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Abstract 

Layout planning is a process of sizing and placing rooms (e.g. in a house) 

while attempting to optimize various criteria. Often there are conflicting 

criteria such as construction cost, minimizing the distance between related 

activities, and meeting the area requirements for these activities. The pro­

cess of layout planning has mostly been done by hand, with a handful of 

attempts to automate the process. This thesis explores some of these past 

attempts and describes several new techniques for automating the layout 

planning process using evolutionary computation. These techniques are in­

spired by the existing methods, while adding some of their own innovations. 

Additional experimenLs are done to test the possibility of allowing polygonal 

exteriors with rectilinear interior walls. Several multi-objective approaches 

are used to evaluate and compare fitness. The evolutionary representation 

and requirements specification used provide great flexibility in problem scope 

and depth and is worthy of considering in future layout and design attempts. 

The system outlined in this thesis is capable of evolving a variety of floor 

plans conforming to functional and geometric specifications. Many of the 

resulting plans look reasonable even when compared to a professional floor 

plan. Additionally polygonal and multi-floor buildings were also generated. 
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Chapter 1 

Introduction 

1.1 Floor Plan Design 

As computing time is becoming cheaper and more available, computers are 
being used for an expanding variety of creative endeavours. Some of these 
recent endeavours aim to put creativity in the comput.P'fs' hands , Computer 
algorithms are being written to do everything from redesigning circuits to 
creating artwork or even writing poetry. There have been an increasing 
number of successes in the attempts to generate creative design results from 
evolutionary processes. 

Architecture is a complex amalgamation of science and art . There are 
functional requirements, cultural expectations and general guidelines to fol­
low, but within these guidelines there are still limitless possibilities. Even 
though a house may meet building codes and social norms, Hirsch feels that 
there is no such thing as the perfect house, "The needs and desires of ev­
ery client are so unique, so it follows that each should should necessarily be 
unique." [15] It's likely that no amount of standard measures can identify one 
house that will suit everyone. This makes the design of houses an interesting 
problem to assist with a computer algorithm. 

This thesis is concerned with the automatic design of the floor plan of a 
house. There are very many levels of detail that go into designing a house. A 
floor plan needs to be functional in that it shapes the flow of traffic through 
the house and it also has measurable traits of quality, such as efficiency 
in being able to get to important rooms quickly or being able to light key 
rooms with natural light from large windows. There are also conventions that 

1 
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different societies have developed and expect to find satisfied with respect to 
their floor plans and this is why it is an ideal target for automation. There 
are many objectives that can be measured in the automation of the design. 
In particular, a floor plan needs a certain number of rooms of certain types. 
One should be able to get to all of the rooms in the house without travelling 
through too many other rooms to get there. Many rooms need to be a 
certain size and general shape or ratio of width to length. Certain rooms 
should be closer together. Some rooms need windows for natural lighting 
during the day. The type of walls, awnings over the windows, various doors 
and light fixtures all contribute to the feel of a house, but they are fairly 
immeasurable in terms of correctness. Additionally such decorative decisions 
can be made and applied to any house floor plan. The most important 
aspect of a house is that its owner likes it. The opinion of the owner is 
however very subjective. Owners may not agree on what is important and it 
is not necessarily quantifiable. They simply have to see the house. That is 
what makes this a particularly difficult and in a way a creative problem. 

This thesis will explore several methods and ideas with respect to au­
tomating the generation of floor plans using a c.ompnter system. There are 
many objectives which are often at odds with each other. For example, there 
is a minimum number of various room types but also a minimum size for 
each of these room types and an overall finite amount of space. This means 
sacrifices must often be made in either the size of the rooms or the number 
of such rooms. Additionally it is a very subjective problem and as such some 
solutions may be undesirable for purely aesthetic or other unmeasured or un­
measurable reasons. Genetic algorithms and genetic programming paradigms 
will be utilized as they are capable of exploring large search spaces in parallel 
and produce a set of answers rather than one single answer. Multi-objective 
strategies will be used to find a balance of the many objectives being op­
timized. By providing multiple answers a customer will get many options 
which satisfy the fitness constraints in different ways and combinations. 

This thesis will investigate whether this strategy of evolution will be suc­
cessful in creating designs that may have been designed by humans. A system 
that can create such designs has many possible applications. It can be used 
as a basis for ideas to be taken into consideration by architects and their 
clients. It can also be used to create dynamic environments for games. This 
goal is two-fold; for games, it can provide dynamic environments such that 
each time playing through is different, and it can create very large expansive 
environments that would have taken a long time to design by hand. Lastly, 
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it can be used for computer animations or movies, where generating large en­
vironments for background scenery would otherwise be very time consuming. 
In any case, it is an interesting and challenging evolutionary design problem 
for genetic algorithms and genetic programming which is only beginning to 
be studied. 

1.2 Goals 

1.2.1 Effectiveness of Evolutionary Computation Tech-
niques 

This thesis tests the effectiveness of several evolutionary computation tech­
niques and multi-objective evaluation strategies in the context of a difficult 
and highly dimensional problem. 

• A genetic algorithm strategy can be compared with a similar genetic 
programming strategy. 

• Different multi-objective strategies can be compared. 

• Diversity preservation strategies can be employed and tested for effec­
tiveness in generating more unique solutions. 

It is an interesting and challenging problem in evolutionary design. The 
goal is to gain insight into the relative effectiveness of these evolutionary 
computation technologies in the floor plan design problem. 

1.2.2 Domain Application 

This thesis also attempts to solve a domain problem in architecture which 
has not been thoroughly studied. This problem is the automatic generation 
of floor plans that satisfy the constraints and problems presented in archi­
tectural design. These difficult to measure or even define. 

• An inhabitant must be able to live within the house comfortably with 
the rooms that they have. 

• The rooms must be able to comfortably accommodate the furniture 
within, while still being able to navigate the rooms. 
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• It should be easy to navigate the house. Inhabitants shouldn't have to 
travel far to move around the house during their daily activities. 

• All rooms in the house must be accessible. 

• Common gathering rooms should be well lit with natural lighting during 
the day. 

These goals are difficult to quantify or measure. Also it is more important 
to have solutions which are generally good in all of these attributes over 
ones which are optimal in one or two of these. A system which finds good 
solutions could be used as a design exploration tool for architects to use to 
find a basis for their plans. It is also a potential tool for game design systems 
where dynamically generated content would be preferred or manual content 
creation may be too time consuming. 

1.3 Subsequent Sections 

Subsequent sections are laid out as follows. Background information regard­
ing evolutionary computation, genetic algorithms, genetic programming, and 
floor planning is found in Chapter 2. A literature review of previous work 
in similar problems is outlined in Chapter 3. The system designed for this 
thesis is described in detail in Chapter 4. Various evolutionary parameters 
and house requirements are tested on a basic floor plan in Chapter 5. Chap­
ter 6 shows the capabilities and flexibility of the system in a series of more 
advanced problems. Chapter 7 provides a discussion of the advantages of this 
system and comparisons to previous work. Finally, Chapter 8 sums up the 
effectiveness of this system in meeting the outlined goals and notes potential 

, future work that could be done to improve the system. 



Chapter 2 

Background 

Evolutionary computation is a subset of the broader field of artificial in­
telligence. Artificial intelligence or AI does not have a single definition. Its 
definitions range from systems that think and act like humans to systems that 
think and act rationally[27]. In general it is concerned with "the scientific 
understanding of the mechanisms underlying thought and intelligent behav­
ior and their embodiment in machines." [1] Machine learning is the branch of 
artificial intelligence in which systems improve their performance over time 
through some form of experience. Evolutionary computation is the branch of 
machine learning in which the concept of evolution through natural selection 
is applied. 

2.1 Genetic Algorithms 

A genetic algorithm[10][22] is one of the more popular evolutionary systems 
which models a population of individuals evolving through natural selection 
as made famous by Charles Darwin[7]. GA's simulate natural selection by 
modelling a population of individuals which reproduce sexually with individ­
uals that have been stochastically selected to have been more fit. These are 
considered the individuals that would have survived and been selected for 
mating. 

The individuals are represented by a fixed length chromosome. When 
designing a genetic algorithm the experiment or decides how this chromosome 
string (genotype) will be converted into a problem solution (phenotype). This 
in some ways restricts the set of possible solutions created by the system; the 
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representation and resulting chromosome length ultimately decide the size of 
the search space. Genetic algorithms are also not guaranteed to be optimal 
as virtually all of the steps involve random elements. This is viewed both 
positively and negatively. In one regard, the system is not guaranteed that 
it will ever find the best solution. On the other hand, this stochastic nature 
means that it can quickly hone in on good solutions in the population as it 
does not need to search everything. 

2.1.1 GA Algorithm 

The GA algorithm in Figure 2.1 begins by creating a list of randomly gener­
ated individuals or chromosomes, which represent solutions to the problem. 
Chromosomes are typically represented as strings of characters which can be 
transformed into problem solutions. These solutions are evaluated according 
to some defined fitness function. There is a some termination criteria that 
is checked at this point to see if the GA should continue running. Usually 
this is a number of generations, a specific target fitness, or the lack of change 
in fitness for some number of generations. If the termination criteria has 
not been met, a new population is created. This is done through the use 
of genetic operators such as crossover and mutation. These stochastically 
select more fit chromosomes from the current population, perform some al­
terations or combinations to them, and insert them into a new population for 
the next generation. Since more fit chromosomes are favored in the selection 
process, the population tends to have more and more fit chromosomes with 
each generation. Eventually this process is said to converge. That is, the 
fitness of the chromosomes in the new population are no better than those 
in the current population. There are many causes for this. Most often it is 
due to the population being clustered around similar or even identical good 
solutions. 

2.1.2 GA System Design 

There are several elements of a GA system which can be tailored to suit the 
problem at hand. 
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Initialize the 
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Figure 2.1: GA Algorithm 
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Parents 

1011P11101 

01101111010 

Children 

1011111010 

0110 11101 

Figure 2.2: Vanilla GA crossover 

Chromosome representation 

8 

The chromosome in a genetic algorithm represents a complete solution to 
the problem at hand, even though it may not necessarily be a good solution 
or not even a valid solution. While the representation will probably allow 
for bad or invalid solutions, all that is necessary is that it is capable of 
describing a good solution to the problem. Ideally it should be easy to 
randomly generate chromosomes for the beginning population. A vanilla GA 
describes a chromosome as a string of characters (usually 0 and 1), but in 
practice a chromosome can be any data structure. 

Often a chromosome does not represent a direct solution to the problem. 
It must be transformed through some algorithm into a problem solution. 
This is akin to DNA in nature in that it does not represent the individual, 
but instead guides the development of an individual. In a genetic algorithm 
this transformation process should ideally be deterministic, otherwise the 
fitness of the resulting solution may not be representative of what is typically 
produced from that chromosome. 

Crossover 

The crossover operation or sexual recombination is an operation by which 
two parents are combined to create similar "child" chromosomes ideally in­
corporating the best traits of each parent. There are a variety of established 
crossovers for systems which use strings of characters as their chromosomes. 
The vanilla crossover for GA's is called a one-point crossover depicted in 
Figure 2.2. A single position is chosen within the chromosome string and 
the data after this position within each of the parents is swapped to create 
the two children. The resulting chromosomes are added to the population 
for the next generation. This is the most important reproduction operator 
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in GA's as it forms the basis for evolution. Traits from two individuals are 
combined to form new individuals. It is also the only reproduction operator 
necessary for evolution in a GA. 

Mutation 

While crossover is sufficient for many problems, it is often necessary to in­
troduce mutation into a GA. This also fits into the analogy of Darwinian 
evolution; often children will have minor mutations giving them differences 
in traits from their parents. In a GA, mutation is typically performed on a 
small percentage of individuals and makes slight alterations to each of them 
so as to help the population explore the current solution area. In a vanilla 
GA with strings of characters as the chromosomes these slight alterations 
may just be changing some of the characters at random. 

Fitness Proportional Selection 

There are two things necessary in order for the population to evolve to a 
generally better population. A measure uf what is Letter and a meaus by 
which better traits can be propagated to future generations. The measure of 
what is better is covered in the next section. The means of propogating the 
traits of better individuals is in the fitness proportional selection. The idea 
is to give better individuals a greater chance of being selected to propagate 
their genetic material. One standard mechanism for doing this is called 
tournament selection. During tournament selection n individuals are selected 
at random (where parameter n is the size of the tournament), and the best 
of these individuals is chosen for reproduction. Higher n values mean higher 
selective pressure. This algorithm is used for each selected parent for a 
crossover or mutation operation. 

Fitness Function 

A fitness function must be defined for the problem at hand. This function 
takes a chromosome, converts it into a problem solution if necessary, and 
provides a numerical value of how good of a solution it is. In a multi-objective 
genetic algorithm there are several numerical values produced by the fitness 
function. The accuracy of the fitness function in measuring partial success 
will have a dramatic effect on the genetic algorithms ability to evolve good 
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solutions, as it must know which solutions are "closer" to being good in order 
to breed those more often. 

