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ABSTRACT 

The main focus of this thesis is to evaluate and compare Hyperbalilearn­

ing algorithm (HBL) to other learning algorithms. In this work HBL is 

compared to feed forward artificial neural networks using back propaga­

tion learning, K-nearest neighbor and 103 algorithms. 

In order to evaluate the similarity of these algorithms, we carried out 

three experiments using nine benchmark data sets from UCI machine 

learning repository. The first experiment compares HBL to other algo­

rithms when sample size of dataset is changing . The second experiment 

compares HBL to other algorithms when dimensionality of data changes. 

The last experiment compares HBL to other algorithms according to the 

level of agreement to data target values. 

Our observations in general showed, considering classification accu­

racy as a measure, HBL is performing as good as most ANn variants. 

Additionally, we also deduced that HBL.:s classification accuracy outper­

forms 103's and K-nearest neighbour's for the selected data sets. 
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Chapter 1 

Introduction 

This thesis deals with a comparative study of Hyperball (HBL) algorithm 

as a new classification algorithm to back propagation learning [1] in feed­

forward artificial neural network as well as K-Nearest neighbour [2] and 

decision tree [3] . In this thesis, accuracy of three variants of HBL algo­

rithm is compared to four variants of back propagation neural networks. 

Artificial neural network (ANN) is a computational model which tries 

to simulate structure or functional behaviour of biological neural net­

works. It consists of a number of nodes which are connected to each 

other using weighted connections. Different arrangements of nodes to­

gether construct different layers of ANNs. In multi layer ANNs, at least 

three layers of nodes are formed: An input layer which receives input to 

the network, hidden layers which can assist in the classification of non­

linearly separable patterns; and an output layer which is used for actual 

output of the neural network. 

Feedforward neural networks are a type of ANNs where the weight 

connections between the nodes do not form a directed cycle. In this 

type of ANN, information only flows in one direction, which is from 

the input layer to the output layer. By using back propagation learning, 

1 
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multi layer neural networks can be trained to learn the input patterns 

and achieve a form of generalization by which they can also classify 

unseen similar patterns. In its simplest form, BP uses gradient descent 

techniques. Back propagation learning calculates the error of the output 

nodes and propagates the error backwards to tune the weights of the 

neural network using local gradient of output nodes. 

There are many variants to gradient descent back propagation learn­

ing. In this thesis, Levenberg-Marquardt (LM) [4], Resilient BackPropaga­

tion (RProp) [5], Quasi-Newton (BFG)[6] and standard Gradient Descent 

with Momentum (GDM) [1] are used as four variants of back propagation 

learning. Levenberg-Marquardt and Quasi-Newton variants make use of 

second order information about the error surface which is represented by 

the local Hessian matrix. Quasi-Newton tries to approximate the inverse 

of Hessian matrix over a number of steps instead of computing Hessian 

which is computationally expensive. Levenberg-Marquardt is specifi­

cally designed to locate the minimum of sum-of-squares error function 

which is used to calculate the error at the output layer of neural networks. 

Resilient back propagation tries to use the sign of partial derivatives in 

gradient descent to indicate the direction of weight update. 

One of the main works of this thesis is to evaluate HBL algorithm in 

comparison to neural networks. HBL algorithms are recently introduced 

in [7] and can be used for both supervised and unsupervised learning. 

However, in this thesis HBL is used for supervised learning. 

HBL algorithms work similarly to the category of Instance Based 

Learning (IBL) algorithms [2]. These algorithms try to classify patterns 

based on computing a similarity-measure (distance) to the patterns they 

have learned before. Classification of a new pattern is done by the con­

tribution of a number of more similar (less distant) patterns to the new 

pattern. When a pattern is introduced to HBL, it centers a ball around 
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that pattern. This ball is a secure margin for the pattern which can contain 

other very-similar patterns. Each ball is labeled to the class to which the 

pattern belongs. So all balls of the same class are labeled uniquely which 

construct a category. The number of categories is equal to the number of 

classes associated with the dataset in supervised learning. Radii of the 

balls in each category is decided and altered over a number of steps. Balls 

which belong to same category can overlap whereas balls which belong 

to different categories are shrunk to be mutually exclusive. 

HBL in testing mode examines the patterns in the balls of each category 

looking for a number of more similar patterns to the testing pattern. It 

then uses the information from this group of patterns to classify the testing 

pattern. In this thesis, three variants of HBL algorithm are introduced. 

Like any other classification algorithm, HBL also has both advantages 

and disadvantages. Being a category of Instance Based Learning algo­

rithms, HBL can construct a different approximation for each distinct 

testing pattern which is to be classified. This can be advantageous when 

the target function is very complex because HBL can describe it as a col­

lection of local approximations [2]. One disadvantage of HBL is that the 

cost of classifying testing patterns can be higher when the number of in­

stances increase because the number of distance calculations increases as 

well. Another disadvantage of HBL is that all of the attributes associated 

with a pattern are considered by the algorithm for classification and they 

are all given equal importance whereas in practice not all attributes are 

of equal importance to describe data. 

In addition to further evaluate the performance of HBL, K-Nearest 

Neighbour (KNN) [2] and decision trees ID3 [3] are also included in the 

comparison. Just like HBL algorithm, KNN algorithm also belongs to a 

category of Instance Based Learning. ID3 algorithm constructs a decision 

tree by calculating information gain of each of the unused attributes and 
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selects the attribute with maximum information gain as a node. This 

process is continued until all of the attributes associated with data are 

used. 

In order to compare HBL to ANN, KNN and ID3 algorithms, 9 bench­

mark datasets are selected from the VCI machine learning repository 

and generalization accuracies of each algorithm over these datasets are 

used as a measure of comparison. The selected datasets are: Glass, Iris, 

Pima Indian Diabetes, Connectionist, Madelon, Wine, Zoo, Breast Cancer, 

Musk Version two, and Parkinson dataset. 

This thesis focuses on a few different criteria which can influence the 

accuracy of a classifier and conducts an experiment for each to compare 

HBL to other algorithms. These criteria are sample size and number of 

attributes associated with each pattern (data dimensionality). It also uses 

another criterion as the level of agreement between a classifier and the 

actual data output to compare classifiers. 

The first experiment tries to compare HBL to other algorithms when 

the sample size is increasing. For this experiment, we have divided the 

datasets into two groups and have conducted the experiment for each 

group of dataset when each time sample size is increasing by 25%. 

The second experiment compares HBL to other algorithms when the 

dimensionality of data changes in each dataset. Principal Component 

Analysis (PCA) [8] is employed to reduce the dimensionality and each 

time increase number of selected principal components by 25%. For this 

experiment, datasets with equal number of classes are grouped together 

and their accuracy results are averaged over their group. The third exper­

iment compares HBL to various other algorithms in order to determine 

whether if in general HBL algorithm has a better level of agreement to 

actual target values. In general for this experiment, Kappa statistical test 

[9] is utilized. 
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The remainder of the thesis is organized as follows: Chapter 2 will give 

an introduction to artificial neural networks. Back propagation learning 

algorithm is then explained in details in this chapter. This chapter also ex­

plains the other variants of back propagation algorithm which are used in 

this thesis. In chapter 3, KNN and ID3 algorithms are explained in detail. 

It also describes the different learning categories each of these classifiers 

belong to. Next in chapter 4, HBL and its different variants are introduced. 

Chapter 5 performs a literature review on different KNN variants to see 

if they are similar to HBL algorithm. Chapter 6 describes the datasets we 

are using along with experimental setups. Selected datasets are briefly 

described in a tabular form and for each classifier, experimental details 

and parameters' initial values are explained. Actual experiments and 

results are shown and discussed in chapter 7. Lastly chapter 8 describes 

the conclusions and proposes the future works which can be performed 

and established in addition to this thesis. 

Thesis Goals 

In this work we have tried to achieve following goals: 

1. Compare performance (classification accuracy) of HBL algorithm 

to ANNs using back propagation, KNN algorithm, and ID3 algo­

rithms for a number of selected data sets and when the sample size 

increases. Use student's paired t-test and effect size[lO] (Shows the 

statistical strength of a difference) to determine the significance and 

importance of each comparison. 

2. Compare performance (classification accuracy) of HBL to other clas­

sifiers in terms of classification accuracy on a set of data sets when 
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dimensionality of data changes. Use student paired t-test and effect 

size to determine the significance and importance of difference. 

3. Using Cohens Kappa test of statistics [11] determine the level of 

agreement between each classifier's actual output and target out­

put. Apply a Z-Statistical test [12] to determine the significance of 

obtained values. Then using these values, compare HBL to these 

other algorithms. 



Chapter 2 

Artificial Neural Networks: 
Back Propagation Learning 

2.1 Introduction to Artificial Neural Networks 
(ANN) 

An artificial neural network [13] (ANN) is a model which is used to 

simulate both the structure and functional behavior of a biological neu­

ral network. It is comprised of a group of artificial neurons which are 

interconnected. Artificial neurons are connected to each other by connec­

tion lines which are called "weight connections". Artificial neurons and 

weight connections together form the architecture of a neural network. 

All neural networks should be trained prior they can perform a task 

with some sort of training rule. Using training rule weight connections 

will be updated on the basis of data and feedback. If neural networks 

are trained properly then they can show capability for generalization 

beyond the training data. This means they can approximately produce 

correct results for the cases which are not included in the training data 

but belong to same data category. 

7 



2.1. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS (ANN) 8 

Figure 2.1: A simple Neuron 

2.1.1 A simple Artificial Neuron 

An artificial neuron (is often called as node) receives input from other 

nodes or from external environment. Each input to a node is comprised 

of a weight value w. In each node, all of the weighted inputs are summed 

together and then a function f calculates the weighted sum of its inputs 

as follows: 

Yi = f(L WijYi) (2.1) 
i=l 

(2.2) 

In Figure 2.1, the weighted sum L.j Wij * Yj is called the net input to 

node i, neti where Y is an output from a node. Note that Wij refers to 

the weight from node j to node i. The function f is the node's activation 

function. In the simplest case, f is the identity function, and the node's 

output is just its net input. This is called a linear node (because its output 

is equal to its net value), however it is nonlinearity which gives ANNs 

capability to classify nonlinearly separable data. ANNs can have different 

architectures and models. Multi layer ANN models have been used in 
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this thesis. These models are explained in the following section. 

2.1.2 Multi layer ANNs 

Multi layer neural networks have at least three different layers of nodes. 

The first layer is the input layer, consisting of nodes which receive input 

from the outside. The last layer is called the output layer, which is the 

neural network's output and transfers the response of the whole neural 

network to the outside environment. In between, there can be at least 

one hidden layer of hidden nodes which process the received input from 

the preceding layers. Each neuron has an activation (squashing) function 

associated with it. If a network consists of linear activation functions, 

then it can learn to classify patterns which can be just linearly separable 

[14]. Linearly separable patterns are patterns by which any two different 

classes of patterns can be separated by a straight line (plane, or hyperplane 

depending on dimensionality of data patterns) [14]. If the activation 

functions associated with hidden layers are nonlinear functions, then the 

network can also learn to classify the non linearly separable patterns. 

Activation functions for hidden units can introduce nonlinearity to the 

network. Without nonlinearity, hidden units would not make neural 

networks more powerful than plain perceptrons (which do not have any 

hidden units, only input and output units). The reason is that a linear 

function of linear functions is again a linear function (which is the case in 

perceptron networks). 

Shown in figure 2.2 is a network composed of three layers. Input units 

receive the input values. In each hidden unit, the sum netj = LjWji * Yj 

and f(netj) is calculated. The same process is repeated in the output layer. 

There are different algorithms and training models associated with multi 

layer neural networks. Back Propagation (BP) algorithm is a well known 
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Outputs 

Hidden 

Inputs 

Figure 2.2: A simple multi layer Network 

algorithm which can be used in multi layer neural networks to adjust the 

weights and train the network [15]. 

2.1.3 Back Propagation Algorithm 

If we consider a multi layer neural network, the final layer of weights can 

be considered as a perceptron with inputs given by the outputs of the last 

hidden layer. These weights can be chosen and tuned using the percep­

tron learning rule [16] which is a rule for tuning and choosing the weights 

and bias in perceptron learning. However, the weights in earlier layers 

of our network cannot be determined by these rules. Another approach 

can be to consider each layer individually as a single layer perceptron but 

then we can not associate target values with those layers anymore. In­

deed, such networks cannot be trained using perceptron procedures. The 

solution to the above problem is relatively simple. If we consider a net-
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work with differentiable activation functions then the activation of output 

nodes become differentiable functions of both the input variables and the 

weights and biases [1]. If we define the error function as sum-of-squares 

error (where the error is difference between the actual network output and 

the target value), then this error itself is a function of the weights which 

is differentiable as well [1]. We can then calculate the derivatives of error 

with respect to weights, and these derivatives can be used to calculate 

the required adjustments in the weights values. The algorithm which 

evaluates the derivatives of weight functions is called back propagation 

algorithm [15] since it tries to propagate the error backwards from the 

output layer to the previous layers. With respect to partial derivative of 

the error over corresponding weight, it then finds the new weight value. 

Back propagation pseudo code is presented below: 

Algorithm 1 Back Propagation 
1: Begin 
2: Initialize the weights to some random values 
3: repeat 
4: for each input pattern n in the training set do 
5: compute y(n) as the actual output of the network 
6: Calculate error (y(n) - d(n» at the output units 
7: Update all weights from hidden layer to output layer using: 
8: /}.Wji = TJej(n)f'(netj(n»Yi(n) 
9: Update all weights from input layer to hidden layer using: 

10: /}.Wji = T7f;(netj(n». Lk Dk(n)Wkj(n)Yi(n) 
11: end for 
12: until all examples classified correctly or stopping criterion met 
13: return network 

As demonstrated above, back propagation algorithm has two phases: 

The first phase involves a forward propagation of inputs as explained in 

equations 2.1 and 2.2 (line 5 in above algorithm). In the second phase, er­

ror e can be calculated for every output node, and the sum of squares error, 
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E, can be calculated for the network. Then, derivations of E over weights 

are calculated to find the I1wji which is the required adjustment for the 

weight Wji' In other words, after input is fed to the network, error is cal­

culated at the output but error is then propagated backwards, so for each 

existingweight,l1wji is calculated. The update I1wji is 17ej(n)!'(netj(n»Yi(n) 

and for other hidden-output weights and ryf;(net/n». Lk ok(n)wkj(n)Yi(n) 

(lines 6 - 10 in above algorithm). In order to minimize the error func­

tion, an iterative procedure is needed for most training algorithms which 

adjusts the weights accordingly in each iteration. The derivation of back 

propagation learning algorithm is been discussed in details in appendix 

A. 

Vanilla back propagation usually works for simpler models, however 

it might take a long time to converge if error space becomes more complex. 

The reason for this is that the places which small step sizes are needed can 

be problematic for the whole convergence. For example when descending 

a steep place, small step sizes are needed to be taken. On the other hand 

when descending in a gently sloping parts longer step sizes should be 

taken [17]. A possible solution to the problem is by choosing a step that is 

some constant times the negative gradient rather than a step of constant 

length in direction of the negative gradient [4]. This is equivalent to 

moving slowly in shallow regions and moving quickly in steep regions. 

Another issue is that the error surface curvature can be different in all 

directions and not the same. This will cause different components of the 

gradient in different directions to have different values which can slow 

down the algorithm [17]. 
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ANN Variants 

Error back propagation works by moving towards the negative direction 

of local gradient of error with respect to weights to find the minimum 

error and new weight values. One of the well known algorithms to find 

minimum of an error function is Newton's method [18]. Newton's meth­

ods can be used to find approximations to roots of a quadratic equation. 

Unlike gradient descent, Newton's methods point directly to the mini­

mum of a function. The problem with Newton's methods is that they 

have to calculate Hessian matrix (matrix of second derivatives or error 

with respect to weights) to be able to proceed in the direction of descent. 

However, calculating Hessian matrix numerically needs a lot of compu­

tation and will be very costly. Quasi-Newton overcomes this drawback 

by using the curvature information from f and 'V f to approximate the 

Hessian matrix. The update formula for this algorithm is given in below: 

G( 1) = G() ppT _ (G(n)v)vTG(n) (TG()) T 
n + n + pTv vTG(n)v + v n v uu 

p, v, and u are vectors which are defined as: 

p = w(n + 1) - w(n) 

v = g(n + 1) - g(n) 

p G(n)v 
U=---=--

pTv vTG(n)v 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Levenberg-Marquardt [17] is another variant of ANN back propagation 

which is designed to minimize the sum-of-squares cost function without 

computing Hessian matrix. This algorithm instead uses Jacobian matrix 

of partial derivatives of error with respect to connection weights for every 

training pattern. M. Poulton et. al in [19] state that Levenberg-Marquardt 

algorithm will look to minimize error only in a small search area where the 

linear approximation is possible. Levenberg-Marquardt benefits from a 
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step size factor whose value can greatly shift algorithm behavior towards 

Newton's method or gradient descent. If step size is chosen to be a large 

value, then algorithm will behave like Newton's method. On the other 

hand a small step size value will result in an algorithm equivalent to 

gradient descent. The update formula of this algorithm is given as below: 

Where 

E(w(n + 1» = E(w(n» + Z(w(n + 1) - w(n» 

Z = dE 
dW 

(2.7) 

. (2.8) 

(2.9) 

Rprop or Resilient back propagation method [5] is another variant 

which can be used in supervised batch learning in multi layer percep­

tron networks. Rprop uses the sign of partial derivatives to indicate the 

direction of weight update so it eliminates the problem of calculating 

partial derivatives in weight steps in gradient descent. For each weight, 

if signs that a partial derivative of the total error function has changed 

when compared to last iteration, then the update value for that weight is 

multiplied by a coefficient rr < 1. If there is no change in the sign, then 

the update value is multiplied by r( > 1. Finally, each weight is updated 

by its update value in the opposite direction of its partial derivative. 

Rprop is a reliable variant when the size of a network is too big and 

dramatically slows down Levenberg Marquardt and Quasi-Newton algo­

rithms [1]. 



Chapter 3 

K-Nearest Neighbour, Decision 
Tree Method 

3.1 K-Nearest Neighbour Algorithm (KNN) 

In order to explain the KNN algorithm [20], let's assume that the data is 

divided into two main categories: training set and testing set. Let's choose 

a pattern from testing set, Ptest(al, a2, a3, ... an), which consists of n attributes 

(a). The idea in KNN algorithm is to dynamically select k patterns in train­

ing set (Ptrain) which are "more similar" to the pattern to be classified in 

testing set (P in above) [20]. Similarity can be identified by calculating the 

differences (distances) to each Ptrain in the training set and then choosing 

the k patterns which have more similarity (e.g smaller differences) to Ptest . 

Then, KNN will use the information from k selected patterns to classify 

Ptest . The problem is to find classJ:ndex using ClassJndex = f(al, a2, ... ap) 

equation. If function f was known then classJ:ndex could be simply 

calculated. But f is not known so a reasonable idea will be to look for 

observations in our training data that are near it [20]. 

As we mentioned above, KNN uses the k closer pattern's information 

to classify the Ptest . This is achieved by calculating distance and finding k 

15 
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examples that their distance is closest to Ptest . In classification problems, 

a majority voting scheme is employed for KNN's prediction [20]. 

The choice of k is considered to be an important factor in this algorithm. 

k is considered to be a smoothing parameter [2]. The reason is a small 

value of k in any given problem, will lead to large variances in predictions. 

If we choose a large value for k, then it could cause a large model bias [20]. 

So k should be chosen in such a way that it is large enough to minimize 

misclassification probability. On the other hand, it should be small with 

respect to number of instances so that k nearest points are close enough 

to the query point [20]. Thus, the optimal value for k should be chosen 

and selected. By using a cross validation technique, an estimate of k in 

KNN algorithm can be calculated [20, 1]. 

In order to make predictions with KNN, a metric needs to be defined 

for measuring the distance between the query point and cases from the 

training sample. In this thesis, Euclidean metric space is used for the 

K-nearest neighbor algorithm. The KNN's pseudo code for to-fold cross 

validation is presented below: 

Algorithm 2 K-Nearest Neighbour Algorithm using Cross Validation 
1: Divide the dataset using to fold cross validation: 
2: each time use one fold for testing and remaining 9 folds for training 
3: for each test sample t do the following: do 
4: determine the closest k training samples based on calculated dis­

tance. 
5: determine w the most frequent class label among the available C 

classes. 
6: Update corresponding confusion matrix. 
7: end for 
8: Make decisions based on confusion matrix (accuracy). 

