
Evolution of Architectural Floor Plans

Robert W. J. Flack

Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Faculty of Computer Science, Brock University
St. Catharines, Ontario

© October 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brock University Digital Repository

https://core.ac.uk/display/62642662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I would like to thank the following individuals and organizations for their

support in preparing this thesis:

• B. Ross for superb supervision

• B. Ombuki-Berman and S. Houghten for participating on my supervi­

sory committee

• C. Fairchild for technical assistance

• NSERC for generous funding

Abstract

Layout planning is a process of sizing and placing rooms (e.g. in a house)

while attempting to optimize various criteria. Often there are conflicting

criteria such as construction cost, minimizing the distance between related

activities, and meeting the area requirements for these activities. The pro­

cess of layout planning has mostly been done by hand, with a handful of

attempts to automate the process. This thesis explores some of these past

attempts and describes several new techniques for automating the layout

planning process using evolutionary computation. These techniques are in­

spired by the existing methods, while adding some of their own innovations.

Additional experimenLs are done to test the possibility of allowing polygonal

exteriors with rectilinear interior walls. Several multi-objective approaches

are used to evaluate and compare fitness. The evolutionary representation

and requirements specification used provide great flexibility in problem scope

and depth and is worthy of considering in future layout and design attempts.

The system outlined in this thesis is capable of evolving a variety of floor

plans conforming to functional and geometric specifications. Many of the

resulting plans look reasonable even when compared to a professional floor

plan. Additionally polygonal and multi-floor buildings were also generated.

Contents

1 Introduction 1
1.1 Floor Plan Design. .. 1
1.2 Goals................................ 3

1.2.1 Effectiveness of Evolutionary Computation Techniques 3
1.2.2 Domain Application 3

1.3 Subsequent Sections 4

2 Background 5
2.1 Genetic Algorithms 5

2.1.1 GA Algorithm. . . 6
2.1.2 GA System Design 6
2.1.3 GA Parameters and Settings. 10

2.2 Genetic Programming 11
2.2.1 GP System Design 11
2.2.2 GP Parameters and Settings . 13

2.3 Multi-objective Evaluation . 14
2.3.1 Weighted Sum. 14
2.3.2 Pareto Ranking 15
2.3.3 Sum of Ranks . 17

2.4 Floor planning
2.4.1 Spatial requirements
2.4.2 Layout requirements
2.4.3 Functionality requirements.

3 Literature Review of Floor Plan Design
3.1 Building Analysis .
3.2 Floorplanning in VLSI
3.3 Non-Evolutionary Automated Design of Floor Plans.

iii

19
20
21
21

23
23
25
26

3.4 Evolutionary Automated Design of Floor Plans 27

4 System Design 29
4.1 System Operation 29
4.2 Chromosome Representation. 29

4.2.1 GA........... 31
4.2.2 GP........... 33

4.3 Procedural Activity Assignment
4.4 Requirements Description
4.5 Fitness Evaluation

4.5.1 Calculations.

37
39
40
40

4.6 Fixed Rooms 41
4.7 Polygonal Layouts . 43
4.8 Diversity Preservation 43

5 Evolution of a Basic Floor Plan 44
5.1 Evolutionary Parameters 44

5.1.1 Random Search Vs Evolutionary Pressure . . 48
5.1.2 Genetic Algorithm Vs Genetic Programming. 51
5.1.3 Procedural Vs Evolutionary Assignment . . . 53
5.1.4 Comparison of Multi-Objective Ranking Strategies 55
5.1.5 Diversity Preservation 57
5.1.6 Objective Weighting 58

5.2 Requirement Specifications. 59
5.2.1 Basic Functionality and Connectivity 59
5.2.2 Room sizes and ratios 61
5.2.3 Size Relations 63

6 Advanced Floor Plans 65
6.1 Comparison to a real floor plan 65
6.2 Polygonal houses 67
6.3 Office building. 72
6.4 Multiple floor office building 75
6.5 Grocery Store 78

7 Discussion and Comparisons 81
7.1 Discussion. 81
7.2 Comparison 82

8 Conclusions 87
8.1 Results. 87
8.2 Future Work . 88

Bibliography 93

Appendices 93

A Penalties for procedural assignment 94

B Requirements for experiments in thesis 97

C Full statistical data 105

D Detailed fitness penalties 110

List of Figures

2.1 GA Algorithm 7
2.2 Vanilla G A crossover 8
2.3 G P crossover · ... 12
2.4 Example of Pareto ranking . 16
2.5 Example of Sum of Ranks 18
2.6 Room shapes · 20

3.1 Justified Gamma Map 24
3.2 Sliceable and unsliceable floorplans 25
3.3 Transformation of dimensionless representation[23] . 27

4.1 Flow of system operation 30
4.2 Chromosome mapping to phenotype . 31
4.3 Edge removal · 32
4.4 Example of crossover with GA house chromosomes 34
4.5 Developmental GP Layout Construction 35
4.6 Fixed room representation ... 42
4.7 Cutting a polygonal shape out 43

5.1 Random versus directed search - Population average 49
5.2 Random versus directed search - Average best individual 50
5.3 Comparing evolutionary methods - Average best solution . 52
5.4 Comparing assignment strategy - Average best fitness. . . 54
5.5 Examples of disconnected rooms produced by evolutionary as-

signment 55
5.6 N umber of identical individuals with and without diversity

preservation. 57
5.7 Effect of weighting on average of best fitnesses 58
5.8 A selection of houses evolved with basic requirements. . 60

vi

5.9 Area and ratio requirements in basic layout. 62
5.10 Basic two bedroom bungalow with size relation constraint en-

forced .. 64

6.1 Comparison of a real floor plan to evolved houses with similar
requirements. 66

6.2 Shapes used for polygonal experiments 68
6.3 Half hexagon shaped houses evolved from system 69
6.4 Angle shaped houses evolved from system 70
6.5 3D view of house from Figure 6.3(b) 71
6.6 A sample of evolved office buildings 73
6.7 Bottom floor office buildings evolved with a fixed stairwell 76
6.8 Upper floor office buildings evolved with a fixed stairwell 77
6.9 Grocery store layouts evolved by system .. . 79

7.1 Hallway conversion on rectangular floor plans 85

List of Tables

4.1 G P Function and Terminal Set 36

5.1 Evolutionary Algorithm Parameters . 45
5.2 Confidence in Directed Search Vs. Random Search 51
5.3 Confidence in Genetic Algorithm Vs. Genetic Programming

approach. 53
5.4 Confidence in Procedural Assignment Vs. Evolutionary. . 53
5.5 Statistical comparison of multi-objective ranking strategies 56
5.6 Confidence in weighting objective values Vs. equal weighting 59

6.1 Fitness of original and evolved "real" floor plans in Figure 6.1 67

7.1 Comparison of features in various works 83

C.1 Confidence in Directed Search over Random Search 106
C.2 Confidence in Genetic Algorithm over Genetic Programming

approach 106
C.3 Confidence in Procedural assignment outperforming Evolu-

tionary 107
C.4 Statistical comparison of multi-objective ranking strategies . . 108
C.5 Confidence in weighting objective values over equal weighting 109

Vlll

Chapter 1

Introduction

1.1 Floor Plan Design

As computing time is becoming cheaper and more available, computers are
being used for an expanding variety of creative endeavours. Some of these
recent endeavours aim to put creativity in the comput.P'fs' hands , Computer
algorithms are being written to do everything from redesigning circuits to
creating artwork or even writing poetry. There have been an increasing
number of successes in the attempts to generate creative design results from
evolutionary processes.

Architecture is a complex amalgamation of science and art . There are
functional requirements, cultural expectations and general guidelines to fol­
low, but within these guidelines there are still limitless possibilities. Even
though a house may meet building codes and social norms, Hirsch feels that
there is no such thing as the perfect house, "The needs and desires of ev­
ery client are so unique, so it follows that each should should necessarily be
unique." [15] It's likely that no amount of standard measures can identify one
house that will suit everyone. This makes the design of houses an interesting
problem to assist with a computer algorithm.

This thesis is concerned with the automatic design of the floor plan of a
house. There are very many levels of detail that go into designing a house. A
floor plan needs to be functional in that it shapes the flow of traffic through
the house and it also has measurable traits of quality, such as efficiency
in being able to get to important rooms quickly or being able to light key
rooms with natural light from large windows. There are also conventions that

1

CHAPTER 1. INTRODUCTION 2

different societies have developed and expect to find satisfied with respect to
their floor plans and this is why it is an ideal target for automation. There
are many objectives that can be measured in the automation of the design.
In particular, a floor plan needs a certain number of rooms of certain types.
One should be able to get to all of the rooms in the house without travelling
through too many other rooms to get there. Many rooms need to be a
certain size and general shape or ratio of width to length. Certain rooms
should be closer together. Some rooms need windows for natural lighting
during the day. The type of walls, awnings over the windows, various doors
and light fixtures all contribute to the feel of a house, but they are fairly
immeasurable in terms of correctness. Additionally such decorative decisions
can be made and applied to any house floor plan. The most important
aspect of a house is that its owner likes it. The opinion of the owner is
however very subjective. Owners may not agree on what is important and it
is not necessarily quantifiable. They simply have to see the house. That is
what makes this a particularly difficult and in a way a creative problem.

This thesis will explore several methods and ideas with respect to au­
tomating the generation of floor plans using a c.ompnter system. There are
many objectives which are often at odds with each other. For example, there
is a minimum number of various room types but also a minimum size for
each of these room types and an overall finite amount of space. This means
sacrifices must often be made in either the size of the rooms or the number
of such rooms. Additionally it is a very subjective problem and as such some
solutions may be undesirable for purely aesthetic or other unmeasured or un­
measurable reasons. Genetic algorithms and genetic programming paradigms
will be utilized as they are capable of exploring large search spaces in parallel
and produce a set of answers rather than one single answer. Multi-objective
strategies will be used to find a balance of the many objectives being op­
timized. By providing multiple answers a customer will get many options
which satisfy the fitness constraints in different ways and combinations.

This thesis will investigate whether this strategy of evolution will be suc­
cessful in creating designs that may have been designed by humans. A system
that can create such designs has many possible applications. It can be used
as a basis for ideas to be taken into consideration by architects and their
clients. It can also be used to create dynamic environments for games. This
goal is two-fold; for games, it can provide dynamic environments such that
each time playing through is different, and it can create very large expansive
environments that would have taken a long time to design by hand. Lastly,

CHAPTER 1. INTRODUCTION 3

it can be used for computer animations or movies, where generating large en­
vironments for background scenery would otherwise be very time consuming.
In any case, it is an interesting and challenging evolutionary design problem
for genetic algorithms and genetic programming which is only beginning to
be studied.

1.2 Goals

1.2.1 Effectiveness of Evolutionary Computation Tech-
niques

This thesis tests the effectiveness of several evolutionary computation tech­
niques and multi-objective evaluation strategies in the context of a difficult
and highly dimensional problem.

• A genetic algorithm strategy can be compared with a similar genetic
programming strategy.

• Different multi-objective strategies can be compared.

• Diversity preservation strategies can be employed and tested for effec­
tiveness in generating more unique solutions.

It is an interesting and challenging problem in evolutionary design. The
goal is to gain insight into the relative effectiveness of these evolutionary
computation technologies in the floor plan design problem.

1.2.2 Domain Application

This thesis also attempts to solve a domain problem in architecture which
has not been thoroughly studied. This problem is the automatic generation
of floor plans that satisfy the constraints and problems presented in archi­
tectural design. These difficult to measure or even define.

• An inhabitant must be able to live within the house comfortably with
the rooms that they have.

• The rooms must be able to comfortably accommodate the furniture
within, while still being able to navigate the rooms.

CHAPTER 1. INTRODUCTION 4

• It should be easy to navigate the house. Inhabitants shouldn't have to
travel far to move around the house during their daily activities.

• All rooms in the house must be accessible.

• Common gathering rooms should be well lit with natural lighting during
the day.

These goals are difficult to quantify or measure. Also it is more important
to have solutions which are generally good in all of these attributes over
ones which are optimal in one or two of these. A system which finds good
solutions could be used as a design exploration tool for architects to use to
find a basis for their plans. It is also a potential tool for game design systems
where dynamically generated content would be preferred or manual content
creation may be too time consuming.

1.3 Subsequent Sections

Subsequent sections are laid out as follows. Background information regard­
ing evolutionary computation, genetic algorithms, genetic programming, and
floor planning is found in Chapter 2. A literature review of previous work
in similar problems is outlined in Chapter 3. The system designed for this
thesis is described in detail in Chapter 4. Various evolutionary parameters
and house requirements are tested on a basic floor plan in Chapter 5. Chap­
ter 6 shows the capabilities and flexibility of the system in a series of more
advanced problems. Chapter 7 provides a discussion of the advantages of this
system and comparisons to previous work. Finally, Chapter 8 sums up the
effectiveness of this system in meeting the outlined goals and notes potential

, future work that could be done to improve the system.

Chapter 2

Background

Evolutionary computation is a subset of the broader field of artificial in­
telligence. Artificial intelligence or AI does not have a single definition. Its
definitions range from systems that think and act like humans to systems that
think and act rationally[27]. In general it is concerned with "the scientific
understanding of the mechanisms underlying thought and intelligent behav­
ior and their embodiment in machines." [1] Machine learning is the branch of
artificial intelligence in which systems improve their performance over time
through some form of experience. Evolutionary computation is the branch of
machine learning in which the concept of evolution through natural selection
is applied.

2.1 Genetic Algorithms

A genetic algorithm[10][22] is one of the more popular evolutionary systems
which models a population of individuals evolving through natural selection
as made famous by Charles Darwin[7]. GA's simulate natural selection by
modelling a population of individuals which reproduce sexually with individ­
uals that have been stochastically selected to have been more fit. These are
considered the individuals that would have survived and been selected for
mating.

The individuals are represented by a fixed length chromosome. When
designing a genetic algorithm the experiment or decides how this chromosome
string (genotype) will be converted into a problem solution (phenotype). This
in some ways restricts the set of possible solutions created by the system; the

5

CHAPTER 2. BACKGROUND 6

representation and resulting chromosome length ultimately decide the size of
the search space. Genetic algorithms are also not guaranteed to be optimal
as virtually all of the steps involve random elements. This is viewed both
positively and negatively. In one regard, the system is not guaranteed that
it will ever find the best solution. On the other hand, this stochastic nature
means that it can quickly hone in on good solutions in the population as it
does not need to search everything.

2.1.1 GA Algorithm

The GA algorithm in Figure 2.1 begins by creating a list of randomly gener­
ated individuals or chromosomes, which represent solutions to the problem.
Chromosomes are typically represented as strings of characters which can be
transformed into problem solutions. These solutions are evaluated according
to some defined fitness function. There is a some termination criteria that
is checked at this point to see if the GA should continue running. Usually
this is a number of generations, a specific target fitness, or the lack of change
in fitness for some number of generations. If the termination criteria has
not been met, a new population is created. This is done through the use
of genetic operators such as crossover and mutation. These stochastically
select more fit chromosomes from the current population, perform some al­
terations or combinations to them, and insert them into a new population for
the next generation. Since more fit chromosomes are favored in the selection
process, the population tends to have more and more fit chromosomes with
each generation. Eventually this process is said to converge. That is, the
fitness of the chromosomes in the new population are no better than those
in the current population. There are many causes for this. Most often it is
due to the population being clustered around similar or even identical good
solutions.

2.1.2 GA System Design

There are several elements of a GA system which can be tailored to suit the
problem at hand.

CHAPTER 2. BACKGROUND

Start

Initialize the
population

Evaluate the
fitness of all
individuals in

the population

Create a new population
with crossover, mutation
and reproduction using
stochastic preferential

selection

No

Figure 2.1: GA Algorithm

7

CHAPTER 2. BACKGROUND

Parents

1011P11101

01101111010

Children

1011111010

0110 11101

Figure 2.2: Vanilla GA crossover

Chromosome representation

8

The chromosome in a genetic algorithm represents a complete solution to
the problem at hand, even though it may not necessarily be a good solution
or not even a valid solution. While the representation will probably allow
for bad or invalid solutions, all that is necessary is that it is capable of
describing a good solution to the problem. Ideally it should be easy to
randomly generate chromosomes for the beginning population. A vanilla GA
describes a chromosome as a string of characters (usually 0 and 1), but in
practice a chromosome can be any data structure.

Often a chromosome does not represent a direct solution to the problem.
It must be transformed through some algorithm into a problem solution.
This is akin to DNA in nature in that it does not represent the individual,
but instead guides the development of an individual. In a genetic algorithm
this transformation process should ideally be deterministic, otherwise the
fitness of the resulting solution may not be representative of what is typically
produced from that chromosome.

