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Abstract 

One of the most important problems in the theory of cellular automata (CA) is 

determining the proportion of cells in a specific state after a given number of time 

iterations. We approach this problem using patterns in preimage sets - that is, the 

set of blocks which iterate to the desired output. This allows us to construct a 

response curve - a relationship between the proportion of cells in state 1 after n

iterations as a function of the initial proportion. We derive response curve formulae 

for many two-dimensional deterministic CA rules with L-neighbourhood. For all 

remaining rules, we find experimental response curves. We also use preimage sets to 

classify surjective rules. In the last part of the thesis, we consider a special class of 

one-dimensional probabilistic CA rules. We find response surface formula for these 

rules and experimental response surfaces for all remaining rules. 
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1"---~_C~_H~A~.~P~_T .. E~R_l ~ __ J ~ Introduction 

Cellular automata (CA) have been used to model real-life phenomena as varied as 

disease spread [2, 3], forest fires [7, 21], reaction-diffusion systems, traffic flow pat

terns [17], and many others [22]. One of the most important problems considered in 

the theory of CA is the so-called forward problem. Given the initial state, determine 

the state of the CA after n-iterations. 

In many models, it is often sufficient to determine some aggregate property of 

the final state instead of the state itself. For example, the proportion, or density, of 

cells in a given state is one of such aggregate properties. For disease spread models, 

this may be the proportion of the population that is infected. For forest fire models, 

this may be the proportion of trees on fire. In particular, we are interested in how 

iteration of the CA rule affects this proportion. 

The questions we ask then are, given a randomly generated initial binary con

figuration, how do n-iterations of a given rule affect the proportion of cells in state 

I? What is the dependence of this density on the initial density? What is the lim

iting density? Using signal processing terminology, we want to know the "response 

curve", the density of the output as a function of the density of the input. 

An important example of the use of response curves in CA theory is the Density 

Classification Problem (DCP). We say that the initial density of ones is given by 

p and the asymptotic density of ones, that is, the proportion of ones after a large 

number of rule iterations, is given by P(l). Is it possible to determine a rule such 

that P(l) = 0 if P < 1/2 and P(l) = 1 if P > 1/2? In this case, the response curve 

would take the shape of a step function. It is known that a single such rule does not 

exist [25], but important results [11, 13, 14] have shown this to be possible if one 

considers the composition of multiple rules, or probabilistic rules. 

Many studies of the forward problem have focused on ergodic theory or symbolic 

dynamics. We approach this problem from another direction. We find patterns on 

the sets of preimages of a given block and use the structure and cardinalities of such 

sets to derive response curve formulae. We ask, given a rule, can we determine its 

response curve? In surprisingly many cases, the response curves can be calculated 

explicitly. Two classes of CA rules will be considered in this thesis. First we consider 

a class of two-dimensional rules with so-called L-neighbourhood. Then we will focus 
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our attention on a class of one-dimensional probabilistic rules for which we were able 

to derive explicit response surfaces. For all of these rules, we also perform simulations 

to obtain experimental response curves and sUlfaces and we note interesting and 

novel behaviour. 

In the course of this research, we also came across the question of surjectivity 

when considering rules whose preimage sets are balanced. In the theory of cellular 

automata (CA), the surjectivity of the global map is one of the most extensively 

studied properties of CA. It is only natural to ask, therefore, for examples of surjec

tive CA. 

In the case of one-dimensional CA, such examples are easy to find using the 

well-known Amoroso-Patt algolithm for determining surjectivity [1]. Using this 

algolithm it can be shown that among the 88 minimal elementary CA rules, the 

only surjective rules have Wolfram code numbers 15, 30, 45, 51, 60, 90, 105, 106, 

150, 154, 170 and 204. 

In two dimensions, however, the situation is much different. It has been shown 

that the question of surjectivity of two-dimensional cellular automata is undecidable 

[23]. This, however, is not the only problem. Even if we had an efficient algorithm 

to determine if a rule is surjective or not, producing a list of all surjective CA using 

a Moore neighbourhood of 9 sites by applying the algolithm to each rule would 

still be impossible, because there are 2(2
9

) = 2 512 ~ 1.3 X 10134 possible rules to be 

considered. Nevertheless, in this thesis we show that if one considers binary rules 

with the smallest "truly" two-dimensional neighbourhood, consisting of the central 

site, its top neighbour, and its right neighbour, then the exhaustive list of surjective 

rules can be determined. This can be done by a direct computelized search for 

violation of balance conditions to eliminate non-surjective rules, and then proving 

that the remaining rules are surjective. Using this method, we found that among 

the 88 minimal L-shaped 2D binary rules, 16 rules are surjective. A similar method 

was applied to rules with a von Neumann neighbourhood, where we were able to 

determine surjectivity for all rules with the exception of four "hard" cases. 
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Definitions and Basic Properties 

Let 9 = {O, 1, ... , N - I}, N E N*, be called a symbol set and let d be the dimension 

of the cellular automata. We denote Sd = g,£d be the set of all d-dimensional 

infinite lattices, or configurations, over g. We will first consider one-dimensional 

cellular automata (d = 1), and then two-dimensional cellular automata (d = 2). 

2.1 One-dimensional Cellular Automata 

A block of length n is an ordered set bob1 ... bn- 1, where n E IN", bi E g. We let Bn 

denote the set of all blocks of length n over 9 and B be the set of all blocks (of any 

finite length) over g. 
If we consider a neighbourhood N = B2r+1, for r E IN", a mapping f : N f-t 

B1 = 9 will be called a cellular automaton rule of radius r. Corresponding to f 

(also called a local mapping) we define a global mapping P : Sl -+ Sl such that 

(P(S))i = f(Si-r, ... , Si,.·., SHr) for any s E Sl. 

A block evolution operator corresponding to f is a mapping f : Bn f-t Bn-2r 

defined as follows. Let r E IN" be the radius of f, and let b = bob1 ... bn- 1 E Bn 

where n 2 2r + 1 > 0. Then the mapping f is defined in terms of the concatenation 

f(b) = U(bi,bH1 , ... ,bH2r)}~';;-o2r-1. Note that if bE B2r+1 then f(b) = f(b). 

When we consider the case 9 = {a, I} and r = 1 rules, we denote these 

cellular automata to be elementary cellular automata (or elementary rules). In 

this case, when b E B3, then f(b) = f(b). We denote as basic blocks, the set 

B3 = {000,001,010,011,100,101,110,111}. 

The composition of two one-dimensional rules f, f' can be now defined in terms 

of their corresponding global mappings P and P' as (P 0 P')(s) = P(P'(s)), where 

s E Sl. We will often examine the effect of composing a rule with itself n-times, 

which we denote pn(s) or fn(b), where appropriate. 

We denote by f-1(b), the set of all n-step preimages of block b under the rule 

f, that is, all blocks c such that fn(c) = b. The number of n-step preimages of a 

block b under f, denoted card[f-n(b)], is defined as the number of elements of the 

set f-n(b). 

We will often require the use of Kolmogorov consistency conditions [8] to simplify 



4 Chapter 2. Definitions and Basic Properties 

our analysis. For any block b = bobl ... bk, the probability of occurrence of block b 

is given in terms of the occurrence probabilities (see Section 3.1) of block b right

augmented (or left-augmented) with each possible element of 9 so that 

P(bo··· bk) = P(bo··· bkO) + P(bo ... bk1) + ... + P(bo ... bk(N - 1)). (2.1) 

For example, when k = 2 and 9 = {O, I} (i.e. N = 2), (2.1) allows us to obtain the 

following system of four consistency conditions 

P(OOO) + P(OOl) = P(OO) = P(OOO) + P(100), 

P(OlO) + P(Oll) = P(Ol) = P(OOl) + P(101), 

P(lOO) + P(101) = P(lO) = P(OlO) + P(llO), 

P(llO) + P(l11) = P(ll) = P(Oll) + P(l11). 

From system (2.2), we obtain the following identities 

P(OOl) = P(100), 

P(Oll) = P(llO), 

P(OlO) + P(Oll) = P(OOl) + P(lOl). 

(2.2) 

(2.3) 

We will often make use of these conditions (and others derived from (2.1) for larger 

values of k) in future analysis. 

For one-dimensional cellular automata the following number scheme is used [31]. 

An elementary rule J is assigned a WolJram number W, between 0 and 255, as 

follows 

W(J) = (2.4) 

2.2 Two-dimensional Cellular Automata 

The above definitions can be easily generalized to the case when d = 2. There 

are many choices for a local neighbourhood that can be used for two-dimensional 

cellular automata. We will focus our attention on two particular neighbourhoods: 

the L-neighbourhood and the von Neumann neighbourhood. 

2.2.1 L-neighbourhood 

We first consider the smallest truly two-dimensional neighbourhood, in which the 

local function takes as an argument the previous time step value of the current site, 
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the site above and to the right of the current site. Blocks in two dimensions will be 

defined as regions of 2D lattice in the shape of isosceles right triangles. We define 

the set of triangular blocks of size r as the set consisting of elements 

(2.5) 

bI,I ... br,I, 

where each bi,j E g. This set will be denoted by fr. The set of blocks 72 will be 

denoted basic blocks. 

If we define an L-neighbourhood as a block b = i~ b2 E 72, then we may define the 

local mapping of a two-dimensional cellular automaton with L-shaped neighbourhood 

as 9 : 72 -+ g. Similarly as in one dimension, 9 has a corresponding global mapping, 

G: g7l,2 -+ g7l,2 such that, for any i,j E Z, 

( ) ( 
S· +1 ) G(s) i,j = 9 'sL SH1,j , 

for any s E g7l,2. The block evolution operator g : fr -+ fr-I will be defined as a 

function which transforms triangular block (2.5) into another block 

CI,r-I 

CI,I ... Cr-I,I, 

h . . - (bi ,j+1 ) J: • {I I} . {I '} were ct ,) - 9 b.. b. . lor 2 E , ... ,r - , J E , ... ,r - 2 • 
'l,,] 'I,+l,J 

When we wish to refer to a block from Tn contained in an infinite configuration 

s E gZ2 and placed at (0,0), we will use the following notation: 

S[n] = 

Si,j+n-I 

S· . t,) SHn-I,j 

If we consider the case when 9 = {O, I} with a local mapping f (~~ a2) -+ g, 
then many of the 256 possible rules are related to each other by the group of 4 

transformations DI x 82, where DI is the dihedral group with a single reflectional 

symmetry and 82 denotes all permutations of the elements in {O, I}. The class of 
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four equivalent rules is written in terms of local mappings as 

g(~~a2)=g(~~a2)' 

gre/ (~~ a2 ) = 9 (~i ao ), 

9 (~~ a2) = 1 - 9 (i=~~ I-a2 ) , 

- (ao ) _ 1 (I-M ) gre/ al a2 - - 9 I-al I-ao . 

For two-dimensional elementary cellular automata with L-neighbourhood, we adapt 

the numbering system used in [31]. An elementary rule 9 is assigned a Wolfram 

number W, between ° and 255, as follows 

W(g) = (2.6) 

Since each elementary rule is a member of a group of (not necessarily distinct) 

equivalent rules, it is convenient to consider only a minimal rule for each group 

whose Wolfram number is given by 

Wmin (g) = min {W (g), W (g), W (gre/) , W (gre/)} . (2.7) 

A comprehensive list of all 88 elementary rules, their equivalencies and minimal 

representatives can be found in [31]. 

Again, we will use Kolmogorov consistency conditions, adapted from (2.1) to 

the L-neighbourhood, to simplify our analysis. In the case when r = 2 (2.5) and 

g = {a, I}, we obtain the following consistency conditions 

P(o )=P(80)+p(8d+P(60)+P(6d, 

= P(80) +P(8I) +P(~ 0) +P(~ 1)' 

= P(80) +P(~ 0) +P(60) +P(i 0)' 

P(I )=P(~o)+P(~I)+P(io)+P(id, 

=P(60)+P(6I)+PO O)+PO 1)' 

=P(8I)+P(~d+P(6d+POd· 

(2.8) 

Equating, when appropriate, each pair of conditions in system (2.8) gives us six 

identities that we may use in future analysis. We note in passing that due the 

geometry of the neighbourhood, these identities contain more terms that those for 

one dimension. Thus, it is necessary to determine five basic block probabilities 

before the remainder may be obtained using consistency identities. 
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2.2.2 von Neumann neighbourhood 

We now provide definitions for a commonly used two-dimensional neighbourhood, 

the von Neumann neighbourhood, in which the state of a cell at the next time step 

depends on the current value of the cell, and the current values of the cells above, 

below, to the left and right of the given cell. 

Blocks in two dimensions will be defined as diamond-shaped regions of 2D lattice. 

We define the set of diamond blocks of size r as the set consisting of elements 

bO,(r-l) 

b-(r-l),O bo,o (2.9) 

bO,-(r-l) 

where each bi,j E g (see Figure 4.2a). This set will be denoted by 'Dr. 
bo 

If we define an von Neumann-neighbourhood as a block b = bi b2 b3 E 'D2, then 
b4 

we may define the local mapping of a two-dimensional cellular automaton with von 

Neumann neighbourhood as h : 'D2 -t g. As in one dimension, h has a corresponding 

global mapping, H : g;t;2 -t g;t;2 such that, for any i, j E ~, 

( 

Bi,j+1 ) (H(s)) . . = h Bi-I,j Bi,j BHI,j , 
2,J Si,j-l 

for any s E g;t;2. The block evolution operator h : 'Dr -t 'Dr-l will be defined as a 

function which transforms diamond block (2.9) into another block 

C-(r-2),O 

where Ci,j = h (bi-I,j b~;,;1 bi+l,j) 
bi,j-I 

{-(r - 2 - Iii), ... , (r - 2 - Iii)}. 

CO,(r-2) 

CO,O C(r-2),O, 

CO,-(r-2) 

for all i E {-(r - 2), ... , (r - 2)} and all j E 

If we consider the case when g = {D, I} with a von Neumann local mapping 

g ( al ~~ a3 ) -t g, then many of the 225 possible rules are related to each other by 

the group of 16 transformations D4 x 82, where D4 is the dihedral group consisting 
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of symmetries of a square and 82 denotes all permutations of the elements in {O, I}. 

The class of sixteen equivalent rules is written in terms of local mappings as 

9Rs ( al ~ as ) = 9 ( ao ~~ a4 ) , 

9D-x ( al ~~ as ) = 9 ( ao ~~ a4 ) , 

where Rl, R2 , R3 denote clockwise rotations of 90, 180 and 270 degrees, M x , My 

denote reflections in the x and y-axes, Dx, D-x denote reflections in the lines y = 

x, y = -x and 9 denoting a Boolean Conjugation of each of these rules. 

For two-dimensional elementary cellular automata with von Neumann neigh

bourhood, we adapt the numbering system used in [31]. An elementary rule h is 

assigned a Wolfram number W, between 0 and 232 - I, as follows 

W (9) = L h ( al ~~ as ) . 216ao+8al +4a2+2as+a4 . 

ao , .. . ,a4E{O,1} 

(2.10) 

Since each elementary rule is a member of a group of (not necessarily distinct) 

equivalent rules, it is convenient to consider only a minimal rule for each group 

whose Wolfram number is the smallest amongst the set of 16 equivalent rules. It 

can be shown that there are 270,754,432 minimal rules. 

Distance between configurations 

When we wish to quantify the distance between two-dimensional configurations, we 

use the following metric. 
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Proposition 2.1. For s,t E g7l,2 and i,j E~, the following satisfies all axioms of 

a metric: 

1 
if soFt 

1 + ~Ei~ (max{lil, Ijl} : Si,j oF ti,j)) 
~,J OJ 

(2.11) 

o if s = t 

Proof. Among the four required properties of a metric, d obviously satisfies non

negativity, identity of indiscernibles, and symmetry. We will only prove the triangle 

inequality, i.e., that for any s, t, r E g7l,2 we have d(s, t) :::; d(s, r) + d(r, t). 

Assume that d(s, t) = k~l and d(s, r) = k.~l' We now consider two cases: 

• If k* :::; k, then k.~l 2: k~l' From the definition of d, once concludes that in 

this case d(r, t) = k'~l' and therefore 

1 1 1 
d(s,r) +d(r,t) = -k - + -k - > -k 1 = d(s,t) . 

*+1 *+1- + 

• if k* > k, then, again from the definition of d, d(r, t) = k~l' and thus 

1 1 1 
d(s, r) + d(r, t) = k* + 1 + k + 1 > k + 1 = d(s, t). 

o 





I CHAPTER 3 

I Deterministic Cellular Automata 

In this chapter 1, we will focus our attention only on the "simplest" two-dimensional 

cellular automata, that is, cellular automata with L-neighbourhood. We attempt 

to find response curves for all 88 minimal binary rules. In 14 cases, the response 

curve formula was independent of the number of iterations n. We were able to find 

explicit response curves for each of these rules. 

In 12 further cases, the response curve formula was dependent on the number of 

iterations. We found that in each of these cases, the density decreased until reaching 

some limiting asymptotic density. Many of these rules approached an asymptotic 

configuration consisting entirely of cells in state O. We found that some rules, like 

Rule 138 presented below, approach some fixed density which is dependent on the 

initial density. The most interesting case was Rule 130 and we present a full and 

complete analysis of the derivation of the response curve in both the one and two

dimensional cases. 

For other rules, were able to determine the density when the density of ones in 

the initial configuration was 0.5. This included the special case of surjective rules 

for which a more detailed analysis is presented in Chapter 4. We were also able to 

provide density conjectures for an additional set of rules. 

