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Abstract

Three dimensional model design is a well-known and studied field, with numerous real-world

applications. However, the manual construction of these models can often be time-consuming to the

average user, despite the advantages offered through computational advances. This thesis presents

an approach to the design of 3D structures using evolutionary computation and L-systems, which

involves the automated production of such designs using a strict set of fitness functions. These

functions focus on the geometric properties of the models produced, as well as their quantifiable

aesthetic value - a topic which has not been widely investigated with respect to 3D models. New

extensions to existing aesthetic measures are discussed and implemented in the presented system in

order to produce designs which are visually pleasing. The system itself facilitates the construction of

models requiring minimal user initialization and no user-based feedback throughout the evolutionary

cycle. The genetic programming evolved models are shown to satisfy multiple criteria, conveying a

relationship between their assigned aesthetic value and their perceived aesthetic value. Exploration

into the applicability and effectiveness of a multi-objective approach to the problem is also presented,

with a focus on both performance and visual results. Although subjective, these results offer insight

into future applications and study in the field of computational aesthetics and automated structure

design.
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Chapter 1

Introduction

The world is filled with three dimensional structures. Cities are virtually packed with architectural

wonders – ranging from small and simple to enormous and complex – designed by some phantom

architect with an intent to produce something beautiful yet practical. Homes are full of objects

of varying size, form and purpose, and even nature itself beckons people in droves every day to

bear witness to the marvelous forms it offers. In fact, people are so used to the presence of these

forms that they rarely take the time to notice the meticulous design steps required to produce such

artifacts. Each individual form takes time and experience to produce – a job left to skilled architects

and designers. In producing their works, they must of course take into account two factors – purpose

and aesthetic value. Of course, aesthetic value is a highly subjective notion.

A perfect example of this design process exists in architectural design. A modern home is not

simply built on a whim. It must first be constructed mentally by a designer, painstakingly drafted

onto paper, while taking every flaw and minor imperfection into consideration for the final product.

The success of this product relies on its functionality, how it will react to the natural physics of

the world, how it satisfies its own purpose and so on. Its aesthetic appeal is also paramount to its

success, as people tend to take notice of the beauty of each structure and room as they enter. It

is because of these facts that the transition from a rough draft to a final product is a long process,

requiring the expertise of many parties. An architect is not always an artist.

As computational resources such as speed and memory become cheaper and more widely avail-

able, the computer is now useful for simplifying the most difficult and painstaking of tasks. It

has more recently allowed designers to visualize their works in manipulatable environments, which

has had quite an impact on the design community. Programs like Maya, Corel Draw and Blender

facilitate this purpose and are used both commercially and academically. The use of these appli-

cations is not without problems, as the process of generating useful 3D structures or models can

be painstaking and long despite the efforts made by the computer to simplify it. At the time of

1
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writing of this thesis, there is very little in the field of automated structure design. Even rarer is

the application that can generate aesthetic forms automatically, without the need for user guidance.

Such an application would indeed be useful to the design community as a tool for inspiration and

design exploration.

This thesis introduces a means of producing 3D models automatically, using evolutionary com-

putation. The approach aims to relieve the task of manual 3D modelling, which can be difficult and

time-consuming. It also presents an interesting research topic, involving computational aesthetics

applied to 3D models. The models that are generated must fulfill certain aesthetic and geometric

requirements imposed by the user, which enable the production of more specific, constrained forms.

For example, a user may wish to generate small, complex models as a possible inspiration for chan-

delier design, and may do so by tweaking the various fitness function targets and constraints offered

by the system.

In order to produce such models, the system employs a fractal-based drawing technique which uses

the concepts behind L-systems to generate self-repeating forms. The L-systems discussed generate an

evaluation string which in turn can be parsed using several different drawing grammars to generate a

model in a 3D voxel environment. The models are evolved towards a target fitness, where the fitness

function(s) used quantifiably reflects the model’s geometric and aesthetic properties. The geometric

measures include dimensional boundaries, volume, surface area and the number of unique surface

normals, where some aesthetic measures focus on complexity, symmetry and model distribution

data. The targets that are chosen for each function are problem-specific, and so will differ for each

experiment.

For aesthetic fitness functions, this thesis will explore several existing quantifiable aesthetic

measures which are applied to 2D image analysis, and investigate their applicability and extension

to a 3D problem domain. The majority of 2D aesthetic measurements measure image properties,

such as color changes across the image and form measurements. Their 3D extensions will measure

properties attributed to 3D models such as surface shape, structure and size. Certain properties are

shared between 2D images and 3D models as well, such as symmetry and complexity.

The proposed approach has many real-world applications and contributions. The models gener-

ated can be used as an inspirational tool for designers in any field, producing a diverse population

of potential candidates which in turn can be manipulated and altered by a designer. The exten-

sions made to the aesthetic measurements from 2D to 3D may offer insight into future research

possibilities, as the field of computational aesthetics is still in its early stages, especially in the 3D

modeling domain. The discussed system could also be extended in the future to produce more spe-

cific forms, which in turn could be used to automatically generate dynamic environments for movies,

video games and animations. The problem introduced by automating the production of aesthetic 3D

forms investigated in this thesis is a challenging evolutionary design problem, which offers insight

into many future applications, fields and studies.
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1.1 Goals

1.1.1 Applicability Evolutionary Computation to Problem

A general goal is to examine the effectiveness and applicability of an evolutionary computation

technique to the design and production of aesthetic three dimensional forms. In order to justify the

use of genetic programming for this problem domain, a variety of issues are considered:

• The effectiveness of the genetic programming technique in producing models which satisfy each

fitness function individually, using a single-objective approach.

• Different combinations of fitness functions – both aesthetic and geometric – through a multi-

objective approach, and a comparison of different multi-objective strategies such as Pareto and

Summed Rank.

• The effectiveness of an evolutionary computation approach in producing a diverse population

of aesthetic models, useful for design inspiration.

This problem is of interest to many parties, and provides a challenging evolutionary design problem.

1.1.2 Extension of Existing Aesthetic Measures

There are many existing aesthetic measures which can quantifiably rank images aesthetically. Al-

though the notion of aesthetic value is subjective, these measures have offered insight into well-

known theories of general human aesthetic interest, encompassing ideas of symmetry, complexity,

color, shape and form. These theories can be extended and implemented towards an approximate

numeric calculation of a form’s aesthetic appeal, as seen in existing measures of symmetry, color

distribution and complexity in 2D images. Although rare, there are a few examples of systems which

have already attempted to use some of these existing measures as fitness functions for evolutionary

design problems. The majority of these systems rely heavily on user-guided evolution, however,

which is slow and inefficient. This thesis attempts to investigate further into the application of

quantifiable aesthetic measures as fitness functions for evolutionary design. More specifically, this

thesis:

• Explores the background of computational aesthetics, examining the foundational theories and

ideas behind the field and their potential application to 3D evolutionary design.

• Explores the possible extensions of many existing aesthetic measures from 2D images to 3D

models through actual implementation and the examination of visual results.

• Examines the success and aesthetic value of models generated using these extensions by various

means, including statistical analysis and user feedback.
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1.1.3 Implement Improved L-System Encoding for Genetic Programming

This thesis examines an existing L-system encoding for genetic programming chromosomes, and offers

improvements to areas of the encoding which result in the production of faulty production rules and

evaluation strings. This will involve the introduction of new definitions for L-system correctness,

completeness and validity. The thesis will present these new improvements to the encoding which

will enforce certain constraints on the L-systems produced, as well as speculate upon potential future

improvements.

1.2 Thesis Structure

This thesis is organized as follows. Chapter 2 provides necessary background information regarding

shape grammars and L-systems, and their ability to produce 3D models. It also provides information

regarding evolutionary computation, genetic programming and their extensions and uses. Chapter

3 introduces a literature review of the work of others who have used evolutionary computation for

design problems and investigated computational aesthetics. The system details, such as the system

programming loop, the L-system encoding and decoding process and the model conversion process,

are found in Chapter 4. This chapter also presents the L-system alphabets and genetic programming

function sets used in this thesis. Chapter 5 introduces the fitness functions used for experiments, as

well as information behind each function’s purpose and calculation.

Chapters 6 to 11 introduce the five major experiments investigated in this thesis, with each

focusing on a different goal. In addition, Chapter 6 introduces the parameter set used for the

evolutionary processes in these experiments. Chapter 12 provides a discussion of the results found

in this research, and evaluates the effectiveness of the proposed system in achieving its goal. It also

outlines potential future research in the field of computational aesthetics and evolutionary design,

and possible improvements to the system.



Chapter 2

Background Information

This chapter introduces the necessary background required for the complete understanding of the

research topic presented. Such topics include shape grammars and L-systems, which are closely

related, as well as preliminary information regarding evolutionary computation and its extensions.

New measurements of validity and completeness for an L-system are also presented here.

2.1 Shape Grammars

A shape grammar is a type of formal grammar that can be used to generate complex geometric

shapes or forms using a predefined set of shape manipulation and construction rules, also known as

production rules [37, 39]. These rules contain a set of shape manipulation, transformation, movement,

placement and construction rules, which can be used in conjunction with one another to generate

a wide variety of forms. A formal grammar contains a set of rules that can be used to generate

a string in a formal language, composed of symbols and sub-strings from a pre-defined alphabet.

As an example, a formal grammar can be used to produce a syntactically and semantically correct

program from a programming language. For example, the program

int i = 2 ∗ 2

follows a simple grammar that makes it syntactically and semantically correct. In this case, we define

a variable with a type, then assign a value to that type. This value can be a product of any other

rules that return an expression as a value, such as arithmetic operations. In this case, we are using

multiplication with two integer values. From the viewpoint of a programmer this is correct, but in

order for this to be correct in the context of the language it is written in, it must obey the rules of

its production grammar. A simple grammar for the previous expression can be seen in Table 2.1.

The format seen in the example is known as Backus-Naur (BNF) form. With BNF, a grammar is

5
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Table 2.1: Example production rules for an expression

< statement > ::=< type >< ident >=< expr > < expr > ::=< val >< op >< val >
< type > ::= int | double | float < op > ::= ∗ | / | + | −
< ident > ::= some string < val > ::= some real number

defined using terminals, non-terminals, a start symbol and a set of production rules. In our sample

grammar, the start symbol is < statement >, which exists to define what the program is built

from, also called an initiator. Non-terminals point to other rules and terminals, such as < expr >.

Terminals are rules that are no longer evaluated in the grammar – such as + – and are necessary in

building the final program expression. The production rules set defines all the rules encompassing

the non-terminals and terminals.

This concept can also be applied to shapes instead of mathematics and programming languages.

With the binary operators defined in our previous grammar, each has an explicit purpose. For

example, the addition function will add two expressions. This can also apply to other functions as

well, such as scaling an image, changing a color or rotating a shape. These are typical functions used

in shape grammars. For example, circle + circle in a grammar might combine two circles, where

each circle is defined separately in the grammar. Another example might be scale(circle, int) which

scales a supplied circle by the amount supplied in int.

Typically, with shape grammars, instead of a line of code as an initiator, a shape or form is used.

The production rules can then be used to carry out transformations and additions to that shape,

creating a brand new shape. In the case of 3D forms, a fully complete grammar that could create

any conceivable form would be extremely complex and difficult to manipulate or understand, which

is why most shape grammars are made to create specific types of simpler shapes.

2.2 Lindenmayer Systems

Lindenmayer Systems – or L-systems [44, 45] – are quite similar to shape grammars. They also

define a set of production rules to generate forms, though the intent behind them differs. In an

L-system, the goal is to generate self-similar fractal forms. More specifically, the system defines

rules for producing a single form, and any alterations to the rules themselves will produce variants

of that form.

In this thesis, D0L-systems are used (deterministic with no context), as they are the simplest

form of L-systems [22]. A D0L-system is defined as G = (Σ, ω, P ). Σ is the alphabet of the language,

where Σ = {s1, s2, s3, ..., sn} and each si is a symbol within the language. The symbol ω is called

an axiom, and is defined of the set Σ∗. The axiom is also more commonly known as the starting

string or initiator. P defines a mapping P : Σ→ Σ∗, where for all si ∈ Σ, there exists a s→ P (s).
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This means that for every symbol, there is exactly one direct mapping to a production rule 1. Each

production rule is of the form LHS → RHS where LHS references a single left-hand side symbol

in Σ and RHS contains an ordered sub-expression from Σ∗, which is found in the right-hand side of

the production rule. The axiom is altered by the production rules and replaced for each iteration of

P . This sequence of iterations can be defined as

ωo
P 0

→ ω1 P
1

→ ω2 P
2

→ ...
Pn−1

→ ωn (2.1)

Each P i represents the ith iteration of P , and each ωi represents the sub-expression produced

from the most recent iteration on P . Prior to the first iteration, ωi = ω or simply equals the

starting string, and ωn equals the final evaluation string of the L-system. This final string can be

used to produce the shape or form intended by systematically parsing the symbols in the string,

mapping each symbol to a predefined drawing function. Each drawing function is used to alter a

canvas, which is the drawing environment. The entire language of the L-system is described by

L(G) = {P i(ω), i ≥ 0}.
As previously mentioned, the evaluation string produced by L(G) consists of an ordered set of

symbols that can be parsed in order to generate a form. One of the most common examples are

L-systems used to define plants. These systems use Turtle Graphics commands such as Forward

(F), Turn (+ and -), and cursor position functions (push ’[’ and pop ’]’). An example of such a

system can be seen in Figure 2.1, where each subsequent drawing represents a further iteration on

the L-system from the previous. In this example, the starting string used is F, and there is only one

production rule F → FF[+FF][–FF]. A 2-iteration run would look like

• Iteration 0 : Resulting string is starting string F

• Iteration 1 : F is replaced with FF[+FF][–FF]

• Iteration 2 : Each occurrence of F in (1) is replaced with FF[+FF][–FF], resulting in

FF[+FF][–FF]FF[+FF][–FF][+FF[+FF][–FF]FF[+FF][–FF]][–FF[+FF][–FF]FF[+FF][–FF]]

As this example shows, the resulting image grows rapidly in complexity for each iteration, despite

the simplicity of the alphabet and rules themselves2. The symbols in the alphabet are represented

with simple visual commands and can be rendered as a string of single-character commands (such as F

and + in Figure 2.1). In addition to those symbols that alter the image in some way, other commands

1A D0L-system is context-free as it has only one production rule for each symbol. L-systems that allow more than
one production rule per symbol are known as stochastic L-systems. In a stochastic L-system, when a symbol maps to
multiple production rules, only one rule is chosen from the set per generation. This is done with some probability or
chosen with some cyclic order.

2It is important to note that while the images drawn by an L-system grow in complexity for each iteration of the
L-system, they in fact grow physically as well. In the example, the character F results in drawing a line of length 10
on the canvas. When we replace it with a larger string of several F’s, we can expect that this replacement will cause
the resulting image to grow with each iteration. This process is directly analogous to a growing tree.
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can be used which are only meant for replacement. As an extension of the previous example, the

starting string could be replaced with A, and a new rule A → FAF could be introduced. In this

context, the symbol A has no visual effect on the image, but is instead replaced at each iteration.

The combination of these replacement symbols and drawing symbols (such as F) are known as the

variables of the system. It is common to find only variables on the left-hand side of production rules,

and this reasoning is explained later in this thesis.

Figure 2.1: Three stages of a plant-based L-system, using an increasing number of iterations.

Once again referring to the sample Turtle Graphics drawing commands, each occurrence of F

results in drawing a line of some length X, and each occurrence of + and - results in altering the

current angle by some value α. These values are constant in this type of system, unless altered

by global modifiers. However, some L-systems allow certain symbols to take arguments as param-

eters, also known as parametric L-systems. In a parametric L-system, symbols are of the form

s = {s|s(p1, p2, ..., pn)}, where pi is the ith parameter for that particular symbol. For example,

instead of F relying on a global variable X, its length can be passed to it as a parameter F(10).

With parametric L-systems, the evaluation string tends to grow more quickly with the addition of

brackets and numbers.

L-systems are of great interest as they have been shown to produce some of the most common

natural and man-made structures, a fact that has also been associated with fractals [14]. Both

fractals and L-systems have been said to generate more aesthetically pleasing forms as they increase

in complexity, and thus possess a form of aesthetic attraction [23]. In fact, fractal forms are very

common in architectural designs [38]. This concept provides an interesting question; can structures

composed of fractal geometries provide insight into the automatic generation of aesthetic structures?

The sheer difficulty in manually designing an L-system to produce a specific form is problematic,
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and serves to justify the inclusion of an automated process, created to aid in L-system construction

with minimal human supervision.

2.2.1 Validity of an L-system

Two new definitions regarding L-systems were created specifically for the purposes of this thesis –

completeness and validity. The completeness of an L-system describes how well the system follows

the definitions for a D0L-system defined in this section. The validity of an L-system describes how

functional a system is over many iterations. A valid L-system must have :

1. a non-empty starting string,

2. at least one production rule, with at least one rule used per iteration, altering ωi

3. each ’[’ symbol paired with a ’]’ symbol, with at least one variable between each set, and

4. the LHS variable of each production rule found in the RHS of at least one other production

rule or starting string ω.

2.3 Voxels

A voxel (volumetric pixel) is a single data element in a 3-dimensional grid of elements, commonly

used for the visualization and analysis of medical and scientific data [36]. The concept of a voxel

is directly analogous to a pixel in an image – as a pixel is represented as a square data element in

a 2-dimensional grid, a voxel is represented as a cube. Typically, a voxel is in one of two states –

on or off – and is only made visible in its ’on’ state. When rendered, voxel-art produces box-like

structures, composed entirely of cubes (see Figure 2.2). These forms are simple to generate and

quick to render, as voxels that are hidden from view by other voxels are easy to locate. In addition,

calculations such as model symmetry, volume, surface area and dimension are exceedingly simple.

Figure 2.2: Examples of voxel art, with single voxel selected



CHAPTER 2. BACKGROUND INFORMATION 10

In order to draw in voxel-space, the system need only ’turn on’ necessary voxels in the space. A

3D pen is used in this respect, drawing on the 3-dimensional voxel canvas in the same way a pen

draws pixels in a 2D graphic editor. Aspects such as the pen size and orientation can be altered

as well. The canvas size for this research project was pre-set to specific dimensions of 128 x 128

x 128, now referred to as the voxels’ bounding box. This was chosen as such in order to limit the

possible size of models created this way (2,097,152 possible voxels must be processed). This size is

also sufficient enough to allow enough detail to show in the final rendered model, while still focusing

on the general shape and form as a whole. Each voxel represents a single cubed unit of measure.

2.4 Evolutionary Computation and Genetic Programming

Evolutionary Computation (EC) is a sub-field of artificial intelligence, which utilizes the foundations

of biological evolution in solving difficult problems [12]. There are several extensions and techniques

in EC, but the research present in this thesis focuses primarily on Genetic Programming (GP). GP

itself uses the basic principles of Darwinian Evolution to evolve a population of individuals based

upon each individual’s fitness within that population [26, 42, 43]. Simply stated, an individual that

is more fit will typically have a higher chance to reproduce – as will its mate – and therefore pass

on its genetic material to future generations. This concept is more commonly known as survival of

the fittest.