Crossover

The crossover operation or sexual recombination is an operation by which
two parents are combined to create similar "child" chromosomes ideally in­
corporating the best traits of each parent. There are a variety of established
crossovers for systems which use strings of characters as their chromosomes.
The vanilla crossover for GA's is called a one-point crossover depicted in
Figure 2.2. A single position is chosen within the chromosome string and
the data after this position within each of the parents is swapped to create
the two children. The resulting chromosomes are added to the population
for the next generation. This is the most important reproduction operator

CHAPTER 2. BACKGROUND 9

in GA's as it forms the basis for evolution. Traits from two individuals are
combined to form new individuals. It is also the only reproduction operator
necessary for evolution in a GA.

Mutation

While crossover is sufficient for many problems, it is often necessary to in­
troduce mutation into a GA. This also fits into the analogy of Darwinian
evolution; often children will have minor mutations giving them differences
in traits from their parents. In a GA, mutation is typically performed on a
small percentage of individuals and makes slight alterations to each of them
so as to help the population explore the current solution area. In a vanilla
GA with strings of characters as the chromosomes these slight alterations
may just be changing some of the characters at random.

Fitness Proportional Selection

There are two things necessary in order for the population to evolve to a
generally better population. A measure uf what is Letter and a meaus by
which better traits can be propagated to future generations. The measure of
what is better is covered in the next section. The means of propogating the
traits of better individuals is in the fitness proportional selection. The idea
is to give better individuals a greater chance of being selected to propagate
their genetic material. One standard mechanism for doing this is called
tournament selection. During tournament selection n individuals are selected
at random (where parameter n is the size of the tournament), and the best
of these individuals is chosen for reproduction. Higher n values mean higher
selective pressure. This algorithm is used for each selected parent for a
crossover or mutation operation.

Fitness Function

A fitness function must be defined for the problem at hand. This function
takes a chromosome, converts it into a problem solution if necessary, and
provides a numerical value of how good of a solution it is. In a multi-objective
genetic algorithm there are several numerical values produced by the fitness
function. The accuracy of the fitness function in measuring partial success
will have a dramatic effect on the genetic algorithms ability to evolve good

CHAPTER 2. BACKGROUND 10

solutions, as it must know which solutions are "closer" to being good in order
to breed those more often.

2.1.3 GA Parameters and Settings

In addition to the design elements there are many parameters and settings
that can be adjusted to fine tune the search. This section describes parame­
ters which have been applied to the runs in this thesis. Detailed explanations
of these parameters and how they affect the results of a search are described
in [22], [10], [16] and [27].

Population Size refers to the number of chromosomes in the population
which is maintained from generation to generation. As each chromo­
some corresponds to one solution this is also the number of solutions
maintained at each generation.

Probability of Crossover is the probability of using crossover when gen­
erating individuals for the next generation of the genetic algorithm. In
the context of this thesis, this is used as the exact proportion of indi­
viduals generated with crossover. During crossover two parent chromo­
somes are selected and two new chromosomes are produced.

Probability of Mutation is the probability of using mutation when gen­
erating individuals for the next generation of the genetic algorithm. In
the context of this thesis, as before, this is used as the exact proportion
of individuals created using mutation. During mutation, one chromo­
some is selected, and a single chromosome is produced by making a
minor random alteration to it.

Tournament Size is the size of the tournament used for the tournament
selection in the GA. The tournament size can be set to any positive
integer. If set to 1, there will be no selective pressure towards more fit
individuals making the genetic algorithm essentially perform a random
search. If set to any value greater than one, the GA will have fitness
proportional selection in that individuals which are more fit will be
more likely to be selected.

Diversity Preservation Factor is the rank value added to an identical
individual in the population. Genetic algorithms sometimes have a

CHAPTER 2. BACKGROUND 11

tendency to converge into a state where many individuals are identi­
cal. One way to help prevent this is by penalizing the fitness score of
duplicate individuals. In the context of this thesis lower fitness scores
are better, so an identical individual having it's fitness multiplied by
this factor will be less valuable.

2.2 Genetic Programming

Genetic programming is an extension of genetic algorithms. Rather than
using fixed-length strings of characters as the chromosomes or individuals a
more complex hierarchical dynamically sized tree structure is used[16][25].
Typically these structures represent a computer program in a tree structure.

Cellular encoding is a technique used in developmental genetic program­
ming whereby these tree structures are interpreted as instructions or op­
erations performed on some simple intial structure. [25] The quality of the
finished structure is taken to be the fitness of the program. This thesis
makes use of a developmental genetic programming paradigm in the genetic
programming form of the system.

The GP algorithm is identical to the GA algorithm (See section 2.1.1),
the difference is that since the chromosomes are hierarchical tree structures
of variable sizes they cannot make use of crossovers designed for fixed-length
strings. The standard GP crossover function is described in Section 2.2.1.

2.2.1 GP System Design

G P Chromosome Representation

Unlike genetic algorithms, the chromosome in use in genetic programming
is a variable size tree structure. It is also referred to as a program or in­
dividual. This tree structure consists of non-terminal nodes (those which
have children, also known as branch nodes) and terminal nodes (those which
have no children, also known as leaf nodes). These correspond respectively
to functions that take parameters and terminals which have no parameters.
For example, in an arithmetic expression an addition function would be a
non-terminal node that has two children whose values it adds up whereas
the variable x or value 5 are examples of terminal nodes.

The function and terminal sets make up the building blocks the genetic
programming system can utilize in solving the problem. In traditional GP's

CHAPTER 2. BACKGROUND 12

(a) Parent chromosomes and selected subtrees

(b) Resulting children chromosomes from swapping selected subtrees

Figure 2.3: GP crossover

and in this thesis all of these functions and terminals are capable of operating
on any node in the tree. There are no types or grammars restricting the
possible combinations. All functions must ensure closure meaning that it
must be able to produce a result for every possible set of inputs. For example
a division function in a GP needs to be protected for division by zero if zero
is a possible input.

As the function and terminal sets are the building blocks available for
solving the problem, they should be capable of solving the problem in a
direct way.

CHAPTER 2. BACKGROUND 13

Crossover

The crossover operation in a genetic program works by selecting a node in
the trees of the two selected parent chromosomes or programs. There is often
a configurable ratio which determines how often an interior (non-leaf) node
is selected and how often a terminal (leaf) node is selected in the tree. Once
a node has been selected in each parent chromosome, two new chromosomes
are produced by swapping the subtrees contained under those selected nodes
in the parents. Figure 2.3 shows an example of this crossover operation. If
either of the resulting trees exceed the maximum depth or number of nodes
prescribed by the GP settings then this operation is considered a failure and
the GP must retry it.

Mutation

The standard mutation operation in a GP selects a random node in an in­
dividual and replaces the entire subtree at that node with a new randomly
created subtree. If the individual's overall maximum depth or number of
nodes is now greatcr than the prescibed :rnaxi:rnums in the GP scttings then
this operation is considered a failure and the system must retry it.

2.2.2 GP Parameters and Settings

The GP shares all of the parameters and settings of the GA and has a few
of its own. The shared parameters can be seen in section 2.1.3. In addition
to the GA parameters, there are parameters concerning the shape and size
of the trees constructed by the GP.

Minimum Initial Tree Depth refers to the minimum tree depth permit­
ted in the initial population creation phase.

Maximum Initial Tree Depth refers to the maximum tree depth permit­
ted in the initial population creation phase.

Maximum Tree Depth restricts the maximum tree depth of any individ­
ual throughout the entire GP run.

Maximum Number of Nodes restricts the maximum number of nodes in
any individual throughout the entire GP run.

CHAPTER 2. BACKGROUND 14

Probability that Crossover Point is a Branch is used during the crossover
operation. It determines the probability that the randomly selected
node during crossover is a branch or non-terminal node.

Maximum Regenerative Depth for Mutation refers to the maximum
depth tree created to replace a node during the standard mutation
operation.

Maximum Number of Retries restricts the number of times the GP sys­
tem can attempt to successfully breed an individual. During the stan­
dard crossover and mutation operations, there are no guarantees that
the resulting trees will conform to the prescribed maximum number of
nodes and tree depths. In the event that the created trees exceed these
limits, the operation must be attempted again. If the operation fails to
be successful after this many attempts the source individual is copied
into the new population.

2.3 Multi-objective Evaluation

Often when solving a problem there are many criteria of measurement. Fur­
thermore, these criteria often conflict with each other such that optimizing
anyone criteria would result in sacrificing the others. The floor plan layout
problem presented in this thesis is no exception.

As this is a common problem, there are a variety of ideas by which one
can attempt to strike a balance between competing objectives. These ideas
and their benefits and weaknesses will be examined in this section.

2.3.1 Weighted Sum

The most common and simplest means of optimizing more than one objective
is by using a weighted sum calculation. The overall fitness of an individual is
the summation of the fitnesses of each of its objectives multiplied by weights
for the objectives. The following formula shows how the final fitness score is
derived for k objectives with weights WI, W2, ... , Wk.

fitness = WI * !I + W2 * h + ... + Wk * !k
The advantage of this method is that it is simple to implement. The

weights can be adjusted to prioritize important objectives, and the resulting

CHAPTER 2. BACKGROUND 15

overall fitness values can be compared directly as they all have the same
scale. The disadvantage is that the specific weighting on the objectives can
have a great impact on the algorithm's success due to a "user bias". If the
scale of one objective is too much larger than the rest than this objective is
likely to be the only one that is optimized.

2.3.2 Pareto Ranking

Pareto ranking is often used for problems in which there are many objectives
that are difficult to weigh against each other. It has been used to find good
solutions in many multi-objective problem areas[lO). A solution is said to
dominate another solution if the fitness in each of its objectives is at least
as good as the other solution, and has a better score in at least one of the
objectives as described by the following relation.

AdominatesB =? (\lobj Jobj(A) ::; JObj(B)) A (::lobj JobjA < JobjB)

A solution is said to be Pareto optimal if it is not dominated by any other
solution in the population. All Pareto optimal solutions are given a pareto
rank of O. The remaining non-optimal solutions are then examined, and the
Pareto optimal solutions among those are given rank 1, and the process is
repeated until all solutions have been ranked. These ranks are used as a
single fitness value by which to compare individuals.

Figure 2.4 shows an example of this ranking. In Figure 2.4(a) the raw
fitness values in all three objectives of the five individuals are shown. Using
these objective values one can determine which individual dominates which to
produce the matrix in Figure 2.4(b) where each row shows which individuals
the individual of that row dominates. From the dominance matrix, one
can see that solution A and Care undominated (as columns A and C have
no X's). These Pareto optimal solutions become rank 0 and are no longer
considered. Solution D is now undominated becoming rank 1. Solution B,
no longer dominated by D is now optimal becoming rank 2. Lastly solution
E is given rank 3.

The advantage of Pareto ranking is that any potentially ideal solutions
are Pareto optimal and given rank O. There are no sacrifices made with
respect to one objective over another. However, this is also a disadvantage.
A solution that is optimal in one objective but does not satisfy the other

CHAPTER 2. BACKGROUND

Ind Obj 1 Obj 2 Obj 3
A 3 1 2
B 5 3 2
C 6 2 1
D 5 2 2
E 7 4 3
(a) Population fitness values

A
B
C
D
E

ABC D E
x

X

x X
X
X
X

(b) Dominance matrix

Ind Rank
A 0
B 2
C 0
D 1
E 3

(c) Pareto ranks

Figure 2.4: Example of Pareto ranking

16

CHAPTER 2. BACKGROUND 17

objectives at all is still Pareto optimaL This is almost guaranteed to occur
as objectives are often at odds with each other making it easy to optimize one
without consideration for the other. The main downfall, which is especially
true with many conflicting objectives, is that populations can easily become
composed almost entirely of nondominated solutions. In this case, a genetic
algorithm degrades into a random search as there is no selective pressure
since no solution can be identified as better than any other.

2.3.3 Sum of Ranks

Sum of ranks is a less commonly used means of ranking a population of indi­
viduals with many objectives. It has been examined as a proposed solution
to the problems with Pareto ranking on highly dimensional problems[6]. The
idea is to rank each objective separately within the population. The sum of
these ranks is used to provide an overall rank for the individuaL The sum of
dominance ranks may also be used in the event of many similar fitness values.
The dominance rank is the number of individuals which have a better value.
This thesis uses dominance ranks in the standard ranked sum.

Figure 2.5 shows an example of this. Figure 2.5(a) shows the raw fit­
ness values for each of the individuals in all objectives. Figure 2.5(b) shows
the dominance rank within the population of each objective value for each
individual. These ranks are added together to get the overall rank of each
individual in the last column.

The advantage of using the ranked sum fitness evaluation is that there
is a greater diversity in the resulting ranks over that produced from Pareto
ranking. Having diversity in the ranks provides greater selective pressure
towards solutions that are hopefully better overall. The result is that the
algorithm can converge towards a solution that is good in all fitness objectives
in cases where Pareto ranking would get stuck with an entire population of
Pareto optimal solutions which are not necessarily good in all objectives.

Normalized ranks may be used to lessen the weight of highly similar
objectives. Figure 2.5(c) shows an example of this. The rank of an individual
is the number of ranks less than it. When computing the overall rank, each
objective rank is divided by the number of ranks for that objective. In the
example figure, objective 3 is not weighted as heavily in the overall rank as
there are many individuals with the same fitness in this objective score. This
favours individuals which excel in objectives that are less common to excel
in.

CHAPTER 2. BACKGROUND 18

Ind Obj 1 Obj 2 Obj 3
A 3 1 2
B 5 3 2
C 6 2 1
D 5 2 2
E 7 4 3
(a) Population fitness values

Ind Obj 1 Obj 2 Obj 3 Rank
A 0 0 1 1
B 1 3 1 5
C 3 1 0 4
D 1 1 1 3
E 4 4 4 16

(b) Ranked Objectives

Ind Obj 1 Obj 2 Obj 3 Rank
A 0 0 1 0.500
B 1 2 1 1.500
C 2 1 0 1.000
D 1 1 1 1.166
E 3 3 2 3

Ranks 3 3 2
(c) Normalized Sum of Ranks

Figure 2.5: Example of Sum of Ranks

CHAPTER 2. BACKGROUND 19

2.4 Floor planning

Designing a house for someone can be very tasking. While it may be easy
enough to create something that is livable, creating a home that someone
will want to invest a life in is another task altogether. As mentioned before,
there is no such thing as the perfect house for everyone. The best that can
be hoped for from an automated system is to give a variety of houses which
meet general requirements, and hope that one or more of them may serve as
inspiration for a client's dream house.

The requirements for a house are not all too explicit. While it is required
that you be able to escape from the bedrooms in the event of a fire, there
is no formal requirement that people shouldn't have to walk through the
bedroom to get to the kitchen. There is no formal requirement that it should
be easy to find the bathroom. These implicit requirements are derived from
a combination of western culture and simple usability guidelines. They have
been generally observed in most modern houses, and the ones that do not
observe them usually give one that feeling as though something is out of
place.

There are spatial requirements for a house. An implicit one is the overall
footprint, the house must be built to fit within the space allotted for it on a
lot. As a result of this room shapes and sizes must be designed accordingly
to fit within the space. There are also various layout requirements, and
functionality requirements. In an autonomous system, these requirements
either have to be implicit in the representation such that they are always
satisfied, or explicitly measured as the quality of the solution.

It should be noted that these goals often vary from one culture to an­
other, and one time period to another. As this paper is concerned with the
constraints in the modern western society, the results and some of the goals
may not coincide with other cultures. Nevertheless, many of these require­
ments could be tailored to other cultures as they are provided as part of the
problem specification. What makes the requirements of a house particularly
complex is that not all of the goals are strictly required or impose specific
constraints on the design. Many of the requirements are flexible, and it is
these requirements that are often highly subjective. Nevertheless, if only the
required constraints were satisfied the results would likely not be pleasing.

CHAPTER 2. BACKGROUND 20

(a) Rectangular (b) Rectilinear (c) Polygonal (d) Curves

Figure 2.6: Room shapes

2.4.1 Spatial requirements

There are a variety of spatial requirements that must be considered in the
design of a house. First and perhaps most importantly is the overall footprint
of the house. The footprint will ultimately define the layout of the house, as
all of the rooms within the house must fit within the overall footprint. The
location of the front door can be considered part of the footprint, and will
be for the purposes of this thesis. This is usually a central point within the
house as it is quite often necessary to leave the house. Although quite often
the shape of the footprint is assumed to be rectangular, in practice this is
not always the case. The number of floors is an equally important factor,
again defining the overall space and shape of the house.

Within the house the room shapes and sizes is an important factor to be
observed. Room shapes may be rectangular, rectilinear, polygonal or curves
(See Figure 2.6). The size of the rooms factor into the overall shape, and
functionality of the house. Hirsch[15] identifies deciding the target sizes of
various rooms in your house as one of the primary discussions an architect
has with their clients. More than specific sizes there are also implicit social
norms such as a kitchen being larger than a bathroom. It is not simply a
matter of looks, it must have room for a fridge, a stove, and a sink, and allow
one or two people to easily maneuver through it in order to cook meals. A
bathroom on the other hand only houses one person at a time, and may only
requires a toilet and a sink. These spacial requirements can easily be deduced
from existing houses as they have been observed in the design of virtually all
modern 'houses in the western society.