2.1.3 GA Parameters and Settings 

In addition to the design elements there are many parameters and settings 
that can be adjusted to fine tune the search. This section describes parame­
ters which have been applied to the runs in this thesis. Detailed explanations 
of these parameters and how they affect the results of a search are described 
in [22], [10], [16] and [27]. 

Population Size refers to the number of chromosomes in the population 
which is maintained from generation to generation. As each chromo­
some corresponds to one solution this is also the number of solutions 
maintained at each generation. 

Probability of Crossover is the probability of using crossover when gen­
erating individuals for the next generation of the genetic algorithm. In 
the context of this thesis, this is used as the exact proportion of indi­
viduals generated with crossover. During crossover two parent chromo­
somes are selected and two new chromosomes are produced. 

Probability of Mutation is the probability of using mutation when gen­
erating individuals for the next generation of the genetic algorithm. In 
the context of this thesis, as before, this is used as the exact proportion 
of individuals created using mutation. During mutation, one chromo­
some is selected, and a single chromosome is produced by making a 
minor random alteration to it. 

Tournament Size is the size of the tournament used for the tournament 
selection in the GA. The tournament size can be set to any positive 
integer. If set to 1, there will be no selective pressure towards more fit 
individuals making the genetic algorithm essentially perform a random 
search. If set to any value greater than one, the GA will have fitness 
proportional selection in that individuals which are more fit will be 
more likely to be selected. 

Diversity Preservation Factor is the rank value added to an identical 
individual in the population. Genetic algorithms sometimes have a 
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tendency to converge into a state where many individuals are identi­
cal. One way to help prevent this is by penalizing the fitness score of 
duplicate individuals. In the context of this thesis lower fitness scores 
are better, so an identical individual having it's fitness multiplied by 
this factor will be less valuable. 

2.2 Genetic Programming 

Genetic programming is an extension of genetic algorithms. Rather than 
using fixed-length strings of characters as the chromosomes or individuals a 
more complex hierarchical dynamically sized tree structure is used[16][25]. 
Typically these structures represent a computer program in a tree structure. 

Cellular encoding is a technique used in developmental genetic program­
ming whereby these tree structures are interpreted as instructions or op­
erations performed on some simple intial structure. [25] The quality of the 
finished structure is taken to be the fitness of the program. This thesis 
makes use of a developmental genetic programming paradigm in the genetic 
programming form of the system. 

The GP algorithm is identical to the GA algorithm (See section 2.1.1), 
the difference is that since the chromosomes are hierarchical tree structures 
of variable sizes they cannot make use of crossovers designed for fixed-length 
strings. The standard GP crossover function is described in Section 2.2.1. 

2.2.1 GP System Design 

G P Chromosome Representation 

Unlike genetic algorithms, the chromosome in use in genetic programming 
is a variable size tree structure. It is also referred to as a program or in­
dividual. This tree structure consists of non-terminal nodes (those which 
have children, also known as branch nodes) and terminal nodes (those which 
have no children, also known as leaf nodes). These correspond respectively 
to functions that take parameters and terminals which have no parameters. 
For example, in an arithmetic expression an addition function would be a 
non-terminal node that has two children whose values it adds up whereas 
the variable x or value 5 are examples of terminal nodes. 

The function and terminal sets make up the building blocks the genetic 
programming system can utilize in solving the problem. In traditional GP's 
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(a) Parent chromosomes and selected subtrees 

(b) Resulting children chromosomes from swapping selected subtrees 

Figure 2.3: GP crossover 

and in this thesis all of these functions and terminals are capable of operating 
on any node in the tree. There are no types or grammars restricting the 
possible combinations. All functions must ensure closure meaning that it 
must be able to produce a result for every possible set of inputs. For example 
a division function in a GP needs to be protected for division by zero if zero 
is a possible input. 

As the function and terminal sets are the building blocks available for 
solving the problem, they should be capable of solving the problem in a 
direct way. 
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Crossover 

The crossover operation in a genetic program works by selecting a node in 
the trees of the two selected parent chromosomes or programs. There is often 
a configurable ratio which determines how often an interior (non-leaf) node 
is selected and how often a terminal (leaf) node is selected in the tree. Once 
a node has been selected in each parent chromosome, two new chromosomes 
are produced by swapping the subtrees contained under those selected nodes 
in the parents. Figure 2.3 shows an example of this crossover operation. If 
either of the resulting trees exceed the maximum depth or number of nodes 
prescribed by the GP settings then this operation is considered a failure and 
the GP must retry it. 

Mutation 

The standard mutation operation in a GP selects a random node in an in­
dividual and replaces the entire subtree at that node with a new randomly 
created subtree. If the individual's overall maximum depth or number of 
nodes is now greatcr than the prescibed :rnaxi:rnums in the GP scttings then 
this operation is considered a failure and the system must retry it. 

2.2.2 GP Parameters and Settings 

The GP shares all of the parameters and settings of the GA and has a few 
of its own. The shared parameters can be seen in section 2.1.3. In addition 
to the GA parameters, there are parameters concerning the shape and size 
of the trees constructed by the GP. 

Minimum Initial Tree Depth refers to the minimum tree depth permit­
ted in the initial population creation phase. 

Maximum Initial Tree Depth refers to the maximum tree depth permit­
ted in the initial population creation phase. 

Maximum Tree Depth restricts the maximum tree depth of any individ­
ual throughout the entire GP run. 

Maximum Number of Nodes restricts the maximum number of nodes in 
any individual throughout the entire GP run. 
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Probability that Crossover Point is a Branch is used during the crossover 
operation. It determines the probability that the randomly selected 
node during crossover is a branch or non-terminal node. 

Maximum Regenerative Depth for Mutation refers to the maximum 
depth tree created to replace a node during the standard mutation 
operation. 

Maximum Number of Retries restricts the number of times the GP sys­
tem can attempt to successfully breed an individual. During the stan­
dard crossover and mutation operations, there are no guarantees that 
the resulting trees will conform to the prescribed maximum number of 
nodes and tree depths. In the event that the created trees exceed these 
limits, the operation must be attempted again. If the operation fails to 
be successful after this many attempts the source individual is copied 
into the new population. 

2.3 Multi-objective Evaluation 

Often when solving a problem there are many criteria of measurement. Fur­
thermore, these criteria often conflict with each other such that optimizing 
anyone criteria would result in sacrificing the others. The floor plan layout 
problem presented in this thesis is no exception. 

As this is a common problem, there are a variety of ideas by which one 
can attempt to strike a balance between competing objectives. These ideas 
and their benefits and weaknesses will be examined in this section. 

2.3.1 Weighted Sum 

The most common and simplest means of optimizing more than one objective 
is by using a weighted sum calculation. The overall fitness of an individual is 
the summation of the fitnesses of each of its objectives multiplied by weights 
for the objectives. The following formula shows how the final fitness score is 
derived for k objectives with weights WI, W2, ... , Wk. 

fitness = WI * !I + W2 * h + ... + Wk * !k 
The advantage of this method is that it is simple to implement. The 

weights can be adjusted to prioritize important objectives, and the resulting 
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overall fitness values can be compared directly as they all have the same 
scale. The disadvantage is that the specific weighting on the objectives can 
have a great impact on the algorithm's success due to a "user bias". If the 
scale of one objective is too much larger than the rest than this objective is 
likely to be the only one that is optimized. 

2.3.2 Pareto Ranking 

Pareto ranking is often used for problems in which there are many objectives 
that are difficult to weigh against each other. It has been used to find good 
solutions in many multi-objective problem areas[lO). A solution is said to 
dominate another solution if the fitness in each of its objectives is at least 
as good as the other solution, and has a better score in at least one of the 
objectives as described by the following relation. 

AdominatesB =? (\lobj Jobj(A) ::; JObj(B)) A (::lobj JobjA < JobjB) 

A solution is said to be Pareto optimal if it is not dominated by any other 
solution in the population. All Pareto optimal solutions are given a pareto 
rank of O. The remaining non-optimal solutions are then examined, and the 
Pareto optimal solutions among those are given rank 1, and the process is 
repeated until all solutions have been ranked. These ranks are used as a 
single fitness value by which to compare individuals. 

Figure 2.4 shows an example of this ranking. In Figure 2.4(a) the raw 
fitness values in all three objectives of the five individuals are shown. Using 
these objective values one can determine which individual dominates which to 
produce the matrix in Figure 2.4(b) where each row shows which individuals 
the individual of that row dominates. From the dominance matrix, one 
can see that solution A and Care undominated (as columns A and C have 
no X's). These Pareto optimal solutions become rank 0 and are no longer 
considered. Solution D is now undominated becoming rank 1. Solution B, 
no longer dominated by D is now optimal becoming rank 2. Lastly solution 
E is given rank 3. 

The advantage of Pareto ranking is that any potentially ideal solutions 
are Pareto optimal and given rank O. There are no sacrifices made with 
respect to one objective over another. However, this is also a disadvantage. 
A solution that is optimal in one objective but does not satisfy the other 
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Ind Obj 1 Obj 2 Obj 3 
A 3 1 2 
B 5 3 2 
C 6 2 1 
D 5 2 2 
E 7 4 3 
(a) Population fitness values 

A 
B 
C 
D 
E 

ABC D E 
x 

X 

x X 
X 
X 
X 

(b) Dominance matrix 

Ind Rank 
A 0 
B 2 
C 0 
D 1 
E 3 

(c) Pareto ranks 

Figure 2.4: Example of Pareto ranking 
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objectives at all is still Pareto optimaL This is almost guaranteed to occur 
as objectives are often at odds with each other making it easy to optimize one 
without consideration for the other. The main downfall, which is especially 
true with many conflicting objectives, is that populations can easily become 
composed almost entirely of nondominated solutions. In this case, a genetic 
algorithm degrades into a random search as there is no selective pressure 
since no solution can be identified as better than any other. 

2.3.3 Sum of Ranks 

Sum of ranks is a less commonly used means of ranking a population of indi­
viduals with many objectives. It has been examined as a proposed solution 
to the problems with Pareto ranking on highly dimensional problems[6]. The 
idea is to rank each objective separately within the population. The sum of 
these ranks is used to provide an overall rank for the individuaL The sum of 
dominance ranks may also be used in the event of many similar fitness values. 
The dominance rank is the number of individuals which have a better value. 
This thesis uses dominance ranks in the standard ranked sum. 

Figure 2.5 shows an example of this. Figure 2.5(a) shows the raw fit­
ness values for each of the individuals in all objectives. Figure 2.5(b) shows 
the dominance rank within the population of each objective value for each 
individual. These ranks are added together to get the overall rank of each 
individual in the last column. 

The advantage of using the ranked sum fitness evaluation is that there 
is a greater diversity in the resulting ranks over that produced from Pareto 
ranking. Having diversity in the ranks provides greater selective pressure 
towards solutions that are hopefully better overall. The result is that the 
algorithm can converge towards a solution that is good in all fitness objectives 
in cases where Pareto ranking would get stuck with an entire population of 
Pareto optimal solutions which are not necessarily good in all objectives. 

Normalized ranks may be used to lessen the weight of highly similar 
objectives. Figure 2.5(c) shows an example of this. The rank of an individual 
is the number of ranks less than it. When computing the overall rank, each 
objective rank is divided by the number of ranks for that objective. In the 
example figure, objective 3 is not weighted as heavily in the overall rank as 
there are many individuals with the same fitness in this objective score. This 
favours individuals which excel in objectives that are less common to excel 
in. 
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Ind Obj 1 Obj 2 Obj 3 
A 3 1 2 
B 5 3 2 
C 6 2 1 
D 5 2 2 
E 7 4 3 
(a) Population fitness values 

Ind Obj 1 Obj 2 Obj 3 Rank 
A 0 0 1 1 
B 1 3 1 5 
C 3 1 0 4 
D 1 1 1 3 
E 4 4 4 16 

(b) Ranked Objectives 

Ind Obj 1 Obj 2 Obj 3 Rank 
A 0 0 1 0.500 
B 1 2 1 1.500 
C 2 1 0 1.000 
D 1 1 1 1.166 
E 3 3 2 3 

# Ranks 3 3 2 
(c) Normalized Sum of Ranks 

Figure 2.5: Example of Sum of Ranks 
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2.4 Floor planning 

Designing a house for someone can be very tasking. While it may be easy 
enough to create something that is livable, creating a home that someone 
will want to invest a life in is another task altogether. As mentioned before, 
there is no such thing as the perfect house for everyone. The best that can 
be hoped for from an automated system is to give a variety of houses which 
meet general requirements, and hope that one or more of them may serve as 
inspiration for a client's dream house. 