2.4.1 Generational Algorithm

Each stage of the evolutionary process in GP consists of a number of steps, grouped together in what

is called a single generation. Before the generational algorithm begins, individuals are randomly

generated and inserted into the initial population, and their fitnesses are calculated. Once this

is done, individuals are selected in couples from the population based upon their fitnesses, which

were computed at the end of the previous generation. At this point, each couple exchanges genetic

material, producing offspring who will carry the genetics of the parents to the next generation.

Once a new population has been created, their fitnesses are evaluated and the process loops for

a determined period of time. This entire process is outlined in Figure 2.3, and each step and its

relevance is discussed in further sections.

2.4.2 Chromosome Representation

In GP, a population is evolved in stages, and each individual in the population is a program. More

specifically, each individual in the population is a representation of a single problem solution, where

each solution is represented in a program tree structure called a chromosome. Each non-leaf node in

the tree – including its root – takes the form of an operator, and each operator’s subtrees will evaluate
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1. Initialize random or seeded population of GP trees

2. Pre-processing (optional)

3. Evaluate initial population using selected fitness function(s)

4. From 1 to max generations loop

(a) Employ elitism, if appropriate

(b) Select 2 individuals from population using chosen selection method

(c) Perform crossover on the couple with probability Pc, producing two offspring

(d) Mutate offspring with probability Pm

(e) Repeat steps (a – c) until new population is full

(f) Replace old population with new population, and evaluate fitnesses

5. Post-processing (optional)

Figure 2.3: Basic generational GP algorithm

to its operands (arguments). The leaf nodes are terminals, and are typically numbers or functions

with no arguments. In strongly-typed GP, each operator requires specific return types for each of

its argument subtrees. For example, if the operator at a node is ’AddInteger ’, it will require two

integers as operands, and return an integer itself after it and its subtrees have been evaluated. Thus,

only operators that return integers – or integer terminals – can be used as operands for AddInteger.

In order to evaluate an individual, the program generated by that individual’s program tree is

constructed using depth-first search, and then executed to some meaningful end. This decoding step

is referred to as genotype-to-phenotype mapping, where the genotype is the GP program tree, and

the phenotype is the function or program produced by parsing the tree. An example of a simple

GP chromosome representation and evaluation can be seen in Figure 2.4. The list of all possible

operands and operators that a GP can use in its chromosome representation and construction is

called the function set, and is determined prior to the evolutionary cycle of the GP.

2.4.3 Initialization

The initial population is created randomly prior to the first generation, consisting of randomly

generated tree structures. Parameters are set in place to control the size and shape of the trees

produced, in order to ensure that they do not exceed memory limitations. In addition, a typical

GP tree grows exponentially with increasing depth, and will therefore take longer to both decode

and execute. In some situations, a seeded population is used to guide the evolutionary process by

introducing more fit individuals into the initial population. Once the population is created, their

fitnesses are calculated during the evaluation phase described in the next section.
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Figure 2.4: Example GP chromosome representation and translation

2.4.4 Solution Evaluation

At the end of each generation – and during the initialization phase – the entire population is evaluated

using fitness functions. A fitness function is a means of quantitative measurement of an individual’s

success within its population with respect to a specific problem. In GP, a fitness function maps

a chromosome to a numerical value, representing its ability to solve the current problem at hand.

The score returned by the fitness function for each chromosome would be assigned accordingly as a

chromosome’s fitness, and individuals with higher fitnesses will have a higher chance of successful

reproduction. In order for an individual to be evaluated, its tree must first be interpreted. It

is important to note that although GP aims to produce an optimal solution, this is usually rare

and depends greatly on the difficulty of the problem. In many cases, a near-optimal solution is

acceptable. The ultimate goal of the GP run is to converge a population of randomly generated

individuals to a more refined population of improved, near-optimal solutions.

2.4.5 Selection

Selection is the process of determining which individuals are granted the opportunity to reproduce.

This is accomplished by extracting individuals from the population via probability based upon their

fitnesses. The chosen individuals are compared to one another, and those of the highest fitness are

given the chance to reproduce. It is generally undesirable to have only the most fit individuals take

part in reproduction, as this causes early sub-optimal convergence in the population. Therefore,

most selection techniques offer individuals with lower fitness a fighting chance to reproduce as well

on occasion, in order to keep the population diverse.

2.4.6 Reproduction – Crossover and Mutation

The reproduction stage consists of two parts – crossover and mutation. Both of these evolutionary

techniques are used to move through the solution space, which is the set of all possible solutions
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that can be generated using the GP function set. GP function sets that are more complex tend to

have larger solution spaces, as there are significantly more combinations of the functions for each

chromosome. In addition, trees that are allowed to grow large – containing a large number of nodes

– will also increase the size of the solution space. Thus, a smaller – yet sufficient – function set is

preferred.

Crossover involves taking the two parent chromosomes and exchanging large portions of genetic

material, producing offspring in the process. In GP, a common crossover technique is known as

subtree crossover, which is demonstrated in Figure 2.5. In subtree crossover, two nodes are chosen

– one in each parent chromosome – that have the same return type. These two nodes need not

be equivalent. The nodes and their subtrees are exchanged between the parents, producing two

completely new, yet similar, individuals. Crossover helps to move through the search space quickly,

jumping between largely different solutions.

Figure 2.5: Demonstration of subtree crossover with two example chromosomes.

Mutation involves taking the two resulting offspring and altering their trees slightly. This step is

meant to introduce new genetic material into the gene pool of the population, preventing convergence

and offering new solutions. A common mutation technique in GP is subtree mutation, which involves

choosing a single node in an individual, and generating a whole new subtree in its place. This is

done in a similar manner as the initialization phase. Mutation, unlike crossover, moves through the

search space slowly, and is used to ‘fine-tune’ solutions.
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2.4.7 Elitism

Elitism is used to save the most fit individual from previous generations, in order to preserve its

genetic material and increase the chances it will reproduce again. At the end of each generation, prior

to the replacement of the previous population, the individual(s) with the highest fitness from that

population are set aside and swapped into the new population. This is done by typically replacing

the worst individual of the new population. When copying the most fit individual, no modification

is done to the chromosome.

2.5 Multi-objective Genetic Programming

In EC, a multi-objective optimization (MO) problem requires the optimization of multiple features

simultaneously, as opposed to the single-objective approach. Each feature has its own target value,

though it is possible for one feature to affect the score of another. The problem introduced by

using MO evolution is that a simple ranking method will not work as it does with single-objective

evolution – it is not always necessarily clear which individual is better than the other.

2.5.1 Pareto Ranking

The most common ranking method for MO evolution is Pareto ranking, which uses the notion of

domination to discern one individual’s rank from another [12]. An individual A is said to dominate

B if it is superior in at least one feature score, and at least equivalent in all other features. If V

denotes a feature vector
−→
V = (v1, ..., vk) and A and B are similarly defined, then

A dominates B iff ∃i : ai < bi ∧ ∀i : ai ≤ bi (2.2)

This applies to a minimization problem, where each vi represents the error between the target and

the actual value for a single feature test i. The population is ranked using the following strategy.

All initial individuals that are undominated are assigned a rank of 1, at which point they are

removed from the current population. Then all the individuals from the current population that are

undominated are assigned a rank of 2 and removed. This process continues until all individuals are

ranked. The ranks assigned to each individual are then assigned as fitness scores used during the

evolutionary search. This strategy works best with low-dimensional problems, and tends to produce

outliers which excel in one feature test but fail in all others. Outliers are generally unwanted, as an

optimal-scoring individual in MO will excel in all fitness categories.
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2.5.2 Rank-Sum

Rank-sum is another scoring strategy used in MO problems, which can be applied to problems with

higher dimensionality [4]. Consider a search problem with feature vector
−→
V = (f1, ..., fk). For

each feature fi, the fitness scores of every individual within the population are ranked according

to their position with respect to others in the population. Each ordered rank ri is assigned to a

rank vector
−→
R = (r1, ..., rk) for that individual. An optimal score within the population has a rank

vector of ri = 1 for 1 ≤ i ≤ k. Once the rank vectors of each individual in the population have

been calculated, a single weighted summed rank score is assigned to each individual. This value

is calculated as fit =
∑
i wiri, where each weight wi is assigned by the user. These weights are

entirely optional and default to a value of 1 if not used. This strategy works well for creating a more

diverse population of individuals which are better in most fitness categories, and for removing the

appearance of high-ranking outliers common with pareto ranking.



Chapter 3

Literature Review

This chapter introduces the previous work by other authors in the field of evolutionary computation

and its application to image and form design. Existing aesthetic measures, many of which are

extended and explained further in this thesis, are introduced here, as well as some of the earliest

contributions to computational aesthetics.

3.1 Art and Evolution

Evolutionary computation has been used to produce designs and artwork for a variety of purposes

– from artwork generated from user-guided evolution to architectural planning and form generation

[56]. The works seen in [3, 27, 58] explore the possibilities of using EC to generate a wide variety of

images through 2D texture and fractal formulae and other well-known methods. Various implemen-

tations of systems which focus on the generation of 3D abstract forms can also be seen in [27], which

rely solely on interactive evolution. This lack of a quantitative fitness function is a severe drawback

when the amount of time to render a single 3D form and the time it takes to manually assign fitness

scores to an entire population is considered.

EC has recently been applied to the field of architectural design, to aid in the design process of

structural layouts, architectural construction and organization [25]. Due to the number of factors

to be considered when designing a building, the problem of constructing a building using EC is

extremely difficult, especially when the practicality and usefulness of the end result is considered.

The work in [25] divides these factors into three categories – topology, shape and size optimization.

This introduces many potential fitness functions to the problem of general architectural design,

such as size, shape, weight, organizational elements and aesthetic appeal. Watanabe used light

distribution on window surfaces as a fitness function to evolve the placement of buildings in a city

block, the methodology of which is used in actual city design [64]. The IGDT tool described in [60]

16
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was used with a GA to evolve a population of architectural trusses based on a variety of qualitative

and quantitative fitness functions, including economic and physical practicality. The aesthetic value

of the truss was left to the designer’s judgement, guiding the evolution. The central focus of the

evolution was the avoidance of the optimal, unaesthetic solution, which was already known and

considered flat and uninteresting. The development of a final solution led to the discovery of several

new solutions meant to inspire the designer, and the tool existed as a true design aid.

Coia explored the usage of GP and shape grammars to generate buildings according to a user-

specified form criteria [8]. The shape grammar used was implemented through the CityEngine

system, which uses non-recursive procedural modeling techniques to render high-detailed buildings

and city layouts [41]. Each individual in the population was scored according to the criteria imposed

by the user, which included target form dimensions, maximizing the number of unique surface

normals and 2D form-fitting. Garces-perez et al. used GP to solve common facility layout design

problems, focusing on room placement within the bounds of a supplied manufacturing facility [11].

Their fitness functions focused on the practicality and appropriateness of the design produced,

rather than through interactive evolution. A similar approach using GA and a grammar-based floor

plan design for residential houses was implemented by Rosenman in [48], where a variety of fitness

functions were used to measure the feasability of the design, such as minimizing room perimeter to

area ratio and fulfilling zone requirements. In addition, an interactive element was implemented,

allowing a user to assign a separate score reflecting an individual floor plan’s aesthetic appeal.

Although EC is not applied, Lipp et al. introduced an interactive grammar-editing tool for

architectural design which attempted to address some of the same issues EC addresses – namely the

difficulty in manually creating and editing a shape grammar [29]. Although this method removed

the need for direct grammar editing and focused solely on visual editing and direct feedback, it was

completely interactive which may be considered undesirable due to time constraints – especially for

very complex grammars. Terzidis explored the applications of procedurally-generated architectural

designs through the use of algorithmically-controlled grammars to produce anything from commercial

buildings to organic forms [57].

EC has also been used to reproduce and generate models and images of natural phenomena,

such as plant and animal lifeforms. In 1991, Karl Sims explored the possibilities of using EC

to generate 3D plants using a GA and the concepts behind various plant-generation algorithms

[53]. The chromosome of his GA encoded the various parameters required by these algorithms and

interactive selection guided the evolutionary process. His work also delved into the generation of

2D images through EC using an expression-based approach, which successfully resulted in complex

and interesting images. A GP-approach was used by Watanabe in [64] to evolve the production

rules of an L-system designed to produce 3D plants using a Turtle Graphics drawing criteria. As

a fitness function, the distribution of light over the leaves of the L-system-generated plants was

calculated in an attempt to generate plants which replicated the actual growth patterns of those on
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Earth. The evolution of plants has also been implemented and extended in other various works using

L-systems, such as the artificially-created garden in [21] and in other applications [37]. Sims used

EC to evolve the structure and movements of 3D virtual creatures, simulating their movement and

progress in order to assign fitnesses to each individual [54]. Individuals were stored in directed graphs

and evolved using a GA. Hornby used parametric L-systems and GP for a similar goal, measuring

distance travelled from the creatures’ center of mass as a fitness function [18]. The appeal of their

work rested on the idea that the individuals in the population would learn to move, as natural

lifeforms do over time.

Others focused on using EC to produce landscapes, such as Walsh et al. who used a GA to evolve

a set of parameters for a fractal-based terrain generation API in order to generate lush, aesthetic

terrains [63]. Their fitness function was based on concepts derived from Birkhoff’s aesthetic measure

of order and complexity, measuring the difference between an image’s size and its Kolmogorov com-

plexity to represent order, and the image’s size to represent complexity. The Kolmogorov complexity

was approximated using JPEG compression, and the image used was a snapshot of the terrain. The

results of the experiment were analyzed via online survey. The GENR8 system – a Maya plugin

created by Hemberg et al – uses EC in evolving 3D surfaces [16]. Each surface is constructed using

an organic growth model similar to that of plants, which is implemented in practice using the con-

cepts behind Map L-systems. The GENR8 system evolves a grammar for the Map L-system using

interactive evolution, which in turn generates an organic surface intended to aid designers.

EC has been used to generate general objects as well, for design inspiration and potential physical

implementation. Hornby used an Age-Layered Population Structure (ALPS) to evolve a series of

tables using a complexity metric as a fitness function [19]. His metric is described later in this

section. Pang et al. introduced an interactive evolutionary technique for modeling 3D fractals, using

Hausdorff dimension – which is calculated using the box-counting method – as a fitness function

and Iterated Functions Systems to generate the fractal art [40]. The fractals are generated using a

GA, rendered onto a 3D coordinate-space using voxels and can be edited interactively at key points

during the evolution. The system was used to generate jewelry and light patterns.

3.2 Research in Aesthetics

Architectural design is one of the primary applications of the generation of 3D forms. Interactive

evolution – though time-consuming – is beneficial when the sheer complexity of aesthetic form is

considered. The difficulties in quantifiably justifying the aesthetics of a form are reasonably so due

to the subjectivity of the concept of aesthetic appeal. This can be seen when surveying the aesthetic

diversity of any city scape or rural town. Even so, many have explored the visible complexities

and common qualities of many aesthetic structures [52, 51]. Symmetry, color usage, structure

orientation and other factors have been suggested to contribute to a structure’s aesthetic appeal.
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Fractal patterns – from small facades to the foundations of the building itself – can also be seen in

the simplest structures. In fact, many believe that the implementation of fractals in architectural

design is a staple to the natural being of humans, who are drawn to the organic fractal forms in

nature [9, 23].

The Golden Ratio is one of the oldest and most commonly-known aesthetic measures. Two

quantities are said to be in the golden ratio if the ratio of the sum of the quantities to the larger of the

two quantities is equivalent to the ratio of the larger to the smaller. Artists, sculptors and architects

since the Renaissance have attempted to proportion their work to approximate this concept. Birkhoff

later conceptualized a quantitative measurement for aesthetics in his measurement of vases [7]. In

1928, he based the human perception of aesthetics on two criteria, order and complexity. Order O

related to the geometrical relationships within an object – such as symmetry – and complexity C

related to the visual stimulus of the object in relation to the level of attention each detail requires.

He believed that complexity negatively impacts upon the aesthetics of an object, and his overall

aesthetic measure was M = O/C. He applied this concept to a class of ancient Chinese vases,

measuring the perpendicular, tangent, vertical and horizontal order of specialized points along the

outline of a particular vase, and complexity was measured as the number of these points. His

preliminary findings inspired future work in the field of computational aesthetics.

The symmetry of an object is another well-known aesthetic measure. A large number of man-

made objects, as well as of those in nature, are symmetrical in shape and form. The measurement

of symmetry is simpler for a 2D image, and a variety of ways to calculate it have been proposed.

Lipson et al. defined a symmetrical body as “when it can be divided into parts that are related to

each other in certain ways. The operation of transferring one part to the position of a symmetrically

related part is termed a symmetry operation, the result of which is to leave the final state of the

body indistinguishable from its original state” [30]. These operations – in 2D – are mirror, rotation

and glide. In 3D, new operations are added – inversion centers, screw axis and mirror planes –

which make the problem of calculating symmetry much more difficult. Gunlu et al. produced a 2D

symmetry calculation using DCT coefficients [13]. They tested this calculation on a series of 2D

images of human faces. Kazhdan et al. produced a measure of symmetry for 3D models called a

Reflective Symmetry Descriptor (RSD), which represents a measure of the reflective symmetry of the

model for all planes through its center of mass [24]. The model is converted to a voxelized version

and its reflection is computed, at which point 3D planes are passed through the model’s center of

mass. The differences between the original form and its reflection are calculated and a spherical

function which describes the model’s symmetries is generated. This method is able to ignore most

noise in the model, which takes the form of small details and textures. The reflective symmetry

measure used in his RSD is also commonly used to calculate symmetry in a 2D image.

Entropy is a measure of the uncertainty that is associated with a random variable [2]. This can



CHAPTER 3. LITERATURE REVIEW 20

be calculated using Shannon entropy, which is calculated using

H(X) = −−
∑
x∈X

p(x)logp(x) (3.1)

where X is a distribution of random variables. The level of uncertainty is directly associated

with the value of H(X). Rigau et al. observed the similarities between Birkhoff’s aesthetic measure

when using Shannon entropy to approximate order, and Kolmogorov complexity to approximate

complexity [47]. Although subjective, the entropy of an object may be directly related to its visual

complexity, and therefore aesthetic appeal.

Kolmogorov complexity is a direct measure of the computational resources that are needed to

correctly represent an object [28], which is also commonly known as the Algorithmic Information

Content (AIC). More specifically, it defines the minimal number of resources that a data set can

be represented with. One of the primary issues with this measure is its incomputability – there is

no formal definition for the function of complexity described. Many approximations exist, which

are tailored specifically to each applicable problem. For example, JPEG compression has been used

to approximate the Kolmogorov complexity of images, using highest-quality compression techniques

[63]. Repeated patterns, whether in images or written messages, are considered simple and this is

reflected directly in the compression-method for calculating complexity.

