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Abstract 

For predicting future volatility, empirical studies find mixed results regarding two 

issues: (1) whether model free implied volatility has more information content than 

Black-Scholes model-based implied volatility; (2) whether implied volatility outperforms 

historical volatilities. In this thesis, we address these two issues using the Canadian 

financial data. First, we examine the information content and forecasting power between 

VIXC - a model free implied volatility, and MVX - a model-based implied volatility. 

The GARCH in-sample test indicates that VIXC subsumes all information that is 

reflected in MVX. The out-of-sample examination indicates that VIXC is superior to MVX 

for predicting the next 1-, 5-, 10-, and 22-trading days' realized volatility. Second, we 

investigate the predictive power between VIXC and alternative volatility forecasts 

derived from historical index prices. We find that for time horizons lesser than 10-trading 

days, VIXC provides more accurate forecasts. However, for longer time horizons, the 

historical volatilities, particularly the random walk, provide better forecasts. We conclude 

that VIXC cannot incorporate all information contained in historical index prices for 

predicting future volatility. 
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1. INTRODUCTION 

Accurately forecasting future volatility plays a central role in financial markets for 

asset pricing in general and particularly important for derivatives, portfolio construction, 

and risk management. Academics and practitioners have developed a variety of 

methods to predict future volatility. These methods can be loosely classified into two 

groups. One uses various econometric models to forecast future volatility from historical 

asset prices. These models include ARCH/GARCH (autoregressive conditional 

heteroskedasticity Igeneralized autoregressive conditional heteroskedasticity), EWMA 

(exponentia/lyweighted moving average), and long memory ARFIMA (autoregressive 

fractionally integrated moving average), Riskmetrics, etc. 

Another group uses option prices to forecast future volatility. This kind of volatility is 

called implied volatility because it is implied from option prices. Two types of implied 

volatility are widely used in practice: model-based and model free implied volatility. The 

former relies on a specific option pricing formula, such as Black-Scholes (B-S) 

(1973)/Merton (1973), Hull and White (1987), or Heston (1993), etc. Given a specific 

formula and all its parameters except for the volatility and equating the observed option 

price to its model value, one can solve for volatility. 

Finance academics have questioned assumptions of some option formulas, e.g., B-S 

assumes a constant volatility of the price of underlying asset over the life of an option, 

Hull and White (1987) assumes no risk premium for stochastic variance of assets 

prices, and the effect of taxes is usually ignored in option models. 

The information set of option market is larger than the information set of the 

underlying asset market, because option traders consider not only the past information 

but also the probability of relevant events that can happen in the future. From theory 

aspects, the implied volatility should be more efficient than any of volatility forecasts 

derived from historical asset prices. Efficient, here, means that all information about 

future volatility has been incorporated in the implied volatility. 

The empirical finding that implied volatility can not subsume all information 

embedded in historical prices may be due to option model misspecifications. Several 

studies recommend the model free measure of implied volatility (Britten-Jones and 

Neuberger, 2000; Jiang and Tian, 2005, among others). The so called model free 
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implied volatility is not conditional on any option pricing formula. It can be computed 

from a set of option prices directly. In theory, the model free measure is better than 

model-based one, as the model free approach extracts future volatility information from 

various options. The model-based measure, however, uses only close to-the-money 

options. 

Most leading organized exchange markets have issued implied volatility indexes, 

which represent the market consensus estimate of future monthly volatility. In February 

1993, the CBOE (Chicago Board Options Exchange) introduced a B-S model-based 

volatility index calculated from the S&P 100 index (OEX) options with ticker symbol VIX. 

In September 2003, the CBOE issued a model free volatility index based on the S&P 

500 index (SPX) options. The original VIX was replaced by VXO. Throughout the paper, 

we use VXO and VIX to refer to implied volatility index calculated from OEX and SPX 

options, respectively. Following the CBOE, the Germany Deutsche Borse introduced 

VDAX in May 1994; the French Marche des Options Negociables de Paris created two 

volatility indexes, VX1 (short-term index to capture future 31 calendar day's volatility) 

and VX6 (long-term index to capture future 185 calendar day's volatility) in October 

1997. 

In Canada, the Montreal Exchange disseminates the B-S model-based MVX 

(Montreal volatility index) since December 2, 2002. The construction of the MVX follows 

the methodology for computing the CBOE VXO index. The iShare S&PfTSX 60 index 

fund options are used for computing MVX. As of October 15,2010, the Montreal 

Exchange uses a new volatility index, VIXC (volatility index in Canada) to replace MVX. 

The VIXC, a model free implied volatility, is computed by the same methodology as the 

one of the CBOE VIX and is based on the S&PfTSX 60 index options. The S&PfTSX 60 

is a list of the 60 largest companies on the Toronto Stock Exchange as measured by 

market capitalization. The VIXC estimates the next 30-calendar (22-trading) day's 

volatility in Canadian stock market. The main objective for such a change is to introduce 

options and futures on this implied volatility index. 

A large number of studies examine the forecast accuracy of implied volatility for 

future volatility in diverse option markets. Mixed results have been found whether 

implied volatility outperforms forecasts based on historical asset prices, such as 
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ARCH/GARCH volatility, Riskmetrics volatility, etc. In addition, it is inconclusive as to 

whether B-S model-based implied volatility outperforms model free implied volatility in 

terms of forecasting future volatility. For instance, Jiang and Tian (2005) find that the 

model free volatility produces more accurate forecast than the B-Simplied volatility. 

Andersen, Frederiksen, and Staal (2007), however, document that the CBOE VIX is less 

accurate for forecasting future volatility than the B-S implied volatility. 

This thesis has three objectives. First, we aim to examine the forecast ability of the 

VIXC to forecast future volatility in the Canadian stock market. Second, we will examine 

whether the VIXC outperforms prediction methods based on historical asset prices, 

which include random walk, GJR-GARCH, and Riskmetrics. Third, we will compare 

forecasting ability between the recently introduced VIXC and MVX. 

This study has several potential contributions. First, to the best our knowledge, no 

study examines the forecast ability of the implied volatility for the Canadian stock 

market. The predictive ability of the VIXC for future realized volatility will provide useful 

implications for participants in the Canadian stock market. 

Second, given conflicting results in previous studies about the ability to forecast future 

volatility by using different methods, this thesis contributes to this stream of literature by 

providing new evidence from the Canadian stock market. 

Third, no study examines whether model-based implied volatility outperforms model 

free implied volatility in a relatively less liquid option market. The Canadian stock market 

provides an excellent stage for such an examination. Because both MVX and VIXC are 

disseminated by an official exchange, the Montreal Exchange, the measurement errors 

produce the least effect for statistical inference. This thesis provides empirical evidence 

for such a comparison. 
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2. LITERATURE REVIEW 

We define time series forecasts of volatility as a volatilities that are computed from 

historical returns of underlying asset with various econometric models, such as 

ARCH/GARCH (Hamiliton, 1994), Riskmetrics (1996), lagged standard deviation (STD), 

stochastic volatility (SV), random walk, long memory ARFIMA (Hamiliton, 1994), etc. 

A large body of literature examines the relationship between implied volatility and 

future volatility outcome. The general conclusion is that implied volatility is biased and is -

superior to time series forecasts of volatility (Poon and Granger, 2003, 2005). However 

it is not clear that whether implied volatility is efficient (Poon and Granger, 2003). 

2.1 Implied volatility derived from stock index options 

2.1.1 The S&P 100 index options 

Previous empirical literature reports mixed results on the predictive power between 

implied volatility and time series forecasts of volatility. A few studies document that 

implied volatility is a biased and inefficient estimator for future volatility. Moreover, the 

time series forecasts of volatility are more informative than implied volatilities. Day and 

Lewis (1992) examine information content of volatility implied from the S&P 100 index 

call options from 1983 to 1989. Their time series volatilities were constructed from 

EGARCH/GARCH model and lagged STD. The time series forecasts of volatility have 

incremental information for future volatility beyond that contained in implied volatility, 

and vice versa. Their conclusions, however, suffered from a maturity mismatching 

problem (Christensen and Prabhala, 1998). They examine the weekly forecasting ability 

of implied volatility derived from options with a longer life (up to 36 trading days). Canina 

and Figlewski (1993) examine the same index from 1983 to 1987. They argue that 

implied volatility does not contain incremental information for future volatility with the 

presence of time series volatility. The lagged STD is their proxy for time series volatility 

and their results show that the lagged STD has higher correlation to future volatility. In 

contrast, the implied volatility is weakly correlated to future volatility. Therefore, the 

lagged STD is superior to the implied volatility for forecasting purposes. Their findings, 

however, suffer from telescoping effects (Christensen, Hansen, and Prabhala, 2002). 
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The above conclusions may suffer measurement errors as well. They all use closing 

prices of call options to construct implied volatiiities. As the option and stock market do 

not close at the same time, the non-simultaneous prices between index and option 

markets cause negative first order serial correlation in the implied volatility (Harvey and 

Whaley, 1991; Hentschel, 2003). Furthermore, implied volatility derived from call options 

is significantly different from the one from put options (Harvey and Whaley, 1992). 

Therefore, the use of only call options may introduce more measurement errors into 

implied volatilities. 

Fleming, Ostdiek, and Whaley (1995) examine the CBOE VXO from 1986 to 1992. 

They find that the CBOE VXO is a biased but efficient forecast for future volatility. 

Fleming (1998) comes to the same conclusion by examining OEX call and put options 

separately from 1985 to 1992. The implied volatility outperforms several types of time 

series volatility for predicting future volatility. 

Christensen and Prabhala (1998) examine the OEX options with a longer period from 

1983 to 1995. They criticize the sampling procedure used by Can ian and Figlewski 

(1993). They use non-overlapping monthly samples for their regression tests. They 

conclude that implied volatility is biased but contains incremental information for future 

volatility beyond that is revealed by lagged STD. Their results indicate that implied 

volatility is more accurate in predicting future volatility after 1987. In addition, after 

adjusting measurement errors with instrumental variables, they found that implied 

volatility is an unbiased and efficient estimator. The lagged STD does not have any 

incremental information. 

Christensen, Hansen and Prabhala (2002) find that OEX option market is efficient. 

Their testing period spans from 1993 to 1997. In contrast to Christensen and Prabhala 

(1998), Christensen, Hansen, and Prabhala (2002) find that implied volatility is biased. 

Doran and Ronn (2005) use the same sampling procedure and the same test 

methodology used by Christensen and Prabhala (1998). With a longer examination 

interval from 1986 to 2004, they indicate that the unbiased ness finding of Christensen 

and Prabhala (1998) depends on time periods under examination. Instrument variables 

used by Christensen and Prabhala (1998) cannot help to reduce the bias associated 

with implied volatility. 
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Corrado and Miller (2005) document that the CBOE VXO is a biased but efficient 

estimator of future volatility. Their examination period spans from 1988 to 2003. The 

CBOE VXO incorporate all future volatility information contained in the lagged STD. 

Blair, Poon, and Taylor (2001) examine the forecasting ability of the CBOE VXO for 

time horizons: 1-, 5-, 10-, and 20-day, from 1987 to 1995. They use high frequency 5-

minute intra daily returns to compute daily realized volatility. Their in-sample results 

show that time-series volatilities derived from 5-minute OEX returns have no 

incremental information that is reflected in VXO. Out-of-sample tests showed that the 

VXO provides more accurate forecasts than alternative time-series volatilities. The 

forecast from the combination of VXO and time-series volatilities can not improve 

forecast accuracy significantly. The CBOE VXO almost includes all the information 

contained in time-series volatilities. 

Contrary to the finding that implied volatility is superior to time series forecasts of 

volatility, Koopman, Jungbacker, and Hoi (2005) find that the CBOE VXO contains less 

information than daily realized volatility for predicting the next day's volatility in the 

period from 1997 to 2003. Their long memory ARFIMA model and unobserved ARMA 

components model produce the best and second best forecast, respectively. 

Furthermore, the R-squared values from regressing subsequent realized volatility on 

GARCH+RV and GARCH +IM forecasts, 0.605 and 0.419, respectively, clearly indicate 

the superiority of realized volatility to implied volatility. 

Consistent with Koopman, Jungbacker, and Hoi (2005), Corrado and Truong (2007) 

find that the time series volatilities constructed from the Parkinson (1980) approach 

appears to dominate the CBOE VXO. Their test period spans from 1990 to 2006. They 

augment the standard GJR-GARCH (Glosten, Jagannathan, and Runkle, 1993) model 

by including two exogenous variables: the daily implied volatility, denoted by GJR

GARCH+IM, and Parkinson (1980) volatility, denoted by GRJ_GARCH+Rng. Their 

results show that the GJR-GARCH+Rng specification produces less forecasting errors 

than does the GJR+IM specification across horizons: 1-, 10-, and 20-day forecasts. 

In summary, most recent studies find that volatility implied from the S&P 100 index 

options is superior to time series volatility and is efficient for forecasting purpose. 

However, most studies only compare implied volatility to a few kinds of time series 
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volatility, such as ARCH/GARCH volatility and lagged STD. It is obvious that different 

forecast approaches have unequal ability to capture future volatility information. We 

argue that the efficiency conclusion should be based on comprehensive comparisons 

between implied volatility and a wide range of time series volatilities, e.g., comparing 

implied volatility with long memory ARFIMA forecast, GARCH forecast, EWMA forecast, 

etc. In next section, we review the findings with respect to the sap 500 index options. 

2.1.2 The S&P 500 index options 

Andersen and Bollerslev (1998) introduce the "realised/integrated" measure of 

volatility, denoted by RV, which uses the summation of high frequency intraday squared 

assets returns to proxy the unobserved true volatility. Henceforth, a number of studies 

use RV as comparison benchmark and show that forecast accuracy improves 

significantly (e.g., Poteshman, 2000; Martens and Zein, 2004). The R-squared value 

from regression tests is significantly improved when researchers use RV as the proxy of 

the true latent volatility. The conclusion regarding unbiasedness, however, is still 

uncertain. 

Poteshman (2000) examines the forecast ability of SPX options from 1988 to 1997. 

He uses non-overlapping samples and constructs implied volatility series from Black

Scholes (1973) model. He finds that implied volatility is a biased but efficient estimator 

for future monthly volatility. The extent of biased ness decreases in a sequential manner 

when he constructs the latent volatility with daily index close prices, daily future close 

prices, and 5-minutes future prices, respectively. In addition, he uses Heston (1993) 

model to derive implied volatilities in the period from 1993 to 1997. His multivariate 

regression tests, which include implied and lagged monthly STD as explanatory 

variables, show that implied volatility is an unbiased and efficient predictor for future 

monthly volatility. His conclusion that variance risk should be priced is consistent to that 

of Chernov (2001 ), Bakshi and Kapadia, (2003), among others. 

Shu and Zhang (2003) use Christensen and Prabhala(1998) sampling skills and use 

5-minute index returns to construct realized volatility in the sample period from 1995 to 

1999. Unlike Poteshman (2000), they argue that although implied volatility derived from 

either Black-Scholes (1973) or Heston (1993) model is an efficient estimator of future 
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volatility, the Wald test indicates that both kinds of implied volatility are biased. In 

addition, the Black-Scholes volatility is better than Heston (1993) volatility for forecasting 

purpose. These two studies come to different conclusions regarding whether variance 

risk should be priced. One reason may due to the proxy of comparison benchmark. 

Poteshman (2000) constructs realized volatility from 5-minute future returns; Shu and 

Zhang (2003) use 5-minute index returns. The R-squared values from regressing RVon 

lagged RV suggest that RV built from future returns is more accurate that RV built from 

index returns. Another reason may due to the different methodology used to estimate 

the parameters of the Heston (1993) model. The estimated parameters of Heston 

(1993) model in these two studies are significantly different. 

Several studies also find that implied volatility is a biased but efficient estimator for 

future volatility. For instance, Corrado and Miller (2005) examine CBOE VIX from 1990 

to 2003. They use STD that is constructed from daily index returns as the latent 

volatility. The lagged STD and GJR-GARCH volatility are alternative approaches for 

forecasts. Szakmary, Ors, Kim, and Davidson III (2003) use Bridge implied volatility 

derived from Black (1976) model to examine forecast efficiency of SPX options in period 

from 1983 to 2001. They use STO to stand for the latent volatility. The lagged STD and 

GARCH volatility are two alternatives of time series forecasts of volatility. Noh and Kim 

(2006) use Black-Scholes (1973) model to derived implied volatility in the sample period 

from1994 to 1999. They examine forecasting ability between B-S implied volatility and a 

set of lagged realized volatility constructed from 10-, 30-, 60-, 120-minute, and daily 

index returns. Besides finding that implied volatility is an efficient estimator, they also 

find larger R-squared value resulting from multivariate regression when higher 

frequency returns are used to compute realized volatility. This finding is consistent to 

that of Andersen and Bollerslev (1998), Poteshman (2000), Shu and Zhang (2003). 

Jiang and Tian (2005) examine prediction accuracy of three measures: model free, 

Black-Scholes, and lagged daily realized volatility from 1988 to 1994. They find that 

model free implied volatility outperforms both the Black-Scholes and lagged daily 

realized volatility and is an efficient estimator. Regressing realized volatility against 

model free, Black-Scholes, and lagged daily realized volatility shows that the mode free 

volatility contains all information embedded in the other two volatilities. In addition, the 
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Black-Scholes volatility is better than the lagged daily realized volatility for forecasting 

future volatility, but is inefficient. 