The requirements for a house are not all too explicit. While it is required 
that you be able to escape from the bedrooms in the event of a fire, there 
is no formal requirement that people shouldn't have to walk through the 
bedroom to get to the kitchen. There is no formal requirement that it should 
be easy to find the bathroom. These implicit requirements are derived from 
a combination of western culture and simple usability guidelines. They have 
been generally observed in most modern houses, and the ones that do not 
observe them usually give one that feeling as though something is out of 
place. 

There are spatial requirements for a house. An implicit one is the overall 
footprint, the house must be built to fit within the space allotted for it on a 
lot. As a result of this room shapes and sizes must be designed accordingly 
to fit within the space. There are also various layout requirements, and 
functionality requirements. In an autonomous system, these requirements 
either have to be implicit in the representation such that they are always 
satisfied, or explicitly measured as the quality of the solution. 

It should be noted that these goals often vary from one culture to an­
other, and one time period to another. As this paper is concerned with the 
constraints in the modern western society, the results and some of the goals 
may not coincide with other cultures. Nevertheless, many of these require­
ments could be tailored to other cultures as they are provided as part of the 
problem specification. What makes the requirements of a house particularly 
complex is that not all of the goals are strictly required or impose specific 
constraints on the design. Many of the requirements are flexible, and it is 
these requirements that are often highly subjective. Nevertheless, if only the 
required constraints were satisfied the results would likely not be pleasing. 
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( a) Rectangular (b) Rectilinear ( c) Polygonal (d) Curves 

Figure 2.6: Room shapes 

2.4.1 Spatial requirements 

There are a variety of spatial requirements that must be considered in the 
design of a house. First and perhaps most importantly is the overall footprint 
of the house. The footprint will ultimately define the layout of the house, as 
all of the rooms within the house must fit within the overall footprint. The 
location of the front door can be considered part of the footprint, and will 
be for the purposes of this thesis. This is usually a central point within the 
house as it is quite often necessary to leave the house. Although quite often 
the shape of the footprint is assumed to be rectangular, in practice this is 
not always the case. The number of floors is an equally important factor, 
again defining the overall space and shape of the house. 

Within the house the room shapes and sizes is an important factor to be 
observed. Room shapes may be rectangular, rectilinear, polygonal or curves 
(See Figure 2.6). The size of the rooms factor into the overall shape, and 
functionality of the house. Hirsch[15] identifies deciding the target sizes of 
various rooms in your house as one of the primary discussions an architect 
has with their clients. More than specific sizes there are also implicit social 
norms such as a kitchen being larger than a bathroom. It is not simply a 
matter of looks, it must have room for a fridge, a stove, and a sink, and allow 
one or two people to easily maneuver through it in order to cook meals. A 
bathroom on the other hand only houses one person at a time, and may only 
requires a toilet and a sink. These spacial requirements can easily be deduced 
from existing houses as they have been observed in the design of virtually all 
modern 'houses in the western society. 

It can be observed that while people often specify exact sizes that they 
wish the rooms in their house to be, these are often only suggestions. Typi­
cally the size of the house limits the size of the rooms within it, and a floor 
plan is only unpleasing if rooms do not have space for the activities and items 
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they will host. While there may not be an explicit maximum size for any 
room, having too much space will also tend to look awkward. Furthermore, 
we expect similar ratios of magnitudes; for example, houses that have large 
bathrooms often have even larger bedrooms. Hirsch states, "Each space or 
room needs to be the correct and appropriate size for its function and 'feel. ' 
That means it should not be too large or too small. Room design is not a 
case where bigger is better" [15]. 

2.4.2 Layout requirements 

There are many requirements in terms of the layout of the house. Connec­
tivity is a firm implicit requirement in a house design. Every room must be 
accessible, via some route. While a completely inaccessible room may have 
its uses as a safe room it is certainly not the norm to have such a room. Ad­
ditionally it has been observed that a room for public use should not require 
traveling through a private room to get to it[21]. For example, it would not 
be desirable to have to walk through the bathroom to get to the living room. 

Various path lengths throughout the layout will play an important role 
in the quality of the house. For example, the distance required to get to 
a bathroom from any social room would be an important one to minimize 
in general. Similarly, a dining room (or other room which can be used for 
eating) should be very close, if not adjacent to, the kitchen. Beyond this, 
many people discuss with their architects certain rooms that they may feel 
it important to have adjacent in the floor plan. For example, it may be 
important for the kitchen to overlook the playroom so that a single parent 
can cook dinner while keeping an eye on their children. 

The number of adjacent rooms to a single room typically cannot exceed 
four, however even four adjacent rooms tends to be too crowded for social 
rooms. Having limited numbers of rooms connected to others while min­
imizing path lengths and being able to completely access the house make 
designing the layout a rather complex optimization problem. 

2.4.3 Functionality requirements 

A functional living space requires certain basic rooms for its inhabitants. 
At the very least, it should have a kitchen, a bathroom, a bedroom, and a 
living room. This is quite evident in the construction of modern apartment 
buildings which have exactly these rooms. When scaling up, there tends to 
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be a desirable ratio of bathrooms to bedrooms, or more directly to number 
of inhabitants. These ratios are not defined anywhere, but rather implicitly 
derived from the usage of a house. For example, quite often reducing the 
distance to the bathrooms necessitates the addition of an extra bathroom. 

This is also often one of the key discussion points identified by Hirsch[15] 
when an architect talks to his or her clients. They discuss with the client and 
create a list of rooms the client would like to have asking key questions such as 
whether the house needs works spaces, private offices or project rooms. Some 
people may find it important for there to be a designated master bedroom 
with it's own bathroom large enough to have "his-and-hers" vanity and sink 
areas. This list of rooms is a key requirement that an architect builds with 
their client before setting off to design their home. 



Chapter 3 

Literature Review of Floor 
Plan Design 

3.1 Building Analysis 

There are several ways to go about designing a building, although most 
strategies can be categorized by where they start in the design process. Some 
strategies begin with the exterior of a building, and it follows naturally that 
the interior must be designed to fit within the specified space. Other strate­
gies construct an interior and it is this space that defines the shape of the 
exterior. 

Hillier and Hanson[14] made some of the first observations in decoding 
social spaces. They observe that the connectivity graph between rooms is 
an essential component in analyzing the social use of space within a house. 
Furthermore, they define a "Justified Gamma Map" as follows. The depth of 
each room is determined by the number of steps needed to reach each room 
from outside. Then the rooms are placed in horizontal lines at a height rela­
tive to their depth. Lines are drawn between connected rooms. An example 
of a justified gamma map construction is shown in Figure 3.1. It is suggested 
that such a graph can decipher the underlying structure of buildings and 
show how they are similar or different. They also suggest that such a graph 
could be used in generating social spaces, however their focus was only on 
the analysis of social spaces. 

The fac;ade of a building is the first thing one sees, and it is the only 
thing that most people will see. The fac;ade of a building gives the first 

23 
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( a) Constructing gamma map (b) Resulting justified 
breadth-first from entrance gamma map 

Figure 3.1: Justified Gamma Map 

impression of the building, and as such there is no denying the importance 
in its design. Algorithms which construct building fac;ades have been studied 
for many years. There have been methods which target efficient generation 
of fa<;ades and methods which attempt to design quality fa<;ades but perhaps 
require user input to facilitate their process. 

Greuter et al.[Il] describe a method in which "good looking" building 
facades are quickly generated. The algorithm begins at the roof of a building. 
First, a regular polygon is chosen and centered around one of the vertices of 
the current shape. The combined shape is then extruded downwards several 
floors. This process repeats until the ground floor is reached. The end result 
is that skyscraper style buildings are created very quickly. Mtilleret al.[24] 
describe a shape grammar by which multitudes of buildings can be evolved, 
resembling modern architecture through the use of well crafted generation 
rules. Through the intelligent combination of transformation rules in a shape 
grammar, a plot area is extruded and extended into some architectural form 
remeniscent of the intended era. Nevertheless, the end results are building 
exteriors and have not taken into account the ability to function as a social 
space. Furthermore, the rules necessary to generate these buildings need to 
be created by hand and require great attention to detail. 

The problem of floor plan design is independent of that of fa<;ade creation 
with the exception that the overall shape must match that of the outside of 
the floor plan. 
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(a) Sliceable floor plan (b) A floor plan that is not sliceable 

Figure 3.2: Sliceable and unsliceable floorplans 

3.2 Floorplanning in VLSI 

Very Large Scale Integration (VLSI) is a process of designing very large 
integrated circuits through the combination of thousands of transistors into 
a single chip which can be integrated into other designs. Floor planning is 
one of the first steps involved in VLSI. Module areas and interconnections 
are planned out usually with two goals in mind; reducing overall area and 
interconnection distances between related modules. Research has been done 
in automation of VLSI floor planning which can be compared to architectural 
floor plan design. 

A slice able floorplan is a floorplan that can be constructed by recusively 
subdividing (slicing) an initial single rectangular block[8]. Figure 3.2(a) 
shows an example of a floorplan that is sliceable. If one slices along the 
lines in the order of the numbers they will obtain that complete layout. 
Figure 3.2(b) on the other hand is not sliceable. Sliceable fioorplans are con­
venient as they can be represented in the form of a tree structure of divisions. 
Also a number of NP-hard problems have polynomial time solutions when 
considering the set of slice able floorplans[28]. 

Wong and Liu[33] use simulated annealing with a reverse polish notation 
representing the set of slices performed to divide the initial rectangle. By 
using simulated annealing they are able to optimize both overall area and 
interconnection distance at the same time. Wong and Liu also stress the 
importance of a using a representation that does not introduce too much 
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bias. Sutanthavibul et al. [30] demonstrate a linear programming solution 
which builds up a floor plan by adding a limited number of modules at a 
time. The number of constraints increases too drastically to plan the entire 
floorplan at once. 

Many have successfully applied evolutionary computation to the design of 
VLSI floorplans. Lienig and Cohoon[18] use genetic algorithms with genetic 
operators incorporating expert knowledge to produce near-optimal designs 
for larger problems. Valenzuela and Wang[32] use a genetic algorithm with 
a specialized slicing tree encoding to produce area optimized floorplan so­
lutions. Tang and Alvin[31] use a genetic algorithm with an ordered tree 
representation, introduced by Guo et al.[12], to reduce the search space size 
which consistently produces better results than the deterministic algorithm 
on which it is based. The literature suggests that EC algorithms have been 
successful in VLSI with careful chromosome design and modified crossover 
operators. However, the problem requirements and goals do not directly 
coincide with those in architectural floorplanning. 

3.3 Non-Evolutionary Automated Design of 
Floor Plans 

Hahn et al.[13] demonstrate a method of generating building interiors in 
realtime as they are explored. The generation is a procedural algorithm 
that follows the use of 11 simple rules to generate spaces reminiscent of 
office buildings consisting of hallways and rooms. Tutenel et al.[4] use a 
hierarchical rule-based placement algorithm to create furnished living spaces 
with a variety of features such as objects needing clearance around them or 
those that require a view of the TV. They use a heuristic value calculation 
to assign a best location for each feature at a time. Bruls et al. [5] propose 
a visual representation for trees called squarified treemaps which Marson 
and Musse[19] use to quickly generate balanced floor plans. Their method 
converts internal walls into hallways in order to ensure proper connectivity 
in the resulting house. 

Mitchell et al. [23] present an optimization version for small instances of 
a layout problem. The problem is to arrange rectilinear rooms in such a 
way that maximizes the number of desired adjacencies. They enumerate all 
solutions which ensure those adjacencies, after which dimension and area 
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(a) Constructed dimensionless layout. (b) Dimensions adjusted according to 
room types. 

Figure 3.3: Transformation of dimensionless representation[23] 

constraints may be introduced. The rooms are layed out on a grid whose 
rows and columns may be resized to satisfy the spatial constraints as shown 
in Figure 3.3. Finding the ideal sizes becomes a problem of satisfying a set of 
variables for various formulas. Due to the exhaustive search being employed, 
they suggest an upper limit on the problem size of 8 rooms. 

Martin[21] applies a multi-phase constructive algorithm with an emphasis 
on a fast approximate solution that can quickly construct a batch of houses. 
He uses a procedural algorithm tuned with various statistics concerning spa­
tial constraints, and common room adjacencies. In the first phase, a graph 
of public rooms is constructed. The second phase adds on private rooms and 
"sticky" rooms such as linen closets. The third phase places the constructed 
graph within the floor space, and then the fourth phase expands the walls 
of the rooms using a pressure simulation. The construction process is a de­
terministic greedy algorithm that attempts to maximize adherence to four 
measured statistics on the house. 