In many cases, we were also able to find response curves for the eight basic 

blocks. Some of these formulae are very interesting, including the formulae for Rule 

130 and those for Rule 168 which depend on Catalan numbers. We may use these 

basic block density formulae to prove results relating to rule emulation. In fact, we 

were able to determine that the set of 26 rules for which a full response curve could 

be derived are those which asymptotically emulate either the shift or identity rule. 

We also consider all rules which finitely emulate other rules and present all known 

relationships. 

1 A version of this chapter (and portions of Chapter 4) has been accepted for publication. H. FuM 
and A. Skelton. Response Curves and Preimage Sequences of Two-Dimensional Cellular Automata. 
CA-CSC proc., 2011. 
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3.1 Response Curves 

Suppose that we start with an initial configurations in which a certain proportion of 

sites is in state 1. The simplest way to achieve this is to set each site to be in state 1 

with probability p, and 0 with probability 1 - p, doing so independently for all sites. 

This means that the probability that a randomly selected site to be in state 1 is p. 

Suppose that we apply n-iterates of some CA rule to such configuration. What is 

the probability that in the resulting configuration, the state of a randomly selected 

site is I? In order to formulate this problem more precisely, we will use the concept 

of probability measure, similarly as done in [16] for one-dimensional CA. 

First we define the Bernoulli measure in two dimensions. If C C S2 is a subset 

consisting of all elements of S2 taking the same values on a finite subset E of Z2, 
then we define J..tp( C) = pi (1- p) IEI-j , where j is the number of points in E at which 

C takes the value 1. Then one can show that J..tp can be extended in a unique way 

to all subsets of S2 from <T-algebra generated by all sets C so that 

J..tp(0) = 0, 

J..tp(S2) = 1, 

C1 C C2 ===} J..tp(C1):S J..tp(C2), and 

/,p (yc.) ~ ~>P(Ck)' 
for all countable collections {Ck} of pairwise disjoint subsets of S2. Such an extension 

will be called a Bernoulli measure J..tp and is obviously a probability measure. We 

will consider now a special set C associated with blocks in T,.. 

Given a block bET,., we define a cylinder set given by b, Ci,j(b), as the set of 

all configurations in which block b is fixed and placed at coordinate (i , j) aligned at 

the lower-left element of b. We define a measure of such a cylinder set, J..t [Ci ,j(b)], 

to be the probability of occurrence of block b placed as above. Since one can show 

that J..tP defined above is translationally invariant we may drop the indices i,j. For 

p E [0,1], the Bernoulli measure is a measure where all sites are independently set 

to 1 with probability p, and to 0 with probability 1 - p. In such case, for bET,., 

(3.1) 

where j is a number of cells in state 1 in b. 
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We now consider the action of the global mapping G on the measure of a cylinder 

set given by block b, which yields 

(GJ.tp) [C(b)] = J.tp [G-1 (C(b))] . (3.2) 

Considering instead n iterations of G, we obtain 

(GnJ.tp) [C(b)] = J.tp [G-n (C(b))] . (3.3) 

If we let g-n(b) be the set of all n-step preimages of block b, that is, the set of all 

blocks a such that gn(a) = b, then we can write 

J.tp [G-n (C(b))] = 2: J.tp [C(a)]. (3.4) 
aEg-n(b) 

Using the notation Pn(b) = J.tp [G-n (C(b))], we write (3.3) as 

Pn(b) = 2: Po(a). (3.5) 
aEg-n(b) 

If b = 1, and if the initial measure is Bernoulli, then in the above formula each Po(a) 

depends only on p, where p = Po(I). Pn(l) can then be interpreted as the density 

of Is in the configuration obtained by iterating the CA rule n-times starting from 

disordered initial configurations with density of ones equal to p. 

The plot of Pn (1) versus p will be called a response curve for each elementary 

2D CA. Finally, we denote P(b) to be the asymptotic density of block b, which we 

obtain by taking the limit of Pn(b) as n -+ 00 (if the limit exists). Note that in 

order to use (3.5) we will need to know the elements of the set g-n(b) for any n. 

3.1.1 Theoretical Response Curves 

For 26 minimal rules, we were able to determine an explicit response curve formula. 

In some cases, we found that the response curve was independent of n, beyond 

simple period-two behaviour. In other cases, the response curve was dependent on 

n, and then a separate formula for the asymptotic density could be obtained. We 

present in detail three examples of each types. In each example, we describe the 

structure of the preimage sets but, due to space constraints, we omit direct proofs 

while noting that each case can be proved easily by induction. 
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Rules with Non-Decaying Density 

In each of the following examples, the formula for the asymptotic density is the same 

as the response curve. We provide detailed analysis for Rules 0, 3 and 42 and the 

remaining results are presented in Table 3.1. 

Proposition 3.1. The response curve for Rule 0 is Pn(1) = O. 

Proof. No triangular blocks of any size can be mapped under g8' to single block 1. 

Therefore, card [gon(b)] = 0 and we apply (3.5) to obtain our result. D 

Proposition 3.2. The response curve for Rule 42 is Pn(l) = p(l - p)(l + p). 

Proof. It can be shown by induction that the only blocks that map to a single 1 

under g~2 are either blocks in 'Tn where bn,l = 1, bn-l,2 = 0 and all other elements 

are arbitrary, or blocks in 'Tn where bn,l = bn-l,2 = 1, bn-1,1 = 0 and all other 

elements are arbitrary, so that 

* * 
or 

~O * *1 , 
* .. ·**1 * ... *01 
L---...J L---...J 

n-1 n-1 

where * denotes an element in an arbitrary state. Using (3.1) we determine the 

initial probability of occurrence of blocks of either type and using (3.5), conclude that 

Pn(1) = p(l- p) + p2(1_ p), which simplifies to the desired result. An experimental 

curve confirming this result is presented in Figure A.3i. D 

Proposition 3.3. The response curve for Rule 3 is 

ifn even, 

ifn odd. 

Proof. Since Rule 3 has period-2 behaviour, we must consider cases when n is odd 

and when n is even. When n is odd, the only blocks that map to a single 1 under 

n-iterations of g3 are blocks in 'Tn where bl,(n+1)/2 = b1,(n+3)/2 = 0 and all other 

elements are arbitrary, so that 
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* :* 

* o. 
0: 

n-l [ ~ 
2 . 

** 

15 

* 
n 

When n is odd, the only blocks that map to a single 1 under g~ are blocks in Tn 
where b1,(n+2)/2 = 0 and all other elements are arbitrary, or blocks in Tn where 

b1,n/2 = bl,(n+4)/2 = 1, bl,(n+2)/2 = 0 and all other elements are arbitrary,so that 

* :* 

* o. 

[ 
* : n . 

2" : 
** * 

n 

* :* 

* 1 . 
or 0 : 

1 

n-2 [ ~ 
2 . 

** * . 
n 

Using (3.1) we can determine the initial probability of occurrence of blocks of 

either type and using (3.5) obtain a formula which simplifies to the desired result. 

Since experimentally we averaged our results over an even number of time steps we 

expect that our experimental response curve would have the form 

The experimental plot (Figure A.ld) does in fact confirm this result. o 

Rules with Decaying Density 

In each of the following examples the formula for the response curve is dependent 

on n, and thus we can also determine an asymptotic density formula. We provide 

detailed analysis for Rules 32, 128 and 138, while the remaining results are presented 

in Table 3.2. 

Proposition 3.4. The response curve for Rule 128 is Pn(l) = p(n
2
+3n+2)/2. 

Proof. The only block mapping to a single 1 under g?28 is the block consisting 
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Rules II 
0 0 0 
2 p(1- p)~ 1/8 

3 
(1- p? 5/8 (n odd) 

p(l + P _ p2) 1/4 (n even) 
4 p(1- p)~ 1/8 

5 
(1 _ p)2 5/8 (n odd) 

p(l + P _ p2) 1/4 (n even) 
10 p(l - p) 1/4 
12 p(l - p) 1/4 

51 
1-p (n odd) 

1/2 p (n even) 
34 p(l - p) 1/4 
42 p(l - p)(l + p) 3/8 

51 
1-p (n odd) 

1/2 p (n even) 
76 p(l - p)(l + p) 3/8 
170 p 1/2 
204 P 1/2 

Table 3.1: Rules with Non-Decaying Density 

entirely of ones. We use (3.1) to find the initial probability of this block and (3.5) 

produces our result. 0 

We can now find the asymptotic density under Rule 128 as 

P(l) = lim Pn(1) = {o 
n-too 1 

if p =11, 
if p = 1. 

Proposition 3.5. The response curve for Rule 32 is Pn(l) = pn+l(l - p)n. 

Proof. Under rule 32, the only blocks that map to a single 1 under g32 are of the 

form 
1 o .. . 

n - 1 [ ~ :: .. :: . 
.;.. . .". * 01 

Using (3.1), we can determine the initial probability of occurrence of blocks of 

this type and using (3.5), we obtain our result . 0 

We now find the asymptotic density as P(l) = lim Pn(l) = o. 
n-too 
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2n+2+ 
Proposition 3.6. The response curve for Rule 138 is Pn (1) = P pH p. 

Proof. The only blocks that map to a single 1 under gf38 are comprised entirely of 

arbitrary elements in the top n - 1 rows, and have their lower two rows of the form 

* .. ·*01 .. ·11 
*· .. **1 .. ·111 

I I, 

i 

where i ranges from 1 to n+ 1. Using (3.1) we can determine the initial probability 

of occurrence of blocks for each possible value of i. Summing over all i and using 

(3.5), we conclude that 

n 

Pn(1) = p2n+l + I>2i-l(1 - p) 
i=l 

which simplifies to our desired result. 0 

Again, we can find the asymptotic density (confirmed in Figure A.5j) as 

P(l) = lim Pn (1) = {ITP 
n-too 1 

ifp-l-1, 

if P = 1. 

While the response curve is continuous, the asymptotic density has a discontinuity 

at p = 1, which corresponds to an initial condition consisting entirely of ones. 

3.1.2 Experimental Response Curves 

For those rules for which an explicit response curve formula could not be derived, 

we were able to obtain experimental response curves. A random initial configura

tion of 250000 elements was iterated n = 1000/ p(l - p) times when p E (0,1) and 

n = 100000 when p = 0,1, with periodic boundary conditions and density was aver

aged over the last 10 configurations. We average our results over 10 iterations from 

different initial conditions. Such experimental curves are presented in Appendix A. 

We note in passing that the example shown in Figure A.6e (Rule 168), exhibits a re

sponse curve resembling a "phase transition" , that is, discontinuity of the derivative. 

No 1D elementary rules exhibit such behaviour. 
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Rules II P(l) 

8 pn+l(l_ p)n 0 
32 pn+l(l_ p)n 0 
40 2npn+l(1 _ p)n 0 
72 2npn+l(1 _ p)n 0 

128 p(n2+3n+2)/2 0 if pi-I 
1 if p = 1 

130 see 3.4, 3.5 and (18) 
132 see Rule 130 

136 pnH 0 if pi-I 
1 if p = 1 

p2n+2+p -L if pi-I 
138 l+p 

p+l 1 if p = 1 
p2n+2+p -L if pi-I 

140 l+p 
pH 1 if p = 1 

160 pn+l 0 if pi-I 
1 if p = 1 

p2n+2+p -L if pi-I 
162 l+p 

p+l 1 if p = 1 

Table 3.2: Rules with Decaying Density 

3.2 Response Sequences 

In the special case when p = 1/2, the probability of any block of a given size is 

equally likely and (3.5) can be expressed as 

(3.6) 

where card [g-'-n(b)) denotes the number of elements in the set of all n-step preimages 

of block b. If we want to indicate that we consider the special case of p = 1/2, we 

will use the notation p~s) (b), and the sequence of p~s) (b) for n = 0,1,2 ... will be 

called a response sequence. In order to use eq. (3.6) we need only know the number 

of elements in the set of n-step preimages of b. 

3.2.1 Theoretical and Conjectured 

In some cases we were unable to determine an explicit expression for the response 

curve of a given rule, but we were able to derive an explicit formula for card [g-n(l)), 

and thus use (3.6) to obtain a response sequence. For 21 additional rules, we were 

able to either prove or conjecture a response sequence. These are the class of sur-
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jective rules and we prove these results in detail in Chapter 4. 

To find response sequences for the remaining rules, we performed an exhaus

tive search through all potential preimages for each rule. For the L-neighbourhood, 

the number of potential preimages is 2(n
2
+3n+2)/2, which makes searches for large 

n impossible. We performed our searches using the Shared Hierarchical Academic 

Research Computing Network (SHARCNET) and we were able to obtain cardinali

ties of preimage sets to level n = 7. We then attempted to conjecture a formula for 

the sequence using the first six terms, and checked the conjecture with the seventh 

sequence term. 

Rules 23, 27, 29, 43, 46, 58, 77, 78, 142, 172, 178, 184 each shared the first seven 

terms of the preimage sequence with the surjective rules in Chapter 4, so that for 

these rules we conjecture that P~s)(l) = 1/2. Experimental evidence of this is found 

in the response curve plots in Appendix A. For all remaining rules, a list of the first 

seven preimage cardinalities is available upon request. It is interesting to note that 

some sequences appear to follow obvious patterns for a small number of terms, but 

larger terms show that this is not the case. For example, for Rule 6, the first six 

terms are {2, 16,256,8512,496000,64372608, ... }. 

3.2.2 Basic Blocks 

As a final remark we would like to indicate that in addition to probabilities of 1 

after n iterations, it is sometimes possible to compute probabilities of other blocks. 

If p = 1/2, it is often possible to compute the number of preimages of these blocks. 

For example, for 40 of the 88 minimal rules, we were able to find preimage sequences 

for all eight basic blocks (Table 3.3). In each case, it is only necessary to determine 

preimage sequences for 5 of the 8 blocks, then we may use Kolmogorov consistency 

conditions (2.8) to determine the remaining three. In some cases, these formulas 

are rather striking, such as in the case of rule 130, reported in detail in Section 3.5. 

Another remarkable example is rule 172, for which we came out with a following 

conjecture. 

Conjecture 3.1. Under 2D Rule 172 the preimage sequences of basic blocks are 

given by 
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where Ck denotes the k-th Catalan number and 

B _{O 0 1 I} 
1- 00'11'00'11 , B - {O 0 1 I} 

2- 01'10'01'10· 

Work on a proof of this result is ongoing and will be reported elsewhere. 

3.3 Rule emulation 

We will now briefly turn our attention to dynamics of 2D rules. When one prints 

sample spatiotemporal diagrams of 2D rules with L-shaped neighbourhood, one can 

easily observe that all rules for which density response curves can be calculated 

theoretically exhibit somewhat "simple" dynamics. A convenient way to describe 

this "simplicity" is to say that after a few iterations these rules essentially behave 

like identity or shift. In order to formalize this statement, we need to introduce the 

concept of emulation [29], first finite and then asymptotic. 