Busch, Christensen, and Nielsen (2006) find implied volatility is unbiased and is 

efficient in the period from 1990 to 2002. They use monthly non-overlapping options and 

compute implied volatility from the modified Black (1976) formula. The 5-minute returns 

of SPX futures are used to construct comparison benchmark. The lagged realized 

volatility was viewed as a time series forecast of volatility. 

The studies mentioned above in this section a/l show that implied volatility derived 

from SPX options is superior to time series volatilities and is an efficient predictor for 

future volatility. These studies draw their conclusions on comparison between implied 

volatility and a few time series forecasts of volatilities. The scenario may change if one 

compares implied volatility with a wide range of time series volatilities, e.g., long 

memory ARFIMA volatility, ARMA volatility, etc. We list some contrary findings next. 

Martens and Zein (2004) contend that the implied volatility derived from SPX options 

is an inefficient predictor for future volatility. Their test spans 1994 to 2000. The latent 

volatility is constructed from the summation of 5-minute intraday and 30-minute intra

night returns. Their results show that implied volatility contains all information embedded 

in GARCH volatility. However, with the presence of long memory ARFIMA volatility as 

an extra explanatory variable, they find that ARFIMA volatility does contain incremental 

information. The best forecasting accuracy can be obtained by combining the implied 

and ARFIMA volatility. 

Becker, Clements, and White (2006) argue that the CBOE VIX can not incorporate 

all the volatility information that is embedded in several time series forecasts of volatility. 

Thus, VIX is an inefficient estimator. Their data spans from 1990 to 2003. Their time 

series forecasts of volatility include:GARCH, GJR-GARCH, SV, ARMA, ARFIMA, and 

EWMA. The subsequently realized volatility is built from 30-minute SPX index returns. 

Becker, Clements, and White (2007) examine the CBOE VIX information content 

from 1990 to 2003. They use a set of time-series forecast of volatilities, including 

GARCH, SV, ARFIMA, MIDAS, and lagged RV. They first decompose the VIX into two 

components: one has information captured by all time-series volatilities; the other one 

has the residual information. These two components are orthogonally constructed by 
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regressing VIX onto the space spanned by all time-series forecasts of volatilities. They 

then examined whether the second component has a relation with the future realized 

volatility. They showed that VIX does not have any incremental information that is 

captured by these time-series volatilities. 

Corrado and Truong (2007) enlarge standard GJR-GARCH model by including 

Parkinson(1980} volatility and the daily CBOE VIX. By setting restriction on the 

coefficients of these two exogenous variables, the model fitness can be examined by 

the likelihood ratio. With the presence of CBOE VIX, the significance of other 

coefficients of the GJR-GARCH model indicates that the CBOE VIX does not contain all 

the information embedded in historical prices. Further, the "P" value (Blair, Poon, and 

Taylor, 2001), RMSE (root mean square error), and MAE (mean absolute error) from 

out-of-sample forecasts all indicate that the Parkinson (1980) volatility weakly 

outperforms the CBOE VIX. 

With the similar methodology of Corrado and Truong (2007), Nishina, Maghrebi, and 

Holmes (2006), Maghrebi, Kim, and Nishina (2007) find that the CBOE VIX does not 

fully incorporate future volatility information embedded in SPX historical prices. 

Andersen, Frederiksen, and Staal (2007) investigate the forecast quality of the 

CBOE VIX and B-S implied volatility in the SPX option market in the period from 1990 to 

2002. The time series forecast of volatility is constructed from long memory ARFIMA 

model. They use non-overlapping monthly samples and construct realized volatility with 

5-minute SPX index returns. Among these three volatilities, only ARFIMA forecast is 

unbiased. Although all these volatilities have significant information for future volatility, 

the ARFIMA volatility outperforms both B-S implied volatility and the CBOE VIX. 

Furthermore, the B-S implied volatility outperforms the CBOE VIX. However, neither the 

ARFIMA volatility nor the B-S volatility contains all the information for future volatiiity. 

The combination of implied and ARFIMA volatility produces the best forecast of future 

volatility. 

In summary, although the conclusion with respect to forecasting efficiency appears to 

be controversial, we argue thaUhe implied volatility from SPX option prices probably is 

not an efficient estimator of future volatility. Neither of the studies that come to the 

efficiency conclusion compare long memory ARFIMA forecast with implied volatility. 
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These studies normally use lagged STD and/or GARCH kinds of volatility to stand for 

the competing alternatives to implied volatility. These time series volatilities cannot 

capture all the information about future volatility from historical asset prices. When high 

frequency intra day returns are used to construct long memory ARFIMA volatility 

forecast, implied volatility can not incorporate all information embedded in ARFIMA 

volatility. The most accurate forecast may be obtained by the combination of implied 

and time series forecasts of volatility, as suggested by Andersen, Frederiksen, and 

Staal (2007). 

2.1.3 The NASDAQ 100 index options 

Simon (2003) documents that implied volatility is biased but outperforms two 

alternatives of implied volatility: GJR-GARCH and EWMA forecasts of volatility. He uses 

monthly STD as the latent volatility. His test spans from 1995 to 2002. When regressing 

the level of volatility on VXN (Volatility index of NASDAQ) and its competitors, either 

GJR-GARCH or EWMA volatility, the VXN incorporates all information contained in the . 

time series volatilities. When replacing the level of implied volatility by its first difference, 

VXN can not fully incorporate information embedded in EWMA volatility. The GJR

GARCH volatility still do not have incremental information. 

In contrast to the biased ness finding, Corrado and Miller (2005) indicate that the VXN 

is roughly unbiased. They also find VXN outperforms alternative forecasts derived from 

historical index prices. The latent volatility is built from STD as well. Their test spans 

from 1995 to 2003. Corrado and Truong (2007) examine VXN forecasting efficiency 

from 1997 to 2006. They also document that VXN dominates the time series forecasts 

of Parkinson (1980) volatility. 

In summary, these three studies find that the CBOE VXN outperforms its 

alternatives. The CBOE VXN has significant information with regard to future volatility. 

In next section, we review the findings for non-US stock index options. 

2.1.4 The non-US stock index options 

In contrast to the US index options, non-US index options are commonly traded with 

relatively smaller volume. We use the ratio of total notational value of stock index 
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options to total market capitalization in a country to infer its option market liquidity. At 

the end of 2009, the ratio is 0.5597 for the second largest stock market in the world, 

Japan Tokyo Stock Exchange (TSE); the 4th largest stock market, NYSE Euronext 

(Europe) is of 0.5597; the th largest market, Hong Kong Exchanges is of 0.2710; the 8th 

largest stock market, Canada TSX Group is of 0.00109. Quite different from these low 

ratios, in the US, the ratio is about 1.3449 (see statistical reports of World Federal of 

Exchanges, http://www.world-exchanges.org). Figlewski (1997) suggests that the more 

liquid the option market is, the more efficient the option prices. The illiquidity feature of 

non-US option markets may cause their option prices to be inefficient and introduces 

more error-in-variables problems. 

Moraux, Navatte, and Villa (1999) assess the predictive ability of the French volatility 

index (VX1) in the period from 1994 to 1998. They found daily VX1 has a substantial 

amount of information for the next day's volatility. The lagged monthly STD has no 

incremental information with the presence of implied volatility. Although the VX1 is 

biased, it is an efficient predictor of future volatility. 

In addition, they create two other implied volatility series from the VX1. One has 2 

week maturity; another has 2 month maturity. The 2-week implied volatility is biased but 

has substantially more information about future volatility than forecast by the lagged 

STD. This 2-week implied volatility, however, does not fully incorporate the information 

contained in lagged STD. With respect to the 2-month implied volatility, it has less 

information for future volatility and the lagged STD contains all the information 

embedded in this 2-month implied volatility for future volatility forecast. 

In the Hong Kong option market, Fung (2007) concludes that implied volatility 

derived from Hang Seng (HS) index options is biased and an efficient predictor for 

future volatility. He uses non-overlapping monthly samples from 1993 to 2000. He 

constructs several alternatives of implied volatility which include lagged STD, option 

volume, option open interest, future volume, future open interest, and arbitrage basis of 

index future. With the presence of implied volatility, regression test shows that all 

alternatives have no incremental information for future volatility. 

In the same market, Yu, Lui, and Wang (2010) come to the same conclusions. Their 

test covers the period of 1998 to 2005. Unlike Fung (2007), Yu, Lui, and Wang (2010) 
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examine volatility implied from both OTC (over-the-counter) options and exchange 

market options. They construct two alternatives of implied volatility: lagged STD and 

GARCH volatility. Both implied volatilities contain all the information embedded in 

lagged STD and GARCH volatility. 

In the Australian option market, Frijns, Tallau, and Tourani-Rad (2010a) construct 

Australian implied volatility index (AVX) from the S&P/AVX 200 index options in the 

period from 2002 to 2006. The construction of the AVX is similar to that of the CBOE 

VXO. Unlike the VXO that has a constant 22 trading day's maturity, the AVX has a 66 

trading day's maturity. RiskMetrics and GJR-GARCH volatility are used to stand for the 

competing forecasts of implied volatility; STD is used as the benchmark for comparison. 

Their tests show that although AVX is a biased estimator, it has substantial amount of 

information for future volatility and is superior to its two alternatives for all forecasting 

horizons. The AVX, however, does not contain all the information embedded in either 

Riskmetric volatility (for 1-, 5-, 1 O-day forecast horizons) or in GJR-GARCH volatility (for 

22-, 66-day forecast horizons). Thus, the AVX is not an efficient predictor for future 

volatility. 

Frijns, Tallau, and Tourani-Rad (2010b) reassess their results with a longer sample 

period from 2002 to 2008. The regression test with 22-trading day forecast horizon 

shows that the AVX incorporates all information embedded in its two alternatives, 

Riskmetrics and GARCH volatility. The AVX is an efficient predictor for future volatility. 

The conflicting finding on forecast efficiency may arise from the different predictive 

power between the standard GARCH and the GJR-GARCH model. When return -

volatility exhibits an asymmetric relationship, the asymmetric GARCH model 

outperforms the standard GARCH model for forecast purposes (Hansen and Lunde, 

2005; Awartani and Corradi, 2005). 

In the Taiwan option market, Hung, Tzang, and Hsyu (2009) examine the forecast 

power of volatility implied from Taiwan stock index options in the period from 2004 to 

2007. They expand the standard GJR-GARCH model with other variables: Parkinson 

(1980) volatility, Taiwan VIX, and/or Taiwan VXO. The Taiwan VIX and Taiwan VXO are 

constructed with similar approach to that of the CBOE VIX and VXO, respectively. Their 
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large 500-days in-sample test shows that Parkinson range-based volatility dominates 

the two implied volatility indexes. 

Unlike Hung, Tzang, and Hsyu (2009), Wong and Tu (2007) find that the volatility 

implied from Taiwan index options has a substantial amount of information for future 

volatility, and outperforms lagged realized volatility. Their data spans from 2002 to 2004. 

They construct implied volatility index following the methodology of the CBOE VXO. 

Their realized volatility is constructed from 5-minute Taiwan index returns. Although 

implied volatility outperforms lagged realized volatility for forecasting purpose, the 

lagged realized volatility contains incremental information beyond that embedded in the 

volatility index. This suggests that the Taiwan option market is not efficient. 

In the Indian option market, Panda, Swain, and Malhotra (2008) examine the 

forecast ability of implied volatility derived from both call and put of the S&P CNX Nifty 

index options from 2001 to 2004. With monthly non-overlapping sampling procedure, 

they conclude that both implied volatilities are efficient predictors for future volatility, 

although they all are biased. Both implied volatilities from call and put options contain all 

the information embedded in alternative volatility forecast, the lagged STD. Kumar 

(2010) comes to similar results with the Indian volatility index (IVIX) from 2007 to 2009. 

The daily VIX contains a substantial amount of information for forecasting the next day's 

volatility. 

In the Danish option market, Hansen (2001) examines forecast ability of volatility 

implied from the Danish KFX share index options from 1995 to 1999. He uses monthly 

STD to stand for the true latent volatility and lagged STD as the alternative forecast. He 

found that the implied volatility contains a substantial amount of information for future 

volatility and outperforms the lagged STD. With the use of instrumental variables, he 

argues that implied volatility is an unbiased and an efficient indicator for future volatility. 

In the UK option market, Noh and Kim (2006) document that the implied volatility 

derived from FTSE 100 index options is a biased and inefficient estimator for future 

volatility in the period from 1994 to 1999. Several comparison benchmarks are used in 

their tests, which include realized volatility constructed from 10-, 30-, 60-, 120-minute, 

and daily frequency returns on FTSE 100 futures. When comparison benchmark is built 

from high frequency returns, they find that the lagged realized volatility outperforms the 
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implied volatility for monthly forecasts, although the implied volatility does contain useful 

information as well. Unlike Noh and Kim (2006), Wong and Tu (2007) find that FTSE 

100 implied volatility outperforms lagged realized volatility for monthly forecast. One 

explanation is that Noh and Kim (2006) construct realized volatility from future returns, 

while Wong and Tu (2007) use index returns to construct realized volatility. The different 

comparison benchmarks may cause these two studies to come to contrary conclusions 

(Chang, Cheng, and Fung 2010). 

Areal (2008) comes to the same conclusion to that of Noh and Kim (2006). Areal 

(2008) uses UK data in the period from 1993 to 2000. He constructs seven volatility 

indexes: one model free index; three indexes based on out-of-money options; three 8-S 

indexes. The R-squared value and loss function (heteroskedasticity root mean squared 

errors) all show that the lagged realized volatility build from 5-minute returns of FTSE 

100 futures outperforms various implied volatility indexes when forecasting monthly 

volatility. Among these indexes, the model free index performs the worst while the 

others produce similar results. He ascribes the low quality of the model free index to 

insufficient option data available in the UK option market. 

In the German option market, Claessen and Mittnik (2002) evaluate the forecast 

quality of the implied volatility derived from German DAX index options from 1992 to 

1995. The latent volatility is assumed to be the standard deviation over the remaining 

life of the options. They use several time series volatilities, including lagged STD, 

GARCH/EGARCH, EWMA, and random walk, as the alternatives of implied volatility. 

The in-sample fitness and out-sample tests that are based on loss functions all suggest 

that implied volatility dominates its diverse competitors. The information in historical 

index prices is contained in option prices. Thus, the German option market is efficient. 

Consistent with their findings, Muzzioli (2010) assesses the information content of DAX 

index options from 2001 to 2005. She uses STD to stand for the true volatility as well. 

Her results show that 8-S implied volatility is a biased but efficient predictor for future 

volatility. The volatility information embedded in GARCH, AR, or lagged STD is 

incorporated in 8-S implied volatility. 

In the Korean option market, Maghrebi, Kim, and Nishina (2007) construct an implied 

volatility index based on the KOSPI200 index options in the period from 1997 to 2006. 
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They follow the same methodology as that of the CBOE for constructing VIX. The 

monthly STD is chosen as the proxy of latent volatility. By incorporating implied and/or 

contemporaneous volatility into standard GJR-GARCH model, they find that the implied 

volatility contains incremental information beyond that embedded in historical index 

prices. The significance of estimated parameters of GJR-GARCH specification, 

however, points out that the implied volatility index does not contain all the information 

for future volatility that is reflected in historical prices. 

In the Japanese option market, Nishina, Maghrebi, and Holmes (2006) construct the 

Nikkei-225 model free implied volatility index in the period from 1990 to 2004. They 

follow the same methodology that is used by the CBOE to construct the VIX. Employing 

the GJR-GARCH model enlarged with Nikkei 225 volatility index, they argue that implied 

volatility contains a substantial amount of information about future volatility. The implied 

volatility, however, does not contain all the information embedded in historical prices. 

Their out-of-sample P value (Blair, Poon, and Taylor, 2001) suggests that the Nikkei-

225 volatility index outperforms its competitors for forecasting future volatility. Yu, Lui, 

and Wang (2010) verify that the implied volatility derived from Nikkei-225 index options 

is superior to both lagged STD and GARCH volatility for forecast purposes. They use 

implied volatility provided by Bloomberg in the period from 1998 to 2005. In addition, 

they suggest that this implied volatility index is an efficient predictor for future volatility. 

Their conclusions are based on regression tests that use non-overlapping monthly 

samples. 

In summary, non-US implied volatility indexes appear to be biased. These indexes, 

however, outperform a set of time series forecasts of volatility and appear to be efficient. 

The finding that the implied volatility derived from non-US index options is an efficient 

estimator for future volatility may be due to the test methodologies used in these 

studies. One main drawback of these studies is that no one constructs efficient time 

series forecasts of volatility. Since the S&P 500 option market is more actively traded, 

we argue that it may be more efficient than these non-US option markets. However, a 

number of studies document that the SPX option market is not efficient. Therefore, the 

finding of option market efficiency in non-US financial market is puzzling. Next, we 

review the findings on currency option markets. 
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2.2 Implied volatility derived from currency options 

Most studies document that implied volatility derived from currency options is 

superior to other commonly used competitors, such as lagged STD, ARCH/GARCH, 

and/or EWMA. The reason seems to be that currency options are easily hedged with 

their underlying assets (Figlewski, 1997). The frictions in currency markets produce less 

effect than they do in stock market (Jorion, 1995). Whether the implied volatility fully 

subsumes all information contained in historical returns, however, is not conclusive. 

Employing high-frequency intra day data in conjunction with an efficient time series 

model (e.g., long memory ARFIMA model) casts dubitation. 

Jorion (1995) examines the information content of three currency options traded in 

the CME market from 1985 to 1992. He finds that the implied volatility has a substantial 

amount of information for future volatility and outperforms its two time-series-volatility 

competitors: MA (moving average) and GARCH volatility. Although the implied volatility 

is biased, it is an efficient predictor for future volatility. 

