
Comparison of Classification Ability of Hyperball
Algorithms to Neural Network and K-Nearest Neighbour

Algorithms

Tanaby Zibamanzar Mofrad

Department Of Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Faculty of Mathematics and Science, Brock University
St. Catharines, Ontario

@Tanaby Zibamanzar Mofrad 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brock University Digital Repository

https://core.ac.uk/display/62643751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my lovely wife, Tina and my respected parents, Pari and Farhad.

ABSTRACT

The main focus of this thesis is to evaluate and compare Hyperbalilearn

ing algorithm (HBL) to other learning algorithms. In this work HBL is

compared to feed forward artificial neural networks using back propaga

tion learning, K-nearest neighbor and 103 algorithms.

In order to evaluate the similarity of these algorithms, we carried out

three experiments using nine benchmark data sets from UCI machine

learning repository. The first experiment compares HBL to other algo

rithms when sample size of dataset is changing . The second experiment

compares HBL to other algorithms when dimensionality of data changes.

The last experiment compares HBL to other algorithms according to the

level of agreement to data target values.

Our observations in general showed, considering classification accu

racy as a measure, HBL is performing as good as most ANn variants.

Additionally, we also deduced that HBL.:s classification accuracy outper

forms 103's and K-nearest neighbour's for the selected data sets.

iii

List of Tables

6.1 Benchmark Data Sets
6.2 ANN Parameter Values
6.3 Structure of ANN, KNN, and HBL Algorithms .

7.1 Abbreviations used in this section ...
7.2 Data Set Categories
7.3 Effect size table guide
7.4 HBL1 vs. HBL2 Comparison
7.5 HBL1 vs. HBL3 Comparison
7.6 HBL2 vs. HBL3 Comparison.
7.7 HBL vs. KNN Group 1 Comparison: .
7.8 HBL vs. KNN Group 2 Comparison: .
7.9 HBL vs. LM Comparison for First Category .
7.10 HBL vs. BFG Comparison for First Category
7.11 HBL vs. RP Comparison for First Category ...
7.12 HBL vs. GDM Comparison for First Category ..

. 7.13 HBL vs. RP Comparison for Second Category ..
7.14 HBL vs. GDM Comparison for Second Category
7.15 HBL vs. ID3 Comparison ..
7.16 HBL vs. KNN Comparison
7.17 HBL vs. RP Comparison .
7.18 HBL vs. BFG Comparison .
7.19 HBL vs. ID3 Comparison ...
7.20 Third Experiment Algorithms
7.21 Kappa values Reference .
7.22 Kappa Score Distribution
7.23 Iris: Kappa Test Results ..
7.24 Glass Kappa Test Results .
7.25 Zoo Kappa Test Results . .

iv

53
56
57

59
62
62
64
64
64
66
66
67
67
68
68
69
69
71
75
76
76
77
79
80
81
81
82
82

7.26 Wine Kappa Test Results ...
7.27 Parkinson Kappa Test Results
7.28 Pima Kappa Test Results . . .
7.29 Breast Cancer Kappa Test Results
7.30 Connectionist Kappa Test Results.
7.31 Musk V2 Kappa Test Results
7.32 Total Score Results
7.33 Comparison Based on Exact Kappa Value

B.1 Results Title Description .. .
B.2 Glass Dataset Results
B.3 Cohens d effect size for Glass
BA Iris Dataset Results
B.5 Cohens d effect size for Iris .
B.6 Zoo Dataset Results
B.7 Cohens d effect size for Zoo
B.8 Wine Dataset Results
B.9 Cohens d effect size for Wine
B.lO BreastCancer Dataset Results
B.11 Parkinson Dataset Results ..
B.12 Cohens d effect size for Parkinson.
B.13 Madelon Dataset Results
B.14 Cohens Effect Size for Madelon
B.15 Pima Dataset Results
B.16 cohens d EffectSize for Pima.
B.17 Musk Dataset Results
B.18 Cohens d Effect size for Musk
B.19 Connectionist Dataset Results
B.20 Cohens d Size Effect for Connectionist Data Set .
B.21 Glass Dataset Results
B.22 Cohen d Effect Size Table for Glass
B.23 Zoo Dataset Results
B.24 Cohen d Effect Size Table for Zoo .
B.25 Wine Dataset Results
B.26 Cohen d Effect Size Table for Wine
B.27 Parkinson Dataset Results
B.28 Cohen d Effect Size Table for Parkinson
B.35 Breast Dataset Results
B.29 Pima Dataset Results

82
82
82
83
83
83
83
84

107
108
109
110
111
112
113
114
115
116
118
119
120
120
121
122
123
124
125
126
127
128
128
129
129
130
130
131
131
132

B.36 Cohen d Effect Size Table for Breast .
B.30 Cohen d Effect Size Table for Pima
B.37 Connectionist Dataset Results
B.31 Iris Dataset Results
B.38 Cohen d Effect Size Table for Connectionist
B.32 Cohen d Effect Size Table for Iris ...
B.33 Madelon Dataset Results
B.34 Cohen d Effect Size Table for Madelon
B.39 Musk V2 Dataset Results
BAO Cohen d Effect Size Table for Musk V2
B.41 Iris: Neural Network Confusion matrix
B.42 Iris: ID3 Confusion matrix . .
BA3 Iris: KNN Confusion matrix .
B.44 Iris: HBL1 Confusion matrix
BA5 Iris: HBL3 Confusion matrix
BA6 Iris: Kappa Test Results. . . .
B.47 Glass:ID3 Confusion matrix .
BA8 Glass: Neural Network Confusion matrix
BA9 Glass: KNN Confusion matrix .
B.5O Glass: HBL1 Confusion matrix
B.51 HBL3 Confusion matrix . .
B.52 Glass Kappa Test Results
B.53 Zoo: ID3 Confusion matrix ...
B.54 Zoo: Neural Network Confusion matrix
B.55 Zoo: KNN Confusion matrix .
B.56 Zoo: HBL1 Confusion matrix .
B.57 Zoo: HBL3 Confusion matrix .
B.58 Zoo Kappa Test Results
B.59 Wine: Neural Network Confusion matrix
B.60 Wine: KNN Confusion matrix .
B.61 Wine: ID3 Confusion matrix . .
B.62 Wine: HBL1 Confusion matrix
B.63 Wine: HBL3 Confusion matrix
B.64 Wine Kappa Test Results
B.65 Parkinson: ID3 Confusion matrix .
B.66 Parkinson: KNN Confusion matrix .
B.67 Parkinson: HBL1 Confusion matrix
B.68 Parkinson: HBL3 Confusion matrix
B.69 Parkinson: Neural Network Confusion matrix

132
133
133
134
134
135
135
136
136
137
138
138
138
138
139
139
139
139
140
140
140
141
141
141
142
142
142
143
143
143
143
144
144
144
144
144
145
145
145

B.70 Parkinson Kappa Test Results .
B.71 Pima: ID3 Confusion matrix ..
B.72 Pima: KNN Confusion matrix .
B.73 Pima: HBL1 Confusion matrix
B.74 Pima: HBL3 Confusion matrix
B.75 Pima: Neural Network Confusion matrix
B.76 Pima Kappa Test Results
B.77 Breast Cancer: KNN Confusion matrix .
B.78 Breast Cancer: HBL1 Confusion matrix
B.79 Breast Cancer: HBL3 Confusion matrix
B.80 Breast Cancer: Neural Network Confusion matrix
B.81 Breast Cancer Kappa Test Results .
B.82 Madelon: ID3 Confusion matrix. . .
B.83 Madelon: KNN Confusion matrix. .
B.84 Madelon: HBL1 Confusion matrix .
B.95 Wine: Neural Network Confusion matrix
B.97 Wine: ID3 Confusion matrix
B.85 Madelon: HBL3 Confusion matrix
B.86 Madelon: Neural Network Confusion matrix
B.87 Madelon Kappa Test Results . .
B.98 Wine: HBL1 Confusion matrix .
B.99 Wine: HBL3 Confusion matrix.
B.88 Musk V2: ID3 Confusion matrix.
B.89 Musk V2: KNN Confusion matrix
B.90 Musk V2: HBL1 Confusion matrix .
B.100Wine Kappa Test Results
B.101 Parkinson: ID3 Confusion matrix ..
B.91 Madelon: HBL3 Confusion matrix.
B.92 Neural Network Confusion matrix ..
B.93 Musk V2 Kappa Test Results
B.102Parkinson: KNN Confusion matrix ..
B.103Parkinson: HBL1 Confusion matrix.
B.94 Zoo Kappa Test Results
B.96 Wine: KNN Confusion matrix
B.104Parkinson: HBL3 Confusion matrix.
B.105Parkinson: Neural Network Confusion matrix
B.106Parkinson Kappa Test Results.
B.107Pima: ID3 Confusion matrix .
B.108Pima: KNN Confusion matrix

145
145
146
146
146
146
146
147
147
147
147
147
148
148
148
148
148
149
149
149
149
149
150
150
150
150
150
151
151
151
151
151
152
152
152
152
153
153
153

B.I09 Pima: HBLI Confusion matrix
B.llOPima: HBL3 Confusion matrix
B.lll Pima: Neural Network Confusion matrix .
B.ll2Pima Kappa Test Results
B.ll3 Breast Cancer: KNN Confusion matrix .
B.ll4 Breast Cancer: HBLI Confusion matrix.
B.ll5 Breast Cancer: HBL3 Confusion matrix.
B.ll6 Breast Cancer: Neural Network Confusion matrix .
B.ll7Breast Cancer Kappa Test Results.
B.ll8Madelon: ID3 Confusion matrix ...
B.ll9Madelon: KNN Confusion matrix .
B.120Madelon: HBLI Confusion matrix ..
B.121 Madelon: HBL3 Confusion matrix ..
B.122Madelon: Neural Network Confusion matrix.
B.123 Madelon Kappa Test Results ...
B.124 Musk V2: ID3 Confusion matrix ..
B.125 Musk V2: KNN Confusion matrix .
B.126 Musk V2: HBLI Confusion matrix
B.127Musk V2: HBL3 Confusion matrix
B.128 Neural Network Confusion matrix.
B.129 Musk V2 Kappa Test Results

153
154
154
154
154
155
155
155
155
156
156
156
156
157
157
157
157
158
158
158
158

List of Figures

2.1 A simple Neuron 8
2.2 A simple multi layer Network . . 10

3.1 Decision Tree Classification 19

4.1 Ball Shrinking Procedure. . . 30
4.2 HBL Classifier 31
4.3 HBL Classifier: Second Iteration HBLI 32
4.4 HBL Classifier 35
4.5 HBL Classifier 35
4.6 HBL Classifier 36
4.7 HBL Classifier 36

7.1 Overall Comparison of HBL to KNN: HBL outperforms KNN 66
7.2 Overall Comparison of HBL to GDM 69
7.3 Overall Comparison of HBL to RP and GDM 70
7.4 Iris data set: 71

A.l Signal Flow Diagram from Hidden Layer to Output layer 103

ix

Contents

ABSTRACT iii

Contents i

1 Introduction 1

2 Artificial Neural Networks:Back Propagation Learning 7
2.1 Introduction to Artificial Neural Networks (ANN) . 7

2.1.1 A simple Artificial Neuron. . 8
2.1.2 Multi layer ANNs. 9
2.1.3 Back Propagation Algorithm 10

3 K-Nearest Neighbour, Decision Tree Method 15
3.1 K-Nearest Neighbour Algorithm (KNN) 15
3.2 Decision Tree (Dtree) learning . 17

3.2.1 ID3 18

4 Hyperball Algorithm (HBL) 23
4.1 Introduction to HBL Algorithm 23

4.1.1 Background..... . . 23
4.1.2 Basic Definitions 25
4.1.3 Pattern Recognition and Object Classification. 27

4.2 Supervised Learning Algorithm . 28
4.2.1 HBL Variants 30

5 A Note on KNN and HBL 39
5.1 Introduction and Literature Review. 39

5.1.1 A Note On Distance Measures. 40
5:1.2 Basic KNN Overview And Its Drawbacks 41

CONTENTS

5.1.3 Categories of KNN Algorithm Variants .
5.1.4 Dimension and Noise Reduction

5.2 HBL vs. Basic KNN algorithm

6 Experimental Setup and Data Sets
6.1 Benchmark Data Sets ...
6.2 Experimental Setup

6.2.1 Data Preprocessing

7 Experiments and Results
7.1 Experiment 1: Sample Size Effect

7.1.1 Inter-HBL Comparison .. .
7.1.2 HBL vs. KNN
7.1.3 HBL vs. Neural Network Variants
7.1.4 HBL vs. ID3

ii

42
45
48

51
52
54
54

59

60
63
64
67
70

7.1.5 Experiment one's overall discussion 71
7.2 Experiment 2: Data Dimensionality Effect . 73

7.2.1 Algorithm And Experimental Procedure. 74
7.2.2 HBL vs. KNN 74
7.2.3 HBL vs. BP Variants 75
7.2.4 HBL vs. BFG. 76
7.2.5 HBL vs. ID3 76
7.2.6 Overall Discussions. 77

7.3 Experiment Three: Comparison using Kappa Test 78
7.3.1 Introduction............... 78
7.3.2 Results and Evaluation Methodology ... 81
7.3.3 Results Discussion 83
7.3.4 Comparison based on Cohen's Kappa Value 84

7.4 Overall discussions. 85

8 Conclusion and Future Works 87
8.1 Conclusion.. 87
8.2 Future Works. 88

Bibliography 91

A Error Back Propagation Algorithm 101

B Experiment Results
B.1 Experiment one: Sample Size Effect.

107
108

CONTENTS iii

B.2 Experiment Two: Data Dimensionality Effect 127
B.3 Experiment Three: General Performance Evaluation . 138

Chapter 1

Introduction

This thesis deals with a comparative study of Hyperball (HBL) algorithm

as a new classification algorithm to back propagation learning [1] in feed

forward artificial neural network as well as K-Nearest neighbour [2] and

decision tree [3] . In this thesis, accuracy of three variants of HBL algo

rithm is compared to four variants of back propagation neural networks.

Artificial neural network (ANN) is a computational model which tries

to simulate structure or functional behaviour of biological neural net

works. It consists of a number of nodes which are connected to each

other using weighted connections. Different arrangements of nodes to

gether construct different layers of ANNs. In multi layer ANNs, at least

three layers of nodes are formed: An input layer which receives input to

the network, hidden layers which can assist in the classification of non

linearly separable patterns; and an output layer which is used for actual

output of the neural network.

Feedforward neural networks are a type of ANNs where the weight

connections between the nodes do not form a directed cycle. In this

type of ANN, information only flows in one direction, which is from

the input layer to the output layer. By using back propagation learning,

1

2

multi layer neural networks can be trained to learn the input patterns

and achieve a form of generalization by which they can also classify

unseen similar patterns. In its simplest form, BP uses gradient descent

techniques. Back propagation learning calculates the error of the output

nodes and propagates the error backwards to tune the weights of the

neural network using local gradient of output nodes.

There are many variants to gradient descent back propagation learn

ing. In this thesis, Levenberg-Marquardt (LM) [4], Resilient BackPropaga

tion (RProp) [5], Quasi-Newton (BFG)[6] and standard Gradient Descent

with Momentum (GDM) [1] are used as four variants of back propagation

learning. Levenberg-Marquardt and Quasi-Newton variants make use of

second order information about the error surface which is represented by

the local Hessian matrix. Quasi-Newton tries to approximate the inverse

of Hessian matrix over a number of steps instead of computing Hessian

which is computationally expensive. Levenberg-Marquardt is specifi

cally designed to locate the minimum of sum-of-squares error function

which is used to calculate the error at the output layer of neural networks.

Resilient back propagation tries to use the sign of partial derivatives in

gradient descent to indicate the direction of weight update.

One of the main works of this thesis is to evaluate HBL algorithm in

comparison to neural networks. HBL algorithms are recently introduced

in [7] and can be used for both supervised and unsupervised learning.

However, in this thesis HBL is used for supervised learning.

HBL algorithms work similarly to the category of Instance Based

Learning (IBL) algorithms [2]. These algorithms try to classify patterns

based on computing a similarity-measure (distance) to the patterns they

have learned before. Classification of a new pattern is done by the con

tribution of a number of more similar (less distant) patterns to the new

pattern. When a pattern is introduced to HBL, it centers a ball around

3

that pattern. This ball is a secure margin for the pattern which can contain

other very-similar patterns. Each ball is labeled to the class to which the

pattern belongs. So all balls of the same class are labeled uniquely which

construct a category. The number of categories is equal to the number of

classes associated with the dataset in supervised learning. Radii of the

balls in each category is decided and altered over a number of steps. Balls

which belong to same category can overlap whereas balls which belong

to different categories are shrunk to be mutually exclusive.

HBL in testing mode examines the patterns in the balls of each category

looking for a number of more similar patterns to the testing pattern. It

then uses the information from this group of patterns to classify the testing

pattern. In this thesis, three variants of HBL algorithm are introduced.

Like any other classification algorithm, HBL also has both advantages

and disadvantages. Being a category of Instance Based Learning algo

rithms, HBL can construct a different approximation for each distinct

testing pattern which is to be classified. This can be advantageous when

the target function is very complex because HBL can describe it as a col

lection of local approximations [2]. One disadvantage of HBL is that the

cost of classifying testing patterns can be higher when the number of in

stances increase because the number of distance calculations increases as

well. Another disadvantage of HBL is that all of the attributes associated

with a pattern are considered by the algorithm for classification and they

are all given equal importance whereas in practice not all attributes are

of equal importance to describe data.

In addition to further evaluate the performance of HBL, K-Nearest

Neighbour (KNN) [2] and decision trees ID3 [3] are also included in the

comparison. Just like HBL algorithm, KNN algorithm also belongs to a

category of Instance Based Learning. ID3 algorithm constructs a decision

tree by calculating information gain of each of the unused attributes and

4

selects the attribute with maximum information gain as a node. This

process is continued until all of the attributes associated with data are

used.

In order to compare HBL to ANN, KNN and ID3 algorithms, 9 bench

mark datasets are selected from the VCI machine learning repository

and generalization accuracies of each algorithm over these datasets are

used as a measure of comparison. The selected datasets are: Glass, Iris,

Pima Indian Diabetes, Connectionist, Madelon, Wine, Zoo, Breast Cancer,

Musk Version two, and Parkinson dataset.

This thesis focuses on a few different criteria which can influence the

accuracy of a classifier and conducts an experiment for each to compare

HBL to other algorithms. These criteria are sample size and number of

attributes associated with each pattern (data dimensionality). It also uses

another criterion as the level of agreement between a classifier and the

actual data output to compare classifiers.

The first experiment tries to compare HBL to other algorithms when

the sample size is increasing. For this experiment, we have divided the

datasets into two groups and have conducted the experiment for each

group of dataset when each time sample size is increasing by 25%.

The second experiment compares HBL to other algorithms when the

dimensionality of data changes in each dataset. Principal Component

Analysis (PCA) [8] is employed to reduce the dimensionality and each

time increase number of selected principal components by 25%. For this

experiment, datasets with equal number of classes are grouped together

and their accuracy results are averaged over their group. The third exper

iment compares HBL to various other algorithms in order to determine

whether if in general HBL algorithm has a better level of agreement to

actual target values. In general for this experiment, Kappa statistical test

[9] is utilized.

5

The remainder of the thesis is organized as follows: Chapter 2 will give

an introduction to artificial neural networks. Back propagation learning

algorithm is then explained in details in this chapter. This chapter also ex

plains the other variants of back propagation algorithm which are used in

this thesis. In chapter 3, KNN and ID3 algorithms are explained in detail.

It also describes the different learning categories each of these classifiers

belong to. Next in chapter 4, HBL and its different variants are introduced.

Chapter 5 performs a literature review on different KNN variants to see

if they are similar to HBL algorithm. Chapter 6 describes the datasets we

are using along with experimental setups. Selected datasets are briefly

described in a tabular form and for each classifier, experimental details

and parameters' initial values are explained. Actual experiments and

results are shown and discussed in chapter 7. Lastly chapter 8 describes

the conclusions and proposes the future works which can be performed

and established in addition to this thesis.

Thesis Goals

In this work we have tried to achieve following goals:

1. Compare performance (classification accuracy) of HBL algorithm

to ANNs using back propagation, KNN algorithm, and ID3 algo

rithms for a number of selected data sets and when the sample size

increases. Use student's paired t-test and effect size[lO] (Shows the

statistical strength of a difference) to determine the significance and

importance of each comparison.

2. Compare performance (classification accuracy) of HBL to other clas

sifiers in terms of classification accuracy on a set of data sets when

6

dimensionality of data changes. Use student paired t-test and effect

size to determine the significance and importance of difference.

3. Using Cohens Kappa test of statistics [11] determine the level of

agreement between each classifier's actual output and target out

put. Apply a Z-Statistical test [12] to determine the significance of

obtained values. Then using these values, compare HBL to these

other algorithms.

Chapter 2

Artificial Neural Networks:
Back Propagation Learning

2.1 Introduction to Artificial Neural Networks
(ANN)

An artificial neural network [13] (ANN) is a model which is used to

simulate both the structure and functional behavior of a biological neu

ral network. It is comprised of a group of artificial neurons which are

interconnected. Artificial neurons are connected to each other by connec

tion lines which are called "weight connections". Artificial neurons and

weight connections together form the architecture of a neural network.

All neural networks should be trained prior they can perform a task

with some sort of training rule. Using training rule weight connections

will be updated on the basis of data and feedback. If neural networks

are trained properly then they can show capability for generalization

beyond the training data. This means they can approximately produce

correct results for the cases which are not included in the training data

but belong to same data category.

7

2.1. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS (ANN) 8

Figure 2.1: A simple Neuron

2.1.1 A simple Artificial Neuron

An artificial neuron (is often called as node) receives input from other

nodes or from external environment. Each input to a node is comprised

of a weight value w. In each node, all of the weighted inputs are summed

together and then a function f calculates the weighted sum of its inputs

as follows:

Yi = f(L WijYi) (2.1)
i=l

(2.2)

In Figure 2.1, the weighted sum L.j Wij * Yj is called the net input to

node i, neti where Y is an output from a node. Note that Wij refers to

the weight from node j to node i. The function f is the node's activation

function. In the simplest case, f is the identity function, and the node's

output is just its net input. This is called a linear node (because its output

is equal to its net value), however it is nonlinearity which gives ANNs

capability to classify nonlinearly separable data. ANNs can have different

architectures and models. Multi layer ANN models have been used in

2.1. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS (ANN) 9

this thesis. These models are explained in the following section.

2.1.2 Multi layer ANNs

Multi layer neural networks have at least three different layers of nodes.

The first layer is the input layer, consisting of nodes which receive input

from the outside. The last layer is called the output layer, which is the

neural network's output and transfers the response of the whole neural

network to the outside environment. In between, there can be at least

one hidden layer of hidden nodes which process the received input from

the preceding layers. Each neuron has an activation (squashing) function

associated with it. If a network consists of linear activation functions,

then it can learn to classify patterns which can be just linearly separable

[14]. Linearly separable patterns are patterns by which any two different

classes of patterns can be separated by a straight line (plane, or hyperplane

depending on dimensionality of data patterns) [14]. If the activation

functions associated with hidden layers are nonlinear functions, then the

network can also learn to classify the non linearly separable patterns.

Activation functions for hidden units can introduce nonlinearity to the

network. Without nonlinearity, hidden units would not make neural

networks more powerful than plain perceptrons (which do not have any

hidden units, only input and output units). The reason is that a linear

function of linear functions is again a linear function (which is the case in

perceptron networks).

Shown in figure 2.2 is a network composed of three layers. Input units

receive the input values. In each hidden unit, the sum netj = LjWji * Yj

and f(netj) is calculated. The same process is repeated in the output layer.

There are different algorithms and training models associated with multi

layer neural networks. Back Propagation (BP) algorithm is a well known

2.1. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS (ANN) 10

Outputs

Hidden

Inputs

Figure 2.2: A simple multi layer Network

algorithm which can be used in multi layer neural networks to adjust the

weights and train the network [15].

