walkeri, and lanes 
24-28 = An. barberi. 
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Sequencing in the reverse direction was also difficult in An. walkeri (but not 

noticed in time to design a species-specific reverse primer), but only in the specimens 

from LP. Therefore, in An. walkeri from NO, the ITS2 (including 5.8S and 28S 

sequences) was 406bp in length, with the ITS2 sequence only (i.e., 5.8S and 28S 

removed) 302bp in length (Table 3.8). However, in the An. walkeri from LP, sequencing 

in the forward direction results in a strong, clear signal until ~275bp when a second 

signal appears. At ~325bp, the second signal starts to interfere with sequencing and it 

becomes weak and completely unreadable by ~375bp. All of the ITS2 reverse reactions 

in LP specimens were unsuccessful. Therefore, the ITS2 sequences from NO and LP An. 

walkeri specimens were reduced to the first 275bp in the forward direction (Tables 3.8 

and 3.9) 

The ITS2 sequences of all species examined had similar GC contents ranging 

from 50.7% in An. barberi to 57.2% in An. walkeri, with those of An. earlei, An. 

freebomi, and An. punctipennis (including those identified as An. perplexens) 51.5-

52.8%, and An. quadrimaculatus, 54.0% (Table 3.8). Four species exhibited little to no 

intraspecific variation within ITS2 (An. barberi, An. earlei, An. freebomi, and An. 

quadrimaculatus s.l.), but significant intraspecific variation was observed in the other two 

(i.e., An. punctipennis and An. walkeri) (Table 3.9). 

All An. freebomi specimens (n=32) had identical ITS2 sequences, as did all of the 

An. quadrimaculatus s.l. specimens (n=73), including those identified as An. 

smaragdinus and other members of the An. quadrimaculatus complex (n= 16). The An. 

barberi sequences (n=18) contained one specimen with a single nucleotide change. 

Intraspecific variation was higher within the An. earlei sequences (n=41), with two 

variable sites within the 318bp An. earlei ITS2 sequences that resulted in two distinct 

groups, those from BC (n=5) in one group and those from all other locations, including 

ON, RQ and NF, in the second (Figure 3.11). The ITS2 sequences ofthe remaining 

species, however, revealed significant intraspecific variation. 

The An. punctipennis and An. perplexens ITS2 sequences resulted two distinct 

groups, with all An. punctipennis from BC in one group (n= 11) and those from locations 

throughout ON in a second group (n=75), which included all specimens identified as An. 

perplexens (Figure 3.12). ITS2 sequences within each group were identical, but sequence 
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Table 3.8. Summary statistics ofITS2 sequences from all Anopheles species examined. 
Included are average base compositions over all codons, including combined GC content, 
and both the total number ofnucleotides (nts) included in each ITS2 sequence analysed 
(includes portions of5.8S and 28S) and the number ofnucleotides ofthe ITS2 region 
only, for each species examined. A reduced sequence (5' end, 5.8S + partial ITS2). B only 
NO specimens since those from LP did not sequence well. 

Total ITS2 
T C A G GC% nts nts 

An. barberi 24.8 26.4 24.5 24.3 50.7 379 275 
An. earlei A 21.4 24.8 27.1 26.7 51.5 318A 299A 

An. freeborni 22.3 27.7 24.9 25.1 52.8 422 318 
An. perplexens 21.3 27.7 26.1 24.8 52.5 375 271 

An. punctipennis 21.2 27.6 26.0 25.1 52.7 374 270 
An. quadrimaculatus s.l. 21.0 28.9 25.1 25.1 54.0 395 291 

An. smaragdinus 21.0 28.9 25.1 25.1 54.0 395 291 
An. walkeri B 19.0 29.6 23.9 27.6 57.2 406 B 302 B 

Table 3.9. p-Distance sequence divergence levels and number of unique sequences and 
variable sites among ITS2 sequences for all species examined. 

Number I Number 

I 
Unique Variable 

n Min Max Sequences Sites 

An. barberi 18 0.000 0.004 2 11275 
An. earlei (318bp) 41 · 0.000 0.006 2 2/318 

t---. 
O.()OQ ... 

-
An. freeborni 26 0.000 1 0/422 

~ .. -... .. ----.~-... . ~.-.---~.,-

i-:- An. p uncti£en1}islperplexen!i_. 86 0.000 0.6~H 2 34/375 
An. quadrimaculatuslsmaragdinus 73 0.000 0.000 1 0/395~-

An. walkeri (23 1 bp) 11 0.000 0.074 2 17/231 
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lBC55-6 earl ITS2 350 
lNF2-18 earl ITS2 350 

IBC55-6 earl ITS2 350 
INF2-18-earl-ITS2-350 

lBC55-6 earl ITS2 350 
INF2-18-earl- ITS2-350 

lBC55-6 earl ITS2 350 
INF2-18 earl ITS2 350 

IBC55-6 earl ITS2 350 
INF2-18 earl ITS2 350 

IBC55-6 earl ITS2 350 
INF2-18 earl ITS2 350 

lBC55-6 earl ITS2 350 
INF2-18 earl ITS2 350 

ACACATTTTTGAGTGCCCATATTTGACTAATCCAAGTCAAACTACGCCGG 50 
ACACATTTTTGAGTGCCCATATTTGACTAATCCAAGTCAAACTACGCCGG 50 
************************************************** 

CGAGGCCAGCCCTTGCCGTGCGTGCATAGATGATGAAAGAGTATGGGACC 100 
CGAGGCCAGCCCTTGCCGTGCGTGCATAGATGATGAAAGAGTATGGGACC 100 
************************************************** 

TAAACCATCCCATTTCTTGCATTGAAAGCGAAGCGTGTAATCCAGGGAGT 150 
TAAACCATCCCATTTCTTGCATTGAAAGCGAAGCGTGTAACCCTGGGAGT 150 
**************************************** ** ****** 

TCACTTGCAAAGTGGCCCTTGGCCAACACCTCACCACCAACGGCGGTGCT 200 
TCACTTGCAAAGTGGCCCTTGGCCAACACCTCACCACCAACGGCGGTGCT 200 
************************************************** 

GTGCAGTGTGTTTGGCTGAGTACGGACCATCGTGAGTTGGACTCCCAACC 250 
GTGCAGTGTGTTTGGCTGAGTACGGACCATCGTGAGTTGGACTCCCAACC 250 
************************************************** 

GTATCTCGTGGTGGACACAGTGGACAGGGAGTCCACTATAAACACAAAGG 300 
GTATCTCGTGGTGGACACAGTGGACAGGGAGTCCACTATAAACACAAAGG 300 
************************************************** 

TCAAGAGAGAGAGAGAGA 318 
TCAAGAGAGAGAGAGAGA 318 
****************** 

Figure 3.11. Clustal alignment of An. earlei ITS2 sequences (318bp). Variable sites are 
in bold. The lBC55-6 sequence represents the BC group (n=5) and the lNF2-18 sequence 
represents the second group, which contains specimens from all other regions (ON, RQ, 
and NF) (n=26). 

IBC57-17-punc_ITS2 
lWE103-1_punc_ITS2 

IBC57-17-punc_ ITS2 
lWE103-1-punc_ITS2 

IBC57-17-punc_ITS2 
lWE103-1-punc_ITS2 

lBC57-17-punc_ITS2 
lWE103-1_punc_ITS2 

lBC57-17-punc_ITS2 
lWE103-1_punc_ITS2 

IBC57-17-punc_ ITS2 
lWE103-1_punc_ITS2 

IBC57-17-punc_ITS2 
lWE103-1_punc_ITS2 

ACACATGAACACCGATAAGTTGAACGCATATTGCGCATCGTGCGACACAGCTCGATGTAC 60 
ACACATGAACACCGATAAGTTGAACGCATATTGCGCATCGTGCGACACAGCTCGATGTAC 60 
************************************************************ 

ACATTTTTGAGTGCCCATATTTGACCCTCCAAGTCAAACTACGCCGGCCTGGCCGTGCGT 120 
ACATTTTTGAGTGCCCATATTTGACCCTCCAAGTCAAACTACGCCGGCCTAGCCGTGCGT 120 
************************************************** ********* 

GCAGTATGATGTCACTGGTGGTGGCATTGAAAACGTAGCGTGCACCCTAGGGCTCAACTT 180 
GCATAATGATGTCACTGGTTGTGGCATTGAAAACGATGCGTGCACCCCAGGGCTCAACTT 180 
*** ************** *************** ********** ************ 

ACAGAGTGACCACGGGGCCGACAGCTCACCAAAGTAACCTAATACGTTGAAGCGTGCAGA 240 
ACAGATTGGACTCGGGACCGACAGCTCACCAAAGTAACCTAATACGTTGAAGCGTGCAAG 240 
***** ** * **** ***************************************** 

-CTGTTCGGCCCGGTTCGGTCATCGTGAGGCGAGTCCGTGGTGCACACACACAA--CGAG 297 
TCTGTTCGGCCCGGT-CAGTCATCGTGAGGCGAGTCCATCGTGCACGCACACACTTCGAG 299 

************** * ******************* * ****** ****** **** 

TCGCATGGTTGCGAACAAG---ACATGCTCCTAGCAGCGGGAGTACATGGGCCTCAAATA 354 
TCGTGTGACAGCGACCGAAGAAACATGCTCCTAGCAGCGGGAGTACATGGGCCTCAAATA 359 
*** ** **** * * 

ATGTGTGACTACCCCC 370 
ATGTGTGACTACCCCC 375 
**************** 

************************************** 

Figure 3.12. Clustal alignment ofBCand ON An. punctipennis ITS2 sequences (370bp 
and 375bp, respectively). Variable sites are in bold. lBC57-17 represents the BC group 
(n=ll) and lWE103-1 the ON group (n=75). 
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divergence between the two groups was 9.1 %, with 27 variable sites within the 375bp 

sequence (Table 3.9; Figure 3.12). 

Similarly, the An. walkeri ITS2 sequences of specimens from NO and LP were 

identical within each group, but very different between groups. There were 17 variable 

sites within the 231bp sequence, a sequence divergence of 7.4% between the two groups 

(Table 3.9; Figure 3.13). Therefore, since intraspecific variation in the ITS2 sequences of 

An. punctipennis (9.1 %) and An. walkeri (7.4%) is within that known for members of 

other anopheline species complexes, which range from 0.4-1.6% in the An. gambiae 

complex (Paskewitz et al. 1993) to 18.5-28.7% in the An. quadrimaculatus complex, 

these data provide further evidence for the presence of cryptic species within these taxa. 

ITS2 combined analysis of all species 

The ITS2 sequences of the anophelines examined varied in length depending on 

species and therefore could not be analysed using MEGA 4.0 for interspecific 

differences. Ciustal2W was used to align the sequences and generate a Neighbour­

joining tree (Figure 3.14), which resulted in similar relationships among species as that 

based on COl sequence (Figure 3.9), except for An. earlei, which is likely due to the 

much larger size of the PCR product (~800bp) and the requirement for editing of the fmal 

sequence. 

3.3.3.ITS1 

The number of ITS 1 sequences obtained for analysis was much lower than for 

COl and ITS2. This was due to the inability of the primers to amplify ITSI in all species 

examined and to successfully sequence the ITS I PCR products, likely the result of 

intragenomic variation. The ITS I primers designed for this study (Table 3.2) amplified 

the ITS 1 region successfully in all species, except An. barberi. ITS 1 PCR products 

ranged in size from ~600bp in An. walkeri to ~4500bp in An. freeborni (Figure 3.15). 

Both An. quadrimaculatus s.l. and An. walkeri resulted in single bands at ~600bp and 
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IN07-4 walk ITS2 229bp 
LPOI-I0_walk_ITS2 231bp 

IN07-4 walk_ITS2_229bp 
LPOI-I0_walk_ITS2_231bp 

IN07-4 walk ITS2 229bp 
LPOI-I0_walk_ITS2 231bp 

IN07-4 walk_ITS2_229bp 
LPOI-I0_walk_ITS2_231bp 

IN07-4_walk_ITS2~229bp 

LPOI-I0_wa1k_ITS2_231bp 

ACACATTTTTGAGCGCCCATATTTGACCATATCAATCAAACTATGCCGCG 50 
ACACATTTTTGAGCGCCCATATTTGACCATATCAATCAAACTATGCCGCG 50 
************************************************** 

CACGGCCGAAAGGCCACGCCGGCGTGCAACGCGCCCACCC--GGGCTGCT 98 
TGCGACCGAACGGCCGCGCCGGTGTGCAACGCGCCCGCCCCAGGGCTGCT 100 

** ***** **** ****** ************* *** ******** 

AACTGATGGAGGGGATCGGCAGCGTCCGGAGTCCTTTCATTGAAATCTAC 148 
AACTGATGGAGGGGATCGGCAGCGTCCGGAGTCCTTTCATTGAAACCTAC 150 
********************************************* **** 

CGCTGAGTGTTTTCTCCCGGGCTGCACCCAGTCGGGACACCACCCTGTGG 198 
CGCTGAGTGTATTCTCCCGGGCTGCGCCCAGTCGGGACACCACCCTGTGG 200 
********** ************** ************************ 

ATGAGACACCTCACCAGCTTTGCAACGGGCA 229 
ATGAGACACCTCACCAGCTTTGCAACAACGG 231 
************************** 

Figure 3.13. Clustal alignment of edited NO and LP An. walkeri ITS2 sequences (229bp 
and 231bp, respectively). Variable sites are in bold. The IN07-4 sequence represents the 
NO group (n=5) and the LP01-1O the LP group (n=6). 

r------------------------------Bironell3._hoU<l.ndUTS2 

-'--------1 

f-______________________ -lNS006-10-b3.rb-ITS2 
I NH009-1_bub_ITS2 

L--______________________ --I-'IN013-6-W3.lk-ITS2 
IIN013- 7 _W3.1k_ITS2 

IBC16- Ce3.rUTS2350 
IBC44-1_e3.rUTS2_350 

IN03- 6_e3.rUTS2_350 
IRQll-1_e3.rUTS2_350 

Figure 3.14. Neighbour-joining tree generated using Clustal2W based on representative 
ITS2 sequence of all species examined. Specimen codes indicate collection location 
(listed in Appendix I) and species identification based on morphological data. 
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~800bp, respectively, allowing the peR products to be easily sequenced in both the 

forward and reverse directions. An. freeborni and An. earlei also resulted in single bands, 

but peR products were considerably larger, approximately 4500bp and 4000bp, . 

respectively, preventing sequencing ofthe entire fragments in both directions. Some An. 

freeborni and An. earlei specimens resulted in ~750bp oflTSl sequence in each 

direction, resulting in ~1500bp oflTSl sequences for analysis (Figure 3.16). 

The ITS 1 region of An. punctipennis, however, was more complicated. peR 

resulted in multiple bands in almost all specimens examined, except those from Be. 

Although band sizes varied, most An. punctipennis specimens resulted in three bands at 

~1250bp, ~2500bp, and ~3000bp (Figure 3.15). Because peR products could not be 

sequenced directly, very few An. punctipennis ITS1 sequences were .obtained for 

analysis. Detailed descriptions of the ITS 1 sequences of all species for which they were 

obtained are provided below. 

Anopheles earlei ITSl 

PCR amplification of ITS 1 in An. earlei resulted in single, large bands at ~4000bp 

(Figure 3.15), but sequencing of ITS 1 PCR products for the first ~ 7 5 Obp in each direction 

resulted in sequences of poor quality. Ten ~750bp ITS1F sequences were obtained, but 

three were excluded from further analysis due to poor quality. Of the seven remaining 

~750bp ITS1F sequences, all were identical for the first ~350bp, after which another 

weaker signal appeared, with questionable bases increasing in frequency for the next 

~300 base pairs, and the sequence almost completely unreadable around the 670th base 

pair. Sequencing in the reverse direction was similar but even less successful. Ten 

~750bp ITS1R sequences were obtained, but seven were excluded from further analysis 

due to poor quality. Of the three ~750bp ITS1R sequences, all were almost identical for 

the first ~500bps, after which sequence quality began to quickly deteriorate. 
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Figure 3.15. ITS1 PCRproducts of all six Anopheles species examined Lanes: 
1, 16 = DNA ladder; 2, 3 = An. punctipennis (3000bp, 2500bp, faint 1250bp); 4, 5 = 

An. quadrimaculatus (800bp); 6, 7 = An. earlei (4000bp); 8, 9 = An. walkeri (600bp); 
10,11 = An·freeborni (4500bp); 12, 13 =An. barberi(nobands); 14, 15 = negative 
controls. 

ITS] 
5' _1.:..-8_S_rD_ N.:..-· .. · A_··· · -1I~-4"_r4_· ....;.O....;.OO_ .. 4_.· 5_0_0b....::.p---r_-+~$_~8..;..;.S_rD_N_A--,O·· ····· 3' 

,. 
750bpF 750bpf{ 

Figure 3.16. ITS IF and ITS 1R regions sequenced in An. earlei and An. freeborni. 
ITS 1 PCR products were -4000bp and -4500bp, respectively, and forward and reverse 
sequencing reactions resulted in -750bp of sequence in each direction beginning near the 
5' and 3' ends of the ITS1 region. 
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Anopheles freeborni ITSl 

The largest ITS 1 PCR product obtained was that of An. freeborni, which was a 

single band at ~4500bp, similar to that of An. earlei (Figure 3.15). However, sequencing 

of the first ~750bp in each direction resulted in much better quality sequences than those 

of An. earlei. All nine 806bp An. freeborni ITS IF sequences were identical for the first 

~650bp, and only 9 variable sites were found in the next ~ 150bp. In the reverse 

direction, all nine 751bp ITSIR sequences were identical throughout most of the 

sequence, with only 2 variable sites located at ~240 and ~480 base pairs into the 

sequence. Therefore, although there were some nucleotide differences among the nine 

An. freeborni specimens, there was no evidence of intragenomic variation in this species 

within the ~ 1500bp of sequence examined. 

Anopheles punctipennis ITSl 

PCR amplification of the ITSI region in An. punctipennis produced multiple 

bands in almost all individuals examined, the three most common of which were 

~1250bp, ~2500bp, and 3000bp in length (Figure 3.15). This suggests the potential 

presence of intraindividual variation within ITS 1 in An. punctipennis, i.e., different ITS 1 

sequences within the rDNA array. The number, size, and intensity of ITS 1 bands were 

highly variable in An. punctipennis specimens (Figure 3.17). A smear was often 

observed from the well until the appearance of the fust two bands at -2500 and ~3000bp 

(Figure 3.17, lanes 15, 16, 19,21, etc.), and sometimes additional, smaller bands were 

produced (Figure 3.17, lanes 5 and 12). The intensity of each particular band also varied, 

with some individuals having the largest band the brightest or most intense (Figure 3.17, 

lanes 24 and 25), and others with the smallest band the brightest (Figure 3.17, lanes 3 and 

11). 

Within the An. punctipennis specimens from ON, there were no apparent patterns 

in the number, size, or intensity of bands to suggest population-specific differences 

(Table 3.10). Most common were the two largest bands (~2500bp and ~3000bp), which 
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were present in all ON specimens (n=46) (i.e. from AL, BP, NO, HL, NI, and WE). The 

~1250bp band was present in all samples (n=ll) from more northern sites (AL, BP, and 

NO), as well as those from WE (n=8) and HL (n=2), but was only present in a quarter 

(8/32) of those from NI. The next most common band (~2000bp) was present in 15/46 

ON specimens, and most often in those identified morphologically as An. perplexens 

from NO (5/7). The remaining bands that were observed in An. punctipennis ITS1 

samples were ~ 1700bp, 1500bp, 950bp, 825bp, 650bp, and 450bp in length, and occurred 

rarely (i.e., in one to four of 46 specimens). In cases where ITS 1 was sequenced in more 

than one specimen from a single collection site (Table 3.10, e.g., IN04, IHL3, IN1209, 

INI213, etc.), more than one band pattern was usually present among the individuals from 

that site. 

There was, however, one geographic difference observed among An. punctipennis 

ITSI sequences. All specimens collected from BC (n=4) produced single bands (Figure 

3.18). Although they varied in size considerably (Table 3.10), they were the only 

specimens (4/50) to produce only one band. With respect to morphological 

identification, the only obvious difference between those identified as either An. 

perplexens or An. punctipennis was the higher proportion of specimens with the ~2000bp 

band in An. perplexens (12/21 or 57%) compared to An. punctipennis (4/30 or 13%). 

Because sequencing of PCR products with multiple bands was not possible, ITS 1 

sequences were not obtained for An. punctipennis. 

Anopheles quadrimaculatuss.l. ITSl 

Despite sequencing a large number of An. quadrimaculatus s.I., including those 

identified morphologically as An. smaragdinus, COl and ITS2 data did not reveal 

evidence of cryptic species in this taxon. However, the ITS 1 sequences of An. 

quadrimaculatus s.l. (n=45) formed two distinct groups. Both groups produced single 

ITS 1 bands at ~800bp, but after consensus sequence determination, the length of the ITS 1 

sequences differed by ~25 nucleotides between groups (Figure 3.15). The ITS1 sequence 

of the first group was 729bp in length, and contained NI, WE, and OT specimens (n=35), 

and was 756bp in length in the second group, with specimens from NI and WE (n=IO). 

Within each group, the sequences were identical, but there were major differences 
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Figure 3.17. ITS1 peR products from 21 An. punctipennis specimens. Lanes: 1, 13, 14, 
26 = DNA ladder; 10,20 = An. quadrimaculatus s.l.; 2-5 = WE punc; 6-8 = BP punc; 
9, 11, 12, 15-19,22 = NI punc; 21,24,25 = NI perp. 
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Figure 3.18. ITS 1 peR products Be and NI An. punctipennis specimens. Lanes: 1, 6 = 

DNA ladders, 2-5 = Be An. punctipennis, 7-9 = Niagara An. punctipennis. 
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Table 3.10. Size and intensity of ITS 1 bands from specimens identified morphologically 
as of An. punctipennis and An. perp/exens. Abbreviations: vb - very bright; b - bright; m 
- medium; f - faint; vf - very faint. 

Code Species 3000 2500 2000 1700 1500 1250 950 825 650 450 

IBC57-20 punc m 

IBC57-21 punc m 

IBC57-41 punc vb 

IBC57-42 punc f 

lAL24-3 perp f f vf 

IBP09-2 punc m m f 

IBP14-1 punc f f vf 

IBP19-1 punc f f f 

1N03-5 perp b vb f 

IN04-1 perp b b f m 

IN04-2 perp b b f f m 

IN04-3 perp f f vf vf 

IN04-4 perp b b f m 

IN04-5 perp b b f b 

IN09-2 perp b b f vf 

JHL3-3 perp vf vf f 

IHL3-4 perp b b f m f 

1NI209-1 punc vf vf 

1NI209-2 punc vf vf vf 

lNI213-1 punc vb b f m 

IN1213-2 punc b vb m 

INI215-3 punc b m f 

INI215-5 punc b m 

1NI215-6 perp vb vb vf 

1NI217-1 perp m m 

INI2 1 7-2 perp f f vf vf 

lNI217-3 perp vb vb f b 

INI217-4 punc b b 

INI219-3 perp vb vb m vf 

INI222-2 punc b b 

INI222-4 pun b b vb 

INI226-5 punc b b f f 

1NI26-1 perp vb b 

1NI26-2 perp f vf 

1NI26-3 perp b b m' 

lNI26-4 perp b m 

IN184-6 punc m m 

INI84-8 punc b m 

NI203-7-1 perp vb m f 

NI203-7-2 perp vb f f 

NI216-1-3 punc f f 

NI216-1-4 punc f f 

lWElOl-l punc f f vb 

lWElO3-1 punc m m f m 

lWE132-1 punc m m f 

lWE132-2 punc f f f 

lWE42-3 punc b b vf f b 

lWE44-4 punc f f f 

lWE45-2 punc b b vf b 

lWE45-3 punc b b vf b m 
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between the two groups, spread evenly throughout the entire sequence (Figure 3.19). 