As we can see above, 10-fold cross validation is applied to partition 

data into 10 folds randomly. Each time, 9 folds are used for training 
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and one fold for testing. w, the most frequent class among C existing 

classes is chosen based on distance of each query point (test pattern) to 

K nearest stored patterns, and correspondingly, confusion matrix is been 

updated. Confusion matrix [21], is used to evaluate the performance of 

an algorithm using the data which is stored in the matrix. 

There are a few shortcomings associated with KNN algorithm. First, 

the time to find the nearest neighbors in a large training set can be costly. 

Second, the number of observations required in the training data set to 

qualify as large, increases exponentially with the number of dimensions 

n [2]. 

Another disadvantage is when dimensionality of data increases find­

ing nearest neighbor also will more cumbersome as number of calcu­

lations also increases. KNN variants will be later on explained in this 

work. 

3.2 Decision Tree (Dtree) learning 

Decision Trees [22] can be used for classification, prediction and functional 

approximation. In contrast to neural networks, decision trees represent 

rules. These rules can be as simple as a set of if-then statements. In order 

to classify instances, decision trees sort instances down the tree from root 

to some leaf node. Each node in a decision tree corresponds to a test of 

some attribute of instances and each branch descending from that node 

corresponds to a possible value for that attribute. An instance is classified 

by starting at the root node of the tree, testing the attribute and moving 

down the branch corresponding to the attribute in a given example. The 

same process is repeated for the subtrees rooted at that node. The induc­

tion of decision trees requires to come up with a classification rule which 

can use the attribute values of a pattern and determine the target class 
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which to the pattern belongs. This classification rule is expressed as a 

decision tree. In decision trees, leaves' nodes are classes (target values) 

associated with patterns. Other nodes in the tree are attribute based tests 

and branches are values which are associated with each attribute. The 

essence of decision tree induction is to determine whether decision trees 

can generalize to unseen patterns beyond the training set. It means the 

algorithm tries to construct a decision tree which can classify patterns 

from the testing set given that training set and testing set are mutually 

exclusive. 

There can be more than one correct decision tree for a particular train­

ing set. In this case, smaller and less complex trees are preferred over 

more complex ones. Quinlan in [22] argues that the greater the complex­

ity of a tree, the more the tree is likely to be an explanation of the training 

set. In Figure 3.1 a sample decision tree is shown for Iris data set. As it is 

shown in this figure, each node corresponds to a test of attribute and each 

branch descending from that node corresponds to a possible value for 

that attribute. Finally, each leaf node represents a classification decision 

in this decision tree. 

3.2.1 ID3 

A solution to the simpler-the-better (Occam's Razor) approach above is 

to construct all possible decision trees and then select the simplest one. 

When the datasets begin to get very large, it is not practical to construct 

the decision tree based on all samples of training set. In this case, a 

window as a subset of the training set sample size is selected and used to 

construct the decision tree. If the constructed decision tree cannot classify 

some of the patterns from training set, then those patterns are added 

to the window set. ID3 benefits from a few concepts from information 
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Figure 3.1: Decision Tree Classification 

theory. Let us call training set as "5," then Entropy of 5 is defined in [23] 

as follows: 1/ Entropy is a measure of impurity in the collection of training 

set". 

Informall)" entropy can be provide some information about data, in the 

sense that the higher the entropy is, the more information is required to 

completely describe that data. Entropy's formula is given in [2] as : 

c 

Entropy(5) = L -Pi log2 Pi (3.1) 
i=l 

Pi is the proportion of instances in training set that have ith value of the 

target set. Information gain Gain(5,A) of an attribute A is calculated as 

follows: 

'\' Card(5v ) 
Gain(5,A) = Entropy(5) - L..J Card(5) Entropy(5v ) 

vEVa/ues(A) 

(3.2) 
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Values(A) is set of all possible values for attribute A and Sv is subset of S 

for which attribute A has value v. In decision trees, the first node (root) 

should be selected among different available attributes based on the score 

given by the information gain. 

In order to construct the tree, the information gain for all attributes is 

calculated and the attribute with the highest information gain is selected. 

When we want to descend the tree, attributes should be selected in such a 

way that they reduce entropy, and attributes which have the most entropy 

reduction are most suitable to be chosen [22]. In the same manner infor­

mation gain is also defined as the expected entropy reduction imposed 

by a specific attribute. ID3 algorithm for a two class problem, (0,1), is 

presented below exactly as it is given in [2]. 

Algorithm 3 corresponds to a two class classification of data. The 

first 7 lines of this algorithm correspond to conditions which can lead to 

the condition in which tree is single node tree. In lines 9 - 18 algorithm 

is trying to select best attribute with highest information gain and then 

grown the tree by adding branches based on possible values of the selected 

attribute. The algorithm calls itself recursively until the complete tree is 

constructed. 

As explained earlier, information gain is a measure used by ID3 to 

select the best attribute in each step in expanding the tree. Stopping con­

ditions can occur either when every attribute has already been included 

along a path throughout the tree, or when all of the training examples 

associated with a particular leaf node have the same target attribute value. 
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Algorithm 3 ID3 Algorithm 
Examples are the training examples. Target- attribute is the attribute whose 
value is to be predicted by the tree. Attributes is a list of other attributes that 
may be tested by the learned decision tree. Returns a decision tree that correctly 
classifies the given example. 

1: Create a Root node for the tree. 
2: if all Examples are positive then 
3: single-node tree Root, with label=plus. 
4: else if all Examples are negative then 
5: the single-node tree Root, with label=minus 
6: else if attributes is empty then 
7: single-node tree root, with label= most common value of Target-attribute 

in Examples 
8: else 
9: A := the attribute from attributes that best classifies Examples 

10: The decision attribute for root:=A 
11: for each possible value, Vi, of A: do 
12: Add anew branch tree below root, corresponding to test A= Vi 
13: Let Examples_Vi be the subset of Examples that have value Vi for A, 
14: if Examples_Vi is empty: then 
15: Add a leaf node below the new branch with label= most common 

value of TargeLAttribute in Examples 
16: else 
17: add the subtree below this new branch 
18: end if 
19: call ID3(Examples_ Vi, Target-attribute, Attributes-A) 
20: end for 
21: end if 
22: return Root 





Chapter 4 

Hyperball Algorithm (HBl) 

4.1 Introduction to HBl Algorithm 

Hyperballlearning algorithms (HBL) [7] are a set of classification and 

clustering algorithms designed to work for both supervised learning and 

unsupervised learning. HBL divides supervised learning into learning 

from a fallible and from an infallible expert. It also provides methodolo­

gies for self supervised learning (autonomous learning). HBL algorithms 

are designed to work in a highly parallel manner, but they can still be 

utilized in sequential processing as well. HBL algorithms can also be im­

plemented online so they evolve with changes made in their environment, 

although it is not within the scope of this thesis. 

4.1.1 Background 

HBL algorithms belong to the group of Instance Based Learning algo­

rithms (IBL) [24] . IBL algorithms learn by storing the presented training 

data in a particular way. In testing mode, when a new instance (pat­

tern) is encountered (from testing set), a search is done to extract a set of 

23 
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similar related instances from the storage (memory), which is then used 

to classify the new instance. One advantage of IBL algorithms is their 

ability to construct a different approximation to target function for each 

distinct testing instance (pattern) [24]. This feature is advantageous when 

target function is complex and should be described by a collection of local 

approximations which have lower complexity. 

One of the main disadvantages of IBL algorithms can be the high 

cost of the classification of new instances. In IBL algorithms, nearly 

all computation takes place at testing time, which can introduce a time 

complexity factor, especially when the classifier is dealing with larger 

sample sizes. Another disadvantage which applies to classifiers like KNN 

is that they consider all of the attributes associated with data when they 

try to retrieve similar instances from their memory. This could lead to 

the selection of non-similar instance when the label of data (target) is just 

dependent on a few attributes [24]. 

Among all learning algorithms of IBL (radial basis functions, case 

based reasoning, etc), KNN is most similar to HBL algorithm. Indeed, 

they both store training data and calculate a distance from a new instance 

(pattern) Xq to all saved individual train data to identify the class of the 

query pattern. However, HBL algorithm centers a secured-margin (ball) 

around each pattern before storing the pattern. The existence of a ball 

centered at pattern is helpful when testing instance Xq is located inside 

another previoUsly stored patterns ball. It makes the classification faster 

and more efficient in a way since no distance calculation is required any 

more after the identification of a ball containing the pattern in question. 

This can happen by simply returning the category to which the ball be­

longs to as the classification decision instead of calculating all distances 

as in regular KNN algorithm. We need some mathematical definitions 

prior to describing HBL algorithm. These definitions are explained in the 
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next section. 

4.1.2 Basic Definitions 

The Metric: A set of points such that for every pair of points there is 

a nonnegative real number that is symmetric and satisfies the triangle 

inequality. 

Def.l Measure of distance: A real-valued function d : 5x5 ~ lR and 5 c lR 

can be used as a measure of distance, provided that for all x, y,z E 5 it has 

the following properties: 

d(x, x) = 0 

d(x, y) = d(y, x) 

d(x, z) :s: d(x, y) + d(y, z) 

x*- y then d(x,y) > 0 

(4.1) 

Examples of such metrics can be the Manhattan distance and Euclidean 

distance. 

Def.2 Metric space: The configuration < 5, d > where 5 is a set of points, 

and d is some measure of distance between them [25]. 

Measuring distances between subsets of 5 will suit HBL better. One of 

the simplest subsets of 5 is a ball. 

Def.3 Ball: A ball B(c, r) of radius r ~ 0 around the point c E 5 is the set 

{x E 5 I d(c, x) :s: r} (4.2) 

The point c is called the center of the ball B. 
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Computing Distances between sets 

Considering any two non-empty sets A, B c 5, a function D(A, B) needs to 

be defined to measure distance between A and B while satisfying condi­

tions specified by 4.1. Let d be a chosen function for measuring distance 

between points of space 5. 

DefA Distance between a point and a set: 

Let < 5, d > be a metric space and let A c 5 be a non empty set. A distance 

between a point x E 5 and A, is defined as 

o(x,A) = inf{d(x,a) I a E A} (4.3) 

where o(x,A) is the distance between x and a point a E A closest to x and 

in f stands for infimum value. By using the definition of infimum above, 

a hyperball is defined as follows: 

Def.5 A hyperball of radius r>O around a set A ~ 5 is the set 

{x E 5 I o(x,A)::;; r} (4.4) 

Such a hyperball has the following properties: 

• If the set A ~ 5 consists of a single point, the hyperball reduces to a 

ball around a point. 

• If the radius reduces to zero, the hyperball will be equivalent to the 

center set. 

Def.6 Pseudo distance between two sets: Let < 5, d > be a metric space 

and let A, B c 5 be two non empty sets. A pseudo-distance from A to B, 

denoted ~(A, B) is given by: 

~(A, B) = sup{o(a, B) I a E A} (4.5) 
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It means that the pseudo-distance between A and B is the distance 

from the most distant point of A (from B) to B (sup stands for supremum 

value). 

Def.7 Distance between two sets: Having calculated pseudo distance 

from A to B and from B to A, the larger of these two values is the distance 

between two sets or D(A, B). 

D(A, B) = max{il(A, B), il(B,A)} (4.6) 

We will use these definitions to describe the HBL algorithm. This defi­

nition is used in HBL algorithm to calculate distance between two sets. 

HBL benefits from the former last two definitions to calculate the distances 

between two sets. 

4.1.3 Pattern Recognition and Object Classification 

Learning can be categorized into two main groups: supervised learning 

and unsupervised learning. In supervised learning, training data consists 

of vector data input and desired output. In case of unsupervised learning 

algorithms, only a vector of data inputs is available. HBL algorithms can 

be applied to both supervised and unsupervised learning [7]. As this 

thesis uses HBL algorithms for supervised learning, main focus of this 

part will be on HBL's supervised learning algorithms. 

HBL uses its knowledge bank, K being a set of different categories 

K = {Cl , C2, ... Ck}' Each category is associated with a different target 

class. As HBL encounters a pattern which is to be classified, it searches 

its knowledge bank to see if it can classify the pattern (Algorithm 4). If 

pattern can be classified, HBL returns the category index of the classified 

pattern or zero if the pattern cannot be classified. In Algorithm 4, HBL 

checks to find out whether the query pattern is inside any balls from train-
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ing set. If so then HBL returns the category of that ball as the classification 

decision (Lines 3-4 in Algorithm 4). 

Algorithm 4 Hyperball algorithm for pattern classification. 
1: function Classifier(P: Pattern, K:Knowledge Bank) returns k 
2: for k in 1...card(K) do 
3: for i in 1...card(K.C(K» do 
4: if D(P, K.C(k).B(i).P) ~ K.C(k).B(i).r then 
5: return k 
6: end if 
7: end for 
8: end for 
9: return zero 

It is important to note that balls belonging to different categories are 

altered by HBL algorithm in a way that they are mutually exclusive, so 

this algorithm will return the result only once. 

4.2 Supervised Learning Algorithm 

In supervised learning, whenever HBL encounters a pattern, it first cen­

ters a ball around the pattern, then it checks to see whether it can classify 

it based on patterns learned before. This process is done through HBL's 

Classifier. In case the pattern has not been learned previously, HBL inserts 

the ball containing the pattern into the category matching the target class 

of the pattern (Algorithm Slines 1 - 9). 

As demonstrated in algorithm S , balls are then sorted in each updated 

category (in descending order of their radii) and then the algorithm tries 

to remove redundant balls. A redundant ball is a ball which is completely 

inside another larger ball when both balls belong to the same category. In 

this case, the inner ball is redundant and can be removed, ensuring that 
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Algorithm 5 HBL Learning Process: Supervised Learning 
1: Procedure Learn(P:Pattern; r:Radius; idx:Category Index;) returns 

CatIndx 
2: if k(Number of Categories) <idx then 
3: k=k+l; 
4: Create new empty category C(k); 
5: Insert C(k) into Knowledge bank K; 
6: else 
7: k=idx; 
8: end if 
9: Insert Ball B which contains Pinto KC(k); 

10: Sort balls in KC(k) in descending order of radius; 
11: Remove redundant balls from KC(k) if any; 
12: for n in 1..card(K) and n <> k do 
13: for i in 1.. card(KC(n» do 
14: if D(P,KC(n).B(i).P) <= r then 
15: Remove ball KC(n).B(i) from KC(n); 
16: else if D(P,KC(n).B(i).P)<= r+ KC(n).B(i).r then 
17: KC(n).B(i).r=D(P,KC(n).B(i).P)-r-e; 
18: end if 
19: end for 
20: Sort balls in KC(n) in descending order of radius 
21: Remove redundant balls from KC(n) if any 
22: end for 
23: Remove empty categories from K if any 

the balls Bi , i = 1,2,3, ... n characteristic of a given category CatIndx either 

stand apart or only partially overlap (lines 10 and 11). 

In the same way, a check is to be made whether balls in other categories 

conflict (are not mutually exclusive) with the ball just inserted into Cidx • 

If so the radii of these balls are reduced in order to eliminate the conflict. 

This procedure is done as follows: In line 14 it is checked to find out 

whether another pattern of a different class will be inside ball of new 

pattern P after insetting the new pattern P into its category. In case this 

condition happens then the inner pattern is removed from knowledge 

bank (i.e its category). If two patterns with different categories are having 

an intersection then according to line 15 radius of the pre-existing ball 
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Figure 4.1: Ball Shrinking Procedure 

will be reduced accordingly to make the balls mutually exclusive. This 

procedure is shown in Figure 4.1. If their radii shrink to zero, such balls 

are removed from the knowledge bank [7]. 

In case two balls which belong to two different categories are not 

mutually exclusive, then their corresponding radii should be altered in a 

way that they are mutually exclusive. This procedure will have a time 

complexity of O(Wd) for HBL according to Algorithm 5. 

4.2.1 HBl Variants 

In this part, we graphically demonstrate the possible issues with the 

original algorithm and how these issues are resolved. These graphics use 

Euclidean metric, while HBL works with any metric [7]. 

In Figure 4.2, HBL's classifier has already learned patterns PI to P4, 

out of which P2 and P4 belong to the same Category (B), while PI belongs 
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Figure 4.2: HBL Classifier 

to category A and P3 belongs to category C. As it is also apparent in 

Figure 4.2, HBL's classifier is about to classify pattern P6 which also 

belongs to category B. The classifier realizes that P6 will not be inside any 

learned balls so according to the pseudo-code presented in algorithm 4 

classifier will return zero which indicates that no matching category has 

been found. This can lead to poor generalization as there can be many 

patterns which cannot be located inside a learned ball. However, this 

problem can be resolved by calculating the distance of each pattern which 

is not inside any learned balls to all existing balls of all categories and 

choosing the category of closest ball as the classified category (Figure 4.3). 

The idea is similar to how KNN classifiers work with the difference being 

that in KNN, the distance between two patterns are considered whereas 

in HBL, the closest distance between a pattern and a ball is taken. 
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Now let's imagine the situation shown in Figure 4.4 where P4 is to be 

learned. The classifier realizes that P4 is inside B2(P2, R2). As both P4 

and P2 belong to the same category, the HBL classifier will not center a 

ball around P4. Now consider P5 as the next pattern which belongs to a 

class different to P2 and P4's class. As we can see in Figure 4.5, after the 

classifier centers a ball around the pattern and inserts it into its category, 

it needs to shrink B2(P2, R2) to avoid balls containing patterns P2 and · 

P5 overlap. This can lead to a problem in a way that after B2 shrinks it 

does not hold P4 any more, meaning classifier can forget pattern p4 by 

mistake. 

In order to overcome the above problem, HBL's learning algorithm in 

algorithm 4 is modified in such a way that whenever a pattern is inserted 

into a category and is found inside another pattern's ball of the same 
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category, a ball is inserted around the pattern. Now, if after learning 

proceeds other balls shrink, then, this pattern is assured to remain inside 

a ball and will not be forgotten. This process has been depicted in Figures 

4.6 and 4.7. Another modification which is done to algorithm 4 pertains 

to the situation in which a ball of a category is inside another ball a 

of different category. In this case according to algorithm 5, the inner 

ball is removed from its corresponding category, which can cause the 

classifier to forget the pattern it has learned previously. The solution 

which is provided in this thesis is to shrink both balls accordingly to 

avoid losing information about the inner ball (Lines 14-16 in algorithm 

6). After applying these modifications to algorithm 4. HBL learning 

algorithm is presented in algorithm 5. 
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Algorithm 6 HBL: Modified Learning Process 
Procedure Learn( P:Pattern; r: Radius; idx: Category Index)returns CatIn­
dex 

1: if k(Number of Categories)< idx then 
2: k=k+l; 
3: Create new empty category C(k); 
4: Insert C(k) into Knowledge bank K; 
5: else 
6: k=idx; 
7: end if 
8: Insert Ball B which contains Pinto KC(k); 
9: Sort balls in KC(k) in descending order of radius; 

10: Remove redundant balls from KC(k) if any; 
11: for n in 1..card(K) and n "* k do 
12: for i in 1.. card(KC(n» do 
13: if D(P,KC(n).B(i).P) <= r then 
14: shrink both Band KC(n).B(i) according to following:; 
15: KC(n).B(i).r = D(P,K.C~).B(t).P) - e; 
16: r- D(P,K.C(n).B(i).P) - e· 

- 2 ' 
17: else if D(P,KC(n).B(i).P) <= r + KC(n).B(i).r then 
18: KC(n).B(i).r=D(P,KC(n).B(i).P) - r - e; 
19: end if 
20: end for 
21: Sort balls in KC(n) in descending order of radius 
22: end for 
23: for n in 1..card(K) do 
24: Remove redundant balls from KC(n) if any 
25: Remove empty categories from K if any 
26: end for 

Majority Voting (HBL2 And HBL3) 

Here we present another improvement to HBL algorithm: Instead of 

making decisions based on the closest ball to the pattern, we can take the 

majority voting using k nearest balls to the pattern. If there is a tie, then 

balls which have a greater radius will be superior. This is because the pat­

tern which has a greater radius is less likely to be closer to patterns which 

belong to other categories. The choice of k, of course will be problem de-
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/~--------------------------------------~ 
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Figure 4.4: HBL Classifier 

Figure 4.5: HBL Classifier 
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Figure 4.6: HBL Classifier 
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Figure 4.7: HBL Classifier 
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pendent. This methodology will resemble our HBL2 algorithm. HBL3 

is a slightly modified version of HBL2 in the sense that a weighted dis­

tance calculation is replaced by the normal Euclidean distance formula. 