It can be observed that while people often specify exact sizes that they
wish the rooms in their house to be, these are often only suggestions. Typi­
cally the size of the house limits the size of the rooms within it, and a floor
plan is only unpleasing if rooms do not have space for the activities and items

CHAPTER 2. BACKGROUND 21

they will host. While there may not be an explicit maximum size for any
room, having too much space will also tend to look awkward. Furthermore,
we expect similar ratios of magnitudes; for example, houses that have large
bathrooms often have even larger bedrooms. Hirsch states, "Each space or
room needs to be the correct and appropriate size for its function and 'feel. '
That means it should not be too large or too small. Room design is not a
case where bigger is better" [15].

2.4.2 Layout requirements

There are many requirements in terms of the layout of the house. Connec­
tivity is a firm implicit requirement in a house design. Every room must be
accessible, via some route. While a completely inaccessible room may have
its uses as a safe room it is certainly not the norm to have such a room. Ad­
ditionally it has been observed that a room for public use should not require
traveling through a private room to get to it[21]. For example, it would not
be desirable to have to walk through the bathroom to get to the living room.

Various path lengths throughout the layout will play an important role
in the quality of the house. For example, the distance required to get to
a bathroom from any social room would be an important one to minimize
in general. Similarly, a dining room (or other room which can be used for
eating) should be very close, if not adjacent to, the kitchen. Beyond this,
many people discuss with their architects certain rooms that they may feel
it important to have adjacent in the floor plan. For example, it may be
important for the kitchen to overlook the playroom so that a single parent
can cook dinner while keeping an eye on their children.

The number of adjacent rooms to a single room typically cannot exceed
four, however even four adjacent rooms tends to be too crowded for social
rooms. Having limited numbers of rooms connected to others while min­
imizing path lengths and being able to completely access the house make
designing the layout a rather complex optimization problem.

2.4.3 Functionality requirements

A functional living space requires certain basic rooms for its inhabitants.
At the very least, it should have a kitchen, a bathroom, a bedroom, and a
living room. This is quite evident in the construction of modern apartment
buildings which have exactly these rooms. When scaling up, there tends to

CHAPTER 2. BACKGROUND 22

be a desirable ratio of bathrooms to bedrooms, or more directly to number
of inhabitants. These ratios are not defined anywhere, but rather implicitly
derived from the usage of a house. For example, quite often reducing the
distance to the bathrooms necessitates the addition of an extra bathroom.

This is also often one of the key discussion points identified by Hirsch[15]
when an architect talks to his or her clients. They discuss with the client and
create a list of rooms the client would like to have asking key questions such as
whether the house needs works spaces, private offices or project rooms. Some
people may find it important for there to be a designated master bedroom
with it's own bathroom large enough to have "his-and-hers" vanity and sink
areas. This list of rooms is a key requirement that an architect builds with
their client before setting off to design their home.

Chapter 3

Literature Review of Floor
Plan Design

3.1 Building Analysis

There are several ways to go about designing a building, although most
strategies can be categorized by where they start in the design process. Some
strategies begin with the exterior of a building, and it follows naturally that
the interior must be designed to fit within the specified space. Other strate­
gies construct an interior and it is this space that defines the shape of the
exterior.

Hillier and Hanson[14] made some of the first observations in decoding
social spaces. They observe that the connectivity graph between rooms is
an essential component in analyzing the social use of space within a house.
Furthermore, they define a "Justified Gamma Map" as follows. The depth of
each room is determined by the number of steps needed to reach each room
from outside. Then the rooms are placed in horizontal lines at a height rela­
tive to their depth. Lines are drawn between connected rooms. An example
of a justified gamma map construction is shown in Figure 3.1. It is suggested
that such a graph can decipher the underlying structure of buildings and
show how they are similar or different. They also suggest that such a graph
could be used in generating social spaces, however their focus was only on
the analysis of social spaces.

The fac;ade of a building is the first thing one sees, and it is the only
thing that most people will see. The fac;ade of a building gives the first

23

CHAPTER 3. LITERATURE REVIEW OF FLOOR PLAN DESIGN 24

Layer

A 2.-11 8

~ff1-c

~!-! j G 4-- H I 3

(a) Constructing gamma map (b) Resulting justified
breadth-first from entrance gamma map

Figure 3.1: Justified Gamma Map

impression of the building, and as such there is no denying the importance
in its design. Algorithms which construct building fac;ades have been studied
for many years. There have been methods which target efficient generation
of fa<;ades and methods which attempt to design quality fa<;ades but perhaps
require user input to facilitate their process.

Greuter et al.[Il] describe a method in which "good looking" building
facades are quickly generated. The algorithm begins at the roof of a building.
First, a regular polygon is chosen and centered around one of the vertices of
the current shape. The combined shape is then extruded downwards several
floors. This process repeats until the ground floor is reached. The end result
is that skyscraper style buildings are created very quickly. Mtilleret al.[24]
describe a shape grammar by which multitudes of buildings can be evolved,
resembling modern architecture through the use of well crafted generation
rules. Through the intelligent combination of transformation rules in a shape
grammar, a plot area is extruded and extended into some architectural form
remeniscent of the intended era. Nevertheless, the end results are building
exteriors and have not taken into account the ability to function as a social
space. Furthermore, the rules necessary to generate these buildings need to
be created by hand and require great attention to detail.

The problem of floor plan design is independent of that of fa<;ade creation
with the exception that the overall shape must match that of the outside of
the floor plan.

CHAPTER 3. LITERATURE REVIEW OF FLOOR PLAN DESIGN 25

4 ~ J
W6-

f---2 3
1

8

J

i
(a) Sliceable floor plan (b) A floor plan that is not sliceable

Figure 3.2: Sliceable and unsliceable floorplans

3.2 Floorplanning in VLSI

Very Large Scale Integration (VLSI) is a process of designing very large
integrated circuits through the combination of thousands of transistors into
a single chip which can be integrated into other designs. Floor planning is
one of the first steps involved in VLSI. Module areas and interconnections
are planned out usually with two goals in mind; reducing overall area and
interconnection distances between related modules. Research has been done
in automation of VLSI floor planning which can be compared to architectural
floor plan design.

A slice able floorplan is a floorplan that can be constructed by recusively
subdividing (slicing) an initial single rectangular block[8]. Figure 3.2(a)
shows an example of a floorplan that is sliceable. If one slices along the
lines in the order of the numbers they will obtain that complete layout.
Figure 3.2(b) on the other hand is not sliceable. Sliceable fioorplans are con­
venient as they can be represented in the form of a tree structure of divisions.
Also a number of NP-hard problems have polynomial time solutions when
considering the set of slice able floorplans[28].

Wong and Liu[33] use simulated annealing with a reverse polish notation
representing the set of slices performed to divide the initial rectangle. By
using simulated annealing they are able to optimize both overall area and
interconnection distance at the same time. Wong and Liu also stress the
importance of a using a representation that does not introduce too much

CHAPTER 3. LITERATURE REVIEW OF FLOOR PLAN DESIGN 26

bias. Sutanthavibul et al. [30] demonstrate a linear programming solution
which builds up a floor plan by adding a limited number of modules at a
time. The number of constraints increases too drastically to plan the entire
floorplan at once.

Many have successfully applied evolutionary computation to the design of
VLSI floorplans. Lienig and Cohoon[18] use genetic algorithms with genetic
operators incorporating expert knowledge to produce near-optimal designs
for larger problems. Valenzuela and Wang[32] use a genetic algorithm with
a specialized slicing tree encoding to produce area optimized floorplan so­
lutions. Tang and Alvin[31] use a genetic algorithm with an ordered tree
representation, introduced by Guo et al.[12], to reduce the search space size
which consistently produces better results than the deterministic algorithm
on which it is based. The literature suggests that EC algorithms have been
successful in VLSI with careful chromosome design and modified crossover
operators. However, the problem requirements and goals do not directly
coincide with those in architectural floorplanning.

3.3 Non-Evolutionary Automated Design of
Floor Plans

Hahn et al.[13] demonstrate a method of generating building interiors in
realtime as they are explored. The generation is a procedural algorithm
that follows the use of 11 simple rules to generate spaces reminiscent of
office buildings consisting of hallways and rooms. Tutenel et al.[4] use a
hierarchical rule-based placement algorithm to create furnished living spaces
with a variety of features such as objects needing clearance around them or
those that require a view of the TV. They use a heuristic value calculation
to assign a best location for each feature at a time. Bruls et al. [5] propose
a visual representation for trees called squarified treemaps which Marson
and Musse[19] use to quickly generate balanced floor plans. Their method
converts internal walls into hallways in order to ensure proper connectivity
in the resulting house.

Mitchell et al. [23] present an optimization version for small instances of
a layout problem. The problem is to arrange rectilinear rooms in such a
way that maximizes the number of desired adjacencies. They enumerate all
solutions which ensure those adjacencies, after which dimension and area

CHAPTER 3. LITERATURE REVIEW OF FLOOR PLAN DESIGN 27

6 4 : 5 : 3 7

3 6
8 Bath ;Bed 2

1 Livi~g

4

5 Bed 1
7 Kitchen Bed 3

2 7 : :

(a) Constructed dimensionless layout. (b) Dimensions adjusted according to
room types.

Figure 3.3: Transformation of dimensionless representation[23]

constraints may be introduced. The rooms are layed out on a grid whose
rows and columns may be resized to satisfy the spatial constraints as shown
in Figure 3.3. Finding the ideal sizes becomes a problem of satisfying a set of
variables for various formulas. Due to the exhaustive search being employed,
they suggest an upper limit on the problem size of 8 rooms.

Martin[21] applies a multi-phase constructive algorithm with an emphasis
on a fast approximate solution that can quickly construct a batch of houses.
He uses a procedural algorithm tuned with various statistics concerning spa­
tial constraints, and common room adjacencies. In the first phase, a graph
of public rooms is constructed. The second phase adds on private rooms and
"sticky" rooms such as linen closets. The third phase places the constructed
graph within the floor space, and then the fourth phase expands the walls
of the rooms using a pressure simulation. The construction process is a de­
terministic greedy algorithm that attempts to maximize adherence to four
measured statistics on the house.

3.4 Evolutionary Automated Design of Floor
Plans

Schnier and Gero[29] use a genetic program with a dynamic set of primitive
functions in order to evolve designs similar to a given plan. As useful features
are identified they are added to the function set similar to the creation of
ADF's[17]. In order to value diversity individuals are only thrown out if they

CHAPTER 3. LITERATURE REVIEW OF FLOOR PLAN DESIGN 28

do not match the plan in any way.
Doulgerakis[9] compares the problem of creating a social space to the

Facilities Layout Problem (FLP). The FLP attempts to find the ideal allo­
cation of activities addressing the connectivity issue. In its simplest form,
it is an assignment problem of activities to existing spaces. The goal is to
minimize distances between related activites. In its most complicated form,
the FLP aims to construct the layout as well, addressing the spatial require­
ments. Doulgerakis considers the most complicated form, using a genetic
programming algorithm to first construct the space using division of an ini­
tial rectangle. Activity assignment is accomplished by a procedural algorithm
followed by the evaluation of of the space. He also considers polygonal spaces
(See Figure 2.6), by allowing angled splits of rectangles.

Chapter 4

System Design

The house evolving system is comprised of a few house construction strate­
gies, with an identical evaluation in order to fairly compare between them.
Two variations on a genetic algorithm and a genetic programming solution
will be considered. Common to two of these strategies is a procedural activity
assignment algorithm inspired by Martin[21] and Doulgerakis[9].

4.1 System Operation

The basic operation of the system is outlined in Figure 4.1. The genetic
algorithm or genetic program produces some chromosomes. Those chromo­
somes are converted to a physical floor plan as shown in Section 4.2. If the
floor plan does not have room types, these are procedurally assigned using
the algorithm described in Section 4.3. The resulting floor plan is evaluated
using the fitness evaluation described in Section 4.5. The fitness scores are
then given to the multi-objective evaluation scheme to generate single scores
for use by the GA/GP to select individuals for reproduction in the next
generation.

4.2 Chromosome Representation

There are two representations used for the creation of floor layout plans. One
is a fixed-size representation that facilitates the use of a genetic algorithm
in the evolution of a floor plan. The other is a tree structured divisive
representation to be created by a genetic program.

29

CHAPTER 4. SYSTEM DESIGN

GA/GP

Chromosomes

Transformation
(Genotype to phenotype)

Assign Room Types

No

Single score

Multi-Objective
Evaluation

Objective Scores

Fitness Evaluation

Figure 4.1: Flow of system operation

30

CHAPTER 4. SYSTEM DESIGN 31

Figure 4.2: Chromosome mapping to phenotype

4.2.1 GA

The system will use a grid similar to Mitchell et al.[23], whose size will be
predetermined. If the house exterior is not rectangular the grid will be fit to
the bounding rectangle of the exterior. The genotype representing a house
configuration will contain the following. Figure 4.2 shows how the genotype
maps to the floor layout phenotype. In this figure, hI, h2' ... , hn correspond
to the heights of rows 1 through n. The values WI, W2, ... , Wn correspond
respectively to the widths of columns 1 through n in the grid. Lastly, Xi,j

corresponds to the room type and cell number of the cell in row i, column j.
The width and height of the grid rows and columns can be resized and hence
the representation is capable of describing virtually any rectilinear house
given a grid of a high enough dimensionality.

• The size of each of the grid's rows and columns

• The room types of each location of the grid on all of the floors. If
the procedural room assignment is being used than this type is either
public, private, or no recommended room type.

• A cell number which determines which rooms this one will join together
with. This allows for identical room types to not be later merged.

The transformation from genotype to phenotype proceeds by combining
adjacent rooms of the same cell number into a single room, removing walls

CHAPTER 4. SYSTEM DESIGN 32

I-Bed: 2-Bed ~-Bat~ 3-Bath I-Bed 2-Bed -Bat 3-Bath
··· ·················1· ····· ··············· ······1'·········T···· ···· ··········

I-Bed : 3-Living ~-Hal i 3-Bed I-Bed 3-Living I2-Hal 3-Bed
: : :
: ::

:i"~Kit~h~~r······3~B~d· ······ ·;~H~ir··3 ~·B~d··· 2-Kitchen 3-Bed ii-Hal 3-Bed
~ ______ ~~L-__ ~ : : :

2-Kitchen: I-Dining i-Hal! 4-Bath 2-Kitchen I-Dining -Hall 4-Bath

.. -.......... 1-----.1

I -Dining i I-Hall ~-Hal ! 2-Hall I -Dining I -Hall -Hall 2-Hall

(a) Grid from chromosome (b) Combination of cells
,-.

Bed Bath
Bed

Bed
Living Hall

Kitchen
Bath

Dining

Hall

(c) Assigning type from a vote

Figure 4.3: Edge removal

CHAPTER 4. SYSTEM DESIGN 33

between those grid cells as shown in Figure 4.3. If procedural assignment is
being used the types will be public, private and no recommendation. The
overall room type is given by a tally of the room types of all cells in each
combined group. The final room type can be assigned using the procedural
algorithm outlined in Section 4.3 if this method is being used.

Crossover between two individals is slightly different than a standard GA
crossover. Given that the representation is in a table or grid, a rectangular
selection is made by selecting two cell locations at random. Using this selec­
tion rectangle, the information from each parent is exchanged to create the
children as shown in Figure 4.4

4.2.2 GP

The GP evolves tree-shaped individuals whose types specify their structure.
Wong and Liu[33] use reverse polish representation to construct sliceable
floor plans through repeated division of an initial rectangle. Doulgerakis[9]
uses GP to create floor plans by the same recursive subdivision, except that
the cuts may be angled.

A developmental genetic program is used as one possible layout strategy.
The G P embryo begins with the bounding box of the exterior house rectan­
gle! and modifies it with the functions in the available function set listed in
Table 4.1. The Divide functions will split the current block into 2 or 3 blocks
and further processing can be done on these sub-blocks. The relative sizes
of the new blocks are given by the arguments of the split operator. Alter­
nately, the Assign function will automatically split on the longer of the two
dimensions such that more regular rooms can be created. The terminals in
the tree can be made to determine whether a room type is public or private.