There was an intraspecific sequence divergence of55.7% between the two groups, the 

highest level of variation observed among all species and markers examined. 

Anopheles walkeri ITSl 

PCR amplification of ITS I in An. walkeri produced single bands at ---600bp 

(Figure 3.15), the sequences of which formed two distinct groups. The first group 

contained specimens from NO (n=9), with the ITS 1 sequence 483bp in length, and the 

second of specimens from LP (n=10), with ITSl sequences 490bp in length (Figure 3.20). 

Within each group, the sequences were identical, but there were many nucleotide 

differences between the two groups. The NO and LP ITS 1 sequences are almost identical 

for the first 300bp and last 130bp, with the variable regions concentrated in between 

them. The two groups have 4511490 (92.0%) nucleotides in common, with 39 variable 

sites, or 8.0% sequence divergence, between them. 

3.4. Discussion 

High levels of intraspecific variation within the mitochondrial and ribosomal 

markers examined in this study indicate the presence of two cryptic species within the six 

species (identified based on morphological data) from Canada that were examined using 

molecular data. These include An. punctipennis (BC vs. ON species) and An. walkeri (LP 

vs. NO species), which are based on geographic location, and not based on morphological 

data (i.e., An. perplexens and An. smaragdinus) as expected. The results of the three 

markers examined (COl, ITS2, and ITSl) were in good agreement, but, due to the 

difficulty in amplifying and sequencing the ITS 1 region in all species examined, data sets 

for COl and ITS2, the most common markers used in taxonomic and phylogenetic 

investigations of Anopheles mosquitoes, were more robust. Levels of intraspecific 

variation ranged from absent to low in some species (e.g., An. barberi and An. freeborn i) 

to moderate or high in others (e.g., An. earlei and An. walkeri, respectively). Sometimes 

variation was consistent among all markers examined, either all uniform (e.g., An. 

freeborn i) or all with significant intraspecific variation (e.g., An. walkeri), and others 
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1NI213_3_quad_ITS1 

1NI91-7_quad_ITS1 

1NI213 3 quad ITS1 
1NI91-7_quad_ITS1 

1NI213 3 quad ITS1 
1NI91-7_quad_ITS1 

1NI213 3 quad ITS1 
1NI91-7 quad_ITS1 

1NI213 3 quad ITS1 
1NI91-7_quad_ITS1 

1NI213 3 quad ITS1 
1NI91-7_quad_ITS1 

1NI213 3 quad ITS1 
1NI91-7_quad_ITS1 

1NI213 3 quad ITS1 
1NI91-7_quad_ITS1 

1NI213 3 quad ITS1 
1NI91-7_quad_ITS1 

1NI213 3 quad ITS1 
INI91-7_quad_ITS1 

INI213 3 quad ITS1 
1NI91-~quad_ITS1 

1NI213 3 quad ITS1 
1NI91-7 quad_ITS1 

1NI213 3 quad ITS1 
1NI91-7_quad~TS1 

1NI213 3 quad ITS1 
1NI91-7_quad_ITS1 

--------------GCGGTCTTCATCGATCCATGAGCCGAGTGATCCCCTGCCTAGGGTT 46 

GGAATTTCTTGTAAGCGCTGGTCATTAG--CTAGCGCTGAATACGTCCCTGCCTTTTGTA 58 
*** * **** * * ** ** * ******** ** 

-ATTCTGTGTGTT--TGTCTCCGTTCGTATTTGTGGCTCCATGTATGTATCTCCCAGAGT 103 
CACACCGCCCGTCGCTACTACCGATGGATTATTTAGTGAGGTCTCTGGAGGTGATCGTTC 118 
* * * ** * *** * * * * * * * * ** * * * 

GCTGATCACCACACCACAGGATATCCCCGTTGGAGCCATCATCCAATGGTGTGTGTTGTG 163 
GCAGGCTCCCTCGTGGAGTAGCGTCTGCTTTGCTGAAGTTGACCGAACTTGATGATTTAG 178 
** * ** * ** * *** * * ** * ** ** * 

TGCGATCAGCACGTACGTGTCGCTTGCCGTCGTTGCACTCCATGCGGAACACATACGACA 223 
AGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAAC---CTGCGGAAGGATCATTACT 235 
* * * * * ** **** * ** ** ******* * ** 

CTTGG-CACGGTCGGACCACGGTGAGCTCCAGCTGGCGGGCCTTCATG-TTCCCGAATTC 281 
GATGTTCCAACCCAAACCGAGGTGA--- - ---CCGGAGGGTCATCATCATTCGCGTGTCG 288 

** * * *** ***** * ** *** * **** *** ** * 

CCCAGACTTAGAACGTTGAACCGACCGTTACAACCGAACCCCGTTCGATTGCTTCCGACA 341 
TCGAAACGCAAACAGGTCGGCGTGCCG-TGTTTGCGACGACCATTAGGTCG-TTTCGCTA 346 
* * ** * * * * * *** * *** ** ** * * * ** ** * 

CAGTATGTTAGACGTTTGGGCACCATTTCGTGTCGCCCGGAGCTATGCTATTGTTCCCGA 401 
TGGTGGGTTT--CCCTCGGGAACAATAGCATAGCTCCGGGCGACACGAAATGGTGCCCAA 404 

** *** * * *** ** ** * * * ** ** * * * ** ** *** * 

GGG--AAACCCACCATAGCG-AAACGACCTAATGGTCGTCG-CAAACACGGCACGCCGAC 457 
ACGTCTAACATACTGTGTCGGAAGCAATCGAACGGGGTTCGGTTGTAACGGTCGGTTCAA 464 

* *** ** * ** ** * * * ** ** *** **** * * 
CTGTTTGCGTTTCGACGACACGCGAATGATGATGACCCTCCGGTCACCTCGGTTTGGGTT 517 
CGTTCTAAGTCTGGGGAATTCGGGAAC-ATGAAGGCCCGCCAG----CTGG--------- 510 
* * * ** * * * ** *** **** * *** ** * ** * 

GGAACATCAGTAATGATCCTTCCG--CAGGTTCACCTACGGAAACCTTGTTACGACTTTT 575 
AGCTCACCG----TGGTCCGACCGTGCCAAGTGTCGTATGTGTTCC--GCATGGAGTGCA 564 

* ** * ** *** *** * * * ** * ** * ** * 

ACTTCCTCTAAATCATCAAGTTCGGTCAACTTCAGCAAAGCAGACGCTACTCCACGAGGG 635 
ACGACGGCAAG--CGACACGTACGTGCTGATCGCACACAACACACACCATTGGATGATGG 622 
** * * * * ** ** ** * * ** * ** ** * * * * ** ** 

AGCCTGCGAACGATCACCTCCAGAGACCTCACTAAATAATCCATCGGTAGTAGCGACGGG 695 
CTCCAACGGG-GATATCCTGTGGTGTGG-----TGATCAGCACTCTG--GGAGATACATA 674 

** ** *** *** * * ** * * ** * * ** ** 

CGGTGTGTACAAAAGGCAGGGACGTATTCAGCGCTAGCTAATGACCAGCGCTTACAAGAA 755 
CATGGAG--CCACAAATACGAACGGAGACAAACACACAGAATAACCCTAG---GCAGGGG 729 
* * * * * * * * *** * ** * *** *** * 
A 756 

Figure 3.19. Clustal alignment of An. quadrimaculatus s.l. ITSI sequences. Specimen 
INI91-7 represents the first group (n=35, NI, WE, OT), and INI213-3 the second (n=10, 
NIand WE). 
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lN07-4 walkeri ITSl 
LPOl-12 walk ITSl 

lN07-4 walkeri ITSl 
LPOl-12 walk ITSl 

lN07-4 walkeri ITSl 
LPOl-12 walk ITSl 

lN07-4 walkeri ITSl 
LPOl-12 walk ITSl 

lN07-4 walkeri ITSl 
LPOl-12 walk ITSl 

lN07-4 walkeri ITSl 
LPOl-12 walk ITSl 

lN07-4 walkeri ITSl 
LPOl-12 walk ITSl 

lN07-4 walkeri ITSl 
LPOl-12 walk ITSl 

lN07-4 walkeri ITSl 
LPOl-12 walk ITSl 

GGAATTTCTAGTAAGCGCTGGTCATTAACTAGCGCTGATTAAGTCCCTGCCCCTTGTACA 60 
GGAATTTCTAGTAAGCGCTGGTCATTAACTAGCGCTGATTAAGTCCCTGCCCCTTGTACA 60 
************************************************************ 

CACCGCCCGTCGCTACTACCGATGGATTATTTAGTGAGGTCTCTGGAGGTGATTCATGCG 120 
CACCGCCCGTCGCTACTACCGATGGATTATTTAGTGAGGTCTCTGGAGGTGATTCATGCG 120 
************************************************************ 

CACACCCCTCGCGGGCGCGTCTGCTTCGCTGAAGTTGGCCGAACTTGATGGTTTAGAGGA 180 
CACACCCCTCGCGGGCGCGTCTGCTTCGCTGAAGTTGGCCGAACTTGATGGTTTAGAGGA 180 
************************************************************ 

AGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTATGGAGAACT 240 
AGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTATGGAGAACT 240 
************************************************************ 

AGATGCATGCTGCATGCATTTACTCGAACGATCGTGTCGACTAGGAGAAGT--------A 292 
AGATGCATGCTGCATGCATTTACTCGAACGATCGTGTCGACTAGGAGCAGTGCGGTGGTA 300 
*********************************************** *** * 
TATGTGTTGCTAT--GCGTTTGCCATGGTCAACCGAAGTCAAGAGTACACACTGCTCTGG 350 
TACGTGATGCTGTGCGCGTTTGCCGAAGTCAAGCGTG--CGTACACACTGCTTGCTCTGG 358 
** *** **** * ********* ***** ** * ** ******** 

TATCGTACCCTGCGGCGTCTAATTGGACCGTCTGATGCATATACAGACAGGTGTGGTCGC 410 
TAACGTACCCTGCGGCGTCTAATTGGACCGTCTGATGCATATACGGACAGGTGTGGTCGC 418 
** ***************************************** *************** 

TTACTGGACGTGGCAGGTGGTGCGCCCACTTGGAAGACGGATATATACACGGAACAACTT 470 
TTACTGGACGTGGCAGGTGGTGCGCCCACTTGGAGGATG-ATGTATACACGGAACAACTT 477 
********************************** ** * ** ***************** 

CCCTAGGCAGGGG 483 
CCCTAGGCAGGGG 490 
************* 

Figure 3.20. Clustal alignment ofLP and NO An. walkeri ITS1 sequences. Specimen 
lN07-4 represents the ftrst group, containing specimens from NO (n=9), and LPOl-12 the 
second group, containing specimens from LP (n=10). 
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revealed variation in one or more, but not all, of them (e.g., An. earlei). 

Intraspecific variation was low in the COl and ITS2 sequences of An. barberi. 

Average COl sequence divergence levels were 0.1 % in An. barberi, with a maximum 

divergence of 0.4% among the 16 specimens examined (Table 3.S). Variation in the ITS2 

sequences of An. barberi was very low, with only 1 nucleotide difference in one 

specimen examined (n=18) (Table 3.9). These results are as expected since all specimens 

were from the same woodlot in Niagara and likely represent a single breeding population. 

The inability of the ITS 1 primers designed for this study to amplify the ITS 1 region in 

this species is probably due to its relatively distant phylogenetic relationship to the 

species upon whose 18S and S.8S sequences the primers were designed. An. barberi is 

unique morphologically and in larval habitat, the only species examined that belongs to 

the Plumbeus Group, with all others found within the Maculipennis or Punctipennis 

Groups (Harbach 2004) (Figure 1.6). While the 18S, S.8S, and 28S sequences are more 

highly conserved than the ITS sequences located between them, sufficient nucleotide 

differences likely exist in one of the primer binding sites such that it goes unrecognized 

by the ITS1F or ITSIR primer. An. barberi was the most derived species ofthose 

examined in neighbour-joining analyses of both COl and ITS2 (Figure 3.9 and 3.14). 

Although An. earlei has the broadest distribution in Canada of all species 

examined, intraspecific variation in COl and ITS2 sequences was relatively low. 

Although specimens from a wide range of locations (BC, NO, OT, RQ, and NF) were 

included in analysis of COl sequences (n=40), maximum sequence divergence level 

within An. earlei was only 0.6% (Table 3.S). There was weak support for a cluster of 

specimens that consisted of all 4 BC An. earlei individuals, but it included 3 of the 8 AL 

specimens as well (Figure 3.4). There were other similar small clusters of individuals 

with shared nucleotide changes, but they were not geographically significant. The large 

size of ITS2 in An. earlei has also been observed in the related species An. beklemishevi, 

a Russian member of the An. maculipennis complex (Kampen 200S). Kampen (200S) 

found that alignment of the 638bp An. beklemishevi ITS2 sequence with those of other 

members of the complex was only possible in the first ~33Sbp and the last ~ lS0bp, 

similar to that of the An. earlei ITS2 results of this study. This suggests that An. earlei 
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may be more closely related to Pale arctic members of the An. maculipennis complex than 

Nearctic ones. 

Although sequencing of the entire ~800bp ITS2 region in An. earlei was not 

possible, analysis of the edited 318bp sequences revealed two distinct groups; the first 

contained all BC specimens and the second contained specimens from all remaining 

regions (RQ, NO, OT, and NF) (Figure 3.11). ITS2 sequences were identical within each 

group, and differed by 2 nucleotides between them (Table 3.9), suggesting perhaps some 

degree of isolation between An. earlei specimens on either side of the Rocky Mountains 

(as in An. punctipennis, see below). However, sufficient evidence for potential cryptic 

species within An. earlei (i.e., western versus eastemforms) based on COl and ITS2 was 

not present. 

Analysis of ITS 1 in An. earlei was even more difficult than ITS2 due to both the 

extremely long length of the sequence (~4000bp) and the inability of the sequencing 

reaction to successfully sequence the first ~750bp in each direction. The difficulty in 

sequencing may be due to intraindividual variation in ITS I (i.e., different ITS 1 sequences 

present within the rDNA array). Analysis of ITS 1 in other Anopheles species has 

revealed intragenomic variation, due primarily to the presence of internal repeats, which 

vary in size and number within each ITS 1 subunit in the array, resulting in different ITS 1 

lengths and sequences within the same individual (Bower et al. 2008; Bower et al. 2009; 

Paskewitz et a. 1993). Therefore, detailed analysis through cloning of the ITSI region in 

An. earlei could potentially reveal population level information to help to understand the 

phylogeographic history of this species in Canada and North America. However, the 

presence of multiple ITS 1 bands in some species could represent pseudogenes located 

outside the rDNA genes. Similar phylogenetic relationships between An. earlei and the 

remaining species were observed in neighbour-joining analyses of COl and ITS2 (Figure 

3.9 and 3.14). COl data revealed strong support for An. earlei and An. freeborni being 

sister taxa,but this relationship was less clear based on ITS2 data. This is likely due to 

editing of the 800bp An. earlei ITS2 sequences to a shorter 318bp portion for analysis. 

Similar to An. barberi, intraspecific variation in the COl and ITS2 sequences of 

An.freeborni was very low. Average COl sequence divergence was 0.0%, with a 

maximum of 0.2%, among the An. freeborni individuals examined (n=30) (Table 3.5). 
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The ITS2 regions of all An. freeborni specimens examined (n=26) were identical 

throughout the entire 422bp sequence (Table 3.9). While the ITS 1 region of An. 

freeborni is similar to that of An. earlei (single bands, ~4500bp and ~4000bp, 

respectively), sequencing ITS 1 in An. freeborni was successful. Combining the ~ 750bp 

ITSIF and ITSIR sequences, a total of only 10/1557 nucleotide differences were 

observed (n= 9), resulting in an intraspecific sequence divergence level of 0.6% in these 

sections of the total ~4500bp ITS 1 sequence. Despite sampling from geographic 

locations throughout most of southern British Columbia, most of the An. freeborni 

specimens examined were from the same site in Kamloops, but since it is known from a 

limited distribution in BC (Figure 1.10), An. freeborni is likely a single species 

throughout its range in Canada. 

Another species with a relatively restricted distribution in Canada is An. 

quadrimaculatus s.I., the northern limit of which is extended into southern Ontario and 

Quebec. The average COl sequence divergence level among An. quadrimaculatus s.l. 

specimens (n=60), collected from various regions in Ontario (NI, WE, and OT), was 

0.6%, with a maximum of 1.2% (Table 3.5). There was a high number of unique 

haplotypes and variable sites among the 806bp sequence (46 and 52, respectively) (Table 

3.9). Distinct clusters based on either collection location or morphological species 

identification (An. quadrimaculatus s.s. or An. smaragdinus) were not observed inNJ 

analysis of COl sequences (Figure 3.7), and all ofthe 73 An. quadrimaculatus s.l. ITS2 

sequences obtained in the study were identical (Table 3.9). Since differences are present 

in the ITS2 sequences of members of the An. quadrimaculatus s.l. species complex 

(Cornel et al. 1996), these results suggests that the morphological characters used to 

discriminate these species (as described in Darsie and Ward 2005) are not applicable here 

near the northern limit oftheir ranges. Both COl and ITS2 data indicate that only An. 

quadrimaculatus s.s. occurs in Canada, as predicted by Levine et al. (2004) in their 

model for potential distribution of the members of the An.quadrimaculatus complex. 

The ITS 1 sequences of An. quadrimaculatus s.I., however, did reveal intraspecific 

variation, the source of which is not clear. Anopheles quadrimaculatus s.l. ITSI 

sequences formed two distinct groups, which again did not correspond to either collection 

location or initial morphological identification as either An. quadrimaculatus or An. 
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smaragdinus. Within each group, the sequences are identical, but the ftrst group (NI, 

WE, and OT specimens; n=35) differs from the second group (NI and WE specimens; 

n=lO) by 26 nucleotides in size and a sequence divergence of ~56% (Figure 3.19). This 

is the highest level of intraspeciftc variation in any marker or species measured in the 

study, and does not agree with the results of both COl and ITS2 datasets. Therefore, 

further studies are required to determine the source of ITS 1 variation in this species. 

Anopheles punctipennis, as identified based on morphology, has a sporadic 

distribution in Canada (Figure 1.11), and exhibited some of the highest levels of 

intraspeciftc variation observed among all species examined. Both COl and ITS2 data 

revealed the same cryptic intraspeciftc clusters within An. punctipennis (i.e., BC versus 

ON specimens) (Figures 3.9 and 3.14). Using the 5' 650bp barcoding region of COl, 

Cywinska et at. (2006) found that sequence divergences for conspeciftc individuals (all 

from Ontario) was usually less than 0.5%, much lower than the 2.7% observed between 

the BC and ON groups of An. punctipennis (Figure 3.6). ITS2 sequences are known to be 

species-specific in Anopheles (Collins and Paskewitz 1996), even among recently derived 

species (such as the members of the An. quadrimaculatus species complex which range in 

length from 289 to 329bp and are easily distinguished based on nucleotide sequence). 

Therefore, the high level of ITS2 sequence divergence between the BC and ON An. 

punctipennis groups (7.7%) (Figure 3.12) provides further evidence for the presence ofa 

cryptic species within this taxon. In a phylogeny ofNearctic Anopheles species based on 

the D2 variable region ofthe 28S rDNA, Porter and Collins (1996) examined An. 

punctipennis specimens from California and Wisconsin and Illinois and describe them as 

sister taxa, which they called An. punctipennis W and An. punctipennis E. Therefore, the 

COl and ITS2 results of this study and the D2 results ofthe Porter and Collins (1996) are 

in good agreement and provide further evidence for the presence of a cryptic species 

within this taxon. 

ITS 1 results, however, were complicated by the presence of multiple ITS 1 PCR 

products from most specimens examined that were identifted morphologically as either 

An. punctipennis or An. perplexens. Intraindividual variation in the ITSI region has been 

observed in other anopheline species, and sequencing of clones containing single ITS 1 

subunits revealed geographic patterns in the number and type and internal variant repeats 
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within them that were used to examine the population structure of this species throughout 

its range (Bower et al. 2008). Therefore, analysis of the ITSI region through the 

sequencing of individual clones might also be useful in population-level studies of An. 

punctipennis. Although ITS 1 sequence data was not obtained for this species through the 

current study, the only specimens that resulted in single ITSl bands were those from BC, 

providing further evidence for the presence of cryptic species in this taxon. However, the 

presence of suspected cryptic species, An. perplexens, could not be confirmed based on 

Calor ITS2 data. The similar result of low divergence level between specimens from 

Ontario identified as An. punctipennis or An. perplexens (using morphological data) was 

obtained during previous studies involving the barcoding region of cal (A. Cywinska, 

pers. comm.). The possibility that An. perplexens and An. punctipennis are, in fact, truly 

reproductively isolated species, but they don't differ in any of these molecular markers, is 

very low, and proof that the morphological characters associated with each species, 

particularly the size of the pale-coloured wing spot in adults, are highly variable in certain 

regions of Ontario. In NJ analyses of cal and ITS2 sequences (Figures 3.9 and 3.14), 

An. punctipennis (including those identified as An. perplexens) formed two groups (BC 

and ON), which were most closely related to An. quadrimaculatus s.l. and the Nearctic 

members of the An. maculipennis complex (i.e., An. earlei and An.freeborni). 

Finally, An. walkeri had the highest levels of intraspecific variation observed 

within COl and ITS20f all species examined. Because a limited number of specimens 

from only two main collecting regions were available for analysis, the presence of cryptic 

species within An. walkeri was not expected. However, significant sequence divergence 

levels were observed in all three markers analysed, with specimens forming distinct 

clusters based on collection location (i.e., NO and LP) (Figures 3.8, 3.13 and 3.20). 

Sequence divergence in the cal sequences between the two groups was ~ 7%, 

considerably higher than would be expected if all specimens represented a single species 

(Hebert et al. 2003; Cywinska et al. 2006). The ITS2 sequences of An. walkeri 

specimens (identified based on morphological characters) required editing due to 

difficulty sequencing in the reverse direction, but sequence divergence within the 231 bp 

section examined was ~32% between the two groups. The ITS! region was easily 

amplified and sequenced within morphologically identified An. walkeri, sequence 
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divergence between the NO and LP groups was ~8%. These data strongly support the 

presence of a cryptic species within this taxon. 

The distribution of An. walkeri extends north into Canada from Saskatchewan to 

Quebec and the Maritimes, but it presence on Manitoulin Island (NO) and north in central 

Ontario has not yet been recorded (Figure 1.13). The distribution of An. punctipennis is 

similar, with a northern range limitnear Manitoulin Island (Figure 1.11),-and specimens 

identified morphologically as An. punctipennis from NO were included in analyses of 

both COl and ITS2 sequences. However, similar clusters of individuals were not present 

with specimens identified morphologically as An. punctipennis (i.e., NO vs. other regions 

in ON), suggesting that the island nature of Manitoulin alone may not be the source of 

variation within An. walkeri. Further studies are required to determine the range and 

further characterize An. walkeri and its newly recognized sibling species. In neighbour­

joining analyses of both COl and ITS2 sequences (Figures 3.9 and 3.14), other than An. 

barberi, An. walkeri was the most distantly related species to the remaining marsh 

anophelines. 