Hornby examined a measure of structure and organization by combining his proposed measures

of modularity (M), reuse (R) and hierarchy (H), which could be used as a measure of complexity

[19]. He compared his metrics to complexity metrics that are well known, such as AIC, grammar

size, tree complexity, and number of build symbols in a grammar. He proposed a final measure of

complexity, which could be calculated as a measure of structure and organization

SO =
√
M2 +R2 +H2 or SO = M +R+H (3.2)

Machado et al. proposed that an image’s aesthetic appeal is based on a relationship between

the complexity of an image and the difficulty in processing an image [33]. The image’s visual

complexity (IC) is based on the concept that humans favor unpredictability in images, while the

image’s processing difficulty – or complexity – (PC) is based on the human mind’s ability to easily

process simpler images, causing preference for these images subconsciously. Machado uses a fractal

image in comparison, which can be generated using a simple mathematical model, yet appears

increasingly complex for each level of detail. An image is then considered aesthetic if IC is high,

while PC is low, and the aesthetic measure is then computed as

M(I) = IC(I)/PC(I) (3.3)

for an image I. The IC value was then estimated as the amount of effort expended in compressing a
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2D image, using a ratio of the visual difference between the compressed and uncompressed images,

and the difference in file sizes of the compressed and uncompressed images. The PC value was

estimated using a means of fractal image compression known as the Box-counting method, which

is considered another measure of complexity commonly used for calculating the fractal dimension

of a self-similar fractal image. This method involves splitting an image into a grid of increasing

resolution in areas where change in the color of surrounding pixels occurs. The more an image is

divided, the higher its fractal dimension.

The fractal dimension of an image is in itself a complexity measure, measuring the scaling between

patterns at different magnifications. Larger values are more complex, while smaller values are visually

simpler. Spehar et al investigated the relationships between the human preference of images with

varying fractal dimension [55]. Images were chosen from natural, mathematical and human-made

fractals, and it was discovered that images in the fractal dimension range of 1.3 to 1.5 were preferred

over others. For Machado’s work, a value of 1.35 was used as a target score for the PC value.

Exploration has been done in finding the similarities between classical music and fractal geometry

[17, 20]. Hsu et al. examined the frequency of incidence of the note intervals of many classical songs,

examining their similarities on a log-log plot. Interestingly, the plots are similar to those generated

by distributions exhibiting the properties of 1/f noise. 1/f noise – or pink noise – refers to a

distribution of signals whose power specral density is inversely proportional to the frequency. The

noise is an intermediate between white noise (1/f0) and red noise (1/f2). Pink noise is of the form

S(f) = 1/fα where 0 < α < 2. An exceptional amount of research has been done with respect to

1/f noise, beginning with work by Voss and Clarke in 1976 with their research examining 1/f noise

seen in voltages across seminconductors [61]. It has been found to be common in natural phenomena

such as earthquakes and unnatural such as music [34]. The presence of 1/f noise is often considered

to be a universal phenomena, which makes it of great interest for research potential. Its applicability

to aesthetics has been focused thus far on human cognition, speech and music.

A model of aesthetics was proposed by Ralph which measures the distribution of color gradient in

a 2D image, and fits it to a normal distribution [46]. The value produced is known as the Deviation

from Normality (DFN). To accomplish this, the color gradient is first computed across the image –

for each RGB color channel – then the mean and standard deviation of the data is calculated. Using

this information, the distribution can be estimated and constructed as a histogram, where it is then

compared to the actual histogram generated from the gradients of the image. The DFN value is

calculated as

DFN = 1000
∑

pilog(
pi
qi

) (3.4)

where pi is the observed probability in bin i of the histogram, and qi is the expected probability

assuming a normal distribution, using the data calculated above. Using this formula, a DFN of

0 indicates a perfect fit to the normal distribution curve. This measure has been used in previous
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research in the evolution and production of images and image filters [6, 35, 49]. These previous works

used GP principles to evolve a set of images and filters encoded as formulae in the GP chromosome,

using the DFN as a fitness function, as well as the mean and standard deviations of the distribution.

Color palette matching was also used to guide in the evolution of images whose color palette fit

within the color quantized bins of a source image’s color histogram. Previous research done by

Ralph showed that common values of DFN = 0, µ = 3.3 and σ2 = 0.75 were commonly found in

Impressionist masterpieces.

The majority of the aesthetic measures available at the time of writing of this thesis are primarily

applicable to 2D images. These functions tend to fall into one of two categories – distribution- and

complexity-based [15]. Despite the wide variety of these aesthetic measures – both in 2D and 3D

– the research is very subjective and still in its early stages of life, opening many possibilities for

future research.



Chapter 4

Tree Encoding and Model

Generation Process

This chapter explains in detail the most crucial elements of the system. To ensure the full un-

derstanding of the system’s entire process by the reader, the following sections were put together,

explaining the reasoning and solutions behind each implementation decision. There were many goals

that were considered prior to the creation of this system, which influenced its design. The major

goals include:

• The system must be able to produce 3D models, which in turn are generated from the evalu-

ation string of an L-system.

• The L-system of a model must be encodable within a GP chromosome, and must be general

enough to allow the construction of any possible L-system, yet constrained enough to reduce

the number of invalid L-systems generated.

• The 3D models must permit accurate geometric analysis.

• The system itself must run efficiently, taking runtime into consideration.

The entire system runs through JNetic, an EC-based software meant to ease the manual workload

of the user [5]. JNetic used a GA to evolve a population of vector images, using direct color distance

matching between an individual and a target image as a fitness function. This system was extended

heavily for this thesis and as a side-effect, the complexity of the system grew substantially, especially

regarding the system loop. The GA was swapped out and replaced with a GP powered by Sean Luke’s

ECJ, a Java-based EC package [32]. The ECJ system offered extensive control to the programmer,

giving full access to the function set and GP parameters. For the purposes of the research present

in this thesis, the JNetic system was further modified to incorporate new extensions to ECJ’s GP

23
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back end, as well as new interface elements required for the manipulation of the models generated

during each run. The entire system, its extensions and the ECJ back end is written in Java and

Java Swing, with the 3D modeling handled by Java 3D using JavaView.

4.1 System Loop

A significant amount of processing is done in the system during the course of a single GP run, as

well as pre- and post-processing of the models, files and parameters used to guide and influence the

evolutionary process. This process is largely step-by-step, and is explained generally in Figure 4.1.

This chapter describes the majority of these steps in greater detail, but a general walkthrough of

the evolutionary algorithm and model conversion process is described here.

Figure 4.1: System processing loop
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First, before any model processing or evolution takes place, parameter files are generated con-

taining the GP parameters required by ECJ in the pre-processing stage. In addition, all L-system

parameters and constraints are calculated and stored, such as the range of iterations and L-system

alphabet. Once this step is complete, the initial population is generated randomly using a standard

GP initialization mechanism. At this point, the GP loop begins and executes until a user-specified

number of generations elapses.

Before the population can be evaluated, individuals must be converted into models from their GP

tree representations during the decoding phase. This is done for each individual in the population.

The GP tree uses a grammar-like encoding which stores a complete L-system definition, including

the number of iterations, the starting string and a set of production rules. Once the L-system is

decoded, it is processed for the number of generations decoded from the tree, producing an evaluation

string of symbols from the L-system alphabet. This string is used to generate a model in 3D, by

parsing it iteratively one symbol at a time and mapping each symbol to a pre-defined Turtle drawing

function. The model produced from this parsing exists as a voxel volume, which is further processed

into a 3D mesh consisting of a set of vertices, edges and face data. Final processing is done on this

data and assigned to the respective chromosome that produced it, signaling the GP process that the

chromosome is ready for fitness evaluation.

The fitness evaluation stage processes each chromosome individually, assigning a score for each

fitness function chosen by the user for the current GP run. Once this has been done, each chromosome

is ranked within the population, and the standard GP evolutionary operators are executed, producing

a new population. The GP loop then continues back at the decoding phase. Although each step

required for the decoding process seems simple in detail, the amount of processing behind each step

is significant and tends to grow rapidly with increases in L-system complexity. Each of the steps in

the decoding process is described in greater detail in the following sections, as well as the intentions

and reasoning behind each one.

4.2 Genetic Programming and Tree Encoding in System

4.2.1 L-system Encoding Requirements

The choice of the GP function set used to encode an L-system definition within a chromosome is

paramount to the success of this thesis, and is influenced by a number of factors. More specifically,

a complete L-system encoding must follow all aspects of the D0L-system definition, which includes

the starting string ω, number of iterations, and a complete set of production rules. This concept

was explained previously in Section 2.2, introducing the concepts of completeness and validity. The

encoding should ensure the validity of produced L-systems – meaning that all production rules must

map from symbols in Σ to existing substrings within Σ∗, and each symbol with a production rule
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mapping must be present in at least one other production rule’s RHS or in ω in order to guarantee

its use. This also implies that ω 6= ω1 6= ω2 6= ... 6= ωn. In order to guarantee the increase in

structural complexity common in fractals for increasing iterations, the definition |ωi| < |ωj | ∀(i < j)

should be followed, where |ωi| is the magnitude or length of the string ωi.

There is a fault in this definition, however, as L-system structural complexity does not always

translate into output string complexity. For example, the strings sa = {F + + + + + F} and

sb = {FFF + FFF} are both of magnitude seven, but sa only physically alters the image twice

using F , where sb alters it six times. This side-effect is directly linked to the production rules of

the L-system. To further this example, the production rule F → F + + + + has no effect on the

complexity of the previous string, since ν(LHS)= ν(RHS), where ν(s) is the number of variables

present in a string s. Therefore, the production rule FF → F+ always reduces the complexity of

the previous iteration’s evaluation string.

The definition is now extended to ν(ω) < ν(ω1) < ν(ω2) < ... < ν(ωn) and for each production

rule, ν(LHS) < ν(RHS). This will ensure that the complexity of ωi increases for each iteration with

respect to the final rendered result. These definitions impose a decidedly necessary constraint on

the type of L-systems generated, which in turn limit the generality of possible results. In addition

to these general rules, a few more specific rules are outlined here.

Push and Pop Symbols

The push and pop symbols (’[’ and ’]’) are used to store the current global state of the system and

push it to the top of a FIFO (first-in first-out) stack. With respect to a Turtle Graphics environment

– as is used in this thesis and explained in Section 4.4 – this stores the current cursor coordinates

(x, y, z), and global variable values (sizes and orientations). In order to ensure the validity of an

L-system, each ’[’ must have a matching ’]’, and so the number of ’[’s and ’]’s in a string must be

equal. This property applies to the starting string ω, each production rule, and each subsequent

ωi. Since the push/pop symbols store and restore global states, they are only useful if the canvas

is altered after the initial push and before its paired pop symbol. For example, since the string

{F [+ + +]F} does not alter the image between the push/pop symbols, it is equivalent to {FF}.
Therefore, there should be at least one variable between [ and ].

Use of Variables in Production Rules

As mentioned in Section 2.2, every symbol in Σ has a mapping in P , but some only map to them-

selves: s → P (s) where P (s) = s. These symbols are typically non-variables that do not alter the

final image. To ensure that the system is context-free, variables may only be associated with a single

production rule mapping (LHS). Variables that map to Σ∗ must also be present in the RHS of at

least one production rule, otherwise their mappings are never used. Finally, there must be at least

one s→ P (s) where s ∈ ω. If not, ω will never be altered by the production rules of the L-system.
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L-system String Limitations

An L-system’s evaluation string grows exponentially with each iteration, even with simple alphabets

and production rules. In order to decrease the time necessary to parse an L-system’s final evaluation

string, limitations should be made on how fast a string can grow and by how much. This can be

done by limiting the size of the RHS of each production rule, as well as the size of ω. In the GP

tree, this can be accomplished by limiting the size the tree can grow, or taking a substring of all

strings (ω and RHS) that exceed a preset capacity.

4.2.2 Function Set

When choosing a function set for the GP language, there are a number of factors that must be

considered. First, the complexity of the set dictates the size of the solution space, where a more

complex function set denotes a larger solution space to search. A simpler function set reduces the

size of the search space, but severely limits the GP system’s capacity to produce a wider variety of

meaningful solutions. When designing the function set, it is also important to reduce the amount

of undesirable influence the set has over the GP’s evolution. Choosing simpler functions may result

in a failure of the GP’s ability to produce a meaningful solution, while choosing a wide variety of

functions may be unnecessary to the solution. Thus, an understanding of the problem is an asset. It

is also important to avoid the introduction of functions that overly bias the search, such as offering

too much information to the GP.

Jacob et al.[22] produced a method of D0L-system encoding for GP which addressed many of

the issues described in the previous section. Minor extensions to this encoding were implemented

in the system which enforce the definitions of L-system validity and completeness. The GP types

used in this thesis for L-system encoding can be seen in Table 4.1 and the function set can be seen

in Table 4.2. A visual representation of the general GP tree can be seen in Figure 4.2.

The encoding presented in this thesis and Jacob’s are virtually identical except for a few major

differences. In Jacob’s encoding, stacks are used to represent expressions from the L-system alphabet

for the RHS and starting sting, which can grow to any size. The LHS of each production rule uses a

single symbol from the alphabet, instead of choosing only from variables. In addition, there are no

restrictions on variable use for the RHS of production rules in his encoding, as any combination of

symbols can be used. This leads to the problem of unused production rules. In order to encourage

the production of valid L-systems, Jacob uses custom GP operators which favor valid L-systems

and production rules during crossover and mutation. These differences cause Jacob’s encoding to

produce more invalid L-systems during the GP initialization, which is an issue addressed in the new

encoding.
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Table 4.1: GP types used in the language

Representation Description
Atomic Types
NIL Null identifier, required by ECJ
N Integer representing the number of iterations
T Tree root type, containing starting string, learning rules and iterations
L List of characters (string)
C Single character
R Learning rule of the L-system
Subtypes of L
Llist A general ordered list of symbols in the L-system alphabet
Lstart A list of symbols, used for the initiator
LRHS A list of symbols, present on the right-hand side of a learning rule
Subtypes of C
Csym A single symbol/variable existing in the L-system alphabet
Cvar A single variable existing in the L-system alphabet
Subtypes of R
Rrule Learning rule(s)

Table 4.2: Function set for the GP Language

Returns Function Description
T lsystem(N, Lstart, Rrule) Returns a complete L-system
N iteration( ) ERC representing iterations between 2 and N

Lstart startS(Llist, Cvar, Llist) Starting string, containing ≥ 1 variable
Llist listT( ) Return list {’C’}
Llist listT2(Csym) Return list {symbol}
Llist listBranch(Llist, Llist) Symbol list composed of two other lists
Llist listSBranch(Csym, Llist) Symbol list composed of symbol + list
Llist pushPop(Llist, Cvar, Llist) Symbol list enclosed in ’[ ]’
LRHS rhs(Llist, Cvar, Llist, Cvar, Llist) RHS of a learning rule

Csym symbol( ) Single symbol chosen from SYM list as ERC
Cvar variable( ) Single variable chosen from VAR list as ERC

Rrule ruleSingle(Cvar, LRHS) Single learning rule
Rrule ruleBranch(Cvar, LRHS , Rrule) Single learning rule with branch
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Figure 4.2: General GP tree representation
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As with Jacob’s encoding, the root of the new encoding returns an L-system composed of a start-

ing string and one or more production rules. In addition, the number of iterations is also included

in the tree as an ERC within a user-specified range, as seen in the function lsystem. There are two

functions that return the Rrule type – one that returns a single rule, and another that returns a

rule followed by one or more learning rule(s). These allow the GP to evolve any number of learning

rules, but enforces at least one. Llist types return a list of symbols and variables as a sub-expression,

similar to the stack used in Jacob’s encoding. Functions that return C and N types are terminals

which actually return an ERC integer within a certain range. The primary differences between the

two encodings is not the function set itself, but in the constraints enforced by certain functions.

These constraints, their benefits and the remaining function set are explained here, in the order

they would be evaluated in the GP tree.

Preprocessing

Before the GP begins, the L-system alphabet is split into two sub-lists – VAR and SYM. The SYM

list contains all symbols from the alphabet except for push and pop, which are removed completely.

The VAR list contains every variable that can be used in the LHS of a production rule. This includes

any non-drawing variables such as A and B, and any drawing variables such as C, S and F. Two

additional lists are maintained as well during the GP tree decoding phase – USED and CURRENT.

The CURRENT list maintains a list of all the variables used in the starting string and RHS of any

production rule which have not yet been used in the LHS of a rule. The USED list maintains a

list of all variables used in the LHS of production rules. These lists are updated continually as the

L-system is decoded, and are paramount in enforcing valid L-systems.

Starting String

The starting string of the L-system is processed before the production rules. Since only variables

are used in the LHS of production rules, the starting string must contain at least one variable in its

expression. The startS function in the function set enforces this by requiring a Cvar type between

two symbol sub-expressions. Once the full expression is generated, each unique variable used in the

expression is added to the CURRENT stack. The size of the starting expression is also constrained

and cut off after a certain length is attained.

Production rules

The variable function returns an ERC integer between 1 and |V AR|, which is used to return a

variable from the VAR list. For the LHS of a production rule, this number is instead used to choose

a variable from the CURRENT list, removing it from CURRENT and adding it to USED. This

ensures that the current production rule is guaranteed to be used at least once. If the CURRENT

list is empty, then no further production rules are processed. The RHS of a production rule only uses
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one function, rhs. This function is similar to that of the starting string, but enforces the use of at

least two variables instead of one. This guarantees that the complexity of the L-system’s evaluation

string will always increase with the use of each production rule. Once the RHS expression is built, it

is processed and all variables that are in RHS but not in the USED and CURRENT lists are added

to the CURRENT list, in order to aid further production rules that have not yet been processed.

As with the starting string, the returned RHS expression is constrained in size.

Push and Pop

The push and pop function pushPop uses the same parameters as the starting string function, but

instead of returning the expression as-is, it instead returns the expression bounded by ’[’ and ’]’.

This was added to ensure that each ’[’ symbol was paired with a matching ’]’ symbol, and that every

push and pop would bound at least one variable in order to make physical alterations to the final

rendered form, prior to restoring the environment settings with ’]’. If these symbols were simply left

to the SYM list, there would be no constraint on their pairing, and many invalid L-systems would

be produced containing them.

L-system validity decomposition is possible – albeit rare – in the new encoding. Crossover, for

example, might swap two RHS expressions between trees, removing sub-expressions necessary for

certain production rules. Mutation also has the ability to cause this effect, and so certain steps were

taken in order to reduce the impact of the GP operators. Validity labeling of L-systems affects the

fitness function values of an individual, reducing the chances that an invalid L-system can reproduce.

The constraints of the function set described previously also reduce this occurrence dramatically.

In fact, the only possibility to generate an invalid L-system during crossover and mutation is to

completely remove all variables from the starting string, rendering all production rules useless.

This, however, results in no drawing being done to the canvas, and therefore poor fitness values for

that individual.

4.2.3 Walkthrough Decoding of Sample Chromosome

A sample chromosome can be seen in Figure 4.3, with the alphabet and variable lists shown. First,

the SYM and VAR lists are created, containing {A,B,C,+,-,*,/} and {A,B,C}, respectively. Starting

from the root, the number of iterations is evaluated as 3. Next, the starting string is decoded.

Since each ERC for variables and symbols refers to an index in the VAR and SYM lists, and the

sub-expression is created using depth-first search, the resulting string is -CC+. The variable C is

then added to the CURRENT list, prior to decoding the production rules.