2.1.3 Back Propagation Algorithm

If we consider a multi layer neural network, the final layer of weights can

be considered as a perceptron with inputs given by the outputs of the last

hidden layer. These weights can be chosen and tuned using the percep

tron learning rule [16] which is a rule for tuning and choosing the weights

and bias in perceptron learning. However, the weights in earlier layers

of our network cannot be determined by these rules. Another approach

can be to consider each layer individually as a single layer perceptron but

then we can not associate target values with those layers anymore. In

deed, such networks cannot be trained using perceptron procedures. The

solution to the above problem is relatively simple. If we consider a net-

2.1. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS (ANN) 11

work with differentiable activation functions then the activation of output

nodes become differentiable functions of both the input variables and the

weights and biases [1]. If we define the error function as sum-of-squares

error (where the error is difference between the actual network output and

the target value), then this error itself is a function of the weights which

is differentiable as well [1]. We can then calculate the derivatives of error

with respect to weights, and these derivatives can be used to calculate

the required adjustments in the weights values. The algorithm which

evaluates the derivatives of weight functions is called back propagation

algorithm [15] since it tries to propagate the error backwards from the

output layer to the previous layers. With respect to partial derivative of

the error over corresponding weight, it then finds the new weight value.

Back propagation pseudo code is presented below:

Algorithm 1 Back Propagation
1: Begin
2: Initialize the weights to some random values
3: repeat
4: for each input pattern n in the training set do
5: compute y(n) as the actual output of the network
6: Calculate error (y(n) - d(n» at the output units
7: Update all weights from hidden layer to output layer using:
8: /}.Wji = TJej(n)f'(netj(n»Yi(n)
9: Update all weights from input layer to hidden layer using:

10: /}.Wji = T7f;(netj(n». Lk Dk(n)Wkj(n)Yi(n)
11: end for
12: until all examples classified correctly or stopping criterion met
13: return network

As demonstrated above, back propagation algorithm has two phases:

The first phase involves a forward propagation of inputs as explained in

equations 2.1 and 2.2 (line 5 in above algorithm). In the second phase, er

ror e can be calculated for every output node, and the sum of squares error,

2.1. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS (ANN) 12

E, can be calculated for the network. Then, derivations of E over weights

are calculated to find the I1wji which is the required adjustment for the

weight Wji' In other words, after input is fed to the network, error is cal

culated at the output but error is then propagated backwards, so for each

existingweight,l1wji is calculated. The update I1wji is 17ej(n)!'(netj(n»Yi(n)

and for other hidden-output weights and ryf;(net/n». Lk ok(n)wkj(n)Yi(n)

(lines 6 - 10 in above algorithm). In order to minimize the error func

tion, an iterative procedure is needed for most training algorithms which

adjusts the weights accordingly in each iteration. The derivation of back

propagation learning algorithm is been discussed in details in appendix

A.

Vanilla back propagation usually works for simpler models, however

it might take a long time to converge if error space becomes more complex.

The reason for this is that the places which small step sizes are needed can

be problematic for the whole convergence. For example when descending

a steep place, small step sizes are needed to be taken. On the other hand

when descending in a gently sloping parts longer step sizes should be

taken [17]. A possible solution to the problem is by choosing a step that is

some constant times the negative gradient rather than a step of constant

length in direction of the negative gradient [4]. This is equivalent to

moving slowly in shallow regions and moving quickly in steep regions.

Another issue is that the error surface curvature can be different in all

directions and not the same. This will cause different components of the

gradient in different directions to have different values which can slow

down the algorithm [17].

2.1. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS (ANN) 13

ANN Variants

Error back propagation works by moving towards the negative direction

of local gradient of error with respect to weights to find the minimum

error and new weight values. One of the well known algorithms to find

minimum of an error function is Newton's method [18]. Newton's meth

ods can be used to find approximations to roots of a quadratic equation.

Unlike gradient descent, Newton's methods point directly to the mini

mum of a function. The problem with Newton's methods is that they

have to calculate Hessian matrix (matrix of second derivatives or error

with respect to weights) to be able to proceed in the direction of descent.

However, calculating Hessian matrix numerically needs a lot of compu

tation and will be very costly. Quasi-Newton overcomes this drawback

by using the curvature information from f and 'V f to approximate the

Hessian matrix. The update formula for this algorithm is given in below:

G(1) = G() ppT _ (G(n)v)vTG(n) (TG()) T
n + n + pTv vTG(n)v + v n v uu

p, v, and u are vectors which are defined as:

p = w(n + 1) - w(n)

v = g(n + 1) - g(n)

p G(n)v
U=---=--

pTv vTG(n)v

(2.3)

(2.4)

(2.5)

(2.6)

Levenberg-Marquardt [17] is another variant of ANN back propagation

which is designed to minimize the sum-of-squares cost function without

computing Hessian matrix. This algorithm instead uses Jacobian matrix

of partial derivatives of error with respect to connection weights for every

training pattern. M. Poulton et. al in [19] state that Levenberg-Marquardt

algorithm will look to minimize error only in a small search area where the

linear approximation is possible. Levenberg-Marquardt benefits from a

2.1. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS (ANN) 14

step size factor whose value can greatly shift algorithm behavior towards

Newton's method or gradient descent. If step size is chosen to be a large

value, then algorithm will behave like Newton's method. On the other

hand a small step size value will result in an algorithm equivalent to

gradient descent. The update formula of this algorithm is given as below:

Where

E(w(n + 1» = E(w(n» + Z(w(n + 1) - w(n»

Z = dE
dW

(2.7)

. (2.8)

(2.9)

Rprop or Resilient back propagation method [5] is another variant

which can be used in supervised batch learning in multi layer percep

tron networks. Rprop uses the sign of partial derivatives to indicate the

direction of weight update so it eliminates the problem of calculating

partial derivatives in weight steps in gradient descent. For each weight,

if signs that a partial derivative of the total error function has changed

when compared to last iteration, then the update value for that weight is

multiplied by a coefficient rr < 1. If there is no change in the sign, then

the update value is multiplied by r(> 1. Finally, each weight is updated

by its update value in the opposite direction of its partial derivative.

Rprop is a reliable variant when the size of a network is too big and

dramatically slows down Levenberg Marquardt and Quasi-Newton algo

rithms [1].

Chapter 3

K-Nearest Neighbour, Decision
Tree Method

3.1 K-Nearest Neighbour Algorithm (KNN)

In order to explain the KNN algorithm [20], let's assume that the data is

divided into two main categories: training set and testing set. Let's choose

a pattern from testing set, Ptest(al, a2, a3, ... an), which consists of n attributes

(a). The idea in KNN algorithm is to dynamically select k patterns in train

ing set (Ptrain) which are "more similar" to the pattern to be classified in

testing set (P in above) [20]. Similarity can be identified by calculating the

differences (distances) to each Ptrain in the training set and then choosing

the k patterns which have more similarity (e.g smaller differences) to Ptest .

Then, KNN will use the information from k selected patterns to classify

Ptest . The problem is to find classJ:ndex using ClassJndex = f(al, a2, ... ap)

equation. If function f was known then classJ:ndex could be simply

calculated. But f is not known so a reasonable idea will be to look for

observations in our training data that are near it [20].

As we mentioned above, KNN uses the k closer pattern's information

to classify the Ptest . This is achieved by calculating distance and finding k

15

3.1. K-NEAREST NEIGHBOUR ALGORITHM (KNN) 16

examples that their distance is closest to Ptest . In classification problems,

a majority voting scheme is employed for KNN's prediction [20].

The choice of k is considered to be an important factor in this algorithm.

k is considered to be a smoothing parameter [2]. The reason is a small

value of k in any given problem, will lead to large variances in predictions.

If we choose a large value for k, then it could cause a large model bias [20].

So k should be chosen in such a way that it is large enough to minimize

misclassification probability. On the other hand, it should be small with

respect to number of instances so that k nearest points are close enough

to the query point [20]. Thus, the optimal value for k should be chosen

and selected. By using a cross validation technique, an estimate of k in

KNN algorithm can be calculated [20, 1].

In order to make predictions with KNN, a metric needs to be defined

for measuring the distance between the query point and cases from the

training sample. In this thesis, Euclidean metric space is used for the

K-nearest neighbor algorithm. The KNN's pseudo code for to-fold cross

validation is presented below:

Algorithm 2 K-Nearest Neighbour Algorithm using Cross Validation
1: Divide the dataset using to fold cross validation:
2: each time use one fold for testing and remaining 9 folds for training
3: for each test sample t do the following: do
4: determine the closest k training samples based on calculated dis

tance.
5: determine w the most frequent class label among the available C

classes.
6: Update corresponding confusion matrix.
7: end for
8: Make decisions based on confusion matrix (accuracy).

As we can see above, 10-fold cross validation is applied to partition

data into 10 folds randomly. Each time, 9 folds are used for training

3.2. DECISION TREE (DTREE) LEARNING 17

and one fold for testing. w, the most frequent class among C existing

classes is chosen based on distance of each query point (test pattern) to

K nearest stored patterns, and correspondingly, confusion matrix is been

updated. Confusion matrix [21], is used to evaluate the performance of

an algorithm using the data which is stored in the matrix.

There are a few shortcomings associated with KNN algorithm. First,

the time to find the nearest neighbors in a large training set can be costly.

Second, the number of observations required in the training data set to

qualify as large, increases exponentially with the number of dimensions

n [2].

Another disadvantage is when dimensionality of data increases find

ing nearest neighbor also will more cumbersome as number of calcu

lations also increases. KNN variants will be later on explained in this

work.

3.2 Decision Tree (Dtree) learning

Decision Trees [22] can be used for classification, prediction and functional

approximation. In contrast to neural networks, decision trees represent

rules. These rules can be as simple as a set of if-then statements. In order

to classify instances, decision trees sort instances down the tree from root

to some leaf node. Each node in a decision tree corresponds to a test of

some attribute of instances and each branch descending from that node

corresponds to a possible value for that attribute. An instance is classified

by starting at the root node of the tree, testing the attribute and moving

down the branch corresponding to the attribute in a given example. The

same process is repeated for the subtrees rooted at that node. The induc

tion of decision trees requires to come up with a classification rule which

can use the attribute values of a pattern and determine the target class

3.2. DECISION TREE (DTREE) LEARNING 18

which to the pattern belongs. This classification rule is expressed as a

decision tree. In decision trees, leaves' nodes are classes (target values)

associated with patterns. Other nodes in the tree are attribute based tests

and branches are values which are associated with each attribute. The

essence of decision tree induction is to determine whether decision trees

can generalize to unseen patterns beyond the training set. It means the

algorithm tries to construct a decision tree which can classify patterns

from the testing set given that training set and testing set are mutually

exclusive.

There can be more than one correct decision tree for a particular train

ing set. In this case, smaller and less complex trees are preferred over

more complex ones. Quinlan in [22] argues that the greater the complex

ity of a tree, the more the tree is likely to be an explanation of the training

set. In Figure 3.1 a sample decision tree is shown for Iris data set. As it is

shown in this figure, each node corresponds to a test of attribute and each

branch descending from that node corresponds to a possible value for

that attribute. Finally, each leaf node represents a classification decision

in this decision tree.

3.2.1 ID3

A solution to the simpler-the-better (Occam's Razor) approach above is

to construct all possible decision trees and then select the simplest one.

When the datasets begin to get very large, it is not practical to construct

the decision tree based on all samples of training set. In this case, a

window as a subset of the training set sample size is selected and used to

construct the decision tree. If the constructed decision tree cannot classify

some of the patterns from training set, then those patterns are added

to the window set. ID3 benefits from a few concepts from information

3.2. DECISION TREE (DTREE) LEARNING 19

__ ~",-L<5.45

___ "-=,,-,,,.<-6.15

virglnica

Figure 3.1: Decision Tree Classification

theory. Let us call training set as "5," then Entropy of 5 is defined in [23]

as follows: 1/ Entropy is a measure of impurity in the collection of training

set".

Informall)" entropy can be provide some information about data, in the

sense that the higher the entropy is, the more information is required to

completely describe that data. Entropy's formula is given in [2] as :

c

Entropy(5) = L -Pi log2 Pi (3.1)
i=l

Pi is the proportion of instances in training set that have ith value of the

target set. Information gain Gain(5,A) of an attribute A is calculated as

follows:

'\' Card(5v)
Gain(5,A) = Entropy(5) - L..J Card(5) Entropy(5v)

vEVa/ues(A)

(3.2)

3.2. DECISION TREE (DTREE) LEARNING 20

Values(A) is set of all possible values for attribute A and Sv is subset of S

for which attribute A has value v. In decision trees, the first node (root)

should be selected among different available attributes based on the score

given by the information gain.

In order to construct the tree, the information gain for all attributes is

calculated and the attribute with the highest information gain is selected.

When we want to descend the tree, attributes should be selected in such a

way that they reduce entropy, and attributes which have the most entropy

reduction are most suitable to be chosen [22]. In the same manner infor

mation gain is also defined as the expected entropy reduction imposed

by a specific attribute. ID3 algorithm for a two class problem, (0,1), is

presented below exactly as it is given in [2].

Algorithm 3 corresponds to a two class classification of data. The

first 7 lines of this algorithm correspond to conditions which can lead to

the condition in which tree is single node tree. In lines 9 - 18 algorithm

is trying to select best attribute with highest information gain and then

grown the tree by adding branches based on possible values of the selected

attribute. The algorithm calls itself recursively until the complete tree is

constructed.

As explained earlier, information gain is a measure used by ID3 to

select the best attribute in each step in expanding the tree. Stopping con

ditions can occur either when every attribute has already been included

along a path throughout the tree, or when all of the training examples

associated with a particular leaf node have the same target attribute value.

3.2. DECISION TREE (DTREE) LEARNING 21

Algorithm 3 ID3 Algorithm
Examples are the training examples. Target- attribute is the attribute whose
value is to be predicted by the tree. Attributes is a list of other attributes that
may be tested by the learned decision tree. Returns a decision tree that correctly
classifies the given example.

1: Create a Root node for the tree.
2: if all Examples are positive then
3: single-node tree Root, with label=plus.
4: else if all Examples are negative then
5: the single-node tree Root, with label=minus
6: else if attributes is empty then
7: single-node tree root, with label= most common value of Target-attribute

in Examples
8: else
9: A := the attribute from attributes that best classifies Examples

10: The decision attribute for root:=A
11: for each possible value, Vi, of A: do
12: Add anew branch tree below root, corresponding to test A= Vi
13: Let Examples_Vi be the subset of Examples that have value Vi for A,
14: if Examples_Vi is empty: then
15: Add a leaf node below the new branch with label= most common

value of TargeLAttribute in Examples
16: else
17: add the subtree below this new branch
18: end if
19: call ID3(Examples_ Vi, Target-attribute, Attributes-A)
20: end for
21: end if
22: return Root

Chapter 4

Hyperball Algorithm (HBl)

4.1 Introduction to HBl Algorithm

Hyperballlearning algorithms (HBL) [7] are a set of classification and

clustering algorithms designed to work for both supervised learning and

unsupervised learning. HBL divides supervised learning into learning

from a fallible and from an infallible expert. It also provides methodolo

gies for self supervised learning (autonomous learning). HBL algorithms

are designed to work in a highly parallel manner, but they can still be

utilized in sequential processing as well. HBL algorithms can also be im

plemented online so they evolve with changes made in their environment,

although it is not within the scope of this thesis.

4.1.1 Background

HBL algorithms belong to the group of Instance Based Learning algo

rithms (IBL) [24] . IBL algorithms learn by storing the presented training

data in a particular way. In testing mode, when a new instance (pat

tern) is encountered (from testing set), a search is done to extract a set of

23

4.1. INTRODUCTION TO HBL ALGORITHM 24

similar related instances from the storage (memory), which is then used

to classify the new instance. One advantage of IBL algorithms is their

ability to construct a different approximation to target function for each

distinct testing instance (pattern) [24]. This feature is advantageous when

target function is complex and should be described by a collection of local

approximations which have lower complexity.

One of the main disadvantages of IBL algorithms can be the high

cost of the classification of new instances. In IBL algorithms, nearly

all computation takes place at testing time, which can introduce a time

complexity factor, especially when the classifier is dealing with larger

sample sizes. Another disadvantage which applies to classifiers like KNN

is that they consider all of the attributes associated with data when they

try to retrieve similar instances from their memory. This could lead to

the selection of non-similar instance when the label of data (target) is just

dependent on a few attributes [24].

Among all learning algorithms of IBL (radial basis functions, case

based reasoning, etc), KNN is most similar to HBL algorithm. Indeed,

they both store training data and calculate a distance from a new instance

(pattern) Xq to all saved individual train data to identify the class of the

query pattern. However, HBL algorithm centers a secured-margin (ball)

around each pattern before storing the pattern. The existence of a ball

centered at pattern is helpful when testing instance Xq is located inside

another previoUsly stored patterns ball. It makes the classification faster

and more efficient in a way since no distance calculation is required any

more after the identification of a ball containing the pattern in question.

This can happen by simply returning the category to which the ball be

longs to as the classification decision instead of calculating all distances

as in regular KNN algorithm. We need some mathematical definitions

prior to describing HBL algorithm. These definitions are explained in the

4.1. INTRODUCTION TO HBL ALGORITHM 25

next section.

4.1.2 Basic Definitions

The Metric: A set of points such that for every pair of points there is

a nonnegative real number that is symmetric and satisfies the triangle

inequality.

Def.l Measure of distance: A real-valued function d : 5x5 ~ lR and 5 c lR

can be used as a measure of distance, provided that for all x, y,z E 5 it has

the following properties:

d(x, x) = 0

d(x, y) = d(y, x)

d(x, z) :s: d(x, y) + d(y, z)

x*- y then d(x,y) > 0

(4.1)

Examples of such metrics can be the Manhattan distance and Euclidean

distance.

Def.2 Metric space: The configuration < 5, d > where 5 is a set of points,

and d is some measure of distance between them [25].

Measuring distances between subsets of 5 will suit HBL better. One of

the simplest subsets of 5 is a ball.

Def.3 Ball: A ball B(c, r) of radius r ~ 0 around the point c E 5 is the set

{x E 5 I d(c, x) :s: r} (4.2)

The point c is called the center of the ball B.

4.1. INTRODUCTION TO HBL ALGORITHM 26

Computing Distances between sets

Considering any two non-empty sets A, B c 5, a function D(A, B) needs to

be defined to measure distance between A and B while satisfying condi

tions specified by 4.1. Let d be a chosen function for measuring distance

between points of space 5.

DefA Distance between a point and a set:

Let < 5, d > be a metric space and let A c 5 be a non empty set. A distance

between a point x E 5 and A, is defined as

o(x,A) = inf{d(x,a) I a E A} (4.3)

where o(x,A) is the distance between x and a point a E A closest to x and

in f stands for infimum value. By using the definition of infimum above,

a hyperball is defined as follows:

Def.5 A hyperball of radius r>O around a set A ~ 5 is the set

{x E 5 I o(x,A)::;; r} (4.4)

Such a hyperball has the following properties:

• If the set A ~ 5 consists of a single point, the hyperball reduces to a

ball around a point.

• If the radius reduces to zero, the hyperball will be equivalent to the

center set.

Def.6 Pseudo distance between two sets: Let < 5, d > be a metric space

and let A, B c 5 be two non empty sets. A pseudo-distance from A to B,

denoted ~(A, B) is given by:

~(A, B) = sup{o(a, B) I a E A} (4.5)

4.1. INTRODUCTION TO HBL ALGORITHM 27

It means that the pseudo-distance between A and B is the distance

from the most distant point of A (from B) to B (sup stands for supremum

value).

Def.7 Distance between two sets: Having calculated pseudo distance

from A to B and from B to A, the larger of these two values is the distance

between two sets or D(A, B).

D(A, B) = max{il(A, B), il(B,A)} (4.6)

We will use these definitions to describe the HBL algorithm. This defi

nition is used in HBL algorithm to calculate distance between two sets.

HBL benefits from the former last two definitions to calculate the distances

between two sets.

4.1.3 Pattern Recognition and Object Classification

Learning can be categorized into two main groups: supervised learning

and unsupervised learning. In supervised learning, training data consists

of vector data input and desired output. In case of unsupervised learning

algorithms, only a vector of data inputs is available. HBL algorithms can

be applied to both supervised and unsupervised learning [7]. As this

thesis uses HBL algorithms for supervised learning, main focus of this

part will be on HBL's supervised learning algorithms.

HBL uses its knowledge bank, K being a set of different categories

K = {Cl , C2, ... Ck}' Each category is associated with a different target

class. As HBL encounters a pattern which is to be classified, it searches

its knowledge bank to see if it can classify the pattern (Algorithm 4). If

pattern can be classified, HBL returns the category index of the classified

pattern or zero if the pattern cannot be classified. In Algorithm 4, HBL

checks to find out whether the query pattern is inside any balls from train-

4.2. SUPERVISED LEARNING ALGORITHM 28

ing set. If so then HBL returns the category of that ball as the classification

decision (Lines 3-4 in Algorithm 4).

Algorithm 4 Hyperball algorithm for pattern classification.
1: function Classifier(P: Pattern, K:Knowledge Bank) returns k
2: for k in 1...card(K) do
3: for i in 1...card(K.C(K» do
4: if D(P, K.C(k).B(i).P) ~ K.C(k).B(i).r then
5: return k
6: end if
7: end for
8: end for
9: return zero

It is important to note that balls belonging to different categories are

altered by HBL algorithm in a way that they are mutually exclusive, so

this algorithm will return the result only once.

4.2 Supervised Learning Algorithm

In supervised learning, whenever HBL encounters a pattern, it first cen

ters a ball around the pattern, then it checks to see whether it can classify

it based on patterns learned before. This process is done through HBL's

Classifier. In case the pattern has not been learned previously, HBL inserts

the ball containing the pattern into the category matching the target class

of the pattern (Algorithm Slines 1 - 9).

As demonstrated in algorithm S , balls are then sorted in each updated

category (in descending order of their radii) and then the algorithm tries

to remove redundant balls. A redundant ball is a ball which is completely

inside another larger ball when both balls belong to the same category. In

this case, the inner ball is redundant and can be removed, ensuring that

4.2. SUPERVISED LEARNING ALGORITHM 29

Algorithm 5 HBL Learning Process: Supervised Learning
1: Procedure Learn(P:Pattern; r:Radius; idx:Category Index;) returns

CatIndx
2: if k(Number of Categories) <idx then
3: k=k+l;
4: Create new empty category C(k);
5: Insert C(k) into Knowledge bank K;
6: else
7: k=idx;
8: end if
9: Insert Ball B which contains Pinto KC(k);

10: Sort balls in KC(k) in descending order of radius;
11: Remove redundant balls from KC(k) if any;
12: for n in 1..card(K) and n <> k do
13: for i in 1.. card(KC(n» do
14: if D(P,KC(n).B(i).P) <= r then
15: Remove ball KC(n).B(i) from KC(n);
16: else if D(P,KC(n).B(i).P)<= r+ KC(n).B(i).r then
17: KC(n).B(i).r=D(P,KC(n).B(i).P)-r-e;
18: end if
19: end for
20: Sort balls in KC(n) in descending order of radius
21: Remove redundant balls from KC(n) if any
22: end for
23: Remove empty categories from K if any

the balls Bi , i = 1,2,3, ... n characteristic of a given category CatIndx either

stand apart or only partially overlap (lines 10 and 11).

In the same way, a check is to be made whether balls in other categories

conflict (are not mutually exclusive) with the ball just inserted into Cidx •

If so the radii of these balls are reduced in order to eliminate the conflict.

This procedure is done as follows: In line 14 it is checked to find out

whether another pattern of a different class will be inside ball of new

pattern P after insetting the new pattern P into its category. In case this

condition happens then the inner pattern is removed from knowledge

bank (i.e its category). If two patterns with different categories are having

an intersection then according to line 15 radius of the pre-existing ball

4.2. SUPERVISED LEARNING ALGORITHM 30

Figure 4.1: Ball Shrinking Procedure

will be reduced accordingly to make the balls mutually exclusive. This

procedure is shown in Figure 4.1. If their radii shrink to zero, such balls

are removed from the knowledge bank [7].