This can be accomplished by the following rule: 

lSI == {x I L,~=1 wl)(v, !(Xi)) is maximized} (4.7) 

Where, 

1 
(4.8) 





Chapter 5 

A Note on KNN and HBL 

5.1 Introduction and Literature Review 

Out of all of the classifiers we have discussed in this thesis, KNN algo­

rithm is the most similar to HBL algorithm. Both of the algorithms store 

training set patterns to classify patterns from testing set. Moreover, both 

algorithms make classification decisions based on distance calculation as 

a similarity measure and by looking for the closest neighbour (most simi­

lar pattern) in their training sets. HBL algorithm is, however, different to 

basic KNN algorithm in that it centers a ball around each pattern. Dur­

ing the training phase, HBL tries to adjust and tune the radii of the balls 

around each pattern to make sure that the balls belonging to different 

categories are mutually exclusive. HBL also calculates the distances to 

balls centered around patterns instead of calculating the distances to ex­

act patterns. This makes HBL similar to Radial-basis-based methods [26] 

and Gaussian Mixture models [1] which are out of this works focus. 

The above explanation highlight the importance of completing a literature 

review on variants of KNN algorithm to see whether or not HBL is similar 

to any variants of KNN. As both of these algorithms make decisions based 

on distance measure calculations, we have included a literature review of 
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available distance measures in the next part. 

5.1.1 A Note On Distance Measures 

Recall from the definition of a metric space given in HBL chapter (Chapter 

4) in equation 4.1 any distance metric chosen for KNN should conform to 

all four criterion defined there. 

One of the well known distance metrics is Minkowski [27] distance 

metric: 

. (5.1) 

where F represents total features, qf a feature of query example from 

testing set and xif is ith pattern from training set. Ll Minkowski distance 

(i.e p = 1) will be equivalent to Manhattan distance [28] and L2 distance 

will be equal to Euclidean distance measure [28]. Choosing larger values 

for p will ensure greater weights for features regarding which the patterns 

differ the most. 

There are other distance metrics which are more suitable for multi-

media data (like image). Many of these metrics like Kullback-Leibler 

Diverage [29] and X2 statistic [30] rely on comparing color histograms of 

data. In such metrics, an image is considered as a gray scale histogram 

which has N levels. However Padraig Cunningham et.al in [31] argue 

that such metrics do not satisfy the symmetry requirement in equation 

4.1. He also mentions that such measures are prone to errors because 

of existence of histogram level boundaries which can lead to showing a 

great difference between an image and a slightly darker copy of it [31]. 

Another metric measure which overcomes the above drawback is 

called Earth Mover Distance (EMD) [32]. This measure is based on the 

amount of work which is required to convert one image to another. Im­

ages in this measure are considered to be distributions in the sense that 
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one image is considered to be earth in the space and another image, as 

another distribution, which is considered to be a hole. Then EMD will be 

the minimum amount of work required, so the earth can fill the holes. 

The last distance measure which we will discuss in this section is called 

compression based (dis)similarity [33]. The idea is that if two documents 

are very similar, then if we concatenate them and compress them again, 

the size we will get is not much greater than any of the compressed 

original single documents. This statement will not hold true when two 

documents are not similar. For this work Euclidean distance is used for 

HBL and KNN distance calculations, however many of these distance 

measures can be applied to HBL algorithm [7]. 

5.1.2 Basic KNN Overview And Its Drawbacks 

Basically, KNN classification has two stages. In the first stage nearest 

neighbors are determined, and in the second stage the classification class is 

determined using these neighbours. The K nearest neighbors are selected 

based on a distance metric. There are many ways in which K nearest 

neighbors can be used to decide the class to which a query pattern q 

belongs. One of the most straightforward approaches is to use majority 

voting among the selected neighbors to find the class to which pattern 

belongs and assign it to the query pattern q (from testing set). 

The basic KNN algorithm is very straightforward to implement, how­

ever it suffers from a few drawbacks [31]: 

1. When datasets become very large, training set also becomes large 

so searching for the nearest neighbour pattern in training set can be 

computationally very expensive. 

2. When the number of features for the data (data dimensionality) is 

high, then distance calculations can become very costly. 
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3. If data is associated with noise and erroneous labels then there is a 

possibility for deviation from optimum outcome and results. 

The basic KNN algorithm with Minkowski distance measure has a com­

plexity of O(IDIIFI) where D is the training set and F is set of features 

associated with data [31]. However, the computational complexity of 

EMD is O(lDln3[og(n» where n is the number of clusters [32]. 

As we can see above, both training and feature sets have a great effect 

on time and computational complexity of a distance measure. Research 

has mostly focused on improvements to overcome the aforementioned 

disadvantages of KNN by proposing methods and strategies to reduce 

the dimensionality of data and edit down the training set in the data 

[31]. Some of this research has led to the introduction of faster and more 

efficient KNN variants [34,35,36,37]. We have tried to summarize some 

of these efforts in the next section. 

5.1.3 Categories of KNN Algorithm Variants 

There have been many studies regarding KNN algorithm in literature. To 

the best of our knowledge, most of the research done has been towards 

the goal of editing down the data in training set, reducing the number of 

features associated with data and alternative propositions to exhaustive 

search in basic KNN algorithm. Cunningham et.al [31] have highlighted 

four different strategies for speeding up nearest neighbor retrieval: 

• Case-Retrieval Nets (CRNs) [38, 39]: One of the most widely used 

techniques for retrieval process. A network structure is formed by 

preprocessing the cases and it is used in the retrieval time. CRNs 

can be configured to return exact cases as KNN . 

• Footprint Based Retrieval: A strategy used to speed up KNN. It is 
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made up of a two stage retrieval process which operates on a two 

level hierarchy [31]. First level corresponds to conducting a search 

in the case-based local regions which contain the target problem. 

Second level finds the closet case to this target problem in the same 

region [40]. 

• Fish and Shrink Method: This strategy exploits the triangular in­

equality property to make a scheme for case base to candidate neigh­

bors formation. So this technique therefore requires the distance to 

be a true metric because of above reason. Another feature of this 

strategy is that it will ignore the cases which are very far from the 

query pattern [41] . 

• Fast KNN variants: According to [42], fast KNN algorithms try to re­

duce the required number of comparison while they also try to main­

tain original classification accuracy which could be reached when 

all number of comparisons were taken into account. "Comparison 

reduction" can be achieved by using different available methodolo­

gies: 

1. Prototype selection methods and transformations to other metrics: 

These types try to apply a preprocessing mechanism to the train­

ing set to select a subset instead of applying the algorithm to the 

entire training set. This preprocessing mechanism can be based on 

the construction of a dissimilarity matrix which stores a range of 

similarities between prototypes [42]. Some researchers in [43,44] 

have tried to transform the dissimilarity matrix into an Euclidean 

space and some others [45] have tried to use dissimilarities to rep­

resent each prototype by creating and assigning a feature vector 
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to each prototype. There are also other approaches used in proto­

type selection, Bandyopadhyay et.aL in [46] proposed an algorithm 

for reordering and sorting the patterns in training set which could 

reduce the required number of distance calculations. 

2. Working with original prototype space: 

These types of algorithms work with original data (no transforma­

tion) and can be categorized as follows: 

2.1 Tree based Algorithms: 

Most of these algorithms use a branch and bound technique to 

partition the training set into regions, then a tree structure is used 

to speed up the search. The examples of these tree based structures 

are Kd-tree [47,48], R tree [34], 55-tree [35], 5R tree [36], FNA [37] 

tree. 

FNA tree is one of fast KNN variants which has been studied more 

according to [42]. In this algorithm, K-means algorithm is used to 

divide the training set into C subsets where each subset represents 

a node of the tree and is further decomposed to construct the whole 

tree. 

2.2 Elimination Based Approaches: 

These types of algorithms use a pruning rule derived from triangu­

lar inequality to avoid some comparisons to prototypes. In order 

to achieve this goal both tree structure and projection based ap­

proaches are employed [37,49,50,51,52]. 
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2.3 Approximate NN Search: 

These algorithms try to find an approximation to NN (nearest neigh­

bour) instead of finding an exact NN (nearest neighbour) [53,54]. 

HBL algorithm does use the techniques in tree based algorithms, nei­

ther uses any elimination based approaches nor tries to approximate the 

nearest neighbor so does not have any similarities to above methods. 

5.1.4 Dimension and Noise Reduction 

There are different variants of KNN which benefit from methodologies 

to reduce the dimensionality and noise associated with data in order to 

improve KNN performance. In the next two sections we have categorized 

these approaches. 

Dimension Reduction 

According to [31], dimension reduction techniques are mostly suitable to 

be applied to multi media data. Cunningham et. al also argues that di­

mension reduction can be achieved either by selecting a subset of data or 

by selecting a subset of features which describe the data. Feature reduc­

tion can be achieved by using methods like PCA (principal component 

analysis) [8] to transform data into a lower dimensional space or it can 

be used to discard some of the features. There are many techniques for 

feature selection. We have listed two of them as follows: 

Filter methods in which before the actual execution of learning algo­

rithm, strategies will be employed to remove irrelevant features from 

data. Furthermore, the selected subset of features will be used to train the 

algorithm. Example of such strategies are information gain (IG) which 

has been explained in the decision tree chapter and Odds Ratio (OR) [55]. 

OR calculates the ratio of odds of a feature from one class to another. This 
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method can be used to rank the features of data according to their odds 

value. 

Wrapper techniques unlike filter methods will benefit from main learn­

ing algorithm to estimate the importance of features. This means that the 

wrapper searches the feature space to select a subset of features that max­

imizes the predictive accuracy of a classifier [56]. This can be achieved 

using two approaches: In forward selection, wrapper starts with an empty 

set of features based on the evaluation made by the classifier. In back­

ward selection, all features are initially considered and wrapper tries to 

eliminate some features [31]. 

Noise Reduction 

One of the disadvantages of KNN algorithm described in this chapter 

is that the algorithm may perform poorly if the data is associated with 

noise or erroneous labels. Early techniques for noise reduction includes 

case-based editing techniques. These techniques are known as methods 

which can be employed to achieve redundancy reduction and to remove 

noisy or corrupt cases from training set [57]. According to [31] editing 

methods can be divided into two main categories: 

Competence Preservation Techniques [58] which correspond to redun­

dancy reduction, and removing cases which do not contribute to classi­

fication competence. The next set of techniques are called competence 

enhancement techniques which correspond to noise reduction and re­

moving corrupt patterns from dataset. 

Examples of competence preservation techniques can be Condensed 

Nearest Neighbor (CNN) [59] in which any pattern which cannot be clas­

sified correctly is added to an initially empty set. Another example of 

this method is Selective Nearest Neighbors (SNN) which states that every 
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example in the training set should be closer to another example of the 

same class rather than to an example of a different class [60]. 

Edited Nearest Neighbors (ENN)[61] represents a strategy for compe­

tence enhancement in which it removes examples from the training set 

which do not agree to their k nearest neighbors. If multiple passes are 

done on training set, the algorithm is called Repeated ENN [62]. 

HBL algorithm has similarities to basic KNN algorithm but not to any 

of these variants which were tried to be categorized in this chapter. All 

these variants have tried to improve on of the issues and disadvantages 

associated with KNN (dimensionality, noisy data, sample size) HBL algo­

rithm does not apply any of such preprocessing methods or algorithms so 

it has no similarities to these categories. For this reason, HBL algorithm is 

compared to basic KNN algorithm. In the next section we have compared 

the way each of these algorithms deal with Euclidean distance calculation 

as a metric measure. 
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5.2 HBl vs. Basic KNN algorithm 

Given all different categories and variants of KNN algorithm, we will try 

to compare HBL algorithm to basic KNN algorithm. Then we will try to 

see if HBL has similarities to any KNN variants discussed in the previous . 

section. 

Given two single featured patterns PI and P2 and the Euclidean dis­

tance measure KNN calculates the distance as follows: 

(5.2) 

Now if we consider HBL algorithm, it centers two balls Bl and B2 

around PI and P2 and then tries to tune radii of these balls i.e rl and r2 

while in training mode. Now HBL calculates the distance as follows: 

Dh = max{ ~Pi - P~ + (rl - r2), ~Pi - P~ + (r2 - rl)} (5.3) 

By comparing equations 5.2 and 5.3 we can conclude the following: 

Dh = max{Dk + (rl - r2), Dk + (r2 - rl)} (5.4) 

The above equation will ensure that if the radii of all balls in HBL is set to 

zero, then HBL and basic KNN algorithm calculate distances in the same 

way. Another difference of HBL to KNN algorithm is in the way they try 

to classify a query pattern. HBL algorithm first checks to see if the pattern 

falls within the radius of any ball around patterns in training set. If so, it 

will return the class of that pattern in training set. If not, HBL uses the 

distance calculation to find nearest neighbors. Yet another difference of 

HBL algorithm to basic KNN algorithm is that HBL algorithm performs 

a partitioning of training set into the number of classes associated with 

data in a way that all patterns belonging to similar classes will be in 

one partition. This will not be as fast as some KNN variants (like FNA) 
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which use tree structures and partition data on each node of the tree. The 

inspiration behind this design in HBL is that if algorithm is implemented 

in a way to work in parallel, then all of the categories (partitions) can be 

searched in parallel to speed up the algorithm. 

A Note on Efficiency of KNN and HBL Algorithms 

According to KNN algorithm given in Algorithm 2 and considering N 

as the cardinality of a sample size and d as dimensionality of data and 

Euclidean distance calculations, KNN algorithm has a running time of 

O(Nd). More over, the only space required is to store the training set data 

as no computation is taking place in training mode. 

Now considering HBL, we can give an upper bound of O(N2d) for 

the training mode . Considering the complexity as a factor, in training 

mode KNN just stores the patterns in its memory whereas HBL performs 

partitioning of data. This partitioning however adds a complexity factor 

to the classifier but it is beneficial to HBL algorithm as it can improve its 

performance in testing mode. 

When it comes to testing mode, KNN algorithm has a time complexity 

of O(Nd) as explained earlier. HBL in worse case condition has the same 

time complexity as for KNN but that can happen when data in testing 

set has the most distance to data in testing set. This is true because when 

testing set data is very distant to data presented in training set, then 

testing set patterns are less likely to be included in any balls of training 

set ( advantage factor of HBL). As normally data which belong to a class of 

data have similarities this is less unlikely to happen. Even if one pattern 

is located in a ball of training set patterns, then HBL has an advantage in 

classification speed while in testing mode. 





Chapter 6 

Experimental Setup and Data 
Sets 

In order to compare the performance of HBL to other algorithms, we are 

using the accuracy of each of these algorithms as a comparison criterion. 

By accuracy, we mean the ratio or percentage of correct classification of 

unseen instances from testing set to all of the instances available in test 

set (classification accuracy). 

In this work, three different experiments are conducted to compare 

the accuracy of HBL to other classifiers. For all experiments, a set of nine 

benchmark data sets is selected from the VCI machine learning repository 

website [63]. Data sets are chosen in a way that they can be categorized 

as small to medium in sample size and dimensionality. Large datasets 

were excluded from this work because of resource problems. Each data 

set can be considered to be a distinct problem in error space upon which 

classifier generalizations accuracy are tested. 

The first experiment compares classifiers when sample size is selected 

to be variable in each data set. In the second experiment, a similar compar­

ison is made when the dimensionality of data varies. The last experiment 

compares classifiers based on their agreement to target values. In this 
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experiment, Rprop algorithm, HBLl, HBL3 along with KNN and 103 

are applied to benchmark datasets while their corresponding confusion 

matrices are recorded. Confusion matrices then are then used in Cohen's 

Kappa test of statistics [9] to determine the level of agreements between 

classifiers decision and actual targets. 

In all experiments, each classifier is trained and tested using k-fold 

cross validation technique (k=lO) [64,65] using 30 runs. In this method 

all patterns in a dataset are divided randomly into k equally sized folds. 

In each pass ( the number of passes are equal to k), k - 1 folds are used 

for training and one fold is used for testing. The generalization accuracy 

as the percentage of correct classification (classification accuracy) is cal­

culated in each pass and then averaged over all k passes for the last two 

experiments. 

A statistical significance test (t-test) [66] is also utilized for the last two 

experiments which tests whether differences of the means is not due to 

randomness. However, as explained in the last paragraph, Kappa test of 

statistics is used in the last experiment to measure the level of agreement 

between the classifiers output and target values in data. 

The remaining parts of this chapter are organized as follows: The next 

section briefly describes the benchmark data sets which are used in these 

experiments, then each experiment is explained separately in a section 

along with the utilized experimental setup for each classifier. 

6.1 Benchmark Data Sets 

As we explained above, nine main data sets are selected for all three 

different experiments. These datasets are shown in the Table B.lo 

Iris data set, is a data set which has been used by many researchers 

in the field of pattern recognition [67, 68, 69]. Iris attributes describe the 
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length and width of the sepal and petal in each observed iris plant. The 

data set contains three classes of fifty instances each, where each class 

belongs to a type of iris plant. One of these classes is linearly separable 

from the other two, while the other two are not linearly separable. 

Table 6.1: Benchmark Data Sets 

Data sets Features 
DB-NAME Attributes #Patterns #Classes Attr-types 
Iris 4 150 3 Real 
Pima Indian 8 768 2 Integer,Real 
Connectionist benchmark 60 208 2 Real 
Glass 10 214 6 Real 
Wine 13 178 3 Real 
Parkinson 23 197 2 Real 
Zoo 17 101 7 Categ,Int 
Breast Cancer 10 699 2 Integer 
MuskV2 168 6598 2 Integer 

The PimaIndian data set [70], gathered by the National Institute of 

Diabetes and Digestive and Kidney Diseases, includes data from 768 

females all at least 21 years old. All different eight attributes correspond 

to a different medical measure for each person. Pima data set is known 

as a data set with highly nonlinearity behaviour [70]. 

In the connectionist benchmark data set, the purpose is to train a 

classifier to discriminate between sonar signals bounced off of a metal 

cylinder and those bounced off of a roughly cylindrical rock. There are 

60 attributes and 60 instances associated with this data set. 

Next, the Glass data set, with seven different classes of output data 

and a small sample size of 214 instances, is a database which was studied 

with the idea of acquiring capabilities to detect the type of glass at the 

scene of a crime. This is desirable so that the glass which had been left 

there could be used as an evidence. Each instance in this data set is 

obtained from 10 different measurements, hence, it has 10 dimensions. 
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The Wine data set, is the result of a chemical analysis of wines grown 

in Italy and derived from three different cultivars. This data set has 13 

attributes associated with it [71]. 

The Parkinson data set, is composed of a range of biomedical voice 

measurements from 31 people, out of which 23 have Parkinson's disease 

[72]. 

Zoo data set, result of 17 different measurement for 7 different classes 

of animals. This data set which is simpler as attributes are often boolean 

values is created artificially. 

The Breast Cancer [73, 74, 75] dataset is obtained from the University 

of Wisconsin Hospital. It has consisted of 699 instances with 10 attributes. 

It also has some data with missing values. 

The Musk Version 2 data set, describes a set of 102 molecules out of 

which 39 are judged by human experts to be musks and the remaining 

63 molecules are judged to be non-musk. Because bonds can rotate, each 

molecule can have many conformations (shape). This many to one map­

ping problem is been solved by generating low energy level conformation 

and extracting a feature vector for each conformation. There are 166 fea­

tures associated with each molecule, out of which about 161 features are 

called /I Distance Features". 