This is the first study to examine the 800bp section of the COl located at the 3' 

end of the gene in Anopheles mosquitoes from Canada, the results of which agree with 

those of previous molecular studies. Cywinska et al. (2006) examined the 650bp 

barcoding region located at the 5' end of the COl gene in mosquito species from Ontario, 

including four anophelines. In both studies, all specimens examined formed tight species 

clusters and hypotheses of phylogenetic relationships among species based neighbour­

joining analysis of the Kimura-2-parameter (K2P) distances were similar. The 650bp 

barcoding COl sequence showed An. earlei to be most closely related to An. 

punctipennis, followed by An. quadrimaculatus then An. walkeri (Cywinska et al. 2006). 

However, Cywinska et al. (2006) did not include An. freeborni and An. barberi, or 

specimens from British Columbia or Manitoulinlsland, and thus did not observe the 

potential cryptic species in An. punctipennis or An. walkeri that were revealed in the 

current study. Based on the 800bp COl sequence, An. earlei, An. freeborni and An. 

punctipennis are most closely related, with An. punctipennis E (ON) and An. punctipennis 
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W (BC) fonning distinct groups, followed by An. quadrimaculatus s.l., and more 

distantly, An. walkeri (NO and LP) and An. barberi. 

These results are in agreement with those of another study ofNearctic 

anophelines based on the D2 variable region of 28S rDNA (Porter and Collins 1996). In 

this study, An. earlei, An. freeborni, An. punctipennis E and An. punctipennis W fonn one 

group, and An. quadrimaculatus species A, B, C, and D fonn another, both groups being 

distantly related to An. walkeri, the most divergent of all species examined (although An. 

barberi was not included) (Porter and Collins 1996). 

In general, the proposed phylogenetic relationships among the anopheline species 

that occur in Canada based on COl and ITS2 data are similar, but a few differences are 

apparent (Figures 3.9 and 3.14). An. walkeri and An. barberi are the most divergent 

species in both trees, but the close relationship between An. earlei, An. freeborni, and An. 

punctipennis (E and W) in the COl tree is not as clear in the ITS2 tree. This is likely due 

in part to the requirement for editing of the 800bp ITS2 sequence in An. earlei. Most of 

the ITS2 region is not translated or involved in ribosomal processing and, thus, not 

subject to functional constraints so insertions and deletions are free to accumulate. 

Therefore, ITS2 may be less suitable for hypotheses of phylogenetic relationships of 

more distantly related species. 

3.5. Summary and Conclusions 

While analysis of mitochondrial and ribosomal DNA variation among the 

Anopheles species of Canada revealed the presence of cryptic species, they were based on 

geographic location, and not on morphological identifications (i.e., An. perplexens and 

An. smaragdinus) as expected. In particular, while both COl and ITS2 provided evidence 

for a cryptic species within An. punctipennis, the two groups differed based on collection 

location (i.e., BC vs. ON), and not morphological variation in the size of the pale-scaled 

wings spots (adults) or the state of setae 2-IV and 2-V (larvae) (i.e., An. punctipennis vs. 

An. perplexens). ITSI data seem to confirm these results,with all BC An. punctipennis 

producing single ITSI bands and all ON An. punctipennis producing multiple bands (2-5 

per individual). Similar results based on the D2 variable region of 28S data (Porter and 
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Collins 1996) suggest that, in North America, An. punctipennis may be a complex of two 

or more species, including an eastern and western species. 

The results of COl, ITS2, and ITSI data also indicate the presence ofa cryptic 

species within An. walkeri. All three markers were significantly different between the 

Manitoulin Island and Long Point Provincial Park specimens. Preliminary morphological 

examination of these individuals did not reveal any obvious morphological differences 

between the two groups, and the Manitoulin Island specimens represent fITst records for 

that location. Further studies are required to characterize the differences between An. 

walkeri and its newly recognized sibling species. 

With respect to the suspected cryptic species An. smaragdinus, COl, ITS2, and 

ITS 1 could not confirm its presence in Canada. Despite the large number of specimens 

that key out to this member of the An. quadrimaculatus complex, specimens identified 

morphologically as An. smaragdinus did not differ from those identified as An. 

quadrimaculatus s.s based on ITS2 sequences. This suggests that the morphological 

characters used to distinguish these species in the USA may not be applicable here at the 

northern limit of their ranges. 

COl and ITS2 data also provided evidence that both An. quadrimaculatus s.s. and 

An. freeborni likely occur as single species throughout their range in Canada. Because all 

An. barberi specimens were obtained from the same woodlot in Niagara, the level of 

intraspecific variation observed in this species may not be a reflection of the actual 

variation throughout its range in southern Ontario and Quebec. Finally, although An. 

earlei has the broadest distribution in Canada; and samples were obtained from a wide 

variety oflocations, COl and ITS2 did not reveal the presence of cryptic species within 

this taxon, although there were minor differences between specimens from BC and those 

from the remaining collection sites. This suggests that the Rocky Mountains may cause 

some degree of isolation between eastern and western populations of An. earlei on either 

side, but not as much as that observed between populations of An. punctipennis. 

Therefore, the analysis of molecular data proved a valuable perspective from which to 

examine the cryptic species status of Anopheles mosquitoes from Canada. 
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Chapter Four: 
Ecological Analyses of the Larval Habitats of Anopheles in Canada 

4.1. Introduction 

Ecological traits have long been known as potential distinguishing characters 

among closely related species of Anopheles mosquitoes. In his paper on race formation 

and speciation in mosquitoes, Kitzmiller (1959) describes the "Anophelism without 

malaria" problem and subsequent discovery that the primary vector, An. maculipennis, 

was in fact a complex of morphologically similar species that varied widely from one 

another in ecological associations, such as larval habitat (e.g., salinity tolerance) and host 

association. Crossing experiments and polytene chromosome data confirmed the specific 

status of suspected cryptic species by showing that reproductive isolation existed in 

varying degrees among various populations of An. maculipennis throughout Europe 

(Kitzmiller 1959). A similar study involving hybridization experiments in An. gambiae 

also revealed ecological differences in salinity tolerance (e.g., fresh versus salt water 

larval habitats) among "populations" from various regions in Africa, which indicated the 

probable existence of distinct biological species within this taxon (Paterson 1962). Both 

An. maculipennis and An. gambiae are now known as complexes of isomorphic species, 

distinguishable based on multiple types of data, including polytene chromosome (Frizzi 

1947; Coluzzi et al. 1977) and molecular (ITS2) data (Proft et al. 1999; Paskewitz et al. 

1993), but it was ecological data that led to the discovery of cryptic members within each 

of these species complexes. 

Ecological data is an important aspect of insect systematics, and modem 

molecular methods of species identification have provided a theoretical foundation for 

detailed studies of ecological characters to aid in accurate species delineation. For 

example, the neotropical butterfly Astraptes fulgerator (Lepidoptera: Hesperiidae) was 

once believed to be a single species that was common, variable and had a very broad 

distribution (from the southern USA to northern Argentina), found in near desert to near 

deep rainforest habitats, at a variety of elevations, and in urban or pristine environments 

(Hebert et al. 2004). However, analysis of the barcoding region of the cytochrome 

oxidase I gene (COl) revealed the presence of at least ten cryptic species that, once 
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recognized, led to discovery that these largely sympatric species had different caterpillar 

plant foods, larval morphology, and ecosystem preferences accompanied by only very 

slight differences in adult morphology, including genitalia (Hebert et al. 2004). 

In a similar study of 16 species of tropical parasitoid flies (Diptera: Tachinidae) 

that were believed to be generalists based on the high number of host species 

(caterpillars) from which they had been reared, DNA barcoding led to the discovery of 

numerous cryptic species within the 16 supposedly generalist species, many of which 

were, in fact, specialist species (i.e., reared from only one species of caterpillar) (Smith et 

at. 2007). Four different ecological patterns were revealed among the 16 species: 1) a 

single generalist species, 2) a pair of morphologically cryptic generalist species, 3) a 

complex of specialist species plus a generalist, and 4) a complex of specialists with no 

remaining generalist (Smith et al. 2007). This example illustrates the importance of 

ecological traits in the description of cryptic species. 

Within Anopheles mosquitoes, ecological characters commonly used to 

distinguish among members of species complexes include host association (e.g., human 

versus other mammal or bird biters) and larval habitat associations (e.g., fresh water 

versus salt water, vegetation type) among others. In malaria endemic regions, many 

potential vector species belong to isomorphic species complexes whose members differ in 

their ability to transmit the malarial parasite, which is often a result of differences in 

ecological traits. Isomorphic members of the An. gambiae complex have been the focus 

of intense research using multiple types of data to find a simple, reliable method for 

identifying each species that would allow vector control efforts to target the correct 

species. Once species identification using polytene chromosome data became possible, 

the ecological differences among species of the An. gambiae complex in Africa could 

then be determined. Larvae of two species, An. merus and An. melas, occur in salt-water 

habitats of the eastern and western coastal regions of Africa, respectively, whereas the 

larvae of four other species occur in widely distributed fresh-water habitats of non-coastal 

regions (Coluzzi et al. 1977). Anopheles gambiae and An. arabiensis are the most 

anthropophilic members of the complex with the widest distributions, and therefore 

represent the primary vectors of malarial parasites in the regions where they occur 

(Coluzzi et at. 1977). However, they have different distribution limits and seasonal 
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prevalence, such that An. gambiae predominate in forest and humid savanna regions and 

An. arabiensis in arid savannas and steppes (Coluzzi et al. 1977). In addition, in areas 

where they occur sympatrically, An. arabiensis increases in relative frequency during the 

dry season (Coluzzi et al. 1977). Because a fifth species, An. quadriannulatus, exhibits 

marked zoophily, it is not implicated in the spread of human malaria and therefore is not 

considered to be of medical importance (Coluzzi et al. 1977). The larvae of a sixth 

species, An. bwambae, are specific to the pools of mineral springs found only in the 

Semliki forest in Uganda (Coluzzi et al. 1977; Coluzzi et al. 2002). This example 

illustrates how larval habitat correlates can be an important character set when 

investigating the status of cryptic species. 

Most of the known information regarding the ecological traits of Anopheles 

species present in Canada can be found in Mosquitoes of North America, north of Mexico 

(Carpenter and LaCasse, 1955), and, from a Canadian perspective, in The Mosquitoes of 

Canada (Wood et al. 1979). While these authors do include general bionomical data 

based on personal observations for certain life stages and/or species, the type of data 

described (e.g. larval habitat, seasonal prevalence, etc.) is inconsistent among species and 

sometimes based on studies conducted only in the USA. The known larval habitats for 

all seven previously recognized anopheline species (based on morphological data) present 

in Canada (see Chapter One) are listed in Table 4.1 (Carpenter and LaCasse 1955; Wood 

et al. 1979; Thielman and Hunter 2007). Four species are sometimes referred to as the 

"marsh-breeding" species including An. earlei, An. punctipennis, An. quadrimaculatus 

s.I., and An. walkeri, but larvae of An. freeborni in British Columbia are also sometimes 

found in marshes (Wood et al. 1979). . 

In addition to these seven species, identified based on morphological characters, two 

cryptic species were suspected to occur in Canada: An. perplexens (currently known only 

from the USA and morphologically similar to An. punctipennis) and An. smaragdinus (a 

cryptic member of the An. quadrimaculatus complex from the USA). These species were 

identified in 2005-2009 field collections based on morphological identifications of adults 

and larvae following the key in The Identification and Geographical Distribution of 

Mosquitoes of North America, north of Mexico (Darsie and Ward 2005). Anopheles 

perplexens is closely related to An. punctipennis, from 
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Table 4.1. Larval habitat descriptions for the seven Anopheles species previously known 
from Canada based on morphological data and the three cryptic species (indicated by *) 
whose presence in Canada was suspected based on preliminary morphological 
identifications (see Chapter Two) and the close proximity of their ranges to the Canadian 
border (see Chapter One) (Carpenter and LaCasse 1955; Bellamy 1956; Wood et al. 
1979; Reinert et al. 1997). 

Species Larval Habitat Associations 

An. barberi 
found primarily tree holes, rarely in artificial 
containers 
ponds, lakes, swamps, and semi-permanent 

An. crucians s.l. and permanent pools, in acidic water,usually 
with floating or emergent vegetation 

An. freeborni 
pools and sloughs formed by creeks and large 
marshes, usually with emergent vegetation 
cold clear water in shallow margins of semi-
permanent and permanent ponds overgrown 

An. earlei with floating and emergent vegetation, 
woodland pools, associated with other 
anophelines 

permanent pools, ponded creeks, shallow 
An. occidentalis * margins of ponds and hillside seepages along 

the Pacific West coast 

clear calcareous springs and streams that issue 
An. perplexens * from them, lime sink holes with shaded clear 

water covered with duckweed 
largest variety of habitats, pools and ponds 
with floating, emergent or no vegetation, rock 

An. punctipennis pools, tree holes, artificial containers, 
puddles, usually associated with other 
anophelines 
various habitats, marshy edges of rivers lakes, 

An. quadrimaculatus s.s. 
sluggish streams, canals, usually in permanent 
fresh water, associated with other marsh-
breeding species 

An. smaragdinus * permanent swamps with filtered sunlight and 
limited aquatic vegetation 

An. walkeri ponds with cattails and emergent vegetation, 
associated with other marsh-breeding species 
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which it can be distinguished chromosomally, but not reliably morphologically (except in 

the egg stage) (Bellamy 1956; Linley and Kaiser 1994). Anopheles smaragdinus is a 

relatively recently recognized species in the An. quadrimaculatus complex, identifiable 

by numerous methods including polytene chromosomes, molecular (lTS2) data, and 

minor differences in egg, larval, and adult morphology (Reinert et al. 1997). While An. 

quadrimaculatus s.s. appears to be opportunistic in habitat selection and larvae are known 

from a wide variety of habitats, An. smaragdinus larvae are reported to be associated with 

permanent swamps with filtered sunlight and limited aquatic vegetation (Reinert et al. 

1997). Similarly, An. punctipennis is known from a wide variety of larval habitats 

throughout North America, but the larvae of An. perplexens are specific to alvar habitats 

(i.e., exposed limestone), such as the circular, limestone sinkholes present at the type 

locality in Georgia, USA (Bellamy 1956). 

To investigate larval habitat and species associations of Anopheles species in 

Canada, bionomic data from larval dipping collections were recorded and larval and adult 

specimens reared from those collections were identified to species. Thus, the analysis of 

ecological data represents a third approach to investigating the cryptic species status of 

Anopheles species from Canada. This study represents the first detailed treatment of 

larval habitat data associated with anopheline species here near the northern limits of 

their ranges. The objectives of this ecological component of the overall study are to look 

for ecological evidence of cryptic species, and to provide updated Canadian bionomic 

information, including larval habitat and species associations, for each Anopheles species 

known from Canada. 

4.2. Materials and Methods 

Larvae and pupae were collected from a wide variety of habitats and locations in 

Canada (Figures 2.11, 2.12 and 2.13). Specimen collection methods, preservation, and 

identification were described in Chapter Two. All specimens were identified to species 

based on morphological data using the key ofDarsie and Ward (2005), and although 

results of molecular analyses suggested that specimens identified morphologically as An. 

perplexens and An. smaragdinus were simply morphological variants of An. punctipennis 
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and An. quadrimaculatus s.s. respectively, original species names were kept for analyses 

of ecological data to determine whether ecological factors were related to the 

morphological differences could be observed. 

A data collection form was designed and used to record the larval habitat data 

associated with each mosquito-positive collection (types listed in Table 1 of Appendix 

II). The ecological data for all larval dipping collections are maintained in an online 

database designed specifically for this research, which will be made available to the 

public upon completion of all degree requirements (see Appendix II). Each larval dipping 

collection consisted ofa minimum of20 dips (no maximum) to obtain at least 100 

specimens per site, if possible. For each larval dipping collection, larval habitat was 

classified as one of ten possible water body types (called "container type" in the 

database) (Table 4.2), and the type of emergent and floating vegetation, if present, was 

recorded (Table 4.3). 
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Table 4.2. Larval habitat water body type classifications used for all Anopheles-positive 
larval dipping collections. Definitions as used in the current study are provided. 

Water Body 
Definition 

Classification 

alvar/quarry 
water surrounded by limestone walls; old limestone 
quarries; vegetation usually absent 

artificial container 
plastic, glass, or metal containers, such as tires, buckets, 
birdbaths, etc. 
dense layer of peat, acidic, water table at or near surface, 

bog usually with mosses, shrubs and sedges, trees may be 
present 

ditch/creek 
shallow, still or slow-flowing waterways, streams, smaller 
than rivers, natural or artificial (beside roads) 
temporary or permanent small pools of water in the 

forest pool forest, includes snowmelt pools, emergent vegetation 
usually absent 
shallow, slow-flowing waters at the edges oflakes and 

lake/river edge rivers, usually protected by floating and/or emergent 
vegetation 
large bodies of water, ~ 1 m deep, lots of emergent 

marsh vegetation such as cattails (Typha spp.) present, trees 
absent 

pond 
still body of water, smaller than a lake, usually with 
floating and/or emergent vegetation such as algae 

rock pool 
small pools of water found on the rocks along the shores 
of rivers, oceans, and other large, moving, bodies of water 
basins, pools, and ponds that are found beside rivers, 

shallow waters coastlines, and shoreline, submerged vegetation and 
floating leaved plants present 
large stagnant pools of water, especially as part of a bay, 

slough inlet, or backwater, usually with trees and nearly dosed 
canopy 

swamp 
stagnant or slow-flowing pool, usually covered with trees 
or shrubbery 

tree hole 
permanent (deep rot holes) or temporary (shallow rot . 
holes) pools of water in trees 
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Table 4.3. Vegetation types recorded during 2005-2009 larval dipping collections. 

moss/lichen 
shrubs 

blue iris Iris versicolor 
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4.3. Results and Discussion 

4.3.1. Overall Species Abundance 

A total of 4805 Anopheles specimens (2140 larvae and 2665 reared adults) 

obtained from all larval dipping collections during the 2005-2009 field seasons were 

reared, preserved, and identified. The most commonly collected species were An. 

punctipennis and An. quadrimaculatus, comprising 77.34% of all specimens collected; 

the least common were An. walkeri, An. freebomi, and An. barberi (1.3 7%, 2.3 7%, and 

2.96% percent of all specimens collected, respectively) (Table 4.4). The wide range in 

abundance among species is likely due in part to actual differences in abundance levels 

within the larval habitats from which they were collected, and in part to sampling bias, 

e.g., some regions/water body types sampled more intensely than others, some species a 

have limited distribution range (e.g., An. freebomi occurs only in Be), etc. 

The low number of An. barberi collected (Table 4.4) was likely related to both the 

rarity of natural larval habitat in the environment (i.e., deep, elevated tree holes) and the 

difficulty experienced finding such habitats. Prior to the current study, collection records 

for An. barberi in Ontario included Point Pe1ee National Park (Smith and Trimble 1973), 

Guelph (Shipp et. al. 1978), and the Perth region (Wood et al. 1979). During the 2005 

and 2006 field seasons, one larva was collected from a tree hole located in Point Pelee 

National Park despite considerable effort to find water-filled tree holes in WE (i.e., Point 

Pelee National Park and surrounding area) and aT (Perth and surrounding area). The 

other 141 larval and adult specimens were reared from larvae collected from used tires 

that had been set up in a woodlot in NI by a colleague for an unrelated study of tree hole 

mosquitoes. Although An. barberi larvae have been recorded from artificial containers 

(Debboun and Hall 1992), their use as a collection tool for this elusive species has not 

been addressed. The placement of used tires in a woodlot was far more successful in 

obtaining An. barberi specimens throughout the summer than locating An. barberi­

positive tree holes in a forest. 
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Table 4.4. Number of Anopheles larvae and adults, identified based on morphological 
characters using the key of Darsie and Ward (2005), obtained by larval dipping 
collections conducted during 2005-2009 field seasons. 

Species Larvae Adults Total % Total 
An. barberi 96 46 142 2.96 
An. earlei 250 312 562 11.70 

An. freeborni 62 52 114 2.37 
An. perplexens 31 135 166 3.45 

An. punctipennis 750 1344 2094 43.58 
An. quadrimaculatus s.l. 914 708 1622 33.76 

An. smaragdinus 1 31 32 0.67 
An. walkeri 36 37 73 1.52 

Total 2140 2665 4805 
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Anopheles earlei was not the most abundant species collected (Table 4.4), but it 

was collected from the widest variety of geographical locations including British 

Columbia, Ontario, northern Quebec, and Newfoundland. The collection of An. earlei 

from NF is a first record of this species from the island of Newfoundland. Although 

considered a marsh species, An. earlei is also considered to be more common in wooded 

areas, a habitat not often sampled during field collections, than in open areas (Wood et al. 

1979). Anopheles earlei occurs much farther north than other anophelines, found 

throughout the boreal forest (Figure 1.9). It has been called "Canada's National 

Mosquito" due its association with beavers, as a feeding association study found ~82% of 

An. earlei specimens had fed on beavers (Wright and DeFoliart 1970) and they have been 

found in large numbers inside a beaver lodge (Hudson 1978). This association with 

beaver lodges might explain the ability of An. earlei to occur farther north than other 

anopheline species, providing females with ideal (warm, moist) hibernacula in which to 

overwinter. 

The low number of An. freeborni specimens collected (Table 4.4) was likely due 

to both its restricted range in Canada (present only in the Okanagan and Kootenays 

regions of BC) and the lack of annual sampling in this region. A total of 20 An. freeborni 

larvae and adults were obtained from 23 larval dipping collections conducted during a 

nine-day collecting trip (21 Jun - 29 Jun) in 2005, whereas the remaining 94 specimens 

were obtained from 3 larval dipping collections (by a local environmental consulting 

company) conducted at the same An. freeborn i-positive pond in Kamloops, Be. 

Therefore, the low number of An. freeborni specimens collected likely does not 

accurately reflect its actual abundance in the regions where it occurs. 

Anopheles punctipennis was the most commonly collected species (Table 4.4). 

As most larval dipping collections were conducted in southern ON (WE, NI, OT, and 

NO), and all four marsh anophelines are known from this region, this is likely a good 

indication of its actual abundance in this region. The relative abundance of specimens 

identified morphologically as An. perplexens was considerably lower, comprising ~3.5% 

of all specimens collected (Table 4.4). Since An. perplexens is known from alvar-type 

habitats throughout the eastern United States (Figure 1.15), and many similar habitats 

were located in the NI region during course of this study, we chose to focus collections in 
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this area during the 2007-2009 field seasons. Although it unlikely that An. perplexens 

and An. punctipennis don't differ in the molecular markers examined (see Chapter 

Three), an attempt to obtain eggs from field-collected An. perplexens females was made 

for confirmation its presence or absence in Canada (see Chapter Two). However, 

specimens identified as An. perplexens were collected in other regions as well. 

Therefore, the original species identifications were used in the following larval habitat 

analyses to determine whether the morphological differences observed were related to 

ecological associations. 

Anopheles quadrimaculatus s.l. was the second most commonly collected species 

(Table 4.4) and, similar to An. punctipennis, this is likely a more accurate reflection ofthe 

actual abundance of An. quadrimaculatus s.l. in the regions where it occurs, for the same 

reasons mentioned above. The relative abundance of An. smaragdinus, the other cryptic 

species thought to be present in southern ON based on morphological observations, was 

much lower (0.7% of all specimens collected) because only a subsample of An. 

quadrimaculatus s.l. specimens was identified to the sibling species level. Molecular 

evidence suggests that individuals identified morphologically as An. smaragdinus are 

simply morphological variants of An. quadrimaculatus s.s. (see Chapter Three). All 32 

specimens identified as An. smaragdinus were collected in NI, but known associated 

habitats of An. smaragdinus (i.e., swamps with filtered sunlight and little vegetation) 

were not located/sampled in this region, suggesting again that specimens identified as An. 

smaragdinus are likely An. quadrimaculatus s.s. variants. 