In case two balls which belong to two different categories are not

mutually exclusive, then their corresponding radii should be altered in a

way that they are mutually exclusive. This procedure will have a time

complexity of O(Wd) for HBL according to Algorithm 5.

4.2.1 HBl Variants

In this part, we graphically demonstrate the possible issues with the

original algorithm and how these issues are resolved. These graphics use

Euclidean metric, while HBL works with any metric [7].

In Figure 4.2, HBL's classifier has already learned patterns PI to P4,

out of which P2 and P4 belong to the same Category (B), while PI belongs

4.2. SUPERVISED LEARNING ALGORITHM 31

Knowledge- B.ml.: K

Pa.tt<;':TnB I C:lh'gone~

> Cl.lssifi~r :

l'at1t'rns Cah'goric~

Figure 4.2: HBL Classifier

to category A and P3 belongs to category C. As it is also apparent in

Figure 4.2, HBL's classifier is about to classify pattern P6 which also

belongs to category B. The classifier realizes that P6 will not be inside any

learned balls so according to the pseudo-code presented in algorithm 4

classifier will return zero which indicates that no matching category has

been found. This can lead to poor generalization as there can be many

patterns which cannot be located inside a learned ball. However, this

problem can be resolved by calculating the distance of each pattern which

is not inside any learned balls to all existing balls of all categories and

choosing the category of closest ball as the classified category (Figure 4.3).

The idea is similar to how KNN classifiers work with the difference being

that in KNN, the distance between two patterns are considered whereas

in HBL, the closest distance between a pattern and a ball is taken.

4.2. SUPERVISED LEARNING ALGORITHM 32

Villowlt-dge Rmk K

l \-l tfcrn,; , Ca t egoTH'1I

Figure 4.3: HBL Classifier: Second Iteration HBLl

HBL1

Now let's imagine the situation shown in Figure 4.4 where P4 is to be

learned. The classifier realizes that P4 is inside B2(P2, R2). As both P4

and P2 belong to the same category, the HBL classifier will not center a

ball around P4. Now consider P5 as the next pattern which belongs to a

class different to P2 and P4's class. As we can see in Figure 4.5, after the

classifier centers a ball around the pattern and inserts it into its category,

it needs to shrink B2(P2, R2) to avoid balls containing patterns P2 and ·

P5 overlap. This can lead to a problem in a way that after B2 shrinks it

does not hold P4 any more, meaning classifier can forget pattern p4 by

mistake.

In order to overcome the above problem, HBL's learning algorithm in

algorithm 4 is modified in such a way that whenever a pattern is inserted

into a category and is found inside another pattern's ball of the same

4.2. SUPERVISED LEARNING ALGORITHM 33

category, a ball is inserted around the pattern. Now, if after learning

proceeds other balls shrink, then, this pattern is assured to remain inside

a ball and will not be forgotten. This process has been depicted in Figures

4.6 and 4.7. Another modification which is done to algorithm 4 pertains

to the situation in which a ball of a category is inside another ball a

of different category. In this case according to algorithm 5, the inner

ball is removed from its corresponding category, which can cause the

classifier to forget the pattern it has learned previously. The solution

which is provided in this thesis is to shrink both balls accordingly to

avoid losing information about the inner ball (Lines 14-16 in algorithm

6). After applying these modifications to algorithm 4. HBL learning

algorithm is presented in algorithm 5.

4.2. SUPERVISED LEARNING ALGORITHM 34

Algorithm 6 HBL: Modified Learning Process
Procedure Learn(P:Pattern; r: Radius; idx: Category Index)returns CatIn
dex

1: if k(Number of Categories)< idx then
2: k=k+l;
3: Create new empty category C(k);
4: Insert C(k) into Knowledge bank K;
5: else
6: k=idx;
7: end if
8: Insert Ball B which contains Pinto KC(k);
9: Sort balls in KC(k) in descending order of radius;

10: Remove redundant balls from KC(k) if any;
11: for n in 1..card(K) and n "* k do
12: for i in 1.. card(KC(n» do
13: if D(P,KC(n).B(i).P) <= r then
14: shrink both Band KC(n).B(i) according to following:;
15: KC(n).B(i).r = D(P,K.C~).B(t).P) - e;
16: r- D(P,K.C(n).B(i).P) - e·

- 2 '
17: else if D(P,KC(n).B(i).P) <= r + KC(n).B(i).r then
18: KC(n).B(i).r=D(P,KC(n).B(i).P) - r - e;
19: end if
20: end for
21: Sort balls in KC(n) in descending order of radius
22: end for
23: for n in 1..card(K) do
24: Remove redundant balls from KC(n) if any
25: Remove empty categories from K if any
26: end for

Majority Voting (HBL2 And HBL3)

Here we present another improvement to HBL algorithm: Instead of

making decisions based on the closest ball to the pattern, we can take the

majority voting using k nearest balls to the pattern. If there is a tie, then

balls which have a greater radius will be superior. This is because the pat

tern which has a greater radius is less likely to be closer to patterns which

belong to other categories. The choice of k, of course will be problem de-

4.2. SUPERVISED LEARNING ALGORITHM 35

/~--------------------------------------~

\.~----~~==~----------------~

Figure 4.4: HBL Classifier

Figure 4.5: HBL Classifier

4.2. SUPERVISED LEARNING ALGORITHM 36

p.dhrnli I C'oi l cgoneli

Figure 4.6: HBL Classifier

Hdh ~ n" I Calegonc~

Figure 4.7: HBL Classifier

4.2. SUPERVISED LEARNING ALGORITHM 37

pendent. This methodology will resemble our HBL2 algorithm. HBL3

is a slightly modified version of HBL2 in the sense that a weighted dis

tance calculation is replaced by the normal Euclidean distance formula.

This can be accomplished by the following rule:

lSI == {x I L,~=1 wl)(v, !(Xi)) is maximized} (4.7)

Where,

1
(4.8)

Chapter 5

A Note on KNN and HBL

5.1 Introduction and Literature Review

Out of all of the classifiers we have discussed in this thesis, KNN algo

rithm is the most similar to HBL algorithm. Both of the algorithms store

training set patterns to classify patterns from testing set. Moreover, both

algorithms make classification decisions based on distance calculation as

a similarity measure and by looking for the closest neighbour (most simi

lar pattern) in their training sets. HBL algorithm is, however, different to

basic KNN algorithm in that it centers a ball around each pattern. Dur

ing the training phase, HBL tries to adjust and tune the radii of the balls

around each pattern to make sure that the balls belonging to different

categories are mutually exclusive. HBL also calculates the distances to

balls centered around patterns instead of calculating the distances to ex

act patterns. This makes HBL similar to Radial-basis-based methods [26]

and Gaussian Mixture models [1] which are out of this works focus.

The above explanation highlight the importance of completing a literature

review on variants of KNN algorithm to see whether or not HBL is similar

to any variants of KNN. As both of these algorithms make decisions based

on distance measure calculations, we have included a literature review of

39

5.1. INTRODUCTION AND LITERATURE REVIEW 40

available distance measures in the next part.

5.1.1 A Note On Distance Measures

Recall from the definition of a metric space given in HBL chapter (Chapter

4) in equation 4.1 any distance metric chosen for KNN should conform to

all four criterion defined there.

One of the well known distance metrics is Minkowski [27] distance

metric:

. (5.1)

where F represents total features, qf a feature of query example from

testing set and xif is ith pattern from training set. Ll Minkowski distance

(i.e p = 1) will be equivalent to Manhattan distance [28] and L2 distance

will be equal to Euclidean distance measure [28]. Choosing larger values

for p will ensure greater weights for features regarding which the patterns

differ the most.

There are other distance metrics which are more suitable for multi-

media data (like image). Many of these metrics like Kullback-Leibler

Diverage [29] and X2 statistic [30] rely on comparing color histograms of

data. In such metrics, an image is considered as a gray scale histogram

which has N levels. However Padraig Cunningham et.al in [31] argue

that such metrics do not satisfy the symmetry requirement in equation

4.1. He also mentions that such measures are prone to errors because

of existence of histogram level boundaries which can lead to showing a

great difference between an image and a slightly darker copy of it [31].

Another metric measure which overcomes the above drawback is

called Earth Mover Distance (EMD) [32]. This measure is based on the

amount of work which is required to convert one image to another. Im

ages in this measure are considered to be distributions in the sense that

5.1. INTRODUCTION AND LITERATURE REVIEW 41

one image is considered to be earth in the space and another image, as

another distribution, which is considered to be a hole. Then EMD will be

the minimum amount of work required, so the earth can fill the holes.

The last distance measure which we will discuss in this section is called

compression based (dis)similarity [33]. The idea is that if two documents

are very similar, then if we concatenate them and compress them again,

the size we will get is not much greater than any of the compressed

original single documents. This statement will not hold true when two

documents are not similar. For this work Euclidean distance is used for

HBL and KNN distance calculations, however many of these distance

measures can be applied to HBL algorithm [7].

5.1.2 Basic KNN Overview And Its Drawbacks

Basically, KNN classification has two stages. In the first stage nearest

neighbors are determined, and in the second stage the classification class is

determined using these neighbours. The K nearest neighbors are selected

based on a distance metric. There are many ways in which K nearest

neighbors can be used to decide the class to which a query pattern q

belongs. One of the most straightforward approaches is to use majority

voting among the selected neighbors to find the class to which pattern

belongs and assign it to the query pattern q (from testing set).

The basic KNN algorithm is very straightforward to implement, how

ever it suffers from a few drawbacks [31]:

1. When datasets become very large, training set also becomes large

so searching for the nearest neighbour pattern in training set can be

computationally very expensive.

2. When the number of features for the data (data dimensionality) is

high, then distance calculations can become very costly.

5.1. INTRODUCTION AND LITERATURE REVIEW 42

3. If data is associated with noise and erroneous labels then there is a

possibility for deviation from optimum outcome and results.

The basic KNN algorithm with Minkowski distance measure has a com

plexity of O(IDIIFI) where D is the training set and F is set of features

associated with data [31]. However, the computational complexity of

EMD is O(lDln3[og(n» where n is the number of clusters [32].

As we can see above, both training and feature sets have a great effect

on time and computational complexity of a distance measure. Research

has mostly focused on improvements to overcome the aforementioned

disadvantages of KNN by proposing methods and strategies to reduce

the dimensionality of data and edit down the training set in the data

[31]. Some of this research has led to the introduction of faster and more

efficient KNN variants [34,35,36,37]. We have tried to summarize some

of these efforts in the next section.

5.1.3 Categories of KNN Algorithm Variants

There have been many studies regarding KNN algorithm in literature. To

the best of our knowledge, most of the research done has been towards

the goal of editing down the data in training set, reducing the number of

features associated with data and alternative propositions to exhaustive

search in basic KNN algorithm. Cunningham et.al [31] have highlighted

four different strategies for speeding up nearest neighbor retrieval:

• Case-Retrieval Nets (CRNs) [38, 39]: One of the most widely used

techniques for retrieval process. A network structure is formed by

preprocessing the cases and it is used in the retrieval time. CRNs

can be configured to return exact cases as KNN .

• Footprint Based Retrieval: A strategy used to speed up KNN. It is

5.1. INTRODUCTION AND LITERATURE REVIEW 43

made up of a two stage retrieval process which operates on a two

level hierarchy [31]. First level corresponds to conducting a search

in the case-based local regions which contain the target problem.

Second level finds the closet case to this target problem in the same

region [40].

• Fish and Shrink Method: This strategy exploits the triangular in

equality property to make a scheme for case base to candidate neigh

bors formation. So this technique therefore requires the distance to

be a true metric because of above reason. Another feature of this

strategy is that it will ignore the cases which are very far from the

query pattern [41] .

• Fast KNN variants: According to [42], fast KNN algorithms try to re

duce the required number of comparison while they also try to main

tain original classification accuracy which could be reached when

all number of comparisons were taken into account. "Comparison

reduction" can be achieved by using different available methodolo

gies:

1. Prototype selection methods and transformations to other metrics:

These types try to apply a preprocessing mechanism to the train

ing set to select a subset instead of applying the algorithm to the

entire training set. This preprocessing mechanism can be based on

the construction of a dissimilarity matrix which stores a range of

similarities between prototypes [42]. Some researchers in [43,44]

have tried to transform the dissimilarity matrix into an Euclidean

space and some others [45] have tried to use dissimilarities to rep

resent each prototype by creating and assigning a feature vector

5.1. INTRODUCTION AND LITERATURE REVIEW 44

to each prototype. There are also other approaches used in proto

type selection, Bandyopadhyay et.aL in [46] proposed an algorithm

for reordering and sorting the patterns in training set which could

reduce the required number of distance calculations.

2. Working with original prototype space:

These types of algorithms work with original data (no transforma

tion) and can be categorized as follows:

2.1 Tree based Algorithms:

Most of these algorithms use a branch and bound technique to

partition the training set into regions, then a tree structure is used

to speed up the search. The examples of these tree based structures

are Kd-tree [47,48], R tree [34], 55-tree [35], 5R tree [36], FNA [37]

tree.

FNA tree is one of fast KNN variants which has been studied more

according to [42]. In this algorithm, K-means algorithm is used to

divide the training set into C subsets where each subset represents

a node of the tree and is further decomposed to construct the whole

tree.

2.2 Elimination Based Approaches:

These types of algorithms use a pruning rule derived from triangu

lar inequality to avoid some comparisons to prototypes. In order

to achieve this goal both tree structure and projection based ap

proaches are employed [37,49,50,51,52].

5.1. INTRODUCTION AND LITERATURE REVIEW 45

2.3 Approximate NN Search:

These algorithms try to find an approximation to NN (nearest neigh

bour) instead of finding an exact NN (nearest neighbour) [53,54].

HBL algorithm does use the techniques in tree based algorithms, nei

ther uses any elimination based approaches nor tries to approximate the

nearest neighbor so does not have any similarities to above methods.

5.1.4 Dimension and Noise Reduction

There are different variants of KNN which benefit from methodologies

to reduce the dimensionality and noise associated with data in order to

improve KNN performance. In the next two sections we have categorized

these approaches.

Dimension Reduction

According to [31], dimension reduction techniques are mostly suitable to

be applied to multi media data. Cunningham et. al also argues that di

mension reduction can be achieved either by selecting a subset of data or

by selecting a subset of features which describe the data. Feature reduc

tion can be achieved by using methods like PCA (principal component

analysis) [8] to transform data into a lower dimensional space or it can

be used to discard some of the features. There are many techniques for

feature selection. We have listed two of them as follows:

Filter methods in which before the actual execution of learning algo

rithm, strategies will be employed to remove irrelevant features from

data. Furthermore, the selected subset of features will be used to train the

algorithm. Example of such strategies are information gain (IG) which

has been explained in the decision tree chapter and Odds Ratio (OR) [55].

OR calculates the ratio of odds of a feature from one class to another. This

5.1. INTRODUCTION AND LITERATURE REVIEW 46

method can be used to rank the features of data according to their odds

value.

Wrapper techniques unlike filter methods will benefit from main learn

ing algorithm to estimate the importance of features. This means that the

wrapper searches the feature space to select a subset of features that max

imizes the predictive accuracy of a classifier [56]. This can be achieved

using two approaches: In forward selection, wrapper starts with an empty

set of features based on the evaluation made by the classifier. In back

ward selection, all features are initially considered and wrapper tries to

eliminate some features [31].

Noise Reduction

One of the disadvantages of KNN algorithm described in this chapter

is that the algorithm may perform poorly if the data is associated with

noise or erroneous labels. Early techniques for noise reduction includes

case-based editing techniques. These techniques are known as methods

which can be employed to achieve redundancy reduction and to remove

noisy or corrupt cases from training set [57]. According to [31] editing

methods can be divided into two main categories:

Competence Preservation Techniques [58] which correspond to redun

dancy reduction, and removing cases which do not contribute to classi

fication competence. The next set of techniques are called competence

enhancement techniques which correspond to noise reduction and re

moving corrupt patterns from dataset.

Examples of competence preservation techniques can be Condensed

Nearest Neighbor (CNN) [59] in which any pattern which cannot be clas

sified correctly is added to an initially empty set. Another example of

this method is Selective Nearest Neighbors (SNN) which states that every

5.1. INTRODUCTION AND LITERATURE REVIEW 47

example in the training set should be closer to another example of the

same class rather than to an example of a different class [60].

Edited Nearest Neighbors (ENN)[61] represents a strategy for compe

tence enhancement in which it removes examples from the training set

which do not agree to their k nearest neighbors. If multiple passes are

done on training set, the algorithm is called Repeated ENN [62].

HBL algorithm has similarities to basic KNN algorithm but not to any

of these variants which were tried to be categorized in this chapter. All

these variants have tried to improve on of the issues and disadvantages

associated with KNN (dimensionality, noisy data, sample size) HBL algo

rithm does not apply any of such preprocessing methods or algorithms so

it has no similarities to these categories. For this reason, HBL algorithm is

compared to basic KNN algorithm. In the next section we have compared

the way each of these algorithms deal with Euclidean distance calculation

as a metric measure.

5.2. HBL VS. BASIC KNN ALGORITHM 48

5.2 HBl vs. Basic KNN algorithm

Given all different categories and variants of KNN algorithm, we will try

to compare HBL algorithm to basic KNN algorithm. Then we will try to

see if HBL has similarities to any KNN variants discussed in the previous .

section.

Given two single featured patterns PI and P2 and the Euclidean dis

tance measure KNN calculates the distance as follows:

(5.2)

Now if we consider HBL algorithm, it centers two balls Bl and B2

around PI and P2 and then tries to tune radii of these balls i.e rl and r2

while in training mode. Now HBL calculates the distance as follows:

Dh = max{ ~Pi - P~ + (rl - r2), ~Pi - P~ + (r2 - rl)} (5.3)

By comparing equations 5.2 and 5.3 we can conclude the following:

Dh = max{Dk + (rl - r2), Dk + (r2 - rl)} (5.4)

The above equation will ensure that if the radii of all balls in HBL is set to

zero, then HBL and basic KNN algorithm calculate distances in the same

way. Another difference of HBL to KNN algorithm is in the way they try

to classify a query pattern. HBL algorithm first checks to see if the pattern

falls within the radius of any ball around patterns in training set. If so, it

will return the class of that pattern in training set. If not, HBL uses the

distance calculation to find nearest neighbors. Yet another difference of

HBL algorithm to basic KNN algorithm is that HBL algorithm performs

a partitioning of training set into the number of classes associated with

data in a way that all patterns belonging to similar classes will be in

one partition. This will not be as fast as some KNN variants (like FNA)

5.2. HBL VS. BASIC KNN ALGORITHM 49

which use tree structures and partition data on each node of the tree. The

inspiration behind this design in HBL is that if algorithm is implemented

in a way to work in parallel, then all of the categories (partitions) can be

searched in parallel to speed up the algorithm.

A Note on Efficiency of KNN and HBL Algorithms

According to KNN algorithm given in Algorithm 2 and considering N

as the cardinality of a sample size and d as dimensionality of data and

Euclidean distance calculations, KNN algorithm has a running time of

O(Nd). More over, the only space required is to store the training set data

as no computation is taking place in training mode.

Now considering HBL, we can give an upper bound of O(N2d) for

the training mode . Considering the complexity as a factor, in training

mode KNN just stores the patterns in its memory whereas HBL performs

partitioning of data. This partitioning however adds a complexity factor

to the classifier but it is beneficial to HBL algorithm as it can improve its

performance in testing mode.

When it comes to testing mode, KNN algorithm has a time complexity

of O(Nd) as explained earlier. HBL in worse case condition has the same

time complexity as for KNN but that can happen when data in testing

set has the most distance to data in testing set. This is true because when

testing set data is very distant to data presented in training set, then

testing set patterns are less likely to be included in any balls of training

set (advantage factor of HBL). As normally data which belong to a class of

data have similarities this is less unlikely to happen. Even if one pattern

is located in a ball of training set patterns, then HBL has an advantage in

classification speed while in testing mode.

Chapter 6

Experimental Setup and Data
Sets

In order to compare the performance of HBL to other algorithms, we are

using the accuracy of each of these algorithms as a comparison criterion.

By accuracy, we mean the ratio or percentage of correct classification of

unseen instances from testing set to all of the instances available in test

set (classification accuracy).

In this work, three different experiments are conducted to compare

the accuracy of HBL to other classifiers. For all experiments, a set of nine

benchmark data sets is selected from the VCI machine learning repository

website [63]. Data sets are chosen in a way that they can be categorized

as small to medium in sample size and dimensionality. Large datasets

were excluded from this work because of resource problems. Each data

set can be considered to be a distinct problem in error space upon which

classifier generalizations accuracy are tested.

The first experiment compares classifiers when sample size is selected

to be variable in each data set. In the second experiment, a similar compar

ison is made when the dimensionality of data varies. The last experiment

compares classifiers based on their agreement to target values. In this

51

6.1. BENCHMARK DATA SETS 52

experiment, Rprop algorithm, HBLl, HBL3 along with KNN and 103

are applied to benchmark datasets while their corresponding confusion

matrices are recorded. Confusion matrices then are then used in Cohen's

Kappa test of statistics [9] to determine the level of agreements between

classifiers decision and actual targets.

In all experiments, each classifier is trained and tested using k-fold

cross validation technique (k=lO) [64,65] using 30 runs. In this method

all patterns in a dataset are divided randomly into k equally sized folds.

In each pass (the number of passes are equal to k), k - 1 folds are used

for training and one fold is used for testing. The generalization accuracy

as the percentage of correct classification (classification accuracy) is cal

culated in each pass and then averaged over all k passes for the last two

experiments.

A statistical significance test (t-test) [66] is also utilized for the last two

experiments which tests whether differences of the means is not due to

randomness. However, as explained in the last paragraph, Kappa test of

statistics is used in the last experiment to measure the level of agreement

between the classifiers output and target values in data.

The remaining parts of this chapter are organized as follows: The next

section briefly describes the benchmark data sets which are used in these

experiments, then each experiment is explained separately in a section

along with the utilized experimental setup for each classifier.

6.1 Benchmark Data Sets

As we explained above, nine main data sets are selected for all three

different experiments. These datasets are shown in the Table B.lo

Iris data set, is a data set which has been used by many researchers

in the field of pattern recognition [67, 68, 69]. Iris attributes describe the

6.1. BENCHMARK DATA SETS 53

length and width of the sepal and petal in each observed iris plant. The

data set contains three classes of fifty instances each, where each class

belongs to a type of iris plant. One of these classes is linearly separable

from the other two, while the other two are not linearly separable.

Table 6.1: Benchmark Data Sets

Data sets Features
DB-NAME Attributes #Patterns #Classes Attr-types
Iris 4 150 3 Real
Pima Indian 8 768 2 Integer,Real
Connectionist benchmark 60 208 2 Real
Glass 10 214 6 Real
Wine 13 178 3 Real
Parkinson 23 197 2 Real
Zoo 17 101 7 Categ,Int
Breast Cancer 10 699 2 Integer
MuskV2 168 6598 2 Integer

The PimaIndian data set [70], gathered by the National Institute of

Diabetes and Digestive and Kidney Diseases, includes data from 768

females all at least 21 years old. All different eight attributes correspond

to a different medical measure for each person. Pima data set is known

as a data set with highly nonlinearity behaviour [70].

In the connectionist benchmark data set, the purpose is to train a

classifier to discriminate between sonar signals bounced off of a metal

cylinder and those bounced off of a roughly cylindrical rock. There are

60 attributes and 60 instances associated with this data set.

Next, the Glass data set, with seven different classes of output data

and a small sample size of 214 instances, is a database which was studied

with the idea of acquiring capabilities to detect the type of glass at the

scene of a crime. This is desirable so that the glass which had been left

there could be used as an evidence. Each instance in this data set is

obtained from 10 different measurements, hence, it has 10 dimensions.

6.2. EXPERIMENTAL SETUP 54

The Wine data set, is the result of a chemical analysis of wines grown

in Italy and derived from three different cultivars. This data set has 13

attributes associated with it [71].

The Parkinson data set, is composed of a range of biomedical voice

measurements from 31 people, out of which 23 have Parkinson's disease

[72].

Zoo data set, result of 17 different measurement for 7 different classes

of animals. This data set which is simpler as attributes are often boolean

values is created artificially.