Xu and Taylor (1995) examine the forecasting ability of implied volatility from four 

exchange rates: Pound, Mark, Yen, and Franc in the PHLX market from 1985 to 1991. 

They find that implied volatility outperforms alternative forecasts, such as forecast from 

GARCH volatility. The in-sample test suggests that the implied volatility for the Pound, 

the Mark, and the Franc is an efficient predictor for next day's volatility. The GARCH 

volatility does not contain additional information for future volatility. In their out-of

sample tests, they find that the implied volatility forecast significantly outperforms time 

series forecasts of volatility, such as lagged STD, GARCH volatility. 

Chang and Tabak (2010) examine the information content of volatility implied from 

the dollar-real exchange rate from 1999 to 2002. They construct three kinds of time

series volatility forecasts: GARCH, MA, and EWMA. Their results show that the implied 

volatility is a biased but efficient predictor. The time-series forecasts do not have 

incremental information for future volatility with the presence of implied volatility. 

Meanwhile, the univariate tests also show that implied volatility is more informative than 

time-series forecasts of volatility. 

A number of studies document that the implied volatility has a substantial amount of 

information related to future volatility and outperforms alternative time series forecasts. 
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However, the implied volatility does not contain all the information embedded in 

historical returns. 

Li (2002) examines the forecasting ability of aTC implied volatility from several 

currency options: the Mark, the Yen, and the Pound. Employing high frequency intra day 

data simultaneously with a long memory ARFIMA model, he contends that the long 

memory ARFIMA forecast contains incremental volatility information beyond that is 

revealed by the implied volatility across currency options and forecast horizons. The 

implied volatilities are biased as well. The long-memory ARFIMA volatility outperforms 

implied volatility when forecasting horizons are over 3 months. He suggests that the 

best forecast for future volatility can be obtained by combining time series forecasts and 

implied volatility. His results imply that the currency option market is inefficient. We, 

however, argue that his findings may be due to test methodology because the results 

are based on overlapping samples. The overlapping sample procedure favors to time 

series volatility in regression test (Christensen and Prabhala, 1998; Christensen, 

Hansen, and Prabhala, 2002) 

Martens and Zein (2004) examine the information content of currency options on 

Yen/$US from 1996 to 2000. The proxy for the true latent volatility is the summation of 

high-frequency intra day squared returns; two time-series volatilities were constructed: 

GARCH and ARFIMA. The GARCH volatility forecast was outperformed by implied 

volatilities. The long memory ARFIMA model, however, has almost the same or even 

higher ability to forecast future volatility than the implied volatility. Furthermore, the long 

memory model does not contain all the information revealed by implied volatility, and 

vice versa. They suggest that the optimal forecast can be obtained by combining these 

two forecasting approaches. 

Pong, Shackleton, Taylor, and Xu (2004) examine the forecasting ability of implied 

volatility from three currency options: the pound, mark, and yen, against the US dollar, 

from 1987 to 1998. The alternatives of implied volatility are ARMA, ARFIMAand 

GARCH volatility forecasts. The benchmark of the true latent volatility is realized 

volatility constructed from 5-minut returns. The time-series volatilities have incremental 

information beyond that contained in the implied volatility across three markets in short 

forecasting horizons. The ARMA and ARFIMA produce better forecasts than implied 
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volatility for the pound and yen when forecasting one day and one week volatility. For 

one month and three month horizons, implied volatility outperforms both ARMA and 

ARFIMA forecasts. With longer horizon, the implied volatility incorporates most of the 

future volatility information of historical volatilities. 

Charoenwong, Jenwittayaroje, and Low (2009) examine the information content of 

four currency options traded in OTC, the CME, and the PHLX market from 2001 to 

2006. They document that implied volatility outperforms a number of time series 

forecasts of volatility across markets. The forecast ability, however, appears to decrease 

when forecast horizon increases. Furthermore, the implied volatilities derived from these 

four options across markets do not always contain the volatility information embedded in 

historical prices. 

Neely (2009) assesses the forecast quality of four currency options quoted in the 

CME from 1987 to 1998. He constructs the latent realized volatility from 30-minutes 

returns. The time series forecasts of volatility are built from ARIMA, long memory 

ARFIMA, GARCH, and OLS regression models. Except for the Japanese Yen, there is 

bias in the Pound, Franc, Mark options. Regression results show that the implied 

volatility derived from the Pound, the Franc, or the Mark options does not incorporate all 

information contained in historical prices. 

In summary, implied volatility derived from currency options outperforms a number of 

its competitors for forecasting future volatility. Whether it can incorporate all volatility 

information embedded in historical prices is not conclusive. Next, we review the findings 

on individual stock/future options. 

2.3 Implied volatility derived from individual stock/future options 

A number of studies evaluate the forecast quality of volatility implied in individual 

stock/future options. In general, the forecast quality relies significantly on whether 

stock/future options are traded actively. The implied volatility derived from options that 

are actively traded produces more accurate forecasts for future volatility. More over, 

time horizons play an important role regarding forecasting accuracy. 

Lamoureux and Lastrapes (1993) examine the predictive power of implied volatility 

from 10 individual stock options for the period from 1982 to 1984. The implied volatility 
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is derived from Hull and White (1987) option model. They use GARCH and lagged STD 

volatility as the two competitors of implied volatility. Both in-sample and out-of-sample 

tests show that the implied volatility outperforms time series forecasts of volatility but 

does not fully incorporate all the information from GARCH or lagged STD forecasts. 

Their results suggest that the option market is not efficient. The best forecasts can be 

obtained by combining implied and time series forecasts of volatility. They explain their 

results as the rejection of the joint hypothesis of market efficiency and the correctness of 

Hull and White (1987) model when variance risk is non-priced. 

Taylor, Yadav, and Zhang (2007) assess the information content of implied 

volatilities with respect to 149 firms from 1996 to 2000. The alternative of the implied 

volatility is GARCH volatility. Parkinson's (1980) measure of volatility is used to stand for 

the true latent volatility. In one-day-ahead prediction, the forecast of time series volatility 

outperforms the implied volatility over one third of the firms. With the longer forecasting 

horizons, however, implied volatility is more informative than historical volatilities for 126 

out of 149 firms. 

Szakma.ry, Drs, Kim, and Davidson III (2003) evaluate the forecasting ability of 

implied volatilites derived from 35 future options traded in 8 separate exchange markets. 

They use 30 day moving-average STD and GARCH volatility to stand for time series 

forecasts of volatility. They find that implied volatility is a biased forecast for future 

realized volatility but contains more information than historical volatility. In their 

encompassing regression tests, the hypothesis that historical volatility has no 

information beyond that in option prices is rejected. 

Brous, Ince, and Popova, (2010) examine the forecast ability of implied volatilities 

from 92 stock options over the period 1996 to 2006. These underlying stocks are 

constitutes of the S&P 100 index. They construct four types of time series forecasts of 

volatility which include AMAD (adjust mean absolute return), Parkinson (1980), STD, 

and Garman and Klass (1980) volatility. For comparison purpose, the true latent 

volatility is represented by STD. The Black-Scholes implied volatility is adjusted with 

volume information and has a constant30-trading day's maturity. They find that on 

average the implied volatility produces the worst forecast among these five forecast 

measures. However, when they group stocks by volume or market capitalization, the 
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scenario is changed. On the one hand, on average, the implied volatility derived from 

high liquid options produces the best accuracy; on the other hand, on average, all time 

series forecasts produce the most accurate forecast comparing to implied volatilities 

derived from low liquid options. 

Mayhew and Stivers (2003) and Godbey and Mahar (2005) document that implied 

volatilities derived from high liquid options outperform the time series forecasts of 

volatility. The former study uses 50 firms that have the largest option trading volume on 

the CME market over the period 1988-1995; the latter use 460 firms that are the 

constitutes of the S&P 500 index over the period from 2001 to 2002. 

In summary, a number of studies show that the liquidity features of stock options play 

a key role as to the predictive power of implied volatility. In general, the implied volatility 

is superior to its competitors, e.g., lagged STD, GARCH volatility, for forecasting future 

volatility. However, for options with low liquidity, the opposite is true. 

2.4 Predictive power summary 

An inspection of the findings on diverse option markets indicates that the implied 

volatility appears to contain more information for future volatility. The information 

embedded in time series volatilities may be subsumed by implied volatility. In addition, 

we find that most studies that come to the efficiency conclusion either use noisy daily 

data to construct the true latent volatility or do not attempt to build efficient time series 

forecasts of volatility. The simple forecasting measures based on historical prices may 

contribute to the finding that implied volatility is an efficient estimator for future volatility. 

In the next section, we discuss the theory behind the use of ATM (at-the-money) options 

to compute the implied volatility. 

21 



3. THEORETICAL FOUNDATION FOR THE DERIVATION OF B-S 

IMPLIED VOLATILITY FROM OPTION PRICES 

Academics developed a variety of option pricing models. The most commonly used 

model to derive implied volatility is the Black and Scholes (1973)/Merton (1973) model. 

Merton (1973) extended Black and Scholes (1973) model with the consideration of 

dividend payments. Black and Scholes (1973) assumed the underlying asset follows a 

geometric Brownian motion with constant volatility, as shown with equation (1). 

dSt = /lStdt + O"StdW (1) 

where St is the stock price at time t, /l is the mean return of stock prices, 0" is a constant 

volatility during the life of an option, dW is a geometric Brownian motion. 

It may be inappropriate to assume constant spot asset return volatility. It is well 

known that the asset return variance is of time varying, stochastic process. Thus, the 

implied volatility derived from Black and Scholes (1973) may deviate from the true spot 

return volatility. This can be a source of measurement error due to the option pricing 

specification (see Harvey and Whaley 1991, 1992, among others) 

Hull and white (1987) develop an option pricing model assuming the underlying asset 

has a stochastic volatility. Let P refer to the option price on the underlying asset S which 

has the following stochastic process (equation (1) and (2) in Hull and White (1987) 

paper are repeated here): 

dSt = ({)(Stl Vtl t)Stdt + O"tStdW 

dVt = /l(Vtl t)Vtdt + nVtl t)VtdZ 

(2) 

(3) 

where St is stock price at time t, Vt is the variance, O"t is the time t stock volatility, dW 

and dZ are two Winer processes. The variable ({) depends on Stl Vtl t; variables /l and { 

rely on Vtl t only, and O"t = Ft. With additional assumptions, they show that the option 

price P can be presented by Black-Scholes prices. These assumptions are: there is no 

correlation between two Wiener process dW and dZ; the variance risk is not priced; and 

the risk free rate is constant or deterministic .. 

Pt = IoctJ BS (V) h(VIl'r)dV, where V = T~t ItT l'r dr (4) 

In equation (4), h(VlVt) refers to the probability density of V conditional on l'r and V is 

the mean variance of underlying asset over the life of option in time interval [t, T]. The 
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RHS of (4) is the expected value of Black-Scholes prices conditional on the distribution 

of 17. Furthermore, Feinstein (1989) showed that Black-Scholes model has nearly linear 

relationship to volatility for at-the-money with short maturity options. Thus, equation (4) 

can be further extended as follows. 

Pt ATM = fooo BS (V) h(17Il{-)d17 = E[BS(17)Il{-] ~ BSATM(E[17Il{-D (5) 

p ATM - BS (V; implied) t - ATM [t,T] 

The notation V[t,T]implied refers to the squared value of implied volatility derived from 

Black-Scholes formula for at-the-money option with short maturity. Equation (6) says 

that the squared value of implied volatility implied from an at-the-money option is 

approximately the same as the average value of spot return variance over the life of 

option. The error from approximation is not significant (see Poteshman 2000, 

Lamoureux and Lastrapes 1993, Fleming 1998, Chernov 2001, for more discussions) 
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4. THE CONSTRUCTION OF MVX AND VI XC 

4.1 The construction of MVX 

The MVX is a weighted average of implied volatilities derived from eight close to-the

money, near-by and second nearby options written on the iShare S&PITSX 60 index 

fund (XIU). MVX has a constant 22 trading-day maturity and is quoted in percentage 

form. The calculation of MVX is as follows: first, its calculation requires identifying four 

near-by options, two call and two put options that have at least 8 calendar days until 

maturity. Let O"~:Zl, near -by' O";!t, near -by' O"!:tr near -by, and O":~;v,n near -by refer to the 8-S 

implied volatilities derived from the four near-by options by iteration method. The "up" 

and "down" indicate the first option that has a strike price just higher and lower than the 

spot price, respectively. Second, by averaging the implied volatilities of call and put 

options for each strike and maturity, one obtains two theoretical implied volatilities, 

denoted by O"::ar -by and O":~;n_by. Third, one interpolates O"::ar -by and O":~::-by for 

strike price, as shown by equation (7a) and then obtains the first near-by implied 

volatility. Let O"near -by denote this hypothetical at-the-money implied volatility. 

Employing the same method with another set of four second near-by options, one 

obtains a second near-by hypothetical volatility, O"second near -by' Finally, by linearly 

interpolating these two implied volatilities for maturity, as shown by equation (7b), one 

estimates a 22 trading-day implied volatility. 

_ down strike up -spot + up spot -strike down 
O"near -by - O"near -by up strike -down strike a near -by up strike -down strike 

Tz-22 22-Tl 
at = O"near -by Tz-Tl + O"second near -by Tz-Tl 

(7a) 

(7b) 

where at is the hypothetical ATM (at-the-money) implied volatility at time t, Tl and T2 are 

trading maturity days for near-by and second near-by options (see Fleming, Ostdiek, 

and Whaley (1995) or www.m-x.ca for more details). 

4.2 The construction of VIXC 

The VIXC represents a 22 trading day's risk-neutral expected volatility over the next 

22 days. it is computed from real-time option prices that include out-of-the-money and 

close at-the-money options. Therefore, the information contained in out-of-the-money is 
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considered. The VIXC is computed by interpolating implied volatilities from the near-by 

and second near-by options, as shown by equations (8-9) 

(8) 

(9) 

where (j is the implied volatility for near-by or second near-by options, T is the time to 

maturity in minutes for options, F is the forward index level derived from option prices, r 

is the risk free interest rate, Ko is the first strike price below F, Q (Ki) is the mid price of 

the bid/ask spread for options with strike price Ki, I1Ki is the difference between two 

consecutive strike prices, Ny is days in a year, Nm , here, is 22 days, NT! and NT2 are the 

time to maturity for near-by and second near-by option. The near-by options have at 

least 5 calendar days to maturity. 

4.3 The comparison between MVX and VIXC 

The forecast quality of MVX partially relies on the specification of Black-Scholes 

(1973) formula. Also, MVX only uses close to the money options; the information 

embedded in out-of-the-moneyoptions has been ignored. The VIXC is independent of 

any option formula and uses all out-of-money options. Therefore, the VIXC is expected 

to be more accurate than the MVX for forecasting future volatility. 

On the other hand, the computation of VIXC requires an infinite range of continuous 

strike prices of the S&PITSX 60 index. In practice, it is impossible to obtain such prices 

series. Therefore, approximation errors arise from both truncation error (due to limited 

strike prices) and discretization error (due to numerical integration). The forecast 

accuracy of VIXC may suffer from these two sources of approximation errors. 
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5. DATA 
In this study, we use the following data series: (1) daily closing quotes of implied 

volatility indexes, VIXC and MVX; (2) 5-minute S&P/TSX 60 price index returns; and (3) 

daily S&P/TSX 60 price index high-low range and daily closing returns. The closing 

quotes of volatility indexes are obtained from the ME (Montreal Exchange) (web site 

http://www.m-x.ca). The VIXC extends from October 1,2009, the first day on which the 

ME started to compute the VIXC, to December 31,2010 (314 daily observations). The 

MVX is from October 1, 2009 to October 15, 2010 (261 observations), the last day on 

which the ME computes the MVX. The daily and high frequency 5-min S&P/TSX 60 

index quotes are obtained from the Bloomberg for the period January 3; 2006 to 

December 31,2010 and December 1,2009 to December 31,2010, respectively. 

5.1 Implied volatilities 

To address our research questions, we use the daily closing levels of volatility 

indexes produced by the Montreal exchange. As this data is issued by an official 

exchange, most of the problems arising from mis-measurement are eliminated (see 

Harvey and Whaley, 1991, 1992). In case the daily implied variance is needed, it can be 

converted from the volatility index by equation 10(1). 

D '1' rd' (VIXC or MVX)2 al y Imp Ie vanance = 100v'252 (10) 

Although both MVX and VIXC are robust to mis-measurment problems, they are still 

biased estimators for future volatility outcomes. In the period December 1,2009 to 

October 15, 2010, the mean of MVX is equivalent to an annualized volatility of 17.58%. 

The VIXC has an even larger number, 18.45%. In the same period, however, the 

average annualized volatility derived from 5-min returns is 13.92%. Both VIXC and MVX 

over- predict future volatility. The phenomenon that implied volatility over-predicts future 

realized volatility is common across a variety of options markets (Poteshman, 2000; 

Poon and Granger, 2003). 

(1) See TMX VIXC methodology, www.m-x.ca. 
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5.2 Daily realized volatility 

5.2.1 Daily realized volatility from intra daily returns 

Variances or volatilities computed from daily returns contain much noise, which make 

prediction analysis based on them inapt (Anderson and Bollerslev, 1998). Andersen, 

Bollerslev, Diebold, and Labys (2001), among others, have theoretically proved that the 

summation of squared intra-day returns, defined as realized variance, is an unbiased 

and efficient estimator of the daily integrated variance when the sampling frequency 

goes to infinity. In practice, however, when the sampling frequency is too high, the 

market microstructure effects such as bid-ask bounce make realized variance bias and 

inconsistent. 