6.2 Experimental Setup 

6.2.1 Data Preprocessing 

Data for all classifiers are standardized using the functions and tools 

available in Matlab R2009. Inputs and targets of data are standardized in 

a way that they have zero mean and unity standard deviation. For data 
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sets which have a missing value in their data, Matlab preprocessing tools 

are employed to transform each row of data containing a missing value 

into two rows that encode that same information numerically. This has 

been done by simply copying the first row containing missing values and 

replacing those missing values by the mean of that row. The second row 

can be a "zeros" "ones" map indicating if the original data at that position 

was known (a one) or if it was a missing (Zero). 

Implementation 

Matlab 2009 tool boxes are employed for the implementation of all classi­

fiers except for HBL algorithm which has been implemented in JAVA 1.6 

language. For Neural Network variants toolboxes of Matlab were used to 

save implementation time, however ID3, and KNN were hard coded in 

Matlab. HBL being as a new language needed to be hard coded as well. 

The reason HBL was not implemented in Matlab was due to the use of 

data structures which HBL used. The parameter setting and approaches 

for each classifier is summarized in the next page. 

Neural Networks 

For neural networks classifiers (back propagation algorithm and its vari­

ants), a hill climbing approach is followed in order to decide the structure 

(hidden neurons) of each network. In this approach, we simply try dif­

ferent numbers of hidden nodes from one to one third of the number of 

inputs to that network [76]. 

In order to decide the best structure, data is passed through fifteen 

times. When the structure has changed, the weights are reinitialized. 

For each structure, classification accuracy has been saved. At the end, 

the average best network with the best classification accuracy and the 
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least number of hidden units is selected. If there is a tie between two 

or more networks, the network with minimum number of hidden nodes 

is selected. Weights in the neural network are initialized using Nguyen­

Wid row technique [77]. 

After the structure has been selected, the network is trained indepen­

dently using each different algorithm. Different epoch values, validation 

failures (for the last two experiments), momentum and learning rates 

were tried after the structure was chosen for a neural network. Table 6.2 

summarizes the parameters used for ANN variants. 

Table 6.2: ANN Parameter Values 

Algorithm Max Parameter Description Parameter Value 
Number of EPOCHs 5000 
Validation failures 200 

Gradient Descend 
Momentum 0.60 
Learning Rate 0.20 
Minimum Gradient (GDM) 1e-8 
Error Goal 0.001 
Memory and Speed Tradeoff Factor 1 
InitialMU 0.001 

Levenberg-Marquardt MU Decrease Factor 0.1 
MU Increase Factor 10 
MaximumMU 1e10 
Search Line Method 1-D minimization 
Lower Limit on change in Step Size 0.1 

Quasi-Newton Upper Limit on change in Step Size 0.5 
Maximum Step Length 100 
Minimum Step Length 1.0e-6 
Increment to Weight Change 1.2 

Resilient BP 
Decrement to Weight Change 0.5 
Initial Weight change 0.05 
Maximum Weight Change 60.0 
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Table 6.3: Structure of ANN, KNN, and HBL Algorithms 

DB-NAME ANN Structure #K(KNN) #K(HBL) 
Iris 4-4-3 3 3 
Pima Indian 8-26-2 21 21 
Connectionist benchmark 60-24-2 9 13 
Glass 10-28-6 9 9 
Wine 13-25-3 5 8 
Parkinson 23-17-2 11 7 
Zoo 17-16-7 8 14 
Breast Cancer 10-9-2 7 5 
MuskV2 168-23-2 19 16 

10 fold cross validation (CV) technique has been used to train each 

network. CV is employed in such a way that data is randomly divided into 

10 folds. Each time, 8 folds are used for training, one fold for validation 

and one fold for testing the data. The process will continue until all 10 

folds have been used for testing data. Then, the accuracy is averaged 

after the training/validation/testing has been completed 10 times. It is 

important to note that in each step of CV, the network is reinitialized and 

the previous trained network is discarded. The whole process is repeated 

for 30 runs. Training is terminated if one of the following conditions 

occurs: 

• If epochs of 5000 is reached or, 

• If maximum failures (increase in performance) is reached in valida­
tion set or, 

• If the minimum gradient is met (gradient descent based algorithms) 
or, 

• If Mean square error goal is met. 

Selected structure of ANN, KNN and HBL algorithms are given in 

Table 6.3. As problem sizes are small to medium ANNs are chosen with 
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only one hidden layer. For ANNs, the selected structure is given as 

#Input-nodes-#Hidden nodes-#Output-nodes. 

Dtree algorithm constructs a full tree according to the input data set. 

The best structure is chosen according to the classification accuracy. Data 

is been divided using 10 fold cross validation. Each time, 9 folds are used 

for training data and one fold for testing the accuracy. Results are then 

averaged over 10 attempts. ID3 is used just as an accuracy measuring 

tool and no pruning technique is been utilized. 

HBL, KNN 

HBL and KNN have similarities in implementation. Both algorithms 

calculate distance in Euclidean space. HBL can be applied to other metric 

spaces like Manhattan, Minkowski, etc. but as Euclidean space is the 

most known metric space, we employed this metric in this work. For HBL 

algorithm, € = 0.0001 is decided as the smallest possible space between 

two balls. This value is decided by using trial and error. Values both 

greater and smaller than € = 0.0001 were tried while data was passed 

through for 30 runs. € value is decided experimentally in a way that 

values of 1,0.5,0.25,0.1,0.01,0.001 are tried before choosing the above 

mentioned value. To select K (optimum number of neighbours) for HBL 

and KNN, data is passed through 15 times and then the best value of K is 

selected based on obtained classification accuracies on testing data. Each 

time data is passed through, different values for K are tried between 1 to 

30. 

Both KNN and HBL algorithms use majority voting technique over 

selected K nearest neighbours to classify the data. In case there is a tie 

in majority voting, then the output class is decided based on a random 

selection. 



Chapter 7 

Experiments and Results 

This chapter provides both the experimental analysis and results of this 

thesis. A comparison of the various classifiers is presented for each of the 

three experiments carried out. 

0.50 
0.75 
1.00 

Table 7.1: Abbreviations used in this section 

Neural Networks 
Neural Networks 
Neural Networks 
Neural Networks 

For simplicity, summary tables are provided while the detailed results 

are available in Appendix B. For clarity, Table 7.1 provides a summary of 

the various abbreviations used in this chapter. 
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7.1 Experiment 1: Sample Size Effect 

In this experiment, HBL is compared to other algorithms when different 

proportions of sample size are chosen for each dataset. The purpose of 

this experiment is to evaluate and compare the performance of HBL to 

other classifiers in terms of classification accuracy as a function of sample 

size. First we review some works found in the literature that studies the 

effect of sample size on classification accuracy. 

Leshno et. al [78] studied the effect of training data size and the 

complexity of the separation function on neural network classification. 

Perceptron and feedforward network with a single hidden layer were 

used in this work. They employed two class data sets with two input 

variables, without noise but with different learning technique. They 

concluded that neural networks are a better choice than other statistical 

models because of their flexibility and improving learning capability. 

y. S. Kim [79] compared neural networks and decision trees to linear 

Regression methods. This study varied the number of independent vari­

ables, the types of independent variables, the number of classes of the 

independent variables, and the sample size. RMSE (Root Mean Square 

Error) was used as the metric. This study showed that linear regres­

sion algorithms are superior to ANN and decision tree for continuous 

independent variables. Kim also showed that ANN is the best when the 

number of categorical variables is at least two, and when independent 

variables are continuous and categorical. 

Margarita Sordio [80] studied the effect of sample size on classification 

accuracy using a dataset having approximately 8500 patterns on Support 

Vector Machine (SVM), Decision trees, and Naive Bayes techniques. Sor­

dio showed that the size of training set and the classification accuracy 

are correlated. Sordio also showed that when datasets are small all algo-
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rithms perform good but as the number of sample size increases, SVM 

shows a very good improvement in performance. Sordio's work inspired 

the first experiment in this thesis, and the pseudo code presented below 

in Algorithm 7 is a slight modification of Sordio's algorithm that is em­

ployed in the first algorithm. Sordio used one dataset and increased the 

sample size one by one. In this thesis, we start with a quarter of the 

sample size and each time add 25% to the previous sample size until we 

achieve the full sample size. 

Algorithm 7 First Experiment: Varying sample size in the data set 
1: for each classifier do 
2: repeat 
3: Define selected set as percentage of the total number of cases in 

dataset (ranges: 25%,50%,75%, and 100%). 
4: Train classifier with current set using 10-fold cross validation. 
5: Evaluate the performance of the classifier as average correct clas­

sification rate. 
6: until all cases in a dataset are used 
7: end for 

Once the data partitioning is done (at random), each classifieris trained 

with each partition independently. A 10-fold cross validation technique 

is used to train each classifier. The data sets used in this experiment 

have been divided into two groups. The first group consists of data sets 

which have smaller sample sizes (fewer than 500) or a smaller number of 

attributes (fewer than 50). The data sets in this group are Iris, Glass, Zoo, 

Wine and Parkinson disease dataset. Data sets in the second group are 

data sets with a sample size greater than 500 or with number of attributes 

greater than 50. These data sets are Musk, Pima Indian Diabetes, Breast 

Cancer and Connectionist data sets. These categories are shown in Table 

7.2. 
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Table 7.2: Data Set Categories 

First Category Second Category 
Iris Musk 

Glass Pima 
Zoo Breast Cancer 

Wine Connectionist 
Parkinson 

Table 7.3: Effect size table guide 

Effect Size Value Strength Interpretation 
0.0 
0.1 
0.2 Small 
0.3 
0.4 
0.5 Medium 
0.6 
0.7 
0.8 Large 
0.9 
1.0 

A statistical paired t-test is applied to classifiers to measure if the ob­

tained results are significant within a 95% confidence interval. Moreover, 

an effect size [81] value is calculated for each comparison to measure the 

strength of the relationship between classifiers. The interpretation of ef­

fect size value is presented in Table 7.3. Since our focus is to compare the 

performance of HBL with other classifiers, first an inter-HBL comparison 

is performed to select the best HBL variant. Once this is done the best 

HBL variant is individually compared to each of non-HBL classifiers. For 

clarity, a summary of the inter-HBL comparison and HBL versus other 

classifiers is given below. However, the detailed experimental results are 

presented in Appendix B. 
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In order to compare different classifiers, we have used a two-variant 

comparison. This comparison is made in the following manner: 

Classifier X is considered to be better than Classifier Y if: 

• Classifier X has a greater mean (considering classification percent­

age) when compared to classifier Y. 

• Paired t-test results show that the obtained results are significant. 

• This comparison has an effect size of at least medium (i.e effect size 

;::: 0.3). 

If all of the above conditions are satisfied, then classifier X is considered 

to be better than classifier Y and it can be said that algorithm classifier X 

wins over classifier Y. 

7.1.1 Inter-HBL Comparison 

In this part three HBL variants are compared to each other and the best 

variant is then selected for comparison to other classifiers. Furthermore, 

we have enumerated the number of times a variant of HBL algorithm 

wins over another variant for all data sets. 

The results provided in Table 7.4 show that HBLI and HBL2 are not 

significantly different in 5 cases (~ = 55% of cases) when 25% and 75% of 

the sample size is selected. However when the full dataset is considered, 

HBL2 wins more times than HBLI (5 - 1 = 4 times). The results from 

Tables 7.4-7.6 also confirm that HBL3 algorithm outperforms the other 

two variants in more cases when compared to HBLI and HBL.2. So 

according to these observations, HBL3 algorithm is considered the best 

HBL variant and is selected for comparison with other classifiers in this 

thesis. Therefore, in our comparisons we will use the name HBL for 

HBL3 from this point. 
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Table 7.4: HBLl vs. HBL2 Comparison 

ize 
0.50 Size 
0.75 Size 
Full Size 

1 
o 
1 

7 
4 
5 

Table 7.5: HBLl vs. HBL3 Comparison 

lze 
0.50 Size 
0.75 Size 
Full Size 

o 
o 
1 

9 
8 
9 

Table 7.6: HBL.2 vs. HBL3 Comparison 

lze 
0.50 Size 
0.75 Size 
Full Size 

7.1.2 HBL vs. KNN 

6 
7 
9 

o 
o 
o 

1 
5 
3 

o 
1 
o 

3 
2 
o 
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The results summarizing this comparison are shown in Tables 7.7 and 

7.8. Comparison results of HBL to first category of data sets is shown in 

Table 7.7. Recall from Table 7.2, this category comprises the data sets with 

smaller « 500) sample size or with smaller « 50) number of attributes. 

The obtained results show that at 0.25 size, both HBL and KNN algorithms 

perform equally. They are not significantly different for 3 data sets and 

each have only one win. As the sample size increases, HBL wins more 

number of cases (has higher classification accuracy in more data sets). The 
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reason for this behaviour can be in the number of samples: As data sets in 

this category are small, when 0.25 of sample size is considered, only a few 

samples are selected. This can make the classification task easier, so both 

algorithms perform equally. As more number of samples are introduced 

to the classifiers, complexity of problem also increases. With this increase 

to the problem complexity, HBL algorithm outperforms KNN algorithm. 

One potential reason for HBL wins can be in weighted distance metric 

which HBL employs to calculate distances. Weighted distance calculation 

is suggested as an improvement over Euclidean distance calculation for 

Instance Based Learning (IBL) algorithms [82]. Another reason for HBL 

to outperform KNN can be in HBL Algorithm's structure: Before HBL 

seeks for a close neighbour in training set, it looks to see whether if 

testing pattern is inside any training pattern ball. When sample sizes are 

small, aforementioned condition is less likely to happen so the algorithms 

behave equally. 

HBL comparison to KNN in second category in Table 7.8 also confirms 

the above statements: In the second category as the number of samples 

(or attributes) are greater, HBL outperforms KNN even when 0.25 of 

size is selected. Figure 7.1 shows the overall comparison of HBL to 

KNN algorithm when both categories of data are selected. It can be 

concluded that for the data sets employed in this thesis, HBL algorithm's 

classification accuracy outperforms as of KNN algorithm's. 
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Table 7.7: HBL vs. KNN Group 1 Comparison: 

At first, number of samples are very less so algorithms are equally 
performed. But as the sample size increases, HBL algorithm wins more 

than KNN algorithm. 

5 
3 
4 

o 
o 
o 

o 
2 
1 

Table 7.8: HBL vs. KNN Group 2 Comparison: 

Overall Comparison of HBL to KNN 

• HBl"\fins • KNN wins • Not Signit icant 

0.25 Size 0 .50 Size 0.:75 Size Fll li Size 

cant 

Figure 7.1: Overall Comparison ofHBL to KNN: HBL outperforms KNN 
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7.1.3 HBl vs. Neural Network Variants 

Tables 7.9 to 7.14 summarize the results of HBL versus ANN variants. 

Among the four different variants of BP neural networks which we have 

used in this work, LM and BFG are only applied to the first group of 

data sets as they can be computationally costly when the network size 

increases [1]. 

Table 7.9 summarizes results from HBL to LM comparison. The results 

provided in this Table show that when the sample size is small (0.25) HBL 

algorithm has more wins when compared to LM (4 wins for HBL and 

only one win for LM). But as the sample size changes and increases, LM 

algorithm shows equal results when it is compared to HBL algorithm. 

Although LM algorithm has more number of wins when it is compared 

to HBL at full sample size level, but it can not be concluded that either 

of these algorithms are performing better. This is also true in Table 7.10 

where HBL algorithm is compared to HBL algorithm. From Table 7.10 we 

can conclude that both algorithms have performed almost equally. This 

result is repeated for Table 7.11 and Table 7.12. 

Table 7.9: HBL vs. LM Comparison for First Category 

lze 
0.50 Size 
0.75 Size 
1.00 Size 

3 
2 
2 

1 
2 
3 

1 
1 
o 

Table 7.10: HBL vs. BFG Comparison for First Category 

lze 
0.50 Size 
0.75 Size 
1.00 Size 

4 
3 
2 

1 
2 
3 

o 
o 
o 
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Table 7.11: HBL vs. RP Comparison for First Category 

lze 
0.50 Size 
0.75 Size 
1.00 Size 

3 
3 
2 

2 
2 
2 

o 
o 
1 

Table 7.12: HBL vs. GDM Comparison for First Category 

lze 
0.50 Size 
0.75 Size 
1.00 Size 

4 
3 
2 

o 
1 
2 

1 
1 
1 
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In Table 7.13 HBL algorithm is compared to RP considering second 

category of data sets. As we have also shown in this table, this table 

shows that HBL and RP both have performed equally. However, when 

HBL is compared to GDM in Table 7.14, both algorithms start equally 

when only 0.25% of sample size is considered, but as fractions of sample 

size are added in next levels GDm algorithm outperforms HBL algorithm. 

The overall results of comparison of RP and GDM classifiers to HBL 

algorithm are shown in Figures 7.2 and 7.3. In Figure 7.3, HBL starts better 

than RP but at full sample size level algorithms end up to be indifferent. 

The only variant of ANN algorithm that we can conclude that it has 

performed better than HBL algorithm is GDM. As its shown in Figure 

7.2, GDM outperforms HBL algorithm as sample size increases. As three 

variants of ANN performed almost indifferent to HBL algorithm, we can 

conclude that in this work and for the datasets used in this work, HBL 

algorithm has performed equal to ANN back propagation variants. 
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Table 7.13: HBL vs. RP Comparison for Second Category 

lze 
0.50 Size 
0.75 Size 
1.00 Size 

1 
2 
1 

3 
2 
1 

o 
o 
2 

Table 7.14: HBL vs. GDM Comparison for Second Category 

lze 
0.50 Size 
0.75 Size 
1.00 Size 

1 
1 
1 

3 
2 
3 

Overall Comparison of HBl to GDM 

• HBL"Wins • GDM .. "';ns • Not Significant 

0.25 Size 0.50 SI,. 0.755;, . Full S;, . 

o 
1 
o 

-------------.------

Figure 7.2: Overall Comparison of HBL to GDM 
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Overall Comparison of HBl to RP 

• HBl W inS • HI-' ~'Jlns , II Not slgnlncant 

Q.50 Size 0.75 Size Full Size 

------------------------------
Figure 7.3: Overall Comparison of HBL to RP and GDM 

7.1.4 HBL vs. ID3 

The results from Table 7.15 show that HBL outperforms ID3 algorithm in 

all sample size levels (both categories of data sets). HBL has won in all 9 

data sets for 0.25,0.50, and 0.75 sample size values. When the full data set 

size is considered HBL has better results for 8 problem sets, whereas for in 

one data set the obtained results are not significantly different. The data 

set for which obtained results are not significantly different is Iris data 

set. In this data set two of three available classes are linearly separable 

which makes the classifying task much simpler. This is shown in Figure 

7.4 using 1st and 3rd features of data set. 
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Iris Data set: Two of three 3¥ai lable classes are linearly separable 

o 

° 0 
OOQ!30l0 ° 

9080°"988088 °0 
14~~~4.~5--~5--~5~.5--~6L-~6.5~~--~7~.5--~ 

Sepal length 

Figure 7.4: Iris data set: 

Two of three available classes are linearly separable 

Table 7.15: HBL vs. ID3 Comparison 
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HBL Algorithm outperforms 103 algorithm. The only data set whose obtained 
result is not significant is Iris, in which two of three available class of outputs 
are linearly separable. 

lze 
0.50 Size 
0.75 Size 
1.00 Size 

9 
9 
8 

o 
o 
o 

o 
o 
1 

7.1.5 Experiment one's overall discussion 

In this experiment HBL algorithm was compared to other algorithms 

when sample size in each data set was changing. The following conclu­

sions can be extracted from the provided results: 

1. In the first part of this experiment, an Inter-HBL comparison was 

done to select the best variant in HBL algorithm. HBL3 outper­

formed other variants of HBL algorithm and so was employed 
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for later comparisons. The reason for HBL3 to outperform other 

variants of HBL was that HBL3 uses a weighted distance metric 

whereas remaining variants use Euclidean distance calculation. 

2. Next when HBL was compared to Back Propagation variants the 

obtained results showed that HBL performs almost indifferent to all 

BP variants except for GDM which outperforms HBL algorithm. 