The Breast Cancer [73, 74, 75] dataset is obtained from the University

of Wisconsin Hospital. It has consisted of 699 instances with 10 attributes.

It also has some data with missing values.

The Musk Version 2 data set, describes a set of 102 molecules out of

which 39 are judged by human experts to be musks and the remaining

63 molecules are judged to be non-musk. Because bonds can rotate, each

molecule can have many conformations (shape). This many to one map

ping problem is been solved by generating low energy level conformation

and extracting a feature vector for each conformation. There are 166 fea

tures associated with each molecule, out of which about 161 features are

called /I Distance Features".

6.2 Experimental Setup

6.2.1 Data Preprocessing

Data for all classifiers are standardized using the functions and tools

available in Matlab R2009. Inputs and targets of data are standardized in

a way that they have zero mean and unity standard deviation. For data

6.2. EXPERIMENTAL SETUP 55

sets which have a missing value in their data, Matlab preprocessing tools

are employed to transform each row of data containing a missing value

into two rows that encode that same information numerically. This has

been done by simply copying the first row containing missing values and

replacing those missing values by the mean of that row. The second row

can be a "zeros" "ones" map indicating if the original data at that position

was known (a one) or if it was a missing (Zero).

Implementation

Matlab 2009 tool boxes are employed for the implementation of all classi

fiers except for HBL algorithm which has been implemented in JAVA 1.6

language. For Neural Network variants toolboxes of Matlab were used to

save implementation time, however ID3, and KNN were hard coded in

Matlab. HBL being as a new language needed to be hard coded as well.

The reason HBL was not implemented in Matlab was due to the use of

data structures which HBL used. The parameter setting and approaches

for each classifier is summarized in the next page.

Neural Networks

For neural networks classifiers (back propagation algorithm and its vari

ants), a hill climbing approach is followed in order to decide the structure

(hidden neurons) of each network. In this approach, we simply try dif

ferent numbers of hidden nodes from one to one third of the number of

inputs to that network [76].

In order to decide the best structure, data is passed through fifteen

times. When the structure has changed, the weights are reinitialized.

For each structure, classification accuracy has been saved. At the end,

the average best network with the best classification accuracy and the

6.2. EXPERIMENTAL SETUP 56

least number of hidden units is selected. If there is a tie between two

or more networks, the network with minimum number of hidden nodes

is selected. Weights in the neural network are initialized using Nguyen

Wid row technique [77].

After the structure has been selected, the network is trained indepen

dently using each different algorithm. Different epoch values, validation

failures (for the last two experiments), momentum and learning rates

were tried after the structure was chosen for a neural network. Table 6.2

summarizes the parameters used for ANN variants.

Table 6.2: ANN Parameter Values

Algorithm Max Parameter Description Parameter Value
Number of EPOCHs 5000
Validation failures 200

Gradient Descend
Momentum 0.60
Learning Rate 0.20
Minimum Gradient (GDM) 1e-8
Error Goal 0.001
Memory and Speed Tradeoff Factor 1
InitialMU 0.001

Levenberg-Marquardt MU Decrease Factor 0.1
MU Increase Factor 10
MaximumMU 1e10
Search Line Method 1-D minimization
Lower Limit on change in Step Size 0.1

Quasi-Newton Upper Limit on change in Step Size 0.5
Maximum Step Length 100
Minimum Step Length 1.0e-6
Increment to Weight Change 1.2

Resilient BP
Decrement to Weight Change 0.5
Initial Weight change 0.05
Maximum Weight Change 60.0

6.2. EXPERIMENTAL SETUP 57

Table 6.3: Structure of ANN, KNN, and HBL Algorithms

DB-NAME ANN Structure #K(KNN) #K(HBL)
Iris 4-4-3 3 3
Pima Indian 8-26-2 21 21
Connectionist benchmark 60-24-2 9 13
Glass 10-28-6 9 9
Wine 13-25-3 5 8
Parkinson 23-17-2 11 7
Zoo 17-16-7 8 14
Breast Cancer 10-9-2 7 5
MuskV2 168-23-2 19 16

10 fold cross validation (CV) technique has been used to train each

network. CV is employed in such a way that data is randomly divided into

10 folds. Each time, 8 folds are used for training, one fold for validation

and one fold for testing the data. The process will continue until all 10

folds have been used for testing data. Then, the accuracy is averaged

after the training/validation/testing has been completed 10 times. It is

important to note that in each step of CV, the network is reinitialized and

the previous trained network is discarded. The whole process is repeated

for 30 runs. Training is terminated if one of the following conditions

occurs:

• If epochs of 5000 is reached or,

• If maximum failures (increase in performance) is reached in valida
tion set or,

• If the minimum gradient is met (gradient descent based algorithms)
or,

• If Mean square error goal is met.

Selected structure of ANN, KNN and HBL algorithms are given in

Table 6.3. As problem sizes are small to medium ANNs are chosen with

6.2. EXPERIMENTAL SETUP 58

only one hidden layer. For ANNs, the selected structure is given as

#Input-nodes-#Hidden nodes-#Output-nodes.

Dtree algorithm constructs a full tree according to the input data set.

The best structure is chosen according to the classification accuracy. Data

is been divided using 10 fold cross validation. Each time, 9 folds are used

for training data and one fold for testing the accuracy. Results are then

averaged over 10 attempts. ID3 is used just as an accuracy measuring

tool and no pruning technique is been utilized.

HBL, KNN

HBL and KNN have similarities in implementation. Both algorithms

calculate distance in Euclidean space. HBL can be applied to other metric

spaces like Manhattan, Minkowski, etc. but as Euclidean space is the

most known metric space, we employed this metric in this work. For HBL

algorithm, € = 0.0001 is decided as the smallest possible space between

two balls. This value is decided by using trial and error. Values both

greater and smaller than € = 0.0001 were tried while data was passed

through for 30 runs. € value is decided experimentally in a way that

values of 1,0.5,0.25,0.1,0.01,0.001 are tried before choosing the above

mentioned value. To select K (optimum number of neighbours) for HBL

and KNN, data is passed through 15 times and then the best value of K is

selected based on obtained classification accuracies on testing data. Each

time data is passed through, different values for K are tried between 1 to

30.

Both KNN and HBL algorithms use majority voting technique over

selected K nearest neighbours to classify the data. In case there is a tie

in majority voting, then the output class is decided based on a random

selection.

Chapter 7

Experiments and Results

This chapter provides both the experimental analysis and results of this

thesis. A comparison of the various classifiers is presented for each of the

three experiments carried out.

0.50
0.75
1.00

Table 7.1: Abbreviations used in this section

Neural Networks
Neural Networks
Neural Networks
Neural Networks

For simplicity, summary tables are provided while the detailed results

are available in Appendix B. For clarity, Table 7.1 provides a summary of

the various abbreviations used in this chapter.

59

7.1. EXPERIMENT 1: SAMPLE SIZE EFFECT 60

7.1 Experiment 1: Sample Size Effect

In this experiment, HBL is compared to other algorithms when different

proportions of sample size are chosen for each dataset. The purpose of

this experiment is to evaluate and compare the performance of HBL to

other classifiers in terms of classification accuracy as a function of sample

size. First we review some works found in the literature that studies the

effect of sample size on classification accuracy.

Leshno et. al [78] studied the effect of training data size and the

complexity of the separation function on neural network classification.

Perceptron and feedforward network with a single hidden layer were

used in this work. They employed two class data sets with two input

variables, without noise but with different learning technique. They

concluded that neural networks are a better choice than other statistical

models because of their flexibility and improving learning capability.

y. S. Kim [79] compared neural networks and decision trees to linear

Regression methods. This study varied the number of independent vari

ables, the types of independent variables, the number of classes of the

independent variables, and the sample size. RMSE (Root Mean Square

Error) was used as the metric. This study showed that linear regres

sion algorithms are superior to ANN and decision tree for continuous

independent variables. Kim also showed that ANN is the best when the

number of categorical variables is at least two, and when independent

variables are continuous and categorical.

Margarita Sordio [80] studied the effect of sample size on classification

accuracy using a dataset having approximately 8500 patterns on Support

Vector Machine (SVM), Decision trees, and Naive Bayes techniques. Sor

dio showed that the size of training set and the classification accuracy

are correlated. Sordio also showed that when datasets are small all algo-

7.1. EXPERIMENT 1: SAMPLE SIZE EFFECT 61

rithms perform good but as the number of sample size increases, SVM

shows a very good improvement in performance. Sordio's work inspired

the first experiment in this thesis, and the pseudo code presented below

in Algorithm 7 is a slight modification of Sordio's algorithm that is em

ployed in the first algorithm. Sordio used one dataset and increased the

sample size one by one. In this thesis, we start with a quarter of the

sample size and each time add 25% to the previous sample size until we

achieve the full sample size.

Algorithm 7 First Experiment: Varying sample size in the data set
1: for each classifier do
2: repeat
3: Define selected set as percentage of the total number of cases in

dataset (ranges: 25%,50%,75%, and 100%).
4: Train classifier with current set using 10-fold cross validation.
5: Evaluate the performance of the classifier as average correct clas

sification rate.
6: until all cases in a dataset are used
7: end for

Once the data partitioning is done (at random), each classifieris trained

with each partition independently. A 10-fold cross validation technique

is used to train each classifier. The data sets used in this experiment

have been divided into two groups. The first group consists of data sets

which have smaller sample sizes (fewer than 500) or a smaller number of

attributes (fewer than 50). The data sets in this group are Iris, Glass, Zoo,

Wine and Parkinson disease dataset. Data sets in the second group are

data sets with a sample size greater than 500 or with number of attributes

greater than 50. These data sets are Musk, Pima Indian Diabetes, Breast

Cancer and Connectionist data sets. These categories are shown in Table

7.2.

7.1. EXPERIMENT 1: SAMPLE SIZE EFFECT 62

Table 7.2: Data Set Categories

First Category Second Category
Iris Musk

Glass Pima
Zoo Breast Cancer

Wine Connectionist
Parkinson

Table 7.3: Effect size table guide

Effect Size Value Strength Interpretation
0.0
0.1
0.2 Small
0.3
0.4
0.5 Medium
0.6
0.7
0.8 Large
0.9
1.0

A statistical paired t-test is applied to classifiers to measure if the ob

tained results are significant within a 95% confidence interval. Moreover,

an effect size [81] value is calculated for each comparison to measure the

strength of the relationship between classifiers. The interpretation of ef

fect size value is presented in Table 7.3. Since our focus is to compare the

performance of HBL with other classifiers, first an inter-HBL comparison

is performed to select the best HBL variant. Once this is done the best

HBL variant is individually compared to each of non-HBL classifiers. For

clarity, a summary of the inter-HBL comparison and HBL versus other

classifiers is given below. However, the detailed experimental results are

presented in Appendix B.

7.1. EXPERIMENT 1: SAMPLE SIZE EFFECT 63

In order to compare different classifiers, we have used a two-variant

comparison. This comparison is made in the following manner:

Classifier X is considered to be better than Classifier Y if:

• Classifier X has a greater mean (considering classification percent

age) when compared to classifier Y.

• Paired t-test results show that the obtained results are significant.

• This comparison has an effect size of at least medium (i.e effect size

;::: 0.3).

If all of the above conditions are satisfied, then classifier X is considered

to be better than classifier Y and it can be said that algorithm classifier X

wins over classifier Y.

7.1.1 Inter-HBL Comparison

In this part three HBL variants are compared to each other and the best

variant is then selected for comparison to other classifiers. Furthermore,

we have enumerated the number of times a variant of HBL algorithm

wins over another variant for all data sets.

The results provided in Table 7.4 show that HBLI and HBL2 are not

significantly different in 5 cases (~ = 55% of cases) when 25% and 75% of

the sample size is selected. However when the full dataset is considered,

HBL2 wins more times than HBLI (5 - 1 = 4 times). The results from

Tables 7.4-7.6 also confirm that HBL3 algorithm outperforms the other

two variants in more cases when compared to HBLI and HBL.2. So

according to these observations, HBL3 algorithm is considered the best

HBL variant and is selected for comparison with other classifiers in this

thesis. Therefore, in our comparisons we will use the name HBL for

HBL3 from this point.

7.1. EXPERIMENT 1: SAMPLE SIZE EFFECT

Table 7.4: HBLl vs. HBL2 Comparison

ize
0.50 Size
0.75 Size
Full Size

1
o
1

7
4
5

Table 7.5: HBLl vs. HBL3 Comparison

lze
0.50 Size
0.75 Size
Full Size

o
o
1

9
8
9

Table 7.6: HBL.2 vs. HBL3 Comparison

lze
0.50 Size
0.75 Size
Full Size

7.1.2 HBL vs. KNN

6
7
9

o
o
o

1
5
3

o
1
o

3
2
o

64

The results summarizing this comparison are shown in Tables 7.7 and

7.8. Comparison results of HBL to first category of data sets is shown in

Table 7.7. Recall from Table 7.2, this category comprises the data sets with

smaller « 500) sample size or with smaller « 50) number of attributes.

The obtained results show that at 0.25 size, both HBL and KNN algorithms

perform equally. They are not significantly different for 3 data sets and

each have only one win. As the sample size increases, HBL wins more

number of cases (has higher classification accuracy in more data sets). The

7.1. EXPERIMENT 1: SAMPLE SIZE EFFECT 65

reason for this behaviour can be in the number of samples: As data sets in

this category are small, when 0.25 of sample size is considered, only a few

samples are selected. This can make the classification task easier, so both

algorithms perform equally. As more number of samples are introduced

to the classifiers, complexity of problem also increases. With this increase

to the problem complexity, HBL algorithm outperforms KNN algorithm.

One potential reason for HBL wins can be in weighted distance metric

which HBL employs to calculate distances. Weighted distance calculation

is suggested as an improvement over Euclidean distance calculation for

Instance Based Learning (IBL) algorithms [82]. Another reason for HBL

to outperform KNN can be in HBL Algorithm's structure: Before HBL

seeks for a close neighbour in training set, it looks to see whether if

testing pattern is inside any training pattern ball. When sample sizes are

small, aforementioned condition is less likely to happen so the algorithms

behave equally.

HBL comparison to KNN in second category in Table 7.8 also confirms

the above statements: In the second category as the number of samples

(or attributes) are greater, HBL outperforms KNN even when 0.25 of

size is selected. Figure 7.1 shows the overall comparison of HBL to

KNN algorithm when both categories of data are selected. It can be

concluded that for the data sets employed in this thesis, HBL algorithm's

classification accuracy outperforms as of KNN algorithm's.

7.1. EXPERIMENT 1: SAMPLE SIZE EFFECT 66

Table 7.7: HBL vs. KNN Group 1 Comparison:

At first, number of samples are very less so algorithms are equally
performed. But as the sample size increases, HBL algorithm wins more

than KNN algorithm.

5
3
4

o
o
o

o
2
1

Table 7.8: HBL vs. KNN Group 2 Comparison:

Overall Comparison of HBL to KNN

• HBl"\fins • KNN wins • Not Signit icant

0.25 Size 0 .50 Size 0.:75 Size Fll li Size

cant

Figure 7.1: Overall Comparison ofHBL to KNN: HBL outperforms KNN

7.1. EXPERIMENT 1: SAMPLE SIZE EFFECT 67

7.1.3 HBl vs. Neural Network Variants

Tables 7.9 to 7.14 summarize the results of HBL versus ANN variants.

Among the four different variants of BP neural networks which we have

used in this work, LM and BFG are only applied to the first group of

data sets as they can be computationally costly when the network size

increases [1].

Table 7.9 summarizes results from HBL to LM comparison. The results

provided in this Table show that when the sample size is small (0.25) HBL

algorithm has more wins when compared to LM (4 wins for HBL and

only one win for LM). But as the sample size changes and increases, LM

algorithm shows equal results when it is compared to HBL algorithm.

Although LM algorithm has more number of wins when it is compared

to HBL at full sample size level, but it can not be concluded that either

of these algorithms are performing better. This is also true in Table 7.10

where HBL algorithm is compared to HBL algorithm. From Table 7.10 we

can conclude that both algorithms have performed almost equally. This

result is repeated for Table 7.11 and Table 7.12.

Table 7.9: HBL vs. LM Comparison for First Category

lze
0.50 Size
0.75 Size
1.00 Size

3
2
2

1
2
3

1
1
o

Table 7.10: HBL vs. BFG Comparison for First Category

lze
0.50 Size
0.75 Size
1.00 Size

4
3
2

1
2
3

o
o
o

7.1. EXPERIMENT 1: SAMPLE SIZE EFFECT

Table 7.11: HBL vs. RP Comparison for First Category

lze
0.50 Size
0.75 Size
1.00 Size

3
3
2

2
2
2

o
o
1

Table 7.12: HBL vs. GDM Comparison for First Category

lze
0.50 Size
0.75 Size
1.00 Size

4
3
2

o
1
2

1
1
1

68

In Table 7.13 HBL algorithm is compared to RP considering second

category of data sets. As we have also shown in this table, this table

shows that HBL and RP both have performed equally. However, when

HBL is compared to GDM in Table 7.14, both algorithms start equally

when only 0.25% of sample size is considered, but as fractions of sample

size are added in next levels GDm algorithm outperforms HBL algorithm.

The overall results of comparison of RP and GDM classifiers to HBL

algorithm are shown in Figures 7.2 and 7.3. In Figure 7.3, HBL starts better

than RP but at full sample size level algorithms end up to be indifferent.

The only variant of ANN algorithm that we can conclude that it has

performed better than HBL algorithm is GDM. As its shown in Figure

7.2, GDM outperforms HBL algorithm as sample size increases. As three

variants of ANN performed almost indifferent to HBL algorithm, we can

conclude that in this work and for the datasets used in this work, HBL

algorithm has performed equal to ANN back propagation variants.

7.1. EXPERIMENT 1: SAMPLE SIZE EFFECT

Table 7.13: HBL vs. RP Comparison for Second Category

lze
0.50 Size
0.75 Size
1.00 Size

1
2
1

3
2
1

o
o
2

Table 7.14: HBL vs. GDM Comparison for Second Category

lze
0.50 Size
0.75 Size
1.00 Size

1
1
1

3
2
3

Overall Comparison of HBl to GDM

• HBL"Wins • GDM .. "';ns • Not Significant

0.25 Size 0.50 SI,. 0.755;, . Full S;, .

o
1
o

-------------.------

Figure 7.2: Overall Comparison of HBL to GDM

69

7.1. EXPERIMENT 1: SAMPLE SIZE EFFECT 70

Overall Comparison of HBl to RP

• HBl W inS • HI-' ~'Jlns , II Not slgnlncant

Q.50 Size 0.75 Size Full Size

Figure 7.3: Overall Comparison of HBL to RP and GDM

7.1.4 HBL vs. ID3

The results from Table 7.15 show that HBL outperforms ID3 algorithm in

all sample size levels (both categories of data sets). HBL has won in all 9

data sets for 0.25,0.50, and 0.75 sample size values. When the full data set

size is considered HBL has better results for 8 problem sets, whereas for in

one data set the obtained results are not significantly different. The data

set for which obtained results are not significantly different is Iris data

set. In this data set two of three available classes are linearly separable

which makes the classifying task much simpler. This is shown in Figure

7.4 using 1st and 3rd features of data set.

7.1. EXPERIMENT 1: SAMPLE SIZE EFFECT

Iris Data set: Two of three 3¥ai lable classes are linearly separable

o

° 0
OOQ!30l0 °

9080°"988088 °0
14~~~4.~5--~5--~5~.5--~6L-~6.5~~--~7~.5--~

Sepal length

Figure 7.4: Iris data set:

Two of three available classes are linearly separable

Table 7.15: HBL vs. ID3 Comparison

71

HBL Algorithm outperforms 103 algorithm. The only data set whose obtained
result is not significant is Iris, in which two of three available class of outputs
are linearly separable.

lze
0.50 Size
0.75 Size
1.00 Size

9
9
8

o
o
o

o
o
1

7.1.5 Experiment one's overall discussion

In this experiment HBL algorithm was compared to other algorithms

when sample size in each data set was changing. The following conclu

sions can be extracted from the provided results:

1. In the first part of this experiment, an Inter-HBL comparison was

done to select the best variant in HBL algorithm. HBL3 outper

formed other variants of HBL algorithm and so was employed

7.1. EXPERIMENT 1: SAMPLE SIZE EFFECT 72

for later comparisons. The reason for HBL3 to outperform other

variants of HBL was that HBL3 uses a weighted distance metric

whereas remaining variants use Euclidean distance calculation.

2. Next when HBL was compared to Back Propagation variants the

obtained results showed that HBL performs almost indifferent to all

BP variants except for GDM which outperforms HBL algorithm.

3. HBL was then compared to back propagation neural network vari

ants. ANN variants especially RP and GDM showed that they are

growingly winning more times as the sample size is increasing in

each leveL The reason for that was sought in ability of back prop

agation variants to adjust and better adapt to different nonlinear

environment [78]. HBL decreases in effectiveness when sample size

increases, this could be because as the sample size increases chance

of two balls of different categories to be inside each other increases.

Recall from our discussions, in this case HBL algorithm shrinks the

radii of balls in a way that they are mutually exclusive and this

could lead to loss of information ..

4. Lastly HBL algorithm was compared to ID3 algorithm. In this com

parison HBL algorithm outperformed ID3 algorithm in all levels of

sample sizes. The only data set for which the comparing results was

not significantly different at full size was Iris data set. For this data

set it was shown in a Figure that two classes out of available three

classes of data are linearly separable which makes classification task

easier for ID3 algorithm.

7.2. EXPERIMENT 2: DATA DIMENSIONALITY EFFECT 73

7.2 Experiment 2: Data Dimensionality Effect

The main goal of this experiment is to study the impact of data dimension

ality on classification accuracy. There has been much research performed

about dimension reduction techniques and the effect of dimension reduc

tion on classifier performance, we will first review some of these methods.

Plastria et al. in [83] studied the effects of dimensionality reduction

on six two class data sets. They employed PCA, linear discriminant and

introduced four new other techniques and showed that a good choice

of technique and dimension can have a major impact on classification

accuracy. Plastria deduces that there is no significantly superior dimen

sionality reduction technique which works the best for all problems in

all error spaces. Others in [84] and [85] have also performed studies on

dimensionality reduction techniques and its effects on classification error.

In [84] a new algorithm called as classification constrained dimensionality

reduction (CCDR) was compared to PCA algorithm for dimensionality

reduction. K-nearest neighbour (KNN) algorithm's classification accu

racy was used as a measure for this comparison. Raich et. al showed that

when CCDR is used, KNN improves its performance by 10%. Mosci et.

al in [85] studied the regularization property of Kernel Principal Compo

nent Analysis (KPCA). They showed that using KPCA and ordinal least

squares method on projected data is equivalent to the use of spectral cut

off regularization where regularization parameter is equal to the number

of principal components.

There are many dimensionality reduction methodologies available

in literature. Independent Component Analysis (ICA) [86] is a method

used in dimensionality reduction which attempts to find statistically in

dependent components and transform the data onto those components.

Random Projection method [87] is another method for reducing the di-

7.2. EXPERIMENT 2: DATA DIMENSIONALITY EFFECT 74

mensionality of data. The idea is that a projection matrix R of size d * m

can be carefully chosen in a way that d ::; min(m, n) where m, n are the

size of the original data matrix R. The matrix D = RA resulted from the

multiplication of these two matrices, and maintains approximately the

same distances between data points. Another technique is called princi

pal component analysis (PCA) [8, 88]. PCA consists of a procedure that

is purposed to transform a number of possibly correlated variables into

a smaller number of uncorrelated variables called principal components.

It is an orthogonal linear transformation which transforms the data into

a new coordinate system in such a way that the greatest variance by any

projection of the data comes to lay on the first coordinate which is called

the first principal component. The second greatest variance upon the

second coordinate and so on [8]. In this work PCA is used for dimension

ality reduction because it is a well-known method, and a more straight

forward technique for dimensionality reduction.