3.3.1 Finite Rule Emulation 

We say that Rule X emulates Rule Y at level n if, 

g~+l(b) = 9y (gx(b)). (3.7) 

for any block b E 1n+2. We will demonstrate this with an example. Let us consider 

Rule 76, with a local rule given by 

976 (~ z) = (1 - x)y(l - z) + (1 - x)yz + xy(l - z) = y(l - xz). (3.8) 

Using (3.8), we can determine an algebraic expression for the compositon of 976 with 

itself, 

= x3(1- X1 X4) (1 - x1(1- XOX2)X4(1- X2 X5)) 

= x3(1 - X1X4) 

= 9204 (g76(b)), 

where we have used the fact that when x E {O, I}, we know that X2 = x. We therefore 

conclude that Rule 76 emulates identity at level 1. We checked all 88 x 87 pairs of 

distinct elementary rules for finite rule emulation. In Figure 3.1, we show all level 1 
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Rule I - -

° 1,0,0,0,0,0,0,0 
2 21/32,1/8,3/32,0,3/32,0,1/32,0 

3 (nodd) 15/32,5/32,3/32,1/32,3/32,1/32,3/32,1/32 
(n even) 3/32,5/32,3/64,5/64,3/64,5/64,3/16,5/16 

4 21/32,3/32,1/8,0,3/32,1/32,0,0 

5 (if n odd) 15/32,3/32,5/32,1/32,3/32,3/32,1/32,1/32 
(if n even) 3/32,3/64,5/32,5/64,3/64,3/16,5/64,5/16 

8 1 - 11 . 2 -~n -;:5,3 . 2 -~n -;:5,3 . 2 -~n -;:5, 2 -~n -;:5, 2 -~n -1,0,0, ° 
10 3/8,3/16,1/8,1/16,3/16,0,1/16,0 
12 3/8,1/8,3/16,1/16,3/16,1/16,0,0 
27 5/32,5/32,3/32,3/32,3/32,3/32,5/32,5/32 
29 5/32,3/32,5/32,3/32,3/32,5/32,3/32,5/32 
32 1 - 11 . 2 -~n -;:5,3 . 2 -~n -;:5, 2 -~n -1,0,3 . 2 -~n -;:5, 2 -~n -;:5,0, ° 
34 3/8,3/16,3/16,0,1/8,1/16,1/16,0 
42 7/32,3/16,1/8,3/32,1/8,3/32,5/32,0 
76 7/32,1/8,3/16,3/32,1/8,5/32,3/32,0 
128 1- A(12B - 5),A(4B - 3),A(4B - 3),A,A(4B - 3),A,A,A 

130 1- 3F/8 - 4AB, F/8, (F - 1)/2 + AB, AB, 
(F - 1)/2 + AB, AB, (4 - 3F)/8, (4 - 3F)/8 

132 1 - 3F/8 - 4AB, (F - 1)/2 + AB, F/8, AB, 
(F - 1)/2 + AB, (4 - 3F)/8, AB, (4 - 3F)/8 

136 
1 - 7 . 2 -:.In -;:5 ,2 n -:.l _ 2 -:.In -;:5, 2 n -:.l _ 2 -:.In -;:5 ,2 n -:.l _ 2 -:.In -;:5, 

2-n - 1 _ 3 . 2-2n- 3 2-2n- 3 2-2n- 3 2-2n- 3 , , , 
:M - &4 n + 148 n, i - f44 n, tf2 + 144 n - 148 n, 

138 ~ + l4-n _ l8-n ~ + l4-n _ l8-n 14-n 
42 24 14' 21 24 14' 8 ' 

l + l4-n + l8-n l + l4-n + l8-n 
21 24 28' 21 24 28 

~ - ~4 n + 148 n, -£ + ~4 n - 148 n, 

140 1_l4-n _ + l4-n _ l8-n _ + l4-n _ l8-n 
6 24 ' 42 2i 14' 21 24 14' 

l + l4-n + -8-n 14-n l + l4-n + l8-n 
21 24 28' 8 , 21 24 28 

160 
1 - 7 . 2 -~n -;:5,2 n -~ _ 2 -~n -;:5,2 n 1 _ 3 . 2 -~n -;:5, 2 -~n -;:5, 

2-n - 2 _ 2-2n- 3 2-n - 2 _ 2-2n- 3 2-2n- 3 2-2n- 3 , " 
~ - &4 n + 148 n, i - f44 n, 11 + f44 n - 148 n, 

162 14-n ~ + l4-n _l8-n ~ + l4-n _ l8-n 
8 ' 42 24 14' 42 24 14' 

l + l4-n + l8-n l + l4-n + l8-n 
21 24 28' 21 24 28 

172 C /8, (2 - C)/8, (2 - C)/8, C /8, C /8, (2 - C)/8, (2 - C)/8, 1/8C 
184 C /8, (2 - C)/8, C /8, (2 - C)/8, (2 - C)/8, C /8, (2 - C)/8, C /8 

Table 3.3: Response Sequences for Basic Blocks (where we denote for convenience, 
A = 2( -n2

-5n-6)/2 B = 2n C = ~n Ck and Ck refers to the k-th Catalan , , L.Jk=O 4k , 

number, and F = L~o 2-i (i+3)/2). 
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132--~1X/ 
140 76 10' 

'"~ 

( a) Rules Emulating Identity (b) Rules Emulating Shift (c) Other Emulations 

Figure 3.1: Finite Emulation Relations 

emulation relations between all minimal elementary 2D rules with L-neighbourhood 

as directed graphs in which an arrow travels from X to Y if and only if Rule X 

emulates Rule Y at level 1. In Figure 3.1a are all rules which finitely emulate the 

identity Rule 204. In Figure 3.1b are all rules which finitely emulate the left shift 

Rule 170. Finally, in Figure 3.1c are another class of interrelated emulation rules. 

In addition to the rules in the graph, we also discovered that rules 6, 14, 18 and 50 

emulate rules 134, 142, 146 and 178 respectively. 

3.3.2 Asymptotic Rule Emulation 

In [15], the author defined the following metric to describe the distance between 

two elementary ID cellular automata rules. We adapt this and define the following 

metric to describe the distance between two elementary 2D cellular automata rules 

with L-neighbourhood, for any k 2: 1, 

d(f, g) = 2(-k
2
-3k-2)/2 L If(b) - g(b)l· (3.9) 

bEBk 

We say that Rule f asymptotically emulates Rule 9 if 

(3.10) 

We now derive a useful equation with which we can calculate the distance between 

two rules at a given level-no We define the following function for any block b E 72, 

(f EB g)(b) = f(b) + g(b) mod 2, 

which outputs 1 if and only if f(b) :f:. g(b) . Thus, we can use this function to count 

the number of blocks on which local mappings f and 9 differ. Adapting Proposition 
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3 from [15], we obtain the following proposition (proof in [15]). 

Proposition 3.7. Let f, 9 be two 2D local mappings with L-neighbourhood, and let 

Ao = (f EB g)-l (1), and An = f-n(Ao). If pJS) (a) is defined under f, then, 

We demonstrate this procedure with an example. 

Proposition 3.8. 2D CA Rule 160 asymptotically emulates the identity rule. 

Proof. We start by determining the set Ao by considering the effect of the local 

mappings on basic blocks for both rules 160 and 204. 

bE T2 II 0 0 0 0 1 1 1 
00 o 1 1 0 1 1 00 1 0 1 1 

g160(b) 0 0 1 

g204(b) 0 0 1 

By considering the basic blocks on which Rules 160 and 204 differ, we conclude that 

the set Ao = {~ 0' ~ 1 , 5 1 , i o}· We use the data in Table 3.3 to apply Proposition 

3.7 and obtain 

d ( n+1 n) 3 2-n- 2 4-n- 1 
g160 ,g204 0 g160 =. - . 

Therefore, since the limit of this expression goes to 0, we conclude that Rule 160 

emulates identity asymptotically. 0 

Table 3.4 shows all known results of rules emulating shift or identity. We can now 

state our observation expressed at the beginning of this section using the concept of 

emulation: all rules included in Tables 3.1 and 3.2 emulate identity or shift either 

in a final number of steps or asymptotically. 

3.4 Example: Rule 130 (lD) 

In the next section 2, we will perform a full analysis of two-dimensional Rule 130 

with L-neighbourhood. For comparison, we now perform a full analysis on one

dimensional Rule 130. Some of the following results were conjectured in [15]. Using 

2 A version of this section and the subsequent section has been published. H. Fuks and A. 
Skelton. Response curves for cellular automata in one and two dimensions - an example of rigorous 
calculations. Journal of Natural Computing Research, 1:8599,2010. 



24 Chapter 3. Deterministic Cellular Automata 

II Rule f I I P(s)(l) " 
8 3.2 -:In .~ 0 
32 5.2 -:In-~ 0 
40 2 n ·1 0 
72 4 n-;,: 0 
128 2( -n~-3n-2)/2 _ 2( -n~-5n-6)/2 0 
132 2( -n~ -3n-4) /2 c::: 0.179 
136 2 n-:l 0 
140 2 -:In -~ 1/3 
160 3 · 2 n -:l_4 n ·1 0 

II Rule f I I P(s)(l) II 
130 2( -n~-3n-4)/2 c::: 0.179 
138 2 -:In-~ 1/3 
162 2 -:In -~ 1/3 

Table 3.4: Asymptotic Emulation 

the numbering system in (2.4), we know that the local mapping for Rule 130 is given 

by 
if (XOXIX2) = (001) or (111), 

otherwise. 
(3.11) 

In this section, both the local function f and the corresponding block evolution 

operator f will refer to one-dimensional rule 130, unless otherwise noted. We will 

now calculate the response curve for this rule. Since the only preimages of 1 under 

rule 130 are blocks 111 and 001, we can calculate the density of ones, from (3.5), as 

Pn (1) = L Po (a) = Po(a') + Po(a'). (3.12) 
a'Ef-n+1(OOl) a'Ef-n+ 1(111) 

So we must determine the elements of the sets f-n(l11) and f-n(oOl). The following 

two propositions describe these sets. 

Proposition 3.9. The set f-n(111) consists only of the block~. 
2n+3 

Proof. Exhaustively checking all 32 potential preimages of 111 one can show that 

the only length-5 string b such that f(b) = 111 is 11111. Since any block of l's 

consists of overlapping blocks 111, its preimage also must consist entirely of ones, 

and the proof by induction follows. D 
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Proposition 3.10. The set f-n(OOl) consists of all blocks of the form 

~101~ (ifi is odd) or ~ 00 1 ~ (if i is even), 
2n-2i 2i 2n-2i 2i 

where i E {O ... n} and * denotes an arbitrary value in S. 

Proof. By induction, if n = 1, then i E {O, I}, and our formula provides us with the 

following two types of pre images, **001 or 10111. One can exhaustively check all 32 

blocks oflength five to verify that these are the only blocks b such that f(b) = 001. 

Now, let us assume that we have the following n-step preimage: 

~001~ where i even and i E {2 ... n}. 
2n-2i 2i 

We find the preimages of this string, starting from the right and working toward 

the left. By considering all 16 blocks of length four, we can see that the only string 

that has image 11 under f is 1111, so we start with the following preimage (written 

above the string we are considering, with arrow indicating direction of proceeding): 

+--1111 

** **0011 111 

Continuing to the left, using the rule table of rule 130 we can construct the preimage 

up to the following point: 

* * 

+-- 101 1 1 

* * 0 0 1 1 

1 1 1 1 

111 

From here to the left, all the remaining entries in the preimage are arbitrary: 

* * * *10111 

* * * * 0 0 1 1 

We now have the following (n + 1 )-step preimage: 

1 1 1 1 

111 

~101~ 
2(n+l)-2(Hl) 2(Hl) 

where (i + 1) is odd and (i + 1) E {3 ... (n + I)}. 

To finish the proof, we need to perform similar analysis for two other cases as follows . 

• When i = 0, a similar argument is used to find all (n + 1 )-step preimages in 

which i = 0, 1. 
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bi E 133 II 000 I 001 010 I 011 I 100 101 I 110 I 111 

I 1 I 1 I 1 I 1 

Table 3.5: Number of Preimages of Basic Blocks of One-Dimensional Rule 130 

• When i E {I, ... n} and odd, another similar argument can be used to find all 

(n + 1 )-step preimages in which (i + 1) is even. 

We omit the details due to space constraints, but note that all possible (n + 1 )-step 

preimages are accounted for in the analysis, thus completing the induction step 0 

We may now proceed with enumerating the elements of f-n(OOl) to confirm the 

results in Table 3.3. 

Proposition 3.11. The number of blocks in the set ofn-step preimages of block 001 
4n+1 - 1 

is given by card[f-n(OOl)] = 3 . 

Proof. According to Proposition (3.10), for each value of i E {O ... n}, there are 

2n - 2i arbitrary values in the preimage, so that there are 22n- 2i of such preimages. 

Summing over i we obtain 

o 

Reasoning as in Proposition (3.9) leads to card[f-n(110)] = card[f-n(101)] = 1. 

It turns out that we now have enough information to find the cardinality of 

the preimage sets of each of the four remaining basic blocks by using consistency 

conditions in system (2.2). The results are summarized in Table 3.5. 

Now, to find an equation for our response curve, we can rewrite the 1D density 

equation in [16] to give 

Po(b) + Po(b) = Pn-l(111) + Pn-l(OOl) . (3.13) 
bEf-n +1(ll1) bEf-n +1 (OOl) 

We know the structure of the n-step preimage sets for Rule 130 in one dimension, 

thus we may compute desired probabilities in the above formula. We know from 

Proposition 3.9 that the preimage of 111 is complised entirely of ones, hence 

Pn(111) = PoC~) = p2n+3. (3.14) 
2n+3 
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From Proposition 3.10 we find, 

(1 _ p)p2i+2 

iE{O ... n},i is even iE{O ... n},i is odd 

rn 211 Ln
21 J 

= I: (1 - p)2p4k+l + I: (1 - p)p4k+4 
k=O k=O 

P (-p4r(n-l)/21+4 + p4r(n-l)/21+5 _ p4L(n+l)/2j+3 + p3 - P + 1) 
p3+ p2+ p +l 

(3.15) 

We now use equations (3.13),(3.14) and (3.15) to obtain the equation of the response 

curve: 

p (_p4r(n-2)/21+4 + p4r(n-2)/21+5 _ p4Ln/2J+3 + p3 - P + 1) 
P (1) - p2n+ 1 + :.-.......0--'--____ --'---".-_.."..-_--'--___ --'--_'---..-..:..-

n - p3+ p2+ p +l . 
(:3.16) 

By taking the limit as n --+ 00, we obtain the asymptotic response curve, 

{ 

p(p3 - P + 1) ·f < 1 
P(I) = p3 + p2 + P + 1 I P , 

1 ifp=l. 

(3.17) 

We performed computer simulations to illustrate the formula (3.17) for the the 

dependence of P(I) on the initial density p. We considered an initial configuration 

of 5000 cells, and varied the initial density from 0 to 100%, increasing it by a step 

size of 1%, iterating mle 130 until we reached a fixed density. Results were then 

averaged over 20 mns for each initial density. 

The results are presented in Figure 3.2. As we can see, the response curve calcu

lated above for infinite configurations agrees very well with simulations performed 

on a finite lattice. As a final remark in this section, let us note that for the special 

case of p = 1/2 we obtain 

P(S)(I) = ~ + ~4-n. 
n 6 3 (3.18) 

We can see that the convergence toward P(s)(I) = 1/6 is exponential with exponent 

-n and this result confirms the conjecture in [15]. 

We complete our analysis by using our cardinalities of preimage sequences to 

consider the asymptotic behaviour of Rule 130. 
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Figure 3.2: Plots of the response curve, i.e., dependence of Coo on p for one
dimensional rule 130. Circles correspond to computer simulations using a lattice 
of 5000 sites, as described in the text, while the continuous line represents theoreti
cal curve. 

Proposition 3.12. The one-dimensional version of Rule 130 asymptotically emu

lates Rule 170 (the right shift rule). 

Proof. Using the results obtained in Section 3.3.2 and considering the basic blocks 

on which Rules 130 and 170 differ, we conclude that the set Ao = {1D1,01l}. Using 

Table 3.5, we may use Proposition 3.7 to conclude that 

d( fn+1 f fn) _ card[f13o (101)] + card[f13o(Oll)] _ T 2n- 2 
130 , 170 0 130 - 22n+3 -, (3.19) 

which clearly goes to zero as n becomes large. We can therefore say that the one

dimensional version of Rule 130 asymptotically emulates the right shift Rule 170. 0 

3.5 Example: Rule 130 (2D) 

We now consider a similar analysis performed on Rule 130 with L-neighbourhood. 

We define the local mapping as 

if ( ~ z) = (8 d or n d , 
otherwise. 

(3.20) 

Since the only preimages of 1 are triangular blocks (8 1) and (II ), we need, similarly 

as in one dimension, to analyze structure of preimage sets g-n (8 1) and g-n ( II ). 
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Proposition 3.13. The set g-n( g I) consists of all blocks of the form 

* 

* 

* 
~ 

n-i 

1 

'-v--' 
i+l 

29 

where i E {O ... n} and for a3 ... aH2 we take arbitrary values. If i = 0, then 

(al,a2) = (0,0), while ifi > 0, al,a2 are determined by 

HI ( . ) 
1 + L . ~ 1 aj mod 2, 

j=2 J 
(3.21) 

HI ( . ) 
1 + L . ~ 1 aj+l mod2, 

j=2 J 
(3.22) 

Before we attempt the proof, we need to observe two facts. First of all, note that 

9(~ d = x+y+ 1 mod 2, 

and let us define h(x, y) = x + y + 1 mod 2. Secondly, consider the following 

procedure. We start with a binary sequence aI, a2, ... ak and replace it by a sequence 

of pairs h(al' a2), h(a2' a3), ... , h(ak-l , ak). This new sequence is obviously oflength 

k - 1. If we repeat this process k - 1 times, we will end up with just one number, 

to be denoted by q. The following lemma can be easily proved by induction. 

Lemma 3.1. q = 2k
-

1 -1 + t (~~ ;)ai mod 2. 
~=I 

Proof. When k = 2, one obviously has q( aI, a2) = h( aI, a2) = a1 + a2 + 1 mod 2, 

and 

22
-

1 
- 1 + t (i ~ 1) ai mod 2 = 1 + al + a2 mod 2, 

t=1 



30 Chapter 3. Deterministic Cellular Automata 

thus the lemma is indeed true for k = 2. Suppose now that it holds for a given k, 

and let us consider a binary sequence al, a2, ... , ak+l. We clearly have 

hence 

Q ~ 2'-1 - 1 + t, G::: Da, + 2'-1 - 1+ ~ G::: Do; + 1 mod 2 

~ 2' - 1 +a! + t, G::: no, +a,+! + t, G::: Do; mod 2. 

Using Pascal's identity, this becomes 

Q = 2k - 1 + al + ak + t (. ~) mod 2. 
i=2 ~ 1 

Using (~) = (~) = 1 we can incorporate al and ak+l into the sum, obtaining 

k+1 ( k ) 
Q = 2k - 1 + L i-I 

~=l 

mod 2, 

which is the desired formula for k + 1. Proof by induction is therefore complete. 

D 

Having this lemma, we can now proceed with the sketch of the proof of the 

proposition. 

Proof. Consider first the case of n = 1, when the only preimages we obtain are of 

the form 

* 
* 0 or (3.23) 

* 0 1 

where al = a3 and a2 = [1 + a3 mod 2] are given by eq. (3.21) and (3.22) for 

anya3 E {O, I}. One can check that these are indeed the only desired preimages 

by applying g to all blocks T3 and verifying that only the blocks of the above form 

produce 8 l· This means that the block 8 1 can appear in a configuration by two 

ways, by moving from the left one unit at a time, or by being created from a 

configuration shown on the right hand side of (3.23). 
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Consider a number of steps larger than one, denoted by n. A given block may 

appear in a certain place because it was created in another location, k units to the 

right, and then moved to the desired place from there in k steps, where k :::; n, or 

because it appeared in this place as a result of the second configuration of eq. (3.23). 