Figure 4.5 shows an example of how a program tree is mapped to a floor
layout. The process starts with a rectangle the size of the entire house. The
first operation in the tree is a horizontal split, which splits the rectangle and
uses the first subtree in the tree to construct the new smaller rectangle on
the left. The second subtree is used to construct the other rectangle. The
left rectangle is split vertically into three rectangles in the second step, and
the first and the third of these rectangles are subsequently split horizontally
in steps 3 and 4. Finally the large rectangle on the right is split vertically to
make two regions.

lOr bounding box of a polygonal shape

CHAPTER 4. SYSTEM DESIGN 34

I-Bed 2-Bed 1-Bath 3-Bath 2-Bed 2-Bed 1-Bed: I-Bed
... ----.. --_ .. _. _ ~ "

I-Bed : 3-Living 2-Hal! 3-Bed I-Bed 2-Living ~-Hal! 3-Bed

........ : ---_. -~ : -· .
2-Kitchen: 3-Bed ~-Hal! 3-Bed 1-Kitchen 3-Bath ~-Hal! 3-Bed ~. --. - ---. _. --_ , -.- -

2-Kitchen : I-Dining 4-Hal! 4-Bath 2-Kitchen 1-Dining 4-Hali 4-Bath

...... ~ -..... ~. ------. ---~ ---_. _. _ -........ -
· .. · .

I-Dining : I-Hall ~-Hal! 2-Hall I-Dining I-Hall ~-Hal! 2-Hall

(a) Parent chromosomes

I-Bed 2-Bed 1-Bath 3-Bath 2-Bed 2-Bed i-Bed: 1-Bed
-----_. _. -.•.................. _ .. _ ~ : . -............... " . -. _. --- -----. ----_ ~ : ... -_ · . . · . · . .

I-Bed 2-Living ~-Hal! 3-Bed 1-Bed 3-Living ~-Hal! 3-Bed

... --_ .. __ ... __ -............... . .

. 1. ~.~~~.~ ~.~ ~. :3.~s..<:J.~.~ ~ ~.~.a.!.1 3. ~.s.~.d.2.~.~i~~~.~~.L }~s..~~ f~.~.a.!! ~-Bed

2-Kitchen : 1-Dining 4-Hal! 4-Bath 2-Kitchen: I-Dining 4-Hal! 4-Bath

· . ·•....•.•....•.. -!••••...•.•. . •... ~ . - .•. - ...• -:-. -•....... . . • .
· _ .. ----_ .. -.: ~ ":"
· . · . · . · .

I-Dining : 1-Hall ~-HaH 2-Hall 1-Dining : I-Hall ~-Hal! 2-Hall

(b) Children chromosomes

Figure 4.4: Example of crossover with GA house chromosomes

CHAPTER 4. SYSTEM DESIGN 35

I

I

I

I

I

Figure 4.5: Developmental GP Layout Construction

CHAPTER 4. SYSTEM DESIGN

Function
H-Divide

V-Divide

A-Divide

Assign

Table 4.1: G P Function and Terminal Set

children # arguments Action
2 - 3 2 - 3 Divide the current rectangle

horizontally into n regions
with specified proportions.

2 - 3 2 - 3 Divide the current rectan­
gle vertically into n regions
with specified proportions.

2 - 3 2 - 3 Divide the current rectangle
along its longest dimension
(height or width) into n re­
gions with specified propor­
tions.

o 1 Assign the specified room
type (or public/private des­
ignation) to the current
rectangle.

36

CHAPTER 4. SYSTEM DESIGN 37

Following the creation of the space, the procedural algorithm outlined in
Section 4.3 can be used to assign the actual activity spaces.

4.3 Procedural Activity Assignment

Martin and Doulgerakis both use procedural algorithms to define their room
types. Whereas Martin's algorithm begins with a graph of rooms defining
their connectivity, the rooms are "size-less" and so this is not a considera­
tion during assignment. Doulgerakis uses a procedural algorithm to assign
types after the room positions and sizes have been fixed. This system uses
a strategy more like that of Doulgerakis. The room positions are fixed and
assignment takes place afterwards.

Martin[21] uses a procedural algorithm for assigning room activities after
a rough diagram of the floor layout is known. He shows promising results
from the application of this algorithm to fairly random graphs. The algo­
rithm considers basic functionality requirements, as well as respecting the
reachability requirement that a person should not have to travel through
private rooms to get to public rooms. The sizes and ratios are worked out
afterwards.

Doulgerakis[9] uses a similar procedural algorithm in his thesis to assign
room responsibilities. The algorithm considers each possible room type by
evaluating several characteristics. These characteristics include the minimum
and maximum areas for the room types, the desired ratio, the adjacent rooms
and their position on a justified gamma map. The algorithm uses a greedy
algorithm to choose the room type that maximizes this evaluated criteria for
each assignment and proceeds until there are no more rooms to assign.

The procedural assignment used for this thesis will borrow some ideas
from both Martin and Doulgerakis. Each room will be assigned a type in
turn. The process begins with the first room connected to the front door,
which will be given a type that is acceptable to be connected to an entrance.
The algorithm then examines all of the adjacent rooms and determines a
list of types which each of the adjacent rooms can be. Each of the adjacent
rooms are added to a queue to have their room types assigned in breadth
first order.

To assign a room type when there are multiple possible types the procedu­
ral algorithm considers the following criteria, and chooses the "best" choice
via a weighted evaluation of the following criteria. The exact penalties and

CHAPTER 4. SYSTEM DESIGN 38

bonuses are detailed in Appendix A.

1. The room's size is compared to other rooms which have already been
assigned to see if the size relations defined in the layout file still hold.
If not, this room type is given a strong penalty.

2. If the room has too many twists2 , it will receive a strong recommen­
dation to become a certain room type as specified by the requirements
(typically a hallway).

3. If this type does not require a window, apply a penalty to rooms on
the outer wall as they are best saved for window rooms.

4. If the chromosome suggests that the room should be a private / public
type and the type is the opposite then apply a penalty.

5. If the room does not meet the minimum area or width or exceeds the
maximum width or area then a penalty is applied.

6. If there is a desired width or height add a penalty for how far away
from the desired values the room size is.

7. If the room has a ratio outside of the acceptible minimum and maxi­
mum ratio a penalty is applied.

8. If this room puts an adjacent room over the maximum number of ad­
jacent rooms of this type then penalize it.

9. Check if this room helps meet the required number of rooms in the
house. If so, give it a small bonus. The reason for a small bonus is -
that there will probably be many opportunities to place this room and
it would not do well to place it as early as possible all the time.

10. Similarly, if this room pushes the house over the maximum number of
this room type then penalize it.

The algorithm proceeds to assign room types unless it gets into a situation
in which there are no possible types to assign. In such a case it backtracks
and moves on to the next most valuable of the previous room assignment.

2Twists refers to the number of overlapping rectangles it takes to completely fill in the
room.

CHAPTER 4. SYSTEM DESIGN 39

4.4 Requirements Description

The requirements of a house are given for each problem. Since there is no
inherent meaning in saying that a room is of a certain type, this meaning is
imbued by the requirements given with the problem. The possible require­
ments for each type of room are described in this section.

Type refers to whether the room is a public or private room. This deter­
mines whether or not people normally travel through this room to get
to other rooms.

Amount refers to the recommended minimum and/or maximum number of
each type of room.

Twists refers to the minimum or maximum number of twists in the specified
room type.

Width refers to the minimum width across any part of the room. It can
have a recommended minimum or maximum size.

Area refers to the minimum, maximum or recommended area in the room.

Ratio refers to the maximum ratio of length to depth of any section of the
room. It can have a recommended minimum and maximum value.

Windows refers to whether the room should be on an external wall so that
it may have windows to let light in.

Access refers to the rooms which people in this room should be able to access
in a small number of steps. The nearest access means that occupants
only need to access any of the rooms of this type so the nearest one
will do (for example a bathroom where anyone will do).

Bigger refers to rooms which this room should be bigger than. This is used
to define size relations where it makes more sense than defining absolute
sizes.

CHAPTER 4. SYSTEM DESIGN 40

4.5 Fitness Evaluation

4.5.1 Calculations

The calculation of an individual's fitness falls into several categories relating
to its adherence to the specifications in the requirements (See section 4.4).

Functional measures the building's adherence to the living requirements.
It is the sum of the number of missing rooms (room types where the
minimum number has not yet been met) and the number of rooms in
excess of the maximum numbers allowed.

Geometric measures the buildings closeness to idealized geometric mea­
surements. The geometric score is the summation of several values.
For each room where the area is greater or less than the maximum or
minimum allowed area the difference in area is added to the geometric
score. For each room where the minimum width across any rectangular
region is less than the minimum or greater than the maximum required
width, the squared difference is added to the geometric score. For each
room, there is a list of rooms that the examined room should be bigger
than. If it is smaller (in terms of area) than any of those room types,
then for each one the amount it is smaller by is added to geometric
score.

Connectivity measures how well the building satisfies certain proximities
as specified by the requirements. A maximum distance value is set to be
the number of rooms in the building as this is the limit on the furthest
distance one would have to travel to get anywhere. If a room type has
adjacency requirements but does not exist, the maximum distance score
is given such that a house without certain room types is not rewarded
for it. For all types that exist the geometric scores are scaled by the the
inverse of the number of rooms of that type. This way a house is not
penalized for having more rooms of a certain type, rather the average
of the connectivity scores is computed. For each requirement to access
the nearest of a room type from all other rooms, the distance to the
nearest of each room type is averaged for all rooms and added to the
score. For each requirement to access a room type from some type, the
distance to the nearest room is calculated and added to the score.

CHAPTER 4. SYSTEM DESIGN 41

Reachable is a measurement of how shallow and wide the graph of the
building is. It measures the average number of rooms one must travel
through from the entrance to reach any room in the building. It is
desirable to keep this number low so that the building is not overly
complicated and can be easily and efficiently traversed. If it is not
possible to reach a certain room a value of 30 is added for that room.

Ratio measures how close the rooms in the building are to their recom­
mended ratio requirements. This ensures that long and skinny rooms
will be penalized when this is not desired. Ratio is measured in terms
of the average of the larger l~~~~~ measurement for each rectangular
region in the room. For each room with a ratio below the minimum
or above the maximum allowed, the difference in ratio is added to this
objective as a penalty in score.

Windows measures how well the window requirements of various room
types are satisfied. The objective score is simply the number of rooms
that should have windows but cannot because they are internal within
the building structure.

4.6 Fixed Rooms

To allow creation of a building with several floors without modifying the chro­
mosome or increasing the complexity in search space, the following strategy
is used. A particular room within the floor plan is fixed in position, size and
room type. By having a fixed room in the evolved plans any plan for the
bottom floor can be combined with any plan for an upper floor to create the
building.

Specifically, fixing a room in position is supported in the GA represen­
tation as shown in Figure 4.6. The four width and height constraints are
guaranteed by adjusting the widths and heights proportionally. There is no
obvious way to fix a room within the GP representation, so this was not
implemented.

Not only does evolving separate floors separately reduce the size of the
search space, but it also allows for a separate requirement specification for
each floor. It's not uncommon to have very different needs on certain floors.
It's also not uncommon for one floor plan to be repeated several times in
apartment buildings or office buildings.

CHAPTER 4. SYSTEM DESIGN

I
. "
l ! i

.................... : ; ;

: :

t
····················:···························,··· ,

~ ; ~
. ····················:········· ·················Axed···

j
l ,!y.p..~

II
····················;··························.,..· ··· ;

~ ~ ~

(I '>",:: ,:, ,
h, ... h,., h'H ... ho w, ... Wj·' WJ~'" x,.' Y'.>... Xo.m Yo.m

fXlfx2

m

i-I

LWx = fxl

x=1

L Wx = width - fX2
x=i+1

j-I

Lhy = fyl
y=1

n

L hy = height - f y2
y=j+1

Figure 4.6: Fixed room representation

42

CHAPTER 4. SYSTEM DESIGN 43

I I __
Family _""_ Family

I I
I .. """'"

DiDiDg Dining

u""- I _""-
I

Living '--T-- ----j

- -
KilCileD

I "

Figure 4.7: Cutting a polygonal shape out

4.7 Polygonal Layouts

Often it is necessary to design a house to fit a polygonal boundary. This may
be due to spatial limitations or for aesthetic reasons. The strategy used to
construct non-rectangular houses within this thesis is to evolve a house to fit
the bounding box of the outer shape required and then clip it to the required
shape.

Figure 4.7 shows an example of how a polygonal floor plan is created out
of a rectangular one. This is done as a part of the construction process such
that removed adjacencies and rooms can be properly accounted for in the
fitness of the result. This means that if the clipping removes an important
room it will be penalized for that in the resulting fitness.

4.8 Diversity Preservation

A common problem with converging population based evolutionary algo­
rithms is that the entire population may converge onto a single or a few
good results. In order to avoid this, a diversity preservation strategy is used
in this system. After ranking individuals (or calculated a weighted sum), the
population of individuals is scanned for duplicates and the final score or rank
of each duplicate individual is given a penalty of diversity· i where diversity
is the diversity preservation factor and i is how many times this individual
has already been seen earlier in the population.

Chapter 5

Evolution of a Basic Floor Plan

This chapter explores the experimentation of evolutionary parameters and
problem specification with respect to their effects on the resulting solutions.
Section 5.1 outlines several experiments measuring the relative success of
various evolutionary algorithms, parameters, and multi-objective ranking
schemes. Section 5.2 considers what is necessary in the specification of re­
quirements for a house in order for its suitability as a house to be successfully
captured by the objective functions and satisfactory houses are evolved.

5.1 Evolutionary Parameters

There are a large variety of evolutionary parameters and methods with which
to evolve floor plans. A few fundamental experiments are carried out first
in order to tune some of the various parameters to be used in the following
searches. These experiments will test the effectiveness of various parameters
in a basic floor plan.

The floor plan to test various parameters is a simple bungalow style home.
It requires one to two bathrooms, at least two bedrooms, one with a master
bathroom, a kitchen, a dining room, and a social room. The entire house is
built in a 40 by 30 foot rectangle. The fitness is measured by the satisfaction
of having the above rules as well as the rooms it creates satisfying certain
constraints themselves. The default evolutionary parameters are shown in
Table 5.1. 30 runs are performed such that a one-tailed Z-test may be used
to show the confidence in one experiment outperforming another. The house
parameters are shown as they exist in the program in Listing 5.1.

44

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN

Table 5.1: Evolutionary Algorithm Parameters

Parameter
of runs
Method
Dimensions
Population
Generations
Crossover
Mutation
Reset if stalled
Selection Method
Tournament Size
Assignment
Diversity Factor
Ranking Method

Value
30

GA
40' x 30'

500
200
80%
20%

10 generations
Tournament

3
Procedural

100
Diverse Normalized Ranked Sum

45

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN

Listing 5.1: House requirements for evolutionary experiments
Outside
{

type: public;
attach: Social Room, Hallway;

}

Social Room
{

}

type: public;
minimum: 1;
maximum: 1;
attach: Bathroom, Kitchen, Dining Room, Bedroom, Hallway,

Social Room;
min-width: 7;
min-area: 150;
max-ratio: 1.5;
bigger-than: Bedroom, Kitchen, Dining Room;

Bathroom {

}

type: private;
minimum: 1;
maximum: 2;
min-width: 5;
min-area: 35;
max-ratio: 1.5;
bigger-than: Closet;

width: 6;
area: 54;

Master Bathroom {
type: private;
minimum: 1;
maximum: 1;
min-width: 5;
min-area: 35;
max-ratio: 1.5;

}

bigger-than: Bathroom, Closet;

width: 7;
area: 60;

46

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN

Kitchen {

}

type: public;
minimum: 1;
maximum: 1;
windows: yes;
attach: Dining Room(O-l), Social Room;
min-width: 8;
min-area: 100;
max-ratio: 1.5;
bigger -than: Bedroom, Bathroom;

access: Dining Room;
area: 120;

Dining Room {
type: public;
minimum: 1;
maximum: 1;

}

attach: Social Room, Kitchen;
min-width: 9;
min-area: 100;
max-ratio: 1.5;
bigger -than: Bedroom;

access-nearest: Bathroom;
area: 120;

Bedroom {

}

type: private;
minimum: 2;
windows: yes;
attach: Master Bathroom(O-l), Closet (0-1);
min-width : 7;
min-area: 80;
max-ratio: 1.6;
bigger-than: Bathroom, Closet;

access -nearest: Bathroom;
area: 150;

Hallway {

47

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN

}

type: public;
minimum: 0;
maximum: 1;
min-ratio: 2;
attach: Bedroom , Bathroom, Social Room, Dining Room, Kitchen ;
twists: 3 ;

Closet{

}

type: private;
minimum: 0;
max-ratio: 3;

5.1.1 Random Search Vs Evolutionary Pressure

48

The first test, and probably the most important, is to ensure that the evo­
lutionary pressure is making a difference in the evolution. A simple test is
to reduce the tournament size to 1. When doing tournament selection, k
individuals are selected and the most fit of those k individuals IS the winner.
If k = 1, then a random individual is selected as the winner. This means
that the fitness of the individual is irrelevant in its selection for breeding and
is equivalent to performing a random search.