7.2.1 Algorithm And Experimental Procedure

As it has been explained earlier, the influence of an increase in data di

mensionality on the classification accuracy of HBL algorithm is compared

to other algorithms. Principal components will be computed for data us

ing (PCA) and top (0.25, 0.50, 0.75, and 1.00) will be used to train each

classifier:

7.2.2 HBL vs. KNN

Table 7.19 summarizes the obtained results for the HBL to KNN compar

ison. It is shown that HBL has 7,6,5 and 7 wins for 4 levels of dimension

ality. These observations show that HBL outperforms KNN algorithm

7.2. EXPERIMENT 2: DATA DIMENSIONALITY EFFECT 75

Algorithm 8 Algorithm For Dimensionality Effect Experiment
1: for each classifier do
2: repeat
3: Use PCA to select top (ranges: 25%,50%,75%, and 100%) princi

pal components of data.
4: Train classifier with current set using 1O-fold cross validation.
s: Evaluate the performance of the classifier as average correct clas

sification rate.
6: until all above percentages are used
7: end for

(the least value 5 is ~ = 55.5% of cases). These obtained results ensure

that HBL performs better than KNN in most cases.The reason for that can

be different metric which HBL is benefiting from.

Table 7.16: HBL vs. KNN Comparison

1m

0.50 Dim
0.75 Dim
1.00 Dim

6
5
7

7.2.3 HBL VS. BP Variants

o
1
o

HBL algorithm is compared to RP in Table 7.17. The obtained results can

not determine any of these two algorithms as winner except for the case in

which 50% of top principal components are considered. In this level the

obtained results from Table 7.17 shows that RP wins over HBL algorithm.

7.2. EXPERIMENT 2: DATA DIMENSIONALITY EFFECT 76

Table 7.17: HBL vs. RP Comparison

HBLvsRP HBL Wins RPWins Not Significant

0.25 Dim 3 3 3

0.50 Dim 3 5 1

0.75 Dim 2 4 3

1.00 Dim 3 3 3

7.2.4 HBL VS. BFG

HBL is compared to BFG variant of back propagation in Table 7.18. When

25% and 50% of dimensionality is considered, HBL algorithm has per

formed indifferent to BFG algorithm. However, when dimensionality of

data is beyond 50%, BFG algorithm outperforms HBL algorithm.

Table 7.18: HBL vs. BFG Comparison

HBLvsBFG HBL Wins BFGWins Not Significant

0.25 Dim 2 4 3

0.50 Dim 2 4 3

0.75 Dim 2 5 2

1.00 Dim 3 6 0

7.2.5 HBL VS. 103

HBL is compared to ID3 algorithm in Table 7.19. As it is shown in this

Table, HBL outperforms ID3 algorithm in all dimensionality levels:

At 0.25 HBL wins 8 times, whereas ID3 wins over HBL only once. 7 wins

for HBL at 0.50 and 0.75 levels will guarantee its dominance at these two

levels. Finally when all the dimensions are used HBL still out performs

ID3 by having 8 wins from a total of nine comparisons.

7.2. EXPERIMENT 2: DATA DIMENSIONALITY EFFECT 77

Table 7.19: HBL vs. ID3 Comparison

HBLvsID3 HBL Wins ID3 Wins Not Significant

0.25 Dim 8 1 0

0.50 Dim 7 2 0

0.75 Dim 7 1 1

1.00 Dim 8 0 1

7.2.6 Overall Discussions

We can summarize the overall outcome of this experiment as follows:

1. In this experiment HBL algorithm was compared to two variants

of ANN back propagation algorithm: RP and BFG variants. The

results obtained from this experiment show that both of this variants

performed indifferent to HBL algorithm. Moreover when the full

dimensionality of the problem set is considered, BFG algorithm

outperforms HBl algorithm.

2. HBL algorithm outperformed KNN algorithm when different di

mensionality spaces were selected for each algorithm. The reasons

could lie in that the KNN algorithm used was a simple vanilla KNN

algorithm but HBL variant was benefiting from a weighted distance

calculation modification.

3. Lastly, HBL algorithm outperformed ID3 algorithm.

7.3. EXPERIMENT THREE: COMPARISON USING KAPPA TEST 78

7.3 Experiment Three: Comparison using Kappa
Test

7.3.1 Introduction

In this experiment, we will compare HBL to other classifiers based on the

level of agreement of each classifier to target output values. Instead of

applying a paired student t-test, we will use Cohen's Kappa coefficient

[II, 10] which demonstrates the level of agreement of the classifier to the

actual data labels. A student paired t-test does not fully exploit all of

the information from confusion matrices (e.g. true negatives and false

positives). Kappa test uses all of the information in confusion matrices to

find the level of agreement between classifiers and is mainly employed in

diagnosis tasks where there are more than one diagnoses available [11].

We will run algorithms on full data sets using 10-fold cross validation

and further apply statistical Ztest [81] to measure whether the obtained

Cohen's coefficient is significant at 95% or not by bolding the classifier

name if the results are significant.

Out of four different variants of back propagation which we have used

in this thesis work, gradient descent is comparatively slower as it takes

more time to converge[l]. Levenberg-Marquardt and Quasi Newton's

method although very suitable for small problem size, are costly when

network size (number of weights) becomes large [1]. With the above

reasonings, we have decided the following subset of classifiers for this

experiment: Resilient Back propagation (RPROP) algorithm from neural

networks, HBL (HBL3) from Hyperballiearning algorithms along with

KNN and ID3. These selected algorithms are shown in the Table 7.20.

7.3. EXPERIMENT THREE: COMPARISON USING KAPPA TEST 79

Table 7.20: Third Experiment Algorithms

Selected Algorithms
Algorithm Category Abbreviation Used
Resilient Back Propagation Neural Networks Rprop
HBL H yperball Learning HBL
KNN K Nearest Neighbours KNN
ID3 Decision Trees ID3

Experiment Details

The procedure for this experiment is given below in Algorithm 9.

Algorithm 9 Experiment 3: Kappa Test of Agreement
1: for each algorithm listed in Table 7.20 do
2: Train algorithm on each data set listed in Table 6.1 using 10-fold

cross validation and for number of 30 runs.
Evaluate confusion matrix of each classifier.

3: return Confusion Matrix
4: end for

In above algorithm, 10-fold cross validation will be used to train each

classifier for each data set in Table 7.20. Confusion matrices for each run

are saved and averaged over all 30 runs. Kappa coefficient is calculated

from confusion matrices. Kappa coefficient will show the level of agree

ment between classifier and actual classification labels and it is calculated

as follows:

KAPPA = P(A) - P(E)
1- P(E)

(7.1)

Where P(A) is the relative agreement among classifier and P(E) is the

probability that agreement is due to chance. P(E) is calculated as follows:

E~=l ([Et=l E;:'l J{i, k)c(i, j)].[Et=l E;:'l J(i, j)c(j, k)])
P(E) = 2 (7.2)

m

([E1=l Ej=l J(i, j)c(i, j)])
P(A) = (7.3)

m

7.3. EXPERIMENT THREE: COMPARISON USING KAPPA TEST 80

Table 7.21: Kappa values Reference

Kappa Coeff. Reference Table
~0.20 Poor

0.21 - 0.40 Fair
0.41- 0.60 Moderate
0.61- 0.80 Good
0.81-1.00 Very good

In above equations, m denotes the number of samples, c number of

classes. f(i, j) denotes the actual probability of example i to be of class

j. c(i, j) can 0 or 1 values only. c(i, j) is 1 iff j is the predicted class for i

obtained from p(i, j) which is the estimated probability of example i to be

in class j and can be calculated as total number of samples in class j over

total number of samples in all classes.

In order to test whether or not the obtained results are significant,

Z Statistic test is used to check the significance of the obtained Kappa

coefficient. Z Statistic test is calculated as follows:

Kappa
Zscore = -----=--=-----

(Variance) !
(7.4)

In the above formula, Variance values are sample variances of respected

kappa statistics. If Z score is greater than 1.65, then we can conclude

that the classification results obtained from a classifier are significantly

meaningful at 95% confidence level [12]. This has been shown in the

tables provided by bolding the classifier name. On the Other hand, when

classifier name is not balded in Tables in such tables, it means that the null

hypothesis which states the results are not significant cannot be rejected.

7.3. EXPERIMENT THREE: COMPARISON USING KAPPA TEST 81

Table 7.22: Kappa Score Distribution

Kappa Coeff. Score
Insignificant 0

:::; 0.20 0
0.21 - 0.40 1
0.41- 0.60 2
0.61- 0.80 3
0.81-1.00 4

7.3.2 Results and Evaluation Methodology

Kappa test results are shown in Tables 7.23 to 7.31. For the sake of the

reader's convenience, results showing confusion matrices are moved to

AppendixB.

In order to do a comparison, we have assigned a score to each row

of Table 7.21 as it is shown in Table 7.22. Using the above a score will

be calculated for each algorithm considering all the data set results listed

below. The comparison will be done in such a way that the algorithm with

the highest score will be considered to have the highest level of agreement

to actual output values, and will be known as a better algorithm. The

obtained results are listed in Tables 7.23-7.31. In these tables Z Scores for

each Kappa test is calculated in addition to Cohen's Kappa value.

Table 7.23: Iris: Kappa Test Results

Algorithm Cohen's Kappa Kappa Error Confidence Interval Z Score

RP 0.95 0.01 0.94-0.96 51.92
KNN 0.93 0.01 0.92-0.95 51.01
ID3 0.93 0.01 0.92-0.95 50.97
HBL 0.94 0.01 0.93-0.96 51.63

7.3. EXPERIMENT THREE: COMPARISON USING KAPPA TEST 82

Table 7.24: Glass Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score

RP 0.58 0.1598 0.27-0.89 3.33
KNN 0.69 0.1225 0.45-0.93 5.29
ID3 0.58 0.1598 0.27-0.89 3.33
HBL 0.80 0.1072 0.59-1.00 5.97

Table 7.25: Zoo Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval ZScore

RP 0.87 0.1225 0.63-1.00 5.51
KNN 0.94 0.0840 0.78-1.00 6.05
ID3 0.85 0.1317 0.59-1.00 5.43
HBL 0.95 0.0772 0.80-1.00 6.11

Table 7.26: Wine Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score

RP 0.87 0.1022 0.66-1.00 5.10
KNN 0.80 0.1224 0.56-1.00 4.71

ID3 0.43 0.1742 0.09-0.77 2.52
HBL 0.86 0.1055 0.65-1.00 5.07

Table 7.27: Parkinson Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score

RP 0.49 0.3259 0.0-1.00 1.96
KNN 0.22 0.3756 0.0-0.96 0.94
103 0.17 0.3821 0.0-0.92 0.73
HBL 0.28 0.3760 0.0-1.00 1.00

Table 7.28: Pima Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score

RP 0.42 0.1156 0.20-0.65 3.44
KNN .0.34 0.1208 0.10-0.58 2.76
ID3 0.34 0.1207 0.10-0.57 2.74
HBL 0.40 0.1173 0.17-0.63 3.23

7.3. EXPERIMENT THREE: COMPARISON USING KAPPA TEST 83

Table 7.29: Breast Cancer Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval ZScore

RP 0.92 0.0498 0.82-1.00 7.68
KNN 0.86 0.0640 0.74-0.99 7.21
ID3 0.83 0.0706 0.69-0.97 6.93
HBL 0.86 0.0635 0.74-0.99 7.22

Table 7.30: Connectionist Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score

RP 0.12 0.0616 0.00-0.24 1.82
KNN 0.42 0.0564 0.31-0.53 6.28
ID3 0.18 0.0578 0.02-0.22 1.48
HBL 0.44 0.0556 0.33-0.55 6.71

Table 7.31: Musk V2 Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval ZScore

RP 0.13 0.0656 0.00-0.10 0.81
KNN 0.01 0.0657 0.00-0.14 0.23
ID3 0.10 0.0593 0.00-0.20 2.33
HBL 0.15 0.0613 0.03-0.27 3.91

7.3.3 Resu Its Discussion

In this part, the scoring of each algorithm is calculated based on the Kappa

score distribution provided in Table (7.32) and it's presented in Table 7.32.

Table 7.32: Total Score Results

Algorithm Total Score

RP 22
KNN 22
ID3 17
HBL 22

7.3. EXPERIMENT THREE: COMPARISON USING KAPPA TEST 84

As it is shown in the score Table in 7.32, KNN, RP and HBL algorithms

have equal score. All of these algorithms are superior to ID3 algorithm

as ID3 has scored 17 which is the least score among all 4 algorithms. This

methodology seems however to be unable to distinguish between RP,

KNN and HBL algorithms as they have all earned an equal score of 22.

7.3.4 Comparison based on Cohen's Kappa Value

Another comparison can be using the exact value of Cohen's Kappa to

decide which classifier has a better agreement to actual data output. For

this comparison, if Classifier X has a higher Kappa value when it is

compared to Classifier Y, then Classifier X has a better agreement to

actual data labels and it is shown as Classifier X > Classifier Y. If result

of a classifier is considered to be not significant(according to Tables 7.23

-7.31}, then that comparison is ignored (Shown by - - - in Table 7.33).

Table 7.33 summarizes the results shown in Tables 7.23 to Table 7.3l.

Table 7.33: Comparison Based on Exact Kappa Value

Summary Result Data set
RP > HBL > KNN > ID3 Iris
HBL > KNN > RP = ID3 Glass
HBL > KNN > RP > ID3 Zoo
RP > HBL > KNN > ID3 Wine

RP> - --- Parkinson
RP > KNN = HBL > ID3 Pima
RP > KNN = HBL > ID3 Breast Cancer

HBL > KNN > - - - Connectionist
HBL > ID3 > - - - MuskV2

According to this table, shows that RP has a better agreement to actual

data labels when it is compared to HBL algorithm (RP is better 4 times

whereas HBL only 2 times). It can also be concluded that after RP variant,

HBL algorithm has the best agreement as it has higher Kappa value in

more number of cases when it is compared to KNN and ID3 algorithms.

7.4. OVERALL DISCUSSIONS 85

7.4 Overall discussions

In this chapter we studied three different experiments to compare HBL

algorithm to other classifiers. First experiment was comparing HBL algo

rithm to other available classifiers when 25% of sample size was selected

and increased each time by 25%.

In this experiment first we performed an inter-HBL comparison to

choose the best representative of HBL variants. The results obtained from

this experiment showed that HBL outperforms other two variants of hy

perbaU algorithm so HBL was chosen for further experiments. Next HBL

was compared to BP algorithm variants. The obtained results from this

comparison showed that HBL performed almost equal to most of BP vari

ants. However, when sample size was considered GDM out performed

HBL and when dimensionality considered, BFG had more number of

wins beyond 50% level of dimensionality. Later on HBL was also com

pared to KNN and ID3 algorithms. HBL results outperformed ID3 at

both small and large sample size selection. When HBL was compared to

KNN algorithm, HBL showed better results. However, KNN algorithm

employed for this thesis was basic vanilla algorithm.

In the second experiment, we compared HBL algorithm to other clas

sifiers when the dimensionality of data (principal components) were

increasing. Obtained results from this experiment showed that when di

mensionality of data is changing ANN back propagation variants perform

equally to the HBL algorithm.

Like the previous experiments HBL results outperformed both KNN

and ID3 algorithm.

In last experiment HBL was compared to other classifiers according

to Kappa[ll] statistical measure. In this experiment using the Kappa Co

hen's coefficient, we determined a level of agreement between the output

7.4. OVERALL DISCUSSIONS 86

of each classifier and the actual data output. Further we evaluated signif

icance of this obtained coefficient by can calculating a Z-score value using

Z-statistical test. This Kappa value was also used to assign a weighted

score to each of the classifiers for the comparison.

Obtained results for this experiment showed that HBL, KNN, and RP

algorithms outperform ID3 classifier. However, the employed technique

was unable to distinguish between HBL, KNN, and RP algorithms as they

all score equally meaning that they all have the same level of agreement

to data output labels in general.

Another comparison was done using the exact Kappa coefficient val

ues. Summary table was generated and obtained results showed that RP

algorithm outperforms HBL algorithm whereas HBL algorithm outper

forms ID3 and KNN as it has a better agreement.

Chapter 8

Conclusion and Future Works

8.1 Conclusion

In this work we compared Hyperball Learning Algorithm to other classi

fiers based on increase on sample size, dimensionality increase and also

based on the level of agreement. The following conclusions are made

based on the data sets used in this work and the given data in Chapter 7

and Appendix B:

• HBL3 with weighted sum distance calculation measure was the

best HBL variant in the examined data sets.

• Considering the classification accuracy as measure and also full

sample sizes can be deduced that HBL performs as good as ANN

algorithms whereas HBL performs better than KNN and ID3 algo

rithm.

• When dimensionality of data increases and classification accuracy

is the measure ANN algorithms and HBL algorithm perform indif

ferently. In the same context HBL algorithm is a better candidate

when compared to KNN and ID3.

87

8.2. FUTURE WORKS 88

• From the last experiment and when Cohen's Kappa is a measure, it

can be concluded that RP algorithm outperforms HBL and so has a

higher level of agreement to actual target outputs. After RP, HBL

algorithm performs better than ID3 and KNN algorithm.

8.2 Futu re Works

• A research can be done to determine ways to improve classifier

comparisons.

• HBL can be further compared to other advanced KNN algorithms.

• Autonomous learning capabilities of HBL algorithm can be ex

plored. HBL algorithm can then be compared to other existing

autonomous learning algorithms.

• HBL algorithm was mainly designed to work as a parallel algorithm

but in this thesis it was implemented as a sequential algorithm. HBL

algorithms can be further implemented in parallel, and learning

speed of HBL algorithm can be compared to other existing parallel

algorithm.

• One of other features of HBL algorithm which was not employed in

this thesis is related to its "learning from fallible expert" capability.

HBL algorithm can evolve in a way that if it is miss supervised from

a fallible data label, it can adapt its structure to correct the fallible

information later on. This capability can further be examined and

compared with similar algorithm if there exists.

• One of disadvantages of Instance Based Algorithms, specially KNN

and HBL is that they are depending on all the data attributes to cal

culate the distance. HBL algorithm can be combined with method-

B.2. FUTURE WORKS 89

ologies like principal component analysis to use only the meaningful

attributes in order to calculate a distance.

• In addition to above point, we can calculate the importance of each

attribute using principal component analysis then while calculating

distance between each two patterns bring in the importance of each

attribute by adding a weight for each attribute we are using.

• Research can be done to decide the most suitable metric space for

which HBL algorithm can have better accuracy such as Manhattan

space.

• HBL algorithm centers a ball around each pattern. A modification to

this methodology is to see if using an asymmetric geometric figure

(with unequal radii) around the pattern could improve its accuracy.

• Another modification which can be tested on HBL algorithm is that

instead of centering a ball around the pattern, we can center a ball

around each dimension associated with data. In two dimensional

space, this can be an ellipse which the pattern can be anywhere

inside the ellipse.

• In HBL algorithm, a ball around a pattern starts with a maximum

possible radius and later on as new balls are inserted into knowledge

bank, this radius is shrunk if the ball is over lapping with any

other balls belonging to a different category. However, there is no

step involved in the algorithm to increase the radius of any balls if

necessary. There can be situations in which the balls can grow their

radius without overlapping other balls when the learning is done.

• And finally, HBL algorithm can be compared to more classifiers from

Instance Based Learning category like: locally weighted regressions,

8.2. FUTURE WORKS 90

case-based reasoning, radial basis functions, etc.

• HBL algorithm can be further compared to Radial basis based meth

ods, Gaussian Mixture methods and support vector machines so it

can be further compared to these classifiers as well.

Bibliography

[1] A. Nigrin, Neural networks for pattern recognition. The MIT press, 1993, ISBN:
0-19-853864-2.

[2] T. Mitchell, Machine Learning. McGraw-Hill, 2004 ISBN: 0070428077.

[3] J. Rissanen, "A universal prior for integers and estimation by minimum
description length," The Annals of Statistics, vol. 11, no. 2, pp. 416-431, 1983.

[4] D. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear
Parameters," SIAM Journal on Applied Mathematics, vol. 11, pp. 431-441,
1963. '

[5] M. Riedmiller and H. Braun, "A direct adaptive method for faster back
propagation learning: The RPROP algorithm.," tech. rep., 1993.

[6] R. Schoenberg, "Optimization with the quasi-newton method," Unpublished
manuscript, Aptech Systems, Maple Valley, WA, 2001.

[7] V. Wojcik and B. Salami, "Machine Perception and Learning from the Evo
lutionary Viewpoint: The Hyperball Algorithms," 2008.

[8] H. Hotelling, "Analysis of a complex of statistical variables into principal
components.," Journal of Educational Psychology, vol. 24, no. 6, pp. 417-441,

1933.

[9] c. Ferri, J. Hernandez-Orallo, and R. Modroiu, "An experimental compari
son of performance measures for classification," Pattern Recognition Letters,
vol. 30, no. 1, pp. 27-38, 2009.

[10] c. Ferri, J. Hernandez-OralIo, and R. Modroiu," An experimental compari
son of performance measures for classification," Pattern Recognition Letters,
vol. 30, no. 1, pp. 27-38, 2009.

91

BIBLIOGRAPHY 92

[11] D. Rossiter, "Technical Note: Statistical methods for accuracy assessment
of classified thematic maps," tech. rep., 2004.

[12] R. Dwivedi, S. Kandrika, K. Ramana, et al., "Comparison of classifiers
of remote-sensing data for land-use/land-cover mapping," Current Science,
vol. 86, no. 2, pp. 328-335, 2004.

[13] M. Hassoun, Fundamentals of Artificial Neural Networks. The MIT Press, 1995,
ISBN: 026208239X.

[14] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley, New York,
20ot,ISBN-I0: 0471056693.

[15] V. Phansalkar and P. Sastry, "Analysis of the back-propagation algorithm
with momentum," IEEE Transactions on Neural Networks, vol. 5, no. 3,
pp.505-506,1994.

[16] S. Gallant, "Perceptron-based learning algorithms," IEEE Transactions on
Neural Networks, vol. I, no. 2, pp. 179-191, 1990.

[17] J. More, "The Levenberg-Marquardt algorithm: implementation and the
ory," Numerical Analysis, pp. 105-116, 1978.

[18] c. Kelley, Solving nonlinear equations with Newton's method. Society for In
dustrial Mathematics, 2003, ISBN: 0-89871-546-6.

[19] M. Poulton, Computational neural networks for geophysical data processing.
Pergamon Pr, 20ot, ISBN: 0080439861.

[20] T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE Trans
actions on Information Theory, vol. 13, no. I, pp. 21- 27, 1967.

[21] T. Fawcett, "An introduction to ROC analysis," Pattern Recognition Letters,
vol. 27, no. 8, pp. 861-874, 2006.

[22] J. Quinlan, "Induction of decision trees," Machine Learning, vol. I, no. I,
pp. 81-106, 1986.

[23] L. Breiman, Classification and regression trees. Chapman & HalVCRC, 1984,
ISBN: 9780412048418.

[24] D. Aha, D. Kibler, and M. Albert, "Instance-based learning algorithms,"
Machine Learning, vol. 6, no. I, pp. 37-66, 1991.

[25] P. Zezula, Similarity search: the metric space approach. Springer-Verlag New
York Inc, 2006, ISBN-I0: 0387291466.

BIBLIOGRAPHY 93

[26] M. Orr, "Introduction to radial basis function networks," tech. rep., 1996.

[27] A. Thompson, Minkowski geometry. Cambridge Univ Pr, 1996,
ISBN:052140472X.

[28] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2006, ISBN: 978-1-55860-901-3.

[29] S. Kullback and R. Leibler, liOn information and sufficiency," The Annals of
Mathematical Statistics, vol. 22, no. I, pp. 79-86, 1951.

[30] R. Miller and D. Siegmund, "Maximally selected chi square statistics," Bio
metrics, pp. 1011-1016,1982.

[31] P. Cunningham and S. Delany, "k-Nearest neighbour classifiers," tech. rep.,
University College Dublin, 2007.

[32] Y. Rubner, C. Tomasi, and L. Guibas, "The earth mover's distance as a metric
for image retrieval," International Journal of Computer Vision, vol. 40, no. 2,
pp. 99-121, 2000.

[33] M. Li, X. Chen, X. Li, B. Ma, and P. Vitanyi, liThe similarity metric," IEEE
Transactions on Information Theory, vol. 50, no. 12, pp. 3250-3264,2004.