3. HBL was then compared to back propagation neural network vari­

ants. ANN variants especially RP and GDM showed that they are 

growingly winning more times as the sample size is increasing in 

each leveL The reason for that was sought in ability of back prop­

agation variants to adjust and better adapt to different nonlinear 

environment [78]. HBL decreases in effectiveness when sample size 

increases, this could be because as the sample size increases chance 

of two balls of different categories to be inside each other increases. 

Recall from our discussions, in this case HBL algorithm shrinks the 

radii of balls in a way that they are mutually exclusive and this 

could lead to loss of information .. 

4. Lastly HBL algorithm was compared to ID3 algorithm. In this com­

parison HBL algorithm outperformed ID3 algorithm in all levels of 

sample sizes. The only data set for which the comparing results was 

not significantly different at full size was Iris data set. For this data 

set it was shown in a Figure that two classes out of available three 

classes of data are linearly separable which makes classification task 

easier for ID3 algorithm. 
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7.2 Experiment 2: Data Dimensionality Effect 

The main goal of this experiment is to study the impact of data dimension­

ality on classification accuracy. There has been much research performed 

about dimension reduction techniques and the effect of dimension reduc­

tion on classifier performance, we will first review some of these methods. 

Plastria et al. in [83] studied the effects of dimensionality reduction 

on six two class data sets. They employed PCA, linear discriminant and 

introduced four new other techniques and showed that a good choice 

of technique and dimension can have a major impact on classification 

accuracy. Plastria deduces that there is no significantly superior dimen­

sionality reduction technique which works the best for all problems in 

all error spaces. Others in [84] and [85] have also performed studies on 

dimensionality reduction techniques and its effects on classification error. 

In [84] a new algorithm called as classification constrained dimensionality 

reduction (CCDR) was compared to PCA algorithm for dimensionality 

reduction. K-nearest neighbour (KNN) algorithm's classification accu­

racy was used as a measure for this comparison. Raich et. al showed that 

when CCDR is used, KNN improves its performance by 10%. Mosci et. 

al in [85] studied the regularization property of Kernel Principal Compo­

nent Analysis (KPCA). They showed that using KPCA and ordinal least 

squares method on projected data is equivalent to the use of spectral cut­

off regularization where regularization parameter is equal to the number 

of principal components. 

There are many dimensionality reduction methodologies available 

in literature. Independent Component Analysis (ICA) [86] is a method 

used in dimensionality reduction which attempts to find statistically in­

dependent components and transform the data onto those components. 

Random Projection method [87] is another method for reducing the di-
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mensionality of data. The idea is that a projection matrix R of size d * m 

can be carefully chosen in a way that d ::; min(m, n) where m, n are the 

size of the original data matrix R. The matrix D = RA resulted from the 

multiplication of these two matrices, and maintains approximately the 

same distances between data points. Another technique is called princi­

pal component analysis (PCA) [8, 88]. PCA consists of a procedure that 

is purposed to transform a number of possibly correlated variables into 

a smaller number of uncorrelated variables called principal components. 

It is an orthogonal linear transformation which transforms the data into 

a new coordinate system in such a way that the greatest variance by any 

projection of the data comes to lay on the first coordinate which is called 

the first principal component. The second greatest variance upon the 

second coordinate and so on [8]. In this work PCA is used for dimension­

ality reduction because it is a well-known method, and a more straight 

forward technique for dimensionality reduction. 

7.2.1 Algorithm And Experimental Procedure 

As it has been explained earlier, the influence of an increase in data di­

mensionality on the classification accuracy of HBL algorithm is compared 

to other algorithms. Principal components will be computed for data us­

ing (PCA) and top (0.25, 0.50, 0.75, and 1.00) will be used to train each 

classifier: 

7.2.2 HBL vs. KNN 

Table 7.19 summarizes the obtained results for the HBL to KNN compar­

ison. It is shown that HBL has 7,6,5 and 7 wins for 4 levels of dimension­

ality. These observations show that HBL outperforms KNN algorithm 
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Algorithm 8 Algorithm For Dimensionality Effect Experiment 
1: for each classifier do 
2: repeat 
3: Use PCA to select top (ranges: 25%,50%,75%, and 100%) princi­

pal components of data. 
4: Train classifier with current set using 1O-fold cross validation. 
s: Evaluate the performance of the classifier as average correct clas­

sification rate. 
6: until all above percentages are used 
7: end for 

(the least value 5 is ~ = 55.5% of cases). These obtained results ensure 

that HBL performs better than KNN in most cases.The reason for that can 

be different metric which HBL is benefiting from. 

Table 7.16: HBL vs. KNN Comparison 

1m 

0.50 Dim 
0.75 Dim 
1.00 Dim 

6 
5 
7 

7.2.3 HBL VS. BP Variants 

o 
1 
o 

HBL algorithm is compared to RP in Table 7.17. The obtained results can 

not determine any of these two algorithms as winner except for the case in 

which 50% of top principal components are considered. In this level the 

obtained results from Table 7.17 shows that RP wins over HBL algorithm. 
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Table 7.17: HBL vs. RP Comparison 

HBLvsRP HBL Wins RPWins Not Significant 

0.25 Dim 3 3 3 

0.50 Dim 3 5 1 

0.75 Dim 2 4 3 

1.00 Dim 3 3 3 

7.2.4 HBL VS. BFG 

HBL is compared to BFG variant of back propagation in Table 7.18. When 

25% and 50% of dimensionality is considered, HBL algorithm has per­

formed indifferent to BFG algorithm. However, when dimensionality of 

data is beyond 50%, BFG algorithm outperforms HBL algorithm. 

Table 7.18: HBL vs. BFG Comparison 

HBLvsBFG HBL Wins BFGWins Not Significant 

0.25 Dim 2 4 3 

0.50 Dim 2 4 3 

0.75 Dim 2 5 2 

1.00 Dim 3 6 0 

7.2.5 HBL VS. 103 

HBL is compared to ID3 algorithm in Table 7.19. As it is shown in this 

Table, HBL outperforms ID3 algorithm in all dimensionality levels: 

At 0.25 HBL wins 8 times, whereas ID3 wins over HBL only once. 7 wins 

for HBL at 0.50 and 0.75 levels will guarantee its dominance at these two 

levels. Finally when all the dimensions are used HBL still out performs 

ID3 by having 8 wins from a total of nine comparisons. 
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Table 7.19: HBL vs. ID3 Comparison 

HBLvsID3 HBL Wins ID3 Wins Not Significant 

0.25 Dim 8 1 0 

0.50 Dim 7 2 0 

0.75 Dim 7 1 1 

1.00 Dim 8 0 1 

7.2.6 Overall Discussions 

We can summarize the overall outcome of this experiment as follows: 

1. In this experiment HBL algorithm was compared to two variants 

of ANN back propagation algorithm: RP and BFG variants. The 

results obtained from this experiment show that both of this variants 

performed indifferent to HBL algorithm. Moreover when the full 

dimensionality of the problem set is considered, BFG algorithm 

outperforms HBl algorithm. 

2. HBL algorithm outperformed KNN algorithm when different di­

mensionality spaces were selected for each algorithm. The reasons 

could lie in that the KNN algorithm used was a simple vanilla KNN 

algorithm but HBL variant was benefiting from a weighted distance 

calculation modification. 

3. Lastly, HBL algorithm outperformed ID3 algorithm. 
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7.3 Experiment Three: Comparison using Kappa 
Test 

7.3.1 Introduction 

In this experiment, we will compare HBL to other classifiers based on the 

level of agreement of each classifier to target output values. Instead of 

applying a paired student t-test, we will use Cohen's Kappa coefficient 

[II, 10] which demonstrates the level of agreement of the classifier to the 

actual data labels. A student paired t-test does not fully exploit all of 

the information from confusion matrices (e.g. true negatives and false 

positives). Kappa test uses all of the information in confusion matrices to 

find the level of agreement between classifiers and is mainly employed in 

diagnosis tasks where there are more than one diagnoses available [11]. 

We will run algorithms on full data sets using 10-fold cross validation 

and further apply statistical Ztest [81] to measure whether the obtained 

Cohen's coefficient is significant at 95% or not by bolding the classifier 

name if the results are significant. 

Out of four different variants of back propagation which we have used 

in this thesis work, gradient descent is comparatively slower as it takes 

more time to converge[l]. Levenberg-Marquardt and Quasi Newton's 

method although very suitable for small problem size, are costly when 

network size (number of weights) becomes large [1]. With the above 

reasonings, we have decided the following subset of classifiers for this 

experiment: Resilient Back propagation (RPROP) algorithm from neural 

networks, HBL (HBL3) from Hyperballiearning algorithms along with 

KNN and ID3. These selected algorithms are shown in the Table 7.20. 
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Table 7.20: Third Experiment Algorithms 

Selected Algorithms 
Algorithm Category Abbreviation Used 
Resilient Back Propagation Neural Networks Rprop 
HBL H yperball Learning HBL 
KNN K Nearest Neighbours KNN 
ID3 Decision Trees ID3 

Experiment Details 

The procedure for this experiment is given below in Algorithm 9. 

Algorithm 9 Experiment 3: Kappa Test of Agreement 
1: for each algorithm listed in Table 7.20 do 
2: Train algorithm on each data set listed in Table 6.1 using 10-fold 

cross validation and for number of 30 runs. 
Evaluate confusion matrix of each classifier. 

3: return Confusion Matrix 
4: end for 

In above algorithm, 10-fold cross validation will be used to train each 

classifier for each data set in Table 7.20. Confusion matrices for each run 

are saved and averaged over all 30 runs. Kappa coefficient is calculated 

from confusion matrices. Kappa coefficient will show the level of agree­

ment between classifier and actual classification labels and it is calculated 

as follows: 

KAPPA = P(A) - P(E) 
1- P(E) 

(7.1) 

Where P(A) is the relative agreement among classifier and P(E) is the 

probability that agreement is due to chance. P(E) is calculated as follows: 

E~=l ([Et=l E;:'l J{i, k)c(i, j)].[Et=l E;:'l J(i, j)c(j, k)]) 
P(E) = 2 (7.2) 

m 

([E1=l Ej=l J(i, j)c(i, j)]) 
P(A) = (7.3) 

m 
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Table 7.21: Kappa values Reference 

Kappa Coeff. Reference Table 
~0.20 Poor 

0.21 - 0.40 Fair 
0.41- 0.60 Moderate 
0.61- 0.80 Good 
0.81-1.00 Very good 

In above equations, m denotes the number of samples, c number of 

classes. f(i, j) denotes the actual probability of example i to be of class 

j. c(i, j) can 0 or 1 values only. c(i, j) is 1 iff j is the predicted class for i 

obtained from p(i, j) which is the estimated probability of example i to be 

in class j and can be calculated as total number of samples in class j over 

total number of samples in all classes. 

In order to test whether or not the obtained results are significant, 

Z Statistic test is used to check the significance of the obtained Kappa 

coefficient. Z Statistic test is calculated as follows: 

Kappa 
Zscore = -----=--=-----

(Variance) ! 
(7.4) 

In the above formula, Variance values are sample variances of respected 

kappa statistics. If Z score is greater than 1.65, then we can conclude 

that the classification results obtained from a classifier are significantly 

meaningful at 95% confidence level [12]. This has been shown in the 

tables provided by bolding the classifier name. On the Other hand, when 

classifier name is not balded in Tables in such tables, it means that the null 

hypothesis which states the results are not significant cannot be rejected. 
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Table 7.22: Kappa Score Distribution 

Kappa Coeff. Score 
Insignificant 0 

:::; 0.20 0 
0.21 - 0.40 1 
0.41- 0.60 2 
0.61- 0.80 3 
0.81-1.00 4 

7.3.2 Results and Evaluation Methodology 

Kappa test results are shown in Tables 7.23 to 7.31. For the sake of the 

reader's convenience, results showing confusion matrices are moved to 

AppendixB. 

In order to do a comparison, we have assigned a score to each row 

of Table 7.21 as it is shown in Table 7.22. Using the above a score will 

be calculated for each algorithm considering all the data set results listed 

below. The comparison will be done in such a way that the algorithm with 

the highest score will be considered to have the highest level of agreement 

to actual output values, and will be known as a better algorithm. The 

obtained results are listed in Tables 7.23-7.31. In these tables Z Scores for 

each Kappa test is calculated in addition to Cohen's Kappa value. 

Table 7.23: Iris: Kappa Test Results 

Algorithm Cohen's Kappa Kappa Error Confidence Interval Z Score 

RP 0.95 0.01 0.94-0.96 51.92 
KNN 0.93 0.01 0.92-0.95 51.01 
ID3 0.93 0.01 0.92-0.95 50.97 
HBL 0.94 0.01 0.93-0.96 51.63 
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Table 7.24: Glass Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score 

RP 0.58 0.1598 0.27-0.89 3.33 
KNN 0.69 0.1225 0.45-0.93 5.29 
ID3 0.58 0.1598 0.27-0.89 3.33 
HBL 0.80 0.1072 0.59-1.00 5.97 

Table 7.25: Zoo Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval ZScore 

RP 0.87 0.1225 0.63-1.00 5.51 
KNN 0.94 0.0840 0.78-1.00 6.05 
ID3 0.85 0.1317 0.59-1.00 5.43 
HBL 0.95 0.0772 0.80-1.00 6.11 

Table 7.26: Wine Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score 

RP 0.87 0.1022 0.66-1.00 5.10 
KNN 0.80 0.1224 0.56-1.00 4.71 

ID3 0.43 0.1742 0.09-0.77 2.52 
HBL 0.86 0.1055 0.65-1.00 5.07 

Table 7.27: Parkinson Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score 

RP 0.49 0.3259 0.0-1.00 1.96 
KNN 0.22 0.3756 0.0-0.96 0.94 
103 0.17 0.3821 0.0-0.92 0.73 
HBL 0.28 0.3760 0.0-1.00 1.00 

Table 7.28: Pima Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score 

RP 0.42 0.1156 0.20-0.65 3.44 
KNN .0.34 0.1208 0.10-0.58 2.76 
ID3 0.34 0.1207 0.10-0.57 2.74 
HBL 0.40 0.1173 0.17-0.63 3.23 
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Table 7.29: Breast Cancer Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval ZScore 

RP 0.92 0.0498 0.82-1.00 7.68 
KNN 0.86 0.0640 0.74-0.99 7.21 
ID3 0.83 0.0706 0.69-0.97 6.93 
HBL 0.86 0.0635 0.74-0.99 7.22 

Table 7.30: Connectionist Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score 

RP 0.12 0.0616 0.00-0.24 1.82 
KNN 0.42 0.0564 0.31-0.53 6.28 
ID3 0.18 0.0578 0.02-0.22 1.48 
HBL 0.44 0.0556 0.33-0.55 6.71 

Table 7.31: Musk V2 Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval ZScore 

RP 0.13 0.0656 0.00-0.10 0.81 
KNN 0.01 0.0657 0.00-0.14 0.23 
ID3 0.10 0.0593 0.00-0.20 2.33 
HBL 0.15 0.0613 0.03-0.27 3.91 

7.3.3 Resu Its Discussion 

In this part, the scoring of each algorithm is calculated based on the Kappa 

score distribution provided in Table (7.32) and it's presented in Table 7.32. 

Table 7.32: Total Score Results 

Algorithm Total Score 

RP 22 
KNN 22 
ID3 17 
HBL 22 
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As it is shown in the score Table in 7.32, KNN, RP and HBL algorithms 

have equal score. All of these algorithms are superior to ID3 algorithm 

as ID3 has scored 17 which is the least score among all 4 algorithms. This 

methodology seems however to be unable to distinguish between RP, 

KNN and HBL algorithms as they have all earned an equal score of 22. 

7.3.4 Comparison based on Cohen's Kappa Value 

Another comparison can be using the exact value of Cohen's Kappa to 

decide which classifier has a better agreement to actual data output. For 

this comparison, if Classifier X has a higher Kappa value when it is 

compared to Classifier Y, then Classifier X has a better agreement to 

actual data labels and it is shown as Classifier X > Classifier Y. If result 

of a classifier is considered to be not significant(according to Tables 7.23 

-7.31}, then that comparison is ignored (Shown by - - - in Table 7.33). 

Table 7.33 summarizes the results shown in Tables 7.23 to Table 7.3l. 

Table 7.33: Comparison Based on Exact Kappa Value 

Summary Result Data set 
RP > HBL > KNN > ID3 Iris 
HBL > KNN > RP = ID3 Glass 
HBL > KNN > RP > ID3 Zoo 
RP > HBL > KNN > ID3 Wine 

RP> - --- Parkinson 
RP > KNN = HBL > ID3 Pima 
RP > KNN = HBL > ID3 Breast Cancer 

HBL > KNN > - - - Connectionist 
HBL > ID3 > - - - MuskV2 

According to this table, shows that RP has a better agreement to actual 

data labels when it is compared to HBL algorithm (RP is better 4 times 

whereas HBL only 2 times). It can also be concluded that after RP variant, 

HBL algorithm has the best agreement as it has higher Kappa value in 

more number of cases when it is compared to KNN and ID3 algorithms. 
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7.4 Overall discussions 

In this chapter we studied three different experiments to compare HBL 

algorithm to other classifiers. First experiment was comparing HBL algo­

rithm to other available classifiers when 25% of sample size was selected 

and increased each time by 25%. 

In this experiment first we performed an inter-HBL comparison to 

choose the best representative of HBL variants. The results obtained from 

this experiment showed that HBL outperforms other two variants of hy­

perbaU algorithm so HBL was chosen for further experiments. Next HBL 

was compared to BP algorithm variants. The obtained results from this 

comparison showed that HBL performed almost equal to most of BP vari­

ants. However, when sample size was considered GDM out performed 

HBL and when dimensionality considered, BFG had more number of 

wins beyond 50% level of dimensionality. Later on HBL was also com­

pared to KNN and ID3 algorithms. HBL results outperformed ID3 at 

both small and large sample size selection. When HBL was compared to 

KNN algorithm, HBL showed better results. However, KNN algorithm 

employed for this thesis was basic vanilla algorithm. 

In the second experiment, we compared HBL algorithm to other clas­

sifiers when the dimensionality of data ( principal components) were 

increasing. Obtained results from this experiment showed that when di­

mensionality of data is changing ANN back propagation variants perform 

equally to the HBL algorithm. 

Like the previous experiments HBL results outperformed both KNN 

and ID3 algorithm. 

In last experiment HBL was compared to other classifiers according 

to Kappa[ll] statistical measure. In this experiment using the Kappa Co­

hen's coefficient, we determined a level of agreement between the output 
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of each classifier and the actual data output. Further we evaluated signif­

icance of this obtained coefficient by can calculating a Z-score value using 

Z-statistical test. This Kappa value was also used to assign a weighted 

score to each of the classifiers for the comparison. 

Obtained results for this experiment showed that HBL, KNN, and RP 

algorithms outperform ID3 classifier. However, the employed technique 

was unable to distinguish between HBL, KNN, and RP algorithms as they 

all score equally meaning that they all have the same level of agreement 

to data output labels in general. 

Another comparison was done using the exact Kappa coefficient val­

ues. Summary table was generated and obtained results showed that RP 

algorithm outperforms HBL algorithm whereas HBL algorithm outper­

forms ID3 and KNN as it has a better agreement. 



Chapter 8 

Conclusion and Future Works 

8.1 Conclusion 

In this work we compared Hyperball Learning Algorithm to other classi­

fiers based on increase on sample size, dimensionality increase and also 

based on the level of agreement. The following conclusions are made 

based on the data sets used in this work and the given data in Chapter 7 

and Appendix B: 

• HBL3 with weighted sum distance calculation measure was the 

best HBL variant in the examined data sets. 

• Considering the classification accuracy as measure and also full 

sample sizes can be deduced that HBL performs as good as ANN 

algorithms whereas HBL performs better than KNN and ID3 algo­

rithm. 

• When dimensionality of data increases and classification accuracy 

is the measure ANN algorithms and HBL algorithm perform indif­

ferently. In the same context HBL algorithm is a better candidate 

when compared to KNN and ID3. 

87 
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• From the last experiment and when Cohen's Kappa is a measure, it 

can be concluded that RP algorithm outperforms HBL and so has a 

higher level of agreement to actual target outputs. After RP, HBL 

algorithm performs better than ID3 and KNN algorithm. 