Finally, An. walkeri was the least commonly collected of the four marsh species, 

(Table 4.4), however, the reason for the low number of specimens obtained by larval 

dipping may not be as straightforward. According to Wood et al. (1979), An. walkeri is 

usually the most common anopheline in southern Ontario during the summer months. 

However, despite being the most intensely sampled area, An. walkeri was among the least 

commonly collected anophelines in southern Ontario during the 2005-09 field seasons 

(Table 4.4). Possible reasons for this could be that larvae of An. walkeri are more easily 

disturbed during larval collections and/or are able to remain below the surface of the 

water longer than the other species, or they may have actually decreased in abundance 

due to a decrease in available larval habitat in this region since the publication of Wood 
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et al. (1979). Many marsh habitats indicated on topographic maps published in the late 

1970s, when located for sampling, had been drained for residential or agricultural use (A. 

Thielman, pers. obs.). Interestingly, there are no previous records of An. walkeri from 

NO, where a cryptic species closely related to An. walkeri was discovered based on 

molecular data (see Chapter Three). Collection of specimens from the type locality near 

Lake Simcoe~ Ontario, and analysis of Cal, ITS2, and ITS I sequences, could determine 

which population represents the type species and the other the newly recognized species. 

4.3.2. Regional Species Abundance 

A total of 4805 anopheline specimens were collected from 224 Anopheles­

positive larval dipping collections conducted in all sampling regions during the 2005-

2009 field seasons (Table 4.4). The number of specimens collected varied greatly 

depending on the species and region of collection. From ~400-2000 specimens were 

reared from larval dipping collections made in each of five main collecting regions in 

Canada, i.e., BC, NI, WE, aT, and WE (Figure 4.1); considerably fewer (75 or less) were 

collected from each of the other six regions, i.e. NF, RQ, AL, HL, FN, and BP. 

Anopheles punctipennis was collected from the greatest number of regions sampled in 

Canada (9/11), and An. barberl from the fewest (2/11) (Figure 4.1). 

Anopheles barberi was collected mainly from NI, with one specimen obtained 

from a tree hole in WE, but none from aT, a region with previous records for this 

species, despite considerable effort to locate suitable larval habitat in this area (Figure 

4.1; Table 4.5). The much greater abundance of An. barberi collected in NI is due to the 

collection method (i.e., used tires in a woodlot) employed in this region. An. earlei was 

not among the most abundant species collected, but it was collected from 8/11 regions, 

and from the broadest geographic range in Canada (BC, ON, RQ, and NF) (Figure 4.1). 

It was more common in northern regions (e.g .. NO, AL, and aT), and was the only 

anopheline collected in RQ and NF. Interestingly, An. earlei was not collected in WE 

and only six specimens were obtained in NI (Table 4.5), which are locations that were 

both intensely sampled and within the known range for this species (Figure 1.9). 
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Figure 4.1. Number of Anopheles specimens obtained from each collecting region during 
2005-2009 larval dipping collections. Region codes are listed in Appendix 1. 

Table 4.5. Number of specimens collected from the five main sampling regions. 
Region codes are listed in Appendix 1. 

NI WE OT NO BC Total 
An. barberi 141 1 0 0 0 142 
An. earlei 6 0 63 362 12 443 

An. freeborni 0 0 0 0 114 114 
An. perplexens 122 0 16 15 0 153 

An. punctipennis 823 120 211 565 293 2010 
An. quadrimaculatus s.l. 924 259 429 8 0 1652 

An. walkeri 7 12 1 52 0 72 
Total 2053 392 720 1002 419 4586 
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Therefore, An. earlei becomes more abundant, and the other anopheline species less 

abundant, with increasing latitude. 

Anopheles freeborni was among the least commonly collected species (Figure 

4.1), due in part to its presence only in the southern interior of BC (Figure 1.10). Of the 

three species known from BC (An. earlei, An. freeborni, and An. punctipennis), An. 

freeborni was the second most commonly collected species (Table 4.5). Unlike the most 

abundant species in BC (An. punctipennis), whose larvae are known from a wide variety 

water body types, the larval habitat of An. freeborni is restricted to clear water in open 

areas exposed to sunlight, such as irrigation seepages (Belton 1983). Therefore, the 

actual relative abundance of An. freeborni in nature is likely higher in regions where 

suitable habitat occurs. 

Anopheles punctipennis was the most abundant species among all larval dipping 

collections, collected in the most (9/11) sampling regions of all species examined (Figure 

4.1). It was absent only from RQ and NF, which are further north than the known range 

of this species. Within the five main collecting regions, An. punctipennis was the most 

commonly collected species in BC and NO, and the second most commonly collected 

species in NI, WE, and OT (Table 4.5). Due to the wide variety of habitats in which An. 

punctipennis larvae are found (Carpenter and LaCasse 1955; Wood et al. 1979), the high 

relative abundance observed for this species is likely an accurate reflection of their actual 

abundance within the collecting regions of this study. 

Anopheles quadrimaculatus s.l. was collected only from sites in southern ON, and 

was the most abundant species in the three regions from which it is known (i.e., WE, NI, 

and OT) (Figure 4.1; Table 4.5). Although the number of specimens is very low, An. 

quadrimaculatus s.l. was also collected from NO, where it is at the northern limit of its 

range. For the same reasons discussed above for An. punctipennis, the relative abundance 

levels observed are likely accurate reflections of its actual abundance in these regions. 

Anopheles walkeri was collected from all four sampling regions in southern ON, 

but in the lowest numbers of all marsh species (Figure 4.1). Interestingly, it was 

collected in the greatest numbers from NO (Table 4.5), the one region from which there 

were no previous records of this species (Wood et al. 1979). Furthermore, molecular data 

revealed the presence of a cryptic species within An. walkeri, with distinct isomorphic 
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species present in LP and NO (see Chapter Three). Because LP is well within the known 

range of An. walkeri, and An. walkeri larvae were collected from habitats other than the 

large marshes (e.g. ditches) present in WE and LP, the new cryptic species is most likely 

the NO species. Also, since An. walkeri adult females were collected in large numbers 

from WE using CDC light traps, but very few larvae found in nearby marshes, the low 

number of An. walkeri specimens obtained by larval dipping is likely not an accurate 

reflection of their actual abundance in the regions where An. walkeri occurs. 

Since the number of specimens obtained from six of the 11 collecting regions NF, 

RQ, AL, HL, FN, and BP was much lower compared to five of the main regions included 

in the study (BC, WE, NI, OT, and NO) (Figure 4.1), the following analyses oflarval 

habitat characteristics are based on the data from these five regions only. 

4.3.3. Larval Habitat Analyses 

Anopheline larvae were collected from a wide variety of water body types, from 

small stagnant ponds to the slowly-flowing water oflake and river edges (types and 

definitions as used in this thesis listed in Table 4.2). Due to similarity between certain 

habitat types, some were grouped together for the remainder of analyses (e.g., marshes 

and shallow waters). The number of specimens obtained varied depending on the species 

and the water body type from which they were collected (Table 4.6). Anopheline larvae 

were most commonly collected from ditches and creeks (38.0%), followed by ponds 

(20.1 %), marshes and shallow waters (12.3%), and least commonly from artificial 

containers and tires (5.6%), forest and ground pools (1.6%), and tree holes (0.2%) (Table 

4.6). 

Anopheles barberi was collected from only two water body types and two regions 

in Ontario. Except for one specimen from a tree hole at Point Pelee National Park (WE) 

and 8 from tree holes in NI, An. barberi was collected mainly from artificial containers 

(tires) in Niagara (Table 4.6; Figure 4.2). This is due to repeated trips to this location to 

obtain specimens, illustrating the advantage of using this particular method (i.e., used 

tires in a woodlot) over locating tree holes that contain An. barberi larvae. 
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Table 4.6. Number of Anopheles specimens collected from each water body type in five 
main collecting regions during 2005-2009 field seasons (in descending order of 
abundance) . 

ditches/creeks 
~ .- _._._, .. ---

. _~_p0l2..d_s __ 
r marshes/shallow waters 
t,~ -'-~' -----.. ----- .• -~ 

i lake/river edges 
1,---·----_·- -----~ 

I swamps/sloughs 
I--"-~~· ... _. --~--- '~-.'.'- - -
I alvar/quarry 

r.. a~ificial/tin;~s 
I forest/ground pools 
(~-- --.~.--~ 

i tree holes r -b~gs-- '-

Total 

ditches/creeks 

ponds 

marshes/shallow waters 

swamps/sloughs 

lake/river edges 

alvar/quarry 

artificiaVtires 

forest/ground pools 

barb : earl ' ~ free < perp 
-

; punc quad i walk Total 

, 142 443 : 114 

944 597 ! 13 1741 
380 .". ~84 -, __ ~ .. " 92~_' 

/ 202 211 24 562 : 
] 33 239 -.. _'~L~ 1 __ -41 1 '1 

143 61 ; 24 355 
~. '.",-.'"~-"",, 

82 : 0 256 
94 0 255 

--1--32 0 73 
.. ,. __ .. ~_~.~ 1 .... _. ~ ~ 

o < 0 0 9 - --~-~ - ... ~--~ ,-~-----~ --. ~--~-, 
o ; 0 0 i 0 

2010 1652 J 72 : 4586 1 

NI 

- WE 
.. aT 

NO 

Be 
tree holes IiiiiI 

+-------.-------~----~ 

o 50 100 150 

Number of Individuals 

Figure 4.2. Number of An. barberi larvae collected from each larval habitat type. 
Definitions listed in Table 4.2; Region codes listed in Appendix I. 
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Anopheles freeborni was the only species collected from even fewer water body 

types and regions than An. barberi. Anopheles freeborni was collected only in British 

Columbia, mainly from ponds, but also in creeks and ditches (Table 4.6; Figure 4.3). 

During the 10-day collecting trip in BC, suitable larval habitat was not easy to find, but 

Anopheles were found in almost all ponds checked, most of which were located on golf 

courses and farms. Anopheles freeborni were obtained from 8/27 BC larval dipping 

collections, but most specimens (79.8%) came from 2 collections made on the same farm 

near Kamloops at different times. Therefore, the limited number of water body types in 

which An. freeborni larvae were found in this study may not represent all potential 

habitats within its distribution range. For example, An. freeborni are known from clear 

water in sunlit areas (Belton 1983), such as irrigation ditches, only one of which was 

sampled while collecting near Oliver, BC. 

Anopheles earlei was collected from a wide variety of habitats. It was most 

commonly collected from marshes and shallow waters (27.1 %), swamps and sloughs 

(26.9%), and ditches and creeks (23.7%) (Table 4.6; Figure 4.4). Anopheles earlei was 

collected from the greatest number of larval habitat types within the region in which it 

was most often collected (i.e., NO). As latitude decreased, so too did the relative 

abundance of An. earlei, as well as the number of larval habitat types from which it was 

collected. Also, as most An. earlei specimens were collected from habitats located in 

more pristine areas (A. Thielman,pers. obs.), the greater urban development in NI and 

WE may also contribute to the low number of specimens collected in these regions. 

Anopheles punctipennis was collected in all five main regions, and from all 

possible larval habitats sampled except tree holes (Table 4.6; Figure 4.5). The most 

common habitat types in which An. punctipennis were found were ditches and creeks 

(47.0%), followed by ponds (18.9%), and marshes and swamps (10.0%). Anopheles 

punctipennis was collected from the greatest number of larval habitats types in NI, 

followed by NO, WE, and OT, and the least in BC. However, these values may reflect 

the additional sampling effort in NI (Figure 4.1). Anopheles punctipennis (including 

those identified as An. perplexens) was the only anopheline except An. barberi that was 

found in artificial containers (i.e., tires). 
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Figure 4.3. Number of An. freeborni larvae collected from each larval habitat type. 
Definitions listed in Table 4.2; region codes listed in Appendix I. 
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Figure 4.4. Number of An. earlei larvae collected from each larval habitat type. 
Definitions listed in Table 4.2; region codes listed in Appendix I. 
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Figure 4.5. Number of An. punctipennis larvae collected from each larval habitat type. 
Definitions listed in Table 4.2; region codes listed in Appendix 1. 
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Figure 4.6. Number of An. perplexens larvae collected from each larval habitat type. 
Definitions listed in Table 4.2; region codes listed in Appendix 1. 
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Specimens identified as suspected cryptic species An. perplexens were collected 

mainly from NI, but also from sites in NO and OT (Table 4.6; Figure 4.6). In NI, most 

An. perplexens specimens were collected from limestone habitats (36.9%) and ditches 

and creeks (32.8%), and artificial containers (i.e., tires) (23.0%). In NO and OT, An. 

perplexens was also collected from ditches and creeks (35.5%), but also from swamps 

and sloughs (25.8%), lake and river edges (22.6%). Within its known range, the larvae of 

suspected cryptic species An. perplexens is restricted to alvar habitats. 

Larval dipping sites were classified as a limestone habitat (ditch/creek, alvar, or 

quarry), if appropriate, in the Niagara region only (Figure 4.7). The presence of alvars in 

NO and OT were unknown during collecting trips to these regions, and reclassification of 

each larval dipping site afterwards as one of the limestone types of habitats was not 

possible. In addition to known alvars in WE and OT (Reschke et al. 1999), habitats with 

exposed limestone were discovered in NI (Figure 4.7). Alvars were also located, 

including a man-made alvar (i.e., topsoil removed decades ago from a property exposing 

limestone) known as Marcy'S Woods in Fort Erie, the second was a shagbark-hickory 

alvar located between a new residential area and the Wainfleet Wetlands in Port 

Colbourne, and the third was a red cedar alvar located on a quarry property in Wainfleet. 

Interestingly, the three main regions from which An. perplexens specimens were 

collected are the same three regions from which alvars are known, i.e., NO, OT, and NI 

(Figure 4.8). However, unlike in the type locality for An. perplexens, the larval habitats 

of An. punctipennis and An. perplexens (Figures 4.5 and 4.6) are not distinctly different, 

sharing many of the same types of habitats. Therefore, despite an apparent ecological 

association between An. perplexens specimens and alvar-type habitats in Ontario, 

ecological data could not confirm the presence of An. perplexens in this region. 

Anopheles quadrimaculatus s.l. was the second most commonly collected species 

overall, but was the most common species in the three main regions in which it occurs 

(WE, NI, and OT) (Table 4.6; Figure 4.9). The distribution of An. quadrimaculatus s.l. 

approaches NO, but only 8 specimens were collected there despite extensive sampling in 

the region. It was also collected from the second widest variety of larval habitat types 

(7/9). Anopheles quadrimaculatus s.l. was most commonly collected from ditches and 

creeks (36.2%), and ponds (23.2%), and lake and river edges (14.4%). Dominant larval 
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Figure 4.7. Larval habitats in the Niagara region with exposed limestone. 
A - muddy creek in Effingham with small pools of clear water along edges 
B - large quarry ponds in Queenston 
C - pooled water above a limestone waterfall 
D - clear, rapidly flowing creek in Effmgham with layers of limestone visible 
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Map modified after: MapA: Distribution of alvar communities. p.26: 
In: Nature ConsetVsncy'1 Grea1lakes December 1998. 
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Figure 4.8. Map of alvar communities present in southern Ontario (Map A from Reschke 
et al. 1999). Black stars and white squares indicate known alvar sites (Reschke et al. 
1999) and triangles indicate alvar sites discovered in Niagara through the current study. 
In addition to alvar sites, many old limestone quarries were also located and sampled 
during the course of this study. 
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habitat type varied depending on region, with ditches and creeks being the most common 

type in NI and WE, and lake and river edges in OT (Figure 4.9). 

Although An. quadrimaculatus s.l. is at the edge of its range in southern Ontario 

and Quebec, it was the most abundant species collected in the WE, NI, and OT regions. 

This species was common in roadside ditches, possibly due to an increased ability to 

tolerate saline conditions in the larval habitat (Wood et al.1979). It appears to be more 

common in developed areas and less common in pristine ones (A. Thielman,pers. obs.). 

Since An. quadrimaculatus s.l. is a known vector of malaria parasites in North America 

(Wood et al. 1979), and is common in densely populated regions from WE to OT, effort 

to control this species in southern Ontario should be of primary concern if autochthonous 

transmission ofthis disease were to reemerge in the future. 

Anopheles walkeri was the least commonly collected species, present in relatively 

low numbers in four regions, and collected from five larval habitat types (Table 4.6; 

Figure 4.10). It was collected most often from marshes and shallow water (33.3%), and 

swamps and sloughs (33.3%), but also from ditches and creeks (18.0%). Anopheles 

walkeri was collected least often from OT, with only one specimen collected from a 

lake/river edge. In NI, three specimens were collected from ditches and creeks and four 

from ponds. In WE, four An. walkeri larvae were obtained from ditches and creeks and 

eight from marshes/shallow waters (Figure 4.10). 

As most An. walkeri larvae (72%) were collected from NO, a region from which 

there are no previous records, and molecular data suggested the possible presence of a 

cryptic species within An. walkeri, further studies of An. walkeri from NO are warranted. 

Dominant larval habitat varied depending on the region, with ponds being the most 

common type in NI, marshes and shallow waters in WE, and swamps and sloughs in NO 

(Figure 4.10). Thus, although differences in the larval habitats of each cryptic species 

were not apparent, geographical data confirm the presence of a cryptic species within An. 

walkeri that is specific to NO. 

Overall, the main larval habitat type from which anopheline larvae were collected 

was ditches and creeks, with almost triple the specimens obtained than from marshes and 

shallow waters (37% vs. 12.3%) (Table 4.6). So, while all four "marsh" species 
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Figure 4.9. Number of An. quadrimaculatus s.l. larvae collected from each larval habitat 
type. Definitions listed in Table 4.2; region codes listed in Appendix I. 
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Figure 4.10. Number of An. walkeri larvae collected from each larval habitat type. 
Definitions listed in Table 4.2; region codes listed in Appendix I. 
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(i.e., An. earlei, An. punctipennis, An. quadrimaculatus, and An. walkeri) were found in 

this habitat, it was not the dominant larval habitat type associated with these species. 

Large marshes such as the ones at Point Pelee National Park and Provincial Parks located 

along the north shores of Lake Erie (Rondeau, Long Point, etc.) likely produce extremely 

large populations of Anopheles mosquitoes throughout the entire mosquito season. 

However, many marshes in Ontario have been drained for agricultural or other land uses. 

Therefore, the greater relative abundance of anophelines collected from ditches could be 

due to a decrease in marsh habitat, and an increase in the number of roads, and therefore 

ditches, in these areas. All species examined in this study, except An. barberi, were 

collected from ditches and creeks. 

The second most common water body type associated with Anopheles larvae was 

ponds (20.1 % of all specimens collected), and all species, except An. barberi, were 

collected from this habitat (Table 4.6). The next most common Anopheles-positive larval 

habitat types were marshes/shallow waters (12.3%), swamps/sloughs (7.7%), and 

lake/river edges (8.9%). These larval habitats are all relatively large in size compared to 

other habitats types, with emergent and floating vegetation present providing protection 

from water movement. All four "marsh" species were collected from these habitats in 

relatively similar proportions. 

Only two species were collected from tires, An. barberi and An. punctipennis 

(including those identified morphologically as An. perplexens), comprising only 5.6% of 

all anophelines collected (Table 4.6). However, this particular habitat was not 

encountered often in nature, and almost all specimens were obtained from multiple visits 

to the same set of tires placed in the Niagara woodlot to collect An. barberi. 

Approximately the same amount (5.6%) was collected from alvars and quarries, habitats 

intentionally sought during 2007-2009 field seasons for egg morphology studies (see 

Chapter Two). The lack of anopheline specimens collected from forest and ground pools 

(1.6%) reflects in part the relatively lower number of forest or ground pools sampled 

combined as well as an actual absence from many such habitats that were sampled (A. 

Thielman, pers. obs.). 

Very rarely, anophelines were collected from bogs, a habitat characterized by 

acidic waters and distinct vegetation such as peat and sedges, which were only found and 
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sampled in BP and RQ. Anopheles earlei was found in the greatest number (n=36), but a 

few specimens of the other marsh anophelines were also collected. In Canada, bogs are 

more common in northern regions, and were common in RQ and NF, two regions where 

only An. earlei occur. The ability of An. earlei to tolerate the acidity associated with 

bogs might contribute to this species' extensive range in Canada, occurring farther north 

than any other anopheline, present even in boreal regions of the Yukon (and Alaska) 

(Figure 1.9). 

Finally, the water body type from which the fewest number of Anopheles larvae 

was obtained was tree holes, the primary larval habitat for An. barberi. Only nine 

specimens, or 0.2% of all those collected, came from tree holes, despite much effort to 

locate tree holes in regions where An. barberi had been previously recorded, and 

sampling of the water found in many tree holes that were discovered. 

4.3.4. Emergent and Floating Vegetation 

Studies of the larval habitat of Anopheles mosquitoes often includes analyses of 

both emergent and floating vegetation types, as species-vegetation associations can aid in 

the location of suitable larval habitat for vector control in areas where disease 

transmission occurs (Rejmankova et al. 1993; Manguin et al. 1996; Gimnig et al. 2001; 

Shililu et al. 2003). The presence or absence of emergent (EV) and floating (FV) 

vegetation (and types if present) was recorded for each larval dipping collection (type 

listed in Table 4.3). Therefore, for each larval dipping collection, four possible vegetation 

categories were constructed: both EV and FV absent; EV absent and FV present; EV 

present and FV absent; and both EV and FV present. 

Dfthe 350 larval dipping collections conducted during the 2005-2009 field 

seasons for which ecological data were recorded, Anopheles larvae were present in 224 

(63.1 %). Although ecological data from the remaining Anopheles-negative 126 larval 

dipping collection were recorded, data from sites in which no mosquitoes of any species 

were collected was not recorded. Therefore, only analysis of vegetation data from the 

Anopheles~positive sites was possible, and three collections were omitted from the 
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following analyses due to questionable species identifications that could not be 

confirmed. 

Among the 221 Anopheles-positive larval dipping collections examined, 

Anopheles larvae were collected most often from habitats with both FV and EV present 

(53.8%), with much lower proportions collected when FV was present and EV absent 

(18.1 %), when FV absent and EV present (14.9%), and when both FVand EV were 

absent (13.1 %) (Figure 4.11). Combining vegetation types, a much greater proportion of 

Anopheles larvae were collected from habitats in which at least one type of vegetation 

was present (86.9%) compared to habitats in which both were absent. Within the 

Anopheles-negative larval dipping collections (n=129) for which ecological were 

recorded, FVand EV were present in 33.4% of them, and 60.3% of them had at least one 

type of vegetation present. Therefore, this confirms anecdotal descriptions by early 

authors thatanophelines are usually associated with floating or emergent vegetation 

(Carpenter and LaCasse 1955; Wood et al. 1979). 

Presence or absence of emergent and floating vegetation in the larval habitat was . 

also analysed for each species separately, to determine if the anophelines examined were 

associated with a particular vegetation type category. For each species, the relative 

proportion of vegetation categories associated with each species was determined (Figure 

4.12). 

Most distinct in larval habitat association is An. barberi, with all collections from 

larval habitats in which both EV and FV were absent (n= 14), as expected for tree holes 

and tires (Figure 4.12). Anopheles freeborni was collected in similar proportions from 

larval habitats in which at least one type of vegetation was present (27.3%-36.4%), and 

never from habitats in which both types were absent. The remaining marsh species (Le., 

An.freeborni, An. punctipennis, An. quadrimaculatus s.l., andAn. walkeri) exhibited 

similar patterns in the relative proportions of vegetation categories associated with each 

species, but, unlike An. freeborni, all were also collected from habitats in which FV and 

EV were both absent (Figure 4.12). 