3.4 Evolutionary Automated Design of Floor 
Plans 

Schnier and Gero[29] use a genetic program with a dynamic set of primitive 
functions in order to evolve designs similar to a given plan. As useful features 
are identified they are added to the function set similar to the creation of 
ADF's[17]. In order to value diversity individuals are only thrown out if they 
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do not match the plan in any way. 
Doulgerakis[9] compares the problem of creating a social space to the 

Facilities Layout Problem (FLP). The FLP attempts to find the ideal allo­
cation of activities addressing the connectivity issue. In its simplest form, 
it is an assignment problem of activities to existing spaces. The goal is to 
minimize distances between related activites. In its most complicated form, 
the FLP aims to construct the layout as well, addressing the spatial require­
ments. Doulgerakis considers the most complicated form, using a genetic 
programming algorithm to first construct the space using division of an ini­
tial rectangle. Activity assignment is accomplished by a procedural algorithm 
followed by the evaluation of of the space. He also considers polygonal spaces 
(See Figure 2.6), by allowing angled splits of rectangles. 



Chapter 4 

System Design 

The house evolving system is comprised of a few house construction strate­
gies, with an identical evaluation in order to fairly compare between them. 
Two variations on a genetic algorithm and a genetic programming solution 
will be considered. Common to two of these strategies is a procedural activity 
assignment algorithm inspired by Martin[21] and Doulgerakis[9]. 

4.1 System Operation 

The basic operation of the system is outlined in Figure 4.1. The genetic 
algorithm or genetic program produces some chromosomes. Those chromo­
somes are converted to a physical floor plan as shown in Section 4.2. If the 
floor plan does not have room types, these are procedurally assigned using 
the algorithm described in Section 4.3. The resulting floor plan is evaluated 
using the fitness evaluation described in Section 4.5. The fitness scores are 
then given to the multi-objective evaluation scheme to generate single scores 
for use by the GA/GP to select individuals for reproduction in the next 
generation. 

4.2 Chromosome Representation 

There are two representations used for the creation of floor layout plans. One 
is a fixed-size representation that facilitates the use of a genetic algorithm 
in the evolution of a floor plan. The other is a tree structured divisive 
representation to be created by a genetic program. 

29 
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GA/GP 

Chromosomes 

Transformation 
(Genotype to phenotype) 

Assign Room Types 

No 

Single score 

Multi-Objective 
Evaluation 

Objective Scores 

Fitness Evaluation 

Figure 4.1: Flow of system operation 
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Figure 4.2: Chromosome mapping to phenotype 

4.2.1 GA 

The system will use a grid similar to Mitchell et al.[23], whose size will be 
predetermined. If the house exterior is not rectangular the grid will be fit to 
the bounding rectangle of the exterior. The genotype representing a house 
configuration will contain the following. Figure 4.2 shows how the genotype 
maps to the floor layout phenotype. In this figure, hI, h2' ... , hn correspond 
to the heights of rows 1 through n. The values WI, W2, ... , Wn correspond 
respectively to the widths of columns 1 through n in the grid. Lastly, Xi,j 

corresponds to the room type and cell number of the cell in row i, column j. 
The width and height of the grid rows and columns can be resized and hence 
the representation is capable of describing virtually any rectilinear house 
given a grid of a high enough dimensionality. 

• The size of each of the grid's rows and columns 

• The room types of each location of the grid on all of the floors. If 
the procedural room assignment is being used than this type is either 
public, private, or no recommended room type. 

• A cell number which determines which rooms this one will join together 
with. This allows for identical room types to not be later merged. 

The transformation from genotype to phenotype proceeds by combining 
adjacent rooms of the same cell number into a single room, removing walls 
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Figure 4.3: Edge removal 
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between those grid cells as shown in Figure 4.3. If procedural assignment is 
being used the types will be public, private and no recommendation. The 
overall room type is given by a tally of the room types of all cells in each 
combined group. The final room type can be assigned using the procedural 
algorithm outlined in Section 4.3 if this method is being used. 

Crossover between two individals is slightly different than a standard GA 
crossover. Given that the representation is in a table or grid, a rectangular 
selection is made by selecting two cell locations at random. Using this selec­
tion rectangle, the information from each parent is exchanged to create the 
children as shown in Figure 4.4 

4.2.2 GP 

The GP evolves tree-shaped individuals whose types specify their structure. 
Wong and Liu[33] use reverse polish representation to construct sliceable 
floor plans through repeated division of an initial rectangle. Doulgerakis[9] 
uses GP to create floor plans by the same recursive subdivision, except that 
the cuts may be angled. 

A developmental genetic program is used as one possible layout strategy. 
The G P embryo begins with the bounding box of the exterior house rectan­
gle! and modifies it with the functions in the available function set listed in 
Table 4.1. The Divide functions will split the current block into 2 or 3 blocks 
and further processing can be done on these sub-blocks. The relative sizes 
of the new blocks are given by the arguments of the split operator. Alter­
nately, the Assign function will automatically split on the longer of the two 
dimensions such that more regular rooms can be created. The terminals in 
the tree can be made to determine whether a room type is public or private. 

Figure 4.5 shows an example of how a program tree is mapped to a floor 
layout. The process starts with a rectangle the size of the entire house. The 
first operation in the tree is a horizontal split, which splits the rectangle and 
uses the first subtree in the tree to construct the new smaller rectangle on 
the left. The second subtree is used to construct the other rectangle. The 
left rectangle is split vertically into three rectangles in the second step, and 
the first and the third of these rectangles are subsequently split horizontally 
in steps 3 and 4. Finally the large rectangle on the right is split vertically to 
make two regions. 

lOr bounding box of a polygonal shape 
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Figure 4.4: Example of crossover with GA house chromosomes 
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Function 
H-Divide 

V-Divide 

A-Divide 

Assign 

Table 4.1: G P Function and Terminal Set 

# children # arguments Action 
2 - 3 2 - 3 Divide the current rectangle 

horizontally into n regions 
with specified proportions. 

2 - 3 2 - 3 Divide the current rectan­
gle vertically into n regions 
with specified proportions. 

2 - 3 2 - 3 Divide the current rectangle 
along its longest dimension 
(height or width) into n re­
gions with specified propor­
tions. 

o 1 Assign the specified room 
type (or public/private des­
ignation) to the current 
rectangle. 
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Following the creation of the space, the procedural algorithm outlined in 
Section 4.3 can be used to assign the actual activity spaces. 

4.3 Procedural Activity Assignment 

Martin and Doulgerakis both use procedural algorithms to define their room 
types. Whereas Martin's algorithm begins with a graph of rooms defining 
their connectivity, the rooms are "size-less" and so this is not a considera­
tion during assignment. Doulgerakis uses a procedural algorithm to assign 
types after the room positions and sizes have been fixed. This system uses 
a strategy more like that of Doulgerakis. The room positions are fixed and 
assignment takes place afterwards. 

Martin[21] uses a procedural algorithm for assigning room activities after 
a rough diagram of the floor layout is known. He shows promising results 
from the application of this algorithm to fairly random graphs. The algo­
rithm considers basic functionality requirements, as well as respecting the 
reachability requirement that a person should not have to travel through 
private rooms to get to public rooms. The sizes and ratios are worked out 
afterwards. 

Doulgerakis[9] uses a similar procedural algorithm in his thesis to assign 
room responsibilities. The algorithm considers each possible room type by 
evaluating several characteristics. These characteristics include the minimum 
and maximum areas for the room types, the desired ratio, the adjacent rooms 
and their position on a justified gamma map. The algorithm uses a greedy 
algorithm to choose the room type that maximizes this evaluated criteria for 
each assignment and proceeds until there are no more rooms to assign. 

The procedural assignment used for this thesis will borrow some ideas 
from both Martin and Doulgerakis. Each room will be assigned a type in 
turn. The process begins with the first room connected to the front door, 
which will be given a type that is acceptable to be connected to an entrance. 
The algorithm then examines all of the adjacent rooms and determines a 
list of types which each of the adjacent rooms can be. Each of the adjacent 
rooms are added to a queue to have their room types assigned in breadth 
first order. 

To assign a room type when there are multiple possible types the procedu­
ral algorithm considers the following criteria, and chooses the "best" choice 
via a weighted evaluation of the following criteria. The exact penalties and 
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bonuses are detailed in Appendix A. 

1. The room's size is compared to other rooms which have already been 
assigned to see if the size relations defined in the layout file still hold. 
If not, this room type is given a strong penalty. 

2. If the room has too many twists2 , it will receive a strong recommen­
dation to become a certain room type as specified by the requirements 
(typically a hallway). 

3. If this type does not require a window, apply a penalty to rooms on 
the outer wall as they are best saved for window rooms. 

4. If the chromosome suggests that the room should be a private / public 
type and the type is the opposite then apply a penalty. 

5. If the room does not meet the minimum area or width or exceeds the 
maximum width or area then a penalty is applied. 

6. If there is a desired width or height add a penalty for how far away 
from the desired values the room size is. 

7. If the room has a ratio outside of the acceptible minimum and maxi­
mum ratio a penalty is applied. 

8. If this room puts an adjacent room over the maximum number of ad­
jacent rooms of this type then penalize it. 

9. Check if this room helps meet the required number of rooms in the 
house. If so, give it a small bonus. The reason for a small bonus is -
that there will probably be many opportunities to place this room and 
it would not do well to place it as early as possible all the time. 

10. Similarly, if this room pushes the house over the maximum number of 
this room type then penalize it. 

The algorithm proceeds to assign room types unless it gets into a situation 
in which there are no possible types to assign. In such a case it backtracks 
and moves on to the next most valuable of the previous room assignment. 

2Twists refers to the number of overlapping rectangles it takes to completely fill in the 
room. 
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4.4 Requirements Description 

The requirements of a house are given for each problem. Since there is no 
inherent meaning in saying that a room is of a certain type, this meaning is 
imbued by the requirements given with the problem. The possible require­
ments for each type of room are described in this section. 

Type refers to whether the room is a public or private room. This deter­
mines whether or not people normally travel through this room to get 
to other rooms. 

Amount refers to the recommended minimum and/or maximum number of 
each type of room. 

Twists refers to the minimum or maximum number of twists in the specified 
room type. 

Width refers to the minimum width across any part of the room. It can 
have a recommended minimum or maximum size. 

Area refers to the minimum, maximum or recommended area in the room. 

Ratio refers to the maximum ratio of length to depth of any section of the 
room. It can have a recommended minimum and maximum value. 

Windows refers to whether the room should be on an external wall so that 
it may have windows to let light in. 

Access refers to the rooms which people in this room should be able to access 
in a small number of steps. The nearest access means that occupants 
only need to access any of the rooms of this type so the nearest one 
will do (for example a bathroom where anyone will do). 

Bigger refers to rooms which this room should be bigger than. This is used 
to define size relations where it makes more sense than defining absolute 
sizes. 
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4.5 Fitness Evaluation 

4.5.1 Calculations 

The calculation of an individual's fitness falls into several categories relating 
to its adherence to the specifications in the requirements (See section 4.4). 

Functional measures the building's adherence to the living requirements. 
It is the sum of the number of missing rooms (room types where the 
minimum number has not yet been met) and the number of rooms in 
excess of the maximum numbers allowed. 

Geometric measures the buildings closeness to idealized geometric mea­
surements. The geometric score is the summation of several values. 
For each room where the area is greater or less than the maximum or 
minimum allowed area the difference in area is added to the geometric 
score. For each room where the minimum width across any rectangular 
region is less than the minimum or greater than the maximum required 
width, the squared difference is added to the geometric score. For each 
room, there is a list of rooms that the examined room should be bigger 
than. If it is smaller (in terms of area) than any of those room types, 
then for each one the amount it is smaller by is added to geometric 
score. 

Connectivity measures how well the building satisfies certain proximities 
as specified by the requirements. A maximum distance value is set to be 
the number of rooms in the building as this is the limit on the furthest 
distance one would have to travel to get anywhere. If a room type has 
adjacency requirements but does not exist, the maximum distance score 
is given such that a house without certain room types is not rewarded 
for it. For all types that exist the geometric scores are scaled by the the 
inverse of the number of rooms of that type. This way a house is not 
penalized for having more rooms of a certain type, rather the average 
of the connectivity scores is computed. For each requirement to access 
the nearest of a room type from all other rooms, the distance to the 
nearest of each room type is averaged for all rooms and added to the 
score. For each requirement to access a room type from some type, the 
distance to the nearest room is calculated and added to the score. 
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Reachable is a measurement of how shallow and wide the graph of the 
building is. It measures the average number of rooms one must travel 
through from the entrance to reach any room in the building. It is 
desirable to keep this number low so that the building is not overly 
complicated and can be easily and efficiently traversed. If it is not 
possible to reach a certain room a value of 30 is added for that room. 

Ratio measures how close the rooms in the building are to their recom­
mended ratio requirements. This ensures that long and skinny rooms 
will be penalized when this is not desired. Ratio is measured in terms 
of the average of the larger l~~~~~ measurement for each rectangular 
region in the room. For each room with a ratio below the minimum 
or above the maximum allowed, the difference in ratio is added to this 
objective as a penalty in score. 