Figure 5.1 shows the results of this test. There is a clear cut difference in
the population average although this is to be expected with a random search.
Given that it is randomly creating individuals, the average individual will
have a poor fitness. The directed search shows that evolutionary pressure
and the GA crossover are working to combine good individuals and obtain
other good individuals.

Figure 5.2 shows the average of the best individuals in each generation for
each of the runs. The first thing to note is the difference in the scales of the
axes. The random search has much higher (worse) fitness values in the best
individual than the directed search. Additionally it can be observed that
while there is some improvement in the best individual at the start of the
directed search, the random search doesn't show any sign of improvement.
Furthermore, the best scores in the random search are much worse than the
directed search.

Table 5.2 shows the average best fitness over 30 runs of the experiment
using a random and a directed search. The confidence that the directed

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN

'" l!!
8 en

'" '" a>
S
u:

'" l!!
8 en
'" '" " c:
fi:

180
.. ~~» ~;~;~c:~~.:~~:.:::;:::~~~~.~:.~~~~~~~~~:) .. ~~n~~~~~~~:,:;::;:h·~.<r:o~~~W'~~:~;

160
Functional

Reachability .
Ratio _._._.-

Windows
140

120

100

80

60

40

20

900

800

700

600
l!!
8

500 en
" :s
a>

400 ~
(!)

300

200

100

O~-----------L----------~------------~----------~ o
200 o 50 100

Generation
150

(a) Random Search

180 ,-----------,------------,------------,-----------,
Connectivity -- 900

Geometric -------

160 Functional --- --_ ..
Reachability _ ...•...... 800

Ratio -------
Windows

140
700

120 600
l!!

100 8
500 en

" E
" 80 400
E
0

" (!)

60 300

40

20

Generation

(b) Directed Search

Figure 5.1: Random versus directed search - Population average

49

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN

20

~
15

en
'" $
.s
u:: 10

50 100
Generation

(a) Random Search

150

25 r------------,-------------.-------------r------------,

'" f!!
8 en
'" $
:2
LL 10

5

Connectivity ---­
Geometric -
Functional -­

Reachability
Ratio - - - -­

Windows

350

300

250

200

150

100

50

350

300

250

200

150

100

50

o L-__ ~~=-__ ~ ______ ~ ____ L-__________ _L __________ ~ 0

o 50 100 150 200

Generation

(b) Directed Search

~
0
u
en
u

~
E
0 .,
C!)

f!!
8 en
:5 .,
E
0 .,

C!)

Figure 5.2: Random versus directed search - Average best individual

50

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN 51

Table 5.2: Confidence in Directed Search Vs. Random Search

Average Best Fitness
Objective Connect. Geom. Funct. Reach. Ratio Windows
Random 8.0 260.3 0.1667 2.034 4.768 0.03333
Directed 7.0 72.06 0.0 1.904 1.063 0.0

Confidence 95.4% 99.2% 99.3% 99.9% 99.9%

search is better (lower) than the random search is calculated using a one­
tailed Z-test. As can be seen, the directed search achieves a better score
across all of the objectives with a confidence of at least 84%. The window
objective score is a fairly easy objective to satisfy which is why the random
search was able to do relatively well.

5.1.2 Genetic Algorithm Vs Genetic Programming

One of the major focuses of this research is to compare a fixed size genetic
algorithm representation of a house with a dynamically sized tree-based di­
visive representation of a house. The results can be compared via fitness
graphs to see how they work in an evolutionary context.

Figure 5.3 shows the comparison of the genetic algorithm to the genetic
program method. The GA shows overall convergence in the population to­
wards better fitness values whereas the GP fails to advance much beyond its
initial exploration. The most likely explanation is that the crossover operator
in the genetic program is destructive with respect to the "good" aspects of
the two parent individuals it is trying to preserve. When the GP inserts a
branch from one individual into another it may generate a very different floor
layout depending on where in that other individual the branch is inserted.

Table 5.3 shows a statistical analysis comparing the results from the ge­
netic programming approach to the genetic algorithm. As can be seen, the
genetic algorithm outperforms the GP in nearly all of the fitness objective
values with a high degree of confidence. Both algorithms are able to com­
pletely optimize the Window objective further showing that it is an easy one
to satisfy.

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN

25,-----------,-----------,-----------,-----------, 400

10

50

5

50

100

Generation

(a) Genetic Algorithm

100
Generation

(b) Genetic Program

Connectivity -­
Geometric -- ----­
Functional ---- ---­

Reachability

150

150

Ratio - - - ­
Windows

350

300

250

200

150

100

50

o
200

400

350

300

250

200

150

100

50

~
0

" C/l

" ~
E
0
Q)
(!)

~
8
C/l

" ~
E
0
Q)
(!)

Figure 5.3: Comparing evolutionary methods - Average best solution

52

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN 53

Table 5.3: Confidence in Genetic Algorithm V s. Genetic Programming ap­
proach

Average best fitness
Objective Connect. Geom. Funct. Reach. Ratio Windows
GA 7.0 72.06 0.0 1.904 1.063 0.0
GP 9.333 245.2 0.4667 1.866 2.299 0.0

Confidence 99.9% 99.4% 99.9% 94.4% 96.0%

Table 5.4: Confidence in Procedural Assignment Vs. Evolutionary

Average best fitness
Objective Connect. Geom. Funct. Reach. Ratio Windows
Procedural 7.0 72.06 0.0 1.904 1.063 0.0
Evolutionary 7.417 3.584 0.0 54.43 0.6798 0.0

Confidence 99.2% 99.9%

5.1.3 Procedural Vs Evolutionary Assignment

Two assignment strategies have been outlined in this thesis. A procedural
one which basically delegates the responsibility of room assignment to be
part of the transformation of genotype to phenotype and an evolutionary
one in which the room types are part of the genotype. The plans produced
by the procedural assignment have less flexibility and a much smaller search
space which can drastically improve the scalability of such a system.

Figure 5.4 shows a comparison of the average best fitness .using a proce­
dural and an evolutionary assignment strategy. Table 5.4 shows the average
best fitnesses. The evolutionary algorithm outperforms the procedural algo­
rithm in the Geometric and Ratio scores, however the procedural algorithm
performs far better in terms of Reachability which is much more important
for the overall functionality of the house. Figure 5.5 shows the kind of dis­
connected houses that the evolutionary assignment algorithm produces and
how this is reflected in the reachable objective.

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN

~ en
'" 1Il .s
;:;:

'" ~
8 en
'" '" Q)

.s
;:;:

100 ,-------,------,------,-----___, 500

80

Connectivity -­
Geometric ------­
Functional --- . --- ­

Reachability .
Ratio -.-. - .-

Windows 400

(a) Procedural assignment

300 ~
8 en
" ~
E
o

200 ~

100

100 ~~n----,------._-----._----___, 500

80

60

40

20

o -- -­
o

Connectivity - ­
Geometric ------­
Functional -

Reachability ..
Ratio - .---

Windows 400

300

200

100

...... _ \ --"- -'- -_\'-' -',--~~>'-.. -, .. ----.--'''--- 1-:J..c:."", ~",". __ . _ _ _ ,.-..."7<..~ -:"''''~--~~-> ~.=--..., ,,.......-:=::''':;: 0

50 100 150 200

Generation

(b) Evolutionary assignment

~
8 en
" 'C

1»
E
0
Q)
(!)

Figure 5.4: Comparing assignment strategy - Average best fitness

54

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN 55

I~ ===j

B Bathroom

Social Room

l

H~1woy

Hanway

~ ~ ~ ~
Hallway

Bodroom Dining Room Kitchen

~ ~
Kitchen llimngRoom

Reachable: 210 Reachable: 210

Figure 5.5: Examples of disconnected rooms produced by evolutionary as­
signment

5.1.4 Comparison of Multi-Objective Ranking Strate-. gles

There are many conflicting and even independent objectives to be optimized
in the creation of a floor plan. As discussed earlier there are a variety of
means by which to attempt to optimize them. Pareto ranking has long been
the standard approach to multiobjective optimization problems, but it does
not scale well with many objectives. In order to deal with a greater number
of objectives ranked sum has been implemented, but with the widespread
use of pareto ranking it is prudent to compare the two and see if it improves
the results. Ranked sum is used to select a single best individual from the
population of rank O's when using Pareto ranking.

A common problem with either ranking method is convergence and so
each shall be tested with and without a diversity preservation strategy. The
diversity preservation is that in the event that two individuals are identical,
one will receive a penalty to its overall rank as described in Section 4.8.
In this manner the algorithm can be prevented from converging onto a few
results.

Table 5.5 shows a statical analysis of all of the multi-objective strategies.
D and N stand for diverse and normalized respectively. The diverse exper­
iments have a diversity factor of 100 whereas the others have no penalty
for identical individuals in the population. In general, using both diversity

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN

Table 5.5: Statistical comparison of multi-objective ranking strategies
D = Diversity preservation, N = Normalized

Average best fitness
Objective Connect. Geom. Funet. Reach. Ratio Windows
Weighted 7.333 0.0 0.1667 1.827 0.0020 0.0
Pareto 7.333 13.97 0.0333 1.9 1.462 0.0
Ranked 7.0 0.0 0.0 1.875 0.2073 0.0
N. Rank. 7.0 0.0 0.0 1.879 0.0 0.0
D. Weighted 7.533 0.0 0.1333 1.789 0.2233 0.0
D. Pareto 7.0 72.06 0.0 1.904 1.063 0.0
D. Ranked 7.0 0.0 0.0 1.882 0.2016 0.0
D. N. Ranked 7.0 0.0 0.0 1.877 0.0 0.0

Confidence in Diverse Normalized Ranked over other methods:
Objective Connect. Geom. Funet. Reach. Ratio Windows
Weighted 99.3% 99.3% 84.6%
Pareto 84.6% 90.9% 84.6% 94.2% 99.9%
Ranked 92.8%
N. Rank.
D. Weighted
D. Pareto
D. Ranked

99.9% 98.4%
99.5% 96.7%

88.9%

94.9%
99.9%
95.5%

56

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN 57

350 ,---------.----,------,.---..,-------, 350
0 -

10 .•••••.
100 ········

300
1000 .. _....... 300

250 250

"' ,g
" 200 (5 200
en
j .,
.l': 150
"

150
C"

W ..
100 100

50

0
0

Generation

Figure 5.6: Number of identical individuals with and without diversity preser­
vation.

preservation and normalized ranking produces objective values that are as
good if not better than all other tested strategies. There are a few exceptions
to this, however in these cases other fitness values were sacrificed.

5.1.5 Diversity Preservation

The use of diversity preservation strategies was tested in conjunction with
multi-objective ranking strategies in the last step, however in this section
the diversity preservation factor is tested. In order to get an idea of how
diverse the population is, the numbers of unique individuals, ranks and the
distribution of these ranks are measured throughout several experiments over
30 runs.

Figure 5.6 shows the number of identical houses in the population on a
random run with various levels of diversity preservation. Without diversity
preservation, when the system converges it tends to fill the population with
many copies of the same house. Once diversity preservation is used it does
not create nearly as many identical individuals as they cannot persist through
the generations. This also means far fewer identical houses in the resulting
population so that the user has a variety to choose from.

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN

20 ~\ ---~--~--~--~ 250
Connectivity ­

Geometric - ------

r\ R:~~~~~
\, Win= -----

200 ,.

.. \ ,"

V~'~-'--A,'p'_.l'Vv-.J'_~'-.,...-!~ 100

50

~--~--~--~-~o
50 100

Generation
150

(a) Equal weighting

200

20 f!TC:;--~--~--~---C----; 250
i:' :' .; Connectivlty -
;1 Goomelri' ------

" ~!l ~=
~j\ r\

10 i l~ \, 100
5 ~ !'+-__ ~L____________ I

150

200

50

o~~~~---~--~-~o o 50 ~ _ ~

Generation

(b) Functional weighted most important

Figure 5.7: Effect of weighting on average of best fitnesses

5.1.6 Objective Weighting

58

Using a multiobjectve ranking scheme like ranked sum has the effect of opti­
mizing all objectives equally. In this problem, as in others, some objectives
are more important to optimize than others. For example a house that is
missing key rooms like a bathroom or a kitchen will not be very usable.
When combining the ranks using ranked sum, weighting can be imposed by
multiplying the ranks by a weight value.

Figure 5.7 shows the effect of weighting the functional objective as being
more important than the others. Table 5.6 shows the average best fitnesses
and the confidence in the weighted runs outperforming the equally weighted

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN 59

Table 5.6: Confidence in weighting objective values Vs. equal weighting

Average best fitness
Objective Connect. Geom. Funct. Reach. Ratio Windows
Equal 7.833 0.0 3.233 1.274 0.0 0.0
Weighted 7.0 72.06 0.0 1.904 1.063 0.0

Confidence 98.6% 99.5% 99.9% 99.9% 99.9%

runs. The effect of giving the Functional objective a weight of 10 is that
the functional is almost guaranteed to be improved over having an equal
weighting. The connectivity score seems to improve indirectly as a result
while the other objectives are noticeably compromised. However, given that
the Functional score is one of the most important ones this is a desirable
compromise.

5.2 Requirement Specifications

When talking about the design of houses, a lot of details are often taken for
granted. In this section this concept will be analyzed in detail. A common
starting point when stating the design of a house (given that the dimensions
have already been fixed) are which rooms and how many will be in the house.
This shall be the starting point.

5.2.1 Basic Functionality and Connectivity

Assume the customer in question wants a house that contains one social
room, one bathroom, a kitchen, a dining room, a bedroom and no more than
one hallway. Given that the purpose of this section is to start as generic
as possible there will be no impositions of which rooms can attach to which
rooms, and any room shall be capable of attaching to any other room. This
would restrict the system as little as possible in its satisfaction of the require­
ments.

Looking at Figure 5.8(a), it's quite evident what is wrong with this re­
quirement specification. The system has no contextual information about

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN 60

Bedroom

==(] Bedroom

Bedroom

Social Room

Social Room

(a) Number of rooms only

Bedroom
Bedroom

Bedroom

Social Room

o o SocialRoom

Bathroom

(b) Connection restrictions between rooms

Figure 5.8: A selection of houses evolved with basic requirements.

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN 61

what a bedroom is, or how it is different from a social room or bathroom.
While it could have in theory made a dream house, there would be no way of
objectively recognizing that the dream house is any better than the others.
Additionally one must consider the odds of producing such a house when
anything with rectangular walls can be created. Restrictions and direction
are necessary in order for the system to produce sensible layouts.

One noteworthy restriction is that one would expect a certain flow of
rooms. Rather than being able to move from any room to any room there is
a certain expectation of which rooms will be entered from other rooms. This
relates to the significance of the justified gamma map described in Section 3.1
in defining the flow of a house.

Common sense would dictate that one enters a house into a social room
or a hallway. A social room or hallway lead to any room type, whereas a
kitchen may lead to a dining room or a social room. Similarly a dining room
might lead to a kitchen or another social room. Given that this problem is
not concerned with generating a master bathroom, a bedroom or bathroom
would not lead anywhere further. When these requirements are specified the
differences become apparent in the resulting houses. Figure 5.R(h) shows the
results. The flow of rooms from the entrance through the house makes more
sense.

5.2.2 Room sizes and ratios

In the previous section a house was evolved with the necessary rooms and
only sensible connections between rooms. However, it is still evident that the
system needs some contextual information as to the required sizes of rooms.
While these are typically dictated by the items commonly stored in the room,
since the system is not concerned with the placement of furniture it needs to
know the size requirements of the rooms.

Some minimum room areas will be given such that the resulting house will
have enough room to be appropriately furnished. A social room must be at
least 140 square feet, a kitchen at least 90, a dining room at least 100, and a
bedroom at least 80. Additionally minimum widths are given for each of the
rooms as there are certain length objects that must fit. The resulting floor
plans in Figure 5.9(a) are beginning to look much more sensible. Though
there are still some oddities like long narrow sections of rooms.

In order to rectify this a maximum ratio is specified. This is measured
as the larger of width over length or length over width of any rectangular

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN 62

Bedroom Bedroom
Bedroom

Dining Room Bathroom

=

~ Social Room
Kitchen ~ Dining Room

Kitchen U
Bathroom Bedroom

JL n

(a) Minimum room area

Bedroom Bedroom Dining Room Bedroom Bedroom

Dining Room
~

Kitchen

Social Room

If

Social Room r:: ,

U
Bathroom Bathroom

JL n JL

(b) Maximum ratios

Figure 5.9: Area and ratio requirements in basic layout.

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN 63

region in the room. A maximum ratio of 1.5 is given. The resulting houses
in Figure 5.9(b) have more regular ratios. The layouts seem more natural,
though there are still odd cases where a bathroom is bigger than a bedroom.
By the fitness measurement this is perfectly acceptable as they are both larger
than their minimum areas but visually and functionally it seems wrong.