All four remaining species examined were collected in the greatest proportion 

when both EV and FV were present in the larval habitat, from 50% in An. walkeri to 

66.7% in An. quadrimaculatus s.l. (Figure 4.12). Combining vegetation types, they were 
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Figure 4.11. Relative proportion of vegetation type categories recorded from Anopheles­
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Figure 4.12. Relative proportion of vegetation categories associated with each species. 
EV = emergent vegetation; FV = floating vegetation; - = absent; + = present. 
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present in ~85% to 98% of collections when at least one vegetation type was present. 

Anopheles earlei larvae were collected in the second greatest proportion when EV was 

present and FV absent (26.7%), followed by EV absent and FV present (13.3%), only 

rarely when both are absent (1.7%). Therefore, EV is likely a better indicator than FV of 

potential An. earlei larval habitats. An. punctipennis larvae were collected in the second 

greatest proportion when FV was present and EV absent (17.4%), followed FV absent 

and EV present (16.2%), and when both are absent (11.1 %). A very similar pattern was 

observed for specimens identified as An. perplexens. 

Larvae of An. quadrimaculatus s.l. were collected in the second greatest 

proportion when only FV was present (24.1 %), but considerably fewer specimens were 

obtained from habitats with only EV present (5.6%) or both types absent (3.7%). The 

pattern observed for An. walkeri is very similar to that of An. punctipennis, occurring in 

the second greatest proportion when FV was present and EV absent (25%), followed by 

when FVabsent and EV present (20%), and rarely when both are absent (5%). Therefore, 

unlike An. earlei, FV is likely a better indicator of potential An. punctipennis, An. 

quadrimaculatus s.l., and An. walkerilarval habitats than EV, particularly for An. 

quadrimaculatus s.l. with ~90% of all specimens collected from habitats in which FV 

was present (Figure 4.12). 

In addition to the presence ofFV and EV in the larval habitat, the types ofFV and 

EV (listed in Table 4.3) present in the larval habitats of the anophelines examined were 

also analysed. Cattails and grasses were the most common types of EV recorded, present 

in 40% and 38% of all Anopheles-positive collections, respectively, and terrestrial plants 

present in 8.6% (Figure 4.13). Other types ofEV were present in Anopheles-positive 

larval habitats (such as shrubs, common reeds, sword plant, and wood), but were in less 

than 10 larval dipping collections and were therefore omitted from Figure 4.13. 

Many types ofFV were also recorded from Anopheles-positive larval habitats, 

and more types than EV were found in 10 or more larval dipping collections (Figure 

4.14). Algae was the most common FV type, found in 51 % of Anopheles-positive 

collections, and was the dominant type found with all species except An. walkeri, in 

which it was co-dominant with duckweed, both present in 50% of the An. walkeri­

positive larval dipping collections (n=20). Duckweed was the second most common FV 
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type in Anopheles-positive collections at 31 %, and in those of all species except An. 

walkeri (as mentioned above) and An. earlei. The second most common FV type in An. 

earlei was lily pads, which were present in 20% of An. earlei-positive collections, as well 

as the larval dipping collections of An. quadrimaculatus s.l. (19.4%), An. perplexens 

(13.3%), An. punctipennis (10.8%), and An. walkeri (5.0%). Decaying vegetation was 

found in about 10% of Anopheles-positive collections, and in those of all species 

examined (except An. freeborni), from 10% in An. walkeri to 17.8% in An. perplexens. 

Pondweed was found in 5.0% to 11.7% of the larval dipping collections and wood from 

5.0% to 9.0% of those from all species except An. freeborni (0%). Other FV types 

recorded from Anopheles-positive larval dipping collections (n<10) include grass, wood, 

pondweed, moss and lichen. 

4.3.5. Species Associations 

As with the presence of floating and emergent vegetation, early authors often state 

that certain anopheline species are usually in association with the other marsh species 

0V ood et al. 1979), but quantitative studies of species association have not been done for 

Anopheles from Canada. Therefore, larval dipping collection data were analysed to 

determine species associations for the anophelines examined. Anopheles barberi was the 

species most often collected alone, with 71.4% of An. barberi-positive larval dipping 

collections (n=14) containing only An. barberi larvae (Table 4.7). However, it was found 

with An. punctipennis in 28.6% of An. barberi-positive collections, including those 

identified as An. perplexens in 21.4%. There were two species that were never the only 

species obtained in a larval dipping collection, An. perplexens and An. walkeri (Table 

4.7). Anopheles walkeri was found most often with An. punctipennis (co-occur in 80% of 

An. walkeri-positive collections), followed by An. quadrimaculatus (60%), and An. earlei 

(35%) (but never with An. freeborni as their distribution ranges do not overlap). 

With respect to specimens identified morphologically as An. perplexens, larvae 

were found with An. barberi and An. walkeri in 6.7% of larval dipping collections form 

which An. perplexens-type females were obtained, with An. earlei in 20.0%, and with An. 

quadrimaculatus s.l. in 55.6%. Most notably, females identified as An. perplexens (based 
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Table 4.7. Relative frequencies of species co-occurrences among the anopheline species 
collected in Anopheles-positive larval dipping collections (n=221). For each species 
along the top row, the proportions of all other species present in the larval dipping 
collections positive for that species are shown in the column below. 
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162 



on morphology) were associated with An. punctipennis in 100% of the collections that 

were positive for An. perplexens-type individuals. Since An. perplexens and An. 

punctipennis are known to occupy different larval habitats in the type locality for An. 

perplexens, this is further evidence that the specimens identified morphologically as An. 

perplexens likely represent morphological variants of An. punctipennis near the northern 

limits of this species range. 

The distribution ranges of An. freeborni and An. barberi, An. quadrimaculatus s.s. 

or An. walkeri do not overlap and, thus, these species were never collected together 

(Table 4.7). However, in BC where An. freeborni occurs, it was found more often in 

association with the other species known from this region, i.e., An. punctipennis (63.6%) 

andAn. earlei (45.5%), than it was found alone (27.3% of collections). 

Anopheles earlei was the only species obtained in 23.3% of An. earlei-positive 

collections, and therefore associated with at least one of the other anophelines in ~ 77% of 

them (Table 4.7). Anopheles earlei was present with An. freeborni in 8.3% of An. earlei­

positive collections, with An. walkeri in 11.7% of them, with An. quadrimaculatus s.l. in 

31.7%, and with An. punctipennis in 66.7% of them. Therefore, both An. earlei and An. 

freeborni were collected most often with An. punctipennis (i.e. 66.7% and 63.6% of An. 

earlei-positive and An. freeborn i-positive larval dipping collections, respectively). 

Anopheles quadrimaculatus s.l. was collected alone in 14.7% of An. 

quadrimaculatus s.l.-positive collections, and therefore with at least one other anopheline 

85.3% of An-quadrimaculatus s.l.-positive larval dipping collections (Table 4.7). 

Anopheles quadrimaculatus s.l. was found withAn. walkeri (11.0%), An. earlei (17.4%), 

and most often with An. punctipennis (78%) of An. quadrimaculatus-positive collections. 

Finally, An. punctipennis, the species collected most often, from the widest 

variety of larval habitat types and in association with the widest variety of emergent and 

floating vegetation types, was found most often associated with at least one of the other 

species (Table 4.7). While collected alone in 20.7% of An. punctipennis-positive larval 

dipping collections, it was also collected with every other species that occurs in Canada 

(except An. crucians s.l. as this species was not collected during the course ofthis study), 

i.e., An. barberi (2.4%), An.freeborni (4.1 %), An. walkeri (9.5%), An. earlei (23.7%), 

andAn. quadrimaculatus (50.3%). 
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Therefore, while all species, except An. walkeri and those identified as An. 

perplexens, were sometimes found alone in larval dipping collections, they were usually 

associated (more than 70% of the time) with at least one of the other anopheline species 

included in the study. Overall, An. earlei was collected with An. freeborni or the other 

marsh species in 76.7% of collections, An. freeborni with the other two species that share 

its range in 72.7% of collections, An. punctipennis with any of the other anophelines in 

79.3% of collections, and An. walkeri and An. quadrimaculatus s.l. with the other marsh 

species in 100% and 85.3% of larval dipping collections, respectively. 

4.4. Summary 

During the 2005-06 field seasons, sampling effort was approximately equal in 

four of the five main collecting regions (BC, WE, OT, and NO) (Figure 4.1). However, 

because the overall objective of this study was to determine whether cryptic species were 

present among the Anopheles species of Canada, collection effort was focused in certain 

areas during the 2007-2009 field seasons, particularly the fifth main collecting region 

(i.e., NI) due to the potential association between alvar-type habitats and An. perplexens­

type specimens in this region. Therefore, the relative abundances of each species 

collected that were observed in this study are likely due in part to differences in sampling 

intensity conducted in each region. In addition, the types of water bodies from which 

larvae were collected were influenced by their ease of location. As time is a limited 

resource on collecting trips, ·larval dipping sites were often selected based on their 

proximity to roads and trails to decrease the amount of time spent at each location and 

maximize the number of collections (and specimens collected) in each region. Therefore, 

while the ecological data obtained during the course of the study may not accurately 

reflect species' abundances in certain regions or water body types in nature, it represents 

the most detailed information regarding larval habitats associated with Anopheles 

mosquitoes in Canada. 

Anopheles barberi was one of the least common species collected, found mainly 

in tree holes and tires in the Niagara, despite effort to locate tree holes in regions where 

previous specimens were known. It was never associated with any type of vegetation, 
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due to nature of the larval habitat, and was often collected alone, although it was found 

with An. punctipennis when collected from tires. This species is likely present 

throughout southern Ontario from Point Pelee National Park to Ottawa, wherever suitable 

habitat (i.e., hardwood forests) exists. However, they are not commonly collected 

through routine surveillance (A. Thielman, pers. obs.) and suitable tree holes can be 

extremely difficult to locate or reach without tree-climbing or other equipment. 

Anopheles earlei was collected from the most geographically distant locations, 

including British Columbia, throughout southern Ontario, Radisson in northern Quebec, 

and the island of Newfoundland, for which it is a first record. It was the third most 

common species collected, comprising 11.7% of the 4805 specimens obtained through 

larval dipping collections. Most An. earlei larvae were collected from Manitoulin Island 

(82%), followed by Ottawa (15%), British Columbia (3%), and Niagara (1 %), and none 

collected in the Windsor region despite being well within its known range. It was found 

most often in swamps, marshes, ditches and creeks, but in a variety of other habitats as 

well, including forest pools which is likely a common larval habitat for this species in 

northern wooded areas where it is common (Wood et al. 1979). Anopheles earlei larvae 

were collected most often when both emergent and floating vegetation were present, 

sometimes when only one type was present, and rarely when both were absent. 

Vegetation types with which it was commonly found include grasses, cattails, algae, and 

duckweed. Anopheles earlei was sometimes the only species obtained in larval dipping 

collections (23%), but was more often present with one or more ofthe other species, i.e., 

An. punctipennis in 67%, An. quadrimaculatuss.l. in 32%, An. walkeri in 11 %, and An. 

freeborni in 8% of all An. earlei-positive larval dipping collections. 

Anopheles freeborni was collected in smaller numbers, comprising 2.4% of all 

specimens obtained, due in part to the low number of larval dipping collections 

conducted in BC and their absence from the Lower Fraser Valley where some of the 

larval dipping collections were conducted. It was collected mainly from ponds located on 

farms and golf courses, but from a few ditches and creeks as well. Anopheles freeborni 

larvae were always found in habitats with either emergent or floating vegetation present, 

the most common types of which were grasses and cattails, and algae, duckweed, or 

pondweed, respectively. Anopheles freeborni was the only species present in 27% of 
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collections, was found with An. earlei and An. punctipennis in ~46% and 64%, 

respectively, and with both An. earlei and An. punctipennis in 15%, of the larval dipping 

collections conducted in the province. 

Anopheles punctipennis was the most commonly collected species, with over 

2000 specimens (44% of all larvae) obtained. They were mostly collected in the Niagara 

region (41 % of An. punctipennis-positive collections), but were also common in the 

Manitoulin area (28%), British Columbia (15%), Ottawa (10%), and Windsor (6%). It 

was collected from the widest variety of habitats, including ditches, creeks, ponds, old 

quarries, swamps, marshes, lake and river edges, forest and ground pools, and artificial 

containers such as tires. Anopheles punctipennis was most commonly collected when 

both emergent and floating vegetation were present, but sometimes when one or both 

types were absent. A wide variety of vegetation types were present in An. punctipennis­

positive collections, most often of which were algae, cattails, grasses, and duckweed, but 

many others were recorded as well. Anopheles punctipennis was collected both alone and 

with all other anopheline species examined, the only species included in this study to do 

so. It was collected most often with An. quadrimaculatus s.l., in 50% of all An. 

punctipennis-positive larval dipping collections, but also with An. earlei (24%), An. 

walkeri (10%), An.freeborni(4%), and An. barberi (2%). 

Anopheles quadrimaculatus s.l. was the second most abundant species collected, 

with over 1600 specimens comprising ~34% of all larvae obtained by larval dipping. 

Over half of all An. quadrimaculatus s.l. specimens were collected from the Niagara 

region (57%), followed by Ottawa (26%), Windsor (16%), and in very low numbers on 

Manitoulin Island (0.5%). In Niagara, most larvae were collected from ditches and 

creeks, ponds, and old quarries, but they were collected mainly from the edges oflakes 

and rivers in the Ottawa region and ditches, creeks, and marshes in the Windsor area. 

Anopheles quadrimaculatus s.l. larvae were found most often when both emergent and 

floating vegetation were present in the larval habitat, but sometimes when emergent 

vegetation only was present, and rarely when only floating vegetation was present or both 

types were absent. It was collected most often from larval habitats with grasses, cattails, 

algae, and duckweed present, but was also commonly collected with a variety of others as 

well. 
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Finally, An. walkeri was collected in very low numbers, with only 73 larvae 

collected during all five years of sampling, comprising only 1.5% of all specimens 

obtained, even though regions well within its known range were among those most 

intensely sampled. The majority of specimens were collected on Manitoulin Island, a 

first record for the area, with very few collected in the Windsor, Niagara and Ottawa 

regions. The abundance of adults collected from near large marshes such as those along 

the north shore of Lake Erie between Windsor and Niagara where very few larvae were 

collected by larval dipping suggests that this method is not an ideal collecting method for 

this species. Anopheles walkeri was collected most often from swamps and marshes, but 

were also present in ditches, creeks, and the edges of lakes and rivers. They were found 

most often when both emergent and floating vegetation were present, sometimes when 

only one type was present, and rarely when both were absent. The most common types 

of vegetation present in larval habitats of An. walkeri were cattails, grasses, algae, and 

duckweed. Anopheles walkeri was never the only species obtained in a larval dipping 

collection, and were found most often with An. punctipennis (80%), followed by An. 

quadrimaculatus (60%) and An. earlei (35%). This study represents the first detailed 

analysis of larval habitat data for the Anopheles species present in Canada. 
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Chapter Five: 
Morphological, molecular, and ecological data: Results of an 

integrated approach to Anopheles systematics in Canada 

5.1. Introduction 

Classical Anopheles taxonomy is difficult because anophelines are known for both 

strong morphological interspecific similarities and pronounced morphological 

intraspecific variation. It is further complicated by the recognition that many Anopheles, 

once thought to be single species, are actually complexes of species that are difficult or 

impossible to identify morphologically, yet they differ in ecological or behavioural 

characteristics that affect their ability to effectively transmit pathogenic organisms. The 

"Anophelism without malaria" problem that challenged European scientists during the 

first half of the 20th century best illustrates the importance of being able to accurately 

identify vector species, since the disease was successfully controlled once vector species 

could be distinguished from their harmless relatives and mosquito abatement programs 

could be concentrated in the correct areas (Besansky 1999; Walton et aI1999b). 

However, it is because of their potential to transmit diseases to human and other 

animals, combined with the absence of reliable morphological characters that can be used 

to discriminate among closely related species, that researchers have searched for 

alternative ways to identify Anopheles species accurately, particularly the members of 

species complexes. From the 1940s until the 1970s, these methods were based primarily 

on cytological data (i.e. polytene chromosome banding patterns), as well as genetic 

incompatibility data (i.e. offspring viability resulting from hybridization experiments). 

During the 1970s and 80s, biochemical methods of species identification were developed, 

including those involving cuticular hydrocarbons and enzyme variants. However, since 

the discovery of PCR -based techniques during the 1980s, such as random amplification 

of polymorphic DNA (RAPD) and restriction fragment length polymorphisms (RLFP), 

molecular methods have become the primary alternatives for species identification. In 

particular, since the development of automated DNA sequencing, the use of DNA 

sequences, such as the mitochondrial cytochrome oxidase I gene (COl) and the internal 
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transcribed spacer sequence 2 (ITS2), has become standard in studies of Anopheles 

systematics. 

DNA sequences, particularly ITS2, are now commonly used to help elucidate and 

identify cryptic Anopheles species. Once distinct clusters of morphologically similar 

specimens are discovered based on molecular data, re-examination of morphological 

characters can sometimes reveal minor differences not previously recognized before the 

specimens were separated into their molecular groupings. Similarly, once the isomorphic 

members of the An. gambiae and An. maculipennis were identifiable based on polytene 

chromosome banding patterns, the ecological characteristics associated with each species, 

such as larval habitat and host preference, could then be determined and used to help 

identify vector species distributions more accurately. However, caution must be 

exercised, as there is no single method that can be used to reliably identify all anopheline 

speCIes. 

For example, while polytene chromosomes were instrumental in the discovery of 

anopheline species complexes, not all species have discernible differences in the banding 

patterns that can be used to identify them. Molecular data has led to the discovery of 

many cryptic species (Bickford et al. 2007), but they often remain taxonomically cryptic 

since traditional taxonomists are needed to name and describe the morphology of newly 

recognized molecular species (Schlick-Steiner et al. 2007). Phylogenetic studies using 

morphological and molecular data have demonstrated the importance of using multiple 

markers to generate more accurate hypotheses of species delineation and relationships 

among species. This is particularly important for Anopheles taxonomy, as closely related 

species may differ in some, but not all, possible detectable ways (i.e., minor changes in 

egg morphology revealed by SEM, distribution or larval habitat, allozyme profiles, DNA 

sequences, polytene chromosomes, etc.). Knowledge of the ecological characters 

associated with each species is of practical significance due to their role in the 

transmission of diseases to humans and animals. 

The importance of a multidisciplinary approach to Anopheles systematics has long 

been recognized. Faran (1979) discussed the importance of an integrated approach and 

how the correlation of multiple data sets, including morphology, behaviour, ecology, 

vector potential, and cytogenetics, can not only help delimit existing species and 
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elucidate new ones, but sometimes can raise even more questions. Indeed, it seems as 

though the more is learned about Anopheles systematics, the more complicated the 

relationships among species seem to become. For example, An.funestus was thought to 

be two closely related species that were distinguishable based on a polytene chromosomal 

inversion, one of which was found significantly more often in indoor versus outdoor 

resting sites (Besansky 1999). Although, examination of the mitochondrial gene cytb and 

ITS2 sequences indicated that An. funestus was a single panmictic population, if 

separation of the species occurred very recently, this might not necessarily be evidence 

against reproduction isolation between the two species (Besansky 1999). Incongruence 

between different markers highlights the complexity that is often present among the 

closely related members of species complexes. There are many examples of cryptic 

species that differ from each other in only a few very minor ways (Bickford et al.2007), 

thus illustrating how investigations of systematics benefit from the use of as any many 

datasets as possible. 

Despite the presence of isomorphic species, morphology remains an important 

perspective from which to investigate questions of Anopheles systematics as specimens 

are traditionally identified morphologically prior to molecular analyses and, once cryptic 

species are discovered based on molecular data they can often be distinguished by minor 

morphological characters through morphometric analyses (Saez and Lozano 2005; 

Schlick-Steiner et al. 2007). Therefore, morphology was chosen as the first perspective 

from which to study the anopheline specimens collected from across Canada. Since 

cryptic species are, by definition, difficult to identify based on morphology alone, 

methods other than morphology were also used. Due to many advantages of using DNA 

sequence data to both identify species and elucidate cryptic species (e.g., COl and ITS2), 

Anopheles mosquitoes from Canada were also examined using molecular data. Finally, 

due to a lack of bionomic data known for many of the species whose ranges extend into 

Canada (especially within the northern regions of their ranges), and it's importance for 

the success of potential larval mosquito control programs, ecological data associated with 

the larval habitats of Anopheles species in Canada were also analysed. Combining the 

results of these types of data in an integrated approach to Anopheles. systematics, 

incongruence between morphological and molecular data was revealed and the presence 
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of two cryptic taxa was discovered. The following is a brief summary of the results from 

each type of analysis (morphological, molecular, and ecological), followed by a 

discussion of the importance of using an integrated approach and the overall conclusions 

of the study. 

5.2. Morphology 

Adult and larval mosquitoes were identified using the morphology-based key to 

the North American mosquito species (Darsie and Ward 2005) to ensure that any species 

currently known only from the USA, whose ranges may have extended north into Canada 

in recent years, were not missed during identification of the specimens obtained during 

this study. This key includes many species not known from Canada, including two 

species, An. perplexens and An. smaragdinus, which are morphologically very similar to 

native species, An. punctipennis and An. quadrimaculatus s.s., respectively. Many 

specimens collected during this study keyed out to these cryptic species, and since their 

distributions appear to approach the Canada-USA border, alternative methods were 

sought that would allow conftrmation of the presence .ofthese cryptic species in Canada, 

including ITS2 sequence data (discussed below) and scanning electron microscopy of 

eggs, both of which are known to be able to reliably identify both An. perplexens and An. 

smaragdinus from their respective siblings. 

Examination of the eggs obtained from adult females collected in the Niagara 

region using the SEM available at Brock University resulted in good quality images for 

19 An. punctipennis egg batches (SCP ratio >0.5), six females with intermediate SCP 

ratios (i.e. >0.33 and <0.5), and one An. perplexens female (SCP ratio <0.33). However, 

all 26 batches of eggs were identified as An. punctipennis based on the morphological 

differences described by Linley and Kaiser (1994). Since only one egg batch was 

obtained from an An. perplexens-type female, the results of the SEM data regarding the 

presence of this species in Canada were inconclusive. 

The eggs of An. quadrimaculatus s.l. females were also examined using scanning 

electron microscopy for morphological evidence that An. smaragdinus is present in 

Canada. However, few egg batches were obtained and all were from females identified 
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as An. quadrimaculatus s.s., and the angle of the eggs in many images did not allow the 

morphological character used to distinguish these two species to be observed. Thus, the 

results of the SEM data were, again, inconclusive. While SEM examination of egg 

morphology is a reliable means of identification for many closely related cryptic species, 

obtaining a sufficient number of samples for analysis was difficult for a number of 

reasons. After adult females were collected by CDC light traps or landing aspirations, 

some died before their return to the lab. Some females refused to take blood meals from 

the hosts provided or died during the process, and other did not lay any eggs. Therefore, 

although potentially reliable, SEM examination of eggs as a method for identifying 

cryptic species can be difficult unless collection locations are previously known because 

obtaining IPBs from field-collected females is a labour-intensive process. 