8.2 Futu re Works 

• A research can be done to determine ways to improve classifier 

comparisons. 

• HBL can be further compared to other advanced KNN algorithms. 

• Autonomous learning capabilities of HBL algorithm can be ex­

plored. HBL algorithm can then be compared to other existing 

autonomous learning algorithms. 

• HBL algorithm was mainly designed to work as a parallel algorithm 

but in this thesis it was implemented as a sequential algorithm. HBL 

algorithms can be further implemented in parallel, and learning 

speed of HBL algorithm can be compared to other existing parallel 

algorithm. 

• One of other features of HBL algorithm which was not employed in 

this thesis is related to its "learning from fallible expert" capability. 

HBL algorithm can evolve in a way that if it is miss supervised from 

a fallible data label, it can adapt its structure to correct the fallible 

information later on. This capability can further be examined and 

compared with similar algorithm if there exists. 

• One of disadvantages of Instance Based Algorithms, specially KNN 

and HBL is that they are depending on all the data attributes to cal­

culate the distance. HBL algorithm can be combined with method-
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ologies like principal component analysis to use only the meaningful 

attributes in order to calculate a distance. 

• In addition to above point, we can calculate the importance of each 

attribute using principal component analysis then while calculating 

distance between each two patterns bring in the importance of each 

attribute by adding a weight for each attribute we are using. 

• Research can be done to decide the most suitable metric space for 

which HBL algorithm can have better accuracy such as Manhattan 

space. 

• HBL algorithm centers a ball around each pattern. A modification to 

this methodology is to see if using an asymmetric geometric figure 

(with unequal radii) around the pattern could improve its accuracy. 

• Another modification which can be tested on HBL algorithm is that 

instead of centering a ball around the pattern, we can center a ball 

around each dimension associated with data. In two dimensional 

space, this can be an ellipse which the pattern can be anywhere 

inside the ellipse. 

• In HBL algorithm, a ball around a pattern starts with a maximum 

possible radius and later on as new balls are inserted into knowledge 

bank, this radius is shrunk if the ball is over lapping with any 

other balls belonging to a different category. However, there is no 

step involved in the algorithm to increase the radius of any balls if 

necessary. There can be situations in which the balls can grow their 

radius without overlapping other balls when the learning is done. 

• And finally, HBL algorithm can be compared to more classifiers from 

Instance Based Learning category like: locally weighted regressions, 
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case-based reasoning, radial basis functions, etc. 

• HBL algorithm can be further compared to Radial basis based meth­

ods, Gaussian Mixture methods and support vector machines so it 

can be further compared to these classifiers as well. 
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Appendix A 

Error Back Propagation 
Algorithm 

BP algorithm is used to train a multi layer feed forward network using 

gradient descent to approximate an unknown function, based on some 

training data consisting of pairs (x,t), where the vector x represents input 

patterns to the network, and the vector t represents the corresponding 

target (desired output). Recall from mathematics, the overall gradient 

with respect to the entire training set is the sum of the gradients for each 

pattern; in what follows we will therefore describe how to compute the 

gradient for a single training pattern. Lets select node j from output layer, 

in this case weights from previous layer i to node j will be denoted as Wji' 

For node j, we can write the following equations: 

(A.l) 

Where ej(n) is the error at output node j. n refers to iteration n in the 

training process. Yj(n) is the actual output and dj(n) is the desired output. 
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E(n) = ~ L e~(n) 
jeCoII1 

(A2) 

Where E(n) is the instantaneous value of error energy and Caut is set of all 

nodes in output layer. 

netj(n) = L WjiYi(n) 

Yj(n) = f(netj(n» 

(A3) 

(A4) 

Where fO is the activation function for neuron j. We are interested in 

calculating the fl.Wji(n) (the change in weight required for Wji). fl.wji(n) 

which is applied to Wji is proportional to :~~~~). We apply the chain rule 

of differentiation to simplify the above expression: 

aE(n) aE(n aej(n) ayj(n) anetj(n) 
-::---'-:--:"" = 
aWji(n) aej(n)· aYj(n)· anetj(n)· aWji(n) 

Where = ffe~~) = ej(n) according to A2, a~:~~) = f'(netj(n» according to 

A 4 aej (n) - 1 d· A 1 d anetj(n) - () d· A 3 S 
• , aYj(n) - - ace or mg to ., an aWji(n) - Yi n accor mg to .. 0 

our expression will be simplified as: 

aE(n) I 

a () = -ej(n) f (netj(n» Yi(n) 
Wji n 

fl.Wji(n) will be applied to Wji(n), where: 

(AS) 

(A6) 

(A7) 

In above expression, T] is called the learning rate which is a value 

o < T] < 1. OJ is derivative of error with respect to netj, or the local gradi­

ent. Local gradient OJ can be calculated as follows: 
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HI(lden Layer OutputLay~r 

Figure A.l: Signal Flow Diagram from Hidden Layer to Output layer 

O. __ dE(n) 
J - dnetj(n) 

dE(n) dej(n) dYj(n) 
= - dej(n)" dYj(n)' dnetin) 

= ej(n)!'(netj(n» 

(A.S) 

(A.9) 

(A. 10) 

In above expression we had assumed that node j belongs to output layer 

and we have shown that OJ can be calculated based on the derived formula 

above. the second case can be when node j belongs to hidden layer. 

In figure A.l, signal flow from hidden layer to output layer is shown. 

In this figure node j belongs to hidden layer and node k belongs to output 

layer. for this figure, local gradient will be calculated as follows: 



6- __ dE(n) 
} - dnetj(n) 

dE(n) dYj(n) 
= - dYj(n)' dnetj(n) 

dE(n) , 
= - dYj(n).f (netj(n)) 

E(n) in this case will be as follows: 

E(n) = ~ L e~(n) 
kEoutput"odes 

In this case, expression ;~~~) should be calculated. 

so: 

dE(n) = ~ ek(n). dek(n) 
dYj(n) 'r dYj(n) 

= L ek(n) dek(n) netk(n) 
k dnetk(n) dYj(n) 

Given that ek(n) = dk(n) - Yk(n) we can write 

for node k, we can write: 

so: 

m 

netk(n) = L Wkj(n)Yj(n) 
j=O 

dnetk(n) _ -() 
dYj(n) - Wk} n 

Now equation A13 can be re-written as: 
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(All) 

(AI2) 

(AI3) 

(A. 14) 

(AlS) 

(AI6) 

(AI7) 



aE(n) '\' ' -a .( ) = - LJ ek(n)f (neMn))wkj(n) 
y, n k 

= - L Ok(n)Wkj(n) 
k 

Now if we apply that on OJ equation in A. 11, we'll have: 
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OJ(n) = f;(netj(n)). L ok(n)wkj(n) (A.lB) 
k 

So as we have shown above, local gradient of a hidden node is expressed 

in terms of local gradient of the output neuron. Recall that I1wji(n) = 
T/Oj(n)Yi(n) we can propagate the error backwards to calculate I1wji(n) for 

each weight connection. 

So in order to calculate the error for unit j, we must first know the 

error of all its posterior nodes. Again, as long as there are no cycles in the 

network, there is an ordering of nodes from the output back to the input 

that respects this condition. For example, we can simply use the reverse 

of the order in which activity was propagated forward. 

Vanilla gradient descent usually works well for simple models, but as the 

error space becomes too complex vanilla gradient descent method takes 

a long time to converge: The reason why is that the problem is stiff in the 

sense that the few places where small step sizes are required ruins it for 

the whole problem. For example when descending the walls of a very 

steep bowl, very small steps should be taken to avoid "rattling out" of the 

bowl. On the other hand, when moving along the gently sloping parts, 

longer steps are required. The problem is addressed by choosing a step 

that is some constant times the negative gradient rather than a step of 

constant length in direction of the negative gradient. This is equivalent to 

moving slowly in shallow regions and moving quickly in steep regions. 

Another issue is that curvature of the error surface may not be the same 
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in all directions. This will cause different components of the gradient in 

different directions to have different value which might slow down the 

algorithm [4]. 



Appendix B 

Experiment Results 

We have included detailed obtained results in this Appendix. The columns 
titles are explained as follows: 

Table B.l: Results Title Description 

Column Title Description 
Sample size Selected percentage of sample size 
Min Minimum observed classification accuracy value 
Max Maximum observed classification accuracy value 
Mean Average of all 30 runs of classification accuracy values 
Std Standard Deviation 
Dimension Portion of top principal components used 
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B.1. EXPERIMENT ONE: SAMPLE SIZE EFFECT 

B.1 Experiment one: Sample Size Effect 

LM 

RP 

bfg 

gdm 

KNN 

ID3 

HBL1 

HBL2 

HBL3 

Table B.2: Glass Dataset Results 

50% 
75% 

100% 

63.63 
73.27 
72.58 

68.22 1.98 
75.62 1.72 
77.10 1.49 
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Table B.3: Cohens d effect size for Glass 

Algorithm Size GUM l:3FG RP KNN 103 HBL1 HBL2 Hl:3L3 
25% 0.82 O.1Sj N~ U . .'JU N~ U.b~ U.b1S 0.78 
50% NS 0.61 0.37 ·0.81 NS 0.88 0.91 0.93 

LM 75% 0.31 0.47 NS 0.95 0.38 0.96 0.96 0.97 
100% 0.46 0.35 0.33 0.93 0.54 0.94 0.94 0.97 
1 25% - NS 0.79 0.63 0.79 0.63 0.62 0.39 
50% - 0.71 0.49 0.85 0.40 0.92 0.35 0.67 

gdm 75% - 0.63 0.45 0.94 NS 0.94 0.94 0.96 
100% - NS NS 0.94 0.75 0.95 0.95 0.97 
125% - - 0.82 0.64 0.81 0.66 0.65 0.35 
50% - - 0.35 0.59 0.44 0.71 0.58 0.83 

BFG 75% - - 0.35 0.96 0.66 0.96 0.96 0.97 
100o/t - - NS 0.95 0.73 0.96 0.96 0.98 
1
25% - - - U.j~ N~ U.b:l U.b:l UJ.'J 
50% - - - 0.72 NS 0.81 0.91 0.94 

RP 75% - - - 0.96 0.50 0.96 0.96 0.98 
100% - - - 0.95 0.71 0.95 0.95 0.97 
125% - - - - 0.40 NS NS 0.48 
50% - - - - 0.75 NS 0.81 0.88 

KNN 75% - - - - 0.93 NS NS 0.69 
100% - - - - 0.87 0.27 NS 0.84 
1
25% - - - - - U.b:l U.b1 U.14 
50% - - - - - 0.83 0.89 0.93 

103 75% - - - - - 0.94 0.94 0.96 
100% - - - - - 0.90 0.89 0.95 
1 25% - - - - - - NS 0.43 
50% - - - - - - 0.89 0.94 

HBL1 75% - - - - - - NS 0.76 
100% - - - - - - NS 0.80 
1 :l.'JU/o - - - - - - - U.4:l 
50% - - - - - - - 0.94 

HBL2 75% - - - - - - - 0.76 
100°;; - - - - - - - 0.79 



B.l . EXPERIMENT ONE: SAMPLE SIZE EFFECT 

LM 

RP 

bfg 

gdm 

KNN 

ID3 

HBL1 

HBL2 

HBL3 

Table B.4: Iris Dataset Results 

o 

50% 
75% 
100% 

95.59 99.40 
93.16 97.91 
94.30 98.03 

97.33 0.96 
95.54 0.93 
96.00 1.00 
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Table B.5: Cohens d effect size for Iris 

~lgonthm t)ize GUM !::sliG l<.P KNN lU3 H!::SL1 H!::SL2 H!::SLo 
25% U.66 U.51 U.71 U.62 U.2Y U.53 U.53 U./U 
50% 0.60 0.36 NS 0.26 0.80 0.54 0.78 0.83 

LM 75% NS 0.42 0.43 0.34 0.83 0.69 0.69 NS 
100°;; 0.49 NS NS 0.66 0.59 0.91 0.92 0.41 
25% - U.26 Nt) 0.28 0.52 0.48 0.48 Nt) 
50% - 0.52 0.62 0.55 0.31 0.35 NS 0.39 

gdm 75% - 0.26 0.27 0.34 0.76 0.60 0.60 NS 
100°;; - 0.42 0.39 NS NS 0.62 0.63 0.25 
ltl% - - U.::H Nt) U.31 0.25 0.25 Nt) 
50% - - 0.36 NS 0.86 0.48 0.49 0.67 

BFG 75% - - NS 0.63 0.89 0.82 0.82 0.47 
100°;; - - NS 0.61 0.52 0.91 0.92 . 0.30 
25% - - - U.36 U.58 U.62 U.61 Nt) 
50% - - - NS 0.88 0.65 NS 0.55 

RP 75% - - - 0.63 0.88 0.82 0.82 0.48 
100°;; - - - 0.56 0.48 0.89 0.90 NS 
ltl% - - - - U.43 U.3Y U.38 0.28 
50% - - - - 0.85 0.51 0.64 0.80 

KNN 75% - - - - 0.74 0.46 0.46 0.34 
1000;; - - - - NS 0.81 0.83 0.36 
ltlu/o - - - - - 0.26 0.26 0.56 
50% - - - - - 0.79 0.69 0.78 

ID3 75% - - - - - 0.62 0.61 0.84 
100% - - - - - 0.75 0.77 0.29 
25% - - - - - - Nt) U.64 
50% - - - - - - 0.87 0.91 

HBL1 75% - - - - - - NS 0.71 
100% - - - - - - NS 0.85 
25% - - - - - - - U.63 
50% - - - - - - - 0.91 

HBL2 75% - - - - - - - 0.71 
100% - - - - - - - 0.86 
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LM 

RP 

bfg 

gdrn 

KNN 

103 

HBL1 

HBL.2 

HBL3 

Table B.6: Zoo Dataset Results 

o 

50% 
75% 

100% 

90.95 97.89 96.00 1.37 
93.84 98.91 97.34 1.59 
94.15 98.00 97.01 1.74 
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Table B.7: Cohens d effect size for Zoo 

\Algorithm Size GDM BFG RP KNN ID3 HBLI HBL2 HBL3 

25% 0.63 0.84 0.61 0.95 0.77 0.95 0.95 0.95 
50% 0.76 0.39 0.68 0.76 0.94 0.41 0.97 0.97 

LM 75% NS 0.66 NS 0.89 0.66 0.83 0.91 0.92 
100% NS 0.35 NS 0.76 0.55 0.40 0.73 0.81 
25% - 0.65 NS 0.92 0.33 0.93 0.93 0.94 
50% - 0.57 NS 0.92 0.81 0.85 0.97 0.97 

gdm 75% - 0.46 0.35 0.82 0.67 0.73 0.85 0.86 
~OQO.,'c - 0.33 0.30 0.76 0.60 0.37 0.72 0.81 
25% - - 0.67 0.77 0.57 0.75 0.77 0.81 
50% - - 0.45 0.84 0.91 0.66 0.91 0.91 

BFG 75% - - 0.69 0.74 0.89 0.55 0.79 0.83 
1000;; - - 0.60 0.74 0.85 NS 0.67 0.80 
25% - - - 0.92 0.38 0.93 0.93 0.94 
50% - - - 0.89 0.82 0.81 0.97 0.97 

RP 75% - - - 0.88 0.40 0.83 0.90 0.91 
100% - - - 0.85 0.37 0.63 0.83 0.88 
25% - - - - 0.93 NS NS NS 
50% - - - - 0.97 0.62 0.72 0.74 

KNN 75% - - - - 0.96 0.38 NS 0.29 
100°1c - - - - 0.94 0.70 NS 0.28 
25% - - - - - 0.95 0.95 0.95 
50% - - - - - 0.96 0.98 0.98 

ID3 75% - - - - - 0.94 0.96 0.97 
1000J~ - - - - - 0.85 0.93 0.95 
25% - - - - - - NS 0.44 
50% - - - - - - 0.86 0.87 

HBLI 75% - - - - - - 0.53 0.59 
100% - - - - - - 0.63 0.77 
25% - - - - - - - 0.34 
50% - - - - - - - 0.84 

HBL2 75% - - - - - - - NS 
100% - - - - - - - 0.34 
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LM 

RP 

bfg 

gdm 

KNN 

ID3 

HBL1 

HBL2 

HBL3 

Table B.8: Wine Dataset Results 

50% 
75% 
100% 

82.23 90.33 86.51 1.97 
86.47 93.67 89.47 1.79 
87.51 93.29 90.46 1.27 
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Table B.9: Cohens d effect size for Wine 

Algorithm ~lze GUM B.t<G l{F KNN lu3 HtlL1 HtlL.-:2 HtlL_j 
25% N~ U.41:S U.'/4 U.65 UHf U.61 U.l:Sb U.I'I 
50% 0.40 0.59 NS 0.61 0.99 0.92 0.63 NS 

LM 75% 0.47 NS 0.42 0.80 0.99 0.70 0.67 0.35 
100% NS NS NS 0.90 1.00 0.81 0.80 0.55 
125% - U.54 0.615 U.b6 U.~/ U.bl U.IH 0.7l 
50% - NS 0.24 0.73 0.99 0.92 0.52 NS 

gdm 75% - 0.56 NS 0.91 1.00 0.88 0.85 0.71 
100°;; - NS NS 0.94 1.00 0.87 0.87 0.69 
125% - - U.I:SI:S U.I:SI:S U.~~ U.I:S/ U.~4 U.~2 

50% - - 0.45 0.84 0.99 0.95 0.89 0.73 
BFG 75% - - 0.52 0.82 0.99 0.73 0.69 0.33 

100°;; - - NS 0.94 1.00 0.88 0.87 0.65 
125% - - - U.46 U.~b U.bl N~ N~ 

50% - - - 0.69 0.99 0.93 0.53 0.77 
RP 75% - - - 0.92 1.00 0.88 0.85 0.69 

1000;; - - - 0.96 1.00 0.91 0.91 0.76 
125% - - - - U.~1:S N:::i U./'I U.41:S 
50% - - - - 0.99 0.84 NS 0.74 

KNN 75% - - - - 0.99 0.40 0.36 0.70 
100% - - - - 1.00 0.68 0.68 0.87 
125% - - - - - U.~I:S u.~/ U.YI:S 
50% - - - - - 0.98 0.98 0.99 

103 75% - - - - - 0.99 0.99 0.99 
100% - - - - - 1.00 1.00 1.00 
125% - - - - - - U.I:SU U.bb 
50% - - - - - - NS 0.69 

HBL1 75% - - - - - - NS 0.53 
100% - - - - - - NS 0.65 
12bu/o - - - - - - - U.bb 
50% - - - - - - - 0.92 

HBL2 75% - - - - - - - 0.49 
100% - - - - - - - 0.65 
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LM 

RP 

bfg 

gdm 

KNN 

HBL1 

HBL2 

HBL3 

Table B.10: BreastCancer Dataset Results 

o 

50% 
75% 
100% 

84.93 92.55 
85.58 92.84 
91.48 95.71 

88.64 1.93 
89.12 1.80 
93.83 0.93 
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IAlgorithm ::;lze GDM BFG l{F KNN lUo HBL1 HBL2 HBL3 
L.':>V/o U.4~ N:::i N::; N:::i UJ~6 U.LI:5 u.31 0.37 
50% 0.49 NS NS 0.27 0.85 NS 0.80 0.80 

LM 75% NS NS 0.82 0.73 0.86 0.72 0.75 0.73 
10001< NS NS 0.40 0.71 0.93 0.85 0.96 0.72 
25% - U.oL U.5'/ U.41:5 0.1:5'/ 0.02 O.OU U.21:5 
50% - 0.35 0.26 0.64 0.90 0.59 0.30 0.30 

gdm 75% - NS 0.84 0.77 0.87 0.76 0.78 0.76 
10001< - NS 0.36 0.59 0.88 0.75 0.92 0.59 
25% - - U.26 N:::i U.1:51 N::; N:::i N:::i 
50% - - NS 0.30 0.80 NS 0.60 0.60 

BFG 75% - - 0.86 0.80 0.89 0.80 0.81 0.80 
100% - - NS 0.42 0.84 0.65 0.90 0.42 
25% - - - NS 0.88 0.42 0.46 0.53 
50% - - - 0.40 0.83 0.31 0.88 0.88 