5.2.3 Size Relations

In order to make the floor plans seem more sensible it would make sense
to impose size relations on the rooms. In this case, social rooms should be
bigger than kitchens and dining rooms which are bigger than bedrooms which
are bigger than bathrooms. By enforcing these size relations the floor plans
should look more sensible.

Figure 5.10 shows the resulting floor plans with imposed size relations.
With this constraint the system filters out all floor plans which violate the
imposed relations and the remaining houses seem more logical in their design.

CHAPTER 5. EVOLUTION OF A BASIC FLOOR PLAN 64

Kitchen ~ Dining Room
Bathroom Dining Room

h Bedroom

Social Room ~ ocialRoom
Bathroom Bedroom Kitcheo

~ Bedroom Bedroom

Bedroom Dining Room Bedroom

Bedroom
===; Social Room

Bathroom

Dining Room

Social Room Kitcheo ~
Bathroom Bedroom

Jl Jl

Kitcheo

-'=== V
Dining Room Kitcheo

Social Room
fllthro(Dining Room

~ Bedroom

Bedroom

Bedroom Bedroom

JL. n

Figure 5.10: Basic two bedroom bungalow with size relation constraint en­
forced

Chapter 6

Advanced Floor Plans

This chapter explores some of the more advanced capabilities of this system.
A house from a commercial plan book is reconstructed and then used as a
target for evolution in Section 6.1 to compare how well the system can do with
similar requirements. Polygonal shaped houses are constructed in Section 6.2.
In Section 6.3, office buildings are evolved as an example of an alternative
application. Section 6.4 extends this to support multiple floor office buildings.
Lastly, Section 6.5 explores using the system for the construction of grocery
store layouts.

All of these experiments use the established evolutionary settings deter­
mined in Section 5.1 and listed in Table 5.1 as these parameters have already
been shown to work well in smaller experiments.

6.1 Comparison to a real floor plan

To compare the quality of solutions generated to those from a real architec­
tural book, a floor plan has been selected from a commercial book with stock
contemporary house plans[26] and loosely reconstructed in the representation
used by the GA. This reproduction is shown.in Figure 6.1(a).

The key features taken from this floor plan and specified to the system are
the numbers of rooms, and the overall idea that the main rooms are attached
to the living room while the bedrooms and bathroom are accessible from a
hallway. A full list of the specifications can be found in Listing B.1 in the
appendix. The reconstructed floor plan's fitness with respect to the specified
requirements is detailed in Listing D .1. The master bedroom is too narrow

65

CHAPTER 6. ADVANCED FLOOR PLANS 66

¥
Bathroom Bathroom M Bedroom

Eating Living I?~~
Hallway =r= ,JL

Kitchen Dining Entry Bedroom Bedroom

~
(a) Recreation ofreal floor plan in GA format

&dromn Mikdromn MIIa1m_ .",.,.
Holhnoy

Uvma

omJe. MBodroom

Bolluoom EnUy

(b) (c)

.",.,. Kitcl= Eating MBolromn M_ IG_ -.
J L ~

LMDg !lodroom .",.,. Living

1Wl."" Hallway

En"" - EnUy B

(d) (e)

Figure 6.1: Comparison of a real floor plan to evolved houses with similar
requirements.

CHAPTER 6. ADVANCED FLOOR PLANS 67

Table 6.1: Fitness of original and evolved "real" floor plans in Figure 6.1

House Original House b House c House d House e
Connectivity 9 9 9 9 9
Geometric 12.642 0 0 0 0
Functional 0 1 0 0 0
Reachable 3.08333 2.9 3 3 3
Ratio 5.98098 0 0 2.65085 2.79901
Windows 0 0 0 0 0

in the corner which leads to the bad geometric score even though the room is
mostly large enough. Additionally the bathrooms are fairly long and narrow
which is punished in the ratio score.

Figure 6.1 shows a selection of the evolved houses using the same number
of grid cells and dimensions as the reconstructed plan. Given that a very
specific ordering of rooms was imposed upon the system the variety of plans
generated is somewhat limited. However, most of the generated houses have
the same spirit as the reconstructed plan. The complete fitness score of
all the plans shown is listed in Table 6.1. House (b) did not manage to
place a kitchen which led it to have a non-zero functional score. Otherwise,
the evolved plans typically exceed the scores of the hand constructed house.
This does not mean the hand constructed house is bad, it just shows how
the fitness score does not necessarily mean everything in terms of the house
quality. Generally a reasonably good fitness means there is nothing wrong
with the house.

6.2 Polygonal houses

In Section 4.7 a strategy to evolve polygonal houses is described. The house
is evolved to fit the bounding box of the house shape, and clipped to the
polygonal region. In this section, this strategy is used to construct a variety
of irregularly shaped houses.

A half-hexagon shape is used to construct houses with an interesting
exterior appeal as shown in Figure 6.2(a). A 40' by 30' house is evolved and
then clipped to this shape. Figure 6.3 shows several examples of the houses

CHAPTER 6. ADVANCED FLOOR PLANS 68

10,0 ,0

0, 10 40, 10

40, 20

0, 30 40,300,30 40, 30

(a) Half hexagon shape (b) Triangular shape

Figure 6.2: Shapes used for polygonal experiments

the resulted from this search. There are some noticeable deficiencies in some
of the designs. For example, house (b) has a useless hallway from the social
room leading to the bedroom. In the current fitness specification this is not
directly punished. Indirectly it is discouraged as there is less room for the
rema,ining rooms in the house. House (d) on the other hand has a rather
large hallway with a corridor that leads nowhere on the bottom-left of the
plan. Again, this is not directly punished as a hallway is allowed and it
does connect other rooms. It is only punished indirectly in that the kitchen
could have been larger. Overall the house plans seem functional and quite
acceptable.

To demonstrate the feasibility of these houses, Figure 6.5 shows what the
plan from house (b) could look like furnished. It has been constructed in
Google Sketchup[3] and furnished using public domain models[2]. The extra
hallway was removed as could have been done by a post-correction phase or
evolved out with more time. With the furnishings , one can see how feasible
the house would be. There is a pleasing flow of traffic through the house, the
plumbing is largely centralized and all of the rooms are of adequate size for
their requirements.

The triangular shape in Figure 6.2(b) is used to construct a variety of
houses with a long angular side. Figure 6.4 shows several houses clipped
to this shape. In this experiment most of the evolved houses do not make
use of their top-right cell in their chromosomes. This is one way in which
some garbage data in the chromosome can be introduced, although in the
GA representation it is restricted in size and cannot become bloated. One
issue that presents itself in several houses is that the width of the room

CHAPTER 6. ADVANCED FLOOR PLANS 69

Hallway Bedroom

(a) (b)

Ki

[Socia1Room

B IG_

""""'
..... - Hallway ..throom

(c) (d)

........
lGtchllll

(e) (f)

Figure 6.3: Half hexagon shaped houses evolved from system

CHAPTER 6. ADVANCED FLOOR PLANS 70

Dining Room

Bedroom

Bedroom

Dining Room Kitchen Bedroom

(a) (b)

Social Room

Bedroom Bedroom

(c) (d)

Dining Room

Kitchen

SOdalRoom Bedroom Master Bath

(e) (f)

Figure 6.4: Angle shaped houses evolved from system

CHAPTER 6. ADVANCED FLOOR PLANS 71

(a) Top down view of house with roof removed

(b) View from kitchen (c) Outside the house

Figure 6.5: 3D view of house from Figure 6.3(b)

CHAPTER 6. ADVANCED FLOOR PLANS 72

is not accurately recognized. This could be solved with various algorithms
to analyze shortest widths across arbitrary polygons, but without this the
system does not know when rooms are much skinnier or smaller after clipping.
House (b) has an example of a kitchen with a very narrow passageway to part
of the room. House (c) has a rather small kitchen due to the clipping but it
was not measured afterwards. These issues could be easily hand-corrected if
desired. Nevertheless, the system produces interesting houses and manages
to cope with a long sloped wall for one corner of the house. Many of the
designs would make for interesting concepts given this exterior shape.

There are a few weaknesses in the form that the polygonal clipping is
currently implemented however. For example, if a room is cut intotwo rooms
as a result of clipping it to the boundary the current clipping algorithm
does not currently recognize this. This is not a weakness of the strategy
however, just the current implementation of it. The main weakness with the
polygonal clipping is that the extra space around the house area is still part
of the chromosome and hence somewhat useless. This means the system has
a larger search space than necessary as part of the chromosome is essentially
bloat. For shapes that fill most of their bounding rectangle however, there
is typically no bloat. All of the cells in the matrix end up being used for a
room present in the final house layout.

This strategy is a very simple yet powerful method of evolving interest­
ingly shaped houses. While house exteriors often have angled walls, it is
usually wasteful to have angled interior walls. By combining a polygonal
exterior with rectilinear interior walls a small search space of houses with
special shapes can be evolved. The polygonal clipping strategy could even
be used to combine the work from this system with another which designs
the exterior. House exteriors can be designed separately and then pass the
exterior shape on to this system for the interior construction.

6.3 Office building

Since the specifications for the problem give the complete set of rooms, and
all of the requirements that describe those rooms, this system can be used for
other problem domains with similar requirements. One such example is that
of an office building. An office building needs to have offices easily accessible
via some system of hallways. Bathrooms need to be within easy reach of
those offices and often times there need to be labs and reception areas.

CHAPTER 6. ADVANCED FLOOR PLANS 73

(a) (b)

Office Lab

Closet

Office

(c) (d)

(e) (f)

Figure 6.6: A sample of evolved office buildings

CHAPTER 6. ADVANCED FLOOR PLANS 74

The office buildings evolved in this section attempt to construct an easily
traversable building with 12 offices, 2 labs, and at least one bathroom. Labs
are larger than offices, which are larger than than bathrooms. The goal is to
have a single hallway connect all of these rooms to keep the layout simple. An
office building requires many more rooms and more intricate designs which
necessitates using a larger grid in the chromosome representation. The office
building is layed out on a 7 by 5 grid allowing for up to 35 rooms, although
in practicality a hallway connecting all of these rooms will require at least
14 or 15 cells on the grid. In terms of layout efficiency the requirements only
specify that one must be able to quickly get to a bathroom from the offices.

The complete requirements used for the office buildings are in Listing B.2
in the appendix. A 70' by 50' building is evolved using the same general ex­
periment settings. Figure 6.6 shows a sample of the resulting office buildings.
The system manages to evolve intricate single room hallways that span the
entire building with no assistance which is very promising for the effective­
ness of genetic algorithms in this problem. The office buildings themselves
are also very promising, especially given that they have all been generated
from a list of basic requirements for the building.

There are a few interesting oddities that the system has evolved in some
of the office plans in Figure 6.6. Building (a) has a large room-sized area
in the bottom left and top-left of the layout. Similarly, building (e) has a
hallway leading to nowhere near the bottom left. On human examination,
these irregularities immediately stand out but it is not something that is easy
to quantify or measure given arbitrary polygonal shapes. Building (c) on the
other hand has evolved a pleasing layout with regular narrow hallways, an
adequate number of offices and even a few closet spaces. It is also difficult
to quantify what constitutes a good hallway.

In general the evolved layouts have a difficult time obtaining the desired
number of rooms. In this larger example, the room requirement was expected
to be difficult to obtain and meant to encourage the system to construct as
many offices as possible. Most of the final office buildings came acceptably
close to fulfilling the necessary room requirements, despite several buildings
missing a lab. Nevertheless, many of the final office buildings have nearly
all the necessary rooms allocated. Such large and complex specifications are
a challenge to fulfill, and so the results obtained are impressive, considering
the complexity involved. Furthermore, the offices are quite fit with respect
to the other objectives. Offices are fairly rectangular, easy to reach, and
washrooms are readily available.

CHAPTER 6. ADVANCED FLOOR PLANS 75

6.4 Multiple floor office building

One of the ways of doing a multiple floor layout is to fix a certain room in
position. For example a stairwell or other such room could be given an exact
position such that no matter the rooms evolved around it this stairwell would
be in the same position on each floor and could thus be combined with any
other layout for the other floors.

This strategy is used to evolve a potential multiple floor office building.
Any of the plans for a bottom floor from Figure 6.7 can be combined with
any of the plans for an upper floor from Figure 6.8. The plans evolved
in this experiment required corrections afterwards due to limitations in the
specification format. A different post correction step was needed for the
bottom floor and upper floor plans.

By having a stairwell room type that could be connected to from a hall­
way, the system was free to evolve several of these on the bottom floor even
though this was punished in the functional score. As a result, the bottom
floor created several stairwells before reaching the forced stairwell at the fixed
position specified to the program. The post correction applied was to replace
all of these extra stairwells with offices as many offices were required in this
problem.

On the upper floors, the specification states that a stairwell connects to
a hallway. While a hallway cannot connect to other hallways the system was
allowed to connect as many hallways as it could to the stairwell where the
room assignment started from. The upper floors constructed several separate
hallways coming from each side of the stairwell. The post correction applied
was to join all adjacent hallways to become one large hallway. Such a post
correction could be made automatically or fixed by allowing better generation
restrictions such as only one hallway coming from the stairwell.

After corrections the produced plans look pretty decent. The bottom­
floor building (a) in Figure 6.7 demonstrates another example of a hallway
which does not quite lead anywhere. The upper floors tended to generate
rather sparse layouts given that they could construct Jour separate hallways.
Buildings (a) and (c) in Figure 6.8 show examples of this. The space around
the stairwell is almost entirely hallway in both of these buildings.

Typically in multiple floor buildings a single plan is repeated over several
floors, which means that a selected upper-level plan may be repeated for
several floors, followed by another plan. This is one strategy for dealing with
evolving plans for multiple floors. This strategy could also be used with

CHAPTER 6. ADVANCED FLOOR PLANS 76

Office Office Office

Office

Office

Ollke

Original Corrected
(a)

Office

Office

Lab

Office Offk:e

orne. Office

Stairwell Stairwell Office Office

Original Corrected
(b)

Omee Office orne. Office
orne. Office

~-[J Office

orne.

Closet

Original Corrected
(c)

Figure 6.7: Bottom floor office buildings evolved with a fixed stairwell

CHAPTER 6. ADVANCED FLOOR PLANS 77

Office Office Offlc. Office Office Office Office

Lab Lab

Office Office Hallway

Otnce S~I~n Hallway Office

t=l ~- Office Office
allwa allwa

Office

Office

Original Corrected
(a)

Office

Hallway

r======TI
Bathroom

Original Corrected
(b)

Lab

Office

Hallway ~-
Office Office Office Office

Original Corrected
(c)

Figure 6.8: Upper floor office buildings evolved with a fixed stairwell

CHAPTER 6. ADVANCED FLOOR PLANS 78

a variety of polygonal shapes to mimic a curved office building, or varying
smaller sizes to construct a tall skyscraper that narrows towards the top. The
possibilities and combinations are virtually endless. Various floors may have
differing requirements, as office buildings often do. Or a composite system
could be developed to design the requirements for the various floors of a large
scale office building to reduce the amount of work required on the part of a
human specifying all of these requirements.

6.5 Grocery Store

Another interesting application is in the layout of something that has discrete
regions even though they are not subdivided by walls. This is the case with a
grocery store, where there are sections that provide various goods divided into
differently sized regions. The customer is forced to walk through the checkout
on leaving the store to ensure that they pay for their goods. Listing B.3 in
the appendix shows the full requirement specifications.

In order to force the customer to walk through the checkout when leaving
this is the only room type connected to the entrance. Following the checkout
every room type is allowed to connect to every other room type to allow a
free arrangement of sections in which a customer can walk from any section
to any other adjacent section.

One of the more interesting specifications is that the refrigerated sections
of the store such as meats, frozen food, eggs and dairy require windows. They
do not actually require windows, but this makes the system try to place these
sections on the outside of the building which is most convenient for supplying
refrigeration to from an outside utility. Additionally, these sections are to be
within a short distance of each other to reduce the distance the cooling pipes
will have to travel making it more efficient to construct.

Several sections have a minimum ratio specification as these are most
often and conveniently laid out as one or two aisles with goods on either
side. This minimum ratio rewards the system for creating long and narrow
areas for these sections.

Figure 6.9 shows a selection of grocery stores evolved from the system.
It has particular difficulty with this problem as one room of each type is
required, making it difficult to combine solutions without violating this con­
straint. While missing several sections, the results are geometrically and
logistically similar to the layout of a grocery store. This is certainly one class

CHAPTER 6. ADVANCED FLOOR PLANS

Magazines Eggs&Dail)'

==() Checlcout ~
Magazines Magazines

(a)

Cleaning Items

-, ~iIT
jL jL J M~u ~ FrozenFood

Snack Food Magazines Magazines

u~1 [J
Magazines Checlrout

(c)

rozenF Meau

Checkout

(e)

Eggs&Dail)'

Snack Food

U U Eggs & Dail)'
Magazines

Magazines

==il Checkout [)=
Magazines Magazines

(b)

Meau

roUll F ggs & Dai== i Baking Goods

JLLC1=S j
Snack Food

Tl Checkout r T
Magazines Magazines

(d)

Checkout Eggs&Dail)'

=u !l===u
Magazines Magazines Magazines

(f)

Figure 6.9: Grocery store layouts evolved by system

79

CHAPTER 6. ADVANCED FLOOR PLANS 80

of problem requirements where the recombination strategy in this system is
not as effective as one that would preserve room counts.