Now note that because of Lemma 1, block shown in eq. (3.13) subject to condi

tions (3.21) and (3.22) will in i iterations produce the block 

* 

* 
o 

* * 0 1. 

"--v---' 
n-i 

Then, after n - i iterations the block g 1 will move to the left one step at a time, so 

that in the end block g 1 will be produced as a result of applying operator g, n-times 

to block (3.13). Since i varies from 0 to n this means that indeed all possibilities of 

arriving from some place on the right (i = 1, ... n - 1) as well as being "created in 

place" (i = n) are covered. A very similar argument can be used in the following. D 

Proposition 3.14. The set, g-nn 1)' consists of all blocks in the set Uf=o(A i \ 

Bi) u C, where, for a fixed value of i, Ai and Bi are, respectively, the sets of all 

blocks of the form 

* 

* * 
bI 

b2 1 * 
b3 1 

* * bi+2 1 1, * * 1 1, 

"--v---' ~ '--v--" "-v--" 
n-i i+l n-i i+2 
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and C is the set whose only element is the block consisting entirely of ones, where 

i E {O ... n} and for b3 ... bH2 we take arbitrary values. Ifi = 0, then (bl , b2) = (1,1) 

and if i > 0, then bl, b2 are determined by 

HI ( . ) 
bi = L . ~ 1 bj mod 2, 

j=2 J 
(3.24) 

(3.25) 

We then determine the cardinality of the preimage set. 

Proposition 3.15. The number of n-step preimages of block 8 I is: 

n 
card[g-n (81 )] = 2(n

2
+5n)/2 L Ti(i+3)/2. 

i=O 

Proof. For a given value of i, we have (n + 2) + (n + 1) + ... + (i + 3) + i = 

(n(n + 5) - i(i + 5))/2 + i arbitrary values represented by *. Therefore, for each i, 
there are 2(n(n+5)-i(H5))/2+i = 2(n(n+5)-i(H3))/2 possible configurations. Summing 

over all values of i E {O . .. n} gives the desired result. 0 

Similar analysis can be performed for other blocks and we discover that 

card[g-n (i 1)] = card[g-n (i 0)], 

We now have enough information to obtain the number of preimages of each 

of the remaining basic blocks, since, similarly as in one dimensional case, we use 

consistency conditions in system (2.8). Results are summalized in Table 2, where 

numbers of preimages for all eight basic blocks are shown. 

Using Proposition 3.13 and (3.5) one can therefore compute Pn ( 81) as follows: 
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0 
2(n

2
+5n)/2 (8 - 3 t 2-i(H3)/2) - 4 . 2n 

0 0 2=0 
0 2(n2+5n)/2 ( t 2-i (H3)/2 ) 
0 1 2=0 
0 

2(n
2
+5n )/2 ( -4 + 4 t 2-i (H3)/2) + 2n 

1 0 2-0 

0 
2n 

1 1 
1 

2(n
2
+5n)/2 ( -4 + 4 i~ 2-i (H3)/2) + 2n 

0 0 
1 

2n 
0 1 
1 

2(n
2
+5n)/2 (4 - 3 i~ 2-i (H3)/2) 

1 0 
1 

2(n
2
+5n )/2 (4 - 3 t 2-i(H3)/2 ) 

1 1 2=0 

Table 3.6: Number of preimages of basic blocks for two-dimensional rule 130 

where aI, a2 are given by (3.21)-(3.22). Similarly, Proposition 3.14 and (3.5) yield 

n ( b

3

) (1 ) 1 _ ""' ""' ( bi ) b4 . Pn ( 11) - 0 0 Po b2 Po : Po : ". 
i=O b3 ... bi+2E{0,1} bi+2 ~ 

HI 

n (1 ) (1 ) -LPo : ... +Po :.'. , 
i=O? ~ 

2+2 n+2 

where b1,b2 are given by (3.24)-(3.25). Since Pn (1) = Pn- 1(i 1) + Pn-1(6 0), and 

Po (~ ... ) = pn(n+1)/2, 
1 ... 1 
~ 

n 
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Figure 3.3: Plots of the response curve, i.e., dependence of en on p for two
dimensional rule 130. Circles cOlTespond to computer simulations, while the contin
uous line represents theoretical curve for n = 12. 

we obtain 

n-l 

+L (3.27) 

n-l 
- L p(i+2)(i+3)/2 + p(n+1)(n+2)/2, 

i=O 

where, again, aI, a2, bl, and b2 are determined by eq. (3.21), (3.22), (3.24) and (3.25). 

The above is an exact equation of the response curve, although, unfortunately, it 

is not possible to calculate the double sums in a closed form. Nevertheless, for a 

given n, we can calculate and plot Pn (1) versus p, providing that n is not too large. 

This has been done for n = 12, as shown in Figure 3.3. Again, there is excellent 

agreement between the theoretical curve representing infinite lattice and computer 

simulations done on a finite lattice. It is also possible to compute Pn (1) for a special 

case of p = 1/2. In this case Po (~~) = 1/4 for any al, a2, hence 

n-l n-l 
pJs) (1) = 2 L ~T(i+1)(i+2)/2 - LT(i+2)(i+3)/2 + T(n+l)(n+2)/2, 

i=O i=O 

which simplifies to 
n-l 

pJs) (1) = ~ - ~ LTi(i+3)/ 2. 

i=O 
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The asymptotic density is then given by 

P(S)(l) = lim P(s\l) = ~ _ ~ ~Ti(i+3)/2, 
n-too n 2 4 L...J 

i=O 

where, again, it is not possible to compute the sum in a closed form. We can, 

however, approximate the infinite sum by taking the finite number of term and use 

the integral bounds for the remainder, 

100 00 100 

T x(x+3)/2 dx ::; l: T i(i+3)/2 ::; 2-x(x+3)/2 dx. 
k+1 i=k k 

The above integrals can be expressed in terms of the error function, hence for any 

positive integer k we obtain 

k-1 (;;; 1/8 00 k-1 (;;; 1/8 l: 2-i (i+3)/2 + y7r2 (1 - A) ::; l: T i(i+3)/2 ::; l: 2-i (i+3)/2 + Y7r~ (1 - A), 
i=O a i=O i=O 

where erf(x) = Jrr J~ e- t2 dt, A = erf(ak + ~a) and a = v2Jn2. The sum converges 

very fast and using the above inequalities for k = 5 we obtain 

0.1791839087 ... ::; P(s)(l)::; 0.1791839597 ... , 

that is, P(s)(l) with accuracy of seven digits after the decimal point. 

We once again complete our analysis by using our cardinalities of preimage se

quences to consider the asymptotic behaviour of two-dimensional Rule 130. 

Proposition 3.16. The two-dimensional version of Rule 130 asymptotically emu

lates Rule 170 (the right shift rule). 

Proof. Using the results obtained in Section 3.3.2 and considering the basic blocks 

on which Rules 130 and 170 differ, we conclude that the set Ao = {A 1 , ~ 1 }. Using 

the data in Table 3.5, we may use Proposition 3.7 and conclude that 

(3.28) 

which clearly goes to zero as n becomes large. Therefore, we can say that the one

dimensional version of Rule 130 asymptotically emulates the right shift rule. We also 

note that the rate of convergence is much faster than that of the one-dimensional 

case. 0 





I CHAPTER' 

Surjective Cellular Automata 

During our investigation into response sequences of two-dimensional cellular au

tomata with L-neighbourhood, we discovered that many rules have so-called bal

anced preimage sets - that is, all blocks of the same size and shape have the same 

number of preimages. This is a result of the Balance Theorem, originally published 

in [27] for rules with Moore neighbourhood. We present a detailed proof of this 

theorem for both L-neighbourhood and the von Neumann neighbourhood. 

In general, it is undecidable whether a given cellular automaton is surjective [23]. 

We wondered however, if there would be a way to find a comprehensive list of all 

surjective rules for a specific case of a "small" neighbourhood. In the case of rules 

with L-neighbourhood, we were able to find a list of all surjective rules. We used 

a computerized search to find rules which violate the balance condition and found 

that all remaining rules are those which are permutive and surjective 1. 

In the case of rules with von Neumann neighbourhood of radius 1, we were able 

to classify rules according to surjectivity for all but 4 of 270,754,432 minimal rules. 

These rules are interesting in that they seem to behave like surjective rules, but are 

not permutive with respect to any local site, nor do they fail the balance condition 

for any small sized block. Further study of these rules is clearly required. 

4.1 Definitions and Prior Results 

We first present the definition of a surjective cellular automaton in two dimensions. 

A global rule G is surjective if, for any s E g~2, there exists t E g~2 such that G(t) = 
s. There are many difficulties in proving properties regarding infinite configurations, 

so many papers ([1],[5],[20],[24],[27],[28]) have been written on measurable properties 

of cellular automata that imply surjectivity. 

If an element q E g exists such that g( g q) = q, then we call q a quiescent state. 

A configuration s E g~d will be said to be a finite configuration if all but finitely 

many entries are in the quiescent state. 

1 A version of this chapter (and portions of Chapter 3) has been accepted for publication. H. FukS 
and A. Skelton. Response Curves and Preimage Sequences of Two-Dimensional Cellular Automata. 
CA-CSC proc., 2011. 
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If a 2D CA does not have a quiescent state, there must exist some element 

q E Q, such that g( ~ q) = p f:. q. We define a local function g* : Ii -+ Ii (with 

corresponding global function G* : Q~2 -+ Q~2) that exchanges instances of states q 

and p, such that g*(q) = p, g*(p) = q, and g*(a) = a if a f:. p,a f:. q. We need the 

following lemma before proceeding. 

Lemma 4.1. F* 0 F is surjective iff F is surjective. 

Proof. (forward direction) If F* 0 F is surjective, then for any t E Q~2, there exists 

s E Q~2, such that (F* 0 F) (s) = t. Now consider configuration tp++q, derived from 

t such that all instances of p and q are exchanged. Clearly, the sets {t} = {tp++q} = 

Q~2. Now we consider 

(F* 0 F)(s) = t 

(F* 0 F* 0 F)(s) = F*(t) 

F (s) = tp++q. 

Therefore, for any tp++q E Q~2, there exists s E Q~2 such that F(s) = tp++q, so F is 

surjective. A similar argument proves the other direction. 0 

Therefore, if our CA does not have a quiescent state, we continue the proof with 

the composition function F* 0 F. We will also require the following classical result 

in our next section. 

Theorem 4.1. [28J A global function F is surjective iff F is injective when restricted 

to finite configurations. 0 

4.2 Surjectivity with L-neighbourhood 

We now present our version of the Balance Theorem, tailored to L-shaped neigh

borhoods. Proof of this theorem for Moore neighbourhoods has been originally 

published in [27] and we adapt a portion of the original methodology and use some 

ideas borrowed from [20, 24, 30]. 

Theorem 4.2. A 2D CA with L-neighbourhood is surjective iff for all n 2:: 1 and 

all bE Tn, 
( 4.1) 

Proof. We will first prove that the balance condition (4.1) is sufficient for surjectivity. 

Assume that for all n 2:: 1 and all bE Tn, card[f-l(b)] = Nn+1. Consider any infinite 
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configuration, t E g7l.2. Define for all n 2: 1, the set, 

Our assumption guarantees that all Sn are non-empty for n 2: 1. We also know that 

Sn+l ~ Sn· We show that Sn is a clop en set, by considering the complement of Sn: 

We show that Sn is open. Let s E Sn C {0,1}7l.
2 

be an arbitrary configuration. 

For all E > 0, we choose k E :£:, where k > n, such that k~l < E. We may now pick 

an infinite configuration s' E {O, 1}7l.2 such that d(s,s') = k*~l (2.2), where k* > k. 

Since s E Sn, we know that s' E Sn, and 

( ') 1 1 
ds,s =k*+1<k+1<E. 

Thus, Sn is open, and similar analysis shows that Sn must also be open. We conclude 

that Sn is a clop en set. By the Nested Set Theorem [26], there must exist an s E g7l.2, 

such that F(s) = t, which completes the proof of sufficiency. 

In order to show that the balance condition is necessary for surjectivity, we will 

use induction with respect to n. To make the proof easier to follow, we consider the 

base case n = 1 in Lemma 4.2, while the inductive step is subject to Lemma 4.3. 

Lemma 4.2. If a CA with L-neighbourhood is surjective then V bo E g, card[f-l(bo)] = 

N2. 

Proof. Assume that for some symbol bo E g, card[f-l(bo)] 2: N 2 + 1. Given an 

integer k 2: 4 (to be chosen later), we construct a block b, in which there are k2 

occurrences of bo and all other entries are arbitrary (see Figure 4.1a). We denote 

the set of all possible constructions of block b by 13*, and note that card[13*] = 
N2(k2-k-(k-l)) = N2k2_4k+2. 

We now consider the preimage of the set 13* (see Figure 4.1b). We know that 

Let us now define the border of a block, similarly as done in [27]. An element 

of a block is considered part of the border if there exists an L-neighbourhood that 

contains both that element and an element which does not belong to the block. This 

is illustrated in Figure 4.1c, where the border sites are shown as shaded. If we now 

consider blocks which have the shape of preimages of b (as shown in Figure 4.1 b), 
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then there are N 2k+2k+2(k-l)+2(k-2)+1 = N8k-5 possible borders for blocks of this 

shape. 

If the number of preimage blocks, equal to (N2 + 1 )k2 , is larger than the number of 

possible borders N8k-5 (guaranteed for k ~ 4), then there must exist some preimage 

blocks which share a common border. In fact, there will be a border which is shared 

by at least r (~j;1{ 1 preimage blocks. 

We will now demonstrate that for sufficiently large k the above expression exceeds 

the number of blocks in 13*, that is, 

(4.2) 

By taking a natural logarithm of both sides and solving the resulting quadratic 

inequality for k, one finds that the inequality (4.2) is satisfied if if we choose 

k r2lnN + JlnN[lOlnN - 31n(N2 + 1)]1 
> In(N2 + 1) - 2lnN . 

(4.3) 

It can be verified that the right hand side of (4.3) is greater than 4 for all N ~ 2. 

Therefore, if we choose k satisfying (4.3), then there exists some block b, con

structed as shown in Figure 4.1a, which has at least two preimages sharing a common 

border. Let two of these preimages be Cl and C2, and let their image be b. 

Let us define s{b} to be a configuration which is constructed by placing the 

block b on the plane such that its right-angle comer is at the origin, and making 

all sites not belonging to b to be in the quiescent state. Since Cl i= C2, we also have 

s{cI} i= S{C2}' and, moreover, F (S{Cl}) = F (S{C2})· Therefore, when restricted to 

finite configurations, F is not injective, thus by Theorem 4.1, F is not surjective, 

which is a contradiction. Therefore, for all bo E g, card[f-l(bo)] = N 2
. 0 

Lemma 4.3. If a 2D CA with L-neighbourhood is surjective and if for some n > 0 

we have card[f-l(b)] = Nn+l for all bE Tn, then for all b' E Tn+l, card[f-l(b')] = 

Nn+2. 

Proof. Assume that F is surjective. For any n ~ 1, if b E Tn, there must exist 

t E gZ2 such that b is contained in t. Since F is surjective, the exists S E gZ2, 

such that G(s) = t and thus f-l(b) is contained in s. Therefore, for all b E Tn, 
card[f-l(b)] > 0, and we define 

mn = min (card [f-l(b)] : b E Tn) > o. ( 4.4) 
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(a) Constructed block bE [3* (b) Preimages of the set [3* 

(c) Preimage common border required 

Figure 4.1: Constructions used in n = 1 case of the proof of Lemma 4.2 
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(c) 

Figure 4.2: Constructions used in the proof of Lemma 4.3, where dashed lines denote 
preimages of shaded blocks. (a) An element of Tn. (b) Element of the set {a f-l(b)}. 
(c) Element of the set {f-l(cb)}. 

Suppose now that b is a triangular block in Tn, as shown in Figure 4.2a. We 

use the notation (cb) to refer to the augmentation of block b E Tn with column c of 

height (n + 1), as shown in Figure 4.2b. Comparing Figures 4.2a and 4.2b we see 

that 

L card [a f-l(b)] = L card[f-l(cb)], (4.5) 
a c 

where the sum on the left hand side runs over all possible columns of height n + 2, 

and the sum on the right hand side over all possible columns of height n + 1. By 

the hypothesis of our Lemma, 

a 

Using (4.4), we obtain 

c 

# of choices for a 

N n+1 
'-v-' 

card[f-l(b)] 

N n+1 . m n+l = m n+l· 
# of choices for c 

'-v-' 
from (4.4) 

(4.6) 

(4.7) 

From equations (4.5), (4.6) and (4.7) we can infer that mn+1 :::; Nn+2. Since 
n 2±3n±2 

card [Tn+l] = N 2 and the number of all possible preimages of elements of 
n 2 ± 5n± 6 

Tn+l is equal to card[Tn+2] = N 2 , we know that the average number of preim-

1 f " . N(n
2

±5n±6)/2 Nn+2 S' h .. b f ages per e ement 0 In+l IS N(n2 ±3n±2)/2 = . mce t e mInImUm num er 0 

preimages is equal to the average number of preimages, we conclude that for all 

b' E Tn+l, card[f-l(b') : b' E Tn+1] = Nn+2 . DCombining Lemmas 4.2 and 4.3, 

we can carry out the induction over n, thus completing the proof that for all n ~ 1 
and all bE Tn, card[f-l(b)] = Nn+l. 0 
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4.2.1 Non-surjective binary 2D CA 

In the remainder of this section we consider only the case when 9 = {O, I}. There 

are 256 possible binary CA with L-shaped neighbourhood. We checked each rule for 

a possible violation of the balance condition (4.1) by finding preimages of all blocks 

in Tn, for consecutively increasing n values from n = 1. If a block of size n is found 

which violates the balance condition, then the rule is clearly non surjective and can 

be eliminated from the list. We performed this procedure for n values from 1 to 6, 

and identified 217 rules which are non surjective. For these rules we found not only 

blocks violating balance conditions, but also blocks which have no preimages at all, 

that is, Garden of Eden blocks. 