The next species examined morphologically for evidence of cryptic species was 

An. earlei, which has the broadest geographic range in North America of all species 

examined in this study, from near the tree line in northern Canada to the midwestern 

United States in the south (Figure 1.9). Since An. earlei occurs across a very broad range 

and in a wide variety of different ecosystems, the potential presence of cryptic species 

within this taxon was considered (Kitzmiller 1959), and morphological variation in a 

larval trait was observed (i.e., presence of additional ATPs), this character was examined 

in all An. earlei larvae obtained. The presence of additional accessory tergal plates 

(ATPs) is a diagnostic character for An.freeborni in both keys available for the 

identification of mosquitoes (Darsie and Ward 2005; Wood et al. 1979), but is not 

mentioned or present in descriptions or illustrations of An. earlei larvae in any other 

relevant publications (Belton 1983; Carpenter and LaCasse 1955). Therefore, larvae 

collected from various regions across Canada were examined for regional differences in 

the number of additional ATPs that might indicate the presence of a cryptic species 

within An. earlei. 

Additional ATPs were absent from all Newfoundland larvae, and were present in 

all larvae from Niagara, but samples sizes were very low for both regions (three and four, 

respectively). Larvae from all other regions included in the analysis (i.e., Algonquin, 

Manitoulin Island, Ottawa, and British Columbia) exhibited high levels of variation in the 

number of additional ATPs present. Additional ATPs were present in 65% of all larvae 
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examined, and of those, the number of spots was highly variable, with anywhere from 

one to 10 extra ATPs per larva. The high number of individuals with an intermediate 

number of ATPs (one to seven), combined with no detectable pattern in their presence 

based on geographic distribution, suggests that this particular trait is highly polymorphic 

in An. earlei but does not necessarily indicate the presence of a cryptic species within this 

taxon. 

5.3. Molecular Data 

Due to the many advantages of DNA sequence data as a method for the 

identification of species and elucidation of cryptic species over more traditional ones (i.e. 

morphological and cytological methods), Anopheles mosquitoes from across Canada 

were analysed using three molecular markers, namely Cal, ITS2, and ITS 1. The use of 

the 650bp "barcoding" region of the COl gene is now well established in the literature as 

a species identification tool that works well for almost all species examined to date. 

However, because this particular region of the Cal gene has already been studied in 

Canadian anophelines (Cywinska et al. 2008), and the 800bp region located at the 5' end 

of the gene has been shown to be more informative with respect to the elucidation of 

cryptic species in a related family of flies, the black flies (Cywinska et al. 2010), I chose 

to examine the 5' 800bp section of Cal gene. Since a review on the use of the internal 

transcribed spacer sequences of the ribosomal DNA (rDNA) to identify mosquitoes ofthe 

genus Anopheles was published (Collins and Paskewitz 1996), ITS2 sequence data have 

become standard in investigations of anopheline systematics and have uncovered the 

presence of cryptic species in many taxa. ITS2 was therefore selected as the second 

molecular marker with which to examine the Anopheles mosquitoes from Canada. The 

other rDNA internal transcribed spacer sequence, ITS 1, has only been examined in a few 

anopheline species, with a higher level of intraspecific variation observed compared to 

ITS2. Therefore, ITS 1 was selected as the third molecular marker. 

Analysis of the Cal data revealed distinct intraspecific clusters of specimens 

within two of the species examined. An. punctipennis and An. perplexens samples 

resulted in two groups with a sequence divergence greater than 2%, higher than the 0.5% 
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average intraspecific sequence divergences found in mosquitoes using the barcoding 

region of COl (Cywinska et al. 2008). The groups differed by region of collection, with 

An. punctipennis specimens from BC in one group and all An. punctipennis and An. 

perplexens specimens from all four regions in Ontario (WE, NI, OT, and NO) in another, 

and not by morphological identification as expected. An. walkeri sequences also formed 

two distinct groups: one including specimens from Manitoulin Island and the other with 

specimens collected at Long Point Provincial Park, with sequence divergence between 

the two groups greater than 7%, much higher than expected for a single species. 

The four remaining species included in the study all had average sequence 

divergence levels of 0.6% or less. An. barberi and An. freeborni specimens were 

collected from relatively smaller geographic regions (NI and BC, respectively) and had 

the lowest levels of intraspecific variation, 0.0% and 0.1 %, respectively. For a species 

with such a large distribution, average sequence divergence was very low among An. 

earlei specimens, only 0.2%, with a maximum divergence of 0.6%. Finally, sequence 

divergence levels of specimens identified as An. quadrimaculatus s.s. and An. 

smaragdinus were also within the normal intraspecific range, with an average of 0.6% 

and a maximum of 1.2%, and no molecular groups were formed that corresponded to 

groupings based upon morphological identification of specimens. 

Analysis of the ITS2 data revealed similar patterns of intraspecific variation as 

seen in the COl sequences. The size of the ITS2 fragments ranged from 379 nucleotides 

(An. barberi) to approximately 800bp in An. earlei, which were species-specific and 

usually identical for all specimens within a species (Figure 3.10). Because a large section 

of the An. earlei sequence could not be sequenced, the 800bp fragment was trimmed to a 

318bp sequence for analysis. Two species had zero nucleotides (nts) differences among 

all specimens examined; An.freeborni (n=40, 0/422 nt changes) and An. quadrimaculatus 

s.l. (n=73, 0/395 nt changes), including those identified morphologically as An. 

smaragdinus (n=8). Despite a small sample size and all specimens being from the same 

region (NO), An. barberi had a single nucleotide change in one specimen (n=18, 11275 nt 

changes). The ITS2 sequences of An. earlei from BC (n=5) differed from specimens 

from all other regions (n=27), including RQ and NF, by 2/318 nucleotides. This could 
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indicate that populations east and west of the Rockies have become reproductively 

isolated very recently and they cannot yet be differentiated using COL 

The two remaining species included in the study revealed sufficient levels of 

intraspecific variation in the ITS2 region to suggest the presence of cryptic species. ITS2 

sequences of specimens identified morphologically as An. punctipennis and An. 

perplexens produced two distinct groups that differed by 27/375 nucleotides. The first 

group included all specimens from BC, which were identified as An. punctipennis based 

on morphology (n=ll), and the second included all other specimens, which were from all 

four regions in Ontario and identified morphologically as An. punctipennis and An. 

perplexens (n=75). These results provide further evidence for the presence of cryptic 

species within An. punctipennis that differ based on geographic origin, i.e., east and west 

of the Rockies. The ITS2 sequences of specimens identified morphologically as An. 

walkeri also formed two distinct groups that differed by 73/231 nucleotides, the first 

including specimens from Manitoulin Island (n=6) and the second with specimens from 

Long Point Provincial Park (n=6). As in COl, An. walkeri ITS2 revealed the highest 

level of intraspecific variation, with the same difference between groups being collection 

location (NO vs. LP). Therefore, both COl and ITS2 data were successful in accurately 

identifying six of the seven anopheline species known from Canada based on 

morphological data, and provided evidence for the presence of two additional species in 

Canada. 

The results of the ITS I data, however, were not as straightforward. Since 

published primers for the ITS 1 region were based on African or Australian sequences, 

novel primers were required to amplify ITS 1 in North American species. The primers 

designed for this study amplified the ITS 1 region in five of the six species examined, all 

except for An. barberi, the only species belonging to thePlumbeus Group (Figure 1.6). 

The size of the ITS 1 fragments of the other five species ranged from ~600-4500bp in 

length (Figure 3.15). An. walkeri andAn. quadrimaculatusproduced single bands at 

~600bp and 800bp, respectively, which were easily sequenced in both directions and 

resulted in reliable consensus sequences. An. walkeri ITS 1 sequences resulted in two 

distinct groups, the first including specimens from Manitoulin Island (n=9; 483bp) and 

the second with specimens from Long Point Provincial Park (n=lO; 490bp), with 39/490 
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variable sites or a sequence divergence level of 8%, consistent with the COl and ITS2 

results for this species. 

The ITSI sequence results for An. quadrimaculatus s.l. specimens, however, were 

not consistent with COl and ITS2 results for this species, i.e., low sequence divergence 

levels in both markers suggested that cryptic species were not present in this taxa. 

However, An. quadrimaculatus s.l. ITSI sequences resulted in two distinct groups, the 

ftrst including specimens from NI, WE, and OT (n=35; 729bp), and the second also with 

specimens from NI, and WE (n=10; 756bp). In addition to the large difference in size 

(27bp), there were 335/756 variables sites, or a sequence divergence of 56%, between the 

two groups. Whereas the majority of variable sites between the two An. walkeri groups 

were concentrated in the middle of the sequences (Figure 3.20), the variable sites between 

the two groups of ITS 1 sequences between An. quadrimaculatus s.l. groups were spread 

evenly throughout the sequence (Figure 3.19). 

Anopheles earlei and An. freeborni also produced single ITS 1 bands, but both 

were much larger at ~4000 and 4500bp, respectively, and the sequencing and 

determination of consensus sequences was much more difficult. Sequencing in the ftrst 

~800bp in each direction was attempted for both species, but was only successful in An. 

freeborni, resulting in good quality sequences for the ftrst ~800bp and last ~ 7 50bp of the 

ITSI region. Combined there were fewer than 10 variable sites within the entire ~1550bp 

of An. freeborni ITS 1 combined sequence, or a low sequence divergence of 0.7% which 

is consistent with the COl and ITS2 ftndings for this species. 

InAn. earlei, the sequencing reaction begins to break down after the ftrst ~350bp 

in the forward direction, becoming completely unreadable after ~650bp. Sequencing in 

the reverse direction was even less successful, with sequences from three specimens 

excluded due to poor quality overall. After establishing common start and stop points for 

the remaining reverse sequences, they were ~750bp in length, and identical for the ftrst 

500bp, but then the signal rapidly deteriorates and the sequence becomes unreliable. This 

suggests intraindividual variation in the ITS 1 region of An. earlei, similar to that seen in 

An. gambiae and An. arabiensis (Collins et al. 1999), the An. punctulatus group (Bower 

et al. 2009) and An. farauti s.s. (Bower et al. 2008). Therefore, it wi111ikely be necessary 

to use closing techniques to obtain individual sequence variants combined with the design 
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of step-wise primers to sequence the entire -4000bp sequences; then this molecular 

marker may be useful in studies of population genetics. 

Finally, An. punctipennis, the last species for which ITS1 was successfully 

amplified, resulted in multiple bands that varied in size from -800bp to 3000bp, with 

most specimens having two to three bands, the most common of which were -2500bp, 

3000bp, and 1250bp in length (Figure 3.17). Band intensity also varied, suggesting that 

some ITS 1 variants were more common in that individual than others. However, because 

most specimens resulted in multiple bands, sequencing of the An. punctipennis ITS 1 

sequences was not possible without further treatment (e.g. band extraction and 

purification). The only specimens to result in single ITS 1 bands were those of four An. 

punctipennis individuals from British Columbia (Figure 3.18), which were -2000bp in 

length and resulted in -750bp of readable ITS 1 sequence in both the forward and reverse 

directions, which were almost identical throughout. This difference in number and size 

of the ITS 1 fragments between BC and ON An. punctipennis is consistent with the COl 

and ITS2 results and provides further evidence for the presence of eastern and western 

sibling species in this taxon. 

5.4. Ecology 

In addition to morphological and molecular data, ecological data were also 

analysed for all anopheline species collected for this study. Larval habitat characteristics 

(including date of collection, GPS coordinates, water body types, emergent/floating 

vegetation types, etc.) were recorded for 350 unique larval dipping collections, 221 of 

which contained Anopheles larvae. However, some areas or habitat types were sampled 

more intensely than others, which complicated the analysis of the ecological data 

collected. For example, the first two field seasons involved random sampling in 4 main 

regions of Ontario (WE, NI, OT, and NO) plus a long-distance collecting trip to British 

Columbia in 2005 and one to Newfoundland in 2006, but the 2007-2009 field seasons 

focused on locating sources of potential cryptic species, An. perplexens and An. 

smaragdinus, in the Niagara region, which resulted in the majority of specimens being 

collected from this region (Figure 4.1). Also, to increase the number of collections made 
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in each region, accessibility of the larval habitat was taken into consideration and many 

collections were made in water body types that were easily reached by roads and trails, 

such as ditches (Table 4.8). Therefore, the results of the analyses of regional abundance, 

larval habitat, and species associations were a reflection of the particular habitats located 

during the course of this study, and not necessarily that of all possible larval habitat 

associations for each species that occurs in Canada. 

The larval habitat of An. barberi was the most distinct of all anophelines included 

in the study, found mainly in tires that were placed in a Niagara woodlot to study 

competition between other tree hole-breeding mosquito species. Recorded primarily 

from tree holes in the literature, very few larvae of An. barberi were obtained from this 

habitat type, due to the difficulty in reaching them without special equipment. Therefore, 

overall, very few An. barberi specimens were collected through larval dipping. Larvae 

were never associated with any type of floating or emergent vegetation due to their 

restriction to tree holes and tires and the only species ever found associated with An. 

barberi was An. punctipennis (including those identified as An. perplexens), as it too was. 

found in tires (but not tree holes). However,this species likely occurs throughout 

southern Ontario, wherever suitable habitat (hardwood forest) exists. 

Even fewer An.freeborni specimens were collected during the study, due to the 

combination of limited larval dipping collections made in British Columbia (the only 

region in Canada where it occurs) than other regions, and the difficulty in rmding suitable 

Anopheles habitats during that collecting trip. Almost all An. freeborni specimens were 

collected from ponds on farms and golf courses, but some from ditches as well. An. 

freeborni was always associated with one or more types of emergent and floating 

vegetation, the most common of which were grasses, algae, and cattails. It was usually 

found with An. punctipennis (64% of An. freeborni-positive collections), An. earlei 

(46%), or both species (15%), but could also be the only species obtained from a larval 

dipping collection (27%). 

The species for which the least number of larvae was collected was An. walkeri, 

which was not expected since the most intensely sampled regions (WE, NI, and OT) were 

well within this species' known range and An. walkeri was said to be the most common 

anopheline in southern Ontario in the summer months (Wood et al. 1979). The majority 
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of specimens was collected from Manitoulin Island, for which there were no previous 

records but is very near the known northern limit of its range (Figure 1.13). Anopheles 

walkeri was collected most often from marshes, swamps, and ditches and usually when 

both emergent and floating vegetation were present in the larval habitat. The most 

common types of vegetation associated with An. walkeri larvae were cattails, grasses, and 

algae. This species was never the only one obtained in a larval dipping collection, and 

was found most often with An. punctipennis (80% of An. walkeri-positive collections), 

An. quadrimaculatus (60%), and An. earlei (35%), with at least two of the three other 

marsh-inhabiting species in 70% of all An. walkeri-positive collections. 

The two remaining species, An. punctipennis and An. quadrimaculatus s.s., were 

both found in very large numbers, and from a wide variety of habitat types. Most An. 

quadrimaculatus s.l. specimens were collected in NI, followed by OT and WE, but a few 

specimens were collected from NO as well. Larvae of An. quadrimaculatus s.l. were 

found most often in ditches and creeks, ponds, and from the edges oflakes and rivers, but 

was collected from a wide variety of other habitats as well (Figure 4.9). Anopheles 

quadrimaculatus s.l. larvae were usually associated with both emergent and floating 

vegetation, and less often when only emergent vegetation was present. The most 

common types of associated vegetation were algae, grasses, and cattails, but many more 

types were also found (Figures 4.13 and 4.14). Anopheles quadrimaculatus s.l. was 

collected most often with An. punctipennis (in 78% of all An. quadrimaculatus-positive 

larval dipping collections), but also with An. earlei (17%), and An. walkeri (11 %). 

Anopheles punctipennis was the most common species found in all of the five 

main regions analysed, comprising ~30-70% of all specimens collected in each region. 

An. punctipennis larvae were collected from the widest variety of habitats, including eight 

out often possible types (Figure ·4.5). A similar pattern was observed for specimens 

identified morphologically as An. perplexens (Figure 4.6). While alvars or alvar-type 

habitats (i.e. exposed limestone) were present in each of the three regions where An. 

perplexens-type specimens were collected (NI, OT, and NO) (Figure 4.8), there were no 

sites in which An. perplexens;..type specimens were the only species collected. The large 

number of An. perplexens-type specimens collected from limestone habitats in NI was 

definitely due in part to increased effort to locate such habitats in this area once the first 
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few were discovered. However, a number of natural and man-made alvars, plus quarries 

both old and active, were found in the Niagara region (not shown in Figure 4.8). The 

large number of An. perplexens-type individuals combined with the location of alvars in 

regions where specimens were collected suggested that this cryptic species might be 

present in this region, not far from where other populations have apparently been found 

(Figure 1.15). 

Specimens identified as Anopheles punctipennis and An. perplexens based on 

morphological data were found most often when floating and emergent vegetation was 

present, but also when one, the other, or both were absent. The most common types of 

emergent and floating vegetation were present in larval habitats of An. punctipennis- and 

An. perplexens-type specimens were algae, cattails, and grasses, but were also found with 

a wide variety of other types. It was the only species collected with all other species 

examined in the study. While An. punctipennis was sometimes the only species found 

(21 % of An. punctipennis-positive collections), it was found with An. quadrimaculatus 

s.l. (50%), An. earlei (24%), An. walkeri (l0%), An.freeborni (4%), and An. barberi 

(2%). Therefore, An. punctipennis appears to be the most ecologically diverse species 

present in Canada. 

5.5. Importance of an Integrated Approach -

The advantage of having more than one perspective from which to examine the 

specific status of morphologically similar taxa is apparent when one considers the 

importance of the ability to distinguish among closely related species that differ in their 

potential to spread diseases like malaria, as is the case for Anopheles mosquitoes. Many 

techniques are now available to examine closely related anopheline species, from 

polytene chromosomes and hybridization experiments, to PCR-based methods such as 

RAPD and direct sequencing of taxonomically informative DNA sequences. 

Interconnected to all of these facets of differentiation among species are the ecological 

differences (as well as physiological and behavioural ones) associated with each species. 

Ecological characters were once often the first insight into the presence of cryptic species 

(e.g. fresh water versus salt water species in the An. gambiae complex), and can often be 
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associated with cryptic taxa once they are identifiable using other methods, such as DNA 

barcoding (e.g., the identification of different host plants for multiple isomorphic host­

specific butterfly species once thought to be a single, generalist species). 

The advantage of multiple types of data was evident in this examination of 

Anopheles species from Canada given that examples of incongruence between the types 

of data analysed were found. One of the first unexpected results of this study was that 

COl and ITS2 data did not provide molecular evidence for the presence of An. perplexens 

in Canada, whereas morphological and ecological data seemed to suggest that it was 

present. Although the adult and larval characters used to distinguish these species were 

known to be unreliable, adults collected from southern Ontario that were identified 

morphologically as An. perplexens fit the species description provided in Bellamy (1956), 

including their smaller and darker appearance in general compared to those of An. 

punctipennis. Data that led to the suspicion that An. perplexens was present in Canada 

included the high numbers of An. perplexens-type specimens identified from field 

collections, the fact that they were collected not far from supposed known locations in the 

USA for this species, and that the regions where most An. perplexens-type specimens 

were collected also contained potential suitable habitat (i.e., limestone) for this species. 

However, both COl and ITS2 results revealed very low levels of intraspecific sequence 

divergence for all An. punctipennis- and An. perplexens-type specimens from Ontario, 

indicating the presence of a single panmictic species. Although very unlikely, it is 

possible that this represents a case where separation between species occurred so recently 

that differences have not yet developed in these particular markers. However, since 

siblings reared from the same isofemale progeny broods resulted in a wide range in wing 

spot sizes (Figure 2.25), and "An. perplexens" was never the only species identified in a 

larval dipping collection, this suggests that specimens identified as An. perplexens are 

instead morphological variants of An. punctipennis. 

At the same time; COl and ITS2 results of An. punctipennis uncovered the 

presence of an unsuspected cryptic species. Both markers revealed two distinct groups of 

specimens with significant levels of intraspecific variation between them; the An. 

punctipennis specimens from Be formed the first group, and all remaining specimens 

(An. punctipennis and An. perplexens from all regions in Ontario) in the second, 
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However, in a phylogenetic study of the Nearctic Anopheles maculipennis species group 

using the D2 expansion region ofthe 28S rRNA, Porter and Collins (1996) found that An. 

punctipennis samples formed two distinct groups, one with California specimens (An. 

punctipennis W) and one with specimens from Wisconsin and Illinois (An. punctipennis 

E), with significant variation between the two groups. Further evidence for the presence 

of a pair of sibling species in this taxon comes from the absence of An. perplexens-type 

specimens collected ::from British Columbia despite a large number of An. punctipennis 

specimens collected from this region, as well as the lack of multiple ITS 1 bands produced 

by the An. punctipennis specimens ::from BC. In addition, while the distribution range of 

An. punctipennis extends from coast to coast in North America, it narrows drastically at 

the Rocky Mountains, somewhat separating the western and eastern populations (except 

for a small region in the midwestern states of Montana, Idaho, and Wyoming), likely 

restricting gene flow between them. 

A multidisciplinary approach was also beneficial in clarifying the specific status 

of An. earlei from geographically distant locations across Canada, including British 

Columbia, northern Quebec, Newfoundland, and almost all regions in Ontario. Like 

many other species with broad (e.g., continental) ranges, such as An. maculipennis 

(Europe) and An. gambiae (Africa), An. earlei is known ::from a wide variety of habitats 

throughout its range. However, due to a lack of importance with respect to disease 

transmission, detailed investigations of the systematics of An. earlei are lacking, and it 

has never been analysed using molecular data from a wide variety of locations. 

Morphological analysis of An. earlei larvae revealed the presence of a trait diagnostic for 

An. freeborni larvae in all available identification keys, which was found to be highly 

variable in number and placement along the dorsal surface of the abdomen (Figure 2.20). 

This polymorphism was thought to suggest the potential for cryptic species in this taxon, 

but if cryptic species were present in An. earlei, they would also be based on collection 

location (BC vs. ON, RQ, and NF) and not morphological identifications. COl sequence 

divergence levels were lower than expected for two distinct species, but there was weak 

support for one group that included all four An. earlei specimens ::from BC specimens and 

three specimens ::from AL (Figure 3.4). A similar separation of two groups was also seen 

in the 318bp An. earlei ITS2 sequences, with 2 nUcleotides shared among the BC 
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specimens that differed from those collected from all other regions. Like An. 

punctipennis, An. earlei is present from coast to coast (Figure 1.9), however, its range is 

not constricted in the middle like An. punctipennis (Figure 1.11), and thus was not subject 

to as much reduction in gene flow, explaining the lower levels of sequence divergence 

seen in An. earlei. 

Finally, the use of molecular data revealed the presence of an unexpected putative 

cryptic species within An. walkeri. All three molecular markers examined in this study 

resulted in the formation of the same two molecular groupings that corresponded to the 

regions in which the specimens were collected, i.e., those from Manitoulin Island and 

those from Long Point Provincial Park. The distribution of An. walkeri follows a strange 

pattern and appears to approach the island from the east and the west (Figure 1.13), 

although it is not clear if the absence of records in northwestern Ontario is due the 

absence of An. walkeri in this region, or to a lack of sampiing. However, the levels of 

intraspecific variation in COl, ITS2, and ITS 1 sequences appear sufficiently high to 

warrant the confirmation of the presence of a new cryptic species within An. walkeri. 