Windows measures how well the window requirements of various room 
types are satisfied. The objective score is simply the number of rooms 
that should have windows but cannot because they are internal within 
the building structure. 

4.6 Fixed Rooms 

To allow creation of a building with several floors without modifying the chro­
mosome or increasing the complexity in search space, the following strategy 
is used. A particular room within the floor plan is fixed in position, size and 
room type. By having a fixed room in the evolved plans any plan for the 
bottom floor can be combined with any plan for an upper floor to create the 
building. 

Specifically, fixing a room in position is supported in the GA represen­
tation as shown in Figure 4.6. The four width and height constraints are 
guaranteed by adjusting the widths and heights proportionally. There is no 
obvious way to fix a room within the GP representation, so this was not 
implemented. 

Not only does evolving separate floors separately reduce the size of the 
search space, but it also allows for a separate requirement specification for 
each floor. It's not uncommon to have very different needs on certain floors. 
It's also not uncommon for one floor plan to be repeated several times in 
apartment buildings or office buildings. 
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Figure 4.7: Cutting a polygonal shape out 

4.7 Polygonal Layouts 

Often it is necessary to design a house to fit a polygonal boundary. This may 
be due to spatial limitations or for aesthetic reasons. The strategy used to 
construct non-rectangular houses within this thesis is to evolve a house to fit 
the bounding box of the outer shape required and then clip it to the required 
shape. 

Figure 4.7 shows an example of how a polygonal floor plan is created out 
of a rectangular one. This is done as a part of the construction process such 
that removed adjacencies and rooms can be properly accounted for in the 
fitness of the result. This means that if the clipping removes an important 
room it will be penalized for that in the resulting fitness. 

4.8 Diversity Preservation 

A common problem with converging population based evolutionary algo­
rithms is that the entire population may converge onto a single or a few 
good results. In order to avoid this, a diversity preservation strategy is used 
in this system. After ranking individuals (or calculated a weighted sum), the 
population of individuals is scanned for duplicates and the final score or rank 
of each duplicate individual is given a penalty of diversity· i where diversity 
is the diversity preservation factor and i is how many times this individual 
has already been seen earlier in the population. 



Chapter 5 

Evolution of a Basic Floor Plan 

This chapter explores the experimentation of evolutionary parameters and 
problem specification with respect to their effects on the resulting solutions. 
Section 5.1 outlines several experiments measuring the relative success of 
various evolutionary algorithms, parameters, and multi-objective ranking 
schemes. Section 5.2 considers what is necessary in the specification of re­
quirements for a house in order for its suitability as a house to be successfully 
captured by the objective functions and satisfactory houses are evolved. 

5.1 Evolutionary Parameters 

There are a large variety of evolutionary parameters and methods with which 
to evolve floor plans. A few fundamental experiments are carried out first 
in order to tune some of the various parameters to be used in the following 
searches. These experiments will test the effectiveness of various parameters 
in a basic floor plan. 

The floor plan to test various parameters is a simple bungalow style home. 
It requires one to two bathrooms, at least two bedrooms, one with a master 
bathroom, a kitchen, a dining room, and a social room. The entire house is 
built in a 40 by 30 foot rectangle. The fitness is measured by the satisfaction 
of having the above rules as well as the rooms it creates satisfying certain 
constraints themselves. The default evolutionary parameters are shown in 
Table 5.1. 30 runs are performed such that a one-tailed Z-test may be used 
to show the confidence in one experiment outperforming another. The house 
parameters are shown as they exist in the program in Listing 5.1. 
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Table 5.1: Evolutionary Algorithm Parameters 

Parameter 
# of runs 
Method 
Dimensions 
Population 
Generations 
Crossover 
Mutation 
Reset if stalled 
Selection Method 
Tournament Size 
Assignment 
Diversity Factor 
Ranking Method 

Value 
30 

GA 
40' x 30' 

500 
200 
80% 
20% 

10 generations 
Tournament 

3 
Procedural 

100 
Diverse Normalized Ranked Sum 
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Listing 5.1: House requirements for evolutionary experiments 
Outside 
{ 

type: public; 
attach: Social Room, Hallway; 

} 

Social Room 
{ 

} 

type: public; 
minimum: 1; 
maximum: 1; 
attach: Bathroom, Kitchen, Dining Room, Bedroom, Hallway, 

Social Room; 
min-width: 7; 
min-area: 150; 
max-ratio: 1.5; 
bigger-than: Bedroom, Kitchen, Dining Room; 

Bathroom { 

} 

type: private; 
minimum: 1; 
maximum: 2; 
min-width: 5; 
min-area: 35; 
max-ratio: 1.5; 
bigger-than: Closet; 

width: 6; 
area: 54; 

Master Bathroom { 
type: private; 
minimum: 1; 
maximum: 1; 
min-width: 5; 
min-area: 35; 
max-ratio: 1.5; 

} 

bigger-than: Bathroom, Closet; 

width: 7; 
area: 60; 
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Kitchen { 

} 

type: public; 
minimum: 1; 
maximum: 1; 
windows: yes; 
attach: Dining Room(O-l), Social Room; 
min-width: 8; 
min-area: 100; 
max-ratio: 1.5; 
bigger -than: Bedroom, Bathroom; 

access: Dining Room; 
area: 120; 

Dining Room { 
type: public; 
minimum: 1; 
maximum: 1; 

} 

attach: Social Room, Kitchen; 
min-width: 9; 
min-area: 100; 
max-ratio: 1.5; 
bigger -than: Bedroom; 

access-nearest: Bathroom; 
area: 120; 

Bedroom { 

} 

type: private; 
minimum: 2; 
windows: yes; 
attach: Master Bathroom(O-l), Closet (0-1); 
min-width : 7; 
min-area: 80; 
max-ratio: 1.6; 
bigger-than: Bathroom, Closet; 

access -nearest: Bathroom; 
area: 150; 

Hallway { 
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} 

type: public; 
minimum: 0; 
maximum: 1; 
min-ratio: 2; 
attach: Bedroom , Bathroom, Social Room, Dining Room, Kitchen ; 
twists: 3 ; 

Closet{ 

} 

type: private; 
minimum: 0; 
max-ratio: 3; 

5.1.1 Random Search Vs Evolutionary Pressure 

48 

The first test, and probably the most important, is to ensure that the evo­
lutionary pressure is making a difference in the evolution. A simple test is 
to reduce the tournament size to 1. When doing tournament selection, k 
individuals are selected and the most fit of those k individuals IS the winner. 
If k = 1, then a random individual is selected as the winner. This means 
that the fitness of the individual is irrelevant in its selection for breeding and 
is equivalent to performing a random search. 

Figure 5.1 shows the results of this test. There is a clear cut difference in 
the population average although this is to be expected with a random search. 
Given that it is randomly creating individuals, the average individual will 
have a poor fitness. The directed search shows that evolutionary pressure 
and the GA crossover are working to combine good individuals and obtain 
other good individuals. 

Figure 5.2 shows the average of the best individuals in each generation for 
each of the runs. The first thing to note is the difference in the scales of the 
axes. The random search has much higher (worse) fitness values in the best 
individual than the directed search. Additionally it can be observed that 
while there is some improvement in the best individual at the start of the 
directed search, the random search doesn't show any sign of improvement. 
Furthermore, the best scores in the random search are much worse than the 
directed search. 

Table 5.2 shows the average best fitness over 30 runs of the experiment 
using a random and a directed search. The confidence that the directed 
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Table 5.2: Confidence in Directed Search Vs. Random Search 

Average Best Fitness 
Objective Connect. Geom. Funct. Reach. Ratio Windows 
Random 8.0 260.3 0.1667 2.034 4.768 0.03333 
Directed 7.0 72.06 0.0 1.904 1.063 0.0 

Confidence 95.4% 99.2% 99.3% 99.9% 99.9% 

search is better (lower) than the random search is calculated using a one­
tailed Z-test. As can be seen, the directed search achieves a better score 
across all of the objectives with a confidence of at least 84%. The window 
objective score is a fairly easy objective to satisfy which is why the random 
search was able to do relatively well. 

5.1.2 Genetic Algorithm Vs Genetic Programming 

One of the major focuses of this research is to compare a fixed size genetic 
algorithm representation of a house with a dynamically sized tree-based di­
visive representation of a house. The results can be compared via fitness 
graphs to see how they work in an evolutionary context. 

Figure 5.3 shows the comparison of the genetic algorithm to the genetic 
program method. The GA shows overall convergence in the population to­
wards better fitness values whereas the GP fails to advance much beyond its 
initial exploration. The most likely explanation is that the crossover operator 
in the genetic program is destructive with respect to the "good" aspects of 
the two parent individuals it is trying to preserve. When the GP inserts a 
branch from one individual into another it may generate a very different floor 
layout depending on where in that other individual the branch is inserted. 

Table 5.3 shows a statistical analysis comparing the results from the ge­
netic programming approach to the genetic algorithm. As can be seen, the 
genetic algorithm outperforms the GP in nearly all of the fitness objective 
values with a high degree of confidence. Both algorithms are able to com­
pletely optimize the Window objective further showing that it is an easy one 
to satisfy. 
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Table 5.3: Confidence in Genetic Algorithm V s. Genetic Programming ap­
proach 

Average best fitness 
Objective Connect. Geom. Funct. Reach. Ratio Windows 
GA 7.0 72.06 0.0 1.904 1.063 0.0 
GP 9.333 245.2 0.4667 1.866 2.299 0.0 

Confidence 99.9% 99.4% 99.9% 94.4% 96.0% 

Table 5.4: Confidence in Procedural Assignment Vs. Evolutionary 

Average best fitness 
Objective Connect. Geom. Funct. Reach. Ratio Windows 
Procedural 7.0 72.06 0.0 1.904 1.063 0.0 
Evolutionary 7.417 3.584 0.0 54.43 0.6798 0.0 

Confidence 99.2% 99.9% 

5.1.3 Procedural Vs Evolutionary Assignment 

Two assignment strategies have been outlined in this thesis. A procedural 
one which basically delegates the responsibility of room assignment to be 
part of the transformation of genotype to phenotype and an evolutionary 
one in which the room types are part of the genotype. The plans produced 
by the procedural assignment have less flexibility and a much smaller search 
space which can drastically improve the scalability of such a system. 

Figure 5.4 shows a comparison of the average best fitness .using a proce­
dural and an evolutionary assignment strategy. Table 5.4 shows the average 
best fitnesses. The evolutionary algorithm outperforms the procedural algo­
rithm in the Geometric and Ratio scores, however the procedural algorithm 
performs far better in terms of Reachability which is much more important 
for the overall functionality of the house. Figure 5.5 shows the kind of dis­
connected houses that the evolutionary assignment algorithm produces and 
how this is reflected in the reachable objective. 
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5.1.4 Comparison of Multi-Objective Ranking Strate-. gles 

There are many conflicting and even independent objectives to be optimized 
in the creation of a floor plan. As discussed earlier there are a variety of 
means by which to attempt to optimize them. Pareto ranking has long been 
the standard approach to multiobjective optimization problems, but it does 
not scale well with many objectives. In order to deal with a greater number 
of objectives ranked sum has been implemented, but with the widespread 
use of pareto ranking it is prudent to compare the two and see if it improves 
the results. Ranked sum is used to select a single best individual from the 
population of rank O's when using Pareto ranking. 

A common problem with either ranking method is convergence and so 
each shall be tested with and without a diversity preservation strategy. The 
diversity preservation is that in the event that two individuals are identical, 
one will receive a penalty to its overall rank as described in Section 4.8. 
In this manner the algorithm can be prevented from converging onto a few 
results. 

Table 5.5 shows a statical analysis of all of the multi-objective strategies. 
D and N stand for diverse and normalized respectively. The diverse exper­
iments have a diversity factor of 100 whereas the others have no penalty 
for identical individuals in the population. In general, using both diversity 
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Table 5.5: Statistical comparison of multi-objective ranking strategies 
D = Diversity preservation, N = Normalized 

Average best fitness 
Objective Connect. Geom. Funet. Reach. Ratio Windows 
Weighted 7.333 0.0 0.1667 1.827 0.0020 0.0 
Pareto 7.333 13.97 0.0333 1.9 1.462 0.0 
Ranked 7.0 0.0 0.0 1.875 0.2073 0.0 
N. Rank. 7.0 0.0 0.0 1.879 0.0 0.0 
D. Weighted 7.533 0.0 0.1333 1.789 0.2233 0.0 
D. Pareto 7.0 72.06 0.0 1.904 1.063 0.0 
D. Ranked 7.0 0.0 0.0 1.882 0.2016 0.0 
D. N. Ranked 7.0 0.0 0.0 1.877 0.0 0.0 

Confidence in Diverse Normalized Ranked over other methods: 
Objective Connect. Geom. Funet. Reach. Ratio Windows 
Weighted 99.3% 99.3% 84.6% 
Pareto 84.6% 90.9% 84.6% 94.2% 99.9% 
Ranked 92.8% 
N. Rank. 
D. Weighted 
D. Pareto 
D. Ranked 

99.9% 98.4% 
99.5% 96.7% 

88.9% 

94.9% 
99.9% 
95.5% 
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Figure 5.6: Number of identical individuals with and without diversity preser­
vation. 

preservation and normalized ranking produces objective values that are as 
good if not better than all other tested strategies. There are a few exceptions 
to this, however in these cases other fitness values were sacrificed. 