[34] A. Guttman, "R-trees: a dynamic index structure for spatial searching," in
Proceedings of the 1984 ACM SIGMOD International Conference on Management
afData, pp. 47-57, ACM, 1984.

[35] D. White and R. Jain, "Similarity indexing with the 55-tree," Proceedings of
the Twelfth International Conference on Data Engineering, pp. 516-523, 1996.

[36] N. Katayama and S. Satoh, "The SR-tree: An index structure for high
dimensional nearest neighbor queries," in Proceedings of the 1997 ACM SIG
MOD International Conference on Management of data, pp. 369-380, ACM,
1997.

[37] E. P. M. Lozano, J. Martinez, "A branch and bound algorithm for comput
ing k-nearest neighbours,," IEEE Transactions on computers., vol. 24, no. 3,
pp. 743-750, 1975.

[38] M. Lenz, H. Burkhard, and S. Bruckner, "Applying case retrieval nets to
diagnostic tasks in technical domains," Advances in Case-Based Reasoning,
pp. 219-233, 1996.

[39] M. Lenz and H. Burkhard, "Case retrieval nets: Basic ideas and extensions,"
Kl-96: Advances in Artificial Intelligence, pp. 227-239, 1996.

BIBLIOGRAPHY 94

[40] B. Smyt and E. McKenna, "Footprint-based retrieval," In Proceedings of the
Third International Conference on Case-Based Reasoning, pp. 343-357, 1999.

[41] J. Schaaf, "Fish and Shrink. A next step towards efficient case retrieval in
large scaled case bases," Advances in Case-Based Reasoning, pp. 362-376, 1996.

[42] S. Hernandez Rodriguez, J. Martinez Trinidad, and J. Carrasco Ochoa, "Fast
k most similar neighbor classifier for mixed data (tree k-msn)," Pattern
Recognition Archive, vol. 43, pp. 873-886, March 2010.

[43] R. E. Pakelska, The Dissimilarity Representationfor Pattern recognition, vol. 43.
2005, ISBN: 978-981-270-317-0(ebook).

[44] D. Y. H. Chang, "Relaxation metric adaptation metric adaptation and its ap
plication to semi-supervised clustering and content-based image retrieval,"
Pattern Recognition Papers, vol. 39, no. 3, pp. 1905-1917,2006.

[45] E. P. M. Lozano, J. Martinez, "Experimental study on prototype optimiza
tion algorithms for prototype based classification in vector spaces," Pattern
Recognition Papers, vol. 39, no. 3, pp. 1827-1838,2006.

[46] S. Bandyopadhyay and U. Maulik, "Efficient prototype reordering in nearest
neighbor classification," Pattern Recognition, vol. 35, no. 12, pp. 2791-2799,
2002.

[47] L. J.H Friedman, F. Baskett, "An algorithm for finding nearest neighbours,"
IEEE Transactions on computers., vol. 24, pp. 100-1006, 1975.

[48] P. Grother, G. Candela, and J. Blue, "Fast implementations of nearest neigh
bor classifiers," Pattern Recognition, vol. 30, no. 3, pp. 459-465, 1997.

[49] Y. Chen, Y. Hung, T. Yen, and C. Fuh, "Fast and versatile algorithm for
nearest neighbor search based on a lower bound tree," Pattern Recognition,
vol. 40, no. 2, pp. 360-375, 2007.

[50] E. Lee and S. Chae, "Fast design of reduced complexity nearest-neighbor
classifiers using triangular inequality," IEEE Trans. Pattern Anal. Mach. Intell,
vol. 20, no. 5, pp. 562-566.

[51] J. Oncina, F. Thollard, E. G6mez-Ballester, L. Mic6, and F. Moreno-Seco, "A
Tabular Pruning Rule in Tree-Based Fast Nearest Neighbor Search Algo
rithms," Pattern Recognition and Image Analysis, pp. 306-313,2007.

[52] J. Lai, Y. Liaw, and J. Liu, "Fast k-nearest-neighbor search based on projec
tion and triangular inequality," Pattern Recognition, vol. 40, no. 2, pp. 351-
359,2007.

BIBLIOGRAPHY 95

[53] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu, "An optimal
algorithm for approximate nearest neighbor searching fixed dimensions,"
Journal of the ACM (JACM), vol. 45, no. 6, pp. 891-923, 1998.

[54] F. Moreno-Seco, L. Mic6, and J. Oncina, "Approximate nearest neighbour
search with the fukunaga and narendra algorithm and its application to
chromosome classification," Progress in Pattern Recognition, Speech and Image
Analysis, pp. 322-328, 2003.

[55] D. Mladenic, "Feature subset selection in text-learning," Machine Learning:
ECML-98, pp. 95-100, 1998.

[56] R. Kohavi and G. John, "Wrappers for feature subset selection," Artificial
Intelligence, vol. 97, no. 1-2, pp. 273-324, 1997.

[57] H. Brighton and C. Mellish, "Advances in instance selection for instance
based learning algorithms," Data Mining and Knowledge Discovery, vol. 6,
no. 2, pp. 153-172,2002.

[58] S. Delany and P. Cunningham, "An analysis of case-base editing in a spam
filtering system," 7 th European Conference in Case-Based Reasoning, vol. 7,
pp. 3-25, 2004.

[59] P. Hart, "The condensed nearest neighbor rule (Corresp.}," IEEE Transactions
on Information Theory, vol. 14, no. 3, pp. 515-516, 1968.

[60] G. Ritter, H. Woodruff, S. Lowry, and T. Isenhour, "An algorithm for a
selective nearest neighbor decision rule," IEEE Transactions on Information
Theory, vol. 21(6), pp. 665-669, 1975.

[61] D. Wilson, "Asymptotic properties of nearest neighbor rules using edited
data," IEEE Transactions on Systems, Man, and Cybernetics, vol. 2, no. 3,
pp. 408-421, 1972.

[62] I. Tomek, "An experiment with the edited nearest-neighbor rule," Systems,
Man and Cybernetics, IEEE Transactions on, pp. 448-452, 1976.

[63] A. Frank and A. Asuncion, "UCI machine learning repository."
http://archive.ics.uci.edu/ml/,2010.

[64] R. Kohavi, "A study of cross-validation and bootstrap for accuracy esti
mation and model selection," in International Joint Conference on Artificial
Intelligence, vol. 14, pp. 1137-1145, 1995.

[65] P. Burman, "A comparative study of ordinary cross-validation, v-fold cross
validation and the repeated learning-testing methods," Biometrika, pp. 503-
514,1989.

BIBLIOGRAPHY 96

[66] J. Banks, B. Nelson, and D. Nicol, Discrete-Event System Simulation. Prentice
Hall,2009, ISBN: 0130887021.

[67] S. Robson, M. Oliveira, E. Agropecuaria, and M. Salete, Data transformation
for privacy-preserving data mining. PhD thesis, 2005.

[68] S. Kotsiantis and P. Pintelas, "Logitboost of simple bayesian classifier,"
Informatica, vol. 29, no. I, pp. 53-59,2005.

[69] J. Dy and C. Brodley, "Feature selection for unsupervised learning," The
Journal of Machine Learning Research, vol. 5, p. 889,2004.

[70] J. Smith, J. Everhart, W. Dickson, W. Knowler, and R. Johannes, "Using
the ADAP learning algorithm to forecast the onset of diabetes mellitus," in
Proceedings of the Annual Symposium on Computer Application in Medical Care,
pp. 261-265, American Medical Informatics Association, 1988.

[71] S. Aeberhard, D. Coomans, and o. De Vel, "Comparison of classifiers in
high dimensional settings," Dept. Math. Statist., James Cook Univ., North
Queensland, Australia, Tech. Rep, 1992.

[72] M. Little, P. McSharry, E. Hunter, J. Spielman, and L. Ramig, "Suitability of
dysphonia measurements for telemonitoring of Parkinsons disease," Nature
Publishing Group, 2008.

[73] O. Mangasarian and W. Wolberg, "Cancer diagnosis via linear program
ming," SIAM News, vol. 23, no. 5, pp. 1-18, 1990.

[74] W. Wolberg and O. Mangasarian, "Multisurface method of pattern sepa
ration for medical diagnosis applied to breast cytology," Proceedings of the
National Academy of Sciences of the United States of America, vol. 87, no. 23,
pp.9193-9196,1990.

[75] O. Mangasarian, R. Setiono, and W. Wolberg, "Pattern recognition via lin
ear programming: Theory and application to medical diagnOSiS," Pattern
Recognition, pp. 22-30, 1990.

[76] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt. Ltd., 2004,
ISBN=8120312538.

[77] D. Nguyen and B. Widrow, "Improving the learning speed of 2-layer neural
networks by choosing initial values of the adaptive weights," in Proceedings
of the International Joint Conference on Neural Networks, vol. 3, pp. 21-26,
Washington, 1990.

BIBLIOGRAPHY 97

[78] M. Leshno and Y. Spector, "The effect of training data set size and the com
plexity of the separation function on neural network classification capabil
ity: The two-group case," Naval Research Logistics, vol. 44, no. 8, pp. 699-717,
1997.

[79] Y. Kim, "Comparison of the decision tree, artificial neural network, and
linear regression methods based on the number and types of independent
variables and sample size," Expert Systems with Applications, vol. 34, no. 2,
pp.1227-1234,2008.

[80] M. Sordo and Q. Zeng, "On sample size and classification accuracy: A
performance comparison," Biological and Medical Data Analysis, pp. 193-
201,2005.

[81] B. Agarwal, Basic statistics. New Age International, 2006, ISBN: 8122418147.

[82] S. Dudani, "The distance-weighted k-nearest-neighbor rule," SMC, vol. 6,
pp. 325-327, April 1976.

[83] F. Plastria, S. De Bruyne, and E. Carrizosa, "Dimensionality Reduction for
Classification?," in Advanced Data Mining and Applications: 4th International
Conference, ADMA 2008, Chengdu, China, October 8-10, pp. 411-417, Springer
Verlag New York Inc, 2008.

[84] R. Raich, J. Costa, and A. Hero III, "On dimensionality reduction for classi
fication and its application," University of Michigan.

[85] S. Mosci, 1. Rosasco, and A. Verri, "Dimensionality reduction and gen
eralization," in Proceedings of the 24th International Conference on Machine
Learning, p. 664, ACM, 2007.

[86] A. Hyvarinen and J. Karhunen, "Independent Component Analysis," 2001.

[87] S. Vempala, The random projection method. Amer Mathematical Society, 2005,
ISBN: 0821837931.

[88] J. Shlens, "A tutorial on principal component analysis," tech. rep., Center
for Neural Science, New York University New York City, NY 10003-6603
and Systems Neurobiology Laboratory, Salk Institute for Biological Studies
La Jolla, CA 92037, 2009.

Appendices

99

Appendix A

Error Back Propagation
Algorithm

BP algorithm is used to train a multi layer feed forward network using

gradient descent to approximate an unknown function, based on some

training data consisting of pairs (x,t), where the vector x represents input

patterns to the network, and the vector t represents the corresponding

target (desired output). Recall from mathematics, the overall gradient

with respect to the entire training set is the sum of the gradients for each

pattern; in what follows we will therefore describe how to compute the

gradient for a single training pattern. Lets select node j from output layer,

in this case weights from previous layer i to node j will be denoted as Wji'

For node j, we can write the following equations:

(A.l)

Where ej(n) is the error at output node j. n refers to iteration n in the

training process. Yj(n) is the actual output and dj(n) is the desired output.

101

102

E(n) = ~ L e~(n)
jeCoII1

(A2)

Where E(n) is the instantaneous value of error energy and Caut is set of all

nodes in output layer.

netj(n) = L WjiYi(n)

Yj(n) = f(netj(n»

(A3)

(A4)

Where fO is the activation function for neuron j. We are interested in

calculating the fl.Wji(n) (the change in weight required for Wji). fl.wji(n)

which is applied to Wji is proportional to :~~~~). We apply the chain rule

of differentiation to simplify the above expression:

aE(n) aE(n aej(n) ayj(n) anetj(n)
-::---'-:--:"" =
aWji(n) aej(n)· aYj(n)· anetj(n)· aWji(n)

Where = ffe~~) = ej(n) according to A2, a~:~~) = f'(netj(n» according to

A 4 aej (n) - 1 d· A 1 d anetj(n) - () d· A 3 S
• , aYj(n) - - ace or mg to ., an aWji(n) - Yi n accor mg to .. 0

our expression will be simplified as:

aE(n) I

a () = -ej(n) f (netj(n» Yi(n)
Wji n

fl.Wji(n) will be applied to Wji(n), where:

(AS)

(A6)

(A7)

In above expression, T] is called the learning rate which is a value

o < T] < 1. OJ is derivative of error with respect to netj, or the local gradi

ent. Local gradient OJ can be calculated as follows:

103

HI(lden Layer OutputLay~r

Figure A.l: Signal Flow Diagram from Hidden Layer to Output layer

O. __ dE(n)
J - dnetj(n)

dE(n) dej(n) dYj(n)
= - dej(n)" dYj(n)' dnetin)

= ej(n)!'(netj(n»

(A.S)

(A.9)

(A. 10)

In above expression we had assumed that node j belongs to output layer

and we have shown that OJ can be calculated based on the derived formula

above. the second case can be when node j belongs to hidden layer.

In figure A.l, signal flow from hidden layer to output layer is shown.

In this figure node j belongs to hidden layer and node k belongs to output

layer. for this figure, local gradient will be calculated as follows:

6- __ dE(n)
} - dnetj(n)

dE(n) dYj(n)
= - dYj(n)' dnetj(n)

dE(n) ,
= - dYj(n).f (netj(n))

E(n) in this case will be as follows:

E(n) = ~ L e~(n)
kEoutput"odes

In this case, expression ;~~~) should be calculated.

so:

dE(n) = ~ ek(n). dek(n)
dYj(n) 'r dYj(n)

= L ek(n) dek(n) netk(n)
k dnetk(n) dYj(n)

Given that ek(n) = dk(n) - Yk(n) we can write

for node k, we can write:

so:

m

netk(n) = L Wkj(n)Yj(n)
j=O

dnetk(n) _ -()
dYj(n) - Wk} n

Now equation A13 can be re-written as:

104

(All)

(AI2)

(AI3)

(A. 14)

(AlS)

(AI6)

(AI7)

aE(n) '\' ' -a .() = - LJ ek(n)f (neMn))wkj(n)
y, n k

= - L Ok(n)Wkj(n)
k

Now if we apply that on OJ equation in A. 11, we'll have:

105

OJ(n) = f;(netj(n)). L ok(n)wkj(n) (A.lB)
k

So as we have shown above, local gradient of a hidden node is expressed

in terms of local gradient of the output neuron. Recall that I1wji(n) =
T/Oj(n)Yi(n) we can propagate the error backwards to calculate I1wji(n) for

each weight connection.

So in order to calculate the error for unit j, we must first know the

error of all its posterior nodes. Again, as long as there are no cycles in the

network, there is an ordering of nodes from the output back to the input

that respects this condition. For example, we can simply use the reverse

of the order in which activity was propagated forward.

Vanilla gradient descent usually works well for simple models, but as the

error space becomes too complex vanilla gradient descent method takes

a long time to converge: The reason why is that the problem is stiff in the

sense that the few places where small step sizes are required ruins it for

the whole problem. For example when descending the walls of a very

steep bowl, very small steps should be taken to avoid "rattling out" of the

bowl. On the other hand, when moving along the gently sloping parts,

longer steps are required. The problem is addressed by choosing a step

that is some constant times the negative gradient rather than a step of

constant length in direction of the negative gradient. This is equivalent to

moving slowly in shallow regions and moving quickly in steep regions.

Another issue is that curvature of the error surface may not be the same

106

in all directions. This will cause different components of the gradient in

different directions to have different value which might slow down the

algorithm [4].

Appendix B

Experiment Results

We have included detailed obtained results in this Appendix. The columns
titles are explained as follows:

Table B.l: Results Title Description

Column Title Description
Sample size Selected percentage of sample size
Min Minimum observed classification accuracy value
Max Maximum observed classification accuracy value
Mean Average of all 30 runs of classification accuracy values
Std Standard Deviation
Dimension Portion of top principal components used

107

B.1. EXPERIMENT ONE: SAMPLE SIZE EFFECT

B.1 Experiment one: Sample Size Effect

LM

RP

bfg

gdm

KNN

ID3

HBL1

HBL2

HBL3

Table B.2: Glass Dataset Results

50%
75%

100%

63.63
73.27
72.58

68.22 1.98
75.62 1.72
77.10 1.49

108

B.l. EXPERIMENT ONE: SAMPLE SIZE EFFECT 109

Table B.3: Cohens d effect size for Glass

Algorithm Size GUM l:3FG RP KNN 103 HBL1 HBL2 Hl:3L3
25% 0.82 O.1Sj N~ U . .'JU N~ U.b~ U.b1S 0.78
50% NS 0.61 0.37 ·0.81 NS 0.88 0.91 0.93

LM 75% 0.31 0.47 NS 0.95 0.38 0.96 0.96 0.97
100% 0.46 0.35 0.33 0.93 0.54 0.94 0.94 0.97
1 25% - NS 0.79 0.63 0.79 0.63 0.62 0.39
50% - 0.71 0.49 0.85 0.40 0.92 0.35 0.67

gdm 75% - 0.63 0.45 0.94 NS 0.94 0.94 0.96
100% - NS NS 0.94 0.75 0.95 0.95 0.97
125% - - 0.82 0.64 0.81 0.66 0.65 0.35
50% - - 0.35 0.59 0.44 0.71 0.58 0.83

BFG 75% - - 0.35 0.96 0.66 0.96 0.96 0.97
100o/t - - NS 0.95 0.73 0.96 0.96 0.98
1
25% - - - U.j~ N~ U.b:l U.b:l UJ.'J
50% - - - 0.72 NS 0.81 0.91 0.94

RP 75% - - - 0.96 0.50 0.96 0.96 0.98
100% - - - 0.95 0.71 0.95 0.95 0.97
125% - - - - 0.40 NS NS 0.48
50% - - - - 0.75 NS 0.81 0.88

KNN 75% - - - - 0.93 NS NS 0.69
100% - - - - 0.87 0.27 NS 0.84
1
25% - - - - - U.b:l U.b1 U.14
50% - - - - - 0.83 0.89 0.93

103 75% - - - - - 0.94 0.94 0.96
100% - - - - - 0.90 0.89 0.95
1 25% - - - - - - NS 0.43
50% - - - - - - 0.89 0.94

HBL1 75% - - - - - - NS 0.76
100% - - - - - - NS 0.80
1 :l.'JU/o - - - - - - - U.4:l
50% - - - - - - - 0.94

HBL2 75% - - - - - - - 0.76
100°;; - - - - - - - 0.79

B.l . EXPERIMENT ONE: SAMPLE SIZE EFFECT

LM

RP

bfg

gdm

KNN

ID3

HBL1

HBL2

HBL3

Table B.4: Iris Dataset Results

o

50%
75%
100%

95.59 99.40
93.16 97.91
94.30 98.03

97.33 0.96
95.54 0.93
96.00 1.00

110

B.l. EXPERIMENT ONE: SAMPLE SIZE EFFECT 111

Table B.5: Cohens d effect size for Iris

~lgonthm t)ize GUM !::sliG l<.P KNN lU3 H!::SL1 H!::SL2 H!::SLo
25% U.66 U.51 U.71 U.62 U.2Y U.53 U.53 U./U
50% 0.60 0.36 NS 0.26 0.80 0.54 0.78 0.83

LM 75% NS 0.42 0.43 0.34 0.83 0.69 0.69 NS
100°;; 0.49 NS NS 0.66 0.59 0.91 0.92 0.41
25% - U.26 Nt) 0.28 0.52 0.48 0.48 Nt)
50% - 0.52 0.62 0.55 0.31 0.35 NS 0.39

gdm 75% - 0.26 0.27 0.34 0.76 0.60 0.60 NS
100°;; - 0.42 0.39 NS NS 0.62 0.63 0.25
ltl% - - U.::H Nt) U.31 0.25 0.25 Nt)
50% - - 0.36 NS 0.86 0.48 0.49 0.67

BFG 75% - - NS 0.63 0.89 0.82 0.82 0.47
100°;; - - NS 0.61 0.52 0.91 0.92 . 0.30
25% - - - U.36 U.58 U.62 U.61 Nt)
50% - - - NS 0.88 0.65 NS 0.55

RP 75% - - - 0.63 0.88 0.82 0.82 0.48
100°;; - - - 0.56 0.48 0.89 0.90 NS
ltl% - - - - U.43 U.3Y U.38 0.28
50% - - - - 0.85 0.51 0.64 0.80

KNN 75% - - - - 0.74 0.46 0.46 0.34
1000;; - - - - NS 0.81 0.83 0.36
ltlu/o - - - - - 0.26 0.26 0.56
50% - - - - - 0.79 0.69 0.78

ID3 75% - - - - - 0.62 0.61 0.84
100% - - - - - 0.75 0.77 0.29
25% - - - - - - Nt) U.64
50% - - - - - - 0.87 0.91

HBL1 75% - - - - - - NS 0.71
100% - - - - - - NS 0.85
25% - - - - - - - U.63
50% - - - - - - - 0.91

HBL2 75% - - - - - - - 0.71
100% - - - - - - - 0.86

B.l. EXPERIMENT ONE: SAMPLE SIZE EFFECT

LM

RP

bfg

gdrn

KNN

103

HBL1

HBL.2

HBL3

Table B.6: Zoo Dataset Results

o

50%
75%

100%

90.95 97.89 96.00 1.37
93.84 98.91 97.34 1.59
94.15 98.00 97.01 1.74

112

B.1. EXPERIMENT ONE: SAMPLE SIZE EFFECT 113

Table B.7: Cohens d effect size for Zoo

\Algorithm Size GDM BFG RP KNN ID3 HBLI HBL2 HBL3

25% 0.63 0.84 0.61 0.95 0.77 0.95 0.95 0.95
50% 0.76 0.39 0.68 0.76 0.94 0.41 0.97 0.97

LM 75% NS 0.66 NS 0.89 0.66 0.83 0.91 0.92
100% NS 0.35 NS 0.76 0.55 0.40 0.73 0.81
25% - 0.65 NS 0.92 0.33 0.93 0.93 0.94
50% - 0.57 NS 0.92 0.81 0.85 0.97 0.97

gdm 75% - 0.46 0.35 0.82 0.67 0.73 0.85 0.86
~OQO.,'c - 0.33 0.30 0.76 0.60 0.37 0.72 0.81
25% - - 0.67 0.77 0.57 0.75 0.77 0.81
50% - - 0.45 0.84 0.91 0.66 0.91 0.91

BFG 75% - - 0.69 0.74 0.89 0.55 0.79 0.83
1000;; - - 0.60 0.74 0.85 NS 0.67 0.80
25% - - - 0.92 0.38 0.93 0.93 0.94
50% - - - 0.89 0.82 0.81 0.97 0.97

RP 75% - - - 0.88 0.40 0.83 0.90 0.91
100% - - - 0.85 0.37 0.63 0.83 0.88
25% - - - - 0.93 NS NS NS
50% - - - - 0.97 0.62 0.72 0.74

KNN 75% - - - - 0.96 0.38 NS 0.29
100°1c - - - - 0.94 0.70 NS 0.28
25% - - - - - 0.95 0.95 0.95
50% - - - - - 0.96 0.98 0.98

ID3 75% - - - - - 0.94 0.96 0.97
1000J~ - - - - - 0.85 0.93 0.95
25% - - - - - - NS 0.44
50% - - - - - - 0.86 0.87

HBLI 75% - - - - - - 0.53 0.59
100% - - - - - - 0.63 0.77
25% - - - - - - - 0.34
50% - - - - - - - 0.84

HBL2 75% - - - - - - - NS
100% - - - - - - - 0.34

B.1. EXPERIMENT ONE: SAMPLE SIZE EFFECT

LM

RP

bfg

gdm

KNN

ID3

HBL1

HBL2

HBL3

Table B.8: Wine Dataset Results

50%
75%
100%

82.23 90.33 86.51 1.97
86.47 93.67 89.47 1.79
87.51 93.29 90.46 1.27

114

B.1. EXPERIMENT ONE: SAMPLE SIZE EFFECT 115

Table B.9: Cohens d effect size for Wine

Algorithm ~lze GUM B.t<G l{F KNN lu3 HtlL1 HtlL.-:2 HtlL_j
25% N~ U.41:S U.'/4 U.65 UHf U.61 U.l:Sb U.I'I
50% 0.40 0.59 NS 0.61 0.99 0.92 0.63 NS