There is only one production rule here. First, the LHS variable is evaluated. Though the ERC

was generated between 1 and 3 (the length of the VAR list), modulus arithmetic is used between

it and the length of the CURRENT list. Since the CURRENT list is only length 1, it will be 1,
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Figure 4.3: Sample chromosome with lists and ERCs evaluated, and final L-system produced

and therefore correspond to the symbol C from the list. The symbol C from the CURRENT list is

removed, and added to the USED list. The RHS is evaluated just as the starting string was using

depth-first search to create the sub-expression. First, pushPop returns [CC/], which is added to

the rest of the string produced to the right, resulting in [CC/]CCA*C. If there were any further

production rules, the new variable A would be added to the CURRENT list. The final resulting L-

system has a starting string of -CC+, production rule C → [CC/]CCC*C, and runs for 3 iterations.

If certain constraints were not imposed – such as the use of the CURRENT and USED lists – then

the resulting L-system would have the same starting string, but the production rule would instead

be B → [CC/]CCC*C, which would never be used and result in an invalid L-system.

4.3 L-systems Used and their Respective Alphabets

Once the L-system has been decoded from the chromosome, it is parsed iteratively in order to draw

on a 3-dimensional canvas. Each symbol in the L-system alphabet corresponds to a specific function

whose context depends on the L-system alphabet type chosen. Three different L-system alphabet

types were implemented for this thesis which were organized into two categories: Voxel-space drawing

and Plant-drawing alphabets.



CHAPTER 4. TREE ENCODING AND MODEL GENERATION PROCESS 33

4.3.1 Voxel-space Drawing Alphabets

Two of the alphabets used in the system use voxel-space drawing. The Voxel-based Model System

(VMS) is the simplest form of voxel drawing of the two alphabets, closest to the Turtle-Grahpics

method described in the previous section. There are two 3D spaces that are used here – the voxel

space and the fractional space. The voxel space is the 128-cubed volume described earlier, and

the fractional space is a 128-cubed volume composed of floating-point measurements. In the voxel

space, movement occurs on an integer level (voxel-to-voxel), where in the fractional space the pen

can move in real measurements (fractions). As the L-system evaluation string is parsed, the pen is

moved accordingly in the fractional space by the set amount. Once it has stopped, its coordinates

are converted to voxel-space integer coordinates, and the voxels between the starting and ending

points of the pen are turned ’on’. The two spaces are used in order to compute more realistic angles

when moving through voxel-space, since movement in a voxel environment only consists of 90-degree

angles. The pen initially starts at voxel (64, 64, 64). In the event of the pen moving out of the

bounding box, it is either reset to this starting point, or the model is marked as ’invalid’.

The Surface-based Model System (SMS) is a variant of the VMS. Instead of moving freely in 3D

voxel space, the pen is confined to a 128 x 128 canvas located at the base of the voxel bounding

box. As the pen moves across the canvas, the lowest possible unmarked voxel at the pen’s (x, y)

coordinate is turned on. Therefore, as the pen moves over voxels that it has already marked, voxels

higher on the z-dimension are turned on, building structures upwards and creating landscapes. This

alphabet was created in order to produce 3D fractal textures. The pen initially starts at voxel (64,

64, 0), and returns to this point in the event that it moves out of bounds.

4.3.2 Plant-based Alphabet

The Plant-based Model Language (PML) is directly related to the L-system alphabets used by Lin-

demayer et al.[45]. Using simple Turtle Graphics drawing functions, lines are drawn in fractional

space at different angles and lengths. This alphabet was added in order to test the capabilities of

the system in producing fractal-like forms in addition to plants, such as the sierpinski triangle.

4.3.3 L-system Alphabet

Both voxel-based systems have similar alphabets, as can be seen in Table 4.3. The variables are

used for drawing on the canvas, as well as for replacement in the L-system production rules. The

majority of the alphabet is used to manipulate the state of the Turtle – such as angle and position

– as well as the global state – such as angle modifiers and pen size. In addition, the voxel-based

systems use more unique modifiers called gravity wells, which are explained in detail in Section 4.4.3.

The column labeled PML in Table 4.3 shows whether certain symbols pertain to the PML as well,

or are simply confined to use with the voxel-based systems. For all three systems, each symbol used
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may not necessarily be treated in the same way. For example, in the PML the symbol F is used to

draw a line, where the other two systems use F to move forward while drawing nothing.

Table 4.3: L-system Alphabet

Character Description PML
Variables
A Replacement character with no drawing potential !

B Replacement character with no drawing potential !

F Move forward, draw nothing !

C Move forward, draw a cube of global width/height/depth
S Move forward, draw a sphere of global radius
State Manipulators
+ and – Rotate position on the X-axis !

* and / Rotate position on the Y-axis !

@ and & Rotate position on the Z-axis !

[ and ] Push/pop global coordinates and state !

W and w Increase/decrease global width
H and h Increase/decrease global height
D and d Increase/decrease global depth
U and u Increase/decrease width/height/depth simultaneously
< and > Increase/decrease alteration scale
X and x Increase/decrease X-rotation angle !

Y and y Increase/decrease Y-rotation angle !

Z and z Increase/decrease Z-rotation angle !

Other
G Create gravity well at current position
g Create repulsion field at current position

4.4 Model Conversion Process

Evaluation of the models is of utmost importance in this thesis. The fitness functions used – which

are defined in Chapter 5 – each vary with respect to the data they need for computation. These

functions, whether geometric or aesthetic, require extensive geometric information from the models

in order to calculate their fitness scores. The models generated from the L-system in previous

steps are composed entirely of voxels in a 1283 volume. For a few of the fitness functions used in

this thesis, this is acceptable, but many of them rely solely on the surface make-up of each model,

measuring surface normals, areas and distributions. In voxel space, each surface is composed of four

vertices forming a square, where each square is exactly the same area as all others on the surface.

In addition, since each voxel is a cube of the same orientation in 3D, there are only six possible

surfaces and therefore six possible normals – (1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1) and (0,0,-1).

In order to solve this issue, a surface is built over the voxel volume, generating a triangulated mesh
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capable of additional normals, surface areas and edge lengths. This is done using the Marching

Cubes Algorithm, outlined in Section 4.4.2. Once the algorithm has generated a mesh, additional

post-processing is done to the model in order to prepare it for fitness evaluation, which is outlined

in Section 4.4.3.

4.4.1 Voxel Distance Calculation

Prior to further processing, the voxel-volume is subjugated to distance calculation at each voxel.

This step involves going through every ’enabled’ voxel and finding how deep it is within the model.

This is easily computed by calculating how far it is from the first occurrence of a ’disabled’ voxel

from its position, radiating outward. Although potentially time-consuming, this step is necessary for

the Marching Cubes Algorithm in order to aid in producing a larger set of unique surface normals.

4.4.2 Marching Cubes Algorithm

The Marching Cubes Algorithm was proposed by Lorensen et al. and is used to create a triangular

mesh that approximates an iso-surface [31]. The algorithm takes in a volume composed of iso-values

– which are equivalent to the voxel-values in voxel space – and generates a surface that intersects

the outer-most voxels. It takes into account the actual iso-values as well in order to more accurately

represent the surface, increasing the number of potential surface normals. The algorithm consists of

two steps – finding the triangulated surface from a given iso-value, and calculating the normals to

the surfaces for each vertex in each triangle.

In the voxel-volume, voxels are processed eight at a time, grouped into cubes consisting of a

single vertex. The algorithm uses the iso-values of each voxel in each cube to determine how the

surface interects the cube. A surface intersects a cube only if the iso-value of the vertex exceeds or

equals the value of the surface to be constructed. Vertices outside the surface are disabled, while

those inside are enabled. Once all cubes are processed, the list of vertices (ordered) is added to the

mesh, which can be generated by connecting each vertex to its successor in the list. This produces

the mesh that is used for further processing. A more detailed description of this algorithm can be

found in [31].

4.4.3 Post-processing Steps

The Marching Cubes algorithm produces a complete list of vertices and edges representing the ap-

proximated voxel surface, where the vertices are sorted based on their (x, y, z) values. This sorting

is necessary for the success of the distribution-based fitness functions described in Chapter 5. In

order to prepare this information for the fitness evaluation step, additional post-processing must be

done which provides detailed mesh information and decreases the processing time of the evaluation

step.
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Model Validity Testing

With the advances to the GP L-system encoding and its function set, it is rare for any generated

L-system to produce an invalid model. A model is defined as invalid if it:

1. produces no vertices after the finalization of the Marching Cubes algorithm, usually as a result

of sparse voxels,

2. consistently draws out of the bounds of the voxel space, or

3. exceeds the given time limit for processing the evaluation string and producing the finalized

mesh.

In the event that one or more of these cases arise, a model is flagged as invalid. An invalid model is

not subjected to fitness evaluation and is given the lowest possible fitness as a result. This decreases

the likelihood that the individual that generated the model will reproduce during the reproduction

phase of the GP.

Gravity Wells

Gravity wells are vertex-modifiers in the L-system alphabet – denoted with ’G’ and ’g’ – and are

inspired from the work of Hemberg and O’Reilly in the GENR8 system [16]. They were introduced

to the alphabet as a way of introducing new surface normals to the surface generated from the

Marching Cubes algorithm, as well as to aid in producing more fluid and natural forms. There are

two types; gravity wells (g) – which pull vertices inwards by a force Fg – and repulsion fields (G)

– which push vertices away by a force FG. In the alphabet, gravity wells are merely placed at the

current coordinate of the turtle in fractional space, as opposed to being placed at a specified voxel.

During the processing of the evaluation string, all gravity wells and their position and force are

added to a list, which is processed during the post-processing stages.

The effect of the gravity wells is calculated during the post-processing stages. The calculations

themselves are simple – for a list of vertices V and gravity wells G, for every v ∈ V ,

v = v +

n∑
i=1

f(v, gi) where g ∈ G and f(v, g) =

−−−−→
(v, gp)

d(v, gp) ∗ 10/Fg
(4.1)

In the above equation, gp is the position of gravity well g, d(v, gp) is the distance from vertices v

and gp and
−−−−→
(v, gp) is the vector between the two vertices. Fg is the force or magnitude of a gravity

well, and is determined prior to the start of a run. The equation simply adds the effects of all

gravity wells to each vertex, altering its position. Each gravity well’s effect on a vertex decreases

with increasing distance, and increases with increasing magnitude. Using this formula, gravity wells

that are stacked can accumulate their effects, sometimes cancelling one another out or amplifying
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their magnitude substantially. Gravity wells have the capacity to push or pull vertices outside the

voxel space’s boundaries, though at this point the effect is encouraged instead of punished.

Mesh Details

The final post-processing step involves calculating and ordering the mesh data in a way that is useful

for fitness evaluation. Vertices are grouped according to adjacency, which is useful for distribution

calculations. Mesh volume, surface area, complexity, unique normals and dimensions are also calcu-

lated here and stored for later use. This final data, the resulting mesh, and the pruned L-system are

stored in the GP chromosome for fitness evaluation, where it can be accessed and saved externally.

This data has the capacity to be re-loaded into the JNetic system for viewing, as well as for exporting

into raw mesh data.



Chapter 5

Model Evaluation

Once a model has been manufactured from the L-System generated from a GP-tree, various descrip-

tive elements are calculated which can be used to accurately describe the physical characteristics of

the model. These elements are more specifically used in the fitness evaluation of the model, which

occurs at the end of each generation of the GP loop.

A variety of fitness functions were chosen in order to extensively experiment on their impact

on the evolution of aesthetic models. Several of the functions are created to specifically focus on

a model’s aesthetics – such as the DFN and Complexity measurements – while others are reserved

to set physical constraints on the models themselves. It was expected that, alone, many of these

functions would produce uninteresting results. For example, if we simply chose to use the Dimension

constraint, GP has the potential to produce any possible model that sits within that function’s 3D

rectangular bounds. Therefore, a multi-objective approach was chosen to group several of these

functions together, in order to reduce the number of possible models that fit the descriptors. By

doing this, it is also expected that more aesthetically-pleasing models will be produced.

In total, there are eleven different fitness functions, split into two groups: Model Constraint

Functions and Distribution-based Functions. From this suite of fitness functions, only a small

handful of these are chosen for each run, as having too many active fitness functions increases

the search space substantially, resulting in longer run-times and decreased performance. It is also

worth noting that many of the functions do not work well together, such as each DFN measurement

and their 1/f Noise counterpart when using the same distribution measurement. Not every fitness

function is suitable for each L-System language either, as many require descriptor data not present

in the resulting models of certain grammars. This is especially present in the Plant-drawing System.

Each function and the alphabets that can use them can be seen in Table 5.1.

38
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Table 5.1: Fitness Functions and their appropriate L-System grammars

Function Voxel Draw Voxel Surface Plant Draw
Volume ! !

Dimension ! ! !

Surface Area ! ! !

Unique Normals ! ! !

Complexity ! ! !

Deviation from Normal ! !

1/f Noise ! !

Entropy ! !

Mean ! !

Standard Deviation ! !

Symmetry ! ! !

5.1 Model Constraint Functions

The fitness functions listed in this section are used to constrain the physical properties of a model,

in order to limit the target search space when combined with the fitness functions associated with

aethetics. These functions are also employed to limit the physical size of a model in order to comply

with Java memory restrictions.

5.1.1 Volume

Due to the fact that the models are generated from a voxel-based form, Volume is a simple calcula-

tion. Each active voxel ’block’ in the mesh is attributed the value of one cubed unit, and the volume

is calculated as the sum of all active units. Since the Marching Cubes algorithm gives an approx-

imation of a 3D form over a voxel surface, the volume fitness function is also an approximation,

though it is fairly accurate. Heavy usage of the gravity wells in the L-System grammars reduce the

accuracy of this function.

5.1.2 Dimension

The Dimension fitness function measures the difference in the width, height and depth of a model’s

bounding box from a bounding box specified by the user. As previously mentioned, the voxel space

is a 128 x 128 x 128 cube, and so it may seem logical to assume that the dimension of the model is

limited to these bounds. This is incorrect, however, as the gravity wells have the ability to increase

the size of a model on all axis by floating point values, which also results in a change of measurement

from integers (voxels) to floating point values.
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5.1.3 Surface Area

A model’s Surface Area is measured as the sum of all face areas on the model. Each face consists

of three vertices, and so the area is simply calculated using the area of a triangle in 3D. Through

the use of the Marching Cubes algorithm, it is impossible for completely hidden faces to exist in the

model, though some faces have the capacity to ’meld’ together when gravity wells are used, causing

minor fluctuations in the accuracy of this function.

5.1.4 Unique Surface Normals

Every face in the polygonal model has a face normal (x, y, z) representing the direction it is facing.

The face normal – also called a surface normal – extends in a direction perpendicular to the face’s

surface, and is used in the calculation of lighting for 3D models. The Unique Surface Normals fitness

function calculates the number of unique surface normals found in a single model, where a larger

number of unique normals represents a higher fitness value. Since the values are floating point, two

normals are considered equivalent if their vectors are identical within four decimal places, for each

x, y and z.

5.2 Aesthetics-based Functions

The fitness functions described in this section are associated with aesthetics, most of which have

been implemented in other work (see Chapter 3). They are added in an attempt to increase the

visual appeal of the models generated by the GP.

5.2.1 Distribution-based Functions

A distribution-based fitness function is one which measures the distribution of some specified model

data over the entire model. The actual measurement of the data is specific to each fitness function.

There are two chosen distributions capable of measurement by these functions, both of which measure

differences across a model’s surface. The first is a measure of the signed difference between adjacent

face normals, ranging from zero degrees (no change) to 360 degrees. The second is a measure of

the signed difference between adjacent face areas. When measuring the differences between the face

data of two adjacent faces, the order is important. This means that if the difference between the

face normals of faces A and B is 56 degrees, then the difference between B and A is -56 degrees.

Due to this fact, faces are sorted based on vertex data prior to fitness evaluation, in order to ensure

consistency between model measurements.
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Mean and Standard Deviation

The Mean and Standard Deviation of a distribution are common calculations, and exist as two

separate fitness functions in this thesis. They can be applied to any distribution and any distribution-

based function. When calculating fitness, the current mean or standard deviation is compared to a

user-specified value, returning the absolute difference between the two as a fitness value.

Deviation from Normal

The Deviation from Normal (DFN) function measures the difference between the histogram gener-

ated by the distribution’s raw data and the estimated normal curve generated by the same data.

The generation of the histogram is simple: the input data is separated into approximate bins and

tallied, where each bin is indexed in an array. The normal curve is generated by first calculating the

mean and standard deviation of the distribution, then calculating the expected probabilities for each

bin value x from min to max, using a specified increment. The probabilities are calculated using

curve(x) =
1

STD ∗ pDensity((x−−mean)/STD)
and pDensity(x) =

1√
2 ∗ PI

∗ e
x2

−2

Using the probabilities generated using the above function, a second histogram is created storing

the expected frequency of each bin value, which is calculated using

expected(x) = curve(x) ∗ 1

dif
∗ total where dif =

1

inc

where inc is the increment between bin values, and total is the size of the input data set. Once the

two histograms have been created, the absolute difference between them is calculated at each bin

index, summed and set to the range of 0 to 10. A DFN of 0 is a perfect match to the normal curve,

and a DFN of 10 is the worst possible case. Figure 5.1 shows an example of a good and bad fit to

the estimated normal curves of two models. The complexity of this function depends greatly on the

size of the data set generated by the model, and so depends on the number of vertices and edges in

the model. It is expected that reaching a target DFN of zero will be rare with more complex models.

1/f Noise

The 1/f Noise function measures the difference in the slope of the line of closest fit to the distribution

data and the 1/f curve for a specific beta value. To do this, a histogram is generated for the

distribution data in the same manner as for the DFN, and a line of best fit is computed for the

logarithm of this data, which converts the shape of the line closer to that of the 1/f curve. The

absolute difference between the two slopes is then calculated in order to find the differences between

the two lines. Since the line of best fit can be a heavy approximation of a potentially sparse data set,
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Figure 5.1: Two examples of DFN curves and respective actual curves

a punishment factor is considered as well, which measures the average absolute difference between

the actual data set and the line of best fit, at each x value for a specific increment. The punishment

value is then added to the difference in slope. Ideally, the difference between the two slopes is zero

and the punishment value is zero, which means that a higher 1/f score indicates a poorer fit to the

1/f curve. For this measurement, the difference in the y-intercept of the two curves is not considered

to be important, and so the two curves can be separated by virtually any distance with no impact

on the fitness score. This decision was made due to the difficulty that was already seen in matching

the 1/f curve from the initial empirical study of the fitness function. Figure 5.2 shows an example

of a good and bad fit to the 1/f curve for two models. The left graph shows a data set that closely

fits its line of best fit, which resulted in a low punishment score. Its slope is relatively close to that

of the 1/f curve. The graph on the right shows a poor fit, with a high punishment score and a large

difference in slope.

Entropy

The entropy fitness function uses the concepts behind Shannon’s Entropy, which measures the level

of uncertainty associated with the distribution data of a model. It is calculated using

Entropy(X) = −−
∑
x∈X

p(x)log p(x) (5.1)

where x is a value in the data set and p(x) is the probability of the value occurring in the data set.

To calculate this, the data is sorted into bins within a histogram as with the DFN and 1/f functions,
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Figure 5.2: Two examples of 1/f curves and respective actual curves

and the bin values are used in the calculation for probability instead of the actual values. A lower

entropy indicates a low level of uncertainty, which typically results from a more simple model. A

higher entropy indicates a high level of uncertainty, common with large, complex models.