We construct our measure of daily realized volatility for the S&P/TSX 60 index with 

intra-day returns. Following Anderson and Bollerslev (1998) and Anderson et al. (2001), 

we use 5-minute sampling frequency for intraday returns and select the last traded price 

in each interval. The daily realized volatility is computed from the square root of the 

summation of squared intra-day returns plus the squared overnight returns between the 

closing price and opening price in two consecutive trading days. For example, realized 

volatility on Thursday is the summation of 79 squared returns, specifically one overnight 

return from Wednesday 16:00 to Thursday 9:30 plus 78 squared 5-min returns starting 

from 9:30 to 9:35 and concluding with the return from 15:55 to 16:00 (Toronto time). 

5.2.2 Daily realized volatility from daily index returns 

Daily returns of the S&P/TSX 60 index are calculated in the normal way as the 

differences in the logarithm of two consecutive daily index closing prices. Let Pt and 

Pt - 1 denote the daily closing index price at day t and t-1, respectively. The daily returns 

for day t are denoted by rt , which is computed by InC...!l...). 
Pt-l 

We do not adjust index returns for dividends by following Blair et al. (2001), who 

suggest that volatilities computed from dividends adjusted returns produce the same 

statistical results as the volatilities from returns without dividends adjustment. The daily 

realized volatility is represented by the absolute value of daily index returns. 

27 



5.2.3 Daily realized volatility from daily high-low range 

We also compute the Parkinson 1980) range volatility that is defined as equation 

(11 ). 

RNG = In(hitJlOt) (11) 
t ..J4ln2 

in which hit and lOt are the daily high and low index prices during day t, respectively. 

RNG is the daily Parkinson (1980) range volatility. 

5.3 Descriptive statistics 

Table 1 presents the descriptive statistics for the five volatility series: MVX, VIXC, 

daily realized volatility, daily squared returns, and daily range volatility. For comparison 

purposes, all these four volatility series have been annualized. Daily squared returns are 

the most volatile among these four volatility series. Their standard deviation is 3.4 times 

as the VIXC, 2.4 times as the MVX, and 1.5 times as the realized volatility. This statistic 

suggests that the daily square returns have too much noise to be used as the 

benchmark for forecasting analyses: It is also seen that the realized volatility is about 

twice as volatile as the VIXC and MVX, as judged by the respective standard deviation. 

This result is consistent with the notion that implied volatility represents the average 

volatility over the remaining life of options. Therefore, it should exhibit less volatility than 

realized volatility. 

In Table 1 we also see that the distributions of five volatility series are skewed right 

and leptokurtic. The Jarque-Bera tests for normality reject the null hypothesis of normal 

distribution for all series at the 5% level. The results of unit-root tests with both ADF 

(Augmented Dickey-Fuller) and P-P (Phillips-Perron) approaches indicate that, except 

for the VIXC, the realized volatility, daily square returns, daily range volatility, and the 

MVX are stationary. We also examine the unit root for VIXC from December 1, 2009 to 

February 1, 2010 (295 observations). The ADF and P-P tests with trend are -2.7425 (p: 

0.0682) and -2.9120 (p: 0.0452). In the same period, the unit root tests for the CBOE 

VIX with both approaches are -3.1754 (p: 0.0225) and -2.8204 (p: 0.0566). 

Notably, among these five series, VIXC has the strongest positive serial correlation 

and MVX follows. Both implied volatility series, VIXC and MVX, have more long memory 

features than the realized volatility and range volatility, as suggested by the magnitude 
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of serial correlations. A significant serial correlation can not be found in the squared 

daily returns series, possibly because of measurement errors, such as bid-ask bounce. 

Regarding the autocorrelation test on series of the first-order difference, it can be 

seen that the first-order autocorrelations for realized volatility, range volatility, and daily 

squared returns are statistically significant and negative as well. This can be expected, 

since both time series in level are stationary. The negative first-order autocorrelation is 

also the evidence of mean reversion in both volatility series. 

The negative serial autocorrelation on first-order difference of implied volatility can be 

seen as the presence of measurement errors when computing implied volatilities (see 

Harvey and Whaley, 1991, 1992). Therefore, it is worth mentioning that the first-order 

autocorrelations for VIXC series, 0.0549 (p: 0.4135), is not significantly different from 

zero. In comparison, for MVX, we find a significantly negative correlation on the first 

difference, -0.1345, which is significant at the 5% level. We conclude that the 

measurement errors associated to VIXC computation are less than these errors to MVX 

computation. From this aspect, we may expect that VIXC can better predict future 

volatility than MVX. 

In addition, from Table 1 we find that the mean of realized volatility, 13.92, is lower 

than both the mean of VIXC, 18.49, and the mean of MVX, 17.57. The t-tests for the 

equality of means are -10.0533 and -7.4155 between realized volatility and VIXC, and 

between realized volatility and MVX, respectively. Equality is rejected at the 1 % 

significance level for both tests. 

Researchers have proposed several explanations for this apparent discrepancy 

(Poteshman 2000). For example, one explanation is that there is a non-zero price for 

volatility risk. MVX is derived from 8-S option model, which assumes zero variance risk 

premium. VIXC is a model free implied volatility. Its computation is also under the risk 

neutral assumption. Recent research has viewed the assumption of zero variance risk 

premium inappropriate. For example, Poteshman (2000) derive implied volatility for SPX 

options from Heston (1993) option model that permits a non-zero market price of 

volatility risk. His results suggest that implied volatility is an almost unbiased ~stimate 

forfuture realized volatility. See 8akshi and Kapadia (2003), Carr and Wu (2004), 

Adersern, et. al. (2007), Chernov (2007), and Corsi (2009) for more discussions. 
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Table 1 Descriptive statistics of volatility series 

Statistics Daily realized Squared daily Parkinson VIXC MVX 

Volatility Returns range 

Volatility 

Mean 13.9168 10.3554 12.0935 18.4994 17.5768 

(0.0000) (0.0000) 

Median 12.3678 8.0355 10.7691 18.1081 17.4340 

Maximum 45.2791 48.1778 42.0865 27.5862 32.5780 

Minimum 4.5199 0.0231 2.8327 13.58900 9.8530 

Std. Dev. 6.1490 9.3439 5.6457 2.773871 3.9418 

Skewness 2.0738 1.2472 1.4167 0.47490 0.6476 

Kurtosis 8.7576 4.2772 6.5002 2.8751 3.8254 

Jarque-Bera 459.4780 71.6626 185.0658 8.3741 21.5275 

Probability 0.0000 0.0000 0.0000 0.0151 0.0000 

Autocorrelations 

Lag(1) 0.5476 (0.0000) -0.0568 (0.3965) 0.4026 (0.0000) 0.9464 (0.0000) 0.8731 (0.0000) 

Lag(2) 0.4735 (0.0000) -0.0159 (0.6787) 0.3584 (0.0000) 0.8881 (0.0000) 0.7792 (0.0000) 

Lag(3) 0.3604 (0.0000) 0.2304 (0.0054) 0.3306 (0.0000) 0.8242 (0.0000) 0.6985 (0.0000) 

First difference -0.4120 (0.0000) -0.5100 (0.0000) -0.4494 (0.0000) 0.0549 (0.4135) -0.1345 (0.0453) 

ADF statistic 

With Intercept -5.3519 (0.0000) -7.0924 (0.0000) -6.2425 (0.0000) -2.1403 (0.2292) -3.9000 (0.0024) 

With Intercept -5.3508 (0.0001) -7.0880 (0.0000) -6.2303 (0.0000) -2.1203 (0.5312) -3.8766 (0.0146) 

and Trend 

None -1.8957 (0.0555) -1.9194 (0.0526) -1.1240 (0.2369) -0.7220 (0.4029) -1.0220 (0.2754) 

Phillips-Perron 

statistic 

With Intercept -8.5283 (0.0000) -15.9453 -10.8531 -2.3563 (0.1555) -3.7456 (0.0041) 

(0.0000) (0.0000) 

With Intercept -8.5197 (0.0000) -15.9475 -10.8362 -2.3371 (0.4117) -3.7198 (0.0230) 

and Trend (0.0000) (0.0000) 

None -2.2500 (0.0239) -10.6438 -2.9303 (0.0035) -0.7220 (0.4029) -0.8900 (0.3295) 

(0.0000) 

Notes: The sample penod extends from December 1,2009 to October 15,2010. Sample comprises 219 dally 

observations for all four time series. ADF denotes the Augmented Dickey-Fuller test of stationary. Jarque-Bera 

normality test reports X 2 on the null. Autocorrelations test reports Q-stat on the null. The amounts in parentheses are 

p-values. Realized volatility is computed from the summation of 5-min intraday and overnight squared returns. MVX 

and VIXC are daily closing levels of implied volatility indexes. All volatilities have been annualized and assume 252 

trading days in one year. The p values associated with mean row of VIX and MVX are for equality test between 

realized volatility and VIXC, and realized volatility and MVX, respectively. 
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6. EMPIRICAL ANALYSES 

In this section we first evaluate the information content of VIXC and MVX by 

examining the statistic results of various GARCH specifications. Due to the mixed 

findings of whether implied volatility incorporates all information for future realized 

volatility, it is meaningful to examine whether GARCH models of market volatility contain 

useful information that is not reflected by implied volatility. This test provides extra 

evidence based on Canadian data. 

We also analyze the information content of VIXC and MVX by examining out-of

sample forecasts of future realized volatility. The accuracy of forecasts between implied 

volatility and alternatives which are derived from historical asset prices is also tested. 

The out-of-sample tests will be based on regression and loss function analyses. 

6.1 Examination of information content by GARCH in-sample test 

In this section, we examine whether the model free implied volatility, VIXC, is 

superior to the model based implied volatility, MVX. Because studies in this area are 

sparse and inconclusive, our results will provide further evidence. Second, we examine 

whether implied volatility has sufficient information for conditional volatility. If so, we can 

conclude that the Canadian stock market is efficient. 

6.1.1 Test methodology 

We follow the methods of Corrado and Truong (2007) to investigate the information 

content of implied volatility with expanding the standard GARCH model by exogenous 

variables: VIXC, MVX, and/or Parkinson (1980) volatility. We can assess information 

content embedded in VIXC, MVX, and/or Parkinson volatility by examining the sign and 

significance of their GARCH model coefficients. We formulate our full GARCH model as 

equation (12-13) 

Tt = J.l + Et , Et - NCO, ht ) (12) 

ht = a + {3Et-l + yIEt-l + 8ht - 1 + wv VIXCt _ 1 + wm MVXt - 1 + wp RNGt - 1 (13) 

where f1 and ht denote the conditional mean and variance of returns, respectively. Et is 

the innovation process and is assumed to be normally distributed with a mean equal to 

zero and a conditional variance equal to ht . I is a dummy variable that equals to one if 

31 



Et-l is negative, and zero otherwise. VIXCt_1 is the daily model free implied variance on 

day t-1. MVXt- 1 is the daily 8-S implied variance on day t-1. 80th daily implied 

variances are computed from closing levels of implied indexes. RNGt is the Parkinson 

(1980) volatility that is defined by equation (11). 

Equation (13) allows us to study the information content of implied volatility relative to 

the GARCH specification for conditional volatility as well. For example, by setting yand 

Wm equal to zero, we can evaluate the extent of conditional variance affected by past 

variance and implied volatility, VIXC. For different test purposes, we set various 

restrictions on the parameters of the equation (13). We use the following GARCH 

specifications for conditional variance: 

ht = a + PEt-l + 8ht- 1 

ht = a + PEE-l + 8ht- 1 + wmMVXt- 1 

ht = a + PEE-l + 8ht- 1 + wvVIXCt- 1 

Model A 

ModelB 

Model C 

(14) 

(15) 

(16) 

ht = a + PEE-l + yIEE-l + 8ht- 1 Model D (17) 

ht = a + PEE-l + yIEE-l + 8ht- 1 + wmMVXt- 1 Model E (18) . 

ht = a + PEE-l + yIEE-l + 8ht- 1 + wvVIXCt_1 Model F (19a) 

ht = a + PEE-l + yIEE-l + 8ht- 1 + wvVIXCt_1 + wpRNGt- 1 Model H (19b) 

ht = a + PEE-l + yIEE-l + 8ht- 1 + wvVIXCt_1 + wmMVXt- 1 Model G (20) 

It is clear that model A is the standard GARCH model and model D is the standard 

GJR-GARCH model. Model A assumes a symmetric response to volatility shocks. The 

good news and bad news have the same effects on volatility shocks. With model D, 

however, we differentiate the volatility shocks arising from good or bad news. The 

significance level and magnitude of parameter P and P + y indicate the effects of good 

and bad news, respectively. 

Model 8 and C examine whether any of these two implied volatility indexes is a 

sufficient statistic for deriving conditional volatility. We formulate model E and F to 

examine whether either of the implied volatilities can capture leverage effects in index 

returns series. Model G examines whether either of these implied volatilities can provide 

extra explanatory power in addition to the information embedded in their counterpart. 

Finally, Model H examines the dominance between VIXC and daily range volatility with 

respect to conditional volatility generating process. 
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All model parameters are estimated by maximum likelihood method under the 

assumption that the errors are conditionally normally distributed. Robust standard errors 

are computed from Bollerslev and Wooldridge (1992), so that the inferences are robust 

against possible non-normality of errors. 

6.1.2 Test results 

Parameter estimates of the various GARCH models, along with their t-statistics, 

Durbin-Watson test, Akaike info criterion values, log-likelihood, and X2 are reported in 

Table 2. The results are based on 261 daily observations on the S&PITSX 60 index 

from October 1, 2009 to October 15, 2010. 

Starting from model A, the standard GARCH model, we note that the persistence 

estimate is f1 + 0=0.9485. Since its value is close to one, this persistence estimate 

suggests volatility clustering in .the S&PITSX 60 index prices. Further considering model 

D, the standard GJR-GARCH model, the persistency estimate measured by f1 + 

~Y+ 0=0.9363 indicates high volatility cluster and persistence as well over the 

examination period. This persistence property is consistent to most empirical results on 

stock index prices (see Blair et al. 2001). The positive and significant y coefficient in 

model D, the GJR-GARCH model, is indicative of the asymmetric impact of news on the 

market volatility generating process. The excess log-likelihood for model D against 

model A is 10.5233, which is significant at the 1 % level. The X 2 test between model A 

and model D suggests that the null hypothesis of no leverage effects is rejected at the 

1 % significance level. 

As for model B and model C, they are extended from model A by adding either VIXC 

or MVX to GARCH volatility specifications. The non-significance of 8 coefficients and 

significance of Wv and Wv coefficients suggest that both implied volatility indexes have 

incremental information that is not reflected in past asset prices. However, the 

significance of residuals parameters, f1, in both models indicates that implied volatilities 

do not contain a/l information regarding conditional volatility of index returns. The 

hypothesis that implied volatility is efficient is rejected based our data at the 1 % level. 

When leverage effects are considered, model D, is superior to model A, judging from 

the X2 values. We thus extend model D with MVX and VIXC to form model E and F. In 
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model E, although Wrn coefficient associated with MVX is significant at the 10% level, 

the excess log-likelihood against model D, is only 1.3530, which is not significant at the 

10% level. The X2 test indicates that there is no difference between model D and model 

E, at the 10% significance level, regarding model fitness. 

The scenario changes, however, when including VIXC in GARCH specifications. The 

excess log-likelihood for model F with respect to model D is 6.2607, which is significant 

at the 1 % level. The Wv coefficient on VIXC is 0.2397 (significant at the 1 % level), and 

Wrn for MVX is 0.0387 (significant at the 10% level) in model E and F, respectively. The 

I) coefficient for GARCH parameter is reduced from 0.8647 in model D to 0.6819 in 

model F, but reduced to 0.8262 only in model E. The larger magnitude of Wv suggests 

that VIXC has more additional information than MVX. 

Note that the asymmetric effects of bad news are all significant with the presence of 

implied volatilities. Specifically the y coefficients are significant at the 1 % level for model 

E and F. Our results suggest that both implied indexes are unable to capture the 

leverage effects in the Canadian market. 

To examine whether VIXC can fully incorporate all information about future volatility 

that have contained in MVX, we form model G by adding VIXC into the GARCH volatility 

specification of model E. The excess log-likelihood between the two models is 4.4785, 

which is significant at the 1 % level. The X2 value of 8.9570 indicates that the null 

hypothesis of no difference between model E and G is rejected. Furthermore, the Wv 

coefficient is 0.1742 (significant at the 1 % level), and Wrn coefficient is 0.0211, which is 

not significant. This indicates that VIXC can incorporate the information embedded in 

MVX. The model free implied volatility, VIXC, is superior to the model based implied 

volatility, MVX. 

We formulate model H by including VIXC and Parkinson range volatility into standard 

GJR-GARCH model. Notably, the Wv coefficient for VIXC, 0.0166, is not significantly 

different from zero at the 10% level. Comparing to Wv coefficient, the wp coefficient for 

Parkinson's volatility, 0.5512, is significant at 1 % level. The latter is 33 times larger than 

the former. We conclude that Parkinson range volatility contains more information for 

conditional volatility than VIXC. In addition, the excess log-likelihood between model F 

and model H, 45.5539, is significant at 1 % level as well. This number indicates that 
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model H is better than model F in term of data fitness. The y coefficient, 0.0195, which 

is not significant at 10% level, suggests that Parkinson's volatility can capture leverage 

effects. 