We say that a rule f has a Garden of Eden at level n, if n is the minimal number 

such that there exists a block b E Tn for which card[f-l(b)] = 0. We now list all 217 

aforementioned non-surjective rules ordered by the level of their Garden of Eden 

using their Wolfram codes (2.6) 

Levell: 0, 255 

Level 2: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 32, 34, 40, 42, 48, 50, 64, 68, 72, 76, 

8~ 8~ 96, 112, 159, 171, 175, 17~ 183, 18~ 191, 205, 207, 213, 215, 221, 223, 235, 

237, 239, 241, 243, 245, 247, 249, 251, 253 

Level 3: 1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 24, 27, 29, 31, 33, 35, 36, 39, 47, 49, 53, 

55, 59, 63, 65, 66, 69, 71, 79, 81, 83, 87, 93, 95, 111, 115, 117, 119, 123, 125, 126, 

127, 128, 129, 130, 132, 136, 138, 140, 143, 144, 160, 162, 168, 172, 174, 176, 184, 

18~ 189, 190, 192, 196, 200, 202, 206, 208, 21~ 219, 220, 222, 224, 226, 228, 231, 

234, 236, 238, 242, 246, 248, 250, 252, 254 

Level 4: 23, 26, 28, 38, 41, 43, 44, 46, 52, 56, 58, 62, 70, 73, 74, 77, 78, 82, 88, 

92, 94, 97, 98, 100, 107, 109, 110, 113, 114, 116, 118, 121, 122, 124, 131, 133, 134, 

137, 139, 141, 142, 145, 146, 148, 155, 157, 158, 161, 163, 167, 173, 177, 178, 181, 

182, 185, 193, 197, 199, 203, 209, 211, 212, 214, 217, 227, 229, 232 

Level 5: 22, 25, 37, 61, 67, 91, 103, 104, 151, 152, 164, 188, 194, 218, 230, 233 

We found that all the remaining rules, i.e., those not listed above, share a com

mon property known as permutivity, to be discussed in the next subsection. 

4.2.2 Permutivity and surjectivity 

Sites belonging to the L-shaped neighbourhood (~g:~ al,o) will be identified by their 

indices as (0,1), (0,0), and (1,0). Similarly as done in [20], a local function f will 

be called permutive with respect to the (0,1) site if for any choice of y,z E 9 the 
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function x -+ f( ~ z) is one-to-one. Permutivity with respect to the central site (0,0) 

or the right neighbour (0,1) is defined similarly. All rules which were not eliminated 

by the procedure described in the previous section turned out to be permutive with 

respect to one of these three sites. 

In one dimension, it is known that rules permutive with respect to one of the 

variables located at the left or the right end of the neighbourhood are surjective, 

as proved in [20] . Recently, this results has been generalized to two dimensions 

by Dennunzio and Formenti. They demonstrated in [5] that any rule with Moore 

neighbourhood (of any radius) which is permutive with respect of one of the corner 

sites is also surjective. 

In what follows we show how one can prove a similar result specifically for the 

L-shaped neighbourhood. 

Proposition 4.1. A binary 2D CA with L-shaped neighbourhood is surjective if its 

local mapping is permutive with respect to one of the three neighbourhood sites. 

Proof. The proof will assume that the rule is permutive with respect to the central 

site (0,0). Proofs for permutivity with respect to (0,1) or (1,0) are similar. 

Let us first note that if a rule is permutive with respect to (0,0), then there must 

exist numbers xo, ... ,X3 E {O, I} such that the local function takes the form 

t(~"')~{: 
o 
Xl 1, 

1 
X2 0' 

(4.8) 
o 

Xl 1, 

where Xi denotes 1 - Xi· Assuming the above form of f, let us consider an arbitrary 

block b E Tn. We will now show how to construct all preimages of b under f. First 

of all, we claim that blocks c E Tn+1 of the form 

Cl,n 

Cl,l Cn,l Qn+l 

are the only preimages of b, where each Qi (1 ~ i ~ n + 1) is an arbitrary value in 

{O, I}, and values of Ci ,j E {O, I} can be determined by an iterative algorithm. 

To see that this is indeed true, we now present an algorithm with which we can 

construct all possible preimages. It consists of the following steps: 
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1. Starting from bl,n, we wish to find all neighbourhoods {~~ a2 } such that 

The structure of the local mapping gives us four possible such neighbourhoods 

{~~ a2} = {C~~n a1 }, where 

and the values of al and a2 are arbitrarily selected. 

Now, for all values of i E {2, ... ,n}, we repeat step 2 as follows. 

2. Since bi,n-i+l is given and ai has been freely chosen in the previous iteration, 

we wish to know all neighbourhoods {~~ a2 }, such that 

The structure of the local mapping gives us two possible neighbourhoods 

{~~ a2} = {Ci ,n~H1 aHl}, where 

and ai+l is another arbitrarily selected value. 

After the above step is repeated the required number of times, we will have 

determined all possible configurations for the top two diagonals. The top 

diagonal, indeed, will consist of n + 1 arbitrary values aI, ... , an+!. 

We now construct the rest of the preimage and show that all other values are 

uniquely determined based on each choice of the a values in the top diagonal. 

For all values of j E {I, ... ,n-i} and then for all i E {I, ... ,n- j}, we repeat 

step 3 as follows. 

3. Since bi,n-i-j+l is fixed, we wish to know all neighbourhoods {~~ a2}' such 

that 

gl ( ~~ a2 ) = bi,n-i-j+l. 

Since Ci,n-i-j+2 and Ci+l,n-i-j+l were fixed in a previous iteration, the struc

ture of the local mapping tells us that our neighbourhood must have the form 

{ 
ao } _ {Ci ,n-i-j +2 } h 
a1 a2 - Ci ,n-i-j+l Ci+1,n-i-j+1 ,were 
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and if = 2Ci,n-i-j+2 + Ci+1 ,n-i-j+l . Note that no new arbitrary parameter 

appears here, thus the neighbourhood is determined uniquely. 

The only arbitrary values in the preimage are the (n + 1) values of (Xi on the 

main diagonal. Therefore, we know that there are exactly 2n+1 preimages for a given 

b E Tn. We may now apply Theorem 4.2 and conclude that any CA whose local 

mapping is of the form of eq. (4.8) is surjective. D 

We tested for permutivity all rules for which we were not able to find the Garden 

of Eden, and they all turned out to be permutive, and therefore also surjective. These 

are rules with code numbers 15, 30, 45, 51, 54, 57, 60, 75, 85, 86, 89, 90, 99, 101, 

102, 105, 106, 108, 120, 135, 147, 149, 150, 153, 154, 156, 165, 166, 169, 170, 180, 

195, 198, 201, 204, 210, 225, and 240. Since they belong to equivalency classes, we 

choose only the minimal rule (2.7) and obtain our result. 

Proposition 4.2. Among two-dimensional binary rules with L-shaped neighbour

hood, only the following minimal rules are surjective: 

15,30,45,51,54,57,60,90,105,106,108,150,154,156,170 and 204. 

We remark in passing that this list includes code numbers of all elementary rules 

which are surjective in one dimension. Code numbers representing rules which are 

surjective in 2D but not in 1D include only 54, 57, 108, 156, and all these rules are 

permutive with respect to (0,0). 

An important consequence of the Balance Theorem is in relation to the response 

curves of surjective rules. All blocks have the same number of preimages as any 

other block of the same size. We can therefore conclude that, in the special case 

p = 1/2, all blocks are equally likely to occur. Therefore, the response curve of 

such rules will always pass through the point (1/2,1/2). This is confirmed in the 

experimental curves in Appendix A. We note, however, that for other values of p, 

the asymptotic density is not necessarily equal to 1/2. 

4.3 Surjectivity with von Neumann neighbourhood 

We now prove a similar result for two-dimensional cellular automata with von Neu

mann neighbourhood. The balance theorem in von Neumann neighbourhood can be 

stated as follows. 

Theorem 4.3. A 2D CA with von Neumann neighbourhood, G, is surjective iff for 

all n ~ 1 and for all von Neumann blocks d of size n, card[g-l(d)] = N 4n. 
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2n-1 

r-----I 

Figure 4.3: An element of Dn 

Proof. Assume that for all n ~ 1 and all d E Dn , card[g-l(d)] = N 4n . Consider any 

infinite configuration, t E g'£,2. Define for all n ~ 1, the set, 

such that b E Dn and b' E {g-l(b)} C Dn+l. Our assumption guarantees that all 

Sn are non-empty for n ~ 1 and we also know that Sn+l ~ Sn. We now show that 

Sn is a clopen set. We consider the complement of Sn as follows: 

We show that Sn is open. Let s E Sn C {0,1}'£,2 be an arbitrary configuration. 

For all f > 0, we choose k E ~, where k > n, such that k!l < f. We may now pick 

an infinite configuration s' E {a, 1}'£,2 such that d(s,s') = k*~l' where k* > k. Since 

s E Sn, we know that s' E Sn, and 

( ') 1 1 ds,s =-k--<-k-<f. 
* + 1 + 1 

Therefore, Sn is open. Similar analysis shows that Sn must also be open. Therefore, 

we conclude that Sn is a clop en set. We now know that, by the Nested Set Theorem 

[26], there must exist an s E g'£,2, such that G(s) = t, which completes the proof. 

Now, assume that G is surjective. For any n ~ 1, if d E Dn , there must exist 

t E g'£,2 such that d is contained in t. Since G is surjective, the exists s E g'£,2, 
such that G(s) = t and thus g-l(d) is contained in s. Therefore, for all d E Dn, 

card[g-l(d)] > 0. So we set 

mn = min (card [g-l(d)] : d E 'Dn) > 0. (4.9) 

We now use an induction proof, presented in the following two lemmas. 
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Lemma 4.4. If a 2D CA with von neumann neighbourhood is surjective then for 

any do E g, card[g-l(do)] = N 4 . 

Proof. Assume that for some do E g, card[g-l(do)] 2:: N4 + 1. Now for some k 2:: 2 

(to be chosen later), we construct a block a, in which there are k2 occurences of do 

and all other entries are arbitrary (see Figure 4.4a). We denote as A*, the set of all 
possible constructions of block a, and note that card[A*] = N4(k-l)2 = N4k

2
-8kH. 

We now consider the preimage of the set A* (see Figure 4.4b). We know that 

k 2 4 k 2 
card[g-l(a) : a E A*] = (card[g-l(do)]) 2:: (N + 1) . 

There are N 8k+8(k-2)H = N 16k-12 possible borders (shaded in Figure 4.4b) for the 

set of preimages of A*. An element is considered part of the border if there exists 

an von Neumann neighbourhood that contains both that element and an element in 

the quiescent state. There must exist a specific border for which 

(N4 + 1)k2 
card[g-l(a) : a E A*, sharing specific border] 2:: N16k-12 

We now must find a specific value of k such that 

(4.10) 

After rearranging and solving the resulting quadratic inequality for k, we discover 

that if we choose 

k [41nN + 2v21nN[61nN -In(N2 + 1)]1 
» In(N2 + 1) - 4lnN ' 

(4.11) 

(it can be verified that k 2:: 2 for all N 2:: 2), then 

card[g-l(a) : a E A*, sharing specific boder] 2:: card[A*] + 1. 

Therefore, there are at least two distinct preimages, which share a common border, 

that map to the same image. Let two of these preimages be Cl and C2, let their image 

be dl, and let S E g7l.2 be comprised entirely of the quiescent state. We now create 

finite configurations S[Clj, S[C2j, S[dt] , such that s[ct] i= S[C2j, and G(S[Clj) = G(S[C2j) = 
S[dlj. Therefore, when restricted to finite configurations, G is not injective. By 

Theorem 4.1, G is not surjective, which is a contradiction. Therefore, for all do E g, 
card[g-l(do}] = N 4 . 0 
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(a) Constructed block bE E* 
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(b) Preimages of the set E* 

( c) Preimage common border required 

Figure 4.4: Constructions used in n = 1 case of the proof of Lemma 4.4 
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Lemma 4.5. If a 2D CA with von Neumann neighbourhood is surjective and for 

all d E 1Jn, card[g-l(d)] = N 4n (for some n ~ 1), then for all d' E 1Jn+l, 

card[g-l(d')] = N 4nH. 

Proof. We construct in Figures 4.5a,b, blocks in 1Jn+2 for which we may use a double 

counting argument. We use the notation (cd) to refer to the augmentation of block 

d E 1Jn with diamond border c of height (2n + 1) as in Figure 4.5a. We know that 

a c 

By our induction assumption we know that 

a # of choices for a 

e =N8n+4
. 

card[g-l(d)] 

From equation 4.9, we know that 

N4n . mn+l = mn+1 · 
c # of choices for c 

-....,.-
from (4.9) 

(4.12) 

(4.13) 

(4.14) 

From equations 4.12, 4.13 and 4.14, we can conclude that mn+1 :s; N 4nH. Since 
card [1Jn+ 1] = N2n2+2n+1, and card[g-l (d) : d E 1Jn+1] = N 2n2+6n+5, we know 

that the average number of preimages per element of 1Jn+l is N 4nH. Since the 

minimum number of preimages must be less than the average number of preimages, 

we conclude that for all d' E 1Jn+l, card[g-l(d') : d' E 1Jn+1] = N 4nH . 0 

Combining the results in Lemmas 4.4 and 4.5, we can conclude that for all n ~ 1 

and all dE 1Jn , card[g-l(d)] = N 4n . 0 

4.3.1 Surjective binary 2D CA 

We attempted to determined the list of all surjective rules for the case of 9 
{O, I}. From the 225 

= 4,294,967,296 possible binary CA rules with von Neumann 

neighbourhood, we eliminated all non-surjective ones by computerized search for 

violation of the balance condition of Theorem 4.3. This left 260766 candidates 

for surjectivity, and among those, 260668 (;::::99.99%) are permutive with respect to 

(0,1), (0,-1), (1 ,0) or (-1,0). 

Proposition 4.3. A 2D CA with von Neumann neighbourhood is surjective if its 

local mapping is permutive with respect to (0, 1), (0, -1), (1,0) or (-1,0). 
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Figure 4.5: Constructions used in the induction step of the proof of Lemma 4.5, 
where dashed lines again denote preimages of shaded blocks. Figure 4.5a shows the 
set {a g-l(d)}, and Figure 4.5b shows the set {g-l(cd)} . 

Proof. We will present an outline of the proof assuming permutivity with respect to 

(0, -1). I this case, the local function has the form 

if (a2 ~~ a4 ) = {* ~ *} 15 
a5 Xi i=O 

(4.15) 

where Xi Egis determined for each of the 16 choices of the four arbitrary values 

denoted by *. Now, consider a block d E 'Dn 

dO,(n-1) 

d-(n-1),O do,o d(n-l),O· 

dO,-(n-l) 

We will show how to construct the set of all blocks c E 'Dn+1, such that g-l(d) = c. 

1. Since we know value of dO,(n-1) , the symmetry of the local mapping allows us 

to conclude that the top of c is of the following form: 

* 
* * * . 

CO,(n-2) 
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If n = 1, we are finished, so let's assume n ?: 2 and proceed. After each 

step, we will select one particular value for each arbitrary entry, and denote 

this fixed choice as~. We note, however, that in order to obtain the set of all 

possible preimages, every subsequent step should be repeated for each possible 

choice of the arbitrary value. 

2. Since we know the value of dO,(n-2), we know that top part of the preimage 

must be 

* Co,(n-2) * 
Co ,(n-3) 

3. Since we know the value of d±1,(n-2), we may determine more entries of the 

preimage as follows 

~ 

~ ~ ~ 

* ~ CO,(n-2) ~ * 
Cl,(n-3) Co,(n-3) Cl,(n-3) 

Now, if n = 2, we proceed to step 5 to complete the preimages. If n ?: 3, we 

repeat step 4 for each value of j from (n - 3) to O. 

4. We know all values di,j, where Iii ~ (n - j), and all values Ci',j-b where 

WI ~ (n - (j - 1)), which have been determined in a previous iteration. By 

continuing the same process as in steps 2 and 3 (i.e., stepping down one place 

in the middle and then working horizontally toward the left and right edges), 

we can determine the values of row j - 1 in the preimage as follows 

(a) if j ?: 1, then we obtain 

:15. :15. C(n-j-2),j . . . CO ,j ... C(n-j-2),j :15. :15. 
* * C-(n-j-l) ,j-l C-(n-j-2) ,j-l .. . CO,j-l ... C(n-j-2),j-l C(n-j-l) ,j-l * * 

(b) if j = 0, then we obtain 

:15. :15. C(n-j-2) ,j ... CO,j ... C(n_j_2),j :15. :15. 
C-(n-j-l) ,j-l C-(n-j-2) ,j-l ... CO ,j -l ... C(n-j-2) ,j-l C(n-j-l) ,j-l 

We note that, in this case, since the next row down is shorter in length, 

we did not introduce any arbitrary elements in the row j = -1. 
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5. We now complete the lower half of the preimage. We proceed in the same 

manner as before, by traveling down one place in the centre and then working 

horizontally to the left and right edges. We note that now, however, since 

the rows are becoming shorter as we progress (as in step 4b), all remaining 

elements of the preimage will be uniquely determined. 