The results ofthese morphological, molecular, and ecological analyses illustrate 

the importance of using an integrated approach to investigate systematic questions in 

Anopheles. The advantages of using molecular data as a species diagnostic tool are 

apparent given the discovery of two cryptic species with the six anophelines examined in 

this study, and the recognition that the morphological variations observed in An. 

punctipennis and An. quadrimaculatus s.s that appeared to suggest the presence of cryptic 

species An. perplexens and An. smaragdinus, respectively, were not indicative of cryptic 

taxa. Therefore, the increased variation in morphological traits observed in these species 

should be considered ifusing the key to North American mosquito species (Darsie and 

Ward 2005). As morphology can sometimes be influenced by environmental conditions 

in Anopheles (e.g., Peters 1943; Service 1964), the possibility that water chemistry in the 

limestone larval habitats could be responsible for the minor morphological differences 

observed between specimens identified as An. punctipennis and An. perplexens was 

considered. However, hybridization studies by Kreutzer and Kitzmiller (1971b) revealed 

high levels of mortality and infertility in the offspring of crosses (by artificial mating 

techniques) between An. punctipennis and An. perplexens, and similar studies of their 
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polytene chromosomes revealed regions of synapsis and asynapsis, where chromosomal 

inversions between the two species were present (Kreutzer and Kitzmiller 1971a). This 

example highlights the importance of obtaining as many data sets as possible to clarity 

questions of Anopheles systematics. 

5.6. Conclusions 

Prior to the current study, seven species of Anopheles mosquitoes were known 

from Canada, including An. barberi (tree hole specialist in southern Ontario and Quebec), 

An crucians s.l. (only in southwestern Ontario), An. earlei (present throughout Canada), 

An.freeborni (only in southern British Columbia), An. punctipennis (present in parts of 

southern Canada), An. quadrimaculatus s.l. (only in southern Ontario and Quebec), and 

An. walkeri (Saskatchewan eastward to Nova Scotia). Despite effort to collect all seven 

species, An. crucians s.l. specimens were not collected during the course of study and, 

therefore, could not be included in the morphological, molecular, or ecological analyses 

conducted. 

Morphological identification of specimens collected during the 2005-2009 field 

seasons using standard keys suggested that two cryptic species might be present in 

Canada, including An. perplexens (morphologically similar to An. punctipennis) and An. 

smaragdinus (a cryptic member of the An. quadrimaculatus species complex). In 

addition, a larval character used to distinguish An. freeborni from the remaining 

anophelines was observed in An. earlei, in which it was highly variable in number and 

placement on abdominal tergites. Therefore, morphological examination of specimens 

revealed the potential presence of cryptic anopheline species in Canada and the degree of 

variation in these polymorphic traits was quantified. 

Molecular data also revealed the potential presence of two cryptic species, 

however, molecular species corresponded to collection location, and not to morphological 

identifications as expected. Examination of molecular markers commonly used to 

identity species and elucidate cryptic members of species complexes (i.e., COl and ITS2) 

resulted in the formation of two distinct molecular groups within two of the six species 

examined. Anopheles punctipennis specimens formed two groups, the first containing 

specimens collected from British Columbia and the second comprised of specimens 
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collected throughout Ontario, which exhibited sequence divergence levels higher than 

that expected for a single panmictic species. Even more distinct with higher levels of 

sequence divergence were two groups within An. walkeri, the first of which included 

specimens from Manitoulin Island, Ontario and the second of which comprised those 

from Long Point Provincial Park. However, specimens identified morphologically as An. 

perplexens and An. smaragdinus did not differ significantly from native species An. 

punctipennis and An. quadrimaculatus s.l., respectively. Therefore, molecular data 

provided evidence for the presence of putative cryptic species, i.e., An. punctipennis BC 

(western species) andAn.punctipennis ON (eastern species), and An. walkeri NO 

(northern species) and An. walkeri LP (southern species). 

Although ecological data were not analysed with respect to the discovery of 

cryptic species per se, the ecological data associated with larval dipping collections were 

examined to determine if the larval habitats of potential cryptic species differed from 

those of native Anopheles species in Canada, and to provide current larval habitat 

descriptions for each species examined. In British Columbia, Anopheles species were 

most commonly collected from ponds, and, in Ontario, they were collected most often 

from ditches and creeks, despite the common nickname of "marsh" species for most 

anophelines present in Canada. 

This study highlights the difficulty imposed by morphological identification of 

specimens, as intraspecific morphological variation was quite pronounced within some 

species (e.g., An. punctipennis with both large and greatly reduced pale-scaled wing 

spots) but interspecific morphological variation between other species not apparent (e.g., 

An. walkeri "northern species" and An. walkeri "southern species"). The advantage of an 

integrated approach using multiple types of data was clear in this study, as morphological 

data suggested the presence of certain cryptic species, but molecular data did not confirm 

their presence in Canada, providing evidence for other cryptic species instead. 
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Appendix I 

Abbreviations of sampling regions from which Anopheles specimens were collected 
during 2005-2009 field seasons. 

Region Code 
Algonquin Provincial Park, ON AL 
Southern British Columbia BC 
Bruce Peninsula, ON BP 
First Nations, Caledonia, ON FN 
Halton, ON HL 
Niagara Region, ON NI 
Island of Newfoundland, NL NF 
Manitoulin Island and area, ON NO 
Ottawa Region, ON OT 
Radisson, Quebec RQ 
Windsor Essex County, ON WE 
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Appendix II 

Anopheles mosquito collection database 

An online database was designed by a computer programmer (Ming Lin) at Entomogen, 
Inc. (Dr. Fiona Hunter, President) to maintain all collection information associated with all 
mosquito collections conducted during the 2005-2009 field seasons. Raw data were entered into 
logs by collection method (i.e., larVal dipping collections, adult CDC light trappings, adult 
landing aspirations, and oviposition experiments), and can be accessed using different queries 
that were built into the database that allow searching and summarizing data by species, region, 
data collected, etc. Query results can be exported to Excel for data analysis. Two examples of 
database functions follow: (1) ecological data associated with larval dipping collections (Table 1) 
are in the database, and accessible under the Larval Dipping Log; and (2) a search for An. 
walkeri larvae using the Larval ID query produces a table that includes the collection type, site 
code, date collected, preservation method, number of individuals,· and storage location (Box and 
Slot) and can be exported to Excel (Table 2). 

Table 1. Larval habitat data recorded for mosquito-positive larval dipping collections. 

Data Type Description 
Code unique identifier.for each collection 

Date of Collection day/month/year 
Location Street address, city, province 
Latitdue ex. 42.3582 (decimal format) 

Longitude ex. -79.2850 (decimal format) 
Description general description of environment 

Air Temperature in degrees Celsius 
Water Temperature in degrees Celsius 

Sky clear, partly cloudy, or overcast 
Windy yes, no 

Container Type natural or artificial 
Bottom mud, silt, stone, etc. 
Depth <IOcm, IO-50cm, >50cm 

Diameter <1m, I-10m, IO-50m, >50m 
Shade full sun, partial shade, full shade 

Emergent Vegetation present/absent 
EV Type (if present) . list of types 
Floating Vegetation present/absent 
FV Type (if present) list of types 

Container Type one of 13 classifications (Table 4.3) 
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Table 2. Excel file table produced by database query (Mosquito ill - Larvae) of An. 
walkeri larvae collected from all possible regions and years of collection. 

Collection 
Code 

Date 
Species Preservation Num Box 

Type Collected 

Larval Dipping lWE13 13-Jun-OS An. walkeri Morphological 2 Ll 

Larval Dipping lWE13 13-Jun-OS An. walkeri Cytogenetic 2 Ll 

Larval Dipping lN06 14-Jul-OS An. walkeri Morphological 1 L3 

Larval Dipping IN06 14-Jul-OS An. walkeri Cytogenetic 3 L3 

Larval Dipping lN06 14-Jul-OS An. walkeri Molecular 1 L3 

Larval Dipping IN07 14-Jul-OS An. walkeri Molecular 1 L3 

Larval Dipping lN07 14-Jul-OS An. walkeri Molecular 1 2S 

Larval Dipping lN013 15-Jul-05 An. walkeri Morphological 4 L3 

Larval Dipping lN013 lS-Jul-OS An. walkeri Molecular 1 MLl 

Larval Dipping lN013 lS-JuI-05 An. walkeri Molecular I MLl 

Larval Dipping lN013 IS-Jul-OS An. walkeri Cytogenetic 4 L2 

Larval Dipping lN09 IS-JuI-OS An. walkeri Cytogenetic 1 L3 

Larval Dipping lN014 16-Jul-OS An. walkeri Cytogenetic 1 L3 

Larval Dipping lN014 16-Jul-OS An. walkeri Cytogenetic 1 L3 

Larval Dipping INI16 28-Jul-OS An. walkeri Cytogenetic 1 L3 

Larval Dipping lAL20 01-Aug-OS An. walkeri Morphological 1 L3 

Larval Dipping INI22 16-Aug-OS An. walkeri Morphological 2 L3 

Larval Dipping 1NI23 16-Aug-OS An. walkeri Molecular 1 MLI 

Larval Dipping IN039 04-Aug-06 An. walkeri Live Dissections 1 

Larval Dipping lN039 04-Aug-06 An. walkeri Molecular 1 L7 

Larval Dipping lNI78 06-Sep-07 An. walkeri Molecular 1 LIO 

Larval Dipping lWEI04 12-Jun-08 An. walkeri Molecular 1 ML2 

Larval Dipping lWE122 14-Jun-08 An. walkeri Morphological 2 L12 

Larval Dipping lBP09 20-Jun-08 An. walkeri Morphological 1 L12 

Slot 

5S 

54 

1 

10 

38 

22 

64 

35 

38 

39 

97 

15 

33 

29 

71 

78 

63 

40 

45 

78 

3 

14 

19 

The database, as well as preserved larval and adults specimens, have been 
deposited in the Canadian National Collection of Insects, Agriculture and Agri-Food 
Canada, Ottawa, Ontario, Canada. The database can be accessed at: 
http://www .canacoll.org/Diptera/ Aynsley/. 
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AppendixID 

Collection data associated with individuals for which COl, ITS2, or ITS 1 sequences were 
obtained (see Chapter Three). Latitude and longitude units: Decimal degrees (WGS84). 

Code 

INI76-1 

lNI85-1 

lNI60-2 

lNI76-2 

lNI76-3 

INI90-5 

lNI84-1 

INI84-2 

INI73-2 

INI73-3 

INI73-5 

INI94-12 

lNI92-10 

lNI92-11 

lNI94-14 

lNI94-15 

INI93-3 

INI93-4 

INI92-7 

1FNl-l 

lNI84-3 

INI92-8 

INI91-9 

lNI89-4 

IN08-6 
IN05-2 

IN05-3 

IN049-1 

IN05-4 

IN05-5 

IBC55-7 

IBC24-1 

IBC55-8 

I0T3-5 

IOT3-6 

IOT3-7 

IN07-3 

IN013-5 

IN013-6 

IN013-7 

IN013-8 

IN0l1-3 

NS004-10 

NS006-10 

NH009-1 

NS003-10 

NS007-10 

Species 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. smaragdinus 

An. smaragdinus 

An. smaragdinus 

An. smaragdinus 

An. smaragdinus 

An. smaragdinus 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. perplexens 

An. perplexens 

An. perplexens 

An. perplexens 

An. perplexens 

An. perplexens 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. freeborni 

An. freeborni 

An. freeborni 

An. perplexens 

An. perplexens 

An. perplexens 

An. walkeri 

An. walkeri 

An. walkeri 

An. walkeri 

An. walkeri 

An. walkeri 

An. barberi 

An. barberi 

An. barberi 

An. barberi 

An. barberi 

Date 

29-Aug-07 

12-Sep-07 

17-Aug-07 

29-Aug-07 

29-Aug-07 

19-5ep-07 

7-Sep-07 

7-Sep-07 

28-Aug-07 

28-Aug-07 

28-Aug-07 

8-0ct-07 

19-5ep-07 

19-5ep-07 

8-0ct-07 

8-0ct-07 

19-5ep-07 

19-5ep-07 

19-5ep-07 

19-Aug-06 

7"Sep-07 

19-5ep-07 

19-5ep-07 

14-Sep-07 

15-Jul-05 

14-Jul-05 

14-Jul-05 

5-Aug-06 

14-Jul-05 

14-Jul-05 

20-Sep-05 

24-Jun-05 

20-Sep-05 

23-Aug-05 

23-Aug-05 

23-Aug-05 

14-Jul-05 

15-JuI-05 

15-Jul-05 

15-Jul-05 

15-Jul-05 

15-Jul-05 

27-Jul-06 

8-Sep-06 

27-Jul-06 

8-Sep-06 

27-Jul-06 

Region 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NO 

NO 

NO 

NO 

NO 

NO 

BC 
BC 
BC 
OT 

OT 

OT 

NO 

NO 

NO 

NO 

NO 

NO 

NI 

NI 

NI 

NI 

NI 

City 

Smithville 

Pelham 

Pelham 

Smithville 

Smithville 

St. Catharines 

WeIland 

WeIland 

Wainfleet 

Wainfleet 

Wainfleet 

Virgil 

Pelham 

Pelham 

Virgil 

Virgil 

St. Ann's 

St.Ann's 

Pelham 

Caledonia 

WeIland 

Pelham 

Pelham 

St. Catharines 

Manitoulin 

Manitoulin 

Manitoulin 

Manitoulin 

Manitoulin 

Manitoulin 

Kamloops 

Vernon 

Kamloops 

Kaladar 

Kaladar 

Kaladar 

Manitoulin 

Manitoulin 

Manitoulin 

Manitoulin 

Manitoulin 

Manitoulin 

Niagara Falls 

Niagara Falls 

Niagara Falls 

Niagara Falls 

Niagara Falls 

Stage 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

larva 

larva 

larva 

larva 

Latitude 

43.0912 

43.09933333 

43.102 

43 .0912 

43 .0912 

43.11008334 

42.98073333 

42.98073333 

42.88578333 

42.88578333 

42.88578333 

43.24886667 

43.09598334 

43.09598334 

43.24886667 

43.24886667 

43.03558334 

43.03558334 

43.09598334 

43.049322 

42.98073333 

43.09598334 

43.0975 

43.1 0493334 

45.80194 

45 .67694 

45.67694 

45.80528 

45.67694 

45.67694 

50.85333 

50.36056 

50.85333 

44.76611 

44.76611 

44.76611 

45.84361 

45.80361 

45.80361 

45.80361 

45.80361 

45.78472 

43.0623 

43.0623 

43.0623 

43.0623 

43 .0623 

Longitude 

-79.53668333 

-79.30981667 

-79.30375 

-79.53668333 

-79.53668333 

-79.2645 

79.2057 

79.2057 

-79.27893333 

-79.27893333 

-79.27893333 

-79.12631667 

-79.33191667 

-79.33191667 

-79.12631667 

-79.12631667 

-79.4708 

-79.4708 

-79.33191667 

-80.06218 

79.2057 

-79.33191667 

-79.33141667 

-79.2871 

-82.115 

-82.26694 

-82.26694 

-82.1975 

-82.26694 

-82.26694 

-120.3075 

-119.28083 

-120.3075 

-76.7575 

-76.7575 

-76.7575 

-82.20194 

-81.98361 

-81.98361 

-81.98361 

-81.98361 

-81.94333 

-79.1743 

-79.1743 

-79.1743 

-79.1743 

-79.1743 
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Appendix III (con't) 

Code 

lNI80-5 

INI68-1 

INI94-8 

lNI85-3 

INI72-l 

INI60-5 

INI78-2 

INI80-21 

lNI82-8 

INI78-4 

INI77-1 

1NI60-1 

lNI60-3 

1NI80-1 

lNI80-2 

INI80-4 

INI73-4 

lNI91-8 

INI81-1 

I0T3-10 

I0T3-11 

I0T3-12 

IOT3-13 

I0T3-14 

I0T3-15 

1AL21-7 

1AL21-8 

lAL22-10 

1AL22-11 

IOT3-16 

IOT3-17 

lBC57-5 

lBC57-6 

lBC57-7 

lBC57-8 

lBC57-9 

lBC57-10 

lBC57-11 

lBC57-12 

lBC57-13 

lBC57-14 

lBC58-1 

lBC58-2 

lBC57-15 

lBC57-16 

lBC57-17 

lBC57-18 

lBC57-19 

lBC57-20 

lBC57-21 

lBC57-22 

lBC12-1 

lBC16-1 

lBC44-1 

lBC55-6 

Species 

An. quadrimacu/atus s./. 

An. quadrimacu/atus s.l. 

An. quadrimacu/atus s./. 

An. quadrimacu/atus s./. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. smaragdinus 

An. smaragdinus 

An. smaragdinus 

An. smaragdinus 

An. smaragdinus 

An. smaragdinus 

An. diluvialis 

An. inundatus 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. freeborni 

An. freeborni 

An. freeborni 

An. freeborni 

An. freeborni 

An. freeborni 

An·freeborni 

An. freeborni 

An·freeborni 

An·freeborni 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

Date 

5-Sep-07 

21-Aug-07 

8-0ct-07 

12-Sep-07 

28-Aug-07 

17-Aug-07 

6-Sep-07 

5-Sep-07 

7-Sep-07 

6-Sep-07 

29-Aug-07 

17-Aug-07 

17-Aug-07 

5-Sep-07 

5-Sep-07 

5-Sep-07 

28-Aug-07 

19-5ep-07 

7-Sep-07 

23-Aug-05 

23-Aug-05 

23-Aug-05 

23-Aug-05 

23-Aug-05 

23-Aug-05 

l-Aug-05 

l-Aug-05 

2-Aug-05 

2-Aug-05 

23-Aug-05 

23-Aug-05 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

27-Jun-08 

27-Jun-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

22-Jun-05 

23-Jun-05 

27-Jun-05 

20-Sep-05 

Region 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

OT 

OT 

OT 

OT 

OT 

OT 

AL 
AL 

AL 

AL 

OT 

OT 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

BC 

City 

Virgil 

Ridgeville 

Virgil 

Pelham 

Wainfleet 

Pelham 

Queenston 

Virgil 

st. Catharines 

St.Ann's 

St. Ann's 

Pelham 

Pelham 

Virgil 

Virgil 

Virgil 

Beamsvile 

Pelham 

St. Catharines 

Kaladar 

Kaladar 

Kaladar 

Kaladar 

Kaladar 

Kaladar 

Algonquin 

Algonquin 

Algonquin 

Algonquin 

Kaladar 

Kaladar 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Chilliwack 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Grand Forks 

Kamloops 

Stage 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

larva 

larva 

larva 

larva 

larva 

larva 

adult 

adult 

adult 

adult 

adult 

larva 

larva 

larva 

larva 

larva 

adult 

adult 

adult 

adult 

adult 

larva 

larva 

larva 

larva 

larva 

adult 

adult 

adult 

adult 

Latitude 

43.24825 

43.0282 

43.24886667 

43.09933333 

42.88606667 

43.102 

43.15116667 

43.24825 

43.13968333 

43.15116667 

43.0355 

43.102 

43.102 

.43.24825 

43.24825 

43.24825 

43.15385 

43.0975 

43.13968333 

44.76611 

44.76611 

44.76611 

44.76611 

44.76611 

44.76611 

45.57694 

45.57694 

45.58028 

45.58028 

44.76611 

44.76611 

50.852 

50.852 

50.852 

50.852 

50.852 

50.852 

50.852 

50.852 

50.852 

50.852 

49.2 

49.2 

50.852 

50.852 

50.852 

50.852 

50.852 

50.852 

50.852 

50.852 , 

50.67889 

51.01833 

49.15417 

50.85333 

Longitude 

-79.1263 

-79.30981666 

-79.12631667 

-79.30981667 

-79.32575 

-79.30375 

-79.08425 

-79.1263 

-79.2999 

-79.08425 

-79.46913333 

-79.30375 

-79.30375 

-79.1263 

-79.1263 

-79.1263 

-79.48783333 

-79.33141667 

-79.2999 

-76.7575 

-76.7575 

-76.7575 

-76.7575 

-76.7575 

-76.7575 

-78.44889 

-78.44889 

-78.39778 

-78.39778 

-76.7575 

-76.7575 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

-121.7333 

-121.7333 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

-120.3025 

-120.22806 

-118.54583 

-120.3075 

203 



Appendix III (con't) 

Code 
lBC57-7 

lBC57-8 

lBC57-9 
lBC57-10 

lBC57-11 

lBC57-12 

lBC57-13 

lBC57-14 

lBC58-1 
lBC58-2 

lBC57-15 

lBC57-16 

lBC57-17 

lBC57-18 
lBC57-19 

lBC57-20 

lBC57-21 

lBC57-22 

lBCl2-l 

lBC16-1 

lBC44-1 
lBC55-6 

lBC55-9 

lBC55-10 

lBC55-11 

lBC55-12 

lBC58-6a 
lBC58-7a 

lBC58-4 

lBC57-3 
lBC57-4 

lNI84-4 

lNI84-5 

lNI84-6 

lNI84-7 

1NI84-8 

lNI64-6 

INI64-7 

lNI64-8 

1NI64-9 

lNI64-lO 

lNI26-1 
lNI26-2 

1NI26-3 

lNI26-4 

lNI26-5 

1AL22-4 

1AL21-4 

1AL21-5 

1AL20-1 

1AL21-6 

NI136-4a 

IOT8-1O 

lNI18-1 

Species 
An. freeborni 

An. freeborni 

An·freeborni 

An· freeborni 

An·freeborni 

An·freeborni 

An. freeborni 

An. freeborni 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. punctipennis 

An. earlei 

An. earlei 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. perplexens 

An. perplexens 

An. perplexens 

An. perplexens 

An. perplexens 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. punctipennis 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

Date 
18-Aug-08 
18-Aug-08 

18-Aug-08 

18-Aug-08 
18-Aug-08 

18-Aug-08 

l8-Aug-08 

18-Aug-08 

27-Jun-08 

27-Jun-08 

18-Aug-08 

18-Aug-08 
18-Aug-08 

18-Aug-08 

18-Aug-08 
18-Aug-08 

18-Aug-08 

18-Aug-08 
22-Jun-05 

23-Jun-05 

27-Jun-05 

20-Sep-05 

20-Sep-05 

20-Sep-05 
20-Sep-05 

20-Sep-05 

27-Jun-08 

27-Jun-08 

27-Jun-08 

18-Aug-08 

18-Aug-08 

7-Sep-07 

7-Sep-07 
7-Sep-07 

7-Sep-07 

7-Sep-07 

21-Aug-07 

21-Aug-07 

21-Aug-07 

21-Aug-07 

21-Aug-07 
9-Sep-05 

9-Sep-05 

9-Sep-05 

9-Sep-05 

9-Sep-05 

2-Aug-05 

l-Aug-05 
l-Aug-05 

l-Aug-05 

l-Aug-05 

31-Jul-08 

24-Aug-05 

8-Jun-05 

Region City 
BC Kamloops 

BC Kamloops 

BC Kamloops 
BC Kamloops 

BC Kamloops 

BC Kamloops 

BC Kamloops 

BC Kamloops 

BC Chilliwack 
BC Kamloops 

BC Kamloops 

BC Kamloops 

BC Kamloops 

BC Kamloops 

BC Kamloops 
BC Kamloops 

BC Kamloops 

BC Kamloops 

BC Kamloops 

BC Kamloops 

BC Grand Forks 
BC Kamloops 

BC Kamloops 

BC Kamloops 
BC Kamloops 

BC Kamloops 

BC Chilliwack 
BC Chilliwack 

BC Chilliwack 

BC Kamloops 
BC Kamloops 

NI Weiland 

NI Weiland 

NI Weiland 

NI Welland 

NI Welland 
NI Virgil 

NI Virgil 

NI Virgil 

NI Virgil 

NI Virgil 

NI Wainfleet 

NI Wainfleet 

NI Wainfleet 

NI Wainfleet 

NI Wainfleet 

AL Algonquin 

AL Algonquin 

AL Algonquin 

AL Algonquin 

AL Algonquin 

NI Port Colbourne 

OT Perth 

NI Virgil 

Stage 
adult 

adult 

adult 
larva 

larva 

larva 

larva 

larva 

adult 
adult 

adult 

adult 
adult 

larva 

larva 
larva 

larva 

larva 

adult 

adult 

adult 
adult 

adult 

larva 
larva 

larva 

larva 

larva 

larva 

larva 

larva 

adult 

adult 
adult 

adult 

adult 
adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 
adult 

adult 

adult 
larva 

larva 

larva 

Latitude 
50.852 

50.852 

50.852 
50.852 

50.852 

50.852 

50.852 

50.852 

49.2 
49.2 

50.852 

50.852 
50.852 

. 50.852 

50.852 
50.852 

50.852 

50.852 

50.67889 
51.01833 

49.15417 

50.85333 

50.85333 

50.85333 

50.85333 

50.85333 
49.2 

49.2 

49.2 

50.852 

50.852 

42.98073333 

42.98073333 
42.98073333 

42.98073333 

42.98073333 

43.1954 

43.1954 

43.1954 

43.1954 

43.1954 

42.89722 
42.89722 

42.89722 

42.89722 

42.89722 

45.58028 

45.57694 
45.57694 

45.58083 

45.57694 

42.9294 

44.87361 

43.19545 

Longitude 
120.2978 

120.2978 

120.2978 
120.2978 

120.2978 

120.2978 

120.2978 

120.2978 
-121.7333 

-121.7333 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 
120.2978 

120.2978 

120.2978 
-120.3025 

-120.22806 

-118.54583 
-120.3075 

-120.3075 

-120.3075 
-120.3075 

-120.3075 

-121.7333 
-121.7333 

-121.7333 

120.2978 

120.2978 

79.2057 

79.2057 
79.2057 

79.2057 

79.2057 
-79.18525 

-79.18525 

-79.18525 

-79.18525 

-79.18525 

-79.32639 

-79.32639 

-79.32639 

-79.32639 

-79.32639 

-78.39778 

-78.44889 
-78.44889 

-78.51611 

-78.44889 
-79.255 

-76.20667 

-79.18523 
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Code 
LP06-2a 
LP06-2b 
LP02-7 
LP02-8 

lN016-3 
lN0l6-4 

lWE29-1O 
lWE29-11 

lNI58-4 
lNI58-5 
lNI65-1 
INI65-2 
lNI74-1 
lNI74-2 
IBC2-6 
IBC2-7 
lNI92-1 
lNI80-6 
lN07-4 

IBC57-25 
IBC57-26 
IBC57-27 
IBC57-28 
IBC57-29 
lN039-3 
lN040-3 
lN040-4 
IN040-5 
lN048-1 
lN013-9 
IN013-10 
LPOl-IO 
LPOI-11 
LPOI-12 

lNI225-13 
lNI225-l4 
lNI225-15 
lNI225-16 
lNI225-17 
lNI226-1 
INI226-2 
lNI226-3 
INI226-4 
lNI23-1 
lNI68-7 
lNI68-8 
LPOI-13 
LPOI-14 
lNI91-1 
lNI91-2 
lNI91-3 
lNI89-2 
lNI89-3 
lNI92-3 

Species 
An. punctipennis 

An. punctipennis 

An. walkeri 

An. walkeri 

An. punctipennis 

An. punctipennis 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. punctipennis 

An. punctipennis 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. quadrimaculatus s.l. 