In summary, we find that both implied volatilities, VIXC and MVX, do contain useful 

information about future realized volatility that is not reflected in past index prices. 

However, both implied volatilities do not incorporate all information regarding market 

volatility. Particularly, neither of implied volatilities contains much information regarding 

leverage effects in Canadian stock market. Our results strongly indicate that VIXC can 

incorporate the information contained in MVX. Finally, we find that Parkinson's range 

volatility has more information content about conditional volatility than VIXC. 
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Table 2 Estimation of GARCH models 

Parameters 

a * 105 

{/ 

y 

D-W 

AIC 

Log-L 

Excess 

Model A Model B Model C Model D 

0.3848 -0.0764 

(1.7507) (-0.0744) 

0.0830~ -0.0996~' 

(2.3538) (-3.6130) 

0.8655- 0.1137 

(18.0302) (0.2026) 

1.9794 

-6.5626 

0.6036' 

(1.7787) 

1.9788 

-6.5945 

-4.0994 

(-1.9604) 

-0.0944'" 

(-6.7004) 

0.2602 

(0.7210) 

0.7475~ 

(2.1603) 

1.9812 

-6.6476 

0.5286""" 

(6.5477) 

-0.1089" 

(-2.3263) 

0.8647~' 

(19.2195) 

0.3609'" 

(5.0115) 

1.9793 

-6.6356 

Model E Model F 

0.4108 -1.0429*** 

(12.4771) (-45.6415) 

-0.1551 -0.1432'~ 

(-4.7666) (-4.3349) 

0.8262'~ 0.6819'" 

(13.6931) (7.7855) 

0.4435'" 0.264f~ 

(5.6926) (4.2144) 

0.0387' 

(1.6724) 

1.9798 

-6.6383 

0.2397'~ 

(6.1098) 

1.9813 

-6.6759 

860.4282 865.5878 872.5212 870.9515 872.3045 877.2122 

5.1596 12.0930 10.5233 1.3530 6.2607 

Model G 

-0.6718 

(-30.4760) 

-0.1385-

(-3.9622) 

0.7167'~ 

(7.8252) 

0.2458'~ 

(3.9193) 

0.1742'~ 

(3.1756) 

0.0211 

(0.5616) 

1.9813 

-6.6650 

Model H 

-0.4521 

(-99.7344) 

-0.1409'-

(-8.3968) 

0.5195·~ 

(6.3683) 

0.0195 

(0.9965) 

0.0166 

(1.0034) 

0.5512'" 

(5.5867) 

1.9771 

-7.0173 

876.7830 922.7661 

4.4785 45.5539 

log-L 

X 2 10.3192~' 24.1860- 21.0466'" 2.7060 12.5214~' 8.9570'" 91.1078'" 

Notes: The sample period of daily observations spans from October 1, 2009 to October 15, 2010 (261 observations). 

GARCH models for daily returns on the S&P/TSX 60 index are: 

rt = p. + et, et- N(O,ht ) 

ht = a + {/el-1 + liht- 1 

ht = a + {/el-1 + liht- 1 + wm MVXt- 1 

ht = a + {/el-1 + liht- 1 + w"VIXCt_1 

ht = a + {/el-1 + yI e[-l + liht-1 

ht = a + {/el-1 + yle[_l + liht- 1 + wm MVXt- 1 

ht = a + {/e"t-1 + ylel-1 + liht- 1 + w"VIXCt_1 

ht = a + {/el-1 + Ylel-1 + liht- 1 + w"VIXCt_1 + WmMVXt- 1 

Model A 

ModelB 

Model C 

Model D 

ModelE 

ModelF 

Model G 

ht = a + {/el-1 + Ylel-1 + liht- 1 + w"VIXCt_1 + wp RNGt_1 Model H 

GARCH model parameters are estimated by maximum likelihood method under the assumption that the errors are 

conditionally normally distributed. The t-statistics in parentheses are computed from Bollerslev and Wooldridge (1992) 

to against possible non-normality errors. *, **, and *** indicate that the coefficient is significantly different from zero at 

the 10, 5, and 1% significance level, respectively. D-W is Durbin-Watson test. AIC is Akaike info criterion. The excess 

log-likelihood and X2 for model B, model C and model D, for model E and model F, for model G, and for model H, 

are computed with respect to model A, to model D, to model E, and to model F, respectively. 
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6.2 Out-of-sample forecast 

The results reported in section 6.1.2 suggest that VIXC has more information about 

future volatility than MVX. However, those results are built on an in-sample test. It is 

useful to examine which index can produce better forecast in light of out-of-sample 

judgment. In addition, the forecasting ability of implied volatility can be assessed against 

alternative volatilities derived from historical asset prices. 

6.2.1 Proxy for realized volatility over various horizons 

We defined daily realized variance as the summation of intra day squared returns 

and overnight squared returns. We also consider realized volatility in view of time 

horizons longer than one day. These multiple period variance will simply be the sums of 

the each period's volatility. 

Let U[t,T] refer to the annualized realized volatility over an N-day horizon starting at 

time t and ending at time T. The daily realized variance for each day within this horizon 

is denoted by RVCt), RVCt+1) , ... , RVCT). Then the realized volatility over this interval can 

be computed from equation (21) 

U[t,T] = T~!:l (RV Ct) + RVCt+1) + ... + RVCT)) , (21) 

Our intra day data extends from December 1,2009 to December 31,2010 (272 daily 

realized variance). We construct realized volatility series regarding 1-, 5-, 10-, and 22-

trading days. 

6.2.2 Alternatives of volatility forecasting -

Becker, Clements, and White (2007) argue that it may be a statistical artifact that 

implied volatility incorporates all information contained in historical prices. The implied 

volatility may incorporate all volatility information embedded in one particular type of 

historical volatility, e.g., forecasts based on the previous month's sample standard 

deviation. It is also possible that a more complicated time-series forecast contains 

information beyond that contained in implied volatility. Thus, in our study, we construct 

three types of time-series volatility forecasts: random walk, GJR-GARCH (1,1), and 

37 



Riskmetrics EWMA. These three kinds of volatility series are constructed over various 

forecast horizons: 1, 5, 10, and 22 trading days, respectively. 

6.2.2.1 Random walk 

A simple forecast of next period's volatility is to use the volatility of the previous 

period. We construct the forecast series with the lagged realized volatility, denoted by 

Yt-l (N), in which N indicates the days in a forecast horizon. The series were 

constructed as: 

Yt (N) = Yt-l (N) (22) 

where Yt-l (N) is the realized volatility in previous period. In our study, the out-of-sample 

forecast of volatility is from December 1, 2009 to December 31 , 2010 (272 

observations). With this methodology, we have 272 forecasts of 1, 5, 10, and 22-day 

volatility. 

6.2.2.2 GJR-GARCH(1,1) 

A popular forecasting measure is GARCH (1, 1) which uses daily returns series (see 

Jorin 1995, Pong, Shackleton, Taylor, and Xu, 2004, Siu and Okunev, 2008, Yu, Lui, 

and Wang, 2010). Comparing with GARCH(1 ,1) forecast, GJR-GARCH(1, 1) forecast is 

better when the underlying asset returns have leverage effects. Hansen and Lunde 

(2005) found that GARCH(1, 1) is inferior to models that incorporate leverage effects in 

their analyses of IBM returns. A number of papers use GJR-GARCH(1, 1) to forecast 

future volatility (e.g., Simon, 2003; Corrado and Miller,2005; Frijns, Tal/au, and tourani

Rad,2010a). 

Our study uses GJR-GARCH(1, 1) model to construct the series of forecast volatility. 

In particular, we formulate four time-series forecasts, with respect to 1, 5, 10, and 22 

trading days. The GJR-GARCH(1 ,1) specification is as follows: 

(23) 

ht = a + Pht - 1 + YleE-l + Y2IeE-l (24) 

where Tt is the daily log return, In(..EL), and Pt is the daily closing price of the S&PITSX 
Pt-l 

60 index at day t. Jl is the mean daily return. et is the innovation of mean daily return, 

which assumes a normal distribution. et is conditional on variance ht as well. I is an 
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indicator variable which takes a value of one if the lagged innovation, Et-l , is negative, 

and zero otherwise. The leverage effects can be captured by the value of Y2. A positive 

significant value indicates that the same amount of negative return has larger effects on 

conditional variance than that of positive return. 

The daily volatility forecasts exceeding one day are constructed by: 

ht+n = a + (f3 + Yl + O.5Y2)ht+n- 1 (25) 

We follow the method of Frijns, Tallau, and Tourani-Rad (2010a) to construcUhe total 

variance k-day forward by using the following equation: 

hk,t = :L~=l ht+n (26) 

We initially estimate the GJR-GARCH(1, 1) model using 983 daily observations, from 

January 3, 2006 to November 30, 2009. After the initial parameters estimation, we 

compute out-of-sample volatility forecasts for the next 1, 5, 10, 22 days. The one day 

forecast comes from equation (24), whereas 5, 10, and 22-day forecasts are computed 

from equation (25) and (26). The first forecast of volatility is constructed for December 

1, 2009. After we construct the first day's forecast, we roll the data window forward one . 

day and delete the oldest observation. We then re-estimate the model and make the 

next forecast. We iterate this procedure until the end of out-of-sample forecast period, 

which is December 31,2010. In this way, we construct forecast series with 272 data 

regarding 1, 5, 10, and 22 trading days. 

6.2.2.3 Riskmetrics EWMA 

EWMA forecasts volatility for the next day as equation (27) 

Vt+1 = (1 - A) :Lf=l At Tf-t+1 (27) 

where Vt +1 is the variance forecasted for time T +1. T denotes the present time. N 

denotes the length of trading days used in computation. This forecast measure places 

more weight on recent observations and less weight on early ones. Because 

Riskmetrics (1996) use 0.94 for A, we use this value for our estimations. By following 

Simon (2003), we set N equal to 75. After obtaining one day ahead variance, Vt +1, the K 

day ahead forecasted variance is the multiple of K and Vt+1. Our out-of-sample forecast 

period for EWMA is from December 1, 2009 to December 31, 2010. Within this period, 

we construct forecast series with 272 data regarding 1, 5, 10, and 22 trading days. 

39 



6.2.3 Out-of-sampie forecast comparison 

In this section we compare the forecasting performance of implied volatility for future 

realized volatility. We use two measures: regression test and accuracy test based on 

four loss functions. Following the Jorion (1995), we use our regression tests to assess 

the "information content" of daily implied volatilities for volatility over the next day, next 

week, and the next two weeks. With respect to loss functions, MSE (mean squared 

error), MAE (mean absolute error), HMSE (heteroskedasticity-adjusted mean square 

error), and HMAE (heteroskedasticity-adjusted absolute error) will be computed. 

6.2.3.1 Regression-based tests 

We examine the information content of implied volatility in levels with regression 

equations (28a-30a). For robust test purpose, we also test both model free and 8-S 

model-based implied volatility in terms of the first difference of realized volatility with 

equation (28b-30b), because our preliminary examination reveals that the VIXC series 

exhibit unit root properties. 

U[t,t+n] = a + p8[t,t+n/
M + Et 

+ ~ TS 
u[t,t+n] = a YU[t,t+n] + Et 

+p ~ 1M + ~ TS + 
U[t,t+n] = a U[t,t+n] yU[t,t+n] Et 

U[t,t+n] - U[t-n-l,t-l] = a + P(8[t,t+n{M - U[t-n-l,t-l]) + Et 

(28a) 

(29a) 

(30a) 

(28b) 

U[t,t+n] - U[t-n-l,t-l] = a + y(8[t,t+n{S - U[t-n-l,t-l]) + Et (29b) 

U[t,t+n] - U[t-n-l,t-l] = a + P(8[t,t+n{M - U[t-n-l,t-l]) + y(8[t, t+n{S - U[t-n-l,t-l]) + Et (30b) 

The notation u[t,t+n] refers to the ex post realized volatility over n-day forecasts horizon 

[t, t+n], in which n is equal to 1, 5, and 10, respectively. U[t-n-l,t-l] is the lag of 

u[t,t+n]' 8[t,t+n]/M denotes the implied volatility at time t. 8[t,t+n{S denotes alternative 

forecasts of volatility derived from historical index returns, forecasts which include 

random walk, GJR-GARCH (1,1), and Riskmetrics EWMA. 

Many studies show that sampling procedure affects the results of regression tests 

mentioned above. For example, Canina and Figlewski (1993) use overlapping samples 

to test the relationship between implied volatility and the subsequent volatility outcome. 

They find that lagged standard deviation dominates implied volatility for forecasting 

40 



purpose. The overlapping samples favor the historical volatility in regression tests 

(Christensen and Prabhala, 1998; Christensen, Hansen, and Prabhala, 2002). Following 

the suggestions of Christensen and Prabhala (1998), we use non-overlapping sample to 

reduce possible problems for statistical inference. 

We use several forecasting horizons: 1-, 5-,10-, and 22-trading days. Let "N" be the 

length of a particular forecast horizon. We select the last day's closing price of both 

volatility indexes in each horizon to construct implied volatility series. The VIXC and the 

MVX series will be compared to the eventual realized volatility in next N trading days. 

For example, regarding the 5-day horizon forecast, we obtain the first VIXC observation 

on November 30, 2009. This implied volatility will be compared with the realized volatility 

in the next 5 trading days, which is from December 1,2009 to December 7,2009. We 

use the second VIXC observation on December 7,2009 and compare this amount with 

the realized volatility in the period from December 8,2009 to December 14,2009. We 

iterate this sampling procedure until the end of our sample. Therefore, we construct both 

implied volatility series and realized volatility series one by one. For forecast horizons of 

1-,5-, 10-, and 22-trading days, we obtain 220, 44,22, and 11 observations(2). Figure 1 

illustrates the sampling procedure. 

horizon m horizon m + 1 

realized volatility in 

oeriod: t+1 to t+horizons 

Figure 1. The non-overlapping Sampling procedure 

(2) The Montreal Exchange stopped computing the MVX on October 15, 2010. Because we compare the 

predicting power of both the VIXC and the MVX, we use observations in the period from December 1, 

2009 to October 15, 2010, during which VIXC and MVX coexisted. 
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Both VIXC and MVX are market estimates of average future volatility over the next 

22 trading days. Therefore, with the forecast horizons of 1-, 5-, and 10-trading days, the 

regression equations (28a-30b) can not test the forecasting accuracy of implied 

volatilities. Jorion (1995) calls such tests "information content of implied volatilities". 

These tests can answer the question whether implied volatilities have some useful 

information for predicting the future volatilities. 

We only have 11 observations for 22-day horizon. Such a small number of 

observations make statistical inference difficult. Thus, we focus on forecast test 

regarding the 1, 5, and 10 days horizon. With respect to the test for 22-trading day 

horizon, we use loss functions to examine the superiority among VIXC, MVX, and time 

series of volatility forecasts. 

We formulate two hypotheses based on regression equations (28a-30b). 

Hypothesis 1: VIXC incorporates all information that is contained in MVX for 

predicting the next 1-, 5-, and 10-trading day's realized volatility. 

Hypothesis 2: VIXC incorporates all information that is contained in alternative 

forecasts of time series volatility for predicting the next 1- and 5-trading day's volatility. 

6.2.3.1.1 Hypothesis 1 test results 

Hypothesis 1 can be examined by analyzing log likelihood ratio between an 

unrestricted model, which uses both VIXC and MVX as explanatory variables, and a 

restricted model, which uses only either VIXC or MVX as a regressor. In addition, the R

squared values from regression tests indicate the fitness of models. The ranking of R

squared values thus represents the order of forecasting ability. 

We start examining the information contents of MVX and VIXC for the next 1, 5, and 

10 day's realized volatility. Results are displayed in Table 3 and Table 4 for regression 

tests in levels and first difference, respectively. All parameters are estimated by 

standard OLS with Newey-West (198?) corrected errors for heteroskedasticity and serial 

correlation. The results in Table 3 and Table 4 are very similar for statistical inference, 

thus we only discuss the results in Table 4. We focus on Table 4 because most Durbin

Watson statistics are far away from two in Table 3. For example, for 1-day prediction, 

the Durbin-Watson values in Table 3 are 1.32, 1.08, and 1.33, respectively. Such low 
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Durbin-Watson values indicate that the residuals from regression tests in levels are 

serially correlated and thus the regression model is not a good fit with the data. 

Starting with Panel A in Table 4, it is clear that both VIXC and MVX contain 

information about the next day's realized volatility, because in univariate regression, 

both slope coefficients are significant at the 1 % level. In addition, the R-squared value 

for VIXC, 0.3265, is larger than that for MVX, 0.2463. This suggests that VIXC predicts 

the next day's volatility more accurately than MVX. All Wald-F tests indicate that the 

intercept is not equal to zero and the coefficient is not equal to one. Therefore, VIXC 

and MVX are biased forecasts for the next day's volatility. This result is expected, 

because both VIXC and MVX anticipate the average volatility in one month, not in one 

day. The likelihood ratio test, 0.5818, indicates that VIXC can incorporate all information 

contained in MVX. Further evidence can be seen from the coefficients of the VIXC and 

MVX. When both VIXC and MVX are included as explanatory variables, the coefficients 

for VIXC and MVX are 0.5990 and 0.0793, with the former being significant at the 1 % 

level, whereas the latter is not significantly different from zero at the 10% level. 