LM 75% 0.47 NS 0.42 0.80 0.99 0.70 0.67 0.35
100% NS NS NS 0.90 1.00 0.81 0.80 0.55
125% - U.54 0.615 U.b6 U.~/ U.bl U.IH 0.7l
50% - NS 0.24 0.73 0.99 0.92 0.52 NS

gdm 75% - 0.56 NS 0.91 1.00 0.88 0.85 0.71
100°;; - NS NS 0.94 1.00 0.87 0.87 0.69
125% - - U.I:SI:S U.I:SI:S U.~~ U.I:S/ U.~4 U.~2

50% - - 0.45 0.84 0.99 0.95 0.89 0.73
BFG 75% - - 0.52 0.82 0.99 0.73 0.69 0.33

100°;; - - NS 0.94 1.00 0.88 0.87 0.65
125% - - - U.46 U.~b U.bl N~ N~

50% - - - 0.69 0.99 0.93 0.53 0.77
RP 75% - - - 0.92 1.00 0.88 0.85 0.69

1000;; - - - 0.96 1.00 0.91 0.91 0.76
125% - - - - U.~1:S N:::i U./'I U.41:S
50% - - - - 0.99 0.84 NS 0.74

KNN 75% - - - - 0.99 0.40 0.36 0.70
100% - - - - 1.00 0.68 0.68 0.87
125% - - - - - U.~I:S u.~/ U.YI:S
50% - - - - - 0.98 0.98 0.99

103 75% - - - - - 0.99 0.99 0.99
100% - - - - - 1.00 1.00 1.00
125% - - - - - - U.I:SU U.bb
50% - - - - - - NS 0.69

HBL1 75% - - - - - - NS 0.53
100% - - - - - - NS 0.65
12bu/o - - - - - - - U.bb
50% - - - - - - - 0.92

HBL2 75% - - - - - - - 0.49
100% - - - - - - - 0.65

B.1. EXPERIMENT ONE: SAMPLE SIZE EFFECT

LM

RP

bfg

gdm

KNN

HBL1

HBL2

HBL3

Table B.10: BreastCancer Dataset Results

o

50%
75%
100%

84.93 92.55
85.58 92.84
91.48 95.71

88.64 1.93
89.12 1.80
93.83 0.93

116

B.l. EXPERIMENT ONE: SAMPLE SIZE EFFECT 117

IAlgorithm ::;lze GDM BFG l{F KNN lUo HBL1 HBL2 HBL3
L.':>V/o U.4~ N:::i N::; N:::i UJ~6 U.LI:5 u.31 0.37
50% 0.49 NS NS 0.27 0.85 NS 0.80 0.80

LM 75% NS NS 0.82 0.73 0.86 0.72 0.75 0.73
10001< NS NS 0.40 0.71 0.93 0.85 0.96 0.72
25% - U.oL U.5'/ U.41:5 0.1:5'/ 0.02 O.OU U.21:5
50% - 0.35 0.26 0.64 0.90 0.59 0.30 0.30

gdm 75% - NS 0.84 0.77 0.87 0.76 0.78 0.76
10001< - NS 0.36 0.59 0.88 0.75 0.92 0.59
25% - - U.26 N:::i U.1:51 N::; N:::i N:::i
50% - - NS 0.30 0.80 NS 0.60 0.60

BFG 75% - - 0.86 0.80 0.89 0.80 0.81 0.80
100% - - NS 0.42 0.84 0.65 0.90 0.42
25% - - - NS 0.88 0.42 0.46 0.53
50% - - - 0.40 0.83 0.31 0.88 0.88

RP 75% - - - 0.48 NS 0.56 0.41 0.48
100% - - - 0.34 0.87 0.66 0.92 0.34
L5U/o - - - - O.YO N!; U.21:5 U.35
50% - - - - 0.81 NS 0.84 0.84

KNN 75% - - - - 0.59 NS NS NS
100% - - - - 0.88 0.57 0.94 NS
25% - - - - - U.I:5Y U.YU U.Y1
50% - - - - - 0.86 0.96 0.96

1D3 75% - - - _. - 0.67 0.53 0.60
10001< - - - - - 0.78 0.57 0.90
1 25% - - - - - - N::; N!;
50% - - - - - - 0.70 0.70

HBLI 75% - - - - - - NS NS
100% - - - - - - 0.90 0.62
IL.':>% - - - - - - - N::;
50% - - - - - - - 0.69

HBL2 75% - - - - - - - NS
100% - - - - - - - 0.95

8.1. EXPERIMENT ONE: SAMPLE SIZE EFFECT

LM

RP

bfg

gdm

KNN

ID3

HBL1

HBL2

HBL3

Table B.11: Parkinson Dataset Results

o

50%
75%
100%

83.44 95.01
86.24 94.91
81.31 86.45

89.90 2.60
91.78 1.87
84.26 1.25

118

B.l. EXPERIMENT ONE: SAMPLE SIZE EFFECT 119

Table B.12: Cohens d effect size for Parkinson

Algorithm Size GDM BFG RP KNN lU::3 HBL1 HBL:L HBL3
1 :LtJv/o U.61 N~ U.6::3 U.~H U':;; U':;l U.~6 U.~~

50% NS 0.29 0.71 0.72 0.87 0.70 0.85 0.86
LM 75% 0.71 NS 0.70 0.62 0.93 0.43 0.51 0.69

100°1< NS NS NS 0.80 0.90 0.95 0.79 0.59
125% - U.39 NS 0.88 U.94 U.32 U.79 U.82
50% - 0.39 0.83 0.78 0.91 0.80 0.75 0.78

gdm 75% - 0.72 NS 0.89 0.87 0.87 0.86 0.90
100~ - NS 0.41 0.79 0.91 0.96 0.80 0.51
1 :LtJv/o - - U.44 U.87 U.~::3 U.55 U.tH U.~:L

50% - - 0.62 0.66 0.92 0.62 0.77 0.79
BFG 75% - - 0.70 0.75 0.94 0.63 0.66 0.79

100% - - 0.23 0.80 0.91 0.95 0.80 0.58
1 :LtJ'1o - - - U.~~ U.Y4 N~ U':;:, U.;~

50% - - - 0.37 0.96 NS 0.68 0.72
RP 75% - - - 0.87 0.84 0.84 0.84 0.88

100°1< - - - 0.84 0.93 0.96 0.85 0.70
125% - - - - U.Y~ U.~:L U.:LY U.:LY
50% - - - - 0.93 0.28 0.64 0.57

KNN 75% - - - - 0.96 0.40 NS NS
100°1< - - - - 0.48 0.84 0.36 0.61
i 25'10 - - - - - U.95 U.Y6 U.Y;
50% - - - - - 0.95 0.97 0.97

1D3 75% - - - - - 0.96 0.96 0.96
100~ - - - - - 0.78 0.78 0.84
125'10 - - - - - - U.68 U.72
50% - - - - - - 0.57 0.63

HBL1 75% - - - - - - NS 0.54
100°1< - - - - - - 0.93 0.94
1 25% - - - - - - - NS
50% - - - - - - - 0.27

HBL2 75% - - - - - - - 0.37
100°1< - - - - - - - 0.50

B.1. EXPERIMENT ONE: SAMPLE SIZE EFFECT

Table B.13: Madelon Dataset Results

HBL...2
50%
75%
100%

64.14 75.25 70.00 2.70
66.85 75.94 71.09 2.24
68.82 74.64 71.88 1.55

Table B.14: Cohens Effect Size for Madelon

·50%
KNN 75%

100%

NS
NS
0.34

120

B.1. EXPERIMENT ONE: SAMPLE SIZE EFFECT

RP

gdm

KNN

103

HBL1

HBL2

HBL3

Table B.15: Pima Dataset Results

o

50%
75%
100%

65.43 73.86 69.85 1.88
69.65 74.78 72.34 1.47
71.84 77.68 74.48 1.35

121

B.l. EXPERIMENT ONE: SAMPLE SIZE EFFECT 122

Table B.16: cohens d EffectSize for Pima

gdm

RP 75%
100%

0
0

50%
KNN 75%

100%
0

50%
ID3 75%

100%

HBL1

0

50% 0.52
HBL2 75% 0.66

100% 0.78

B.l. EXPERIMENT ONE: SAMPLE SIZE EFFECT

RP

gdm

KNN

ID3

HBL1

HBL..2

HBL3

Table B.17: Musk Dataset Results

50%
75%
100%

65.81 75.07 70.60 2.33
69.33 78.08 73.65 1.97
76.09 79.72 77.49 0.92

123

B.1. EXPERIMENT ONE: SAMPLE SIZE EFFECT

Table B.18: Cohens d Effect size for Musk

Gdm

RP

KNN

ID3

HBL1

50% -
HBL2 75% -

100% -

0.67
0.54
0.52

124

B.1. EXPERIMENT ONE: SAMPLE SIZE EFFECT

RP

gdrn

KNN

ID3

HBL1

HBL2

HBL3

Table B.19: Connectionist Dataset Results

o

50%
75%

100%

53.95 64.37 58.09 2.66
56.33 65.56 60.34 2.02
55.65 61.55 59.30 1.25

125

8.1. EXPERIMENT ONE: SAMPLE SIZE EFFECT 126

Table B.20: Cohens d Size Effect for Connectionist Data Set

gdm

RP

KNN

ID3

HBL1

HBL2

B.2. EXPERIMENT TWO: DATA DIMENSIONALITY EFFECT 127

B.2 Experiment Two: Data Dimensionality Ef
fect

HBL.3

Table B.21: Glass Dataset Results

50%
75%

100%

69.10 77.06 72.20 1.72
70.27 80.41 75.95 2.62
74.51 79.81 77.09 1.34

B.2. EXPERIMENT TWO: DATA DIMENSIONALITY EFFECT 128

Table B.22: Cohen d Effect Size Table for Glass

RP

KNN

ID3

RP

BFG

KNN

ID3

HBL3

75%
100%

0

50% 0.75 0.96
75% 0.70 0.90

100% 0.87 0.84
0

50% 0.97
75% 0.93

100% 0.95

Table B.23: Zoo Dataset Results

o

50%
75%

100%

87.93 95.23 92.12 1.81
92.37 98.30 95.45 1.41
94.15 98.14 97.01 1.74

B.2. EXPERIMENT TWO: DATA DIMENSIONALITY EFFECT 129

Table B.24: Cohen d Effect Size Table for Zoo

RP

KNN

ID3

RP

BFG

KNN

ID3

HBL3

75%
100%

0

50% 0.91 NS
75% 0.85 0.65
100% 0.94 0.28

0

50% 0.96
75% 0.93

100% 0.95

Table B.25: Wine Dataset Results

o

50%
75%

100%

79.43 89.26 85.26 2.40
81.32 90.66 85.50 2.59
87.51 93.29 90.46 1.27

B.2. EXPERIMENT TWO: DATA DIMENSIONAUTY EFFECT 130

Table B.26: Cohen d Effect Size Table for Wine

BFG 75%
100%

0

50%
RP 75%

100%
0

50% 0.99 0.76
KNN 75% 0.98 NS

100% 1.00 0.87
0

0

50% 0.99
ID3 75% 0.98

100% 1.00

Table B.27: Parkinson Dataset Results

RP

BFG

KNN

ID3

HBL3

o

50%
75%

100%

81.26 84.14 82.86
79.87 87.17 83.86
81.31 86.45 84.26

B.2. EXPERIMENT TWO: DATA DIMENSIONALITY EFFECT 131

Table B.28: Cohen d Effect Size Table for Parkinson

BFG

RP

KNN

ID3

I HBL3

3

75%
100%

0

50% 0.75 0.84
75% 0.29 0.58
100% 0.48 0.61

0

50% 0.90
75% 0.63
100% 0.84

Table B.35: Breast Dataset Results

50%
75%

100%

87.98 97.16 92.10 2.42
88.93 95.79 92.17 1.82
91.48 95.71 93.83 0.93

B.2. EXPERIMENT TWO: DATA DIMENSIONALITY EFFECT 132

Table B.29: Pima Dataset Results

Algorithm Dimension Min Max Mean Std

25% 70.68 73.56 72.16 0.75
50% 69.79 74.20 72.74 0.78

RP 75% 73.69 77.33 75.34 0.90
100% 68.69 80.22 73.74 2.59
25% 70.96 73.44 72.32 0.63
50% 70.97 74.61 72.86 0.88

BFG 75% 71.48 76.82 75.11 1.03
100% 73.28 82.54 78.04 2.22
25% 63.48 66.39 65.17 0.68
50% 68.42 71.24 69.64 0.80

KNN 75% 69.58 72.58 71.03 0.78
100% 68.94 75.05 72.02 1.55
25% 64.88 67.41 65.99 0.73
50% 65.69 69.98 68.17 0.96

ID3 75% 65.75 72.83 69.07 1.71
100% 68.57 73.20 71.69 1.15
25% 66.30 68.88 67.46 0.56
50% 68.84 71.97 70.59 0.81

HBL3 75% 71.49 76.16 73.32 1.00
100% 71.84 77.68 74.48 1.35

Table B.36: Cohen d Effect Size Table for Breast

RP 75%
100%

0

50% 0.76 0.54
KNN 75% 0.62 NS

100% 0.88 NS
0

50% 0.83
ID3 75% 0.58

100% 0.90

B.2. EXPERIMENT TWO: DATA DIMENSIONALITY EFFECT 133

Table B.30: Cohen d Effect Size Table for Pima

Algorithm Dimension RP KNN ID3 HBL3

25% NS 0.98 0.98 0.97
50% NS 0.89 0.93 0.76

BFG 75% NS 0.91 0.91 0.66
100% 0.67 0.84 0.87 0.70
25% - 0.98 0.97 0.96
50% - 0.89 0.93 0.71

RP 75% - 0.93 0.92 0.72
100% - 0.37 0.46 NS
25% - - 0.50 0.88
50% - - 0.64 0.96

KNN 75% - - 0.59 0.79
100% - - NS 0.65
25% - - - 0.75
50% - - - 0.95

ID3 75% - - - 0.84
100% - - - 0.74

Table B.37: Connectionist Dataset Results

HBL3
50%
75%

100%

55.21 52.46 1.46
63.94 61.18 1.59
61.55 59.30 1.25

B.2. EXPERIMENT TWO: DATA DIMENSIONALITY EFFECT 134

Table B.31: Iris Dataset Results

Algorithm Dimension Min Max Mean Std

25% 57.33 68.67 63.44 2.66
50% 56.00 64.67 60.71 2.03

RP 75% 71.33 79.33 75.42 2.07
100% 94.00 98.00 96.47 0.91
25% 58.00 66.67 63.58 2.05
50% 56.00 68.00 62.18 3.18

BFG 75% 68.00 80.00 74.40 3.02
100% 94.67 98.00 96.58 0.83
25% 53.68 65.09 59.28 2.69
50% 56.80 65.52 61.84 1.97

KNN 75% 70.70 80.98 76.54 2.29
100% 93.64 97.19 95.29 0.82
25% 56.90 70.79 65.02 3.22
50% 58.29 65.41 61.51 2.01

ID3 75% 70.33 79.61 75.96 2.64
100% 92.67 97.54 95.33 1.17
25% 56.44 68.61 62.05 2.90
50% 55.16 65.28 60.36 2.26

HBL3 75% 71.01 79.43 75.66 2.42
100% 94.30 98.03 96.00 1.00

Table B.38: Cohen d Effect Size Table for Connectionist

50% 0.74 0.99
KNN 75% 0.88 0.69

100% 0.90 0.66
0

50% 0.99
ID3 75% 0.93

100% 0.96

B.2. EXPERIMENT TWO: DATA DIMENSIONALITY EFFECT 135

Table B.32: Cohen d Effect Size Table for Iris

!Algorithm pimension RP KNN ID3 HBL3

25% NS 0.67 NS 0.29
50% NS NS NS 0.60

BFG 75% NS 0.37 NS NS
100% NS 0.61 0.52 0.30
25% - 0.61 0.26 NS
50% - 0.27 NS 0.53

RP 75% - NS NS NS
100% - 0.56 0.48 NS
25% - - 0.70 0.44
50% - - NS NS

KNN 75% - - NS NS
100% - - NS 0.36
25% - - - 0.44
50% - - - 0.64

ID3 75% - - - NS
100% - - - 0.29

Table B.33: Madelon Dataset Results

Algorithm Dimension Min Max Mean Std

25% 55.38 59.12 57.35 0.94
50% 53.73 57.04 55.37 0.96

RP 75% 53.96 56.92 55.57 0.65
100% 52.63 58.02 54.92 1.24
25% 66.50 71.18 68.59 1.11
50% 66.68 70.48 68.44 0.92

KNN 75% 68.14 71.29 69.70 0.82
100% 68.58 73.63 70.85 1.31
25% 41.12 44.78 43.57 0.88
50% 45.62 50.23 48.17 1.05

ID3 75% 47.92 51.19 49.30 0.80
100% 46.14 52.07 49.80 1.53
25% 64.25 69.62 67.51 1.29
50% 66.57 72.37 69.23 1.29

HBL3 75% 67.16 72.24 69.38 1.24
100% 68.50 75.24 72.23 11.53

B.2. EXPERIMENT TWO: DATA DIMENSIONALITY EFFECT 136

Table B.34: Cohen d Effect Size Table for Madelon

!Algorithm Dimension RP KNN ID3 HBL3

25% - 0.98 0.99 0.98
50% - 0.99 0.96 0.98

RP 75% - 0.99 0.97 0.99
100% - 0.99 0.88 0.99
25% - - 1.00 0.41
50% - - 1.00 NS

KNN 75% - - 1.00 NS
100% - - 0.99 0.44
25% - - - 1.00
50% - - - 1.00

ID3 75% - - - 0.99
100% - - - 0.99

Table B.39: Musk V2 Dataset Results

HBL3
50%
75%

100%

49.72 56.39 52.47 1.68
57.46 64.53 61.19 1.60
76.09 79.72 77.49 0.92

B.2. EXPERIMENT TWO: DATA DIMENSIONALITY EFFECT 137

Table B.40: Cohen d Effect Size Table for Musk V2

RP 75%
100%

0

50% 0.73 0.29
KNN 75% 0.90 0.97

100% 0.97 0.63
0

50% 0.78
ID3 75% 0.69

100% 0.99

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 138

B.3 Experiment Three: General Performance
Evaluation

Table B.41: Iris: Neural Network Confusion matrix

Predicted Classes
class 1 class 2 class 3

class 1 4.99 ± 0.03 0.01 ± 0.03 0.00 ± 0.00
class 2 0.01 ± 0.04 4.68 ± 0.08 0.31 ± 0.08
class 3 0.01 ± 0.03 0.19 ± 0.10 4.80 ± 0.10

Table B.42: Iris: ID3 Confusion matrix

Predicted Classes
class 1 class 2 class 3

class 1 4.96 ± 0.07 0.03 ± 0.05 0.01 ± 0.04
class 2 0.06 ± 0.07 4.60 ± 0.13 0.34 ± 0.10
class 3 0.04 ± 0.06 0.21 ± 0.11 4.75 ± 0.09

Table B.43: Iris: KNN Confusion matrix

Predicted Classes
class 1 class 2 class 3

class 1 4.95 ± 0.07 0.03 ± 0.06 0.01 ± 0.05
class 2 0.07 ± 0.09 4.60 ± 0.11 0.33 ± 0.10
class 3 0.03 ± 0.05 0.21 ± 0.10 4.76 ± 0.09

Table B.44: Iris: HBL1 Confusion matrix

Predicted Classes
class 1 class 2 class 3

class 1 4.87 ± 0.11 0.09 ± 0.11 0.03 ± 0.05
class 2 0.13 ± 0.11 4.47 ± 0.13 0.41 ± 0.11
class 3 0.08 ± 0.08 0.28 ± 0.15 4.64 ± 0.16

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 139

Table B.45: Iris: HBL3 Confusion matrix

Predicted Classes
class 1 class 2 class 3

class 1 4.97 ± 0.05 0.01 ± 0.03 0.02 ± 0.04
class 2 0.02 ± 0.05 4.66 ± 0.09 0.32 ± 0.09
class 3 0.01 ± 0.03 0.19 ± 0.10 4.79 ± 0.10

Table B.46: Iris: Kappa Test Results

Algorithm Cohen's Kappa Kappa Error Confidence Interval Z Score Stat Result

RP 0.95 0.01 0.94-0.96 51.92 1

KNN 0.93 0.01 0.92-0.95 51.01 1

ID3 0.93 0.01 0.92-0.95 50.97 1

HBL1 0.90 0.01 0.88-0.92 49.25 1

HBL3 0.94 0.01 0.93-0.96 51.63 1

Table B.47: Glass:ID3 Confusion matrix

Predicted Classes
class 1 class 2 class 3 class 4 class 5 class 6

class 1 5.99 ± 0.25 0.87 ± 0.21 0.04 ± 0.09 0.04 ± 0.07 0.04 ± 0.08 0.01 ± 0.03

class 2 2.95 ± 0.32 4.45 ± 0.35 0.04 ± 0.07 0.07 ± 0.08 0.05 ± 0.07 0.04 ± 0.06
class 3 1.20 ± 0.22 0.16 ± 0.14 0.26 ± 0.21 0.02 ± 0.05 0.04 ± 0.06 0.02 ± 0.06
class 4 0.16 ± 0.16 0.16 ± 0.13 0.06 ± 0.09 0.79 ± 0.21 0.06 ± 0.10 0.07 ± 0.09
class 5 0.37 ± 0.21 0.11 ± 0.11 0.03 ± 0.06 0.04 ± 0.11 0.31 ± 0.21 0.03 ± 0.07
class 6 0.29 ± 0.12 0.15 ± 0.12 0.06 ± 0.10 0.05 ± 0.07 0.04 ± 0.06 2.32 ± 0.24

Table BA8: Glass: Neural Network Confusion matrix

Predicted Classes
class 1 class 2 class 3 class 4 class 5 class 6

class 1 6.01 ± 0.19 0.97 ± 0.19 0.02 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.03
class 2 3.08 ± 0.29 4.27 ± 0.31 0.04 ± 0.06 0.11 ± 0.09 0.07 ± 0.08 0.02 ± 0.04
class 3 1.36 ± 0.10 0.33 ± 0.10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.02 0.00 ± 0.00
class 4 0.24 ± 0.12 0.32 ± 0.09 0.03 ± 0.05 0.64 ± 0.15 0.01 ± 0.03 0.07 ± 0.07
class 5 0.48 ± 0.19 0.16 ± 0.12 0.03 ± 0.05 0.04 ± 0.05 0.17 ± 0.10 0.02 ± 0.04
class 6 0.32 ± 0.10 0.20 ± 0.11 0.05 ± 0.07 0.07 ± 0.08 0.06 ± 0.07 2.21 ± 0.12

B.3. EXPERIMENT THREE : GENERAL PERFORMANCE EVALUATION 140

Table B.49: Glass: KNN Confusion matrix

Predicted Classes
class 1 class 2 class 3 class 4 class 5 class 6

class 1 6.23 ± 0.23 0.68 ± 0.24 0.04 ± 0.06 0.03 ± 0.06 0.01 ± 0.03 0.02 ± 0.04
class 2 2.73 ± 0.38 4.70 ± 0.35 0.03 ± 0.06 0.07 ± 0.09 0.06 ± 0.09 0.02 ± 0.04

class 3 0.99 ± 0.25 0.10 ± 0.10 0.51 ± 0.25 0.01 ± 0.05 0.03 ± 0.08 0.05 ± 0.07
class 4 0.09 ± 0.10 0.09 ± 0.10 0.04 ± 0.07 1.01 ± 0.17 0.04 ± 0.06 0.03 ± 0.05
class 5 0.18 ± 0.19 0.06 ± 0.08 0.03 ± 0.07 0.05 ± 0.09 0.55 ± 0.22 0.03 ± 0.05
class 6 0.19 ± 0.14 0.05 ± 0.09 0.04 ± 0.09 0.02 ± 0.04 0.04 ± 0.07 2.56 ± 0.21