We may now count the number of possible preimages by counting the number of 

arbitrary sites in our preimage block c. For each value of j, such that ° ::; j ::; (n-2), 

there are four arbitrary values in row j. By adding the four arbitrary values in the 

top two rows, we get, for all n ;::: 1, card [gl -1 (a) 1 = 24( n-1)+4 = 24n. Therefore, by 

Theorem 4.3, any CA whose local mapping is of the form described in (4.15) must 

be surjective. D 

By the virtue of Proposition 4.3, all 260668 aforementioned permutive rules are 

thus surjective. Another 34 are equivalent to L-shaped rules permutive with respect 

to (0,0), and therefore surjective too. This leaves 64 unclassified rules. These, how

ever, are not all truly different, as many of them are related to each other by a 

symmetry transformation (subsection 2.2.2). These tranformations split the set of 

64 rules mentioned above into 4 equivalence classes, whose four "minimal" repre

sentatives have code numbers 381926505, 636065370, 768833670, 1019451029. We 

performed some heuristic surjectivity tests on these four rules, and we are strongly 

convinced that they are surjective. However, since they are not permutive with 

respect to any site, we were not able to prove their surjectivity rigorously. 
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I a-Asynchronous Cellular Automata 

Any deterministic cellular automata model assumes that the local function will 

always be applied to every site at every time step. This is not, however, how 

many physical systems behave. Probabilistic and asynchronous cellular automata 

assume that some sites will be updated and some will remain constant. Probabilistic 

CA were originally applied to Ising spin models [6], but have been used in many 

applications, including disease spread models [2, 3]. 

There are many ways to apply an update rule. In some cases, a single site is 

chosen to be updated, while all others remain constant [12]. This fully asynchronous 

update scheme is applied to a lattice with periodic boundary conditions. A variety 

of other update methods are described in [4]. We will consider an update scheme 

in which each block may be independently updated with some probability a at any 

given time step. This technique allows us to consider a smooth transition from fully 

synchronous behaviour when a = 1 to fully asynchronous behaviour as a -+ O. 

In [10], the authors considered the same class of probabilistic rules, defined on 

a periodic lattice of length n = 100. They present experimental response curves 

from a specific initial lattice. They describe the sensitivity to asynchronicity for 

each rule - that is, the extent to which the dynamics of the rule are dependent on 

the level of asynhronicity. Of our three examples, they present experimental curves 

for Rule 200A (which they denote E), and Rule 206A (denoted B), which is in the 

same equivalency class as Rule 140A. 

We approach this problem using similar techniques as in Chapter 3. We consider 

sets of preimages and describe their structure to determine the density of ones after 

an arbitrary number of iterations. We provide an in depth analysis of 3 rules, those 

which differ by only a single basic block block output from the identity rule. We 

also apply the Local Structure Theory to these rules and note that the Level 3 Local 

Structure equations provides an excellent approximation to the true dynamics of the 

rule. 
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5.1 Definitions 

We define our probabilistic cellular automata in terms of a related deterministic 

cellular automata, using a random variable and transition probabilities. 

If we denote by Si(t) the value of site i at time t, then we may write the value 

of site i at the next time step as a random variable X such that 

If f is a local mapping of a 1D deterministic CA as defined in Section 2.1, then the 

related 1D asychronous CA is defined as the value of this random variable, so that 

with probability a 
, (5.1) 

with probability 1 - a 

for each block Si-l(t)Si(t)Si+l(t) E 133. We define a i-step transition probability, 

(5.2) 

as the conditional probability that a site Si(t) with nearest neighbours Si-l(t), Si(t), 

and Si+l(t) changes its state to Si(t + 1) in a single time step. 

We will refer to this asynchronous CA as Rule WA, where W is the Wolfram 

number of f as defined in (2.4). 

We now define a i-step block transition probability w so that, for any b = 

bob1 ... brbr+l E 13r+2 and any c = CIC2 ... Cr-lCr E 13r, 

r 

w(c/b) = IT W(Ci/bi-lbibi+r). (5.3) 
i=l 

We also define a n-step block transition probability w recursively, so that, when n 2: 2 

and for any block b E 13r+2n and any block c E 13r, 

wn(c/b) = L w(b'/b)wn-1(c/b'), (5.4) 
b'EBr +2n-2 

which may be written explicitly as 

wn(c/b) = L W(C/b2) (IT W(bi/bi+r)) W(bn-l/b). (5.5) 
bn-l EBr +2(n-l) t=l 
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5.2 Response Surface 

We wish now to derive a formula for the probability of occurrence of block b E Br 

after application of the I-step block operator. We must consider the possibility that 

block b was created from any of the 2r+2 blocks in Br+2. We assume that the elements 

of these preimage blocks were chosen independently with Bernoulli measure. Since 

this measure is translationally invariant, we can write the probability of occurrence 

of block b after application of the I-step block operator as 

H(b) = L Po(a)w(bla). (5.6) 
aEBr+2 

Similarly, we can also write the probability of occurrence of block b after an iteration 

of the n-step block operator as 

Pn(b) = L Po(a)wn(bla). (5.7) 
aEBr+2n 

where the transition probability is defined in (5.4) or (5.5). 

Since many of these transition probabilities will be zero, we define, for any block 

bE 7,., the n-step preimage set f-n(b), to be the set of blocks a E 7,.+2n such that 

wn(bla) > 0. That is, the set of blocks that can be mapped to b under the n-step 

block evolution operator with some non-zero probability. Then we can write (5.7) 

as 

Pn(b) = L Po(a)wn(bla). (5.8) 
aEf-n (b) 

We note that our initial probability depends on some parameter p E [0,1], and 

our transition probability depends on some parameter a E [0,1]. Therefore, we may 

consider (5.8) to be a function from [0,1]2 -+ [0, 1]. We denote such a relation to be 

a response surface. When we consider the special case of p = 1/2, (5.8) is a function 

from [0,1] -+ [0,1]. We denote such a relation to be a symmetric response curve and 

use the notation P~s)(b). We also note that taking the limit of (5.8) as n -+ 00 (if 

such a limit exists) provides us with a formula for the asymptotic density of ones, 

P(b), that is, the probability of block b after a large number of iterations. 

5.2.1 Theoretical Response Surfaces 

We now consider the class of a-asynchronous rules in which w(llb) = 0,1 for all 

but one basic block. There are eight such rules, but due to symmetry, only 3 are 
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minimal. For these 3 examples, we now attempt to find explicit formulae for the 

response curves of both a single cell in state 1 and response curves for each of the 

eight basic blocks. In the first two cases, we were able to completely solve explicitly 

for all response curves. In the third case, however, we were unable to write the 

formulae for the transition probabilities in a closed form. We start with the rule 

with the simplest preimage set structure, Rule 200A. 

Example: Rule 200A 

Consider an a-asynchronous rule defined as 

w(llb) = {~ 
I-a 

Vb E {OOO, 001,100, 101} 

Vb E {011, 110, Ill} 

Vb E {01O} 

(5.9) 

Note that if a = 1, then this rule is equivalent to deterministic Rule 200 (2.4). We 

will then refer to the asynchronous rule defined in (5.9) as Rule 200A. For ease of 

notation and future calculations, we will let !3 = 1 - a. 

We wish to find a response surface for Rule 200A and to apply (5.8), we begin 

by finding the set of all potential preimages blocks and their respective transition 

probabilities. 

Proposition 5.1. The set f-n(l) consists of all blocks of the form 

{~1~}. 
n n 

Proof. From (5.9), we can see that an element in state 0 will always remain in state 

0, so any block in the complement of our conjectured set will never be transformed 

to a single 1 under n iterations of Rule 200A. Similarly, a block in our set could 

transform to a single 1, with some non-zero probability. 0 

We now define the following subset of f-n (I), En = {~ 010 ~}. 
n-l n-l 

Proposition 5.2. For any block b E {f-n(l) \ En}, we have wn(llb) = 1. 

Proof. In the set {f-n(l) \ En}, we will always have a centre component block either 

011,110 or 111. From (5.9), we can see that these blocks will always be preserved 

under application of Rule 200A with probability 1. 0 
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Proposition 5.3. For any block b E Bn, we have wn(llb) = j3n. 

Proof. In each iteration, the Os in the centre block will be preserved with probability 

1, so we need only consider the transition 010 --7 1, which occurs in each iteration 

of Rule 200A with probability 13. 0 

We may now use (5.8) and considering the sets and transition probabilities de

scribed in Propositions 5.2 and 5.3, we conclude that 

Pil,j 

Pn(1) = L Po(b*)wn(llb*) + L Po(b*)wn(llb*) 
b*Ef-n(l)\Bn b*EBn 

= 1 . (2p2(1 _ p) + p3) + j3n . p(l _ p)2 

= p2(2 _ p) + j3np(l- p)2. 

t! :5\l 

(I.H 

0.40 

"1,~~~~·1')W. 

OJ 5 

0.30 

I x 1l1llorerical Result;;; • f! E.'«(l~rimtnral ReluJt~ ! 

(5.10) 

(a) Response Surface (b) Sym. Response Curve ( c) Asymptotic Comparison 

Figure 5.1: Rule 200A - Graphs 

Therefore, the asymptotic density of ones, (Figure 5.la), is given by 

P(l) = lim Pn(1) = {p 
n-too p2(2 _ p) 

if a = 0 

ifaE(O,l] 

When p = 1/2, the symmetric response curve is given by 

(5.11) 

The theoretical symmetric response curve is plotted in Figure 5.lb together with 

experimental results obtained with an array of length 20000, iterated 100000/a 

times with a> 0.1 and 1000000 times, with periodic boundary conditions, averaged 
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over 100 runs. There is a close agreement between the theoretical and experimental 

results. We can confirm the asymptotic behaviour of (5.11) as follows 

Pn (l) - ~ = ~!r 

In (Pn (1) - ~) = In (~) + n In (/3) . (5.12) 

In Figure 5.1c, we plot In (Pn (l) - i), both experimentally with an array of 200000 

elements iterated step-by-step to n = 6, and theoretically from (5.12). We notice 

excellent agreement for values of a :::; 0.4. When a > 0.5, we also have excellent 

agreement for n = 1. Otherwise, it appears that the speed of convergence for large 

values of a prevents accuracy of the logarithm plot. 

Basic Blocks For Rule 200A, we were also able to find explicit formulae for the 

response surfaces for each of the eight basic blocks. We once again use (5.S). In 

Table 5.1, the set of all n-step preimage blocks of each basic block are shown, with 

their corresponding initial probabilities and respective transition probabilities. 

Table 5.1 can be used to find formulae of basic block response surfaces, such as 

In the special case when p = 1/2, we have the following n-step and asymptotic 

probabilities, assuming that a of- 0, 

p(s) (000) = 13 _ ~,qn + ~ ,q2n 
n 32 161'-' 321'-', 

p(s) ( ) _ ~ ~f-ln _ ~,q2n 
n 001 - 32 + 161'-' 321'-', 

p~s) (010) = ~ /3n, 

p(s) (011) = ~ 
n S' 
(s)( ) _ ~ ~,qn _ ~f-l2n 

Pn 100 - 32 + 161'-' 321'-', 

(s)( ) _ ~ ~,qn ~,q2n 
Pn 101 - 32 + 161'-' + 321'-' , 

p(s) (110) = ~ 
n S' 

P(s)(111) = ~ 
n S' 

p(S)(OOO) = 13/32, 

p(s) (001) = 3/32, 

p(s) (010) = 0, 

p(s) (011) = l/S, 

p(s) (100) = 3/32, 

p(s) (101) = 1/32, 

P(s)(110) = l/S, 

p(s) (111) = l/S. 
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Table 5.1: Rule 200A - Initial and Transition Probabilities of Basic Blocks 

II bE B3 II b* E f n(b) II Po(b*) II 
*· .. *01010* .. ·* 1 - 2f3n + f3'Ln p'L(l _ p)j 

*· .. **0010*· .. * 1- f3n p(l _ p)3 
000 *· .. **010**· .. * 1- f3n p(l _ p)2 

*· .. *0100**· .. * 1- f3n p(l _ p)3 

*· .. **000** .. ·* 1 (1 - p)3 

* .. ·**0011* .. ·* 1 p2(1- p)"" 

001 
*· .. *01011*· .. * 1- f3n p3(1- p)2 

*· .. **0010*· .. * f3n p(l - p)3 
*· .. *01010*· .. * f3n - f32n p2(1_p)3 

010 *· .. **010**· .. * f3n p(l _ p)'L 
011 *· .. **011**· .. * 1 p'L(1- p) 

*· .. *1100**· .. * 1 p2(1 _ p)2 

100 
*· .. *11010*· .. * 1 - f3n p3(1 _ p)2 

*· .. *0100**· .. * f3n p(1-p)3 
*· .. *01010*· .. * f3n - f32n p2(1 _ p)3 

*· .. *01010*· .. * f32n p2(1- pf' 

101 
*· .. *11010*· .. * f3n p3(1 _ p)2 

*· .. *01011* .. ·* f3n p3(1 _ p)2 

*· .. *11011* .. ·* 1 p4(1 _ p) 

110 *· .. **011** .. ·* 1 p'L(l _ p) 

111 *· .. **111**· .. * 1 pj 

Example: Rule 140A 

Consider an a-asynchronous rule defined as 

w(llb) = {~ Vb E {ODD, 001, 100, 101} 

Vb E {01O, 011, 111} 

I-a Vb E {110} 

(5.13) 

Note that if a = 1, then this rule is equivalent to deterministic Rule 140 (2.4). We 

will then refer to the asynchronous rule defined in (5.13) as Rule 140A. 

We now find the set of all potential preimage blocks and their respective transi

tion probabilities. 
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Proposition 5.4. The set f-n(l) consists of all blocks of the form 

{~1~}. 
n n 

Proof. From (5.13), we can see that an element in state 0 will always remain in 

state 0, so that for any block b' E B2n+1 \ f-n (l), we have wn (llb') = O. under Rule 