We now turn to Panel Band C in Table 4. The statistical implications inferred from 5-

and 10-day horizon are similar to those for the 1-day horizon test. The likelihood ratio 

and magnitude of coefficients for VIXC and MVX indicate that VIXC incorporates all 

information embedded in MVX for the next 5 and 10 day's volatility forecasts. In addition, 

when VIXC is of a regressor in univariate regression, we obtain a higher R-squared 

value in 5-day horizon test, 0.3532, than in 1-day horizon test, 0.3265. This suggests 

that when forecasting a longer horizon, VIXC can better forecast future volatility. 

However, in 10- day horizon test, the R-squared values are close to zero for all 

regression tests. These surprising results may be due to our limited number of 

observations. For a horizon of 10 days, we only have 22 observations. Without 

considering the R-squared values, we still can come to the same statistical inference 

from the likelihood ratio test and the magnitude of coefficients for VIXC and MVX. In the 

10-day horizon test, the likelihood ratio test for MVX, 1.6750, clearly indicates that MVX 

is a redundant explanatory variable when both VIXC and MVX are present in regression 

model. According to the results in Table 3 and 4, we can not reject the hypothesis one 
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and hence VIXC does incorporate all information that is reflected in MVX for the future 1, 

5, and 10 day's realized volatility. 

As a robustness check, we follow Jorion (1995) to use daily squared returns as the 

dependent variable and retest the relationship between the next day's volatility, 

represented by .JRttl, which is calculated as a daily return of SPITSX 60 index, and 

implied volatility, VIXC and/or MVX. Results are presented in Table 5. We do not test 

the forecast horizon with 5 and 10 days, because a noisy benchmark, .JR'f+1' combined 

with small samples will make statistic inference unreliable. From the univariate 

regression, we find that the coefficients for both MVX and VIXC are significant at the 1 % 

level. This suggests that both implied volatilities contain information for the next one 

day's volatility. The R-squared value for the VIXC forecast, 0.0838, is higher than the 

one for MVX, 0.0321. We conclude that VIXC is superior to MVX for predicting the next 

day's volatility. Our R-squared values are consistent to empirical results when using 

.JR'f+1 as the comparison benchmark, e.g, Moraux et al. (1999) report R-squared value 

of 0.0359; Frijns et al. (2010) report R-squared value of 0.1214 when forecasting the 

next day's volatility; 

Considering the results from the bivariate regression test in Table 5, we note that the 

coefficient for MVX is not significant at the 10% level. The coefficient of 0.9678 for VIXC 

is about 30 times larger than the coefficient of 0.0333 for MVX. This suggests that VIXC 

almost incorporates all the information that is contained in MVX for predicting the next 

one day's volatility. In addition, the likelihood ratio test between restricted model, which 

sets y equal to zero, and unrestricted model indicates that MVX is a redundant 

explanatory variable when VIXC is included. 

To summarize, results from Table 3, 4, and 5 suggest that both VIXC and MVX do 

contain information about 1-, 5- and 1 O-day forward volatility. However, VIXC subsumes 

all information that is reflected in MVX with respect to predicting future volatility. We 

confidently accept hypothesis 1. Therefore, in the next subsection, we only examine the 

relationship between VIXC and alternative forecasts of time series volatilities which 

include GJR-GARCH, EWMA, and random walk. 
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Table 3 Information content regression tests for VIXC and MVX in levels 

Comparison in a fl y D-W Adj. R2 Wald F 

levels test 

Panel A Forecast 

(2200bs) horizon=1 day 

Panel B Forecast 

(440bs) horizon=5 day 

Panel C Forecast 

(220bs) horizon=10 

day 

Notes: 

-10.1955-

(-2.4849) 

2.0426 

(0.6944) 

1.3007--

(5.5525) 

-10.4478" 1.1478-

(-2.5697) (4.9734) 

-3.6159 

(-0.7953) 

8.8039-

(2.1217) 

-3.3685 

(-0.7296) 

6.6971 

(1.1707) 

16.8017--

0.965f

(3.8891) 

1.0503"

(2.8849) 

0.4194 

(1.5098) 

0.6736-

(3.7520) 

0.1753 

(1.2147) 

0.3106 

(1.4301 ) 

-0.1036 

(-0.3751) 

-0.1333 

(-0.4467) 

1.3224 

1.0822 

1.3323 

1.5474 

1.2730 

1.5528 

1.0682 

0.9254 

(2.9073) 

8.3866 

(1.3803) 

0.8025-

(2.0066) 

-0.5033 1.0878 

(-1.2774) 
~ VIXC 

u[t,t+n] = a + flu[t,t+n] + Et 

+ ~ MVX + 
u[t,t+n] = a YU[t,t+n] Et 

+ fl ~ VIXC + ~ MVX 
u[t,t+n] = a u[t,t+n] YU[t,t+nJ + Et 

0.3412 

0.1817 

0.3460 

0.2386 

0.0328 

0.2244 

0.0154 

-0.0390 

0.0699 

75.3721 

(0.0000) 

19.3443 

(0.0000) 

11.5373 

(0.0001) 

11.5507 

(0.0001) 

11.7213 

(0.0004) 

14.1765 

(0.0001) 

Likelihood 

ratio 

50.3375 

(0.0000) 

2.6343 

(0.1046) 

10.7707 

(0.0010) 

0.2470 

(0.6192) 

3.5662 

(0.0832) 

2.3807 

(0.1570) 

u[t,t+n] denotes the future realized volatility series computed from 5~min returns. It is regressed against the volatility 

forecast U[t,t+nt
xC and/or u[t,t+n] MVX. The test period starts on November 30, 2009 and ends on October 15, 2010. 

220, 44, 22 observations are used in regressing test for the next one, five, and ten days forecast. The numbers in 

parentheses for intercept and slope coefficients are Newey-West (1987) standard errors ofthe estimated parameters. 

D-W is Durbin-Watson test. The Wald test reports the test of whether the intercept is equal to zero and the coefficient 

is one. P values are listed in parentheses. The likelihood ratio tests the unrestricted model which includes both MVX 

and VIXC against the restricted model which include either VIXC or MVX as a regressor. P values are reported in 

parentheses. *, **, and *** indicate that the coefficient is significantly different from zero at the 10, 5, and 1 % level, 

respectively. 
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Table 4 Information content regression tests for VIXC and MVX in the first difference 

Comparison in the a p y D-W Adj. R2 Wald test Likelihood 

first difference 

Forecast 

horizon=1 day 

Panel A 

(2200bs) 

Forecast 

horizon=5 day 

PanelS 

(440bs) 

Forecast 

horizon=10 day 

PanelC 

(220bs) 

Notes: 

-3.1198-

(-4.4942) 

-1.9558"

(-3.4160) 

-3.0739--

(-4.4913) 

-3.8839-

(-5.0784) 

-1.6457-

(-1.7492) 

-3.9309'

(-4.7633) 

-1.6292 

(-0.8716) 

-0.0454 

(-0.0346) 

-1.9278 

(-1.3132) 

0.6722-

(6.8932) 

0.5990"

(5.0819) 

0.9082-

(5.3486) 

1.0083--

(2.8412) 

0.3710 

(1.3584) 

0.7446'

(2.3759) 

0.5260-

(5.4198) 

0.0793 

(0.6577) 

0.4707-

(2.3709) 

-0.1137 

(-0.4610) 

-0.0518 

(-0.2686) 

-0.4099 

(-1.3336) 

2.0214 0.3265 

2.1472 0.2463 

2.0101 0.3252 

1.7385 0.3532 

2.3821 0.1299 

1.7730 0.3419 

1.7192 0.0061 

1.9674 -0.0479 

1.7781 0.0304 

pe A VIXC ) 
U[t,t+n] - U[t-n-l,t-l] = a + U[t,t+n] - U[t-n-l,t-l] + Et 

U[t,t+n] - U[t-n-l,t-l] = a + y(8[t,t+n]MVX - U[t-n-l,t-l]) + Et 

137.5210 

(0.0000) 

75.6350 

(0.0000) 

15.7524 

(0.0000) 

11.3313 

(0.0001) 

34.0603 

(0.0000) 

51.3551 

(0.0000) 

ratio 

25.3307 

(0.0000) 

0.5818 

(0.4456) 

13.3486 

(0.0005) 

0.3003 

(0.5837) 

2.8385 

(0.0920) 

1.6750 

(0.1956) 

+ pe A VIXC ) + (A MVX ) + 
U[t,t+n] - U[t-n-l,t-l] = a U[t,t+n] - U[t-n-l,t-l] Y U[t,t+n] - U[t-n-l,t-l] Et 

U[t,t+n] - u[t-n-l,t-l] denotes the future realized volatility differential series computed from 5-min retums. It is 

regressed against the volatility differential forecasts 8[t,t+nt
XC 

- u[t-n-l,t-l] and/or (8[t,t+n]MVX - u[t-n-l,t-l]' 

The test period starts on November 30,2009 and ends on October 15, 2010. 220,44,22 observations are used in 

regressing test for the next one, five, and ten days forecast. The numbers in parentheses for intercept and slope 

coefficients are Newey-West (1987) standard errors of the estimated parameters. D-W is Durbin-Watson test. The 

Wald test reports the test of whether the intercept is equal to zero and the coefficient is one. P values of Wald test are 

listed in parentheses. The likelihood ratio test is the test between an unrestricted model which includes both MVX and 

VIXC and the restricted model which include either VIXC or MVX as a regressor. P values of likelihood ratio test are 

listed in parentheses. *, **, and *** indicate that the coefficient is significantly different from zero at the 10, 5, and 1% 

level, respectively. 
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Table 5 Information content regression tests for VIXC and MVX with daily squared 

returns 

Comparison in a p y D-W Adj. R2 Wald test Likelihood 

levels ratio 

Forecast 

horizon=1 day 
.. ~ . 

-8.1129 0.9968 2.2457 0.0838 141.6798 12.1032 

(-2.3082) (5.0093) (0.0000) (0.0006) 

2.3704 0.4534 
~ 

2.1605 0.0321 77.7965 0.0296 

(1.0896) (3.6437) (0.0000) (0.8634) .. ~ . 
-8.1608 0.9678 0.0333 2.2474 0.07974 

(-2.2794) (4.2922) (0.2061) 

Notes: .,JR.'f;; A VIXC 
Rt+l = a + PC1[t] + Et 

..[ii'[;; A MVX 
t+1 = a + YC1[t] + Et 

r;;z-R2 P A VIXC A MVX 
V flt+l = a + C1[t] + YC1[t] + Et 

.,jR;+1 denotes the future realized volatility of SP/TSX 60 index returns. It is regressed against the volatility forecast 

U[ttXC and/or u[t{vx. The test period starts on November 30,2009 and end on October 15, 2010. 220 observations 

are used in regressing test for the next one day forecast. The numbers in parentheses for intercept and slope 

coefficients are Newey-West (1987) standard errors of the estimated parameters. D-W is Durbin-Watson test. The 

Wald test reports the test of whether the intercept is equal to zero and the coefficient is one. P values of Wald test are 

listed in parentheses. The likelihood ratio test is the test between a unrestricted model which includes both MVX and 

VIXC and the restricted model which include either VIXC or MVX as a regressor. P values of likelihood ratio test are 

listed in parentheses. *, **, and *** indicate that the coefficient is significantly different from zero at the 10, 5, and 1% 

level, respectively. 

6.2.3.1.2 Hypothesis 2 test results 

We report results of regression tests in Table 6 for an independent variable in levels 

and in Table 7 for an independent variable in the first differences. For comparison 

purpose, we re-present test results for the VIXC in Table 6 and 7. The results in both 

tables are exactly the same in terms of statistical implications. Therefore, we discuss the 

results reported in Table 7 only, because most Durbin-Watson values in Table 6 are far 

away from two, suggesting that the regression model in levels does not fit the data. The 

test period starts on November 30, 2009 and ends on October 15, 2010. There are 220, 

44, and 22 observations corresponding to a forecasting horizon of 1-,5-, and 10-day, 

respectively. 
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Starting from Panel A, the univariate regression with a 1-day horizon, in Table 7, we 

note that VIXC, GJR-GARCH, EWMA, and random walk volatility forecasts have 

predictive power, because coefficients associated with each forecast measure are all 

significant at the 1 % level. Ranking the R-squared values for these four forecasting 

approaches, we see that VIXC contains the most information with regard to the next 1 

day's volatility, followed by random walk, GJR-GARCH, and EWMA forecasts. 

Considering the bivariate regression test, the VIXC continually shows a significant 

and positive coefficient. Except for the GJR-GARCH forecast, both Random walk and 

EWMA forecast show a significant coefficient. The R-squared values increase in all 

bivariate tests. The increase of R-squared value suggests that all alternative forecasts 

contain incremental information that is already reflected in VIXC. Furthermore, the 

likelihood ratio test statistically indicates at the 5% level that all alternative forecasts 

make the bivariate model a better fit with the data. Therefore, we conclude that although 

VIXC contain more information about the next day's volatility, it can not subsume all 

information contained in alternative forecast measures. 

Next we turn to Panel B, the 5-day horizon. It is seen again that all forecasts contain 

information for predicting the future 5-day's volatility. The VIXC ranks first among these 

four forecast measures. With the bivariate test, however, only EWMA forecasts have 

incremental information beyond that contained in VIXC. The R-squared value increases 

from 35% to 40% when EWMA is included in regression model. The likelihood ratio test 

statistically indicates that the hypothesis that EWMA has no explanatory power in the 

bivariate model is rejected at the 5% significance level. 

In Panel C, when we set the forecast horizon equal to 10 days, only the coefficient 

for random walk is significantly different from zero. All other forecasts, including the 

VIXC, have non-significant coefficients. This evidence indicates that the random walk 

has the best predicting power with 10-day horizon. The R-squared values are pretty low 

for all cases but the random walk. However, these results are based on only 22 

observations. Such a small samples probably make statistical inference questionable. 

Overall, our results from both regression test in levels and first differences indicate 

that the VIXC has predicate power for the next 1- and 5-day's volatility. However, VIXC 

can not subsume all information contained in historical index prices. Based on our 
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results, we reject hypothesis 2. Our conclusion is consistent to our previous in-sample 

examination in section 6.1, in which we extend the standard GJR-GARCH model with 

VIXC as an explanatory variable and we find that the VIXC can not incorporate all 

information embedded in historical index prices. 

Due to the limited data, the statistical implications from regression tests may be 

questionable when examining the forecast performance between the VIXC and its three 

alternatives for 10 and 22-day horizon. Thus, in the following section, we use loss 

functions to examine such research questions. 

Table 6 Information content regression tests for VIXC and historical volatility in levels 

Comparison in 

levels 

Panel Forecast 

A horizon= 

(220 1 day 

obs) 

Panel Forecast 

B horizon= 

(44 5 days 

obs) 

Intercept 

-10.1955" 

(-2.4849) 

2.0461 

(0.9223) 

7.4029'" 

(2.6516) 

6.2335'" 

(4.9546) 

-10.3770'" 

(-2.6538) 

-9.2788'

(-3.0217) 

-6.9020-

(-2.2907) 

-3.6159 

(-0.7953) 

6.5568 

(1.5821) 

10.9295-

(2.2984) 

VIXC GARCH 

1.3007-

(5.5525) 

0.7839-' 

(4.9878) 

1.5758'" -0.3252 

(3.7267) (-1.1193) 

1.7709-

(5.2200) 

0.8918-

(4.9317) 

0.9651'" 

(3.8891) 

0.5008-

(2.1254) 

EWMA 

0.4782-

(2.5091) 

-0.7100-

(-2.4754) 

0.2456 

(0.8349) 
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Random D-W 

Walk 

1.322 

1.1114 

0.9690 

0.5500- 2.2592 

(5.5432) 

1.3154 

1.3918 

0.3073'" 1.9994 

(3.4855) 

1.5474 

Adj. R2 Wald F Likelihoo 

test d ratio 

0.3412 75.3721 

(0.0000) 

0.1464 2.2689 3.5389 

(0.1059) (0.0599) 

0.0415 3.7471 19.7289 

(0.0251) (0.0000) 

0.2976 12.7936 21.0827 

(0.0000) (0.0000) 

0.3487 

0.3949 

0.3986 

0.2386 11.5373 

(0.0001) 

1.4093 0.0672 4.3708 0.9301 

(0.0189) (0.3348) 

1.2442 -0.0053 3.9335 5.4706 

(0.0272) (0.0193) 



Table 6 continued 

Comparison in 

levels 

Panel Forecast 

C horizon= 

(22 10 day 

obs) 

Notes: 

Intercept 

8.3354-

(3.8503) 

-3.7406 

(-0.8384) 

-3.3500 

(-0.8333) 

-2.5568 

(-0.4198) 

6.6971 

(1.1707) 

10.3882" 

(1.8359) 

15.1087-

(2.6065) 

6.8359"-

(3.1581) 

6.6807 

(1.1346) 

6.2949 

(1.1488) 

14.8298" 

(1.7665) 

VIXC 

1.2359"" 

(2.1351) 

1.4978-

(3.1904) 

0.8274" 

(1.6827) 

0.4194 

(1.5098) 

0.5929 

(1.0463) 

1.010{ 

(2.2361) 

-0.7041 

(-1.0120) 

GARCH EWMA Random O-W 

Walk 

0.4127- 2.2550 

(3.8757) 

-0.3175 1.5058 

(-0.5892) 

-0.7433 1.5778 

(-1.3790) 

0.1036 1.7586 

(0.4866) 

1.0682 

0.2649 1.0401 

(0.8729) 

-0.2076 

(-0.3271) 

-0.0469 0.9413 

(-0.1337) 

-0.7796 

(-1.2293) 

0.5207- 1.5966 

(3.7870) 

0.8659" 

(2.2594) 