In all plans, the majority of requirements are fulfilled . Nevertheless, there
remain a few issues in the solutions. Every store has three magazine sections.
Stores (a) and (b) do not have a section for snack food. The optional flowers
section is not in any of these layouts, hinting that there was some difficulty
in satisfying the required rooms. Most of the layouts did manage to keep the
cold foods together, though stores (e) and (f) separated eggs and dairy from
the rest . In summary, the techniques in this thesis were easily adaptable
to this unusual variation of problem· requirements, with the production of
interesting and often creative results.

Chapter 7

Discussion and Comparisons

7.1 Discussion

The system presented here works well to produce floor plans that not only
satisfy its own fitness requirements, but are also as a result asthetically pleas­
ing. The diversit.y preservation measure ensures that the rer;;m1ting popul!'>c­
tion contains a variety of plans so that the user will have different options to
choose from.

As the description of what rooms are available and their requirements
are loaded into the system via a simple configuration file, the system is eas­
ily adaptable to other problems with similar requirements. A few of these
problems have been explored here-in but there are many other possible ap­
plications, even VLSI design.

Using evolutionary computation to solve this problem grants the ability
to use easy solutions to complicated problems. As was shown with the case
of polygonal rooms, a complete floor plan can be generated, a polygon cut
out of it, and then evaluated for its quality afterwards. Whereas if the same
naive strategy were applied to produce polygonal layouts from a procedural
algorithm, the resulting plans would likely be unsatisfactory given that the
procedural algorithm is not aware of what will be removed.

The procedural assignment algorithm greatly reduces the search space of
the problem. By intelligently converting rooms into their appropriate types
many useless layouts of houses are avoided. This allows the algorithm to work
on much larger spaces or work much faster than with the assignment being
part of what is evolved. The runs in this thesis took on average 7 seconds to

81

CHAPTER 7. DISCUSSION AND COMPARISONS 82

complete on a single core of an Intel Q6600 2.4Ghz processor. This means
the algorithm is feasible to use in real-time applications. However, this as­
signment algorithm is also a limitation. Many configurations are impossible
to evolve because the procedural algorithm will not assign them that way.

Scaling up to larger problems is challenging. The exponential growth in
the search space gives the evolutionary system great difficulty in finding good
solutions. This is a problem in any evolutionary computation search, which
can often be leveraged by using modularization. By evolving modules such
as bedroom areas, bath and utility areas, and living areas the search space
could be greatly reduced. After these areas have been chosen small plans
could be evolved within them.

The system also tends to cheat at various objectives. The multi-objective
ranking methods help avoid cheating somewhat, but it is not uncommon for
objectives to go unsatisfied as satisfying one objective can hurt the scores
in several other objectives. In many cases the functional objective was not
satisfied as having those rooms proved too difficult in terms of other objective
scores like geometric and ratio.

Another weakness is in the evolution of hallway and other connecting
type rooms. They are a special case of a rectilinear room and require a large
portion of the chromosome to agree in order to create. This is one area
which VLSI systems can often ignore as modules on a circuit do not need
to be placed flush next to each other. Alternative means of constructing
hallways could be examined in order to faciliate their construction.

7.2 Comparison

The ideal way to compare this system with previous work would be to run
a test with the same objectives on both systems and see how their results
compare. Unfortunately, most of the other work is either unrelated or does
not have the same objectives. Table 7.1 gives an outline of the various fea­
tures supported by similar works. Martin[21]' Marson[19] and Mitchell[23]
do not use a search and hence several features are not applicable in these
works. These features are marked by dashes in the table.

The most relevant and similar work to what has been done here is by
Doulgerakis[9]. This work has many similarities:

• This thesis uses an evolutionary system - namely a genetic program to
construct the room layouts.

CHAPTER 7. DISCUSSION AND COMPARISONS 83

Table 7.1: Comparison of features in various works

System Doulg[9] Mart[21] Marson[19] Mitch[23] Flack
GA construction ./
G P construction ./ ./
Procedural const. ./
Optimal const. ./
Optimal assign. ./
Procedural assign. ./ ./ ./ ./
Evolution assign. ./ ./
Rectangular rooms ./ ./ ./ ./ ./
Rectilinear rooms ./ ./
Polygonal rooms ./
Polygonal exterior ./ ./
Fixed rooms ./
of Objectives 4 1 6
Weighted Sum ./ ./
Pareto Ranking ./
Ranked Sum ./ ./
Norm. Ranked Sum ./

CHAPTER 7. DISCUSSION AND COMPARISONS 84

• The GP uses division of space in order to create the rooms from a
program tree.

• Also uses a ranked-sum evaluation to balance multiple objectives as an
alternative to weighted sum.

• Many of the objectives are the same as those used in this paper: ratio,
size, number of, and connectivity of rooms.

• Doulgerakis also has two methods of assigning room types in the re­
sulting floor plans; they can be assigned randomly as part of the chro­
mosome much like the evolutionary room assignment described here,
or they can be assigned using an "Assignment Embryology" similar to
the procedural assignment used in this system.

Despite the great list of similarities, there are many differences in the
work as well. In particular:

• This system has a genetic algorithm method of producing room layouts.

• Pareto ranking was implemented and compared to the ranked-sum
multi-objective evaluation.

• Weights were added to the ranked sum in this system so that certain
objectives could be prioritized.

• Some objectives were added, such as placing certain room types on
the outside so that they can have windows and minimizing distances
between related room types rather than just trying to connect them.

• Doulgerakis allows for angled splits of rooms whereas this system only
allows for the creation of rectilinear rooms.

Ideally a direct comparison with a similar problem would be done, how­
ever the exact details of the problem Doulgerakis tackled were unfortunately
not included in his thesis. Additionally there is not enough information given
in the thesis to determine exactly how the fitness of the various objectives
are measured.

Martin's[21] has a similar goal. He aims to construct floor plans which
appear as though people would actually live in them. He does not worry

CHAPTER 7. DISCUSSION AND COMPARISONS 85

r-

(a) Walls are selected to be con- (b) Selected walls are expanded be-
verted into a hallway coming a hallway room.

Figure 7.1: Hallway conversion on rectangular floor plans

about fine tuning any aspects of the house, they are meant to be believable if
observed as part of a level in a video game or the background of a large city in
an animation. His system generates buildings using a procedural algorithm
which constructs rooms following a table of statistics. It is rather similar
to the procedural assignment phase of this system except that in addition
to assigning room types it places the rooms and adjusts their sizes. This is
designed with a very different goal in mind. There are no measured criteria
of what is desirable or successful, and no choice in the resulting house.

Marson and Musse[19] developed a procedural algorithm for constructing
floor plans using squarified treemaps. They too use a connectivity matrix
to determine which room types will be connected in the resulting plan. A
procedural algorithm runs after the house construction to ensure that rooms
which are not connected will have a hallway joining them to the main living
room. As with other procedural methods, the result is that you will either
like the produced house or not, and it has not been subject to any user
specified fitness measurements.

There is an interesting hallway construction strategy which can be seen
in Figure 7.1. By expanding walls into hallways, complex room shapes do
not need to be evolved allowing for a simpler smaller house representation.
Instead, by using a procedural algorithm as in Marson's work, simple floor
plans can be converted into much more desirable layouts quickly and easily.
Alternatively the GA representation could be expanded to flag certain walls
as hallways which would be later converted.

CHAPTER 7. DISCUSSION AND COMPARISONS 86

Mitchell et al. [23] were concerned with the evolution of floor plans that
satisfied a certain set of adjacency requirements and areas. All possible floor
plans were considered which as a result meant they could only work with
very small search spaces. Unlike this thesis, there were no constraints such
as increasing distance between certain rooms and all rooms were assumed
to be connected. Additionally, the search for sizing of the rooms is done
separately after determining good layouts whereas this thesis attempts to
optimize the sizes and layout at the same time which could discover better
plans.

Chapter 8

Conclusions

8.1 Results

The system in this thesis employed evolutionary algorithms to solve a prob­
lem with no clear strategy or notion of optimality. The system was effective
at generating specific floor plans given reasonable requireI!!.,nt~. The rep­
resentation of the problem specifications allows it great flexibility in both
problem depth and problem scope. Anything that can be defined in terms of
rooms with dimensional and connectivity constraints can be evolved. Sim­
ilarly, any level of detail in requirements may be specified. It works best
on smaller problems, where it is capable of exploring a larger portion of the
search space.

A number of insights into effective evolutionary computation strategies
were found. While the genetic programming crossover was not conducive to
the combination of good features from good solutions, the genetic algorithm
succeeded in combining good features from good solutions. Several strategies
for handling multiple objectives in evolutionary algorithms were tested and
worked to evolve the often conflicting variety of goals in the design of floor
plans. With its high dimensionality and unclear requirements, this prob­
lem served as an interesting benchmark problem to compare multi-objective
strategies. While not conclusive, the normalized ranked sum strategy ap­
peared to provide the best compromise of scores in order to find the best
solutions. Lastly, diversity preservation was successfully employed to pro­
vide a more diverse search and a variety of end of run solutions to choose
from.

87

CHAPTER 8. CONCLUSIONS 88

The features provided in this work exceed the capabilities of any previous
work done without a significant expansion to the search space. The polygonal
floor plans and fixed room plans increase the utility of such a system such
that it can be used for a more general set of problems. Additionally the
variety of potential objectives and specification of requirements goes beyond
that of similar works, to allow for greater flexibility in problem requirements.

8.2 Future Work

One major feature that would be useful for multi-floor structures is to evolve
both floors as a single problem. This way the system will know that if there
are many bedrooms on the second floor there do not need to be any on the
first, or vice versa. In doing a multi-floor layout with the grid-based GA
chromosome, the sizes of the grid cells could be constant for all floors with
a separate array of values for each floor giving room types. This would help
ensure structural integrity as walls would be built over walls rather than
wherever they end up.

Considering it is largely unknown how to quantify which exact features
make for a good house, it may be useful to apply an interactive/automatic
hybrid evolutionary system. The user could pause the evolution, select houses
that he/she believed were superior and those would be valued above the
others. In this way the user would have a direct impact on the evolutionary
process and the final resulting houses.

There are many parameters involved in the procedural assignment algo­
rithm which have a great effect over how rooms are assigned. These values
could be evolved as part of the GA chromosome to help find ideal values for
assigning room types in a more desirable fashion. It would add a great deal
of flexibility in room assignment and could relax the necessity for the user to
give such precise requirements.

The fitness function is currently an evaluation of the floor plan based on
several static measures. Since the true evaluation of the quality of a house
is how well it serves the needs of its inhabitants, it may be possible to get a
better rating of a house by running a simulation of agents using the house
for various purposes. The evaluation may take significantly longer, however,
it may be possible to find more relatable objectives with such a simulation.

There are also many other areas to which the process of evolving floor
plans could be applied. Martin [20] uses his strategy in the application of

CHAPTER 8. CONCLUSIONS 89

generating maps for role-playing games. It has been shown that the method
described here has applications in other areas, however with some adaptation
it may be better suited for these applications.

There are other possible representations for the chromosome in order to
effectively evolve normal houses. For example, if the goal were to evolve
strictly rectangular rooms there could be some rule for when to expand a
cell or a width and height associated with each cell. Hallways could be
more effectively constructed or evolved as edges between rooms as in "Au­
tomatic Real-time Generation of Floor Plans Based on Squarified Treemaps
Algorithm" [19] which could be expanded to become hallways. This way
the grid would not have to have cells specifically sized to allow hallways.
Such modifications could effectively reduce the number of bad solutions in
the search space which would render the algorithm effective for much larger
spaces.

Similar to Marson's[19] algorithm, the GP representation could use a
squarified treemap to layout the rooms in the graph. This would allow for
more effective crossover as entire trees of rooms would not be squished into
small spaces as with the current strategy.

Bibliography

[1] Association for the advancement of artificial intelligence (aaai). Accessed
August 2010 at http://www . aaai . org/.

[2] Google 3d warehouse. Accessed October 2010 at
http://sketchup.google.com/3dwarehouse/.

[3] Google sketchup. Available online at http://sketchup.google. com/.

[4] Rafael Bidarra, Tim Tutenel, and M. Rubin Smelik. Rule-based layout
solving and its application to procedural interior generai,iull. 2009.

[5] M. Bruls, K. Huizing, and J. van Wijk. Squarified treemaps. In Proc.
of Joint Eurographics and IEEE TCVG Symp. on Visualization (TCVG
2000), pages 33-42. IEEE Press, 2000.

[6] David W. Corne and Joshua D. Knowles. Techniques for highly multiob­
jective optimisation: some nondominated points are better than others.
In GECCO '01: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 773-780, New York, NY, USA, 2007.
ACM.

[7] Charles Darwin. The Origin of Species. D. Appleton and Company,
1900.

[8] Richard C. Dorf, editor. The electrical engineering handbook. CRC
Press, Inc., Boca Raton, FL, USA, 1993.

[9] Adam Doulgerakis. Genetic programming + unfolding embryology in
automated layout planning. Master's thesis, University Of London, 2007.

90

BIBLIOGRAPHY 91

[10] David E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Professional, 1 edition, January
1989.

[11] Stefan Greuter, Jeremy Parker, Nigel Stewart, and Geoff Leach. Real­
time procedural generation of 'pseudo infinite' cities. In Computer
Graphics and Interactive Techniques, page 8, Australasia and South East
Asia, 2003.

[12] P. N. Gui, T. Takahashi, and C. K. Cheng. Floorplanning using a tree
representation: A summary. In Circuits and Systems Magazine, vol­
ume 3, pages 26-29. IEEE Computer Society Press, November 2003.

[13] Evan Hahn, Prosenjit Bose, and Anthony Whitehead. Persistent re­
altime building interior generation. In Sandbox '06: Proceedings of the
2006 ACM SIGGRAPH symposium on Videogames, pages 179-186, New
York, NY, USA, 2006. ACM.

[14] Bill. Hillier and Julienne. Hanson. The social logic of space / Bill
Hillier, Julienne Hanson. Cambridge University Press, Cambridge
[Cambridgeshire] ; New York :, 1984.

[15] William J. Hirsch Jr. Designing Your Perfect House. Dalsimer Press,
2008.

[16] John R. Koza. Genetic programming: on the programming of computers
by means of natural selection. The MIT Press, Cambridge, MA, 1992.

[17] John R. Koza, Forrest, David Andre, and Martin A. Keane. Genetic
Programming III: Darwinian Invention and Problem Solving. Morgan
Kaufmann, 1st edition, May 1999.

[18] Jens Lienig and James P. Cohoon. Genetic algorithms applied to the
physical design of vlsi circuits: A survey. In Proceedings of the 4th In­
ternational Conference on Parallel Problem Solving from Nature, PPSN
IV, pages 839-848, London, UK, 1996. Springer-Verlag.

[19] Fernando Marson and Soraia Raupp Musse. Automatic real-time gen­
eration of floor plans based on squarified tree maps algorithm. In Inter­
national Journal of Computer Games Technology. Hindawi Publishing
Corporation, 2010.

BIBLIOGRAPHY 92

[20] Jess Martin. Generating graphical content using grammars and graphs.
Technical report, Trinity University.

[21] Jess Martin. Algorithmic beauty of buildings: Methods for procedural
building generation. Technical report, Trinity University, San Antonio,
TX, USA, 2004.

[22] Melanie Mitchell. An Introduction to Genetic Algorithms (Complex
Adaptive Systems). The MIT Press, February 1998.

[23] W J Mitchell, J P Steadman, and Robin S Liggett. Synthesis and op­
timization of small rectangular floor plans. Environment and Planning
B: Planning and Design, 3(1):37-70, 1976.

[24] Pascal Miiller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc
Van Gool. Procedural modeling of buildings. ACM Trans. Graph.,
25(3):614-623, 2006.

[25] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A
field gnide to genetic programming. Published via http://llllu . com and
freely available at http://WTifTiI.gp-field-guide . org. uk, 2008. (With
contributions by J. R. Koza).

[26] Jan Prideaux and Marian E. Haggard, editors. Contemporary Home
Plans: 220 Sleek Designs for Modern Lifestyles. Home Planners, 1998.

[27] Stuart J. Russel and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, second edition, 2003.