An. walkeri 

An· freeborni 

An·freeborni 

An·freeborni 

An. freeborni 

An. freeborni 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. walkeri 

An. walkeri 

An. walkeri 

An. walkeri 

An. walkeri 

An. barberi 

An. barberi 

An. barberi 

An. barberi 

An. barberi 

An. perplexens 

An. perplexens 

An. perplexens 

An. perplexens 

An. walkeri 

Cx. territans 

ex. territans 

An. walkeri 

An. walkeri 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. perplexens 

Date Region 
27-Aug-08 LP 
27-Aug-08 LP 
26-Aug-08 LP 
26-Aug-08 LP 
16-Jul-05 NO 
l6-Jul-05 NO 
19-5ep-05 WE 
19-5ep-05 WE 
15-Aug-07 NI 
15-Aug-07 NI 
21-Aug-07 NI 
21-Aug-07 NI 
29-Aug-07 NI 
29-Aug-07 NI 
21-Jun-05 BC 
21-Jun-05 BC 
19-5ep-07 NI 
5-Sep-07 NI 
14-Jul-05 NO 

18-Aug-08 BC 
18-Aug-08 BC 
18-Aug-08 BC 
18-Aug-08 BC 
18-Aug-08 BC 
4-Aug-06 NO 
4-Aug-06 NO 
4-Aug-06 NO 
4-Aug-06 NO 
6-Aug-06 NO 
15-Jul-05 NO 
15-Jul-05 NO 

26-Aug-08 LP 
26-Aug-08 LP 
26-Aug-08 LP 
27-Sep-09 NI 
27-Sep-09 NI 
27-Sep-09 NI 
27-Sep-09 NI 
27-Sep-09 NI 
27-Sep-09 NI 
27 -Sep-09 NI 
27 -Sep-09 NI 
27 -Sep-09 NI 
16-Aug-05 NI 
21-Aug-07 NI 
21-Aug-07 NI 
26-Aug-08 LP 
26-Aug-08 LP 
19-5ep-07 NI 
19-5ep-07 NI 
19-5ep-07 NI 
14-Sep-07 NI 
14-Sep-07 NI 
19-5ep-07 NI 

City 
Abottsford 
Abottsford 
Long Point 
Long Point 
McKerrow 
McKerrow 

Windsor 
Windsor 

Wainfleet 
Wainfleet 
Queenston 
Queenston 
Beamsvile 
Beamsvile 
Chilliwack 
Chilliwack 

Pelham 
Virgil 

Manitoulin 
Kamloops 
Kamloops 
Kamloops 
Kamloops 
Kamloops 
Manitoulin 
Manitoulin 
Manitoulin 
Manitoulin 
Manitoulin 
Manitoulin 
Manitoulin 
Long Point 
Long Point 
Long Point 

Niagara Falls 
Niagara Falls 
Niagara Falls 
Niagara Falls 
Niagara Falls 
St. Catharines 
St. Catharines 
St. Catharines 
St. Catharines 
Stevensville 
Ridgeville 
Ridgeville 
Long Point 
Long Point 

Pelham 
Pelham 
Pelham 

St. Catharines 
St. Catharines 

St.Ann's 

Stage 
adult 
adult 
adult 
adult 
adult 
adult 
adult 
adult 
adult 
adult 
adult 
adult 
adult 
adult 
adult 
adult 
larva 
larva 
larva 
larva 
larva 
larva 
larva 
larva 
larva 
larva 
larva 
larva 
larva 
larva 
larva 

female 
female 
female 
female 
female 
female 
male 
male 

female 
female 
female 
female 
larva 
male 
male 

female 
female 
larva 
larva 
larva 
larva 
larva 
larva 

Latitude 
42.8092 
42.8092 
42.5799 
42.5799 
46.29639 
46.29639 
42.33167 
42.33167 

42.88111667 
42.88111667 
43.16498333 
43.16498333 

43.15385 
43.15385 
49.187601 
49.187601 

43.09598334 
43.24825 
45.84361 
50.852 
50.852 
50.852 
50.852 
50.852 

45.74722 
45.71333 
45.71333 
45.71333 
45.87472 
45.80361 
45.80361 
42.5824 
42.5824 
42.5824 
43.0625 
43.0625 
43.0625 
43.0625 
43.0625 
43.1095 
43.1095 
43.1095 
43.1095 

42.94861 
43.0282 
43.0282 
42.5824 
42.5824 
43.0975 
43.0975 
43.0975 

43.1 0493334 
43.1 0493334 
43.09598334 

Longitude 
-80.6325 
-80.6325 
-80.3783 
-80.3783 

-81.75139 
-81.75139 
-82.92639 
-82.92639 

-79.30451666 
-79.30451666 

-79.1336 
-79.1336 

-79.48783333 
-79.48783333 
-121.744137 
-121.744137 
-79.33191667 

-79.1263 
-82.20194 
120.2978 
120.2978 
120.2978 
120.2978 
120.2978 
-82.17361 
-82.21306 
-82.21306 
-82.21306 
-82.44222 
-81.98361 
-81.98361 
-80.3898 
-80.3898 
-80.3898 
-79.1745 
-79.1745 
-79.1745 
-79.1745 
-79.1745 
-79.2646 
-79.2646 
-79.2646 
-79.2646 

-79.05167 
-79.30981666 
-79.30981666 

-80.3898 
-80.3898 

-79.33141667 
-79.33141667 
-79.33141667 

-79.2871 
-79.2871 

-79.33191667 
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Code 
INI92-5 

INI91-5 

lNI89-1 

INI91-7 

INI90-2 

lNI90-3 

INI90-4 

lNI91-6 

lNI94-16 

INI64-11 

INI64-12 

INI60-6 

NI216-16-1 

NI216-16-2 

NI216-16-3 

NI216-16-4 

NI206-6-1 

NI206-6-2 

NI206-6-3 

NI206-6-4 

IN0l7-7 

lN017-8 

INOI7-9 

LPOI-15 

LPOI-16 

LPOI-17 

LPOI-18 

IBC57-30 

IBC57-31 

IBC57-32 

lNI218-50 

lNI218-51 

lNI218-52 

lNI218-53 

INI45-2 

INI45-3 

lNI60-1O 

INI60-11 

lWE35-5 

lWE35-6 

lWE35-7 

lWE26-1 

lWE26-2 

lWE31-3 

lWE31-4 

lWE29-10 

IOT23-2 

lN0l2-1O 

IBC57-20 

IBC57-21 

lN0l2-11 

lN012-12 

IBC57-33 

IBC57-34 

Species 
An. perplexens 

An. perplexens 

An. perplexens 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. diluvialis 

An. smaragdinus 

An. smaragdinus 

An. smaragdinus 

An. smaragdinus 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. earlei 

An. earlei 

An. earlei 

An. walkeri 

An. walkeri 

An. walkeri 

An. walkeri 

An. freeborni 

An·freeborni 

An·freeborni 

An. barberi 

An. barberi 

An. barberi 

An. barberi 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. earlei 

An. punctipennis 

An. punctipennis 

An. earlei 

An. earlei 

An. freeborni 

An·freeborni 

Date 
19-5ep-07 

19-5ep-07 

14-Sep-07 

19/0911007 
19-5ep-07 

19-5ep-07 

19-5ep-07 

19-5ep-07 

8-0ct-07 

21-Aug-07 

21-Aug-07 

17-Aug-07 

17-Aug-09 

17-Aug-09 

17-Aug-09 

17-Aug-09 

30-Jul-09 

30-Jul-09 

30-Jul-09 

30-Jul-09 

16-Jul-05 

16-Jul-05 

16-Jul-05 

26-Aug-08 

26-Aug-08 

26-Aug-08 

26-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

20-Aug-09 

20-Aug-09 

20-Aug-09 

20-Aug-09 

25-Jul-06 

25-Jul-06 

17-Aug-07 

17-Aug-07 

19-5ep-05 

19-5ep-05 

19-5ep-05 

18-Sep-05 

18-Sep-05 

18-Sep-05 

18-Sep-05 

19-5ep-05 

28-Aug-05 

15-Jul-05 

18-Aug-08 

18-Aug-08 

15-Jul-05 

15-Jul-05 

18-Aug-08 

18-Aug-08 

Region 
NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

NO 

NO 

NO 

LP 

LP 

LP 

LP 

BC 
BC 
BC 
NI 

NI 

NI 

NI 

NI 

NI 

NI 

NI 

WE 

WE 

WE 

WE 

WE 

WE 

WE 

WE 

OT 

NO 

BC 
BC 
NO 

NO 

BC 
BC 

City 

St.Ann's 

Pelham 

St. Catharines 

Pelham 

St. Catharines 

St. Catharines 

St. Catharines 

Pelham 

St. Catharines 

Virgil 

Virgil 

Pelham 

Port Colbourne 

Port Colbourne 

Port Colbourne 

Port Colbourne 

Wainfleet 

Wainfleet 

Wainfleet 

Wainfleet 

Espanola 

Espanola 

Espanola 

Long Point 

Long Point 

Long Point 

Long Point 

Kamloops 

Kamloops 

Kamloops 

Niagara Falls 

Niagara Falls 

Niagara Falls 

Niagara Falls 

Port Colbourne 

Port Colbourne 

Pelham 

Pelham 

Leamington 

Leamington 

Leamington 

Amherstburg 

Amherstburg 

Amherstburg 

Amherstburg 

Windsor 

Morton 

Manitoulin 

Kamloops 

Kamloops 

Manitoulin 

Manitoulin 

Kamloops 

Kamloops 

Stage 
larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

adult 

adult 

adult 

adult 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

female 

female 

female 

female 

female 

female 

female 

female 

female 

female 

male 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

Latitude 
43.09598334 

43.0975 

43.10493334 

43.0975 

43.11008334 

43.11008334 

43.11008334 

43.0975 

43.1954 

43.1954 

43.1954 

43.102 

42.883 

42.883 

42.883 

42.883 

42.881 

42.881 

42.881 

42.881 

46.18083 

46.18083 

46.18083 

42.5824 

42.5824 

42.5824 

42.5824 

50.852 

50.852 

50.852 

43.0625 

43.0625 

43.0625 

43.0625 

42.92957 

42.92957 

43.102 

43.102 

42.03083 

42.03083 

42.03083 

42.03611 

42.03611 

42.18694 

42.18694 

42.33167 

44.53917 

45.78667 

50.852 

50.852 

45.78667 

45.78667 

50.852 

50.852 

Longitude 
-79.33191667 

-79.33141667 

-79.2871 

-79.33141667 

-79.2645 

-79.2645 

-79.2645 

-79.33141667 

-79.18525 

-79.18525 

-79.18525 

-79.30375 

-79.2781 

-79.2781 

-79.2781 

-79.2781 

-79.313 

-79.313 

-79.313 

-79.313 

-81.71944 

-81.71944 

-81.71944 

-80.3898 

-80.3898 

-80.3898 

-80.3898 

120.2978 

120.2978 

120.2978 

-79.1745 

-79.1745 

-79.1745 

-79.1745 

-79.25502 

-79.25502 

-79.30375 

-79.30375 

-82.51556 

-82.51556 

-82.51556 

-83.03806 

-83.03806 

-83.08778 

-83.08778 

-82.92639 

-76.18472 

-81.94111 

120.2978 

120.2978 

-81.94111 

-81.94111 

120.2978 

120.2978 
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Code 
lBC57-35 

lBC57-36 

INI225-18 

INI225-19 

INI225-20 

lNI225-21 

lNI225-22 

INI225-23 

lNI217-2 

INI217-3 

INI217-4 

INI215-6 

INI2I9-3 

INI222-7 

lBC57-38 

lBC57-39 

lBC57-40 

lBC57-41 

lBC57-42 

lBC57-43 

lBC57-44 

lBC57-45 

lBC57-46 

lBC58-6b 

lBC58-7b 

lBC58-8 

!NF2-18 

IRQ11-1 

IRQ25-10 

IRQ24-2 

IRQ24-3 

lRQ24-4 

IN04-1 

IN04-2 

IN04-4 

IN09-2 

IN04-3 

IHL3-4 

IHL3-3 

1AL24-1 

1AL24-3 

IN03-6 

IN03-7 

lWE42-3 

lWE44-4 

lWE45-2 

lWE45-3 

IN03-5 

IN04-5 

lWE132-1 

lWElOl-l 

lWEI 04-1 

lWE110-1 

lWE132-2 

Species 
An. freeborni 

An. freeborni 

An. barberi 

An. barberi 

An. barberi 

An. barberi 

An. barberi 

An. barberi 

An. perplexens 

An. perplexens 

An. punctipennis 

An. perplexens 

An. perplexens 

An. perplexens 

An. freeborn; 

An. freeborni 

An. freeborni 

An. freeborni/punctipennis 

An. freeborni/punctipennis 

An. freeborni 

An. freeborni 

An. freeborni 

An. freeborni 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. earlei 

An. perplexens 

An. perplexens 

An. perplexens 

An. perplexens 

An. perplexens 

An. perplexens 

An. perplexens 

An. perplexens 

An. perplexens 

An. earlei 

An. earlei 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. punctipennis 

An. perplexens 

An. perplexens 

An. punctipennis 

An. punctipennis 

An. quadrimaculatus s.l. 

An. quadrimaculatus s.l. 

An. punctipennis 

Date 
18-Aug-08 

18-Aug-08 

27-Sep-09 

27-Sep-09 

27-Sep-09 

27-Sep-09 

27-Sep-09 

27-Sep-09 

20-Aug-09 

20-Aug-09 

20-Aug-09 

17-Aug-09 

29-Aug-09 

4-Sep-09 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

18-Aug-08 

27-Jun-08 

27-Jun-08 

27-Jun-08 

7-Apr-06 

18-Jun-06 

20-Jun-07 

20-Jun-07 

20-Jun-07 

20-Jun-07 

14-Jul-05 

14-Jul-05 

14-Jul-05 

15-Jul-05 

14-Jul-05 

14-Jul-05 

14-Jul-05 

8-Feb-05 

8-Feb-05 

14-Jul-05 

14-Jul-05 

30-May-06 

6-Feb-06 

31-May-06 

31-May-06 

14-Jul-05 

14-Jul-05 

15-Jun-08 

6-Dec-08 

6-Dec-08 

13-Jun-08 

15-Jun-08 

Region 
BC 
BC 
Nl 
NI 

NI 

Nl 
NI 

NI 

NI 

Nl 
NI 

NI 

Nl 
Nl 
BC 
BC 
BC 
BC 
BC 
BC 
BC 
BC 
BC 
BC 
BC 
BC 
NF 

RQ 

RQ 

RQ 

RQ 

RQ 

NO 
NO 
NO 
NO 
NO 
HL 
HL 
AL 
AL 
NO 
NO 
WE 

WE 

WE 

WE 

NO 
NO 
WE 

WE 

WE 

WE 

WE 

City 
Kamloops 

Kamloops 

Niagara Falls 

Niagara Falls 

Niagara Falls 

Niagara Falls 

Niagara Falls 

Niagara Falls 

Chippawa 

Chippawa 

Chippawa 

Port Colbourne 

Flambourough 

Waint1eet 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Kamloops 

Chilliwack 

Chilliwack 

Chilliwack 

Deer Lake 

Radisson 

Radisson 

Radisson 

Radisson 

Radisson 

Manitoulin 

Manitoulin 

Manitoulin 

Manitoulin 

Manitoulin 

Milton 

Milton 

Algonquin 

Algonquin 

Manitoulin 

Manitoulin 

Morpeth 

Leamington 

Leamington 

Leamington 

Manitoulin 

Manitoulin 

Rondeau 

Leamington 

Leamington 

Amherstburg 

Rondeau 

Stage 
larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

larva 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

adult 

larva 

larva 

larva 

larva 

larva 

Latitude 
50.852 

50.852 

43.0625 

43.0625 

43.0625 

43.0625 

43.0625 

43.0625 

43.0227 

43.0227 

43.0227 

42.8831 

43.3124 

42.8949 

50.852 

50.852 

50.852 

50.852 

50.852 

50.852 

50.852 

50.852 

50.852 

49.2 

49.2 

49.2 

49.21623 

53.66448333 

53.499 

53.52266667 

53.52266667 

53.52266667 

45.7125 

45.7125 

45.7125 

45.76139 

45.7125 

43.35778 

43.35778 

45.57167 

45.57167 

45.78056 

45.78056 

42.28889 

41.95027 

41.96083 

41.96083 

45.78056 

45.7125 

42.2762 

41.9504 

42.0406 

43 .0645 

42.2762 

Longitude 
120.2978 

120.2978 

-79.1745 

-79.1745 

-79.1745 

-79.1745 

-79.1745 

-79.1745 

-79.0885 

-79.0885 

-79.0885 

-79.2781 

-80.0778 

-79.2912 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

120.2978 

-121.7333 

-121.7333 

-121.7333 

-57.33337 

-78.32241667 

-77.45178333 

-77.46783333 

-77.46783333 

-77.46783333 

-82.2175 

-82.2175 

-82.2175 

-82.15583 

-82.2175 

-79.99444 

-79.99444 

-78.42944 

-78.42944 

-82.15111 

-82.15111 

-81.85278 

-82.51728 

-82.52722 

-82.52722 

-82.15111 

-82.2175 

-81.9678 

-82.5172 

-82.5091 

-82.0741 

-81.9678 
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Appendix III (con't) 

Code Species Date Region City Stage Latitude Longitude 

lWE103-1 An. punctipennis 14-Jul-05 WE Leamington larva 41.9499 -82.5164 

lWE103-2 An. quadrimaculatus s.l. 14-Jul-05 WE Leamington larva 41.9499 -82.5164 

lBP09-1 An. quadrimaculatus s.l. 20-Jun-08 BP Bruce Peninsula larva 45.2228 -81.4712 

lBP09-2 An. punctipennis 20-Jun-08 BP Bruce Peninsula larva 45.2228 -81.4712 

lBP14-1 An. punctipennis? 21-Jun-08 BP Bruce Peninsula larva 45.141 -81.4571 

lBP19-1 An. punctipennis 22-Jun-08 BP Tobennory larva 45.263953 -81.7021 

IN1222-1 An. quadrimaculatus s.l. 9-Apr-09 NI Wainfleet larva 42.8949 -79.2912 

lNI222-2 An. punctipennis 9-Apr-09 NI Wainfleet larva 42.8949 -79.2912 

lN1222-3 An. perplexens 9-Apr-09 NI Wainfleet larva 42.8949 -79.2912 

IN1222-4 An. punctipennis 9-Apr-09 NI Wainfleet larva 42.8949 -79.2912 

INI222-5 An. quadrimaculatus s.l. 9-Apr-09 NI Wainfleet larva 42.8949 -79.2912 

INI222-6 An. quadrimaculatus s.l. 9-Apr-09 NI Wainfleet larva 42.8949 -79.2912 

IN1226-5 An. punctipennis 27-Sep-09 NI St. Catharines larva 43.1095 -79.2646 

INI213-1 An. punctipennis 16-Aug-09 NI Wainfleet larva 42.8561 -79.3458 

IN1213-2 An. punctipennis 16-Aug-09 NI Wainfleet larva 42.8561 -79.3458 

lN1213-3 An. quadrimaculatus s.l. 16-Aug-09 NI Wainfleet larva 42.8561 -79.3458 

INI209-1 An. punctipennis 8-Jun-09 NI Fort Erie larva 43.0358 -79.0604 

INI209-2 An. punctipennis 8-Jun-09 NI Fort Erie larva 43.0358 -79.0604 

lNI215-1 An. quadrimaculatus s.l. 17-Aug-09 NI Port Colbourne larva 42.8831 -79.2781 

lN1215-2 An. quadrimaculatus s.l. 17-Aug-09 NI Port Colbourne larva 42.8831 -79.2781 

IN1215-3 An. punctipennis 17-Aug-09 NI Port Colbourne larva 42.8831 -79.2781 

lN1215-4 An. punctipennis 17-Aug-09 NI Port Colbourne larva 42.8831 -79.2781 

lN1215-5 An. punctipennis 17-Aug-09 NI Port Colbourne larva 42.8831 -79.2781 

INI217-1 An. perplexens 20-Aug-09 NI Chippawa larva 43.0227 -79.0885 

lNI217-2 An. punctipennis 20-Aug-09 NI Chippawa larva 43.0227 -79.0885 

NI203-7-1 An. perplexens 7-0ct-09 NI Pelham larva 43.099745 -79.332093 

NI203-7-2 An. perplexens 7-0ct-09 NI Pelham larva 43.099745 -79.332093 
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