1.0527 

1.0867 

1.8704 

PA VIXC 
u[t,t+n] = a + u[t,t+n] + Et 

+ A TS + 
U[t,t+n] = a YU[t,t+n] Et 

+ P A VIXC + A TS + 
U[t,t+n] = a U[t,t+n] YU[t,t+n] Et 

Adj. R2 Wald F 

test 

Likelihood 

ratio 

0.1467 33.7740 0.3146 

(0.0000) (0.5748) 

0.2363 

0.3112 

0.2255 

0.0154 

-0.0226 

-0.0491 

0.2170 

-0.0304 

0.0757 

0.2465 

11.7213 

(0.0004) 

9.2594 

(0.0014) 

6.9624 

(0.0051) 

6.0716 

(0.0087) 

0.1258 

(0.7228) 

2.5186 

(0.1125) 

7.0133 

(0.0081) 

u[t,t+n] denotes the future realized volatility series computed from 5-min S&PITSX 60 index returns. It is regressed 

against the volatility forecast 8[t,t+nt
XC and/or 8 [t,t+nr which include GJR-GARCH, EWMA, and random walk. The 

period is from November 30,2009 to October 15,2010.220,44, and 22 observations are used in regression test for 

the next 1, 5, and 10 day's forecasts. The numbers in parentheses for intercept and coefficients are Newey-West 

(1987) standard errors of the estimated parameters. D-W is Durbin-Watson test. The Wald test reports the test of 

whether the intercept is equal to zero and the coefficient is equal to one. P values for Wald test are reported in 

parentheses below the statistic. The likelihood ratio test is reported between an unrestricted model which includes 

both time series volatility and VIXC and the restricted model which include only VIXC as a regressor. p'values are 

reported in parentheses as well. *, **, and *** indicate that the coefficient is significantly different from zero at the 10, 

5, and 1 % level, respectively. 
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Table 7 Information content regression tests for VIXC and historical volatility in the first 

difference 
Comparison Intercept VIXC GARCH EWMA Random O-W Adj. R2 Wald Ftest Likelihood 

in the first Walk ratio 

difference 

Forecast 

horizon= 1 day 

-3.1198"~ 0.6722- 2.0214 0.3265 137.5210 

(-4.4942) (6.8932) (0.0000) 

-0.6513 0.5258- 2.1882 0.2298 33.7592 6.1870 

(-1.4025) (4.3895) (0.0000) (0.0129) 

Panel A 0.1322 0.4412- 2.2729 0.1955 15.8207 18.2714 

(220obs) (0.3904) (3.9785) (0.0000) (0.0000) 

6.2335 - 0.5500- 2.2592 0.2976 12.7936 21.0827 

(4.9546) (5.5432) (0.0000) (0.0000) 

-4.4899- 1.0738- -0.40162 2.0147 0.3421 

(-6.2900) (4.6843) (-1.5557) 

-6.4355- 1.3451 - -0.6122"" 1.9747 0.3773 

(-5.7094) (5.3862) (-2.5477) 

-6.9020~ 0.8918"- 0.3073- 1.9994 0.3986 

(-2.2907) (4.9317) (3.4855) 

Forecast 

horizon=5 day 

-3.3389 0.9082 - 1.7385 0.3532 15.7524 

(- (5.3485) (0.0001) 

0.5.0783) 

-0.7717 0.6341'"" 2.2042 0.2002 4.1591 0.9346 

(-0.9638) (4.8844) (0.0225) (0.3337) 

PanelS 0.2613 0.5119- 2.3072 0.1566 7.7809 4.3215 

(44obs) (0.3108) (3.8224) (0.0013) (0.0376) 

8.3354- 0.4127- 2.2550 0.1467 33.7740 0.3146 

(3.8503) (3.8757) (0.0000) (0.5748) 

-4.8009 1.2066" -0.3125 1.7288 0.3513 

(-2.5668) (1.9089) (-0.6435) 

-7.1641'" 1.5863- -0.6270 1.6904 0.3994 

(-2.3845) (2.2121) (-1.2271) 

-2.5568 0.8274" 0.1036 1.7586 0.2255 

(-0.4198) (1.6827) (0.4866) 
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Table 7 continued 

Comparison 

in the first 

difference 

Forecast 

horizon=10 

day 

PanelC 

(22obs) 

Notes: 

Intercept VIXC GARCH EWMA Random O-W Adj. R2 Wald F test Likelihood 

-1.6292 

(-0.8716) 

-0.4041 

(-0.3625) 

-0.0177 

(-0.0227) 

6.8359-

(3.1581) 

-1.5358 

(-0.8779) 

-3.2316" 

(-2.0079) 

14.8298* 

(1.7665) 

0.3710 

(1.3585) 

0.3410 

(1.2182) 

0.6995-

(2.2462) 

-0.7041 

(-1.0120) 

0.2836 

(1.0215) 

0.0305 

(0.0852) 

Walk 

1.7192 0.0061 34.0603 

(O.OOOO) 

1.7644 -0.0066 8.7045 

(0.0019) 

0.1551 1.8411 -0.0330 12.0998 

(0.7045) 

-0.2950 

(-0.9697) 

(0.0004) 

0.5207- 1.5966 0.2170 6.0716 

(3.7870) (0.0087) 

1.7175 -0.0461 

1.7408 -0.0279 

0.8659- 1.8704 0.2465 

(2.2594) 

R(~ VIXC ) 
CT[t.t+n] - CT[t-n-l,t-l] = a + p CT[t.t+n] - CT[t-n-l,t-l] + Et 

CT[t.t+n] - CT[t-n-l,t-l] = a + r(8[t.t+n{S - CT[t-n-l,t-l]) + Et 

ratio 

0.0030 

(0.9563) 

0.3882 

(0.5332) 

7.0133 

(0.0081) 

CT[t.t+n] - CT[t-n-l,t-l] = a + fJ(8[t.t+nt
XC 

- CT[t-n-l,t-l]) + y(8[t.t+n{S - CT[t-n-l,t-l]) + Et 

CT[t.t+n] - CT[t-n-l,t-l] denotes the future realized volatility differential series computed from 5-min returns. It is 

regressed against the volatility forecast differentials 8[t.t+nt
XC 

- CT[t-n-l,t-l] and/or 8 [t.t+n{S - CT[t-n-l,t-l] which 

include GJR-GARCH, EWMA, and Random Walk. The test period starts on November 30, 2009 and ends on October 

15,2010.220,44, and 22 observations are used in regressing test for the next one, five, and ten day's forecast. The 

numbers in parentheses for intercept and slope coefficients are Newey-West (1987) standard errors of the estimated 

parameters. D-W is Durbin-Watson test. In univariate regression, the Wald test reports the test of whether the 

intercept is equal to zero and the coefficient is one. p-values are reported in parentheses. The likelihood ratio test is 

reported between an unrestricted model which includes both time series volatility and VIXC and the restricted model 

which include only VIXC as a regressor. The corresponding p-values are reported in parentheses as well. *, **, and 

*** indicate that the coefficient is significantly different from zero at the 10, 5, and 1 % level, respectively. 
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6.2.3.2 Forecast accuracy assessment with loss functions 

In addition to using regression test results as evaluation criterion, we use other 

forecast criteria for comparing forecast accuracy, the criteria which include MSE (mean 

squared error), MAE (mean absolute error), HMSE (heteroskedasticity-adjusted mean 

squared error), and HMAE (heteroskedasticity-adjusted mean absolute error). 

6.2.3.2.1 Test methodology 

Hansen and Lunde (2006) and Patton (2006), among others, note that different loss 

functions are sensitive to the proxy of the unobserved latent volatility. Meanwhile, 

different loss functions give different weights to "surprising" observations. For example, 

unlike the MAE, the MSE gives greater weight to outlier observations. Furthermore, both 

MSE and MAE place more weight on the errors associated with the greater realized 

volatilities, but the HMAE and HMSE put less weight on such errors. Therefore, we use 

various loss functions to try to obtain consistent conclusions. With various loss 

functions, the best predicting measure will be expected to stand out in most cases. 

At time t, let Yt be the estimated volatility from a particular forecasting approach and 

Yt be the realized volatility outcome. The MSE, MAE, HMSE, and HMAE are defined: 

MSE: f(Yt,Yt) =;' L~=l(Yt - Yt)2 

MAE: f(Yt,Yt) =;' L~=ll Yt - Ytl 

HMSE: f(Yt,Yt) =;' L~=l(:: - 1)2 

HMAE: f(Yt,Yt) =;' L~=ll ~t - 11 

To test the equality between two forecasts measures, we use Diebold and Mariano 

(1995) test for such a purpose. 

(31 ) 

(32) 

(33) 

(34) 

Diebold and Mariano (1995) devise a test statistic that evaluates whether two 

competing forecast measures are significantly different. They use a loss function, fee), 

to test the null hypothesis of equal accuracy: 

Ho: E[f(el,t) - f(e2,t)] = 0 (35) 
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In our study, we use the four loss functions mentioned above for the Diebold and 

Mariano (DM) test. The Diebold and Mariano test follows a normal distribution and is 

calculated as following: 

DM = il.fii (36) 
.Jvar(dd 

In the above equation, dt = t(el,t) - t(eZ,t). te ei=l or Z,t) is one of four loss functions. 

var(dt ) is the asymptotic variance of the differential series of dt . i1 is the sample mean 

of loss differential, i1 = .!. L~=l dt . 
n 

6.2.3.2.2 Adjustment of implied volatility indexes 

Previous literature finds that implied volatility over-estimates future volatility (Poon 

and Granger, 2003, 2005). The statistics in Table 1 show that the average of VIXC is 

greater than that of realized volatility by about 0.045 in the period from December 1, 

2009 to October 15,2010. This difference can be seen as an average risk premium. 

See more discussion form Bakshi and Kapadia, 2003, Andersen, Frederiksen, and 

Staal, 2007, Corsi, 2009, Jiang and Tian, 2005, Poteshman, 2000. 

Researchers propose several methods to correct the obvious bias of implied volatility 

indexes when using it to forecast future volatility. For example, Pong et al. (2004) adjust 

implied volatilities derived from currency options by a regression approach. In a pre

forecast period, they regress realized volatilities against the implied volatilities; then in 

out-of-sample period, they use the estimated coefficients to adjust the implied 

volatilities. Blair et al. (2001) use an ARCH model to adj~st the CBOE VXO as well. In 

our study, as we only have one year data available, these approaches can't be applied. 

We follow the approach used by Whaley et al. (1995) to adjust the VIXC and the MVX 

series. We assume that the risk premium is constant monthly. Then the risk premium is 

computed as an average of daily biases from the most recent month observations. The 

VIXC in the next month will be adjusted by this risk premium. For example, for VIXC 

observations in January 2010, we adjust each observation by the risk premium that is 

the average difference between the VIXC and realized volatility in December 2009. We 

then adjust VIXC in February 2010 according the risk premium of January of 2010. We 

repeat this procedure until October 2010. Since we only use historical information at the 
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time we observe VIXC, the adjusted VIXC and MVX are the out-of-sample forecasts of 

market volatility. 

6.2.3.2.3 Sampling data 

Observations in the period, from January 4, 2010 to December 31 2010 (251 

observations), is used to evaluate the out-of-sample forecast accuracy. We follow Blair 

et al. (2001) to construct overlapping samples. Therefore, with respect to each horizon 

of 1, 5, 10, and 22 day, we have the same number of 251 observations. For example, 

considering a forecast horizon of 22 days, the five forecast series are constructed as 

follows. Starting at January 4, 2010, we obtain the first forecast of volatility based on the 

method described in section 6.2.2 for GJR-GARCH, EWMA, and Random walk series. 

On January 4, 2010, the closing quotes of VIXC and MVX are adjusted by the risk 

premium in December 2009. We then compute the realized volatility in next 22 trading 

days. The five forecasts of volatility will be compared to this future realized volatility. We 

then move to January 5, 2009 and use the same approach to construct the second 

observations for each of five forecasts series. We compute the realized volatility anew in 

the next 22 trading days starting from January 5, 2010. We iterate this procedure until 

December 31,2010. 

6.2.3.2.4 Test results with loss functions 

To examine which forecasting measure produces the most accurate prediction for 

future volatility, we examine the loss of accuracy computed from each loss function. 

Since the MVX ends on October 15, 2010, we use data from January 4, 2010 to 

October 15, 2010 (198 observations) to assess the forecasting ability for our five 

measures. Table 8 contains the results with the four loss functions. We note that with all 

forecast horizons and under all loss criteria, the VIXC consistently produces less loss 

comparing to the MVX. This evidence indicates that the VIXC is superior to the MVX for 

predicting future volatility in all horizons. 

We also see that when the forecast horizon increases from 1 day to 5 and 10 days, 

the forecast accuracy of VIXC consistently increases as shown by the decreased 

amounts from each loss measure. However, as the forecast horizon increases to 22 
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days, three of four loss amounts increases. This may suggest that the VIXC has poor 

performance when forecasting longer horizons than short horizons. 

We turn to the results when forecasting horizon is equal to one day. Table 8 shows 

that the VIXC produces less loss comparing to a" other measures; But when forecasting 

horizon increases to 10 days, the four loss measures consistently show that random 

walk produces a less loss than the VIXC. Further considering the 22-day horizon, we 

find that EWMA and GJR-GARCH now consistently outperforms the VIXC based on the 

four loss functions. This evidence indicates that with longer forecasting horizon, time 

series forecasts of volatility outperform the VIXC and contain incremental information 

that is not reflected in VIXC. 

Since each loss function treats forecast errors in different ways, it may make more 

sense to consider the overall performance of each predicting measure. We rank each 

forecast approach where one means the best and five means the worst. Table 9 

presents the ranking results based on the data reported in Table 8. We rank five 

forecast measures according to their performance under each loss criterion. In Table 9, 

the row of "total" denotes the sum of ran kings order for each forecast measure. The 

least number associated with forecast measure indicates the best performance among 

five measu res. 

Starting from the forecast of the next 1 day's volatility, the VIXC ranks the highest 

among all forecast approaches. This finding is consistent with our univariate regression 

tests that show that the VIXC produces the largest R-squared value compared to other 

forecasts. When the forecasting horizon increases to 5 days, random walk ranks first 

then followed by the VIXC. However, we should note that the forecast loss from the 

VIXC is close to loss from the random walk. The DM tests in Table 14 (the first number 

in each group) indicate that VIXC has the same forecast accuracy as the random walk . 

under MSE and HMSE criteria. 

With the 10-day horizon, random walk ranks the first. The VIXC slides to the third 

place. While considering the rankings with the 22-day horizon, we find that the GJR

GARCH forecast stands out among these five measures. The VIXC is just better than 

the MVX. This evidence suggests that with a longer forecast horizon (over 10 days), 

time series forecasts seem to predict future volatility better than the implied volatilities. 
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Many empirical researches do find that implied volatility is not always superior to 

volatilities computed from historical index prices for predicting future volatility (e.g., Poon 

and Granger, 2003). On the other hand, our na"ive adjusting approach for the VIXC may 

be responsible for such a poor performance regarding longer horizons. Therefore, we 

follow Blair et al. (2001) to adjust our VIXC data. However, we have to sacrifice one 

third of our observations. This makes our out-of-sample contain only 137 observations. 

We use observations from October 1,2009 to March 31,2010 (125 observations) to 

initially estimate the ARCH model. After the first estimation, we adjust the observed 

VIXC based on the estimated parameters. The sample for estimation is increased by 

including one more observation, and the second adjusted VIXC is generated. Through 

this way, we obtain 137 adjusted VIXC. We then compute the loss functions again. The 

results are displayed in Table 10. 

Table 10 contains the results for observations from March 31, 2010 to October 15, 

2010 (137 observations). The associated rankings of prediction measures are listed in 

Table 11. The results presented in Table 10 and 11 reinforce that with short horizon, the 

VIXC does produce the most accurate forecast for predicting future volatility with short 

horizons. With forecast horizon equal to 1 and 5 days, the VIXC is consistently ranked 

the first. However, with longer horizons, theresults are similar to those in Table 8, in 

which time series forecasts of volatility produce less loss for 10 and 22 day horizons. 