5.2.2 L-system Complexity

The L-system Complexity measurement is inspired from the work of Komolgorov [28], the Box-

counting Method [40], and Machado [33]. Although measurements for the complexity of fractals and

L-systems exist for systems that generate 2D images, very little research has been done in extending

these measurements to 3D. This is largely due to the increase in complexity of a 3D L-system, as well

as the amount of data made available by a 3D model. Typical 2D complexity measurements have

focused on the increasing amount of detail found in images at different zoom levels – as seen in the

Box-counting method for fractal images – and the differences between the file sizes of compressed and

uncompressed versions of an image – as seen with Kolmogorov complexity using JPEG compression.

Others focus on the fractal-generating function itself, examining the simplicity of the function versus

the complexity of the produced image – as seen in Machado’s work. The complexity measurement

used in this thesis is based directly on these ideas.

This measurement – now referred to simply as complexity – is a measure of the capacity for

growth of an L-system’s evaluation string ωi over many iterations. As mentioned earlier, an L-

system’s complexity is directly related to the growth rate of ωi with respect to the number of
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variables present. This measurement is simply

growth =

∑n−1
i=0 ν(ωi+1)−−ν(ωi)

n

where ν(ωi) is the number of variables present in ωi, and n is the iteration span. This equation gives

the signed rate of growth of the L-system, but does not take into consideration the actual model

generated from ωn. This is problematic, since it is possible for an evaluation string to continuously

draw a single shape over itself, resulting in a simple model constructed from a complex L-system.

For example, when the rule C→ CCCCC is applied to the starting string C multiple times, it results

in a long string of C’s. When the pen inevitably goes out-of-bounds of the drawing space, drawing

ceases, and the model’s complexity suffers. To remedy this problem, the size of the resulting model

is considered as well – more specifically, the surface area of the model. Since the surface area tends

to overshadow the complexity measurement, the logarithm function is used to reduce the ‘reward’

given as the complexity and surface area grow. This also reduces the chance of a system becoming

too complex. The final complexity function is then

complexity = log(growth) + log(surface area)

The complexity of a model is greatest when its surface area is large and its L-system growth is large

and positive. One of the primary problems with this is the fact that when its target is a maximum

value through evolution, most models that are generated will often be excessively complex, resulting

in long rendering and processing times, and ultimately resulting in models which exceed the time

limits imposed by the user. Due to this, the largest score that can be returned by this function

during the GP evolution is directly related to the time limit, which must be considered prior to

setting its target. Due to the nature of this function, it is best used when trying to achieve a large

complexity target, as low targets are ultimately achieved by error-prone L-systems.

5.2.3 Symmetry

The Symmetry fitness function is used to measure the approximate physical symmetry of a model.

This is done by measuring the distribution of vertices across the model along the three major axes,

recording the separate symmetries of each axis and returning the highest value. The general idea

behind this method is inspired from the visual symmetry of 2D images, where an image can be

symmetrical along the x-axis even when both sides look nothing alike. The overall form and shape

offer minor influence over the symmetry of the image – instead, the general presence of form across

a central axis dictates symmetry. In order to measure this, the image is divided into boxes of equal

size, as seen in Figure 5.3. The initial image (left) is divided once, resulting in the image in the
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middle. To calculate the symmetry, each resulting column is compared to its mirror version, index-

by-index, looking for a ’presence’ of color. In this case the image is only divided once, and so the

resulting calculation is not very accurate. In order to increase the accuracy, further divisions are

done, as seen in the image on the right. The number of divisions should not be too large or too

small – too many divisions increases accuracy, but succeeds only with perfectly symmetrical images,

while too few divisions result in general symmetry calculations.

Figure 5.3: 2D image division for symmetry calculation

For this thesis, this idea was extended to three dimensions by dividing the model’s bounding

box into cubes. Instead of measuring the presence of color, the number of vertices present in each

cube is compared to its mirrored cube, and the absolute difference is added to a global total. This

total is divided by the total number of vertices in the model, and subtracted from one. Therefore, a

symmetry of one results from a perfectly symmetrical model, while a symmetry of zero results from

a perfectly asymmetrical one. The bounding box is divided into 20 x 20 x 20 cubes (8000).

5.3 Fitness Targets and Analysis of Pre-Existing Models

From the previous section, it is clear that there are many potential fitness functions that can be

used. The amount of initial study required to find ideal target fitnesses for each function within

this set would be tremendous, and so steps were taken to reduce this. For the model-constraint

functions, the target fitnesses depend heavily on the problem presented to the GP. If larger, more

complex models are preferred by the user, then the targets for the dimensions, surface area and

unique normal fitness functions will likely be high. Relying on specific targets for these functions –

although ideal for some problems which require accuracy, such as those associated with commercial

designs – is not advised. The probability of the population converging on such a solution is low.

The target values for these functions are merely heuristic, and should not be taken literally. Instead,
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they should be interpreted as point ranges in the search. The models generated from this system are

meant for design inspiration, not to produce real-world design plans. Therefore, there is no need to

consistently use specific targets for these fitness functions. For example, if a large model is desired,

then a surface area of 100,000 to 500,000 would be perfectly suitable.

For the other fitness functions – such as those based on aesthetic measures – such consistency

is expected and even required to support the work in this thesis. For many of these functions, the

following general assumptions and initial hypotheses are made: more aesthetic models are associated

with low DFN scores, high entropy scores, high symmetry scores and low 1/f scores. For complexity,

Birkhoff speculated that a lower complexity is ideal for high aesthetic value [7]. Due to the nature of

the complexity function presented in the previous section, a model with an ideal lowest-complexity

score is small, simple and – in most cases – a single cube. The complexity function used in this thesis

instead focuses on the L-system complexity, and its capacity to produce large, intricate models. The

hypothesis is then extended for complexity, where an aesthetic model is one with a higher L-system

complexity.

In order to justify the choices for the target fitnesses of the aesthetic-based functions, 200 pre-

computed models were subjected to several of these functions, with the hopes that the majority

of the models would fall within a certain target area for each function. The models themselves

were chosen from Archive 3D, a website dedicated to the production and free distribution of 3D

models [1]. Each model belonged to one of four categories – object, human, plant and polygon. The

goal of the experiment was to locate potential sweet spots – fitness target areas which many of the

models had in common. The discovery of any of these potential target areas would provide insight

into the fitness targets for the experiments later in this thesis. The fitness functions chosen were

DFN, entropy, symmetry and 1/f noise. Complexity was left out due to its dependency on models

constructed from L-systems. For the measurement used by the distribution-based functions, the

difference between adjacent surface normals was chosen, as it would be focused on in the majority

of the experiments. Each model was not subjected to a time-limit in its fitness evaluation, as others

are during the GP runs in later experiments. The justification for choosing the models is based on

the idea that each model was in essence created for an aesthetic purpose using 3D modeling software

– to catch the eye of those viewing the model. Therefore they are aesthetic to at least two people –

the author of this thesis and the creator of the model.

The distribution of the results can be seen in Figures 5.4 to 5.6, and a few examples can be seen

in Figure 5.7. From these histograms, it can be seen that the majority of the models fall within 2.5

to 4.0 for DFN, 2.0 to 3.0 for 1/f noise and 2.0 to 3.0 for entropy. For symmetry, the majority of

the models fall between 0.5 or 1.0. For mean, the majority fall between 0.0 to 0.2, and for standard

deviation the majority fall between 0.2 and 0.8, which is a large range and not too centralized.

Although it was expected that many of the models would have lower DFN scores, higher entropy

scores and lower 1/f noise scores, the results have shown that a significant number of models have
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Figure 5.4: Distribution of DFN and 1/f fitness scores calculated for approximately 200 pre-existing
models
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Figure 5.5: Distribution of entropy and symmetry values calculated for approximately 200 pre-
existing models
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Figure 5.6: Distribution of mean and standard deviation values calculated for approximately 200
pre-existing models
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scores relatively close to these targets, and far from the expected targets for less-aesthetic models.

The distance between the observed sweet spot and the hypothesized sweet spot can be explained by

the complexity of the models chosen for this experiment.

Figure 5.7: Samples taken from the set of pre-existing models, as well as their scores in six categories

The majority of the models chosen contained hundreds of thousands of vertices – creating a dis-

tribution that is extremely large and therefore difficult and unlikely to match to a normal curve, 1/f

curve or any other expected distribution. The same effect is observed for the symmetry calculations,

which depend on the positional distribution of vertices. From this information, it is expected that

very few models would garnish a low DFN, or high entropy. In fact, those that came close to these

targets were the most simple models, which may further support Birkhoff’s speculation regarding

the aesthetic-complexity relationship.
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It is rather difficult to manually assign or guess a model’s score that is close to that model’s

actual score, for either of the distribution-based functions. The range of fitness scores seen from the

models in Figure 5.7 are a perfect example of this. It is possible, however, to discern a model with a

higher score from those with a lower score. The increasing divisions of a sphere, for example, show

an increase in the DFN of that sphere, despite the increase in its complexity. A sphere with up to

seven divisions garnishes DFN scores of 8.0833, 6.6052, 4.5105, 3.0078, 2.9139, 2.9093 and 2.9086

for each increasing division. At its most basic, it has a high DFN – common with simple, block-like

models – and descreases its DFN as it increases the number of divisions. For each division, the

difficulty in manually discerning the estimated DFN between the two spheres becomes increasingly

difficult. The same concept applies to the other fitness functions. This idea supports the use of

EC and automated evolution using these aesthetic measures, which removes this difficulty from the

user.

As a final test, the Pearson correlation between the fitnesses of all models was calculated for the

chosen fitness functions, the results of which can be seen in Table 5.2 [59]. Correlation coefficients

closer to 1.0 or -1.0 indicate a high correlation between two fitness functions. From this table,

the strongest correlations can be seen between the standard deviation and the DFN/entropy, and

between entropy and the DFN. The correlation between the DFN/entropy and standard deviation

is expected due to the relationships between each function’s calculations. The correlation between

DFN and entropy is far more interesting, and easily merits further study.

Table 5.2: Correlation between several aesthetic-based fitness functions, calculated using approxi-
mately 200 pre-existing models

DFN Mean Std. Dev. Symmetry Entropy 1/f
DFN 1
Mean 0.081644 1
Std. Dev. 0.478077 0.249283 1
Symmetry -0.04697 -0.03974 -0.16465 1
Entropy -0.38027 -0.00526 0.424442 -0.10574 1
1/f -0.08336 -0.07625 -0.12265 0.076309 -0.18523 1

Although this experiment has shown that potential sweet spots exist, further study into this

subject is still required to make any sound conclusions. In the future, a larger data set of models

may be useful, hand-picked by multiple parties to introduce a decrease in bias. Exploration in the

production of models which satisfy the hypothesized ideal fitness targets for these aesthetic functions

is still of greater interest, though the use of the discovered sweet spot targets will be explored in later

experiments. In addition, the possible correlation between entropy and the DFN will be investigated.



Chapter 6

Setup of Experiments and

L-system Improvements

6.1 Outline

The experiments that follow in this chapter and later chapters are introduced as a means of sup-

porting various claims and hypotheses presented. Each experiment investigates a different aspect of

this research, and it outlined as follows. First, each experiment is introduced as well as the goals

behind it and any initial hypotheses that can be made. The parameters of each experiment are also

introduced, and reasoning behind their settings. The results are then introduced in various statisti-

cal and visual formats, and discussed with respect to the initial hypotheses and goals. Conclusions

are finally made on the findings at the end of each chapter.

This chapter discusses the general experiment parameters used for the majority of experiments.

It also introduces the first experiment, which compares the L-system encodings of Jacob and the

encoding implemented for this thesis.

6.2 Experiment Parameters

The majority of the experiments were run on a cluster of computers in the Computer Science

Department at Brock University. Half of the cluster are AMD Phenom II 1090T (6 core at 3.2Ghz)

with 8GB of RAM running in double channel mode at 1600Mhz. The other half are Intel Core i7 920

(4 core hyper-threaded 2.66Ghz) with 12GB of RAM running in triple channel mode at 1333Mhz.

All machines are running on CentOS 5.5 Linux. Initial empirical experiments, coding and research

were done on a PC running Windows XP, with Intel Core 2 Q9400 (4 core at 2.66Ghz) with 3.25

GB of RAM.
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The choice of parameters for the GP and L-System constraints are described in this section,

as well as selected short explanations for a few of them. For the GP tree initialization, Ramped

half-and-half is used, which combines the usage of the Full and Grow methods. The Full method

chooses only non-terminals from the function set to generate the tree up to a specified maximum tree

depth. Once each branch has reached the maximum depth, only terminals are chosen. This method

aims to fill a GP tree as much as possible, using the maximum number of nodes possible. The Grow

method is similar to the Full method, but instead chooses from both terminals and non-terminals

in order to reach the maximum depth. By doing so, this goal is not always attained, resulting in a

variety of smaller more erratic trees. The combination of the Grow and Full methods for Ramped

half-and-half helps to generate a more diverse population. This method is also used when generating

subtrees during mutation. Tournament selection is used as a selection mechanism. In this method,

a number of individuals are chosen randomly from the population based on the tournament size T .

From these individuals, the one with the highest fitness is chosen to reproduce. Since two parents

are required to produce two offspring, two tournaments must take place for each set, one for each

parent. Elitism was also used, where only one individual is saved per generation.

The remainder of the GP parameters can be found in Table 6.1. Each was chosen after extensive

initial empirical study, including background research in genetic programming and the typical values

of its parameters. A large population size was chosen to increase the diversity of the population,

specifically at initialization. Tree sizes were especially limited due to the rate of increase of L-

System complexity with increasing depth, which resulted in unnessessarily long evaluation string

parsing times. The values chosen to limit the sizes of the RHS of production rules is directly related

to this issue as well. Any alterations to these parameters for a particular experiment are explained

in the experiment’s introduction.

Table 6.1: GP And L-System Parameters

GP Parameter Value L-System Parameter Value
Generations 60 Rule RHS Max / Min 2 / ∼10
Population Size 500 Iterations Max / Min 6 / 3
Crossover Rate 90% ω Max / Min Length 2 / ∼10
Maximum Crossover Depth 10 Alphabet C, A, B, +, -, ∗,
Mutation Rate 10% /, @, &, w, W,
Maximum Mutation Depth 17 d, D, h, H, [, ]
Prob. of Terminals in Cross/Mut 10% Variables C, A, B
Tournament Size 3 ωi Parsing Time-out 30 seconds
Tree Grow Max / Min 5 / 5
Tree Full Max / Min 12 / 5

Typically, thirty runs are used in order to show statistical significance in experiments. The

experiments here are limited to ten runs, which resulted due to the average run-time for each
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experiment. A typical run takes between one and five hours, though runs which use complexity or

unique normals as fitness functions can potentially take much longer.

Finally, a diversity measure was implemented in order to increase the overall diversity of the

final population after convergence. This measure was created by Flack for his work in a floor plan

evolutionary design problem [10]. This measure works as follows. After the population is evaluated

and fitness scores are assigned – or for MO, ranked using a MO strategy – the population is parsed

for duplicates. In the event that a duplicate is found, one of the duplicates is given a raw penalty

score, the value of which is chosen by the user. This penalty is subtracted from the fitness of the

duplicate. A duplicate in this case is an individual which has the exact same evaluation string as

another.

6.3 Analysis of L-system Encoding Improvements

6.3.1 Introduction and Setup

The goal of this experiment is to show the benefits of using an L-system encoding with strict

constraints, and the ability to recover an invalid L-system. This is to be achieved by comparing

this new encoding with one created by Jacob et al.[22], who produced a potential means of D0L-

system encoding for GP. Although his encoding was meant for a parameterized D0L-system, little

modifications were necessary to allow for a non-parameterized one. The primary outline of his

encoding is described briefly as follows:

• The root of the GP tree returns a complete L-system composed of a starting string ω and one

or more production rules

• ω returns a stack expression, where a ’stack’ is a sub-expression composed of symbols from the

alphabet, and possibly other stacks

• Each learning rule has a LHS which is a single symbol from the alphabet

• Each learning rule has a RHS which is a stack expression

• GP operators such as crossover and mutation encourage the production of valid L-systems

throughout the evolutionary process

Jacob’s encoding can produce any hypothetical D0L-system, though the produced systems might

not necessarily be valid by the definition of validity presented in this thesis. The primary difference

between the encoding A and Jacob’s is the use of the stack, which required a variable-length number

of children for stack nodes. In order to emulate the use of the stack in encoding A, sub-expressions

were instead generated using functions returning the Llist subtype, as seen in the function set

definition in Table 4.2. In actuality, encoding A is very similar to encoding B – the only difference



CHAPTER 6. SETUP OF EXPERIMENTS AND L-SYSTEM IMPROVEMENTS 55

between the function sets of the two encodings is that variables are never formally required in the

LHS, RHS or ω in encoding A.

There are three main problems with encoding A. First, symbols can be used in the LHS of

multiple production rules, resulting in a non-deterministic L-system. Second, it is possible for a

chosen LHS symbol for a production rule to not exist in the RHS of any other production rule or

ω, which results in unused production rules. Third, the differentiation between variables and non-

variables is also not defined in this encoding, and so non-variables can be chosen for a production

rule’s LHS, which is not desirable. It is important to note at this point that the work in this thesis is

not meant to scrutinize the work of Jacob et al., but instead to offer an alternative GP tree encoding

for D0L-systems with additional constraints. Although the GP operators in their encoding attempt

to increase the number of valid L-systems during the course of evolution, it might instead be more

desirable for the initial population to consist of more valid L-systems, which will be beneficial for

evolution performance.

6.3.2 Results

For the experiment, two sets of ten runs were executed – one set for encoding A and B. Each run

had identical parameters, alphabets and fitness function. As the focus of this experiment was not

on the fitness function itself, but the validity and characteristics of the L-systems generated by the

encodings, four new measurements were recorded on a generational basis, where each measurement

is averaged over the population. The percentage of unused production rules measures the number of

production rules never referenced when generating an evaluation string. The L-system complexity

measures the average rate of variable growth of ωi in an L-system over each iteration. The per-

centage of invalid models measures the number of models that were flagged as invalid during model

generation, which could happen for a variety of reasons relating to the L-system that generated it.

The percentage of unchanged starting strings measures the number of ω that are equivalent to the

final evaluation string used to generate a model.

The fitness function used was the DFN with a target of 0, and the results can be seen in

Figures 6.1, 6.2, 6.3, 6.4 and Table 6.2. The graphs display the average performance of each encoding

for each measure discussed. The table shows the best performance and average performance of the

ten runs for each encoding, at generation 0 and 59. For the percentage of invalid models, unused

production rules and unchanged starting strings, a lower value is optimal, while a higher value is

optimal for average complexity.

By examining Figure 6.1 and Table 6.2, the number of unused production rules in encoding A

is staggering at generation 0, though it begins to even out over time. Even at its best, encoding

B far surpasses encoding A, starting under 10% and staying below 1% for the duration of the run.

This was expected, as the recovery process in encoding B ensures most rules are used at least once.