5.1.5 Diversity Preservation 

The use of diversity preservation strategies was tested in conjunction with 
multi-objective ranking strategies in the last step, however in this section 
the diversity preservation factor is tested. In order to get an idea of how 
diverse the population is, the numbers of unique individuals, ranks and the 
distribution of these ranks are measured throughout several experiments over 
30 runs. 

Figure 5.6 shows the number of identical houses in the population on a 
random run with various levels of diversity preservation. Without diversity 
preservation, when the system converges it tends to fill the population with 
many copies of the same house. Once diversity preservation is used it does 
not create nearly as many identical individuals as they cannot persist through 
the generations. This also means far fewer identical houses in the resulting 
population so that the user has a variety to choose from. 
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Figure 5.7: Effect of weighting on average of best fitnesses 

5.1.6 Objective Weighting 

58 

Using a multiobjectve ranking scheme like ranked sum has the effect of opti­
mizing all objectives equally. In this problem, as in others, some objectives 
are more important to optimize than others. For example a house that is 
missing key rooms like a bathroom or a kitchen will not be very usable. 
When combining the ranks using ranked sum, weighting can be imposed by 
multiplying the ranks by a weight value. 

Figure 5.7 shows the effect of weighting the functional objective as being 
more important than the others. Table 5.6 shows the average best fitnesses 
and the confidence in the weighted runs outperforming the equally weighted 
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Table 5.6: Confidence in weighting objective values Vs. equal weighting 

Average best fitness 
Objective Connect. Geom. Funct. Reach. Ratio Windows 
Equal 7.833 0.0 3.233 1.274 0.0 0.0 
Weighted 7.0 72.06 0.0 1.904 1.063 0.0 

Confidence 98.6% 99.5% 99.9% 99.9% 99.9% 

runs. The effect of giving the Functional objective a weight of 10 is that 
the functional is almost guaranteed to be improved over having an equal 
weighting. The connectivity score seems to improve indirectly as a result 
while the other objectives are noticeably compromised. However, given that 
the Functional score is one of the most important ones this is a desirable 
compromise. 

5.2 Requirement Specifications 

When talking about the design of houses, a lot of details are often taken for 
granted. In this section this concept will be analyzed in detail. A common 
starting point when stating the design of a house (given that the dimensions 
have already been fixed) are which rooms and how many will be in the house. 
This shall be the starting point. 

5.2.1 Basic Functionality and Connectivity 

Assume the customer in question wants a house that contains one social 
room, one bathroom, a kitchen, a dining room, a bedroom and no more than 
one hallway. Given that the purpose of this section is to start as generic 
as possible there will be no impositions of which rooms can attach to which 
rooms, and any room shall be capable of attaching to any other room. This 
would restrict the system as little as possible in its satisfaction of the require­
ments. 

Looking at Figure 5.8(a), it's quite evident what is wrong with this re­
quirement specification. The system has no contextual information about 
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what a bedroom is, or how it is different from a social room or bathroom. 
While it could have in theory made a dream house, there would be no way of 
objectively recognizing that the dream house is any better than the others. 
Additionally one must consider the odds of producing such a house when 
anything with rectangular walls can be created. Restrictions and direction 
are necessary in order for the system to produce sensible layouts. 

One noteworthy restriction is that one would expect a certain flow of 
rooms. Rather than being able to move from any room to any room there is 
a certain expectation of which rooms will be entered from other rooms. This 
relates to the significance of the justified gamma map described in Section 3.1 
in defining the flow of a house. 

Common sense would dictate that one enters a house into a social room 
or a hallway. A social room or hallway lead to any room type, whereas a 
kitchen may lead to a dining room or a social room. Similarly a dining room 
might lead to a kitchen or another social room. Given that this problem is 
not concerned with generating a master bathroom, a bedroom or bathroom 
would not lead anywhere further. When these requirements are specified the 
differences become apparent in the resulting houses. Figure 5.R(h) shows the 
results. The flow of rooms from the entrance through the house makes more 
sense. 

5.2.2 Room sizes and ratios 

In the previous section a house was evolved with the necessary rooms and 
only sensible connections between rooms. However, it is still evident that the 
system needs some contextual information as to the required sizes of rooms. 
While these are typically dictated by the items commonly stored in the room, 
since the system is not concerned with the placement of furniture it needs to 
know the size requirements of the rooms. 

Some minimum room areas will be given such that the resulting house will 
have enough room to be appropriately furnished. A social room must be at 
least 140 square feet, a kitchen at least 90, a dining room at least 100, and a 
bedroom at least 80. Additionally minimum widths are given for each of the 
rooms as there are certain length objects that must fit. The resulting floor 
plans in Figure 5.9(a) are beginning to look much more sensible. Though 
there are still some oddities like long narrow sections of rooms. 

In order to rectify this a maximum ratio is specified. This is measured 
as the larger of width over length or length over width of any rectangular 
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region in the room. A maximum ratio of 1.5 is given. The resulting houses 
in Figure 5.9(b) have more regular ratios. The layouts seem more natural, 
though there are still odd cases where a bathroom is bigger than a bedroom. 
By the fitness measurement this is perfectly acceptable as they are both larger 
than their minimum areas but visually and functionally it seems wrong. 

5.2.3 Size Relations 

In order to make the floor plans seem more sensible it would make sense 
to impose size relations on the rooms. In this case, social rooms should be 
bigger than kitchens and dining rooms which are bigger than bedrooms which 
are bigger than bathrooms. By enforcing these size relations the floor plans 
should look more sensible. 

Figure 5.10 shows the resulting floor plans with imposed size relations. 
With this constraint the system filters out all floor plans which violate the 
imposed relations and the remaining houses seem more logical in their design. 
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Chapter 6 

Advanced Floor Plans 

This chapter explores some of the more advanced capabilities of this system. 
A house from a commercial plan book is reconstructed and then used as a 
target for evolution in Section 6.1 to compare how well the system can do with 
similar requirements. Polygonal shaped houses are constructed in Section 6.2. 
In Section 6.3, office buildings are evolved as an example of an alternative 
application. Section 6.4 extends this to support multiple floor office buildings. 
Lastly, Section 6.5 explores using the system for the construction of grocery 
store layouts. 

All of these experiments use the established evolutionary settings deter­
mined in Section 5.1 and listed in Table 5.1 as these parameters have already 
been shown to work well in smaller experiments. 

6.1 Comparison to a real floor plan 

To compare the quality of solutions generated to those from a real architec­
tural book, a floor plan has been selected from a commercial book with stock 
contemporary house plans[26] and loosely reconstructed in the representation 
used by the GA. This reproduction is shown.in Figure 6.1(a). 

The key features taken from this floor plan and specified to the system are 
the numbers of rooms, and the overall idea that the main rooms are attached 
to the living room while the bedrooms and bathroom are accessible from a 
hallway. A full list of the specifications can be found in Listing B.1 in the 
appendix. The reconstructed floor plan's fitness with respect to the specified 
requirements is detailed in Listing D .1. The master bedroom is too narrow 
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Table 6.1: Fitness of original and evolved "real" floor plans in Figure 6.1 

House Original House b House c House d House e 
Connectivity 9 9 9 9 9 
Geometric 12.642 0 0 0 0 
Functional 0 1 0 0 0 
Reachable 3.08333 2.9 3 3 3 
Ratio 5.98098 0 0 2.65085 2.79901 
Windows 0 0 0 0 0 

in the corner which leads to the bad geometric score even though the room is 
mostly large enough. Additionally the bathrooms are fairly long and narrow 
which is punished in the ratio score. 

Figure 6.1 shows a selection of the evolved houses using the same number 
of grid cells and dimensions as the reconstructed plan. Given that a very 
specific ordering of rooms was imposed upon the system the variety of plans 
generated is somewhat limited. However, most of the generated houses have 
the same spirit as the reconstructed plan. The complete fitness score of 
all the plans shown is listed in Table 6.1. House (b) did not manage to 
place a kitchen which led it to have a non-zero functional score. Otherwise, 
the evolved plans typically exceed the scores of the hand constructed house. 
This does not mean the hand constructed house is bad, it just shows how 
the fitness score does not necessarily mean everything in terms of the house 
quality. Generally a reasonably good fitness means there is nothing wrong 
with the house. 

6.2 Polygonal houses 

In Section 4.7 a strategy to evolve polygonal houses is described. The house 
is evolved to fit the bounding box of the house shape, and clipped to the 
polygonal region. In this section, this strategy is used to construct a variety 
of irregularly shaped houses. 

A half-hexagon shape is used to construct houses with an interesting 
exterior appeal as shown in Figure 6.2(a). A 40' by 30' house is evolved and 
then clipped to this shape. Figure 6.3 shows several examples of the houses 
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Figure 6.2: Shapes used for polygonal experiments 

the resulted from this search. There are some noticeable deficiencies in some 
of the designs. For example, house (b) has a useless hallway from the social 
room leading to the bedroom. In the current fitness specification this is not 
directly punished. Indirectly it is discouraged as there is less room for the 
rema,ining rooms in the house. House (d) on the other hand has a rather 
large hallway with a corridor that leads nowhere on the bottom-left of the 
plan. Again, this is not directly punished as a hallway is allowed and it 
does connect other rooms. It is only punished indirectly in that the kitchen 
could have been larger. Overall the house plans seem functional and quite 
acceptable. 

To demonstrate the feasibility of these houses, Figure 6.5 shows what the 
plan from house (b) could look like furnished. It has been constructed in 
Google Sketchup[3] and furnished using public domain models[2]. The extra 
hallway was removed as could have been done by a post-correction phase or 
evolved out with more time. With the furnishings , one can see how feasible 
the house would be. There is a pleasing flow of traffic through the house, the 
plumbing is largely centralized and all of the rooms are of adequate size for 
their requirements. 

The triangular shape in Figure 6.2(b) is used to construct a variety of 
houses with a long angular side. Figure 6.4 shows several houses clipped 
to this shape. In this experiment most of the evolved houses do not make 
use of their top-right cell in their chromosomes. This is one way in which 
some garbage data in the chromosome can be introduced, although in the 
GA representation it is restricted in size and cannot become bloated. One 
issue that presents itself in several houses is that the width of the room 
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Figure 6.5: 3D view of house from Figure 6.3(b) 
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is not accurately recognized. This could be solved with various algorithms 
to analyze shortest widths across arbitrary polygons, but without this the 
system does not know when rooms are much skinnier or smaller after clipping. 
House (b) has an example of a kitchen with a very narrow passageway to part 
of the room. House (c) has a rather small kitchen due to the clipping but it 
was not measured afterwards. These issues could be easily hand-corrected if 
desired. Nevertheless, the system produces interesting houses and manages 
to cope with a long sloped wall for one corner of the house. Many of the 
designs would make for interesting concepts given this exterior shape. 

There are a few weaknesses in the form that the polygonal clipping is 
currently implemented however. For example, if a room is cut intotwo rooms 
as a result of clipping it to the boundary the current clipping algorithm 
does not currently recognize this. This is not a weakness of the strategy 
however, just the current implementation of it. The main weakness with the 
polygonal clipping is that the extra space around the house area is still part 
of the chromosome and hence somewhat useless. This means the system has 
a larger search space than necessary as part of the chromosome is essentially 
bloat. For shapes that fill most of their bounding rectangle however, there 
is typically no bloat. All of the cells in the matrix end up being used for a 
room present in the final house layout. 

This strategy is a very simple yet powerful method of evolving interest­
ingly shaped houses. While house exteriors often have angled walls, it is 
usually wasteful to have angled interior walls. By combining a polygonal 
exterior with rectilinear interior walls a small search space of houses with 
special shapes can be evolved. The polygonal clipping strategy could even 
be used to combine the work from this system with another which designs 
the exterior. House exteriors can be designed separately and then pass the 
exterior shape on to this system for the interior construction. 