This consistent evidence suggests that the VIXC does not subsume all information 

embedded in historical index prices. Furthermore, with longer horizons, the VIXC does 

not outperform the time series forecasts of volatility. 
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Table 8 Out-of-sample forecasting comparison for the S&PITSX 60 by loss functions 

(198 observations) 

Forecast loss functions 

MSE MAE HMSE HMAE 

Forecast 

Horizon=1 day 

VIXC 29.9659 3.9860 0.1337 0.2896 

MVX 32.7465 4.3928 0.1820 0.3362 

GJR-GARCH 34.3781 4.1872 0.1766 0.3188 

EWMA 39.5088 4.1174 0.1346 0.2858 

Random Walk 34.3481 4.0504 0.1582 0.2899 

Forecast 

Horizon=5 day 

VIXC 23.4234 3.5763 0.0846 0.2348 

MVX 29.7833 4.2027 0.1250 0.2919 

GJR-GARCH 24.1653 3.6205 0.0856 0.2437 

EWMA 30.0739 3.5695 0.0769 0.2198 

Random Walk 23.6192 3.1522 0.0719 0.1975 

Forecast 

Horizon=10 day 

VIXC 27.4646 3.9206 0.0981 0.2538 

MVX 36.0728 4.5984 0.1405 0.3108 

GJR-GARCH 23.6893 3.8140 0.0918 0.2566 

EWMA 29.7040 3.7295 0.0798 0.2256 

Random Walk 20.6118 3.1949 0.0746 0.2085 

Forecast 

Horizon=22 day 

VIXC 36.4016 4.5386 0.1299 0.2882 

MVX 47.2850 5.5236 0.1813 0.3663 

GJR-GARCH 25.3437 4.1849 0.1124 0.2879 

EWMA 31.5764 3.9695 0.0917 0.2431 

Random Walk 32.7169 4.3974 0.1362 0.2914 

Notes: The sample period starts from January 4,2010 and ends October 15, 2010. Within this period, 198 

observations are included in computation. The MSE, MAE, HMSE, and HMAE are defined in section 

6.2.3.2.1. 
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Table 9 Forecasting efficiency rankings of prediction measures based on four loss 

functions (198 observations) 

VIXC MVX GJR-GARCH EWMA Random Walk 

Forecast horizon=1 

day 

MSE 2 4 5 3 

MAE 5 4 3 2 

HMSE 5 4 2 3 

HMAE 2 5 4 3 

Total 5 17 16 11 11 

Forecast horizon=5 

day 

MSE 1 4 3 5 2 

MAE 3 5 4 2 1 

HMSE 3 5 4 2 

HMAE 3 5 4 2 

Total 10 19 15 11 5 

Forecast horizon=1 0 

day 

MSE 3 5 2 4 1 

MAE 4 5 3 2 1 

HMSE 4 5 3 2 1 

HMAE 3 5 4 2 1 

Total 14 20 12 10 4 

Forecast horizon=22 

day 

MSE 4 5 2 3 

MAE 4 5 3 2 

HMSE 3 5 2 1 4 

HMAE 3 5 2 4 

Total 14 20 6 7 13 

Notes: This table lists the overall performance of each forecast measure. The rankings are based on the 

data in Table 8. The sample period is from January 4, 2010 to October 15, 2010. Within this period, 198 

observations are used to compute each loss function. The numbers with the least amount in each total 

row indicate the best performance. 
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Table 10 Out-of-sample forecasting comparison for the S&P/TSX 60 by loss functions 

(137 observations) 

Forecast loss functions 

MSE MAE HMSE HMAE 

Forecast 

Horizon=1 day 

VIXC 27.0600 3.7598 0.1156 0.2621 

MVX 34.7004 4.6757 0.1973 0.3520 

GJR-GARCH 37.0972 4.3354 0.1455 0.3035 

EWMA 43.9682 4.3566 0.1202 0.2802 

Random Walk 35.2448 4.2495 0.1729 0.3013 

Forecast 

Horizon=5 day 

VIXC 21.1874 3.2370 0.0652 0.2036 

MVX 33.4697 4.4162 0.1366 0.3001 

GJR-GARCH 27.4247 3.6267 0.0756 0.2234 

EWMA 34.6863 3.7074 0.0765 0.2151 

Random Walk 27.3681 3.3701 0.0757 0.2036 

Forecast 

Horizon=10 day 

VIXC 24.8710 3.5430 0.0768 0.2182 

MVX 40.1354 4.7532 0.1473 0.3110 

GJR-GARCH 26.2515 3.7810 0.0784 0.2311 

EWMA 33.9831 3.8212 0.0776 0.2148 

Random Walk 17.9734 2.9388 0.0552 0.1850 

Forecast 

Horizon=22 day 

VIXC 34.7494 4.2027 0.1033 0.2522 

MVX 53.2834 5.6288 0.1741 0.3508 

GJR-GARCH 27.6907 3.4982 0.0915 0.2668 

EWMA 37.4856 3.4833 0.0873 0.2239 

Random Walk 32.7296 2.7022 0.0935 0.2446 

Notes: we rescale the VIXC by following Blair et al. (2001). The sample period is from March 31, 2010 to 

October 15, 2010. Within this period, 137 observations are included in computation. The MSE, MAE, 

HMSE, and HMAE are defined in section 6.2.3.2.1. 
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Table 11 Forecasting efficiency ranking of prediction measures based on four loss 

functions (137 observations) 

VIXC MVX GJR-GARCH EWMA Random Walk 

Forecast horizon=1 

day 

MSE 2 4 5 3 

MAE 5 3 4 2 

HMSE 5 3 2 4 

HMAE 1 5 4 2 3 

Total 4 17 14 13 12 

Forecast horizon=5 

day 

MSE 4 3 5 2 

MAE 1 5 3 4 2 

HMSE 5 2 4 3 

HMAE 5 4 3 1 

Total 4 19 12 16 8 

Forecast horizon=1 0 

day 

MSE 2 5 3 4 1 

MAE 2 5 3 4 1 

HMSE 2 5 4 3 1 

HMAE 3 5 4 2 1 

Total 9 20 14 13 4 

Forecast horizon=22 

day 

MSE 3 5 1 4 2 

MAE 4 5 3 2 1 

HMSE 4 5 2 1 3 

HMAE 3 5 4 1 2 

Total 14 20 10 8 8 

Notes: This table lists the overall performance of each forecast measure. The rankings are based on the 

data in Table 10. The sample period is from March 31, 2010 to October 15, 2010. Within this period, 137 

observations are used to compute each loss function. The numbers with the least amount in each total 

row indicate the best performance. 
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Our sample size may have influences on our statistical results. We further use full 

year data that starts from January 4,2010 and ends on December 31,2010 (251 

observations). The results are presented in Table 12 for loss functions and in Table 13 

for rankings sequences. The results in Table 12 have the same patterns with those in 

Table 8. With short horizons, 1 and 5 days, the VIXC produces better forecasts. 

However, with longer horizons, 10 and 22 days, the time series volatilities produce the 

most accurate forecasts. The absolute amount of loss and associated ran kings can not 

differentiate whether forecasting measures are significantly different from each other. 

Thus, we resort to the DM tests. The results are displayed in Table 14 for both sample 

periods. 

Table 12 Out-of-sample forecasting comparison for the S&PITSX 60 by loss functions 

(251 observations) 

Forecast loss functions 

MSE MAE HMSE HMAE 

Forecast Horizon=1 day 

VIXC 26.0940 3.6628 0.1517 0.2891 

GJR-GARCH 30.7822 4.0165 0.2464 0.3461 

EWMA 34.4366 3.8801 0.1831 0.3041 

Random Walk 31.1097 3.8909 0.1782 0.3056 

Forecast Horizon=5 day 

VIXC 19.4615 3.1903 0.0762 0.2216 

GJR-GARCH 20.9223 3.3903 0.0955 0.2522 

EWMA 25.1179 3.3006 0.0768 0.2234 

Random Walk 19.5929 2.8484 0.0672 0.1931 

Forecast Horizon=10 day 

VIXC 22.8392 3.5032 0.0891 0.2413 

GJR-GARCH 20.6375 3.431 0.0971 0.2606 

EWMA 24.6492 3.3895 0.0747 0.2222 

Random Walk 16.9153 2.8316 0.0659 0.1964 

Forecast Horizon=22 day 

VIXC 30.1788 4.0269 0.1177 0.2725 

GJR-GARCH 22.6850 3.9385 0.1212 0.2957 

EWMA 25.9268 3.5361 0.0827 0.2324 

Random Walk 26.4908 3.8015 0.1154 0.2646 

Notes: we use data in the period from January 4, 2010 to December 31, 2010, 251 observations in this 

period. The MSE, MAE, HMSE, and HMAE are defined in section 6.2.3.2.1. 
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Table 13 Forecasting efficiency ranking of prediction measures based on four loss 

functions (251 observations) 

VIXC GJR-GARCH EWMA Random Walk 

Forecast horizon-1 

day 

MSE 1 2 4 3 

MAE 1 4 2 3 

HMSE 1 4 3 2 

HMAE 1 4 2 3 

Total 4 14 11 11 

Forecast horizon=5 

day 

MSE 1 3 4 2 

MAE 2 4 3 

HMSE 2 4 3 1 

HMAE 2 4 3 1 

Total 7 15 13 5 

Forecast horizon=10 

day 

MSE 3 2 4 

MAE 4 3 2 

HMSE 3 4 2 

HMAE 3 4 2 

Total 13 13 10 4 

Forecast horizon=22 

day 

MSE 4 1 2 3 

MAE 4 3 1 2 

HMSE 3 4 1 2 

HMAE 3 4 1 2 

Tot~1 14 12 5 9 

Notes: This table lists the overall performance of each forecast measure. The rankings are based on the 

data in Table 12. The sample period is from January 4,2010 to December 31,2010. Within this period, 

251 observations are used to compute each loss function. The numbers with the least amount in each 

total row indicate the best performance. 
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6.2.3.2.5 Diebold and Mariano test for equal accuracy 

We report DM test results in Table 14. The first number in each group is based on 

observations from January 1,2010 to October 15,2010 (198 observations) and the 

second one from January 4,2010 to December 31,2010 (251 observations). We first 

discuss the results with 198 observations. Starting from comparison between MVX and 

VIXC, we find that in14 of 16 tests the VIXC produces less loss than the MVX at the 5% 

significance level. This evidence indicates that the prediction power of VIXC is superior 

to that of MVX. This finding is consistent to the findings from both regression tests and 

GJR-GARCH in-sample examination. 

Overall, the VIXC produces less loss when forecasting the one and five day volatility. 

However, most DM results indicate that the difference of loss between VIXC and 

alternatives is not consistently significant at the 1 % level. This evidence suggests that 

the VIXC outperforms its counterparts for predicting short-horizon volatility but may not 

subsume information embedded in time series forecasts. When the forecast horizon is 

beyond ten days, the time series forecasts of volatility produce I~ss loss. Particularly, 

with ten-day horizon, random walk consistently produces a smaller loss than the VIXC 

and the difference in loss is significantly different from zero at the 1 % significance level. 

In twenty-two-day test, the loss from EWMA is smaller than the loss from VIXC and also 

the difference in loss is significant at the 5% level. This evidence indicates that time 

series forecasts of volatility outperform the VIXC for forecasting volatility with longer 

horizons. Volatility derived from index prices contains incremental information that is not 

reflected in the VIXC. 

Next, we discuss the results from 251 observations. It is seen that sample size 

affects the statistical results of GJR-GARCH volatility. When sample size increases 

from198 to 251, most DM test results between the VIXC and GJR-GARCH change. For 

example, under MSE criteria and with one day horizon, the DM changes from -1.5902 

for small sample to -2.1006 for larger sample. However, these changes can not distort 

our conclusions based on 198 observations. Because we find that with 10-day horizon, 

the DM results for random walk are consistent with four, measures. With 22-d~y horizon, 

the DM results for EWMA are consistent as well. In both cases, the significance levels 

from DM tests do not change. These DM tests show clearly that with longer horizons, 
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the time series forecasts of volatility produce more accurate forecasts of future volatility. 

Particularly, the random walk seems to forecast better than the VIXC. Our findings are 

consistent with Noh and Kim (2006) for FTSE 100 implied volatility and Koopman, 

Jungbacker, and Hoi (2005) for the S&P 100 implied volatility. They all indicate that the 

historical volatilities derived from high frequency intra daily data have incremental 

information and outperform implied volatility for predicting future volatility. 
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Table 14 DM test results 

OM test results based on four loss functions 

Forecast 

Horizon=1 day 

VIXCvs MVX 

VIXC vs GJR-GARCH 

VIXCvsEWMA 

VIXC vs Random Walk 

Forecast 

Horizon=5 day 

VIXCvxMVX 

MSE 

-1.17351 
--1.5902/-2.1006 

-2.0700"1-2.2743 " 

-0.6369/-0.9179 

-3.6239-'1 

-0.3559/-0.8740 VIXC vs GJR-GARCH 

VIXCvsEWMA -2.0372-/-2.1845 " 

VIXC vs Random Walk 

Forecast 

Horizon=10 day 

VIXCvs MVX 

VIXC vs GJR-GARCH 

VIXCvsEWMA 

VIXC vs Random Walk 

Forecast 

Horizon=22 day 

-0.0628/-0.0533 

-4.5128-'1 

1.7824'/1.2895 

-0.8566/-0.8690 

3.4135"'/3.7083 

VIXC vs MVX -4.7574'-1 

-, 

VIXC vs GJR-GARCH 4.3104'''/3.5691'-

VIXCvs EWMA 2.1066-/2.3234" 

VIXC vs Random Walk 1.7252'/2.1687"' 

MAE 

-2.1057"1 

--1.2392/-2.5449 

-0.6721/-1.3349 

-0.2008/-0.8710 

-3.6223-'1 

-0.25831-1.3526 

0.0371/-0.7048 

1.7920'/1.7871 
, 

-3.6961 '-I 

0.5842/0.2557 

1.0051/0.7030 

4.1774"'/4.7452-' 

-5.1278-'1 

1.7530'10.5059 

3.1668"'/3.2167"-

0.8861/1.6933' 

HMSE 

-2.5943-'1 

-1.9692-/-2.7190 
... 

-0.06501-1.3802 

-0.7311/-0.8786 

-4.1015'''/ 
" -0.1271/-2.3222 

1.0198/-0.0895 

1.121910.9750 

-4.4728'-1 

0.839710.8397 

2.3797"/2.3795 " 

3.2377'-/3.2377 
... 

-4.4730-'1 

2.0379"1-0.4210 

4.5258'-/4.7752-' 

-0.684810.2985 

HMAE 

-2.5658-1 

-2.1046-/-4.0054 
-, 

0.2849/-1.1870 

-0.0175/-0.8335 

-3.9297"'1 

-0.7179/-2.4711 

1.29271-0.1692 

2.4372"'/2.2169 -

-3.8583"'1 

-0.2242/-1.1131 

2.4166"/2.1553 " 

4.0872'-/3.8701 

-0.05271 

0.0246/-1.8017 

3.9275'-/3.7336'" 

-0.2785/0.7706 

Notes: DM denotes Diebold and Mariano (1995) test. It is computed with the equation: DM = .j'V~-::"dt)' where 

dt = [Cel,t) - [(eZ,t). [(ei=l,Z,t) is one of four loss functions: MSE, MAE, HMSE, HMAE. varCdt ) is the asymptotic 

variance of the differential series of dt . a is the sample mean of loss differential, a = ; L¥=l dt . For the first number in 

each column, it is based on observations in sample period from January 4,2010 to October 15,2010, in which 198 

observations are included. For the second number in each column, it is based on observations in sample period from 

January 4, 2010 to December 31, 2010, in which 251 observations are included. Because the ME stops computing 

MVX on October 15, 2010, we can not compute DM tests forVIXC vs. MVXforthe second period. *, **, and *** 

indicate that the DM tests is significant at the 10, 5, and 1 % levels, respectively. A negative amount indicates that 

VIXC make less loss comparing to its counterpart. 
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7. Conclusions 

In this thesis, we examine information content of Canadian implied volatility indexes: 

VIXC - a model free implied volatility and MVX - a model-based implied volatility. Both 

indexes are computed and disseminated by the Montreal Exchange; therefore the error

in-variables problems make the least influence on our statistical inferences. To compare 

the information content of each index, we use the values of VIXC and MVX in the period 

from October 1,2009 to October 15,2010, during which both indexes coexisted. 

Our GARCH in-sample test indicates that VIXC subsumes all information embedded 

in MVX for predicting future volatility. In addition, we find that the residual coefficient of 

the GARCH model, expanded with VIXC or MVX, is significant at the 1 % level. This 

evidence implies that the Canadian stock market is inefficient. Furthermore, when we 

expand GJR-GARCH model with VIXC or MVX, we find that both volatility indexes 

cannot fully capture the leverage effect in daily index returns. We conclude that both 

VIXC and MVX do not incorporate all information contained in historical index prices for 

predicting future volatility. 

In addition to GARCH in-sample comparisons, we use both regression and forecast 

accuracy tests to compare the prediction ability between the VIXC and MVX in light of 

out-of-sample tests. With 1-, 5-, and 10-day horizons, our regression tests indicate that 

VIXC incorporates all information that is reflected in MVX. Under four loss criteria, we 

find that VIXC consistently produces more accurate prediction than MVX in all time 

horizons. The DM tests indicate that in 14 of 16 cases, the loss resulting from VIXC 

prediction is significantly less than the loss from MVX prediction. We conclude that VIXC 

is superior to the MVX for predicting future volatility. Our conclusion is consistent with 

Jiang and Tian (2005) who find that model free implied volatility derived from the CBOE 

SPX options, is superior to B-S implied volatility derived from the same index options. 

We also compare the forecasting power of VIXC with alternative forecasts of volatility 

derived from historical index prices. We use realized volatility computed from high 

frequency 5-minute index returns as our comparison benchmark. With respect to the 

prediction ability for future volatility, we find that in time horizons lesser than 10-trading 

days, VIXC provides the most accurate forecasts. On the other hand, with longer 

horizons, the historical volatilities derived from index prices, particularly the random 
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walk, provide better forecasts. Our findings are consistent with Charoenwong, 

Jenwittayaroje, and Low (2009) who find that the prediction power of implied volatilities 

decreases with the increase of forecast horizons. We conclude that VIXC can not 

subsume all information that is reflected in historical index prices. The time series 

forecasts of volatility do have incremental information that is not reflected in the VIXC. 

Our results have strong practical implications, because our results indicate that in 

Canadian stock market, the implied volatility index, VIXC, alone cannot provide the most 

accurate forecast regarding future realized volatility. The combination of VIXC and other 

forecasting measures of volatility such as random walk and EWMA may produce better 

results. 

Our results indicate that VIXC does not forecast future 22-trading day's volatility 

better than alternative forecasts based on historical index prices. This finding is 

consistent to some empirical findings across option markets (Poon and Granger, 2003). 

We suggest that future research is needed to investigate what factors make VIXC less 

accurate to predict monthly volatility. 
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