[28] Majid Sarrafzadeh. Transforming an arbitrary floorplan into a slice able
one. In ICCAD '93: Proceedings of the 1993 IEEEjACM international
conference on Computer-aided design, pages 386-389, Los Alamitos, CA,
USA, 1993. IEEE Computer Society Press.

[29] Thorsten Schnier and John S. Gero. Learning genetic representations
as alternative to hand-coded shape grammars. In Gero €1 F. Sudweeks
(eds), Artificial Intelligence in Design '96, Kluwer, pages 39-57; 1996.

[30] Suphachai Sutanthavibul, Eugene Shragowitz, and J. Ben Rosen. An
analytical approach to floorplan design and optimization. In DAC '90:
Proceedings of the 27th ACMjIEEE Design Automation Conference,
pages 187-192, New York, NY, USA, 1990. ACM.

BIBLIOGRAPHY 93

[31] Maolin Tang and Alvin Sebastian. A genetic algorithm for vlsi floor­
planning using o-tree representation. In Franz Rothlauf, Jiirgen Branke,
Stefano Cagnoni, David W. Corne, Rolf Drechsler, Yaochu Jin, Penousal
Machado, Elena Marchiori, Juan Romero, George D. Smith, and Gio­
vanni Squillero, editors, Applications on Evolutionary Computing, vol­
ume 3449 of Lecture Notes in Computer Science, pages 215- 224. Springer
Berlin / Heidelberg, 2005.

[32] Christine L. Valenzuela and Pearl Y. Wang. A genetic algorithm for
vlsi floorplanning. In Proceedings of the 6th International Conference
on Parallel Problem Solving from Nature, PPSN VI, pages 671-680,
London, UK, 2000. Springer-Verlag.

[33] D. F. Wong and C. L. Liu. A new algorithm for floorplan design. In
Proc. 24th Design Automation Conference, pages 101-107, June 1986.

Appendix A

Penalties for procedural
assignment

The penalties for the procedural assignment algorithm are outlined below.
The score of a room is the sum of the penalties and the room type with the
lowest overall value is chosen first.

Penalty
The new room's area is larger
than another room, that it should
be smaller than.

The room has enough twists to be
recommended to be a particular
type.

The room type recommends a pri­
vate/public room and the oppo­
site type is being considered.

The room is an external one and a
type that does not need windows
is being considered.

94

Value
2000

1000

700

150

APPENDIX A. PENALTIES FOR PROCEDURAL ASSIGNMENT 95

The room's area, area, is less
than the minimum recommended
area for this type, minarea.

The room's area, area, is greater
than the maximum recommended
area for this type, maxarea.

The room's width, width, is less
than the minimum recommended
width for this type, minwidth.

The room's width, width, is
greater than the maximum rec­
ommended width for this type,
maxwidth.

The room with width width, has
a recommended width, recwidth.

The room with area area, has a
recommended area, recarea.

The room with ratio ratio,
has a smaller ratio than the
recommended minimum ratio,
minratio.

The room with ratio ratio,
has a greater ratio than the
recommended maximum ratio,
maxratio.

If the house does not have enough
of the current type.

500 + minarea - area

500 + area - maxarea

500 + (minwidth - width)2

500 + (maxwidth - width)2

larea - recareal

200 . (minratio - ratio)

200 . (maxratio - ratio)

-125

APPENDIX A. PENALTIES FOR PROCEDURAL ASSIGNMENT 96

If there are n too many of the cur­
rent room type in the house.

200n

Appendix B

Requirements for experiments
in thesis

Listing B.I: Requirements for "real" house
Outside
{

}

type: public;
attach: Entry;

Living
{

}

type: public;
minimum: 1;
maximum: 1;
attach: Dining, Eating, Hallway;
min-width: 12;
min-area: 175;
max-ratio: 1.5;
bigger-than: Bedroom, Kitchen, Dining, Eating, Bathroom, M

Bathroom, M Bedroom, Entry;

Dining
{

type: public;
minimum: 1;
maximum: 1;
attach: Living, Kitchen;
min-width: 10;

97

APPENDIX B. REQUIREMENTS FOR EXPERIMENTS IN THESIS 98

}

min-area: 100;
max-ratio: 1.5;
bigger -than: Bedroom;

access -nearest: Bathroom;
area: 120;

Bedroom
{

}

type: private;
minimum: 1;
maximum: 2;
min-width: 10;
min-area: 100;
max-ratio: 1.5;
bigger-than: Bathroom, M Bathroom;

access -nearest: Bathroom;
windows: yes;

Hallway
{

}

type: public;
maximum: 1;
attach: Bathroom, Bedroom, M Bedroom;
width: 5;
min-ratio: 2;

Kitchen
{

}

type: public;
min-width: 11;
min-area: 100;
minimum: 1;
maximum: 1;
max- rat i 0: 1. 5 ;
attach: Eating, Dining;
bigger -than: Bathroom;

Bathroom
{

APPENDIX B. REQUIREMENTS FOR EXPERIMENTS IN THESIS 99

}

type: private;
minimum: 1;
maximum: 2;
max-ratio: 1.5;
min-width: 5;
min-area: 35;
windows: yes;

M Bathroom
{

}

type: private;
minimum: 1;
maximum: 1;
max-ratio: 1.5;
min-width: 5;
min-area: 35;
bigger -than: Bathroom;
windows: yes;

M Bedroom
{

}

type: private;
minimum: 1;
maximum: 1;
min-wid th: 10;
min-area: 100;
max-ratio: 1.5;
attach: M Bathroom;
bigger-than: Bedroom, M Bathroom, Bathroom;
windows: yes;

Eating
{

type: public;
minimum: 1;
maximum: 1;
attach: Living, Kitchen;
min-width: 10;
min-area: 100;
max-ratio: 1. 5;
bigger -than: Bedroom;

APPENDIX B. REQUIREMENTS FOR EXPERIMENTS IN THESIS 100

}

access -nearest: Bathroom;
area: 120;

Entry
{

}

type: public;
maximum: 1;
attach: Living;
max-width: 8;

Listing B.2: Requirements for office building
Outside
{

}

type: public;
attach: Hallway;

Lab
{

}

type: public;
minimum: 2;
maximum: 2;
min-width: 7;
min-area: 150;
max-ratio: 2;
bigger-than: Office, Bathroom;

Bathroom {

}

type: private;
minimum: 1;
maximum: 2;
min-width: 5;
min-area: 35;
max-ratio: 2;
bigger -than: Closet;

width: 6;
area: 54;

Office {
type: private;

APPENDIX B. REQUIREMENTS FOR EXPERIMENTS IN THESIS 101

}

minimum: 12 ;
windows: yes;
min-width: 7;
min-area: 80;
max-ratio: 2 ;
bigger-than: Bathroom;

access -nearest: Bathroom;
area: 150;

Hallway {

}

type: public;
minimum: 1;
min-ratio: 2;
width: 4.5;
attach: Office, Lab, Closet, Bathroom;
twists: 3;

Closet {

}

type: private;
minimum: 0;
max-ratio: 3;

Listing B.3: Requirements for grocery store
Outside
{

}

type: public;
attach: Checkout;

Checkout
{

minimum: 1;
maximum: 1;
min-ratio: 3;
area: 240;
max-area: 300;
min-area: 150;
rectangular: 0.9;
attach: Magazines, Frozen Food, Eggs & Dairy, Meats,

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned
Food, Snack Food, Flowers;

APPENDIX B. REQUIREMENTS FOR EXPERIMENTS IN THESIS 102

access: Snack Food, Magazines;
}

Magazines
{

}

minimum: 1;
maximum: 1;
area: 80;
max-area: 120;
attach: Magazines, Frozen Food, Eggs & Dairy, Meats,

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned
Food, Snack Food, Flowers;

Frozen Food
{

}

minimum: 1;
maximum: 1;
min-ratio: 2;
windows: yes;
area: 220;
min-area: 150;
bigger -than: Magazines, Eggs & Dairy, Snack Food, Flowers;
attach: Magazines, Frozen Food, Eggs & Dairy, Meats,

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned
Food, Snack Food, Flowers;

access: Meats;

Eggs & Dairy
{

}

minimum: 1;
maximum: 1;
windows: yes;
area: 80;
min-area: 60;
attach: Magazines, Frozen Food, Eggs & Dairy, Meats,

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned
Food, Snack Food, Flowers;

access: Frozen Food, Meats;
bigger -than: Flowers, Magazines;

Meats
{

APPENDIX B. REQUIREMENTS FOR EXPERIMENTS IN THESIS 103

}

minimum: 1;
maximum: 1;
min-ratio: 3;
windows: yes;
area: 240;
min-area: 170;
access: Eggs & Dairy;
attach: Magazines, Frozen Food, Eggs & Dairy, Meats,

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned
Food, Snack Food, Flowers;

bigger -than: Magazines, Eggs & Dairy, Flowers;

Cleaning Items
{

}

minimum: 1;
maximum: 1;
area: 240;
min-ratio: 2;
attach: Magazines, Frozen Food, Eggs & Dairy, Meats,

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned
Food, Snack Food, Flowers;

Baking Goods{
minirimm : 1 ;
maximum: 1;
area: 240;
min-ratio: 2;

}

bigger -than: Frozen Food, Eggs & Dairy, Meats;
attach: Magazines, Frozen Food, Eggs & Dairy, Meats,

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned
Food, Snack Food, Flowers;

Canned Food {
minimum: 1;
maximum: 1;
min-ratio: 2;
area: 240;

}

attach: Magazines, Frozen Food, Eggs & Dairy, Meats,
Vegetables & Fruit, Cleaning Items, Baking Goods, Canned
Food, Snack Food, Flowers;

APPENDIX B. REQUIREMENTS FOR EXPERIMENTS IN THESIS 104

Snack Food{
minimum: 1· ,
maximum: 1· ,
area: 100;
attach: Magazines, Frozen Food, Eggs & Dairy, Meats,

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned
Food, Snack Food, Flowers;

}

Flowers{
maximum: 1· ,
area: 180;
attach: Magazines, Frozen Food, Eggs & Dairy, Meats,

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned
Food, Snack Food, Flowers;

}

Vegetables & Fruit
{

minimum: 1· ,
maximum: 1· ,
area: 140;
attach: Magazines, Frozen Food, Eggs & Dairy, Meats,

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned
Food, Snack Food, Flowers;

}

Appendix C

Full statistical data

105

APPENDIX C. FULL STATISTICAL DATA 106

Table C.1: Confidence in Directed Search over Random Search

Average Best Fitness
Objective Connect. Geom. Funct. Reach. Ratio Windows
Random 8.0 260.3 0.1667 2.034 4.768 0.03333
Directed 7.0 72.06 0.0 1.904 1.063 0.0

Standard Deviation
Objective Connect. Geom. Funct. Reach. Ratio Windows
Random 3.256 400.7 0.3727 0.1503 3.139 0.1795
Directed 0.0 155.4 0.0 0.08078 1.56 0.0

Confidence I 95.4% 99.2% 99.3% 99.9% 99.9% 84.6%

Table C.2: Confidence in Genetic Algorithm over Genetic Programming ap-
proach

Average best fitness
Objective Connect. Geom. Funct. Reach. Ratio Windows
GA 7.0 72.06 0.0 1.904 1.063 0.0
GP 9.333 245.2 0.4667 1.866 2.299 0.0

Standard Deviations
Objective Connect. Geom. Funct. Reach. Ratio Windows
GA 0.0 155.4 0.0 0.08078 1.56 0.0
GP 3.902 345.6 0.6182 0.104 3.542 0.0

Confidence I 99.9% 99.4% 99.9% 5.585% 96.0% 50.0%

APPENDIX C. FULL STATISTICAL DATA 107

Table C.3: Confidence in Procedural assignment outperforming Evolutionary

Average best fitness
Objective Connect. Geom. Funet. Reach. Ratio Windows
Procedural 7.0 72.06 0.0 1.904 1.063 0.0
Evolutionary 7.417 3.584 0.0 54.43 0.679R 0.0

Standard Deviations
Objective Connect. Geom. Funet. Reach. Ratio Windows
Procedural 0.0 155.4 0.0 0.08078 1.56 0.0
Evolutionary 5.941 13.08 0.0 86.38 1.499 0.0

Confidence 65.0% 0.80% 50.0% 99.9% 16.6% 50.0%

APPENDIX C. FULL STATISTICAL DATA 108

Table C.4: Statistical comparison of multi-objective ranking strategies
D = Diversity preservation, N = Normalized

Average best fitness
Objective Connect. Geom. Funet. Reach. Ratio Windows
Weighted 7.333 0.0 0.1667 1.827 0.0020 0.0
Pareto 7.333 13.97 0.0333 1.9 1.462 0.0
Ranked 7.0 0.0 0.0 1.875 0.2073 0.0
N. Rank. 7.0 0.0 0.0 1.879 0.0 0.0
D. Weighted 7.533 0.0 0.1333 1.789 0.2233 0.0
D. Pareto 7.0 72.06 0.0 1.904 1.063 0.0
D. Ranked 7.0 0.0 0.0 1.882 0.2016 0.0
D. N. Ranked 7.0 0.0 0.0 1.877 0.0 0.0

Standard Deviations
Objective Connect. GeOIT.. Funet. Reach. RaJ.! -".v V.'indows
Weighted 0.7454 0.0 0.3727 0.1046 0.0109 0.0
Pareto 1.795 57.25 0.1795 0.0797 2.16 0.0
Ranked 0.0 0.0 0.0 0.0025 0.778 0.0
N. Rank. 0.0 0.0 0.0 0.0224 0.0 0.0
D. Weighted 0.8844 0.0 0.3399 0.0789 0.75 0.0
D. Pareto 0.0 155.4 0.0 0.0808 1.56 0.0
D. Ranked 0.0 0.0 0.0 0.0226 0.6516 0.0
D. N. Ranked 0.0 0.0 0.0 0.0055 0.0 0.0

Confidence in Diverse Normalized Ranked over other methods:
Weighted 99.3% 50.0% 99.3% 0.48% 84.6% 50.0%
Pareto 84.6% 90.9% 84.6% 94.2% 99.9% 50.0%
Ranked 50.0% 50.0% 50.0% 12.1% 92.8% 50.0%
N. Rank. 50.0% 50.0% 50.0% 71.6% 50.0% 50.0%
D. Weighted 99.9% 50.0% 98.4% 0.01% 94.9% 50.0%
D. Pareto 50.0% 99.5% 50.0% 96.7% 99.9% 50.0%
D. Ranked 50.0% 50.0% 50.0% 88.9% 95.5% 50.0%

APPENDIX C. FULL STATISTICAL DATA 109

Table C.5: Confidence in weighting objective values over equal weighting

Average best fitness
Objective Connect. Geom. Funct. Reach. Ratio Windows
Equal 7.833 0.0 3.233 1.274 0.0 0.0
Weighted 7.0 72.06 0.0 1.904 1.063 0.0

Standard Deviations
Objective Connect. Geom. Funct. Reach. Ratio Windows
Equal 2.083 0.0 2.093 0.5043 0.0 0.0
Weighted 0.0 155.4 0.0 0.08078 1.56 0.0

Confidence I 98.6% 0.55% 99.9% 0.01% 0.01% 50.0%

Appendix D

Detailed fitness penalties

Listing D.l: Complete description of penalties to reconstructed real house
GEDMETRIC: M Bedroom has width 6 .44444 , less than the desired

10, penalty of 12.642
CONNECTIVITY: Distance from Dining to nearest Bathroom is 3

scaled to 3
CONNECTIVITY: Distance from Bedroom to nearest Bathroom is 3

scaled to 1.5
CONNECTIVITY: Distance from Bedroom to nearest Bathroom is 3

scaled to 1.5
CONNECTIVITY: Distance from Eating to nearest Bathroom is 3

scaled to 3
REACHABIE: Depth of Outside is 0, scaled to 0
REACHABIE: Depth of Kitchen is 4, scaled to 0.333333
REACHABIE: Depth of Dining is 3, scaled to 0.25
REACHABIE: Depth of Entry is 1, scaled to 0.0833333
REACHABIE: Depth of Bedroom is 4, scaled to 0 .333333
REACHABIE: Depth of Bedroom is 4, scaled to 0.333333
REACHABlE: Depth of Eating is 3, scaled to 0 . 25
REACHABIE: Depth of Living is 2, scaled to 0.166667
REACHABIE: Depth of Hallway is 3, scaled to 0.25
REACHABIE: Depth of M Bedroom is 4, scaled to 0.333333
REACHABIE: Depth of Bathroom is 4, scaled to 0.333333
REACHABIE: Depth of M Bathroom is 5 , scaled to 0.416667
RATIO: Bathroom has larger ratio than 1.5, its ratio is 1.99049,

penalty of 0.490488
RATIO: M Bathroom has larger ratio than 1.5, its ratio is

1.99049, penalty of 0.490488

110