140A. A block in f-n(l) however, could transform to a single 1 with some non-zero 

~~~ D 

To determine our transition probabilities, we must consider subsets of the set of 

potential preimage blocks. We start by defining C~ C f-n(l) to be the set of blocks 

of the form 

{* ... * 1 1 1· .. 1 0 * ... *} 
"--v-' - "-v--" "-v--'" 

n-l k-l n-k 

where 1 ::; k ::; n + 1. Intuitively, the value of k refer to the place (as counted to 

the right of the underlined centre 1) in which the first occurance of 0 is located. We 

also define the set 

and note that the compliment of Cn within the set of potential preimages is given 

by 

f-n(l) \ Cn = {~O 1 t....:.;..3}. 
n-l n 

Proposition 5.5. For any block c* E f-n(l) \ Cn we have wn (llc*) = 1. 

Proof. From (5.13), the centre block 01 will be preserved for the first (n - I)-steps 

with probability 1. Finally, any block 01* will be transformed to a single 1 with 

probability 1. D 

Proposition 5.6. For any block c E C~, we have 

if k = 1 

if 2 ::; k ::; n . 

if k = n+ 1 

Proof. For ease of calculations, we will, for any block c E C~, use the notation 

,~ = wn (llc). To calculate this transition probability, we will first write a formula 
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for n-step transition probability recursively in terms of possible (n-1 )-step transition 

probabilities. We do so by cases on the value of k 

1. When k = 1, consider the following transition 

* 
? 

* 
? 

0 · * 

o ? ? 

The shaded transition will occur with probability /3. 

2. When 2 S k S n, consider the following transition 

* 
? 

* 1 1 1 
? 1 1 1 

* 
? 

* 

* 
? 

We know that x = 1 with probability /3, resulting in a block in C~_l' and 

x = 0 with probability a, resulting in a block in c~=i. 

3. When k = n + 1, consider the following transition 

* 
? 

* 0 1 1 
? 0 1 1 

which will occur with probability 1. 

1 

1 

Combining these cases, we obtain the following recursive formula 

if k = 1 

if2SkSn. 

ifk=n+1 

(5.14) 

We may then solve this recursive formula to obtain our desired formula. When 

k = 1 or k = n + 1, our formula follows trivially from Proposition 5.14. When 

2 S k S n, our formula can be proved by induction on n. When n = 2, we only 

have the case when k = 2, where 
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Now, we consider the following inductive step when 3 :s k :s n, 

k k-I (3 k 
'Yn = a'Yn-1 + 'Yn- I 

~" rn
-, (~)k-2 (~=~) + ~-k+l ~ (n-;+}; 1 + 

+p r-' (~r (~=~) + ~-k~ (n -k; j -I),.; 1 
= a(3n-1 (~) k-2 (~=~) + (3(3n-1 (~) k-I (~= ~) 

+ a(3n-HI I: (n - ~ + i) 0/ + (3(3n-k I: (n -k:- i -1) 0/ 
j=O J j=O J 

~ ~ m k-1 (~=~) + ~-k+l [~(n -: ~; -I),.; 
+p+p~(n-k;j-IH 

= (3n (~) k-I (n -1) + j3n-HI I: (n - ~ + i) 0/. 
(3 k - 1 j=O J 

A similar procedure is used to prove the formula when k = 2, thus completing the 

~~ 0 

We may now use (5.8) and considering the sets and transition probabilities de

scribed in Propositions 5.5 and 5.6, we conclude that 

Pn(1) = L Po(c*)wn(l/c*) + L Po(c*)wn(l/c*) 
c*Ef-n(I)\Cn c*ECn 

n 

= p(l - p) + p2(1 - p)(3n + p2(1 - p) L pk-I'Y~ + pn+2, (5.15) 
k=2 

where 

(5.16) 

To simplify (5.15) and (5.16), we may now use the following two summation identi

ties. 
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Lemma 5.1. 

'" - - -1 + 1 +-n (n _ 1) (ap)k-l _ (ap)n-l 
6 k-1 13 13 

Proof. We use the binomial identity as follows 

-1 + (1 + ap)n-l = -1 + I: (n -1) (ap)k = t (n -1) (ap)k-l 
13 k=O k 13 k=2 k - 1 13 

D 

Lemma 5.2. When p ¥ 1 and a ¥ 0, 

Proof. We prove this identity by induction. When n = 2 both sides of the identity 

equal pf3. If we denote by h(n) the LHS of (5.17), then h(n + 1) is given by 

f3n+1 I: I: (n + 1 ~ k + j)aj (E)k-l 
k=2j=0 J 13 

= pf3n t t (n - rr: + j)aj (E)m-l where m = k - 1 
m=l j=o J 13 

= pf3n (t t (n - rr: + j)aj (E)m-l + 1) 
m=2 )=0 J 13 

= pf3n (t ~ (n - rr: + j)ai (E)m-l + t (: ~~) (ap)m-l + 1) 
m=2 )=0 J 13 m=2 13 

= pf3n tI: (n - ~ + j)aj (E)k-l + pf3n (t (~=~) (ap)k-l + 1) . 
k=2 j=o J 13 k=2 13 

Now, using the inductive hypothesis (5.17) and Lemma 5.1, we simplify to 

hen + 1) ~ PI ~ P [(II + 1"')"-' - pO-I] +plln (-1+ (1+ 1)"-' + 1) 
= -p- [(13 + pa)n - pn]. 

1-p 

D 
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Using Lemmas 5.1 and 5.2, we can now simplify (5.15) and (5.16) to give 

Pn (1) = p(1 - p) + p2 (1 - (1 - p)at . (5.18) 

and thus the asymptotic density (plotted in Figure 5.2a) is given by 

P(I) = lim Pn(l) = {: 
n-too 

p(1 - p) 

0.1 

PO} 
0:2 

0.1 

" -I---:r--~~----'~~ 
I) n.~ (1 . .1 P.& R.II 1.0 

" I x Thc:urt:licttl RI!$ults • Experinltnl:tl RC: 5U I'~ I 

(a) Response Surface (b) Sym. Response Curve 

if p = 1 

if a = 0 

otherwise 

(5.19) 

(c) Asymptotic Comparison 

Figure 5.2: Rule 140A - Graphs 

In the special case when p = 1/2, we obtain 

(5 .20) 

In Figure 5.2b, the theoretical formula (5.20) is plotted with direct simulated iter

ation of Rule 140 in which an array of length 20000 was iterated 100000/a times 

with a > 0.1 and 1000000 times with a :::; 0.1, with periodic boundary conditions, 

averaged over 100 runs. We check the asymptotic convergence of (5.20) by consid

ering 

(5.21) 

In Figure 5.2c, we plot In (Pn (l) - ~), both experimentally with an array of 200000 

elements iterated step-by-step to n = 6, and theoretically from (5.21). We notice 

excellent agreement for all values of a. 
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Basic Blocks For Rule 140A, we were also able to find explicit formulae for the 

response surfaces for each of the eight basic blocks. We once again use (5.8) . In Table 

5.2, the set of all n-step preimage blocks of four of the eight basic block are shown, 

with their corresponding initial probabilities and respective transition probabilities. 

Table 5.2: Rule 140A - Initial and TI:ansition Probabilities of Basic Blocks 

II bE B3 II b* E f n(b) II wn(blb*) II Po(b*) II 
001 * ... * 001 * .. . * 1 p(1 - p)~ 

"--v-" - '--v--" 
n n 

* ... * 1101 * ... * 1- ,an p3(1 - p) 
"--v-" - '--v--" 

n-l n 

011 * ... * 011 1 ... 1 0 * ... * 
see 5.14 see 5.14 "--v-" - '--v--" '--v--" 

n k-l n-k 
where 1 :::; k :::; n + 1 

101 * ... * 1101 * ... * "--v-" - '--v--" 
,an p3(1 - p) 

n n 
* ... * 0101 * ... * "--v-" - '--v--" 

1 p2(1 _ p)2 

n-l n 

111 
* ... * 111 1 ... 1 0 * ... * 
"--v-" - '--v--" '--v--" see 5.14 see 5.14 

n k-l n-k 
where 1 :::; k :::; n + 1 

We can use the results in Table 5.2 and consistency conditions (2.3) to find 

formulae for all eight basic block symmetric response curves. We summarize those 

results as follows, where we assume that a -# O. 

p(s)(OOO) = ~ - ~ (1 - ::r + ~,an 
n 16 4 2 16' 

p(s) (000) = 5/16, (5.22) 

(s)( ) - ~ ~,an 
Pn 001 - 16 + 16 ' p(s) (001) = 1/16, (5.23) 

pes) (010) = - - - 1 - -1 1 ( ar 
n 4 8 2' 

p(s) (010) = 1/4, (5.24) 

1 ( ar pJs) (011) ="8 1 - "2 ' p(s) (011) = 0, (5.25) 

p(S) (100) = ~ - ~,an 
n 16 16 ' 

p(s) (100) = 3/16, (5.26) 

P(s)(101) = ~ + ~,an 
n 16 16 ' 

p(S) (101) = 1/16, (5.27) 

1 ( ar pJS) (110) ="8 1 - "2 ' pes) (110) = 0, (5.28) 

1 ( ar pJs) (111) ="8 1 - "2 ' pes) (111) = o. (5.29) 
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Example: Rule 76A 

Consider an a-asynchronous rule defined as 

w(llb) = {~ 
I-a 

Vb E {OOO, 001,100, 101} 

Vb E {010, 011, 1l0} 

Vb E {Ill} 

(5.30) 

Note that if a = 1, then this rule is equivalent to deterministic Rule 76 (2.4). We 

will then refer to the asynchronous rule defined in (5.13) as Rule 76A. In this section, 

we will often have need of the Kroenecker delta function, which we define as 

{
o ifx#y 

b(x,y) = 1 'f 
1 X = y. 

We now find the set of all potential preimage blocks and their respective transi

tion probabilities. We start by defining E~1,k2 to be the set of blocks of the form 

{* ... * 0 1 ... 1 1 1 ... 1 0 * ... *}. 
""-v---' '-v-" - '-v-" '-v-" 
n-kl-l kl k2 n-k2-1 

where 1 S; kl' k2 S; n. Intuitively, the values of kl' k2 refer to the number of 1 's to 

the left and right, respectively, of the centre 1 before the first occurence of a O. 

Proposition 5.7. The set f-n(l) consists of all blocks in 

n 

En= U E~1,k2={~1~}. 
kl,k2=1 n n 

Proof. From (5.30), we can see that an element in state 0 will always remain in 

state 0, so that for any block e' E f-n(l) \ En, we have wn(lle') = O. under Rule 

76A. A block in f-n(l) however, could transform to a single 1 with some non-zero 

~~~ 0 
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(a) Response Surface 
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(b) Response Curve (p = ~) 

Figure 5.3: Rule 76A - Graphs 

Proposition 5.8. For any block e E E~1,k2, we have 

k2-1 
L: a l - 8(i,k2-1) (3iwn- 1 (lie') 
i=O 

k1-1 
L: a l - 8U,kl-l) (3j wn - 1 (lie') 
j=o 

k1-l k2-1 
L: L: a2-8U,kl-l)-8(i,k2-1) (3J+i+1wn-l (lie') if 1 :::; k1, k2 :::; n 
j=o i=O 

69 

, 0,0 O,i' j' ,o j' ,i' . ., _ . 
where e E En-I' En-I' E n- 1 and En-I ' respectwely, and J - J + O(j,kl-l) - 0(j,n-l) , 
., . + J: J: 1,1 1,2 2,1 1 d 2,2 (3 
Z = Z U(i,k2-1) - U(i,n-l), c1 = c1 = c1 = ,an cl = . 

Proof. The derivation of this proposition is long and tedious and similar in structure 

to the derivation of (5.14) . Since we were unable to derive a closed-form equation 

for the transition probabilities, we omit the details but note, however, that the full 

four-page proof is available on request. D 

If we consider (5.8) and the result of Proposition 5.8 we conclude that for all 

e E E~i, 
n n 

Pn (1) = L L pi+i+1(1 - p)2-8U,n)-8(i ,n)wn (1Ie). 
j=Oi=O 

(5.31) 

To plot the response surface (see Figure 5.3a), we iterated (5.31) to n = 15/a for 

a> 0.1 and n = 150 when a :::; 0.1. 
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Our symmetric response curve is given by 

n n 
p~S)(1) = LLTi-j-3+<'(j,nl+<'(i,nlwn(1Ie). (5.32) 

j=Oi=O 

In Figure 5.3b, (5.32) is plotted with direct simulated iteration of Rule 76. 

For the theoretical plot, the formula was iterated to n = 15/a for a > 0.1 and 

n = 150 when a :::; 0.1. For the simulated plot, an array of length 20000 was 

iterated 100000/a times with a > 0.1 and 1000000 times with a :::; 0.1, with peri

odic boundary conditions, averaged over 100 runs. We can see that there is a close 

agreement between the theoretical and experimental results. 

5.2.2 Experimental Response Surfaces 

For all other minimal rules, we constructed experimental response surfaces. In each 

case an array of length 20000 was iterated 100000/a times with a> 0.1 and 1000000 

times with a:::; 0.1, with periodic boundary conditions, averaged over 100 runs. The 

results of these iterations are found in Appendix B. 

We note that many of these response surfaces possess discontinuities. In partic

ular, most rules have a discontinuity at a = 0 the asychronicity value at which the 

rule is equivalent to the Identity Rule. Some rules also possess a discontinuity at 

a = 1, when the rule is strictly deterministic. All rules, however, do appear to have 

smooth transitions from the limiting case a ---+ 1 to the limiting case a ---+ O. 

Some rules have dramatically differing dynamics at the values a = 0,1 than the 

intermediate values. Consider, for example, the experimental response surface for 

Rule 154 B.5p. When a = 0,1, the asymptotic density of ones is P(l) < 1. For all 

other values of a, however, the rule stabilizes at a configuration entirely consisting 

of cells in state 1. 

5.3 Local Structure Theory 

In [19], the authors introduce the Local Structure Theory for cellular automata, in 

which they derive a method by which we can write the probability of a block of 

length m, as a map entirely in terms of probabilities of other blocks of length m. 

They show that fixed points of this map can be used to approximate the asymptotic 

behaviour of the cellular automata itself. The basis of this method is determining 

the one-step preimages of a given block and using Bayesian extensions to derive the 

required map. We now show the procedure for an elementary cellular automata 
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local function, j, using blocks of length 2, with the assumption that the same steps 

can be performed for blocks on any length. 

If we consider a block, C = Cl C2 E 82, we can find the set of preimages of C under 

f to be 

Therefore, the (n + 1 )-step probability of occurrence of block c is given by 

Using Bayesian extensions, we obtain 

Using Kolmogorov consistency conditions when k = 0 (2.1), we obtain 

(5.33) 

Therefore, we have written the level-(n + 1) probabilities of a block of length 2 

entirely in terms oflevel-n probabilities of other blocksoflength-2. Using consistency 

condition identities (2.1), we can obtain a system of two independent equations of 

the form (5.33), each entirely in terms of probabilities of two of the four blocks of 

length 2. 

We can either iterate this system from initial probabilities (n = 0) to obtain 

approximations for Pn(c), or find fixed points of this system to obtain an approx

imation for the asymptotic density P(c). It was shown in [19] that as the size of 

the block used for local structure approximations increases, so does the accuracy of 

such an approximation. We now derive Level 2 and Level 3 Local Structure Theory 

approximations for Rules 76A, 140A and 200A (Figure 5.4). 
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Figure 5.4: Plots of P(s)(l) for Rules 76A, 140A and 200A with experimental results 
plotted with Local Structure Theory approximations at both Level 2 and Level 3. 
Note that in each case, the Level 3 LST approximation appears to be exact, while 
the Level 2 LST approximation clearly differs from the actual results. 

5.3.1 Level Two Approximations 

Example: Rule 200A 

Considering the sets of potential preimages of blocks 01 and 11, we obtain 

Pn(OO) = Pn-l(OOOO) + Pn-l (0001) + Pn-l(1000) + Pn-l(lOOl)+ 

+ a [Pn-l(OOlO) + Pn-l(OlOO) + Pn-l(OlOl) + Pn- 1(10l0)] , 

Pn(Ol) = Pn-l(OOl1) + Pn-l(1011) + f3 [Pn-l(0010) + Pn-l(1010)]. 

Using the procedure outlined in Section 5.3, and letting an := Pn(OO) and bn .

Pn(Ol) we obtain a system of two independent equations, which we can write as 

(5.34) 

It is easy to see that a fixed point solution of (5.34) is given by b = 0 from which we 

determine that, for some parameter a which depends on a and the initial densities 

of blocks 00 and 01, 

P(OO) = a, P(Ol) = P(10) = 0, P(l1) = I-a. 

Unfortunately, this is not an explicit solution and tells us only the asymptotic rela

tionship between densities of all blocks of length 2. Instead, we can iterate (5.34) 

starting with initial conditions ao = bo = 1/4. We plot Pn(1) = 1- Pn(OO) - Pn(Ol) 
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versus a and the results of iteration to n = 100 is shown in Figure (5.4c). It is 

evident that iteration of Local Structure Level Two does not provide an accurate 

approximation of density. 

Example: Rule 140A 

Using the same procedure, and letting an := Pn(OO) and dn := Pn(l1), we obtain 

Results of the iteration to n = 100 is shown in Figure (5.4b) and shows that Local 

Structure Level Two iterations do not accurately approximate true density of ones. 

Example: Rule 76A 

Finally, if we let bn := Pn(Ol) and dn := Pn(l1), we obtain a map 

Results of the iteration to n = 100 is shown in Figure (5.4a) and shows that Local 

Structure Level Two iterations do not accurately approximate true density of ones. 

5.3.2 Level Three Approximations 

Example: Rule 200A 

Considering sets of potential preimages of blocks 000, 001, 010 and 101, we obtain 

Pn(OOO) = Pn-l(OOOOO) + Pn- 1 (00001) + Pn- 1 (10000) + Pn-l(10001)+ 

+ a [Pn- 1(00010) + Pn-l(1001O) + Pn-l(00100) + Pn- 1(00101)+ 

+Pn-l (10100) + Pn-l(10101) + Pn-l(01000) + Pn-l(01001)] + 

+ a 2 Pn-l(OlOlO), 

Pn(OOl) = Pn-l(OOOl1) + Pn-l(10111) + (3 [Pn-l(OOOlO) + Pn-l(1001O)] + 

+ aPn- 1(01011) + a(3Pn - 1 (01010), 

Pn(OlO) = (3 [Pn-l(00100) + Pn- 1 (00101) + Pn-l(10100) + Pn- 1(10101)] , 

Pn(101) = Pn-l (11011) + (3 [Pn- 1 (01011) + Pn- 1(11010)] + (32 Pn-l (01010). 



74 Chapter 5. a-Asynchronous Cellular Automata 

Using the procedure outlined in Section 5.3 and letting an := Pn(OOO), bn := 

Pn(OOl), Cn := Pn(OlO) and fn := Pn(101), we obtain a set of the following four 

independent equations, which we write as a iterative map as 

+ (1 + 2bn ) + 2 en2 In an aCn bn+ln a (bn+ln)2 

(1 - b:tn) (bn + ~:+):) 
(5.35) 

Pen 

fn+l fn (1- b,,~tnr 
From (5.35), we obtain the fixed point solution C = 0, where upon parameterization, 

we again fail to obtain an explicit solution of our asymptotic densities. 

In this case, however, it turns out that it is possible to solve this system of 

discrete equations directly to compare to our direct results. 

We start by solving the third component of (5.35) with an initial condition 

CO = 1/8 to obtain the solution 

(5.36) 

Using the second and fourth components of (5.35), we can obtain the following two 

equations 

bn+1 + fn+! = bn + fn - acn, 

( 
acn ) ( 2aenfn) 

bn+ 1 - f n+! = 1 - bn + f n bn - f n + bn + f n . 

If we let Xn := bn + fn and Yn := bn - fn, our system is transformed to 

Xn+l = Xn - acn, 

Yn+l = (1 - :~ ) 2 Yn + aCn (1 - :~ ) . 
(5.37) 

(5.38) 

To solve equations (5.37) and (5.38), with initial conditions Xo = 1/4, Yo = 0, we 

must use the following Lemma. 

Lemma 5.3. [9} A difference equation of the form Yn+l = AnYn + gn has solution 

(n-l) n-l ( n-l ) 
Yn = Do Ai Yo + ~ iLL Ai gr' 
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Using Lemma 5.3, we solve (5.37) to obtain 

(5.39) 

Using our solutions for en and Xn ((5.36) and (5.39)), we can rewrite (5.38) as 

(5.40) 

Again, using Lemma 5.3, we can solve (5.40) to obtain 

(5.41 ) 

To simplify, we need the following summation identity. 