RP 75% - - - 0.48 NS 0.56 0.41 0.48 
100% - - - 0.34 0.87 0.66 0.92 0.34 
L5U/o - - - - O.YO N!; U.21:5 U.35 
50% - - - - 0.81 NS 0.84 0.84 

KNN 75% - - - - 0.59 NS NS NS 
100% - - - - 0.88 0.57 0.94 NS 
25% - - - - - U.I:5Y U.YU U.Y1 
50% - - - - - 0.86 0.96 0.96 

1D3 75% - - - _. - 0.67 0.53 0.60 
10001< - - - - - 0.78 0.57 0.90 
1 25% - - - - - - N::; N!; 
50% - - - - - - 0.70 0.70 

HBLI 75% - - - - - - NS NS 
100% - - - - - - 0.90 0.62 
IL.':>% - - - - - - - N::; 
50% - - - - - - - 0.69 

HBL2 75% - - - - - - - NS 
100% - - - - - - - 0.95 
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LM 

RP 

bfg 

gdm 

KNN 

ID3 

HBL1 

HBL2 

HBL3 

Table B.11: Parkinson Dataset Results 

o 

50% 
75% 
100% 

83.44 95.01 
86.24 94.91 
81.31 86.45 

89.90 2.60 
91.78 1.87 
84.26 1.25 
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Table B.12: Cohens d effect size for Parkinson 

Algorithm Size GDM BFG RP KNN lU::3 HBL1 HBL:L HBL3 
1 :LtJv/o U.61 N~ U.6::3 U.~H U':;; U':;l U.~6 U.~~ 

50% NS 0.29 0.71 0.72 0.87 0.70 0.85 0.86 
LM 75% 0.71 NS 0.70 0.62 0.93 0.43 0.51 0.69 

100°1< NS NS NS 0.80 0.90 0.95 0.79 0.59 
125% - U.39 NS 0.88 U.94 U.32 U.79 U.82 
50% - 0.39 0.83 0.78 0.91 0.80 0.75 0.78 

gdm 75% - 0.72 NS 0.89 0.87 0.87 0.86 0.90 
100~ - NS 0.41 0.79 0.91 0.96 0.80 0.51 
1 :LtJv/o - - U.44 U.87 U.~::3 U.55 U.tH U.~:L 

50% - - 0.62 0.66 0.92 0.62 0.77 0.79 
BFG 75% - - 0.70 0.75 0.94 0.63 0.66 0.79 

100% - - 0.23 0.80 0.91 0.95 0.80 0.58 
1 :LtJ'1o - - - U.~~ U.Y4 N~ U':;:, U.;~ 

50% - - - 0.37 0.96 NS 0.68 0.72 
RP 75% - - - 0.87 0.84 0.84 0.84 0.88 

100°1< - - - 0.84 0.93 0.96 0.85 0.70 
125% - - - - U.Y~ U.~:L U.:LY U.:LY 
50% - - - - 0.93 0.28 0.64 0.57 

KNN 75% - - - - 0.96 0.40 NS NS 
100°1< - - - - 0.48 0.84 0.36 0.61 
i 25'10 - - - - - U.95 U.Y6 U.Y; 
50% - - - - - 0.95 0.97 0.97 

1D3 75% - - - - - 0.96 0.96 0.96 
100~ - - - - - 0.78 0.78 0.84 
125'10 - - - - - - U.68 U.72 
50% - - - - - - 0.57 0.63 

HBL1 75% - - - - - - NS 0.54 
100°1< - - - - - - 0.93 0.94 
1 25% - - - - - - - NS 
50% - - - - - - - 0.27 

HBL2 75% - - - - - - - 0.37 
100°1< - - - - - - - 0.50 
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Table B.13: Madelon Dataset Results 

HBL...2 
50% 
75% 
100% 

64.14 75.25 70.00 2.70 
66.85 75.94 71.09 2.24 
68.82 74.64 71.88 1.55 

Table B.14: Cohens Effect Size for Madelon 

·50% 
KNN 75% 

100% 

NS 
NS 
0.34 
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Table B.15: Pima Dataset Results 

o 

50% 
75% 
100% 

65.43 73.86 69.85 1.88 
69.65 74.78 72.34 1.47 
71.84 77.68 74.48 1.35 
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Table B.16: cohens d EffectSize for Pima 

gdm 

RP 75% 
100% 

0 
0 

50% 
KNN 75% 

100% 
0 

50% 
ID3 75% 

100% 

HBL1 

0 

50% 0.52 
HBL2 75% 0.66 

100% 0.78 



B.l. EXPERIMENT ONE: SAMPLE SIZE EFFECT 

RP 

gdm 

KNN 

ID3 

HBL1 

HBL..2 

HBL3 

Table B.17: Musk Dataset Results 

50% 
75% 
100% 

65.81 75.07 70.60 2.33 
69.33 78.08 73.65 1.97 
76.09 79.72 77.49 0.92 
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Table B.18: Cohens d Effect size for Musk 

Gdm 

RP 

KNN 

ID3 

HBL1 

50% -
HBL2 75% -

100% -

0.67 
0.54 
0.52 
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B.1. EXPERIMENT ONE: SAMPLE SIZE EFFECT 

RP 

gdrn 

KNN 

ID3 

HBL1 

HBL2 

HBL3 

Table B.19: Connectionist Dataset Results 

o 

50% 
75% 

100% 

53.95 64.37 58.09 2.66 
56.33 65.56 60.34 2.02 
55.65 61.55 59.30 1.25 
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Table B.20: Cohens d Size Effect for Connectionist Data Set 

gdm 

RP 

KNN 

ID3 

HBL1 

HBL2 
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B.2 Experiment Two: Data Dimensionality Ef­
fect 

HBL.3 

Table B.21: Glass Dataset Results 

50% 
75% 

100% 

69.10 77.06 72.20 1.72 
70.27 80.41 75.95 2.62 
74.51 79.81 77.09 1.34 
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Table B.22: Cohen d Effect Size Table for Glass 

RP 

KNN 

ID3 

RP 

BFG 

KNN 

ID3 

HBL3 

75% 
100% 

0 

50% 0.75 0.96 
75% 0.70 0.90 

100% 0.87 0.84 
0 

50% 0.97 
75% 0.93 

100% 0.95 

Table B.23: Zoo Dataset Results 

o 

50% 
75% 

100% 

87.93 95.23 92.12 1.81 
92.37 98.30 95.45 1.41 
94.15 98.14 97.01 1.74 
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Table B.24: Cohen d Effect Size Table for Zoo 

RP 

KNN 

ID3 

RP 

BFG 

KNN 

ID3 

HBL3 

75% 
100% 

0 

50% 0.91 NS 
75% 0.85 0.65 
100% 0.94 0.28 

0 

50% 0.96 
75% 0.93 

100% 0.95 

Table B.25: Wine Dataset Results 

o 

50% 
75% 

100% 

79.43 89.26 85.26 2.40 
81.32 90.66 85.50 2.59 
87.51 93.29 90.46 1.27 
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Table B.26: Cohen d Effect Size Table for Wine 

BFG 75% 
100% 

0 

50% 
RP 75% 

100% 
0 

50% 0.99 0.76 
KNN 75% 0.98 NS 

100% 1.00 0.87 
0 

0 

50% 0.99 
ID3 75% 0.98 

100% 1.00 

Table B.27: Parkinson Dataset Results 

RP 

BFG 

KNN 

ID3 

HBL3 

o 

50% 
75% 

100% 

81.26 84.14 82.86 
79.87 87.17 83.86 
81.31 86.45 84.26 
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Table B.28: Cohen d Effect Size Table for Parkinson 

BFG 

RP 

KNN 

ID3 

I HBL3 

3 

75% 
100% 

0 

50% 0.75 0.84 
75% 0.29 0.58 
100% 0.48 0.61 

0 

50% 0.90 
75% 0.63 
100% 0.84 

Table B.35: Breast Dataset Results 

50% 
75% 

100% 

87.98 97.16 92.10 2.42 
88.93 95.79 92.17 1.82 
91.48 95.71 93.83 0.93 
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Table B.29: Pima Dataset Results 

Algorithm Dimension Min Max Mean Std 

25% 70.68 73.56 72.16 0.75 
50% 69.79 74.20 72.74 0.78 

RP 75% 73.69 77.33 75.34 0.90 
100% 68.69 80.22 73.74 2.59 
25% 70.96 73.44 72.32 0.63 
50% 70.97 74.61 72.86 0.88 

BFG 75% 71.48 76.82 75.11 1.03 
100% 73.28 82.54 78.04 2.22 
25% 63.48 66.39 65.17 0.68 
50% 68.42 71.24 69.64 0.80 

KNN 75% 69.58 72.58 71.03 0.78 
100% 68.94 75.05 72.02 1.55 
25% 64.88 67.41 65.99 0.73 
50% 65.69 69.98 68.17 0.96 

ID3 75% 65.75 72.83 69.07 1.71 
100% 68.57 73.20 71.69 1.15 
25% 66.30 68.88 67.46 0.56 
50% 68.84 71.97 70.59 0.81 

HBL3 75% 71.49 76.16 73.32 1.00 
100% 71.84 77.68 74.48 1.35 

Table B.36: Cohen d Effect Size Table for Breast 

RP 75% 
100% 

0 

50% 0.76 0.54 
KNN 75% 0.62 NS 

100% 0.88 NS 
0 

50% 0.83 
ID3 75% 0.58 

100% 0.90 
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Table B.30: Cohen d Effect Size Table for Pima 

Algorithm Dimension RP KNN ID3 HBL3 

25% NS 0.98 0.98 0.97 
50% NS 0.89 0.93 0.76 

BFG 75% NS 0.91 0.91 0.66 
100% 0.67 0.84 0.87 0.70 
25% - 0.98 0.97 0.96 
50% - 0.89 0.93 0.71 

RP 75% - 0.93 0.92 0.72 
100% - 0.37 0.46 NS 
25% - - 0.50 0.88 
50% - - 0.64 0.96 

KNN 75% - - 0.59 0.79 
100% - - NS 0.65 
25% - - - 0.75 
50% - - - 0.95 

ID3 75% - - - 0.84 
100% - - - 0.74 

Table B.37: Connectionist Dataset Results 

HBL3 
50% 
75% 

100% 

55.21 52.46 1.46 
63.94 61.18 1.59 
61.55 59.30 1.25 
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Table B.31: Iris Dataset Results 

Algorithm Dimension Min Max Mean Std 

25% 57.33 68.67 63.44 2.66 
50% 56.00 64.67 60.71 2.03 

RP 75% 71.33 79.33 75.42 2.07 
100% 94.00 98.00 96.47 0.91 
25% 58.00 66.67 63.58 2.05 
50% 56.00 68.00 62.18 3.18 

BFG 75% 68.00 80.00 74.40 3.02 
100% 94.67 98.00 96.58 0.83 
25% 53.68 65.09 59.28 2.69 
50% 56.80 65.52 61.84 1.97 

KNN 75% 70.70 80.98 76.54 2.29 
100% 93.64 97.19 95.29 0.82 
25% 56.90 70.79 65.02 3.22 
50% 58.29 65.41 61.51 2.01 

ID3 75% 70.33 79.61 75.96 2.64 
100% 92.67 97.54 95.33 1.17 
25% 56.44 68.61 62.05 2.90 
50% 55.16 65.28 60.36 2.26 

HBL3 75% 71.01 79.43 75.66 2.42 
100% 94.30 98.03 96.00 1.00 

Table B.38: Cohen d Effect Size Table for Connectionist 

50% 0.74 0.99 
KNN 75% 0.88 0.69 

100% 0.90 0.66 
0 

50% 0.99 
ID3 75% 0.93 

100% 0.96 
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Table B.32: Cohen d Effect Size Table for Iris 

!Algorithm pimension RP KNN ID3 HBL3 

25% NS 0.67 NS 0.29 
50% NS NS NS 0.60 

BFG 75% NS 0.37 NS NS 
100% NS 0.61 0.52 0.30 
25% - 0.61 0.26 NS 
50% - 0.27 NS 0.53 

RP 75% - NS NS NS 
100% - 0.56 0.48 NS 
25% - - 0.70 0.44 
50% - - NS NS 

KNN 75% - - NS NS 
100% - - NS 0.36 
25% - - - 0.44 
50% - - - 0.64 

ID3 75% - - - NS 
100% - - - 0.29 

Table B.33: Madelon Dataset Results 

Algorithm Dimension Min Max Mean Std 

25% 55.38 59.12 57.35 0.94 
50% 53.73 57.04 55.37 0.96 

RP 75% 53.96 56.92 55.57 0.65 
100% 52.63 58.02 54.92 1.24 
25% 66.50 71.18 68.59 1.11 
50% 66.68 70.48 68.44 0.92 

KNN 75% 68.14 71.29 69.70 0.82 
100% 68.58 73.63 70.85 1.31 
25% 41.12 44.78 43.57 0.88 
50% 45.62 50.23 48.17 1.05 

ID3 75% 47.92 51.19 49.30 0.80 
100% 46.14 52.07 49.80 1.53 
25% 64.25 69.62 67.51 1.29 
50% 66.57 72.37 69.23 1.29 

HBL3 75% 67.16 72.24 69.38 1.24 
100% 68.50 75.24 72.23 11.53 
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Table B.34: Cohen d Effect Size Table for Madelon 

!Algorithm Dimension RP KNN ID3 HBL3 

25% - 0.98 0.99 0.98 
50% - 0.99 0.96 0.98 

RP 75% - 0.99 0.97 0.99 
100% - 0.99 0.88 0.99 
25% - - 1.00 0.41 
50% - - 1.00 NS 

KNN 75% - - 1.00 NS 
100% - - 0.99 0.44 
25% - - - 1.00 
50% - - - 1.00 

ID3 75% - - - 0.99 
100% - - - 0.99 

Table B.39: Musk V2 Dataset Results 

HBL3 
50% 
75% 

100% 

49.72 56.39 52.47 1.68 
57.46 64.53 61.19 1.60 
76.09 79.72 77.49 0.92 
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Table B.40: Cohen d Effect Size Table for Musk V2 

RP 75% 
100% 

0 

50% 0.73 0.29 
KNN 75% 0.90 0.97 

100% 0.97 0.63 
0 

50% 0.78 
ID3 75% 0.69 

100% 0.99 
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B.3 Experiment Three: General Performance 
Evaluation 

Table B.41: Iris: Neural Network Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 

class 1 4.99 ± 0.03 0.01 ± 0.03 0.00 ± 0.00 
class 2 0.01 ± 0.04 4.68 ± 0.08 0.31 ± 0.08 
class 3 0.01 ± 0.03 0.19 ± 0.10 4.80 ± 0.10 

Table B.42: Iris: ID3 Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 

class 1 4.96 ± 0.07 0.03 ± 0.05 0.01 ± 0.04 
class 2 0.06 ± 0.07 4.60 ± 0.13 0.34 ± 0.10 
class 3 0.04 ± 0.06 0.21 ± 0.11 4.75 ± 0.09 

Table B.43: Iris: KNN Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 

class 1 4.95 ± 0.07 0.03 ± 0.06 0.01 ± 0.05 
class 2 0.07 ± 0.09 4.60 ± 0.11 0.33 ± 0.10 
class 3 0.03 ± 0.05 0.21 ± 0.10 4.76 ± 0.09 

Table B.44: Iris: HBL1 Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 

class 1 4.87 ± 0.11 0.09 ± 0.11 0.03 ± 0.05 
class 2 0.13 ± 0.11 4.47 ± 0.13 0.41 ± 0.11 
class 3 0.08 ± 0.08 0.28 ± 0.15 4.64 ± 0.16 
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Table B.45: Iris: HBL3 Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 

class 1 4.97 ± 0.05 0.01 ± 0.03 0.02 ± 0.04 
class 2 0.02 ± 0.05 4.66 ± 0.09 0.32 ± 0.09 
class 3 0.01 ± 0.03 0.19 ± 0.10 4.79 ± 0.10 

Table B.46: Iris: Kappa Test Results 

Algorithm Cohen's Kappa Kappa Error Confidence Interval Z Score Stat Result 

RP 0.95 0.01 0.94-0.96 51.92 1 

KNN 0.93 0.01 0.92-0.95 51.01 1 

ID3 0.93 0.01 0.92-0.95 50.97 1 

HBL1 0.90 0.01 0.88-0.92 49.25 1 

HBL3 0.94 0.01 0.93-0.96 51.63 1 

Table B.47: Glass:ID3 Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 class 4 class 5 class 6 

class 1 5.99 ± 0.25 0.87 ± 0.21 0.04 ± 0.09 0.04 ± 0.07 0.04 ± 0.08 0.01 ± 0.03 

class 2 2.95 ± 0.32 4.45 ± 0.35 0.04 ± 0.07 0.07 ± 0.08 0.05 ± 0.07 0.04 ± 0.06 
class 3 1.20 ± 0.22 0.16 ± 0.14 0.26 ± 0.21 0.02 ± 0.05 0.04 ± 0.06 0.02 ± 0.06 
class 4 0.16 ± 0.16 0.16 ± 0.13 0.06 ± 0.09 0.79 ± 0.21 0.06 ± 0.10 0.07 ± 0.09 
class 5 0.37 ± 0.21 0.11 ± 0.11 0.03 ± 0.06 0.04 ± 0.11 0.31 ± 0.21 0.03 ± 0.07 
class 6 0.29 ± 0.12 0.15 ± 0.12 0.06 ± 0.10 0.05 ± 0.07 0.04 ± 0.06 2.32 ± 0.24 

Table BA8: Glass: Neural Network Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 class 4 class 5 class 6 

class 1 6.01 ± 0.19 0.97 ± 0.19 0.02 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.03 
class 2 3.08 ± 0.29 4.27 ± 0.31 0.04 ± 0.06 0.11 ± 0.09 0.07 ± 0.08 0.02 ± 0.04 
class 3 1.36 ± 0.10 0.33 ± 0.10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.02 0.00 ± 0.00 
class 4 0.24 ± 0.12 0.32 ± 0.09 0.03 ± 0.05 0.64 ± 0.15 0.01 ± 0.03 0.07 ± 0.07 
class 5 0.48 ± 0.19 0.16 ± 0.12 0.03 ± 0.05 0.04 ± 0.05 0.17 ± 0.10 0.02 ± 0.04 
class 6 0.32 ± 0.10 0.20 ± 0.11 0.05 ± 0.07 0.07 ± 0.08 0.06 ± 0.07 2.21 ± 0.12 
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Table B.49: Glass: KNN Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 class 4 class 5 class 6 

class 1 6.23 ± 0.23 0.68 ± 0.24 0.04 ± 0.06 0.03 ± 0.06 0.01 ± 0.03 0.02 ± 0.04 
class 2 2.73 ± 0.38 4.70 ± 0.35 0.03 ± 0.06 0.07 ± 0.09 0.06 ± 0.09 0.02 ± 0.04 

class 3 0.99 ± 0.25 0.10 ± 0.10 0.51 ± 0.25 0.01 ± 0.05 0.03 ± 0.08 0.05 ± 0.07 
class 4 0.09 ± 0.10 0.09 ± 0.10 0.04 ± 0.07 1.01 ± 0.17 0.04 ± 0.06 0.03 ± 0.05 
class 5 0.18 ± 0.19 0.06 ± 0.08 0.03 ± 0.07 0.05 ± 0.09 0.55 ± 0.22 0.03 ± 0.05 
class 6 0.19 ± 0.14 0.05 ± 0.09 0.04 ± 0.09 0.02 ± 0.04 0.04 ± 0.07 2.56 ± 0.21 