Table B.50: Glass: HBL1 Confusion matrix

Predicted Classes
class 1 class 2 class 3 class 4 class 5 class 6

class 1 6.32 ± 0.29 0.59 ± 0.29 0.03 ± 0.07 0.02 ± 0.04 0.01 ± 0.03 0.02 ± 0.05
class 2 2.65 ± 0.34 4.72 ± 0.25 0.06 ± 0.09 0.06 ± 0.11 0.04 ± 0.08 0.06 ± 0.10
class 3 1.00 ± 0.21 0.09 ± 0.09 0.49 ± 0.22 0.03 ± 0.06 0.06 ± 0.08 0.04 ± 0.07
class 4 0.07 ± 0.09 0.06 ± 0.06 0.03 ± 0.04 1.05 ± 0.18 0.05 ± 0.08 0.05 ± 0.07
class 5 0.21 ± 0.18 0.08 ± 0.10 0.02 ± 0.04 0.04 ± 0.07 0.53 ± 0.17 0.02 ± 0.05

class 6 0.14 ± 0.11 0.07 ± 0.09 0.02 ± 0.05 0.03 ± 0.06 0.02 ± 0.05 2.61 ± 0.17

Table B.51: HBL3 Confusion matrix

Predicted Classes
class 1 class 2 class 3 class 4 class 5 class 6

class 1 6.40 ± 0.33 0.46 ± 0.30 0.04 ± 0.09 0.04 ± 0.09 0.03 ± 0.05 0.02 ± 0.04
class 2 2.48 ± 0.40 5.02 ± 0.37 0.02 ± 0.05 0.04 ± 0.07 0.03 ± 0.05 0.01 ± 0.03
class 3 0.81 ± 0.21 0.08 ± 0.08 0.71 ± 0.24 0.04 ± 0.10 0.03 ± 0.05 0.03 ± 0.04
class 4 0.06 ± 0.08 0.08 ± 0.09 0.05 ± 0.09 1.05 ± 0.19 0.03 ± 0.07 0.03 ± 0.06
class 5 0.12 ± 0.12 0.06 ± 0.11 0.02 ± 0.04 0.04 ± 0.07 0.65 ± 0.20 0.02 ± 0.04
class 6 0.15 ± 0.15 0.03 ± 0.06 0.02 ± 0.05 0.03 ± 0.04 0.01 ± 0.03 2.66 ± 0.15

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 141

Table B.52: Glass Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score

RP 0.58 0.1598 0.27-0.89 3.33
KNN 0.69 0.1225 0.45-0.93 5.29
ID3 0.58 0.1598 0.27-0.89 3.33

HBL1 0.66 0.1314 0.41-0.92 4.68

HBL3 0.80 0.1072 0.59-1.00 5.97

Table B.53: Zoo: ID3 Confusion matrix

Predicted Classes
class 1 class 2 class 3 class 4 class 5 class 6

Table B.54: Zoo: Neural Network Confusion matrix

Predicted Classes
class 1 class 2 class 3 class 4 class 5 class 6

Stat Result

1
1
1
1
1

class 7

.02 ± 0.05

.03 ± 0.04

.04 ± 0.06

.01 ± 0.03

.02 ± 0.06

.03 ± 0.05

.81 ± 0.15

class 7

.02 ± 0.06

.00 ± 0.00

.02 ± 0.04

.01 ± 0.03

.01 ± 0.03

.01 ± 0.03

.75 ± 0.10

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 142

Table B.55: Zoo: KNN Confusion matrix

Predicted Classes
class 1 class 2 class 3 class 4 class 5 class 6

Table B.56: Zoo: HBL1 Confusion matrix

Predicted Classes
class 1 class 2 class 3 class 4 class 5 class 6

Table B.57: Zoo: HBL3 Confusion matrix

Predicted Classes
class 1 class 2 class 3 class 4 class 5 class 6

class 7

.01 ± 0.03

.00 ± 0.02

.01 ± 0.03

.02 ± 0.05

.01 ± 0.03

.01 ± 0.03

.92 ± 0.09

class 7

.01 ± 0.03

.01 ± 0.03

.03 ± 0.05

.03 ± 0.05

.00 ± 0.02

.01 ± 0.03

.91 ± 0.11

class 7

.02 ± 0.04

.01 ± 0.03

.00 ± 0.00

.00 ± 0.02

.01 ± 0.03

.00 ± 0.02

.94 ± 0.06

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 143

Table B.58: Zoo Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Zscore Stat Result

RP 0.87 0.1225 0.63-1.00 5.51 1

KNN 0.94 0.0840 0.78-1.00 6.05 1

ID3 0.85 0.1317 0.59-1.00 5.43 1

HBL1 0.91 0.1046 0.71-1.00 5.83 1
HBL3 0.95 0.0772 0.80-1.00 6.11 1

Table B.59: Wine: Neural Network Confusion matrix

Predicted Classes
class 1 class 2 class 3

class 1 5.67 ± 0.07 0.23 ± 0.07 0.00 ± 0.00
class 2 0.79 ± 0.23 6.09 ± 0.24 0.22 ± 0.09
class 3 0.12 ± 0.09 0.23 ± 0.13 4.46 ± 0.14

Table B.60: Wine: KNN Confusion matrix

Predicted Classes
class 1 class 2 class 3

class 1 5.35 ± 0.34 0.34 ± 0.26 0.21 ± 0.22
class 2 0.75 ± 0.35 5.89 ± 0.49 0.46 ± 0.36
class 3 0.25 ± 0.18 0.39 ± 0.27 4.16 ± 0.34

Table B.61: Wine: ID3 Confusion matrix

Predicted Classes
class 1 class 2 class 3

class 1 4.01 ± 0.46 1.29 ± 0.34 0.60 ± 0.29
class 2 1.75 ± 0.41 4.10 ± 0.48 1.24 ± 0.34
class 3 0.58 ± 0.25 1.27 ± 0.44 2.95 ± 0.42

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 144

Table B.62: Wine: HBL1 Confusion matrix

Predicted Classes
class 1 class 2 class 3

class 1 5.40 ± 0.24 0.32 ± 0.24 0.18 ± 0.18
class 2 0.82 ± 0.38 6.01 ± 0.34 0.27 ± 0.20
class 3 0.17 ± 0.19 0.28 ± 0.21 4.34 ± 0.25

Table B.63: Wme: HBL3 Confusion matrix

Predicted Classes
class 1 class 2 class 3

class 1 5.45 ± 0.28 0.31 ± 0.26 0.14 ± 0.17
class 2 0.54 ± 0.27 6.27 ± 0.37 0.30 ± 0.28
class 3 0.16 ± 0.15 0.25 ± 0.25 4.39 ± 0.28

Table B.64: Wine Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result

RP 0.87 0.1022 0.66-1.00 5.10 1

KNN 0.80 0.1224 0.56-1.00 4.71 1

ID3 0.43 0.1742 0.09-0.77 2.52 1

HBL1 0.83 0.1146 0.60-1.00 4.88 1

HBL3 0.86 0.1055 0.65-1.00 5.07 1

Table B.65: Parkinson: ID3 Confusion matrix

Predicted Classes
class 1 class 2

class 1 14.96 ± 0.38 1.54 ± 0.38
class 2 2.26 ± 0.32 0.74 ± 0.32

Table B.66: Parkinson: KNN Confusion matrix

Predicted Classes
class 1 class 2

class 1 15.15 ± 0.37 1.35 ± 0.37
class 2 2.16 ± 0.44 0.84 ± 0.44

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 145

Table B.67: Parkinson: HBL1 Confusion matrix

Predicted Classes
class 1 class 2

class 1 14.49 ± 0.48 2.01 ± 0.48
class 2 2.39 ± 0.42 0.61 ± 0.42

Table B.68: Parkinson: HBL3 Confusion matrix

Predicted Classes
class 1 class 2

class 1 15.53 ± 0.36 0.97 ± 0.36
class 2 2.11 ± 0.33 0.89 ± 0.33

Table B.69: Parkinson: Neural Network Confusion matrix

Predicted Classes
class 1 class 2

class 1 15.93 ± 0.26 0.57 ± 0.26
class 2 I 1.67 ± 0.24 1.33 ± 0.24

Table B.70: Parkinson Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result

RP 0.49 0.3259 0.0-1.00 1.96 1

KNN 0.22 0.3756 0.0-0.96 0.94 0

103 0.17 0.3821 0.0-0.92 0.73 0

HBL1 0.08 0.3837 0.0-0.84 0.37 0

HBL3 0.28 0.3760 0.0-1.00 1.00 0

Table B.71: Pima: 103 Confusion matrix

Predicted Classes
class 1 class 2

class 1 42.76 ± 0.73 7.24 ± 0.73
class 2 14.50 ± 0.67 12.30 ± 0.67

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 146

Table B.72: Pima: KNN Confusion matrix

Predicted Classes
class 1 class 2

class 1 43.08 ± 0.74 6.92 ± 0.74
class 2 14.58 ± 0.73 12.22 ± 0.73

Table B.73: Pima: HBL1 Confusion matrix

Predicted Classes
class 1 class 2

class 1 41.15 ± 0.57 8.85 ± 0.57
class 2 16.57 ± 0.71 10.23 ± 0.71

Table B.74: Pima: HBL3 Confusion matrix

Predicted Classes
class 1 class 2

class 1 44.04 ± 0.76 5.96 ± 0.76
class 2 13.64 ± 0.68 13.16 ± 0.68

Table B.75: Pima: Neural Network Confusion matrix

Predicted Classes
class 1 class 2

class 1 44.39 ± 0.53 5.61 ± 0.53
class 2 13.20 ± 0.45 13.60 ± 0.45

Table B.76: Pima Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result

RP 0.42 0.1156 0.20-0.65 3.44 1
KNN 0.34 0.1208 0.10-0.58 2.76 1
ID3 0.34 0.1207 0.10-0.57 2.74 1

HBL1 0.22 0.1266 0.00-0.47 1.78 0
HBL3 0.40 0.1173 0.17-0.63 3.23 1

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 147

Table B.77: Breast Cancer: KNN Confusion matrix

Predicted Classes
class 1 class 2

class 1 43.60 ± 0.64 2.20 ± 0.64
class 2 2.16 ± 0.44 21.94 ± 0.44

Table B.78: Breast Cancer: HBL1 Confusion matrix

Predicted Classes
class 1 class 2

class 1 42.90 ± 0.57 2.90 ± 0.57
class 2 2.53 ± 0.67 21.57 ± 0.67

Table B.79: Breast Cancer: HBL3 Confusion matrix

Predicted Classes
class 1 class 2

class 1 43.47 ± 0.54 2.33 ± 0.54
class 2 1.98 ± 0.44 22.12 ± 0.44

Table B.80: Breast Cancer: Neural Network Confusion matrix

Predicted Classes
class 1 class 2

class 1 44.34 ± 0.14 1.46 ± 0.14
class 2 1.13 ± 0.21 22.97 ± 0.21

Table B.81: Breast Cancer Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result

RP 0.92 0.0498 0.82-1.00 7.68 1
KNN 0.86 0.0640 0.74-0.99 7.21 1
HBL1 0.83 0.0706 0.69-0.97 6.93 1
HBL3 0.86 0.0635 0.74-0.99 7.22 1

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 148

Table B.82: Madelon: ID3 Confusion matrix

Predicted Classes
class 1 class 2

class 1 82.00 ± 4.64 48.00 ± 4.64
class 2 76.41 ± 5.15 53.59 ± 5.15

Table B.83: Madelon: KNN Confusion matrix

Predicted Classes
class 1 class 2

class 1 106.18 ± 4.99 23.82 ± 4.99
class 2 52.06 ± 5.14 77.94 ± 5.14

Table B.84: Madelon: HBL1 Confusion matrix

Predicted Classes
class 1 class 2

class 1 102.85 ± 5.27 27.15 ± 5.27
class 2 55.58 ± 5.51 74.42 ± 5.51

Table B.95: Wine: Neural Network Confusion matrix

Predicted Classes

class 1 class 2 class 3

class 1 5.67 ± 0.07 0.23 ± 0.07 0.00 ± 0.00

class 2 0.79 ± 0.23 6.09 ± 0.24 0.22 ± 0.09

class 3 0.12 ± 0.09 0.23 ± 0.13 4.46 ± 0.14

Table B.97: Wine: ID3 Confusion matrix

Predicted Classes

class 1 class 2 class 3

class 1 4.01 ± 0.46 1.29 ± 0.34 0.60 ± 0.29

class 2 1.75 ± 0.41 4.10 ± 0.48 1.24 ± 0.34

class 3 0.58 ± 0.25 1.27 ± 0.44 2.95 ± 0.42

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 149

Table B.85: Madelon: HBL3 Confusion matrix

Predicted Classes
class 1 class 2

class 1 107.87 ± 4.42 22.13 ± 4.42
class 2 50.16 ± 5.25 79.84 ± 5.25

Table B.86: Madelon: Neural Network Confusion matrix

Predicted Classes
class 1 class 2

class 1 87.03 ± 4.48 42.97 ± 4.48
class 2 71.38 ± 5.05 58.62 ± 5.05

Table B.87: Madelon Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result

RP 0.12 0.0616 0.00-0.24 1.82 0
KNN 0.42 0.0564 0.31-0.53 6.28 1
HBL1 0.36 0.0578 0.25-0.48 5.48 1
HBL3 0.44 0.0556 0.33-0.55 6.71 1

Table B.98: Wine: HBL1 Confusion matrix

Predicted Classes

class 1 class 2 class 3

class 1 5.40 ± 0.24 0.32 ± 0.24 0.18 ± 0.18

class 2 0.82 ± 0.38 6.01 ± 0.34 0.27 ± 0.20

class 3 0.17 ± 0.19 0.28 ± 0.21 4.34 ± 0.25

Table B.99: Wine: HBL3 Confusion matrix

Predicted Classes

class 1 class 2 class 3

class 1 5.45 ± 0.28 0.31 ± 0.26 0.14 ± 0.17

I
class 2 0.54 ± 0.27 6.27 ± 0.37 0.30 ± 0.28

class 3 0.16 ± 0.15 0.25 ± 0.25 4.39 ± 0.28

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 150

Table B.88: Musk V2: ID3 Confusion matrix

Predicted Classes
class 1 class 2

class 1 13.1 ± 0.83 88.6 ± 0.83
class 2 137.2 ± 0.55 420.9 ± 0.55

Table B.89: Musk V2: KNN Confusion matrix

Predicted Classes
class 1 class 2

class 1 16.1 ± 0.92 85.6 ± 0.92
class 2 83.6 ± 0.49 474.5 ± 0.49

Table B.90: Musk V2: HBL1 Confusion matrix

Predicted Classes
class 1 class 2

class 1 13.5 ± 0.91 88.2 ± 0.91
class 2 99.7 ± 0.71 458.4 ± 0.71

Table B.100: Wine Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result

RP 0.87 0.1022 0.66-1.00 5.10 1

KNN 0.80 0.1224 0.56-1.00 4.71 1

ID3 0.43 0.1742 0.09-0.77 2.52 1

HBL1 0.83 0.1146 0.60-1.00 4.88 1

HBL3 0.86 0.1055 0.65-1.00 5.07 1

Table B.101: Parkinson: 103 Confusion matrix

Predicted Classes

class 1 class 2

class 1 14.96 ± 0.38 1.54 ± 0.38

class 2 2.26 ± 0.32 0.74 ± 0.32

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 151

Table B.91: Madelon: HBL3 Confusion matrix

Predicted Classes
class 1 class 2

class 1 29.6 ± 4.42 72.1 ± 4.42
class 2 76.1 ± 5.25 482 ± 5.25

Table B.92: Neural Network Confusion matrix

Predicted Classes
class 1 class 2

class 1 99.26 ± 0.72 2.44 ± 0.72
class 2 2.31 ± 0.51 555.79 ± 0.51

Table B.93: Musk V2 Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result

RP 0.13 0.0656 0.00-0.10 0.81 0
KNN 0.01 0.0657 0.00-0.14 0.23 0
ID3 0.10 0.0593 0.00-0.20 2.33 1

HBL1 0.04 0.0644 0.17-0.08 1.12 0
HBL3 0.15 0.0613 0.03-0.27 3.91 1

Table B.102: Parkinson: KNN Confusion matrix

Predicted Classes

class 1 class 2

class 1 15.15 ± 0.37 1.35 ± 0.37

class 2 2.16 ± 0.44 0.84 ± 0.44

Table B.103: Parkinson: HBL1 Confusion matrix

Predicted Classes

class 1 class 2

class 1 14.49 ± 0.48 2.01 ± 0.48

class 2 2.39 ± 0.42 0.61 ± 0.42

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 152

Table B.94: Zoo Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result

RP 0.87 0.1225 0.63-1.00 5.51 1
KNN 0.94 0.0840 0.78-1.00 6.05 1
103 0.85 0.1317 0.59-1.00 5.43 1

HBLI 0.91 0.1046 0.71-1.00 5.83 1
HBL3 0.95 0.0772 0.80-1.00 6.11 1

Table B.96: Wine: KNN Confusion matrix

Predicted Classes
class 1 class 2 class 3

class 1 5.35 ± 0.34 0.34 ± 0.26 0.21 ± 0.22
class 2 0.75 ± 0.35 5.89 ± 0.49 0.46 ± 0.36
class 3 0.25 ± 0.18 0.39 ± 0.27 4.16 ± 0.34

-

Table B.I04: Parkinson: HBL3 Confusion matrix

Predicted Classes

class 1 class 2

class 1 15.53 ± 0.36 0.97 ± 0.36

class 2 2.11 ± 0.33 0.89 ± 0.33

Table B.l05: Parkinson: Neural Network Confusion matrix

Predicted Classes

I class 1 class 2

cla4l5.93 ± 0.26 0.57 ± 0.26

class ~67 ± 0.24 1.33 ± 0.24

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 153

Table B.106: Parkinson Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result

RP 0.48 0.3259 -0.16-1.12 1.95 0

KNN 0.22 0.3756 -0.51-0.96 0.94 0

ID3 0.17 0.3821 -0.58-0.92 0.73 0

HBL1 0.08 0.3837 -0.67-0.84 0.37 0

HBL3 0.28 0.3760 -0.46-1.02 1.00 0

Table B.107: Pima: ID3 Confusion matrix

Predicted Classes

class 1 class 2

class 1 42.76 ± 0.73 7.24 ± 0.73

class 2 14.50 ± 0.67 12.30 ± 0.67

Table B.108: Pima: KNN Confusion matrix

Predicted Classes

class 1 class 2

class 1 43.08 ± 0.74 6.92 ± 0.74

class 2 14.58 ± 0.73 12.22 ± 0.73

Table B.109: Pima: HBL1 Confusion matrix

Predicted Classes

class 1 class 2

class 1 41.15 ± 0.57 8.85 ± 0.57

class 2 16.57 ± 0.71 10.23 ± 0.71

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 154

Table B.llO: Pima: HBL3 Confusion matrix

Predicted Classes

class 1 class 2

class 1 44.04 ± 0.76 5.96 ± 0.76

class 2 13.64 ± 0.68 13.16 ± 0.68

Table B.ll1: Pima: Neural Network Confusion matrix

Predicted Classes

class 1 class 2

class 1 44.39 ± 0.53 5.61 ± 0.53

class 2 13.20 ± 0.45 13.60 ± 0.45

Table B.1l2: Pima Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval ZScore Stat Result

RP 0.42 0.1156 0.20-0.65 3.44 1

KNN 0.34 0.1208 0.10-0.58 2.76 1

ID3 0.34 0.1207 0.10-0.57 2.74 1

HBL1 0.22 0.1266 -0.03-0.47 1.78 0

HBL3 0.40 0.1173 0.17-0.63 3.23 1

Table B.1l3: Breast Cancer: KNN Confusion matrix

Predicted Classes

class 1 class 2

class 1 43.60 ± 0.64 2.20 ± 0.64

class 2 2.16 ± 0.44 21.94 ± 0.44

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 155

Table B.114: Breast Cancer: HBL1 Confusion matrix

Predicted Classes

class 1 class 2

class 1 42.90 ± 0.57 2.90 ± 0.57

class 2 2.53 ± 0.67 21.57 ± 0.67

Table B.115: Breast Cancer: HBL3 Confusion matrix

Predicted Classes

class 1 class 2

class 1 43.47 ± 0.54 2.33 ± 0.54

class 2 1.98 ± 0.44 22.12 ± 0.44

Table B.116: Breast Cancer: Neural Network Confusion matrix

Predicted Classes

class 1 class 2

class 1 44.34 ± 0.14 1.46 ± 0.14

class 2 1.13 ± 0.21 22.97 ± 0.21

Table B.117: Breast Cancer Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result

RP 0.92 0.0498 0.82-1.02 7.68 1

KNN 0.86 0.0640 0.74-0.99 7.21 1

HBL1 0.83 0.0706 0.69-0.97 6.93 1

HBL3 0.86 0.0635 0.74-0.99 7.22 1

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 156

Table B.ll8: Madelon: ID3 Confusion matrix

Predicted Classes

class 1 class 2

class 1 82.00 ± 4.64 48.00 ± 4.64

class 2 76.41 ± 5.15 53.59 ± 5.15

Table B.119: Madelon: KNN Confusion matrix

Predicted Classes

class 1 class 2

class 1 106.18 ± 4.99 23.82 ± 4.99

class 2 52.06 ± 5.14 77.94 ± 5.14

Table B.120: Madelon: HBL1 Confusion matrix

Predicted Classes

class 1 class 2

class 1 102.85 ± 5.27 27.15 ± 5.27

class 2 55.58 ± 5.51 74.42 ± 5.51

Table B.121: Madelon: HBL3 Confusion matrix

Predicted Classes

class 1 class 2

class 1 107.87 ± 4.42 22.13 ± 4.42

class 2 50.16 ± 5.25 79.84 ± 5.25

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 157

Table B.122: Madelon: Neural Network Confusion matrix

Predicted Classes

class 1 class 2

class 1 87.03 ± 4.48 42.97 ± 4.48

class 2 71.38 ± 5.05 58.62 ± 5.05

Table B.123: Madelon Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result

RP 0.12 0.0616 -0.00-0.24 1.82 0

KNN 0.42 0.0564 0.31-0.53 6.28 1

HBLI 0.36 0.0578 0.25-0.48 5.48 1

HBL3 0.44 0.0556 0.33-0.55 6.71 1

Table B.124: Musk V2: ID3 Confusion matrix

Predicted Classes

class 1 class 2

class 1 94.37 ± 0.83 7.33 ± 0.83

class 2 7.52 ± 0.55 550.58 ± 0.55

Table B.125: Musk V2: KNN Confusion matrix

Predicted Classes

class 1 class 2

class 1 94.31 ± 0.92 7.39 ± 0.92

class 2 7.46 ± 0.49 550.64 ± 0.49

B.3. EXPERIMENT THREE: GENERAL PERFORMANCE EVALUATION 158

Table B.126: Musk V2: HBL1 Confusion matrix

Predicted Classes

class 1 class 2

class 1 94.10 ± 0.91 7.60 ± 0.91

class 2 7.25 ± 0.71 550.85 ± 0.71

Table B.127: Musk V2: HBL3 Confusion matrix

Predicted Classes

class 1 class 2

class 1 94.27 ± 0.88 7.43 ± 0.88

class 2 7.42 ± 0.70 550.68 ± 0.70

Table B.128: Neural Network Confusion matrix

Predicted Classes

class 1 class 2

class 1 99.26 ± 0.72 2.44 ± 0.72

class 2 2.31 ± 0.51 555.79 ± 0.51

Table B.129: Musk V2 Kappa Test Results

Algorithm Cohens Kappa Kappa Error Confidence Interval Z Score Stat Result

RP 0.97 0.0126 0.95-1.00 24.98 1

KNN 0.91 0.0221 0.87-0.96 23.47 1

HBL1 0.91 0.0222 0.87-0.96 23.47 1

HBL3 0.91 0.0221 0.87-0.96 23.47 1