6.3 Office building 

Since the specifications for the problem give the complete set of rooms, and 
all of the requirements that describe those rooms, this system can be used for 
other problem domains with similar requirements. One such example is that 
of an office building. An office building needs to have offices easily accessible 
via some system of hallways. Bathrooms need to be within easy reach of 
those offices and often times there need to be labs and reception areas. 
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The office buildings evolved in this section attempt to construct an easily 
traversable building with 12 offices, 2 labs, and at least one bathroom. Labs 
are larger than offices, which are larger than than bathrooms. The goal is to 
have a single hallway connect all of these rooms to keep the layout simple. An 
office building requires many more rooms and more intricate designs which 
necessitates using a larger grid in the chromosome representation. The office 
building is layed out on a 7 by 5 grid allowing for up to 35 rooms, although 
in practicality a hallway connecting all of these rooms will require at least 
14 or 15 cells on the grid. In terms of layout efficiency the requirements only 
specify that one must be able to quickly get to a bathroom from the offices. 

The complete requirements used for the office buildings are in Listing B.2 
in the appendix. A 70' by 50' building is evolved using the same general ex­
periment settings. Figure 6.6 shows a sample of the resulting office buildings. 
The system manages to evolve intricate single room hallways that span the 
entire building with no assistance which is very promising for the effective­
ness of genetic algorithms in this problem. The office buildings themselves 
are also very promising, especially given that they have all been generated 
from a list of basic requirements for the building. 

There are a few interesting oddities that the system has evolved in some 
of the office plans in Figure 6.6. Building (a) has a large room-sized area 
in the bottom left and top-left of the layout. Similarly, building (e) has a 
hallway leading to nowhere near the bottom left. On human examination, 
these irregularities immediately stand out but it is not something that is easy 
to quantify or measure given arbitrary polygonal shapes. Building (c) on the 
other hand has evolved a pleasing layout with regular narrow hallways, an 
adequate number of offices and even a few closet spaces. It is also difficult 
to quantify what constitutes a good hallway. 

In general the evolved layouts have a difficult time obtaining the desired 
number of rooms. In this larger example, the room requirement was expected 
to be difficult to obtain and meant to encourage the system to construct as 
many offices as possible. Most of the final office buildings came acceptably 
close to fulfilling the necessary room requirements, despite several buildings 
missing a lab. Nevertheless, many of the final office buildings have nearly 
all the necessary rooms allocated. Such large and complex specifications are 
a challenge to fulfill, and so the results obtained are impressive, considering 
the complexity involved. Furthermore, the offices are quite fit with respect 
to the other objectives. Offices are fairly rectangular, easy to reach, and 
washrooms are readily available. 
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6.4 Multiple floor office building 

One of the ways of doing a multiple floor layout is to fix a certain room in 
position. For example a stairwell or other such room could be given an exact 
position such that no matter the rooms evolved around it this stairwell would 
be in the same position on each floor and could thus be combined with any 
other layout for the other floors. 

This strategy is used to evolve a potential multiple floor office building. 
Any of the plans for a bottom floor from Figure 6.7 can be combined with 
any of the plans for an upper floor from Figure 6.8. The plans evolved 
in this experiment required corrections afterwards due to limitations in the 
specification format. A different post correction step was needed for the 
bottom floor and upper floor plans. 

By having a stairwell room type that could be connected to from a hall­
way, the system was free to evolve several of these on the bottom floor even 
though this was punished in the functional score. As a result, the bottom 
floor created several stairwells before reaching the forced stairwell at the fixed 
position specified to the program. The post correction applied was to replace 
all of these extra stairwells with offices as many offices were required in this 
problem. 

On the upper floors, the specification states that a stairwell connects to 
a hallway. While a hallway cannot connect to other hallways the system was 
allowed to connect as many hallways as it could to the stairwell where the 
room assignment started from. The upper floors constructed several separate 
hallways coming from each side of the stairwell. The post correction applied 
was to join all adjacent hallways to become one large hallway. Such a post 
correction could be made automatically or fixed by allowing better generation 
restrictions such as only one hallway coming from the stairwell. 

After corrections the produced plans look pretty decent. The bottom­
floor building (a) in Figure 6.7 demonstrates another example of a hallway 
which does not quite lead anywhere. The upper floors tended to generate 
rather sparse layouts given that they could construct Jour separate hallways. 
Buildings (a) and (c) in Figure 6.8 show examples of this. The space around 
the stairwell is almost entirely hallway in both of these buildings. 

Typically in multiple floor buildings a single plan is repeated over several 
floors, which means that a selected upper-level plan may be repeated for 
several floors, followed by another plan. This is one strategy for dealing with 
evolving plans for multiple floors. This strategy could also be used with 
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a variety of polygonal shapes to mimic a curved office building, or varying 
smaller sizes to construct a tall skyscraper that narrows towards the top. The 
possibilities and combinations are virtually endless. Various floors may have 
differing requirements, as office buildings often do. Or a composite system 
could be developed to design the requirements for the various floors of a large 
scale office building to reduce the amount of work required on the part of a 
human specifying all of these requirements. 

6.5 Grocery Store 

Another interesting application is in the layout of something that has discrete 
regions even though they are not subdivided by walls. This is the case with a 
grocery store, where there are sections that provide various goods divided into 
differently sized regions. The customer is forced to walk through the checkout 
on leaving the store to ensure that they pay for their goods. Listing B.3 in 
the appendix shows the full requirement specifications. 

In order to force the customer to walk through the checkout when leaving 
this is the only room type connected to the entrance. Following the checkout 
every room type is allowed to connect to every other room type to allow a 
free arrangement of sections in which a customer can walk from any section 
to any other adjacent section. 

One of the more interesting specifications is that the refrigerated sections 
of the store such as meats, frozen food, eggs and dairy require windows. They 
do not actually require windows, but this makes the system try to place these 
sections on the outside of the building which is most convenient for supplying 
refrigeration to from an outside utility. Additionally, these sections are to be 
within a short distance of each other to reduce the distance the cooling pipes 
will have to travel making it more efficient to construct. 

Several sections have a minimum ratio specification as these are most 
often and conveniently laid out as one or two aisles with goods on either 
side. This minimum ratio rewards the system for creating long and narrow 
areas for these sections. 

Figure 6.9 shows a selection of grocery stores evolved from the system. 
It has particular difficulty with this problem as one room of each type is 
required, making it difficult to combine solutions without violating this con­
straint. While missing several sections, the results are geometrically and 
logistically similar to the layout of a grocery store. This is certainly one class 
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of problem requirements where the recombination strategy in this system is 
not as effective as one that would preserve room counts. 

In all plans, the majority of requirements are fulfilled . Nevertheless, there 
remain a few issues in the solutions. Every store has three magazine sections. 
Stores (a) and (b) do not have a section for snack food. The optional flowers 
section is not in any of these layouts, hinting that there was some difficulty 
in satisfying the required rooms. Most of the layouts did manage to keep the 
cold foods together, though stores (e) and (f) separated eggs and dairy from 
the rest . In summary, the techniques in this thesis were easily adaptable 
to this unusual variation of problem· requirements, with the production of 
interesting and often creative results. 



Chapter 7 

Discussion and Comparisons 

7.1 Discussion 

The system presented here works well to produce floor plans that not only 
satisfy its own fitness requirements, but are also as a result asthetically pleas­
ing. The diversit.y preservation measure ensures that the rer;;m1ting popul!'>c­
tion contains a variety of plans so that the user will have different options to 
choose from. 

As the description of what rooms are available and their requirements 
are loaded into the system via a simple configuration file, the system is eas­
ily adaptable to other problems with similar requirements. A few of these 
problems have been explored here-in but there are many other possible ap­
plications, even VLSI design. 

Using evolutionary computation to solve this problem grants the ability 
to use easy solutions to complicated problems. As was shown with the case 
of polygonal rooms, a complete floor plan can be generated, a polygon cut 
out of it, and then evaluated for its quality afterwards. Whereas if the same 
naive strategy were applied to produce polygonal layouts from a procedural 
algorithm, the resulting plans would likely be unsatisfactory given that the 
procedural algorithm is not aware of what will be removed. 

The procedural assignment algorithm greatly reduces the search space of 
the problem. By intelligently converting rooms into their appropriate types 
many useless layouts of houses are avoided. This allows the algorithm to work 
on much larger spaces or work much faster than with the assignment being 
part of what is evolved. The runs in this thesis took on average 7 seconds to 
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complete on a single core of an Intel Q6600 2.4Ghz processor. This means 
the algorithm is feasible to use in real-time applications. However, this as­
signment algorithm is also a limitation. Many configurations are impossible 
to evolve because the procedural algorithm will not assign them that way. 

Scaling up to larger problems is challenging. The exponential growth in 
the search space gives the evolutionary system great difficulty in finding good 
solutions. This is a problem in any evolutionary computation search, which 
can often be leveraged by using modularization. By evolving modules such 
as bedroom areas, bath and utility areas, and living areas the search space 
could be greatly reduced. After these areas have been chosen small plans 
could be evolved within them. 

The system also tends to cheat at various objectives. The multi-objective 
ranking methods help avoid cheating somewhat, but it is not uncommon for 
objectives to go unsatisfied as satisfying one objective can hurt the scores 
in several other objectives. In many cases the functional objective was not 
satisfied as having those rooms proved too difficult in terms of other objective 
scores like geometric and ratio. 

Another weakness is in the evolution of hallway and other connecting 
type rooms. They are a special case of a rectilinear room and require a large 
portion of the chromosome to agree in order to create. This is one area 
which VLSI systems can often ignore as modules on a circuit do not need 
to be placed flush next to each other. Alternative means of constructing 
hallways could be examined in order to faciliate their construction. 

7.2 Comparison 

The ideal way to compare this system with previous work would be to run 
a test with the same objectives on both systems and see how their results 
compare. Unfortunately, most of the other work is either unrelated or does 
not have the same objectives. Table 7.1 gives an outline of the various fea­
tures supported by similar works. Martin[21]' Marson[19] and Mitchell[23] 
do not use a search and hence several features are not applicable in these 
works. These features are marked by dashes in the table. 

The most relevant and similar work to what has been done here is by 
Doulgerakis[9]. This work has many similarities: 

• This thesis uses an evolutionary system - namely a genetic program to 
construct the room layouts. 
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Table 7.1: Comparison of features in various works 

System Doulg[9] Mart[21] Marson[19] Mitch[23] Flack 
GA construction ./ 
G P construction ./ ./ 
Procedural const. ./ 
Optimal const. ./ 
Optimal assign. ./ 
Procedural assign. ./ ./ ./ ./ 
Evolution assign. ./ ./ 
Rectangular rooms ./ ./ ./ ./ ./ 
Rectilinear rooms ./ ./ 
Polygonal rooms ./ 
Polygonal exterior ./ ./ 
Fixed rooms ./ 
# of Objectives 4 1 6 
Weighted Sum ./ ./ 
Pareto Ranking ./ 
Ranked Sum ./ ./ 
Norm. Ranked Sum ./ 
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• The GP uses division of space in order to create the rooms from a 
program tree. 

• Also uses a ranked-sum evaluation to balance multiple objectives as an 
alternative to weighted sum. 

• Many of the objectives are the same as those used in this paper: ratio, 
size, number of, and connectivity of rooms. 

• Doulgerakis also has two methods of assigning room types in the re­
sulting floor plans; they can be assigned randomly as part of the chro­
mosome much like the evolutionary room assignment described here, 
or they can be assigned using an "Assignment Embryology" similar to 
the procedural assignment used in this system. 

Despite the great list of similarities, there are many differences in the 
work as well. In particular: 

• This system has a genetic algorithm method of producing room layouts. 

• Pareto ranking was implemented and compared to the ranked-sum 
multi-objective evaluation. 

• Weights were added to the ranked sum in this system so that certain 
objectives could be prioritized. 

• Some objectives were added, such as placing certain room types on 
the outside so that they can have windows and minimizing distances 
between related room types rather than just trying to connect them. 

• Doulgerakis allows for angled splits of rooms whereas this system only 
allows for the creation of rectilinear rooms. 

Ideally a direct comparison with a similar problem would be done, how­
ever the exact details of the problem Doulgerakis tackled were unfortunately 
not included in his thesis. Additionally there is not enough information given 
in the thesis to determine exactly how the fitness of the various objectives 
are measured. 

Martin's[21] has a similar goal. He aims to construct floor plans which 
appear as though people would actually live in them. He does not worry 
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r-

(a) Walls are selected to be con- (b) Selected walls are expanded be-
verted into a hallway coming a hallway room. 

Figure 7.1: Hallway conversion on rectangular floor plans 

about fine tuning any aspects of the house, they are meant to be believable if 
observed as part of a level in a video game or the background of a large city in 
an animation. His system generates buildings using a procedural algorithm 
which constructs rooms following a table of statistics. It is rather similar 
to the procedural assignment phase of this system except that in addition 
to assigning room types it places the rooms and adjusts their sizes. This is 
designed with a very different goal in mind. There are no measured criteria 
of what is desirable or successful, and no choice in the resulting house. 