Table B.50: Glass: HBL1 Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 class 4 class 5 class 6 

class 1 6.32 ± 0.29 0.59 ± 0.29 0.03 ± 0.07 0.02 ± 0.04 0.01 ± 0.03 0.02 ± 0.05 
class 2 2.65 ± 0.34 4.72 ± 0.25 0.06 ± 0.09 0.06 ± 0.11 0.04 ± 0.08 0.06 ± 0.10 
class 3 1.00 ± 0.21 0.09 ± 0.09 0.49 ± 0.22 0.03 ± 0.06 0.06 ± 0.08 0.04 ± 0.07 
class 4 0.07 ± 0.09 0.06 ± 0.06 0.03 ± 0.04 1.05 ± 0.18 0.05 ± 0.08 0.05 ± 0.07 
class 5 0.21 ± 0.18 0.08 ± 0.10 0.02 ± 0.04 0.04 ± 0.07 0.53 ± 0.17 0.02 ± 0.05 

class 6 0.14 ± 0.11 0.07 ± 0.09 0.02 ± 0.05 0.03 ± 0.06 0.02 ± 0.05 2.61 ± 0.17 

Table B.51: HBL3 Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 class 4 class 5 class 6 

class 1 6.40 ± 0.33 0.46 ± 0.30 0.04 ± 0.09 0.04 ± 0.09 0.03 ± 0.05 0.02 ± 0.04 
class 2 2.48 ± 0.40 5.02 ± 0.37 0.02 ± 0.05 0.04 ± 0.07 0.03 ± 0.05 0.01 ± 0.03 
class 3 0.81 ± 0.21 0.08 ± 0.08 0.71 ± 0.24 0.04 ± 0.10 0.03 ± 0.05 0.03 ± 0.04 
class 4 0.06 ± 0.08 0.08 ± 0.09 0.05 ± 0.09 1.05 ± 0.19 0.03 ± 0.07 0.03 ± 0.06 
class 5 0.12 ± 0.12 0.06 ± 0.11 0.02 ± 0.04 0.04 ± 0.07 0.65 ± 0.20 0.02 ± 0.04 
class 6 0.15 ± 0.15 0.03 ± 0.06 0.02 ± 0.05 0.03 ± 0.04 0.01 ± 0.03 2.66 ± 0.15 
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Table B.52: Glass Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score 

RP 0.58 0.1598 0.27-0.89 3.33 
KNN 0.69 0.1225 0.45-0.93 5.29 
ID3 0.58 0.1598 0.27-0.89 3.33 

HBL1 0.66 0.1314 0.41-0.92 4.68 

HBL3 0.80 0.1072 0.59-1.00 5.97 

Table B.53: Zoo: ID3 Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 class 4 class 5 class 6 

Table B.54: Zoo: Neural Network Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 class 4 class 5 class 6 

Stat Result 

1 
1 
1 
1 
1 

class 7 

.02 ± 0.05 

.03 ± 0.04 

.04 ± 0.06 

.01 ± 0.03 

.02 ± 0.06 

.03 ± 0.05 

.81 ± 0.15 

class 7 

.02 ± 0.06 

.00 ± 0.00 

.02 ± 0.04 

.01 ± 0.03 

.01 ± 0.03 

.01 ± 0.03 

.75 ± 0.10 
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Table B.55: Zoo: KNN Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 class 4 class 5 class 6 

Table B.56: Zoo: HBL1 Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 class 4 class 5 class 6 

Table B.57: Zoo: HBL3 Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 class 4 class 5 class 6 

class 7 

.01 ± 0.03 

.00 ± 0.02 

.01 ± 0.03 

.02 ± 0.05 

.01 ± 0.03 

.01 ± 0.03 

.92 ± 0.09 

class 7 

.01 ± 0.03 

.01 ± 0.03 

.03 ± 0.05 

.03 ± 0.05 

.00 ± 0.02 

.01 ± 0.03 

.91 ± 0.11 

class 7 

.02 ± 0.04 

.01 ± 0.03 

.00 ± 0.00 

.00 ± 0.02 

.01 ± 0.03 

.00 ± 0.02 

.94 ± 0.06 
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Table B.58: Zoo Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Zscore Stat Result 

RP 0.87 0.1225 0.63-1.00 5.51 1 

KNN 0.94 0.0840 0.78-1.00 6.05 1 

ID3 0.85 0.1317 0.59-1.00 5.43 1 

HBL1 0.91 0.1046 0.71-1.00 5.83 1 
HBL3 0.95 0.0772 0.80-1.00 6.11 1 

Table B.59: Wine: Neural Network Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 

class 1 5.67 ± 0.07 0.23 ± 0.07 0.00 ± 0.00 
class 2 0.79 ± 0.23 6.09 ± 0.24 0.22 ± 0.09 
class 3 0.12 ± 0.09 0.23 ± 0.13 4.46 ± 0.14 

Table B.60: Wine: KNN Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 

class 1 5.35 ± 0.34 0.34 ± 0.26 0.21 ± 0.22 
class 2 0.75 ± 0.35 5.89 ± 0.49 0.46 ± 0.36 
class 3 0.25 ± 0.18 0.39 ± 0.27 4.16 ± 0.34 

Table B.61: Wine: ID3 Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 

class 1 4.01 ± 0.46 1.29 ± 0.34 0.60 ± 0.29 
class 2 1.75 ± 0.41 4.10 ± 0.48 1.24 ± 0.34 
class 3 0.58 ± 0.25 1.27 ± 0.44 2.95 ± 0.42 
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Table B.62: Wine: HBL1 Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 

class 1 5.40 ± 0.24 0.32 ± 0.24 0.18 ± 0.18 
class 2 0.82 ± 0.38 6.01 ± 0.34 0.27 ± 0.20 
class 3 0.17 ± 0.19 0.28 ± 0.21 4.34 ± 0.25 

Table B.63: Wme: HBL3 Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 

class 1 5.45 ± 0.28 0.31 ± 0.26 0.14 ± 0.17 
class 2 0.54 ± 0.27 6.27 ± 0.37 0.30 ± 0.28 
class 3 0.16 ± 0.15 0.25 ± 0.25 4.39 ± 0.28 

Table B.64: Wine Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result 

RP 0.87 0.1022 0.66-1.00 5.10 1 

KNN 0.80 0.1224 0.56-1.00 4.71 1 

ID3 0.43 0.1742 0.09-0.77 2.52 1 

HBL1 0.83 0.1146 0.60-1.00 4.88 1 

HBL3 0.86 0.1055 0.65-1.00 5.07 1 

Table B.65: Parkinson: ID3 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 14.96 ± 0.38 1.54 ± 0.38 
class 2 2.26 ± 0.32 0.74 ± 0.32 

Table B.66: Parkinson: KNN Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 15.15 ± 0.37 1.35 ± 0.37 
class 2 2.16 ± 0.44 0.84 ± 0.44 



B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 145 

Table B.67: Parkinson: HBL1 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 14.49 ± 0.48 2.01 ± 0.48 
class 2 2.39 ± 0.42 0.61 ± 0.42 

Table B.68: Parkinson: HBL3 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 15.53 ± 0.36 0.97 ± 0.36 
class 2 2.11 ± 0.33 0.89 ± 0.33 

Table B.69: Parkinson: Neural Network Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 15.93 ± 0.26 0.57 ± 0.26 
class 2 I 1.67 ± 0.24 1.33 ± 0.24 

Table B.70: Parkinson Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result 

RP 0.49 0.3259 0.0-1.00 1.96 1 

KNN 0.22 0.3756 0.0-0.96 0.94 0 

103 0.17 0.3821 0.0-0.92 0.73 0 

HBL1 0.08 0.3837 0.0-0.84 0.37 0 

HBL3 0.28 0.3760 0.0-1.00 1.00 0 

Table B.71: Pima: 103 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 42.76 ± 0.73 7.24 ± 0.73 
class 2 14.50 ± 0.67 12.30 ± 0.67 
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Table B.72: Pima: KNN Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 43.08 ± 0.74 6.92 ± 0.74 
class 2 14.58 ± 0.73 12.22 ± 0.73 

Table B.73: Pima: HBL1 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 41.15 ± 0.57 8.85 ± 0.57 
class 2 16.57 ± 0.71 10.23 ± 0.71 

Table B.74: Pima: HBL3 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 44.04 ± 0.76 5.96 ± 0.76 
class 2 13.64 ± 0.68 13.16 ± 0.68 

Table B.75: Pima: Neural Network Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 44.39 ± 0.53 5.61 ± 0.53 
class 2 13.20 ± 0.45 13.60 ± 0.45 

Table B.76: Pima Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result 

RP 0.42 0.1156 0.20-0.65 3.44 1 
KNN 0.34 0.1208 0.10-0.58 2.76 1 
ID3 0.34 0.1207 0.10-0.57 2.74 1 

HBL1 0.22 0.1266 0.00-0.47 1.78 0 
HBL3 0.40 0.1173 0.17-0.63 3.23 1 
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Table B.77: Breast Cancer: KNN Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 43.60 ± 0.64 2.20 ± 0.64 
class 2 2.16 ± 0.44 21.94 ± 0.44 

Table B.78: Breast Cancer: HBL1 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 42.90 ± 0.57 2.90 ± 0.57 
class 2 2.53 ± 0.67 21.57 ± 0.67 

Table B.79: Breast Cancer: HBL3 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 43.47 ± 0.54 2.33 ± 0.54 
class 2 1.98 ± 0.44 22.12 ± 0.44 

Table B.80: Breast Cancer: Neural Network Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 44.34 ± 0.14 1.46 ± 0.14 
class 2 1.13 ± 0.21 22.97 ± 0.21 

Table B.81: Breast Cancer Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result 

RP 0.92 0.0498 0.82-1.00 7.68 1 
KNN 0.86 0.0640 0.74-0.99 7.21 1 
HBL1 0.83 0.0706 0.69-0.97 6.93 1 
HBL3 0.86 0.0635 0.74-0.99 7.22 1 
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Table B.82: Madelon: ID3 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 82.00 ± 4.64 48.00 ± 4.64 
class 2 76.41 ± 5.15 53.59 ± 5.15 

Table B.83: Madelon: KNN Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 106.18 ± 4.99 23.82 ± 4.99 
class 2 52.06 ± 5.14 77.94 ± 5.14 

Table B.84: Madelon: HBL1 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 102.85 ± 5.27 27.15 ± 5.27 
class 2 55.58 ± 5.51 74.42 ± 5.51 

Table B.95: Wine: Neural Network Confusion matrix 

Predicted Classes 

class 1 class 2 class 3 

class 1 5.67 ± 0.07 0.23 ± 0.07 0.00 ± 0.00 

class 2 0.79 ± 0.23 6.09 ± 0.24 0.22 ± 0.09 

class 3 0.12 ± 0.09 0.23 ± 0.13 4.46 ± 0.14 

Table B.97: Wine: ID3 Confusion matrix 

Predicted Classes 

class 1 class 2 class 3 

class 1 4.01 ± 0.46 1.29 ± 0.34 0.60 ± 0.29 

class 2 1.75 ± 0.41 4.10 ± 0.48 1.24 ± 0.34 

class 3 0.58 ± 0.25 1.27 ± 0.44 2.95 ± 0.42 
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Table B.85: Madelon: HBL3 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 107.87 ± 4.42 22.13 ± 4.42 
class 2 50.16 ± 5.25 79.84 ± 5.25 

Table B.86: Madelon: Neural Network Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 87.03 ± 4.48 42.97 ± 4.48 
class 2 71.38 ± 5.05 58.62 ± 5.05 

Table B.87: Madelon Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result 

RP 0.12 0.0616 0.00-0.24 1.82 0 
KNN 0.42 0.0564 0.31-0.53 6.28 1 
HBL1 0.36 0.0578 0.25-0.48 5.48 1 
HBL3 0.44 0.0556 0.33-0.55 6.71 1 

Table B.98: Wine: HBL1 Confusion matrix 

Predicted Classes 

class 1 class 2 class 3 

class 1 5.40 ± 0.24 0.32 ± 0.24 0.18 ± 0.18 

class 2 0.82 ± 0.38 6.01 ± 0.34 0.27 ± 0.20 

class 3 0.17 ± 0.19 0.28 ± 0.21 4.34 ± 0.25 

Table B.99: Wine: HBL3 Confusion matrix 

Predicted Classes 

class 1 class 2 class 3 

class 1 5.45 ± 0.28 0.31 ± 0.26 0.14 ± 0.17 

I 
class 2 0.54 ± 0.27 6.27 ± 0.37 0.30 ± 0.28 

class 3 0.16 ± 0.15 0.25 ± 0.25 4.39 ± 0.28 
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Table B.88: Musk V2: ID3 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 13.1 ± 0.83 88.6 ± 0.83 
class 2 137.2 ± 0.55 420.9 ± 0.55 

Table B.89: Musk V2: KNN Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 16.1 ± 0.92 85.6 ± 0.92 
class 2 83.6 ± 0.49 474.5 ± 0.49 

Table B.90: Musk V2: HBL1 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 13.5 ± 0.91 88.2 ± 0.91 
class 2 99.7 ± 0.71 458.4 ± 0.71 

Table B.100: Wine Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result 

RP 0.87 0.1022 0.66-1.00 5.10 1 

KNN 0.80 0.1224 0.56-1.00 4.71 1 

ID3 0.43 0.1742 0.09-0.77 2.52 1 

HBL1 0.83 0.1146 0.60-1.00 4.88 1 

HBL3 0.86 0.1055 0.65-1.00 5.07 1 

Table B.101: Parkinson: 103 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 14.96 ± 0.38 1.54 ± 0.38 

class 2 2.26 ± 0.32 0.74 ± 0.32 
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Table B.91: Madelon: HBL3 Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 29.6 ± 4.42 72.1 ± 4.42 
class 2 76.1 ± 5.25 482 ± 5.25 

Table B.92: Neural Network Confusion matrix 

Predicted Classes 
class 1 class 2 

class 1 99.26 ± 0.72 2.44 ± 0.72 
class 2 2.31 ± 0.51 555.79 ± 0.51 

Table B.93: Musk V2 Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result 

RP 0.13 0.0656 0.00-0.10 0.81 0 
KNN 0.01 0.0657 0.00-0.14 0.23 0 
ID3 0.10 0.0593 0.00-0.20 2.33 1 

HBL1 0.04 0.0644 0.17-0.08 1.12 0 
HBL3 0.15 0.0613 0.03-0.27 3.91 1 

Table B.102: Parkinson: KNN Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 15.15 ± 0.37 1.35 ± 0.37 

class 2 2.16 ± 0.44 0.84 ± 0.44 

Table B.103: Parkinson: HBL1 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 14.49 ± 0.48 2.01 ± 0.48 

class 2 2.39 ± 0.42 0.61 ± 0.42 
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Table B.94: Zoo Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result 

RP 0.87 0.1225 0.63-1.00 5.51 1 
KNN 0.94 0.0840 0.78-1.00 6.05 1 
103 0.85 0.1317 0.59-1.00 5.43 1 

HBLI 0.91 0.1046 0.71-1.00 5.83 1 
HBL3 0.95 0.0772 0.80-1.00 6.11 1 

Table B.96: Wine: KNN Confusion matrix 

Predicted Classes 
class 1 class 2 class 3 

class 1 5.35 ± 0.34 0.34 ± 0.26 0.21 ± 0.22 
class 2 0.75 ± 0.35 5.89 ± 0.49 0.46 ± 0.36 
class 3 0.25 ± 0.18 0.39 ± 0.27 4.16 ± 0.34 

-

Table B.I04: Parkinson: HBL3 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 15.53 ± 0.36 0.97 ± 0.36 

class 2 2.11 ± 0.33 0.89 ± 0.33 

Table B.l05: Parkinson: Neural Network Confusion matrix 

Predicted Classes 

I class 1 class 2 

cla4l5.93 ± 0.26 0.57 ± 0.26 

class ~67 ± 0.24 1.33 ± 0.24 
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Table B.106: Parkinson Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result 

RP 0.48 0.3259 -0.16-1.12 1.95 0 

KNN 0.22 0.3756 -0.51-0.96 0.94 0 

ID3 0.17 0.3821 -0.58-0.92 0.73 0 

HBL1 0.08 0.3837 -0.67-0.84 0.37 0 

HBL3 0.28 0.3760 -0.46-1.02 1.00 0 

Table B.107: Pima: ID3 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 42.76 ± 0.73 7.24 ± 0.73 

class 2 14.50 ± 0.67 12.30 ± 0.67 

Table B.108: Pima: KNN Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 43.08 ± 0.74 6.92 ± 0.74 

class 2 14.58 ± 0.73 12.22 ± 0.73 

Table B.109: Pima: HBL1 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 41.15 ± 0.57 8.85 ± 0.57 

class 2 16.57 ± 0.71 10.23 ± 0.71 
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Table B.llO: Pima: HBL3 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 44.04 ± 0.76 5.96 ± 0.76 

class 2 13.64 ± 0.68 13.16 ± 0.68 

Table B.ll1: Pima: Neural Network Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 44.39 ± 0.53 5.61 ± 0.53 

class 2 13.20 ± 0.45 13.60 ± 0.45 

Table B.1l2: Pima Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval ZScore Stat Result 

RP 0.42 0.1156 0.20-0.65 3.44 1 

KNN 0.34 0.1208 0.10-0.58 2.76 1 

ID3 0.34 0.1207 0.10-0.57 2.74 1 

HBL1 0.22 0.1266 -0.03-0.47 1.78 0 

HBL3 0.40 0.1173 0.17-0.63 3.23 1 

Table B.1l3: Breast Cancer: KNN Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 43.60 ± 0.64 2.20 ± 0.64 

class 2 2.16 ± 0.44 21.94 ± 0.44 
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Table B.114: Breast Cancer: HBL1 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 42.90 ± 0.57 2.90 ± 0.57 

class 2 2.53 ± 0.67 21.57 ± 0.67 

Table B.115: Breast Cancer: HBL3 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 43.47 ± 0.54 2.33 ± 0.54 

class 2 1.98 ± 0.44 22.12 ± 0.44 

Table B.116: Breast Cancer: Neural Network Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 44.34 ± 0.14 1.46 ± 0.14 

class 2 1.13 ± 0.21 22.97 ± 0.21 

Table B.117: Breast Cancer Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result 

RP 0.92 0.0498 0.82-1.02 7.68 1 

KNN 0.86 0.0640 0.74-0.99 7.21 1 

HBL1 0.83 0.0706 0.69-0.97 6.93 1 

HBL3 0.86 0.0635 0.74-0.99 7.22 1 
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Table B.ll8: Madelon: ID3 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 82.00 ± 4.64 48.00 ± 4.64 

class 2 76.41 ± 5.15 53.59 ± 5.15 

Table B.119: Madelon: KNN Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 106.18 ± 4.99 23.82 ± 4.99 

class 2 52.06 ± 5.14 77.94 ± 5.14 

Table B.120: Madelon: HBL1 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 102.85 ± 5.27 27.15 ± 5.27 

class 2 55.58 ± 5.51 74.42 ± 5.51 

Table B.121: Madelon: HBL3 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 107.87 ± 4.42 22.13 ± 4.42 

class 2 50.16 ± 5.25 79.84 ± 5.25 



B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 157 

Table B.122: Madelon: Neural Network Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 87.03 ± 4.48 42.97 ± 4.48 

class 2 71.38 ± 5.05 58.62 ± 5.05 

Table B.123: Madelon Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result 

RP 0.12 0.0616 -0.00-0.24 1.82 0 

KNN 0.42 0.0564 0.31-0.53 6.28 1 

HBLI 0.36 0.0578 0.25-0.48 5.48 1 

HBL3 0.44 0.0556 0.33-0.55 6.71 1 

Table B.124: Musk V2: ID3 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 94.37 ± 0.83 7.33 ± 0.83 

class 2 7.52 ± 0.55 550.58 ± 0.55 

Table B.125: Musk V2: KNN Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 94.31 ± 0.92 7.39 ± 0.92 

class 2 7.46 ± 0.49 550.64 ± 0.49 
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Table B.126: Musk V2: HBL1 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 94.10 ± 0.91 7.60 ± 0.91 

class 2 7.25 ± 0.71 550.85 ± 0.71 

Table B.127: Musk V2: HBL3 Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 94.27 ± 0.88 7.43 ± 0.88 

class 2 7.42 ± 0.70 550.68 ± 0.70 

Table B.128: Neural Network Confusion matrix 

Predicted Classes 

class 1 class 2 

class 1 99.26 ± 0.72 2.44 ± 0.72 

class 2 2.31 ± 0.51 555.79 ± 0.51 

Table B.129: Musk V2 Kappa Test Results 

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result 

RP 0.97 0.0126 0.95-1.00 24.98 1 

KNN 0.91 0.0221 0.87-0.96 23.47 1 

HBL1 0.91 0.0222 0.87-0.96 23.47 1 

HBL3 0.91 0.0221 0.87-0.96 23.47 1 