CHAPTER 6. SETUP OF EXPERIMENTS AND L-SYSTEM IMPROVEMENTS 56

It is interesting to note that in the final generation of a few runs, encoding A did have a few lower

percentages, even one at 0%. This result is similar to that of the percentage of unchanged starting

strings (Figure 6.4), which makes sense considering production rules that are used will always change

ω. In encoding A, an average of over 75% of starting strings were unchanged.

Table 6.2: Results of encoding experiment from first and final generation of GP

Measurements Average Best
Generation 0 Encoding A Encoding B Encoding A Encoding B
Unused Rules (%) 83.7748 6.6604 80.199 5.5762
Ave Complexity 15.5184 828.3133 131.4929 1006.862
Invalid Models (%) 44.1555 10.1555 42.2 7.8
Unchanged ω (%) 77.0444 2.7555 71.8 2.2

Measurements Average Best
Generation 59 Encoding A Encoding B Encoding A Encoding B
Unused Rules (%) 22.2340 0.6646 0 0
Ave Complexity 13.5673 411.7079 43.0157 1566.143
Invalid Models (%) 1.6444 0.2444 0.2 0
Unchanged ω (%) 0.4222 0.1333 0 0

The results of the complexity measurement were also expected (Figure 6.2), as encoding B

enforces variable usage on the RHS of production rules, where encoding A does not. A low DFN is

naturally easier to attain with lower complexities, which explains the decrease in the complexity of

encoding B over the run, but even so, encoding B still retains a significantly higher complexity in its

population than that of encoding A. It was discovered during initial empirical study that this effect

is much more desirable in order to produce more interesting models. Figure 6.3 shows the percentage

of invalid models, and though encoding A starts out high at the beginning, it quickly decreases and

sits under 5% with encoding A. Although this does not seem problematic, it has a dramatic effect

on the diversity of the population in early generations. Since over 40% of the models generated by

encoding A were flagged as invalid in generation 0, over 40% of the population is assigned the lowest

fitness, leaving only 60% of the population to reproduce. This is one of the primary reasons a new

encoding was considered in early testing.

The results of the first generation for both encodings were subjected to a two-tailed T-test,

assuming unequal variances. This generation, as previously mentioned, is of greater importance

than the final generation in supporting the use of Encoding B. The results of the T-tests – one

executed for each measurement – can be found in Tables A.1 and A.2. Using an alpha value of 0.05,

it can be concluded that Encoding B scored better than Encoding A on average for all measurements

in the first generation with a 95% significance.
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6.3.3 Conclusions

From the results of this experiment, it is obvious that encoding B outperforms encoding A in early

generations, by generating more valid L-systems through the constraints in the function set. This

being said, the new encoding always outperformed Jacob’s on all accounts from generation 0 to 59.

It is expected that the performance of Jacob’s would have likely been improved had the evolutionary

operators discussed in his paper been used. This of course would only have improved the performance

of his encoding after the first generation.The enforced used of production rules and variables in the

new encoding led to a dramatic difference in the complexity of generated L-systems between the two

encodings, as well as the number of unused production rules and unchanged starting strings. This

is highly beneficial, as it boosts evolutionary performance.
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Figure 6.1: Percentage of unused production rules from population of L-systems per generation,
between two L-system encodings

Figure 6.2: Average L-system complexity of population per generation, between two L-system en-
codings



CHAPTER 6. SETUP OF EXPERIMENTS AND L-SYSTEM IMPROVEMENTS 59

Figure 6.3: Percentage of invalid models from population per generation, between two L-system
encodings

Figure 6.4: Percentage of unchanged starting strings from population of L-systems per generation,
between two L-system encodings



Chapter 7

Single-objective Experiments

7.1 Introduction

The goal of this experiment is threefold – to demonstrate the effectiveness of GP for each fitness

function individually, to show the success of the advanced encoding on simple problems, and to

discuss the visual appeal of models generated using only a single fitness function. As mentioned in

Chapter 5, there are eleven fitness functions available in the system. In addition, the distribution-

based fitness functions each can measure two different distributions. For this experiment, only one

of the distributions is used, measuring the difference between adjacent face normals in a model.

This was chosen due to the similarity between the performances of the two distributions discovered

during initial study of the distribution-based fitness functions. The parameters for this experiment

are the same as those in Table 6.1.

7.2 Results

It was hypothesized that GP would succeed in evolving a population to satisfy each fitness function

individually, by having the best of each generation approach the target fitness as well as having the

population converge close to the best after some time. Sixty generations was chosen for the time

span, as it was deemed sufficient enough to demonstrate convegence for all fitness functions. For

a select few, however, thirty generations was used for reasons to be explained later in this section.

The performance results for each fitness function can be seen in Figures 7.1 to 7.6. On the graphs,

the best represents the average of the highest-scoring individuals of each run, for each generation.

The average represents the average fitness value of the population of each run, for each generation.

The targets for each fitness function are also shown. A good performance can be seen on graphs

which have an average curve approaching the best curve, and a best curve approaching the target.

60
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Ten runs were executed for each fitness function.

As seen in the graphs, GP excelled at evolving a population of models to fit the fitness criteria

for each function individually. In most cases, the target value was reached by generation 60. The

DFN and 1/f noise functions are typically more difficult to reach a target value of zero, though any

fitness less than one is considered acceptable. Conversely, maximizing entropy is equally difficult,

and it is uncommon for an individual to have an Entropy of anything higher than 4.5. A few fitness

functions – such as surface area, symmetry, volume, mean and standard deviation – are evidently far

simpler for GP to reach the target than others, as GP most often generates an individual with the

target fitness within the first few generations. Although this may seem as if these fitness functions

are inappropriate as targets for GP, the results merely suggest that these functions instead may be

more suitable for multi-objective problems, paired with other fitness functions. A symmetry of one,

for example, is the most easily-achieved target of the suite of fitness functions available, but would

likely produce interesting results when paired with other fitness functions, such as DFN.

The performance of the complexity function deserves a separate discussion, as it behaves slightly

differently than the others. It was discovered during initial empirical study that maximizing the

complexity function typically resulted in memory issues, which stemmed from the production of ex-

cessively complex L-systems in GP. To remedy this, a few measures were taken. First, the logarithm

function was added to the complexity function to reduce the reward given for increasing complexity

and surface area (see Chapter 5). During a run, the range of iterations could also be reduced to

limit the capacity that each ωi could grow. Finally, reducing the generation span also seemed to

reduce the number of memory issues. As the last two solutions impose restrictions on the L-systems

produced, another more acceptable alternative is a multi-objective approach, pairing the complexity

function with other fitness functions. In most cases, an increase in complexity is detrimental to the

success of all other fitness functions – as other functions were found to succeed with lower com-

plexities – and so this approach would hypothetically reduce the chances of the complexity function

being maximized to the extent it would, if used on its own.

Another important issue to address is the large distance between the best and average curves

at the time of convergence. In most cases, this is largely attributed to the difficulty of the fitness

function, as seen in the DFN and 1/f noise functions. In a few other cases, it is due to the number of

invalid models generated, which have a dramatic effect on the population’s overall fitness. The com-

plexity and unique normals functions tend to produce large, complex models. Due to the restraint

on the run-time of GP, many complex models often ’time-out’ during the parsing and rendering

stages, resulting in being assigned the worst possible fitness for each applicable fitness function.

This affects the overall average population fitness significantly, and therefore results in the large

distance between the two curves. This problem is largely unavoidable when these fitness functions

are used individually, but as previously mentioned, a multi-objective approach is expected to reduce

this effect.
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Figures 7.7 and 7.8 show the rendered results of the highest scoring individual from all ten runs,

for each fitness function. These images are meant to demonstrate the types of models created using

each fitness function individually, while simultaneously showing the faults of each function as well.

For each fitness function, the best individual and its fitness and L-system used to produce it are

shown. In most cases, each fitness function typically produces models with similar characteristics

– most of which excel with that particular function but fail with all others. A perfect example of

this is the model generated using surface area, seen in Figure 7.7. While this model scored high

for Surface Area, it would undoubtably fail for symmetry, dimensions, unique normals, volume and

any of the distribution-based functions. It may, however, succeed for the complexity function as its

surface area is large and its L-system complexity is visibly so.

Many of the models are erratic and shapeless, which is likely due to the lack of other constraints

on the models’ shapes and size. This is apparent in the models produced using 1/f noise and entropy.

In other models, simplicity is chosen by GP, as is seen in symmetry, volume and complexity. The

most surprising is the model generated by the complexity fitness function, which would be expected

to be visibly complex. By examining the production rules of its L-system, it is obvious that the actual

L-system complexity is high, but it can also be seen that the system basically draws a straight line

to the bounds of the voxel-space. The high fitness value can be attributed to the enormous surface

area, which was made possible by the gravity wells. These simple models are perfect examples of

GP’s capability to ’take shortcuts’ in finding solutions.

7.3 Conclusion

From these results, it can be safely concluded that while GP has been shown to excel in evolving

L-systems to satisfy the criteria for each fitness function individually, the visual results themselves

are generally uninteresting. A multi-objective approach that combines these fitness functions in

small subsets might be more preferable, and would potentially remedy some of the issues of certain

fitness functions when used individually described in this section. More complex fitness criteria may

also result in the production of more interesting models.
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Figure 7.1: Single-objective runs of DFN (target 0) and 1/f noise (target 0), averaged over 10 runs

Figure 7.2: Single-objective runs of surface area (target 52500) and dimension (target dimension
[40,120,80]), averaged over 10 runs



CHAPTER 7. SINGLE-OBJECTIVE EXPERIMENTS 64

Figure 7.3: Single-objective runs of entropy (maximize) and symmetry (target 1), averaged over 10
runs

Figure 7.4: Single-objective runs of unique normals (maximize) and volume (target 4500), averaged
over 10 runs
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Figure 7.5: Single-objective runs of mean (target 0.025) and standard deviation (target 0.25), aver-
aged over 10 runs

Figure 7.6: Single-objective runs of complexity (maximize), averaged over 10 runs
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Figure 7.7: Rendering of models with highest fitness for the model constraint fitness functions and
aesthetic fitness functions
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Figure 7.8: Rendering of models with highest fitness for the distribution-based fitness functions



Chapter 8

Multiobjective Optimization

Strategy

8.1 Introduction

The previous experiment showed the results of a single-objective approach to the evolution of aes-

thetically pleasing models. Although the results proved that each fitness function was able to reach

their target fitness over a suitable number of generations individually, it also showed that the use

of a single fitness function most often resulted in the production of uninteresting models. A MO

approach is expected to be more suitable to the problem, as combinations of the aesthetic measures

and model constraint functions would undoubtedly contribute more together than individually.

The goal of this chapter is to examine the effectiveness of a MO approach to the problem,

by examining both the visual results of the runs as well as the success of each fitness function’s

ability to reach their target in a MO environment. It is expected that this strategy will yield more

interesting results than those of the single-objective runs, though this conclusion might be subjective.

Each fitness function is also expected to reach their target fitness areas within the generation-span

provided, assuming that the fitness functions chosen are independent of one another – the score of one

is not dependent or correlated to the score of another. It was previously mentioned that it is typical

for the GP to favor simpler models when using most aesthetic measures individually, and that these

measures would benefit greatly from a pairing with a model constraint fitness function. A low DFN,

for example, is easier for the GP to achieve when the model is composed of fewer faces. Therefore,

in order to enfore the production of more complex models, the use of model constraint functions are

suggested. In addition, other aesthetic measures grouped together might achieve similar effects.
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8.2 Comparing Summed Rank and Pareto

A MO problem involves the use of multiple feature tests, which must be optimized together. The

feature targets – or fitness targets – remain similar to those of single-objective evolution, though by

using MO an attempt is made to reach all targets simultaneously. In order to assign a single fitness

to an individual meant to be ranked within the population, different strategies are used.

Chapter 2 details the evaluation strategies behind Pareto and the summed rank methods, both

of which are used in this experiment. Both methods have their advantages and disadvantages.

Normalized summed rank is more commonly-used for problems with higher dimensionality, and most

often results in a more diverse population make-up than that of Pareto when diversity strategies are

used. Pareto ranking, on the other hand, often produces outliers, which are usually undesirable for

fitness-driven evolution. These outliers are a direct result of Pareto’s notion of domination, in which

some of the highest-ranked individuals remain as such as long as they are undominated by any other

individual. These high-ranked individuals often boast strong scores for one or two features, while

the remaining scores suffer. This effect is especially problematic for MO in this thesis, as all fitness

functions are required to succeed simultaneously.

For this experiment, three fitness functions were chosen – DFN, complexity and symmetry.

Although these three chosen fitness functions are all considered to be aesthetic measures, it has

been observed that the complexity function tends to produce larger models when the target is high

– indirectly suggesting it is also a model constraint function – which is expected to influence the

ability of the DFN to reach lower target values. This should greatly increase the difficulty of the

problem. The symmetry function was chosen due to its simplicity in achieving its target score of 1.0

in simpler models, which should result in a similar effect as the DFN function mentioned earlier. As

with previous experiments, ten runs were executed using the parameter settings seen in Table 6.1.

The target fitness for DFN was 0.0, symmetry was 1.0 and complexity was to be maximized.

The quantative results of the experiment are to be analyzed by various statistical methods,

illustrating the effects of each MO ranking method on the GP evolution as well as the distribution

of feature scores in the final populations. Three tests are to be executed using different ranking

methods – summed rank, Pareto and random search. It is expected that the summed rank method

will prove more appropriate for this MO problem, as the evolution will be more fitness-driven and

result in fewer outliers, which are undesirable. It is important to note that this experiment is not

a critique of Pareto ranking, but instead a study of the appropriateness of its use in this particular

application.
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8.3 Results

There are two aspects of the experiment that will be considered here – the performance of each MO

method with respect to each feature score, and the diversity of the population. The performance

curves for the runs can be seen in Figures 8.1 to 8.3. The graphs show the best and average population

fitnesses, averaged over the ten runs. Each graph shows the performance of the GP for a fitness

function individually, for both MO methods. An ideal performance would involve the average curves

for each fitness function steadily approaching the target value, eventually leveling off – signifying

convergence in the population. Although the best curves show the average highest-scoring fitness

over the entire population and over the ten runs, this curve is much less meaningful as it does not

show the other fitnesses attributed to that individual. As would be expected with Pareto ranking,

an individual might reach the optimal fitness target for one function, but fail in the remaining.

For summed rank, the average curves for the three fitness functions rise towards the target of all

three functions. Pareto was less successful, as only the curve for symmetry increased, and still much

slower than the curve seen in summed rank. This poor performance is likely due to the population

diversity produced by Pareto ranking. Since average symmetry can be seen to increase and average

complexity is low and DFN high, it is expected that there was a large number of individuals with

negative complexity, which results in a decrease in model growth over each iteration of the L-

system. From observations of the population scores of the Pareto runs, individuals with negative

complexity are more likely to produce simple, symmetrical models that garnish high DFN scores, as

they are more ‘blocky’ and result in fewer unique face normals. This effect has a similar impact on

the performance of the average curve for the complexity function the using summed rank method,

though not as heavy.

The results of the final generation for both Pareto and summed rank were subjected to a two-

tailed T-test, assuming unequal variances. For this test, the average fitness scores for the entire

population were used, one value per run. This test was done for each fitness function individually,

and only for the final generation. The results of the T-tests – one executed for each measurement

– can be found in Table A.3. Using an alpha value of 0.05, it can be concluded that summed rank

outperformed Pareto on average for all measurements in the first generation with a 95% significance.

Since the average fitness scores of the random search were worse than Pareto, it can be assumed

that the same conclusion can be made regarding random search and summed rank.

The quality of the final populations generated from the two MO strategies is examined, to act

as a baseline. In addition, a third search method – random search – was executed using the same

parameters and settings as summed rank and Pareto. The random search is simply a GP execution

using a tournament size of one with no selection pressure. Figure 8.4 shows the box and whisker plots

of the scores obtained from the highest-scoring individuals across all runs, for each MO method. In

the charts, each pair of runs along the x-axis (1 and 2, 3 and 4, 5 and 6) represents a population
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Figure 8.1: Average per-generation population DFN scores for summed rank and Pareto, with target
shown

Figure 8.2: Average per-generation population Complexity scores for summed rank and Pareto, with
target shown
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Figure 8.3: Average per-generation population Symmetry scores for summed rank and Pareto, with
target shown

generated by a different MO method, with and without duplicate fitness scores. Run 1 in the charts

are the ranges of the top 100 individuals (10 from each run) from the runs using summed rank.

Run 2 shows the ranges of the top 100 individuals with duplicates removed, displaying only unique

individuals. Runs 3 and 4 show the top 100 highest-ranked for Pareto, duplicate and non-duplicate,

and runs 5 and 6 show the top 100 for random search, duplicate and non-duplicate. In the event

that there were more than 100 top-ranked individuals for Pareto, this number was used instead. In

the charts, ranges that cover the target fitness areas closely are preferred, as are smaller quartile

ranges.

The fitness ranges for summed rank are smallest for both DFN and symmetry, meaning that

the population has likely converged to a small solution space around the target. For both fitness

functions, the removal of duplicates makes no visible change to the chart for summed rank. For

complexity, the removal of duplicates makes a significant change, which further supports the hy-

pothesis of convergence. Pareto, as expected, displays a wide range of population fitness scores and

large quartile ranges. This shows a very diverse population, which is similar – though more diverse

– to the results of the random search. Pareto did outperform both other methods with respect to

complexity, though from looking at the performance curves in Figure 8.2, these individuals are most

likely outliers in the population.

Further support of the diversity of Pareto’s population can be seen in Table 8.1, which shows

the average score, overall best score and standard deviation of the population’s fitnesses for each
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MO method. Lower standard deviations are preferred, and minimized for all fitness function when

summed rank is used.

Figure 8.4: Range bars for fitness functions, showing min, max, average and quartiles 1 and 3.
Columns represent (1) summed rank, (2) summed rank without duplicates, (3) Pareto, (4) Pareto
without duplicates, (5) random search, (6) random search without duplicates.

8.4 Examination of Visual Results

Although the visual appeal of the models produced is entirely subjective, it is still a topic worth

discussion in order to justify the use of a MO approach. The models chosen from the top-ranked

individuals at generation 30 can be seen in Figure 8.5, using the summed rank method. When
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Figure 8.5: Sample models chosen from the top ten individuals of various runs. Shown with L-system
and fitnesses (DFN, complexity and symmetry)
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Table 8.1: Best and average fitnesses across all runs for the MO experiment using DFN, complexity
and symmetry as aesthetic measurements, as well as standard deviation. (1) uses summed rank, (2)
uses Pareto, (3) uses random search. Best results are in boldface.

DFN Complexity Symmetry
Test µ best σ2 µ best σ2 µ best σ2

(1) 1.7603 0.4279 1.7367 6.5203 17.1326 2.2154 0.9544 1 0.0913
(2) 6.4055 0.7542 2.0979 4.3381 17.1898 3.7098 0.8675 1 0.2662
(3) 5.3049 0.7534 3.9185 4.7128 16.1350 3.6771 0.8338 1 0.2925

target 0.0 max 1

Figure 8.6: Sample models chosen from a set of rank 0 individuals using Pareto ranking. Shown
with fitnesses (DFN, complexity and symmetry)
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comparing these to the single-objective results seen in Figure 7.7 and 7.8, it can be safely said that

these models are generally more organized, fluid and retain full shape and form. The erratic and

rough nature of the single-objective runs is largely due to the fact that there is no further constraint

on the model other than the single fitness function. When DFN is only used, the GP can produce a

wide variety of shapes and forms to fit the criteria. One of the best examples is using the dimension

fitness function – it is easy to satisfy as only the width, height and depth of the model are considered.