Lemma 5.4. 

(5.42) 

Proof. By induction. The n = 1 case is trivial. We complete the proof as follows 

n-l f3T f3n-1 n-2 f3T 

~ (1 + f3T) (1 + f3T+l) = (1 + f3n-l)(l + f3n) + ~ (1 + f3T)(l + f3T+l) 

f3n- 1 f3n- 1 - 1 

(1 + f3n-l) (1 + f3n) + 2 (13 - 1) (1 + f3n-l) 

_ 2f3n-l (13 - 1) + (f3n- 1 - 1) (1 + f3n) 

- 2 (13 - 1)(1 + f3n-l)(l + f3n) 
f3n -1 

We may now simplify (5.41) to give 

o 

(5.43) 
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We may now work backwards, and obtain the solution 

b 1 ( ) 3 1 f32n 1 f3n 
n ="2 Xn + Yn = 32 - 32 + 16 ' 

f 1 ( ) 1 1 2n 1 f3n 
n ="2 Xn - Yn = 32 + 32 f3 + 16 . 

We may now rewrite the first component of (5.35) to give 

5a n a (2 - a) 2n 
an+l = an + 16 f3 - 32 f3. 

Once again, using Lemma 5.3 and the initial condition ao = 1/8, we obtain 

n-l n-l 
= ~ 5a "f3n _ a (2 - a) "f32n 

an 8 + 16 ~ 32 ~ 
r=O r=O 

1 5a 1 - f3n a (2 - a) 1 - f32n 
= '8 + 16' 1 - f3 - 32 . 1 - f32 

= 13 _ ~f3n ~f32n. 
32 16 + 32 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

We were surprised to note that the results obtained by solving the system (5.35) 

agree with the direct solutions obtained in Subsection 5.2.1. Therefore, the Local 

Structure Theory Level 3 approximations provide exact solutions for both the n-step 

density of basic blocks and the asymptotic densities. 

Example: Rule 140A 

Using the same procedure, and letting an := Pn(OOO), bn := Pn(OOl), en := Pn(OlO) 

and dn := Pn(Oll), we obtain the following map 

(5.48) 

We were unable to solve explicitly this system, but iterations of the map showed that 

the solution is not an exact solution of the n-step density of basic blocks given in Ta

ble 5.2. The asymptotic solution, however, appears to be a very close approximation 

to the actual density of ones (Figure (5.4 b ) ) . 
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Example: Rule 76A 

Finally, letting bn := Pn(OOl), en := Pn(OlO), dn := Pn(Oll) and in := Pn(111), we 

obtain the following map 

b + a2j~(dn+/3jn) 
n (jn+dn)2 

1'. + ajn(2dn(jn+dn )+a/3j;) 
"n (jn+dn)2 

(dn+ajn)(dn+/3jn)2 
(dn+jn)2 

/3jn(dn +/3jn)2 
(dn +jn)2 

(5.49) 

We iterate (5.49) starting with initial conditions bo = CO = do = io = ~. We plot 

Pn(1) = Pn(OlO) + Pn(Oll) +Pn(1lO) +Pn(111) versus C\: and the results of iteration 

to n = 100 is shown in Figure (5.4a). It once again appears that iteration of Local 

Structure Level Three provides a very accurate approximation of the density of ones. 
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Conclusion and Further Work 

In Chapter 3, we considered response curves for two-dimensional cellular automata 

with L-neighbourhood. We were able to derive explicit formulae for a class of shift 

or identity emulating rules. These rules fell into two classes: those with constant 

density and those whose density decayed to some fixed value. For many rules, we 

were also able to find response curves for all eight basic blocks. We believe that there 

are more rules for which a response curve can be derived and further research should 

be spent determining these formulae. We also believe it will be possible to prove 

our conjecture for L-shaped Rule 184 in which the basic block density formulae are 

dependent on Catalan numbers. 

In Chapter 4, we presented a proof of the Balance Theorem adapted to the L

neighbourhood and then to the von Neumann neighbourhood. We used the property 

of permutivity and derived an algorithm by which a test of surjectivity can be 

performed. We found all surjective rules with L-neighbourhood and found them to 

be the class of permutive rules. When we consider the von Neumann neighbourhood, 

we confirmed that all permutive rules were surjective. We were not, however, able to 

state that these are the only surjective rules. Further study should be performed on 

the set of four "hard" rules for which surjectivity could not be determined. The local 

mappings of these rules display enough regularity that we believe their properties 

can be proved rigorously. 

In Chapter 5, we derived response surfaces for a class of special rules in which 

the rule tables differ by only one basic block from the Identity Rule. In two of these 

cases, we were able to derive explicit response surface equations. In the third case, 

we found an approximate response surface. We were also able to determine exper

imental response surfaces for all minimal rules. We believe that it will be possible 

to determine explicit response surface formulae for other rules, but the dynamics of 

many other rules will make this very difficult. Further work in categorizing these 

rules is planned and there is much work to be done to better understand the dy

namics of such CA. We also determined that the Local Structure Theory provides 

excellent approximations at Level 3 for a number of rules. We strongly believe that 

these approximations are exact, but further research is needed to explain the reason 

for this phenomenon. 
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[APPENDIX C 

Source Code 

C.l L-neighbourhood 

The following code checks for violations of the balance condition. First, we consider only 

those rules in which the local rule table contains an equal number of blocks mapping to 1 

as to O. Then, we check to see if the rule is permutive and if so, we ignore since we know it 
to be surjective. Finally, we construct all blocks in 73 and apply the rule until we obtain a 

violation of the balance condition. The output of this program shows us that there are no 

surjective rules apart from those which are known to be permutive. 

#include <iostream> 

#include <algorithm> 

#incl ude <math. h> 

using namespace std; 

int j; int b [6]; int imagecounter [8]; int block; int rulenumber 

int r[8]; int permutive( int r[8]); 

int main () { 

int myints[] = {0,0,0,0,1,1,1,1}; 

int length = sizeof ( myints) / sizeof ( int ); 

/ / contstruct all balanced rules 

do { 

/ / place constructed rule in array 'r' for ease of iteraton 

for (j =0; j<=length -1; H+){ 

r[j] = myints[length-l-j]; 

} 

/ / check to see if the rule is permlltive - if so, reject 

if (permutive(r) 1){ 

/ / set up all bloeks in T3 

for (b[O]=O; b[O]<=I; b[O]++){ 

for (b[I]=O; b[l] <=1; b[I]++){ 

for (b[2]=0; b[2] <=1; b[2]++){ 

for (b[3]=0; b[3]<=I; b[3]++){ 

for (b [4] =0; b[4] <=1; b[4]++){ 

0' , 
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} 

Appendix C. Source Code 

for (b[5J=0; b[5J<=I; b[5J++){ 

II it e r a t. e ollce alld CO llllt a ll images 

block = 4*f [4* b[OJ+2*b[1J+b [2]] +2n [4*b[IJ +h b[3J + b [4]] + r 

[4*b[2J+2*b[4J+b [5 J J; 

} 

imagecounter [blockJ++; 

II if image viol a t es b a l a n ce 

if (imagecoun ter [block J > 8){ 
goto balancefailure; 

} 
}}}}}} 

II if 110 v iol at ion , print rule number 

for (j =0; j<=length -1; H+){ 

rulen umber += pow (2 , length -1-j ) * myints [j J j 

} 
cout « rulenumber « "\n"; 
rulenumber = 0; 

balancefailure :; 

II r ese t t h e image count e r 

for (j =0; j<=length -1; H+){ 

imagecoun ter [ j J = 0; 

} 
} while ( next-permutation (myints, myints+length) ); 

II p erIlluti ve check 

int permutive( int r[8J){ 

} 

if (r[OJ+r[4J==1 && r[IJ+r[5J==1 && r[2J+r[6J==1 && r[3J+r[7J==I){ 
return 0; 

} 
else if (r[OJ+r[2J==1 && r[IJ+r[3J==1 && r[4J+r[6J==1 && r[5J+r 

[7J==1) { 
return 0; 

} 
else if (r[OJ+r[IJ==l && r[2J+r[3J==1 && r[4J+r[5J==1 && r[6J+r 

[7J==I){ 
return 0; 

} 
else { 

return 1 ; 

} 
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C.2 von Neumann neighbourhood 

The following code checks for violations of the balance condition. First, we consider only 

those rules in which the local rule table contains an equal number of blocks mapping to 1 

as to O. Then, we check to see if the rule is permutive and if so, we ignore since we know it 

to be surjective. Finally, we construct all blocks in '03, then '04 and apply the rule until we 

obtain a violation of the balance condition. The output of this program shows us that there 

are a small number of rules for which surjectivity can not be established in this way. Many 

of these rules are actually equivalent to known surjective rules with L-neighbourhood. We 

were unable to classify 16 outputted rules in terms of surjectivity. 

#include <iostream> 

#include <algorithm> 

#incl ude <math. h> 

using namespace std; 

int j; int b[25]; int r[32]; 

int imagecounter[32]; int imagecounter2[8192]; long int block; 

unsigned long int rulenumber = 0; int permutive( int r [32]); 

int main () { 

int myints [] 

{O ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,I} ; 

int length = sizeof (myints) / sizeof ( int ) ; 

/ / contstruct all balanced rules 

do { 

/ / place rule t.able in array ' 1" for ease of future iteration 

for (j=l; j<=length-l; H+){ 

r[j] = myints[length-l-j]; 

} 

/ / cheek to see if the rule is permutive - if so, rejeet 

if (permutive(r) 1){ 

/ / set up all blocks in D3 

for (b[O]=O; b[O]<=l; b[O]++){ 

for (b[l]=O; b[l]<=I; b[I]++){ 

for (b[2] =0; b[2] <=1; b[2]++){ 

for (b[3]=0; b[3] <=1; b[3]++){ 

for (b[4]=0; b[4] <=1; b[4]++){ 

for (b[5]=0; b[5] <=1; b[5]++){ 

for (b[6]=0; b[6] <=1; b[6]++){ 

for (b[7]=0; b[7] <=1; b[7]++){ 
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for (b[8J=0; b[8J <=1; b[8J++){ 
for (b[9J =0; b[9J <=1; b[9J++){ 
for (b(10J=0; b[10J <=1 ; b[10J++){ 
for (b[llJ =0; b[llJ <=1; b[llJ++){ 
for (b[12J=0; b[12J <=1; b[12J++){ 

Appendix C. Source Code 

/ / iterat e once and count all images 
block = 16*f [16*b[OJ+8*b[lJ+4*b[2J+2*b[3J+b[6]]+8*f 

[16* b[lJ +8* b [4J +4* b [5J +2* b[6J + b [9]] +4* r [16* b 
[2J+8* b [5J +4* b[6J+2* b [7J+ b [lOll + 2* r [16* b [3J +8* b 
[6J +4* b[7J +2* b [8J + b [11]] + r [16* b[6J +8* b [9J +4* b 
[10J+2* b[llJ+ b [12 J J; 

imagecounter [blockJ++; 

/ / if image violates balance 
if (imagecounter [block J > 256) { 

goto balancefailure ; 

} 
}}}}}}}}}}}}} 

/ / no vio l ation - set up all blocks in D4 

for (b[OJ=O; b[OJ <=1; b[OJ++){ 
for (b[lJ=O; b[lJ < =1 ; b[lJ++){ 
for (b[2J=0; b[2J <=1; b[2J++){ 
for (b[3J=0; b[3J <=1; b[3J++){ 
for (b[4J=0 ; b[4J <=1 ; b[4J++){ 
for (b [5J =0; b[5J <=1; b[5J++){ 
for (b[6J=0; b[6] <=1; b[6]++){ 
for (b[7J=0 ; b[7] <=1 ; b[7]++){ 
for (b[8J =0 ; b[8] <=1; b[8]++){ 
for (b[9]=0; b[9] <=1; b[9J++){ 
for (b[10] =0; b[10] <=1; b[10]++){ 
for (b[ll] =0; b[ll] <=1; b[ll]++){ 
for (b[12] =0; b[12] <=1; b[12]++){ 
for (b[13] =0; b[13] <=1 ; b[13]++){ 
for (b[14]=0; b[14] <=1; b[14]++){ 
for (b[15]=0; b[15]<=I; b[15]++){ 
for (b[16] =0 ; b[16] <=1; b[16]++){ 
for (b(17]=0 ; b[17]<=I; b[17]++){ 
for (b[18]=0; b[18]<=I; b[18]++){ 
for (b[19] =0; b[19] <=1; b[19]++){ 
for (b[20]=0; b[20] <=1 ; b[20]++){ 
for (b[21] =0; b[21] <=1; b[21]++){ 
for (b [22] =0; b[22] <=1; b[22]++){ 
for (b[23]=Oj b[23] <=1; b[23]++){ 
for (b[24]=0; b[24] <=1; b[24J++){ 
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} 

} 

I I iterate once and count all images 

block = 4096n[16*b[0]+8*b[1]+4*b[2]+2*b[3]+b[6]] + 

2048n [16* b[1]+8* b[4]+4*b[5]+2* b[6] +b [11]] + 

1024n [16* b[2]+8*b[5]+4*b[6]+2* b[7] + b [12]] + 

512n[16*b[3]+8*b[6]+4*b[7]+2*b[8]+b[13]] + 256* 

r [16* b[4]+8*b[9]+4* b[10] +2* b[ll] + b [16]] + 128n 

[16*b[5]+8*b[1O]+4*b[1l]+2*b[12]+b[17]] + 64n 

[16*b[6]+8*b[1l]+4*b[12]+2*b[13]+b[18]] + 32n 

[16*b[7]+8*b[12]+4*b[13]+2*b[14]+b[19]] + 16n 

[16*b[8]+8*b[13]+4*b[14]+2*b[15]+b[20]] + 8n 

[16* b[1l]+8*b[16]+4* b[17] +2* b[18]+b [21]] + 4n 

[16*b[12]+8*b[17]+4*b[18]+2*b[19]+b[22]J + 2n 

[16* b[13] +8* b [18] +4* b [19] +2* b [20] + b [23]] + r [16* 

b[18] +8* b[21] +4* b[22] +2* b [23] + b [24]] ; 

imageeounter2 [block]++; 

II if image violates balance 

if (imagecounter2 [block] > 4096){ 

goto balancefailure; 

} 

}}}}}}}}}}}}}}}}}}}}}}}}} 

II if still no violation, print rule number 

rulenumber += 1073741824*myints[0]+1073741824*myints [0]; 

for (j =1; j<=length -1; H+){ 

rulenumber += pow(2,length-1-j)*myints[j]; 

} 
cout « rulenumber « "\n"; 

rulenumber = 0; 

balancefailure :; 

II reset the image counters 

for (j =0; j <=31; H+){ 

imagecoun ter [j] = 0; 

} 
for (j=O; j<=8191; H+){ 

imagecounter2 [j] = 0; 

} 

} while ( next-permutation (myints, myints+length) ); 
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II p e rmutive c h eck 

int permutive( int r[32]){ 

} 

if (r[0]+r[16]==1 && r[1]+r[17]==1 && r[2]+r[18]==1 && r[3]+r 
[19]==1 && r[4]+r[20]==1 && r[5]+r[21]==1 && r[6]+r[22]==1 && r 
[7]+r[23]==1 && r[8]+r[24]==1 && r[9]+r[25]==1 && r[10]+r 
[26]==1 && r[11]+r[27]==1 && r[12]+r[28]==1 && r[13]+r[29]==1 

&& r [14]+r [30]==1 && r [15]+r [31]==1){ 
return 0; 

} 
else if(r[0]+r[8]==1 && r[1]+r[9]==1 && r[2]+r[10]==1 && r[3]+r 

[11]==1 && r[4]+r[12]==1 && r[5]+r[13]==1 && r[6]+r[14]==1 && r 
[7]+r[15]==1 && r[16]+r[24]==1 && r[17]+r[25]==1 && r[18]+r 
[26]==1 && r[19]+r[27]==1 && r[20]+r[28]==1 && r[21]+r[29]==1 
&& r[22]+r[30]==1 && r[23]+r[31]==1){ 

return 0; 

} 
else if (r[0]+r[2]==1 && r[1]+r[3]==1 && r[4]+r[6]==1 && r[5]+r 

[7]==1 && r[8]+r[10]==1 && r[9]+r[11]==1 && r[12]+r[14]==1 && r 
[13]+r[15]==1 && r[16]+r[18]==1 && r[17]+r[19]==1 && r[20]+r 
[22]==1 && r[21]+r[23]==1 && r[24]+r[26]==1 && r[25]+r[27]==1 

&& r[28]+r[30]==1 && r[29]+r[31]==I){ 
return 0; 

} 
else if (r[O]+r[I]==1 && r[2]+r[3]==1 && r[4]+r[5]==1 && r[6]+r 

[7]==1 && r[8]+r[9]==1 && r[10]+r[11]==1 && r[12]+r[13]==1 && r 
[14]+r[15]==1 && r[16]+r[17]==1 && r[18]+r[19]==1 && r[20]+r 
[21]==1 && r[22]+r[23]==1 && r[24]+r[25]==1 && r[26]+r[27]==1 

&& r[28]+r[29]==1 && r[30]+r[31]==I){ 
return O· , 

} 
else { 

return 1· , 
} 