Any conceivable form within this bounding box can be generated. The grouping of several fitness

functions is ideal, as it forces constraint on the GP by narrowing the number of potential ’optimal’

solutions, while also increasing the overall solution space and difficulty of the problem.

This increase in problem difficulty is made apparent by looking at the fitnesses of the example

models. The DFN scores are much higher in the highest-ranked individuals, which is due to the

performance of each model with respect to their complexity score, which is high. The models with

the lowest DFN are much more simple, while those with higher DFN are complex and often contain

’holes’ in the mesh, as is seen in the third and fifth images.

A few examples were also taken from those on the Pareto front from the previous experiment, as

seen in Figure 8.6. These three have lower complexity than those from the summed rank runs, but the

same effects can be seen with respect to DFN. Many of the models observed from both MO methods

even closely resemble everyday objects, such as pots, jars, fountains, boats and plants. Though

it cannot be concluded that the DFN – or any aesthetic function used in this thesis – produced

aesthetic models, it can be said that a MO approach using different sets of these functions does in

fact constrain the models produced, and limits the number of erratic, shapeless forms produced.

8.5 Conclusions

The results of this experiment showed that summed rank’s superior performance over Pareto in

this thesis makes it an appropriate choice for this research. The overall diversity of the population

attributed to Pareto ranking is largely unwanted for these experiments, especially due to the outliers

produced. Many – if not all – of the fitness functions have an exceptionally large number of solutions

that can satisfy their targets, most of which are visually uninteresting. Individually, it is simple for

the GP to produce a population that reaches the target of each fitness function. Summed rank, in

this case, does not necessarily result in a completely converged population with no diversity for each

run, but does produce a less diverse population than that of Pareto.

The visual results of this experiment have shown that a grouping of two or more fitness functions

have the capacity to produce more interesting results, which is due to the constraints imposed by

certain functions. Whether or not each aesthetic measure can be concluded to produce aesthetic

models in this thesis, their contribution to an overly aesthetic model is definitely worth further study.



Chapter 9

Multi-objective with Entropy and

DFN

9.1 Introduction

The previous experiments outline the goal of producing aesthetic models – or at least more interesting

ones – by using a MO approach as opposed to a single objective one. By combining three aesthetic

functions – DFN, complexity and symmetry – it can be argued that the results produced are in fact

more interesting, organized and detailed. This is largely due to the fact that the fitness functions

do not clash – high or low target values for each fitness function individually will not influence the

success or failure of the others to reach their own targets. Therefore, each function contributes

independently to the overall success of the model produced through EC. For example, as seen

previously, a low DFN can be achieved while also maximizing symmetry and complexity.

The goal of this experiment is to examine the effects of using two aesthetic measures that are

expected to be so closely correlated that certain target values for one will be unreachable for certain

targets of the other, when using a MO approach. More specifically, the GP will be executed with

two fitness functions, and the final populations will be compared to see the effect on evolution per-

formance. During initial empirical study, it was suspected that the DFN and entropy measurements

are closely correlated, and will therefore be used for this experiment. To prove this correlation

exists, four different tests were executed, using different targets for each function. As a reminder,

both fitness functions produce values in the range 0-10, and produce a fitness of -10 in cases where

the model – or L-system – is invalid. For entropy, a low fitness score typically indicates a simple and

uninteresting model, where a high value indicates a more complex and interesting one. The DFN

function is the reverse of this. In addition, where the DFN has shown to produce scores within the

full range of its expected output, entropy rarely produces a score higher than 5.0.

77
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The fitness targets will be in the range of high (10.0) and low (0.0), and the four combinations

of these will be executed – for DFN/entropy, high/high, low/low, low/high and high/low. It is

expected that the low/high and high/low tests will yield the most optimal fitnesses – those closest

to the target – due to the correlation between the two functions. Also due to the expected correlation,

the high/high and low/low tests are expected to result in GP’s favor of one of the functions, while

the other’s value suffers. Depending on the favorable fitness function – and its target value – this

could result in the production of aesthetically interesting results. For example, during the high/high

test, if entropy is high, then DFN will be low, which will result in a more interesting model despite

the large fitness error between the DFN and its target.

9.2 Results

As with the other experiments, 10 runs were done for each of the four tests, using the parameters

in Table 6.1. The number of generations was reduced to 30 to decrease runtime, as convergence has

been seen by generation 30 in most previous runs. The results of the population’s average progress

for each test can be seen in Figures 9.1 to 9.4. Looking at the graphs for the high/high and low/low

tests, it can be seen that the average fitnesses curves of the population for entropy and DFN never

approach one another – one is always low and the other high. The graphs also show the overall

simplicity of the problem, as the average curves appear to level out early in the run, displaying the

convergence of the population. For the high/high test, DFN was chosen by GP as the dominant

fitness function, likely due to the simplicity of producing a model with a high DFN. This in turn

resulted in an overall low average entropy. For the low/low test, entropy was chosen as the dominant

function, and the reverse is seen – also likely for the same reasons. It is interesting to note that in

both these graphs, the best curves of both submissive functions are always close to the target, which

is due to certain outliers in the population.

The graphs for the low/high and high/low functions are similar but more defined. In the case

of the low/high test – which should hypothetically result in the production of the most aesthetic

models – convergence is slower, which was to be expected as this is the most difficult target of the

four tests. There is a clear separation between the two functions as is present in the graphs of all

four tests, which further suggests correlation. The high/low test is the direct opposite, being the

simplest target to achieve of the tests. In the case of the high/low test, the most hypothetically

uninteresting models are expected to be produced.

The final populations of the ten runs for four tests – 5000 individuals each – are combined in

scatter plots in Figures 9.5 to 9.8, showing the distribution of the populations’ fitnesses at generation

30. These plots further support the theory that the two fitness functions are closely correlated. All

four plots show a population arc from a low DFN and high entropy to a high DFN and low entropy,

with virtually no individuals outside the arc. This suggests a non-linear correlation between the two
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Figure 9.1: Per-generation results of high DFN versus high entropy fitness targets

Figure 9.2: Per-generation results of low DFN versus low entropy fitness targets
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Figure 9.3: Per-generation results of high DFN versus low entropy fitness targets

Figure 9.4: Per-generation results of low DFN versus high entropy fitness targets
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Figure 9.5: Distribution of final population for 10 runs, of high DFN versus high entropy fitness
targets

Figure 9.6: Distribution of final population for 10 runs, of low DFN versus low entropy fitness targets
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Figure 9.7: Distribution of final population for 10 runs, of high DFN versus low entropy fitness
targets

Figure 9.8: Distribution of final population for 10 runs, of low DFN versus high entropy fitness
targets
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Figure 9.9: Sample models from each of the four tests, with corresponding fitnesses (DFN / entropy)
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fitness functions. In the low/high and high/low tests, the population clusters near the target but

never reaches the optimal, as is expected. In the other two tests, similar clusters are seen, though

the population is more scattered. The four corners of the graphs are seemingly inaccessible, or at

least extremely difficult to reach.

The application of the correlation function on the non-invalid population fitnesses for all final

individuals (20,000) yielded a correlation coefficient of -0.8994. This value indicates a very high

correlation between the entropy and DFN fitness functions. The invalid models were omitted, as

their fitnesses are technically not calculated during evolution.

Several samples of models selected from each of the four runs can be seen in Figure 9.9. The

majority were chosen from one of the random ten runs for each experiment, from the top ten-highest

ranked individuals. There are a few exceptions – models B and C from the low/low test were actually

chosen from the lowest ten ranks of two separate runs, in order to display the variations seen with

a lower DFN fitness instead of a lower entropy. As mentioned before, the low/low tests resulted in

a lower entropy being favored over a lower DFN, likely due to the ease in finding a model fitting

this description. In the high/low test, almost 90% of the individuals in the final generation of each

run were identical to model A shown in Figure 9.9, which was the most commonly-produced model

yielding a high DFN in all runs since the initial testing phases. It results from an L-system that

continues to draw a line until the voxel-space boundaries are reached, at which point it resets and

loops. Due to this phenomena, the last two models were hand-picked from the lower 10% ranked

individuals, in order to show some variety in the models. As can be seen from the images, there is

very little alteration from the initial ’stick’ model.

The results from the low/high run were easily the most complex, symmetrical and interesting.

In addition, the final population was exceptionally diverse, as opposed to the final population of the

first three tests. It is interesting to note that from observation of the models produced by this test,

models with higher entropy are more ’disconnected’, resulting in crystalline figures whose mesh is

not entirely complete and fully connected. Models with a lower DFN are the opposite – most often

resulting in full-connected, symmetrical meshes.

9.3 Conclusions

From the results of this experiment, it can be concluded that there is a definite correlation between

the entropy and DFN fitness functions. In addition to this discovery, it can also be concluded the

most interesting models are produced from runs with a low target DFN and high target entropy.

The effect on evolutionary performance when using these two functions together in a MO problem

depends greatly on the targets used. In the situation when the DFN target is low and entropy high,

there is a reduced pressure on both fitness functions. The same situation occurs when the DFN

target is high and entropy low, but this is an undesirable case considering the models produced from
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such a test. There is a high pressure on either function when the target DFN is high and entropy

high, and DFN low and entropy low, which was expected.



Chapter 10

Miscellaneous Runs

10.1 Introduction

This section showcases the rendered results of various experiments with assorted parameters, fitness

targets and goals. The purpose of these experiments is to show the potential of the system to

produce a wide variety of interesting models, which can be further used as design inspirations, or

even imported into external 3D modeling software for further use. Some of these experiments were

run with specific goals in mind, such as to create vase-like models or organic, cellular structures.

Such experiments showcase the system’s abilities in producing models which not only fit the user’s

fitness targets, but can be constrained to fit the user’s conceptual design criteria as well. The results

of previous experiments have already shown the success of the system’s ability to reach fitness targets

for a MO problem, and so this section is dedicated to showcasing the creative results of interesting

experiments.

Each experiment and the general goals behind it are outlined briefly, along with its parameter

settings and fitness targets. The majority of these experiments follow the GP parameter settings

outlined in Table 6.1, and any alterations to these parameters are discussed as well. The discussion of

the results of each experiment will follow. The models from each experiment were hand-picked based

on their aesthetic appeal, and therefore were not necessarily chosen from the top-ranked individuals

of the population. To show the ability of the system to export its models into other systems, and

the potential each model has for expansion, the models in this experiment were imported into the

Blender 3D modeling software for rendering. For many of these results, lighting, textures, subsurface

division and smoothing techniques were also applied.
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10.2 New DFN Target

The goal of the first experiment is to examine the results of a run when a DFN target of 3.5 is

used. Although a model with a DFN this high does not usually exhibit a distribution curve closely

resembling the curve of a normal distribution, it has been seen from the examination of the pre-made

models in Chapter 5 that the majority of these models have a DFN around this target. In addition

to the DFN, a symmetry target of 1.0 was used as well as a relatively low dimension constraint. The

GP parameters stayed the same for this experiment.

The visual results of this experiment varied. Although the majority of the top-ranked individuals

were generally uninteresting, one model stuck out from the others. This model resembled a piece of

jewelry, and has a DFN of 3.2325 and a symmetry score of 1.0. Despite its place in the top-ranked

individuals, it did not resemble the others, which shows the overall diversity of the population after

the span of 30 generations and population convergence. This model can be seen on the left in

Figure 10.1. Out of curiosity, the L-system which created this model was subjected to a different

grammar – the SMS – to look for any similarities and differences in the newly-created model. The

generated model, which resembles a goblet, is seen on the right of the ring in Figure 10.1. This new

model has a DFN of 5.3323 and a symmetry score of 1.0 as well. Although it is difficult to visualize

the full 3D model in 2D, the ring has “jewels” set into it that are evenly-spaced around it. On the

goblet, these jewels are instead interpreted by the SMS as patterns, which are also evenly-spaced.

Both models are quite similar, but also show the major differences in models created from the same

L-system but using two different drawing grammars. To show possible extensions to these models,

they were imported into Blender and textures and smoothing techniques were applied. The major

differences between the originals and the models which were improved can be seen in Figures 10.1

to 10.4. Blender and other 3D modeling software allows direct access to all model data for the user,

which enables virtually any alterations to these models.

Two other high-scoring models from similar runs can be seen in Figure 10.5. Image A closely

resembles a bottle, and was textured to reflect this. Its DFN is 3.3498, and symmetry score is 1.0.

This form was actually found to be quite common amongst those with DFN scores between 2 and

4, and other variations of this form were seen in the top-ranked portion of the population. Image B

was taken from a run using a DFN target of 3.5 and a volume target of 100,000, and had a DFN

of 3.5012 and volume of 119,284. Volume was chosen to force the GP to produce larger models, or

at least bulky ones. The model appears organic, and although difficult to see in a 2D image, the

model is hollow inside, with square openings surrounding the model’s axis. The inside of the model

contains a series of pillars as well, likely a by-product of the use of gravity wells. As with Image A,

the majority of the population’s models were variations of this form.

Despite the large number of uninteresting models produced using a DFN target of 3.5 for runs

in this experiment, there was at least one gem in each population worth keeping. The same can be
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Figure 10.1: Rendering of low-DFN models using no texturing or smoothing techniques

Figure 10.2: Rendering of low-DFN models using texturing and no smoothing techniques
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Figure 10.3: Rendering of low-DFN models using smoothing techniques and no texturing

Figure 10.4: Rendering of low-DFN models using texturing and smoothing techniques
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Figure 10.5: Hand-picked results of two separate runs using a DFN target of 3.5, and rendered with
textures and smoothing techniques in Blender

said about many of the models found in any such experiment, and this does not necessarily reflect

the failure of the system. As a design tool it can produce a wide variety of design ideas, and due to

the subjective nature of aesthetics and the heuristic nature of aesthetic modeling, no single aesthetic

measure will consistently produce widely-accepted aesthetic results.

10.3 Organic Forms

This experiment aims to show the system’s ability to produce more organic and fluid forms. While

many of the results seen in previous chapters have generally had curved surfaces, they were chosen

from the top-ranked individuals in the population due to their fitness scores and with no other real

purpose or goal. With this experiment, the exact opposite approach will be taken. The population

will be examined and the most visibly-organic form will be hand-picked. This is meant to emulate a

real design situation, where a designer will look through many potential design ideas before choosing

a personal favorite. The fitness scores, though necessary for evolution, are rather meaningless to a

user who does not fully understand their purpose. Instead, a typical user would simply examine the

shape and aesthetic appeal of each model before choosing.

As mentioned in earlier sections, models with higher DFN scores typically take on block-like

forms, while models with lower DFN scores are usually more fluid, symmetrical and curved. Un-

fortunately, many of the models produced with a lower DFN are simple and small, as GP tends to

favor smaller distributions in order to more easily satisfy the lower DFN target of a run. For this



CHAPTER 10. MISCELLANEOUS RUNS 91

experiment, a target DFN of 0 will be used, alongside at least one other fitness function which will

try to influence a greater model size on the GP.

The first test uses the DFN, a target volume of 50,000, target surface area of 1,000,000 and

attempts to maximize the number of unique normals. This large difference in surface area and

volume is expected to result in large, thin and complex forms. Maximizing unique normals is usually

a difficult task which results in the production of exceedingly complex models. This in turn increases

the time for the run substantially. The final results were as expected, and consisted of large models

with high complexities and tangled, wire-like forms. From this population, a few similarly-shaped

models exhibited organic properties and one of this set can be seen as image A in Figure 10.6. This

shape closely resembles a cephalopod, such as an octopus with eight arms evenly-spaced around a

centralized body or head. Each arm curves inward at roughly the same angle, which is indicative

of the fractal nature behind its construction. The model’s fitness scores are 0.9591 for DFN, 45,786

for volume, 2,143,418 for surface area and 8275 unique normals.

Figure 10.6: Hand-picked results of two separate runs aiming to produce organic forms, and rendered
with textures and smoothing techniques in Blender

The second test uses the DFN, a target mean of 0.005, target standard deviation of 1.5 and

attempts to maximize complexity. While this set is similar to the fitness functions used in the

experiments in Chapter 8, the target mean and standard deviations were added as they have been

seen from earlier empirical study to be common in many organic forms. The use of complexity here

is similar to the use of volume and surface area in the previous test. As opposed to the previous

test, this final population consisted almost entirely of variations of the model seen in image B of

Figure 10.6. This model closely resembles a cellular form, or even a cluster of fish or insect eggs.
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Its fitness scores were 1.2531 for DFN, 0.0051 for mean, 1.5 for standard deviation and 7.3761 for

complexity. These two models were considered the most interesting, with no consideration about

their actual fitnesses or ranking within their populations. As with a real design situation, being

able to find one great design out of many possibilities makes the whole process worthwhile for the

designer.

10.4 City Layouts

This experiment outlines a more practical use for this system – generating city layout designs.

There is a great deal of prior knowledge and experience that goes into city layout planning. Cost,

efficiency and practicality are of great importance when deciding where certain structures should

be built, how large they can be and what they are to be used for. Of course, there are situations

when this does not matter. Cities used in movies, video games and animations do not necessarily

need to fit these criteria, as the placement and cost of each building does not effect the overall

purpose of the city or the people who construct it. It exists merely for aesthetic purpose, as a place

for video game characters to explore and for protagonists to travel in a movie. This experiment

investigates the generation of city layouts as models for the use of design inspiration, or even for

dynamic environment generation for the gaming industry.

The SMS grammar is perfect for this problem, as it builds from the ground up using voxels.

Gravity wells, which help produce organic, curved surfaces, are not needed for this problem, and so

were removed from the L-system alphabet. The choice of fitness functions reflects the problem at

hand. Cities generally build farther outward than upward, and so a dimensional constraint was used

to reflect this. In order to maximize the amount of surface covered, a surface area target of 100,000

was used. As mentioned in Chapter 5, the use of targets for these model constraint functions help to

constrain the model, but will generally be hard to reach exactly. As seen from the results of previous

experiments, the DFN will not be appropriate here, as it tends to favor fluid, curved models, which

are undesirable for this particular problem. Instead, the entropy function is used with a target of

5.0. Entropy has shown in the previous experiments to produce crystaline, disjointed models, which

will help to separate each building in the city. The remainder of the GP parameters are consistent

with those in Table 6.1.

Four of the results of this experiment can be seen in Figures 10.7 and 10.8, which were hand-

picked from different sections of the ranked population. These models were textured in Blender, but

their surfaces left intact. As can be seen from the images, each model varies in size and shape, but

all are similar in overall appearance. Their surface areas vary (32003, 33054, 83875, and 117151)

but their entropy scores are similar (3.4701, 3.4684, 3.2910, 3.2086). This indicates convergence on

the entropy function, which is the most desirable for this problem.
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Figure 10.7: Renderings of two models evolved to resemble city layouts
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Figure 10.8: More renderings of two models evolved to resemble city layouts
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These models are perfect representations of fractal-generated surfaces, which have resulted in a

build-up of large buildings in the center of each city, surrounded by smaller, more sparcely organized

structures [9]. In most cases, the smaller structures are only a few voxels high. The spaces left by the

fractal-drawing could be used for places like parks, museums, or other structures that require a large

amount of room. These results are another perfect example of the diversity of models generated

using the system, despite convergence. This experiment has shown that the system can be used

to generate models for specific goals by properly choosing and tweaking each fitness function and

its target, as well as the L-system alphabet and drawing grammar. With the number of possible

adjustments and combinations of these settings, the possibilities are endless.

10.5 More Results and Conclusions

This final section showcases various interesting results from experiments done during the research

in this thesis. These experiments generally had no fixed purpose, but instead were used to test

the system’s abilities to reach certain fitness targets, produce different types of models and meet

certain time-constraints. Some of these results can be seen in Figures 10.9 and 10.10. Each model

came from a different run with different parameters, and were hand-picked as with all other models

in this section. They serve as examples of the variety of models that can be produced, and the

modifications that can be made possible with the use of external modeling software. The model in

Figure 10.10, while not necessarily being a target goal expected at the end of its run, was chosen

due to its potential resemblance to an ice sculpture when textured. It is a perfect example of what

the system can do: it can generate these models using the constraints set by the user, but it never

strictly dictates which models will be considered interesting in the end. The use of the aesthetic

measures are merely the system’s suggestions for what may be an aesthetically pleasing model.

The ability of the system to produce a diverse population of forms, while also converging onto a

certain type of model which satisfies fitness targets, is exceptionally useful. Although much of the

final population of any run will be discarded, the same can be said with many potential design ideas

in any field that requires them. This system provides a means of automatic production of many

varied designs. This, paired with the user’s ability to control and alter any aspect of the evolution

and drawing controls, has resulted in a powerful design tool. Further improvements to the system

might enable it to generate more specific forms, such as tables, architectural structures or plants.

The potential for the system to generate any conceivable form is astounding, but of course limited

by the user’s understanding of the controls and imagination.
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Figure 10.9: Renderings of models using smoothing and texturing, each evolved using separate
parameters
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Figure 10.10: A high-quality rendering of an ice-like sculpture



Chapter 11

Human-centered Study of

Aesthetic Measures

11.1 Introduction

Due to the subjective nature of the aesthetic measures presented in this thesis, it is difficult to make

any definitive conclusions on their effectiveness or usefulness. While it can be seen from previous

experiments that certain fitness functions can be used to produce more complex models, symmetrical

models and so on, the actual aesthetic value of the models produced is a subject of debate. These

fitness functions have been shown in the past to relate to the theories and concepts reflecting aesthetic

value, but their actual applicability to EC and the production of automated artwork is subjective.

One of the primary issues with research involving quantifiable aesthetic measures is that human

opinion is rarely taken into consideration, at least in those cases where user-guided EC is not used.

Surely the introduction of a human element could only strengthen the argument that a certain

aesthetic measure directly reflects the visual aesthetics of a model.

Walsh et al. incorporated a survey of the opinions of human participants to justify their

automatically-generated aesthetic terrains, using Kolmogorov complexity as a fitness measure [63].

Using ten tests, where each test consisted of a pair of terrains – one low- and one high-scoring – they

asked their participants to choose the more aesthetic between the two. Their results were subjected

to the non-parametric sign test, which tests the null hypothesis that there is no difference in the

medians of the continuous distributions of two random variables X and Y [62]. The test makes

no assumptions about the nature of the distributions under the test, which makes it useful and

commonly used in market surveys measuring consumer preferences.

For this experiment, a similar test was conducted. Twenty model pairs were chosen at random,

which were all automatically generated using EC and the DFN measuring surface normals as a
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target. In addition, many of the models were generated using a multi-objective strategy, pairing the

DFN with other fitness functions. The fitness functions that were chosen do not detract from the

success of the DFN from reaching its target, which is why they were selected. A multi-objective

approach was chosen in addition to single-objective in this experiment due to the results seen in

previous experiments reflecting the aesthetic appeal of models generated using multi-objective EC.

The method for choosing the best models was simple for the single-objective examples, which involved

picking the highest-ranked individual from the population, which were evolved using the parameter

set found in Table 6.1. For the multi-objective runs, a more involved approach was taken. First, the

population was sorted according to rank and the top ten individuals were set aside. For tests using

pareto ranking instead of summed-rank, all of the rank one individuals were set aside instead. At

this point, the individual with the best DFN score was chosen from this set, regardless of the other

fitness scores, if any.

For the lower-scoring models, the worst possible DFN score – between 8 and 10 – was not

automatically chosen to oppose the better score for the survey. This is because models with the lowest

DFN are typically cubes or rectangular prisms, and would have likely imposed a heavy preferential

bias towards the more complex models. Instead, a random individual was chosen amongst the

middle-ranked individuals in the population at generation zero, which were not subjected to any

evolutionary pressure. If the randomly-chosen individual’s DFN exceeded 8.5, then a new individual

was chosen. A list of the tests and their fitness targets can be found in the Appendix in Figures A.1

to A.4. For each test, the renderings of both models are shown as well as the fitnesses of the models.

In most cases, the high-scoring model pareto dominates the low-scoring, except for tests 6, 8, 9, 15,

19 and 20. For these tests, the fitnesses of the low-scoring model that dominate the high-scoring one

are bolded.

The survey was hosted online, and the models were rendered in a manipulatable Java applet en-

vironment, which allows the user to rotate and examine each model. Each participant was presented

with the same model pairs – or tests – in the same order. The models in each pair were placed on

the left or right side with an equal probability prior to the start of the experiment. The participants

were given no indication as to the fitness scores of the models. The survey required all 20 tests

to be completed in order for a participant’s results to be included and ran for one week, open to

the public. The survey was announced via email to all students in the Brock Computer Science

department, who were also encouraged to spread it as well. In total, 50 individuals filled out the

survey, with only 34 of these being complete, which was likely due to technical difficulties on both

client and server side. A sample of one of the tests found in the survey can be seen in Figure 11.1.
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Figure 11.1: Example model pair test used in the survey

11.2 Results

The raw results of the survey can be found in Figure 11.2. This table shows the correct guesses of

each participant in each row, for each image test. A value of 0 represents an incorrect guess, and

a 1 a correct guess. The totals for each participant is shown in the column at the right, and the

totals for each test for all participants is shown in the bottom row. These results of the survey were

measured in a few different ways. The general results focusing on the number of correct guesses

made by all participants for each image pair can be seen in the left histogram in Figure 11.2. The

horizontal line represents the midpoint of 17, where most tests were hoped to exceed. From this

graph alone, it is difficult to make any sound conclusions about the participants’ preference for

models with higher DFN scores, as seven of the tests had the number of correct guesses below the

midpoint. Using the sign test, it was confirmed that the participants preferred those models that

scored higher with respect to fitness, with a 95% certainty. Of all participants, from the results of

the survey approximately 71% of them chose the correct, higher-scoring model over the lower-scoring

ones. This analysis is a step forward in justifying a preference for the DFN.

As mentioned previously, a few of the tests contain high-scoring MO models which do not com-

pletely dominate their lower-scoring partner. The right histogram in Figure 11.2 shows the results

with these tests omitted, which removes five of the seven tests which have a number of correct
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Figure 11.2: (Left) Histogram displaying number of correct choices, out of 34, for all 20 tests.
Horizontal line shows mid-point at 17. (Right) Same as left, except with non-dominating model
pairs removed.

guesses below the midpoint, and only one test with the number of correct guesses above it. This

result supports the idea that the users were influenced by more than the DFN of the models. For

these tests that were removed, the lower-scoring models in 19 and 20 had better symmetry scores. In

tests 6, 8 and 9 the lower-scoring models had better complexity scores. In test 15 the lower-scoring

model had a better DFN. Using this new data set, of all participants, approximately 80% of them

chose the higher-scoring models over the lower-scoring, which is a definite improvement over the

previous data set.

Test 15 was an anomaly, in that the DFN of the selected quality model was in fact higher than

the low quality model. The model was chosen at random, using the same criteria for choosing models

as the others, but yielded a better-scoring model in two fitness scores, though not by a significant

amount. This likely contributed to the less-than-midpoint number of successes observed in the graph.

Despite the success of the experiment already, the results of this specific test could hypothetically

be reversed, resulting in further improvement to the results. This is possible since the suspected

lower-scoring model is actually the higher-scoring one, despite being pulled from generation zero

instead of being generated from 30 generations of the GP.

11.3 Conclusions and Discussion

The results of this experiment were encouraging, showing a user preference for higher-scoring models

with respect to DFN score, and aiding in the ongoing justification of the use of quantitative aesthetic
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measures. Although it can be argued that humans are seeing “more than just the target fitness

function” in these models, the statistical tests have shown that there is a preference to those models

with higher DFN scores. Of course, this experiment does not completely justify or support the use

of the DFN or any other aesthetic fitness function, but instead encourages further research into the

topic of computational aesthetics, and offers supportive evidence of their usefulness.

A possible explanation for the results of this experiment is that certain sweet spots exist for these

fitness functions, which define fitness areas which humans prefer. For example, perhaps a DFN of

zero is not ideal, but instead a DFN range between 0 and 2. Another possible explanation is that

certain aesthetic properties implicitly take preference over others when a human judges a model’s

aesthetic value. Symmetry, for example, is common in most of the models used for this experiment

and likely influenced many of the participants’ choices. This phenomena can also be seen when

looking at the models presented in Chapter 5, as many aesthetic models have poor DFN scores,

but score higher in other fitness measures. These ideas further support the notion that the area

of computational aesthetics is still in its early stages, and requires much more research in order to

move forwards.



Chapter 12

Conclusions and Future Work

12.1 Conclusions

This research investigated the automated evolution of aesthetic 3D forms using GP. The models

were evolved using fitness functions measuring geometric properties as physical constraints to size

and shape, while using aesthetic-based fitness functions to measure their aesthetic value. GP was

able to consistently produce models which satisfied the targets of both sets of fitness functions, in

both a single and multi-objective scenario. The multi-objective strategy is effective in producing

more interesting models of varying complexity when using a combination of model constraint and

aesthetic-based fitness functions. The fractal-based drawing system, using L-systems at its core, is

useful as a drawing mechanism in voxel-space. Despite the limitations imposed on the system –

such as drawing bounds, string limits, computational time and speed – the L-system alphabets and

parsing algorithm were able to produce a wide variety of detailed models within this limited drawing

space.

The new L-system encoding introduced in this thesis is capable of enforcing the production of

valid and complete L-systems within a GP chromosome, including valid production rules, starting

strings and the necessary relationships between the two. While this thesis is not a critique on existing

encodings, it does offer enlightenment in the possibilities for encodings which do not need to take

chromosome-repair into account during evolution. Such an encoding is not problem-specific, and

can be taken from this thesis and used for many problems involving L-system evolution using GP. In

addition, the large number of constraint adjustments available to this encoding enable it to produce

any conceivable L-system, given the L-system alphabet and required number of iterations.

During this research, extensions to existing aesthetic measures were also explored. From the

experiments shown in previous sections, many of these extensions were successful in properly rank-

ing models which exhibited properties distributions similar to their 2D counterparts. In essence,
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although each new aesthetic measure and their 2D equivalent did not necessarily measure the same

criteria, they did in fact rely on the same means of measuring distribution data. In this sense, the

extensions were a success, as they have shown to be applicable to measuring aspects of the aesthetic

value of 3D models as well. Other functions, such as complexity and symmetry, were also successfully

applied to 3D models. It has been shown that the use of the complexity function as a fitness function

has resulted in the production of more complex models, just as symmetry has produced more sym-

metrical models. The relationships between some of these fitness functions, primarily entropy and

DFN, were investigated as well, and were shown to exhibit similar properties which helped them to

work well in conjunction. The results of the user survey helped to justify the use of these measures,

as it showed a general preference for those models with a lower DFN.

The system itself excels in its intent as a tool for designers. The overall simplicity of the tool

and its automation remove the requirement for more advanced users, and the parameter control and

diversity of the final population allow users to produce a wide variety of similar solutions. All results

can be exported as raw model data, and with little work can be further converted for import in any

commercial system. This allows future users to manipulate the final results to their liking. As this

tool is meant as a design aid for designers, its many features, controls and user-friendliness may pave

the way for future systems, aiming to make the world of design a simpler and more practical one.

12.2 Future Work

This work and research merely scratches the surface of the possibilities for evolutionary design using

aesthetic value as a fitness measure. Only a small handful of existing 2D aesthetic measures were

explored, and research into the applicability of others to 3D model measurement would be of great

interest in this problem domain. The measures that were explored in this thesis such as entropy,

DFN and 1/f, have the capacity for further research as well. 1/f noise, for example, has a large

following in the academic community, although its application to 3D model measurement has not

been explored until now. A brief study was done in this thesis to find sample target ranges for these

fitness functions, using existing models as samples. Although general target areas were found, the

results were not significant enough to make any sound conclusions. Future research is possible in

finding more localized target areas for these fitness functions by using a larger data set and simpler

models.

The user survey showed a general preference for models with a low DFN, but did not take

into consideration other factors, such as symmetry, complexity, and so on. Future work could be

done in extending this survey to the other fitness functions, using them as a primary target for the

evolutionary process in place of the DFN. The results could also be used to locate the sweet spots

for each fitness function by using a larger number of participants.

The extensions of DFN, entropy and 1/f to measure 3D distribution data were relatively easy,
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but the conversion of other fitness functions were not so simple. The measurement of symmetry in

a 3D environment is generally difficult, and the symmetry function used in this thesis is only an

approximation. There is a definite need for future study in 3D symmetry analysis, as the measure

used here ignores several aspects of symmetry which are difficult to measure in 3D. Many complexity

measurements exist, and generally apply to images, fractals and so on. The complexity measure

presented in this thesis is only an estimate of the fractal dimension of a 3D model, and higher

precision results could arise using a 3D box-counting method. Such a method was ignored for this

thesis due to time constraints and the time required to compute such information. Research into

additional measurements is also possible, such as those measuring color and lighting, or various model

topology measurements, such as higher-order surface derivatives and textures. More volumetric

measurements could also be implemented, such as 2D and 3D space-filling functions which match

the model’s volume to another pre-computed area or volume.

The models produced by the system are particular to the implementation of the modeling system

which created them. Other 3D modeling implementations would likely produce differently-styled

results, especially if the use of voxels and the Marching Cubes algorithm were removed. The voxel-

space drawing, with the aid of the Marching Cubes algorithm, allowed for the construction of model

approximations that could have potentially been of much greater detail. This approach was taken

here due to the overall processing complexity of a such models. This fact also resulted in the use

of a bounding box for the voxel-space, limiting the overall canvas size. This limitation resulted

in the production of many models which were cut off as the drawing pen travelled outside the

boundaries. In the end, many forms which would have appeared more fractal-like were cropped by

the bounding box. Greater computational resources would allow a larger bounding box, or even

suggest the removal of it completely. These resources would also cut down on the runtime of a single

GP run in the system, which could range from a few hours to a few days. New drawing grammars

and modeling languages are of definite interest, as they will allow the creation of more detailed and

specific models.

The L-system encoding could also be further improved to allow for the evolution of specific parts

of the L-system. For example, a user could supply the starting string and a few production rules,

and the GP would evolve the rest. This would allow for the production of more specific models,

or even result in the generation of variations of a user-supplied L-system model. The limitations

imposed on the size of each L-system string also resulted in the cropping of longer strings, which may

have potentially produced more complex and interesting models. This decision was based entirely

on necessary processing limitations, which may not be so daunting in the future. Other possibilities

for the encoding used in this thesis are evident, such as the use of parametric L-systems. This was

omitted for several reasons, but primarily due to the increase in processing time of complex evaluation

strings and the ability for a non-parametric L-system to mimic the behavior of a parametric one.

For example, F(3) is equivalent to FFF, assuming that F moves the pen forward one unit.
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Appendix A

Miscellaneous Analysis and Results

Table A.1: Two-tailed T-test statistics comparing the first generation results of both encodings, over
10 runs. One test is applied for unused production rules and one for complexity.

Unused Rules Complexity
Stats Encoding A Encoding B Encoding A Encoding B
Mean 0.83774877 0.066604914 15.51863704 828.3132519
Variance 0.000523531 6.12014E-05 1892.205561 13064.76526
Observations 10 10 10 10
Hypothesized Mean Difference 0 0
t Stat 95.6705 -19.9379
P(T≤t) two-tail 3.81E-16 2.21E-09
t Critical two-tail 2.2281 2.2281

Table A.2: Two-tailed T-test statistics comparing the first generation results of both encodings, over
10 runs. One test is applied for the percentage of invalid individuals and one for unchanged starting
strings.

Invalid Individuals Unchanged Strings
Stats Encoding A Encoding B Encoding A Encoding B
Mean 0.441555556 0.101555556 0.770444444 0.027555556
Variance 0.000235778 0.000133778 0.000966778 5.47778E-05
Observations 10 10 10 10
Hypothesized Mean Difference 0 0
t Stat 53.0591 69.7291
P(T≤t) two-tail 1.74E-18 1.30E-13
t Critical two-tail 2.1314 2.2621
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Table A.3: Two-tailed T-test statistics comparing the average fitnesses for Pareto and Summed
Rank from the final generation, for each fitness function.

DFN Complexity Symmetry
Stats DFN Pareto DFN Pareto DFN Pareto
Mean 1.760388 6.405594 6.520341 4.338154 0.954483 0.854715
Variance 0.087623 0.015399 5.631522 0.275057 0.000482 0.000709
Observations 10 10 10 10 10 10
Hyp. Mean Difference 0 0 0
t Stat -45.7656 2.839383 9.139721
P(T≤t) two-tail 7.73E-15 0.017567 5.69E-08
t Critical two-tail 2.178813 2.228139 2.109816
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Table A.4: Raw results from survey participants. A value of 0 is an incorrect guess, and a value of
1 is a correct guess. The totals for each model test is shown in the bottom row, and the totals for
each participant is shown in the last column

Tests 1-5 Tests 6-10 Tests 11-15 Tests 16-20 T
1 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 9
1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 8
0 1 1 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 0 1 10
0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 12
1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 0 0 12
1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 12
1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 13
0 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 11
1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 1 11
1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 0 0 12
1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 11
1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 12
0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 11
1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 12
1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 10
1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 1 11
1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 0 13
1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 16
1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 14
1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 1 13
1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 12
1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 0 1 14
0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 7
0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 12
1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 1 0 0 9
1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 9
1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 10
1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 11
0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 15
1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 14
1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 13
1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 0 1 14
1 0 1 0 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 8
1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 10

27 21 22 20 19 23 32 15 8 12 27 22 22 25 16 17 25 14 9 15 39
1
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Figure A.1: Fitnesses, targets and models for tests 1-5 used in human-oriented survey



APPENDIX A. MISCELLANEOUS ANALYSIS AND RESULTS 115

Figure A.2: Fitnesses, targets and models for tests 6-10 used in human-oriented survey
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Figure A.3: Fitnesses, targets and models for tests 11-15 used in human-oriented survey
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Figure A.4: Fitnesses, targets and models for tests 16-20 used in human-oriented survey