Marson and Musse[19] developed a procedural algorithm for constructing 
floor plans using squarified treemaps. They too use a connectivity matrix 
to determine which room types will be connected in the resulting plan. A 
procedural algorithm runs after the house construction to ensure that rooms 
which are not connected will have a hallway joining them to the main living 
room. As with other procedural methods, the result is that you will either 
like the produced house or not, and it has not been subject to any user 
specified fitness measurements. 

There is an interesting hallway construction strategy which can be seen 
in Figure 7.1. By expanding walls into hallways, complex room shapes do 
not need to be evolved allowing for a simpler smaller house representation. 
Instead, by using a procedural algorithm as in Marson's work, simple floor 
plans can be converted into much more desirable layouts quickly and easily. 
Alternatively the GA representation could be expanded to flag certain walls 
as hallways which would be later converted. 
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Mitchell et al. [23] were concerned with the evolution of floor plans that 
satisfied a certain set of adjacency requirements and areas. All possible floor 
plans were considered which as a result meant they could only work with 
very small search spaces. Unlike this thesis, there were no constraints such 
as increasing distance between certain rooms and all rooms were assumed 
to be connected. Additionally, the search for sizing of the rooms is done 
separately after determining good layouts whereas this thesis attempts to 
optimize the sizes and layout at the same time which could discover better 
plans. 



Chapter 8 

Conclusions 

8.1 Results 

The system in this thesis employed evolutionary algorithms to solve a prob­
lem with no clear strategy or notion of optimality. The system was effective 
at generating specific floor plans given reasonable requireI!!.,nt~. The rep­
resentation of the problem specifications allows it great flexibility in both 
problem depth and problem scope. Anything that can be defined in terms of 
rooms with dimensional and connectivity constraints can be evolved. Sim­
ilarly, any level of detail in requirements may be specified. It works best 
on smaller problems, where it is capable of exploring a larger portion of the 
search space. 

A number of insights into effective evolutionary computation strategies 
were found. While the genetic programming crossover was not conducive to 
the combination of good features from good solutions, the genetic algorithm 
succeeded in combining good features from good solutions. Several strategies 
for handling multiple objectives in evolutionary algorithms were tested and 
worked to evolve the often conflicting variety of goals in the design of floor 
plans. With its high dimensionality and unclear requirements, this prob­
lem served as an interesting benchmark problem to compare multi-objective 
strategies. While not conclusive, the normalized ranked sum strategy ap­
peared to provide the best compromise of scores in order to find the best 
solutions. Lastly, diversity preservation was successfully employed to pro­
vide a more diverse search and a variety of end of run solutions to choose 
from. 
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The features provided in this work exceed the capabilities of any previous 
work done without a significant expansion to the search space. The polygonal 
floor plans and fixed room plans increase the utility of such a system such 
that it can be used for a more general set of problems. Additionally the 
variety of potential objectives and specification of requirements goes beyond 
that of similar works, to allow for greater flexibility in problem requirements. 

8.2 Future Work 

One major feature that would be useful for multi-floor structures is to evolve 
both floors as a single problem. This way the system will know that if there 
are many bedrooms on the second floor there do not need to be any on the 
first, or vice versa. In doing a multi-floor layout with the grid-based GA 
chromosome, the sizes of the grid cells could be constant for all floors with 
a separate array of values for each floor giving room types. This would help 
ensure structural integrity as walls would be built over walls rather than 
wherever they end up. 

Considering it is largely unknown how to quantify which exact features 
make for a good house, it may be useful to apply an interactive/automatic 
hybrid evolutionary system. The user could pause the evolution, select houses 
that he/she believed were superior and those would be valued above the 
others. In this way the user would have a direct impact on the evolutionary 
process and the final resulting houses. 

There are many parameters involved in the procedural assignment algo­
rithm which have a great effect over how rooms are assigned. These values 
could be evolved as part of the GA chromosome to help find ideal values for 
assigning room types in a more desirable fashion. It would add a great deal 
of flexibility in room assignment and could relax the necessity for the user to 
give such precise requirements. 

The fitness function is currently an evaluation of the floor plan based on 
several static measures. Since the true evaluation of the quality of a house 
is how well it serves the needs of its inhabitants, it may be possible to get a 
better rating of a house by running a simulation of agents using the house 
for various purposes. The evaluation may take significantly longer, however, 
it may be possible to find more relatable objectives with such a simulation. 

There are also many other areas to which the process of evolving floor 
plans could be applied. Martin [20] uses his strategy in the application of 
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generating maps for role-playing games. It has been shown that the method 
described here has applications in other areas, however with some adaptation 
it may be better suited for these applications. 

There are other possible representations for the chromosome in order to 
effectively evolve normal houses. For example, if the goal were to evolve 
strictly rectangular rooms there could be some rule for when to expand a 
cell or a width and height associated with each cell. Hallways could be 
more effectively constructed or evolved as edges between rooms as in "Au­
tomatic Real-time Generation of Floor Plans Based on Squarified Treemaps 
Algorithm" [19] which could be expanded to become hallways. This way 
the grid would not have to have cells specifically sized to allow hallways. 
Such modifications could effectively reduce the number of bad solutions in 
the search space which would render the algorithm effective for much larger 
spaces. 

Similar to Marson's[19] algorithm, the GP representation could use a 
squarified treemap to layout the rooms in the graph. This would allow for 
more effective crossover as entire trees of rooms would not be squished into 
small spaces as with the current strategy. 
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Appendix A 

Penalties for procedural 
assignment 

The penalties for the procedural assignment algorithm are outlined below. 
The score of a room is the sum of the penalties and the room type with the 
lowest overall value is chosen first. 

Penalty 
The new room's area is larger 
than another room, that it should 
be smaller than. 

The room has enough twists to be 
recommended to be a particular 
type. 

The room type recommends a pri­
vate/public room and the oppo­
site type is being considered. 

The room is an external one and a 
type that does not need windows 
is being considered. 

94 

Value 
2000 

1000 

700 

150 
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The room's area, area, is less 
than the minimum recommended 
area for this type, minarea. 

The room's area, area, is greater 
than the maximum recommended 
area for this type, maxarea. 

The room's width, width, is less 
than the minimum recommended 
width for this type, minwidth. 

The room's width, width, is 
greater than the maximum rec­
ommended width for this type, 
maxwidth. 

The room with width width, has 
a recommended width, recwidth. 

The room with area area, has a 
recommended area, recarea. 

The room with ratio ratio, 
has a smaller ratio than the 
recommended minimum ratio, 
minratio. 

The room with ratio ratio, 
has a greater ratio than the 
recommended maximum ratio, 
maxratio. 

If the house does not have enough 
of the current type. 

500 + minarea - area 

500 + area - maxarea 

500 + (minwidth - width)2 

500 + (maxwidth - width)2 

larea - recareal 

200 . (minratio - ratio) 

200 . (maxratio - ratio) 

-125 
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If there are n too many of the cur­
rent room type in the house. 

200n 



Appendix B 

Requirements for experiments 
in thesis 

Listing B.I: Requirements for "real" house 
Outside 
{ 

} 

type: public; 
attach: Entry; 

Living 
{ 

} 

type: public; 
minimum: 1; 
maximum: 1; 
attach: Dining, Eating, Hallway; 
min-width: 12; 
min-area: 175; 
max-ratio: 1.5; 
bigger-than: Bedroom, Kitchen, Dining, Eating, Bathroom, M 

Bathroom, M Bedroom, Entry; 

Dining 
{ 

type: public; 
minimum: 1; 
maximum: 1; 
attach: Living, Kitchen; 
min-width: 10; 
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} 

min-area: 100; 
max-ratio: 1.5; 
bigger -than: Bedroom; 

access -nearest: Bathroom; 
area: 120; 

Bedroom 
{ 

} 

type: private; 
minimum: 1; 
maximum: 2; 
min-width: 10; 
min-area: 100; 
max-ratio: 1.5; 
bigger-than: Bathroom, M Bathroom; 

access -nearest: Bathroom; 
windows: yes; 

Hallway 
{ 

} 

type: public; 
maximum: 1; 
attach: Bathroom, Bedroom, M Bedroom; 
width: 5; 
min-ratio: 2; 

Kitchen 
{ 

} 

type: public; 
min-width: 11; 
min-area: 100; 
minimum: 1; 
maximum: 1; 
max- rat i 0: 1. 5 ; 
attach: Eating, Dining; 
bigger -than: Bathroom; 

Bathroom 
{ 
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} 

type: private; 
minimum: 1; 
maximum: 2; 
max-ratio: 1.5; 
min-width: 5; 
min-area: 35; 
windows: yes; 

M Bathroom 
{ 

} 

type: private; 
minimum: 1; 
maximum: 1; 
max-ratio: 1.5; 
min-width: 5; 
min-area: 35; 
bigger -than: Bathroom; 
windows: yes; 

M Bedroom 
{ 

} 

type: private; 
minimum: 1; 
maximum: 1; 
min-wid th: 10; 
min-area: 100; 
max-ratio: 1.5; 
attach: M Bathroom; 
bigger-than: Bedroom, M Bathroom, Bathroom; 
windows: yes; 

Eating 
{ 

type: public; 
minimum: 1; 
maximum: 1; 
attach: Living, Kitchen; 
min-width: 10; 
min-area: 100; 
max-ratio: 1. 5; 
bigger -than: Bedroom; 
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} 

access -nearest: Bathroom; 
area: 120; 

Entry 
{ 

} 

type: public; 
maximum: 1; 
attach: Living; 
max-width: 8; 

Listing B.2: Requirements for office building 
Outside 
{ 

} 

type: public; 
attach: Hallway; 

Lab 
{ 

} 

type: public; 
minimum: 2; 
maximum: 2; 
min-width: 7; 
min-area: 150; 
max-ratio: 2; 
bigger-than: Office, Bathroom; 

Bathroom { 

} 

type: private; 
minimum: 1; 
maximum: 2; 
min-width: 5; 
min-area: 35; 
max-ratio: 2; 
bigger -than: Closet; 

width: 6; 
area: 54; 

Office { 
type: private; 
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} 

minimum: 12 ; 
windows: yes; 
min-width: 7; 
min-area: 80; 
max-ratio: 2 ; 
bigger-than: Bathroom; 

access -nearest: Bathroom; 
area: 150; 

Hallway { 

} 

type: public; 
minimum: 1; 
min-ratio: 2; 
width: 4.5; 
attach: Office, Lab, Closet, Bathroom; 
twists: 3; 

Closet { 

} 

type: private; 
minimum: 0; 
max-ratio: 3; 

Listing B.3: Requirements for grocery store 
Outside 
{ 

} 

type: public; 
attach: Checkout; 

Checkout 
{ 

minimum: 1; 
maximum: 1; 
min-ratio: 3; 
area: 240; 
max-area: 300; 
min-area: 150; 
rectangular: 0.9; 
attach: Magazines, Frozen Food, Eggs & Dairy, Meats, 

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned 
Food, Snack Food, Flowers; 
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access: Snack Food, Magazines; 
} 

Magazines 
{ 

} 

minimum: 1; 
maximum: 1; 
area: 80; 
max-area: 120; 
attach: Magazines, Frozen Food, Eggs & Dairy, Meats, 

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned 
Food, Snack Food, Flowers; 

Frozen Food 
{ 

} 

minimum: 1; 
maximum: 1; 
min-ratio: 2; 
windows: yes; 
area: 220; 
min-area: 150; 
bigger -than: Magazines, Eggs & Dairy, Snack Food, Flowers; 
attach: Magazines, Frozen Food, Eggs & Dairy, Meats, 

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned 
Food, Snack Food, Flowers; 

access: Meats; 

Eggs & Dairy 
{ 

} 

minimum: 1; 
maximum: 1; 
windows: yes; 
area: 80; 
min-area: 60; 
attach: Magazines, Frozen Food, Eggs & Dairy, Meats, 

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned 
Food, Snack Food, Flowers; 

access: Frozen Food, Meats; 
bigger -than: Flowers, Magazines; 

Meats 
{ 
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} 

minimum: 1; 
maximum: 1; 
min-ratio: 3; 
windows: yes; 
area: 240; 
min-area: 170; 
access: Eggs & Dairy; 
attach: Magazines, Frozen Food, Eggs & Dairy, Meats, 

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned 
Food, Snack Food, Flowers; 

bigger -than: Magazines, Eggs & Dairy, Flowers; 

Cleaning Items 
{ 

} 

minimum: 1; 
maximum: 1; 
area: 240; 
min-ratio: 2; 
attach: Magazines, Frozen Food, Eggs & Dairy, Meats, 

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned 
Food, Snack Food, Flowers; 

Baking Goods{ 
minirimm : 1 ; 
maximum: 1; 
area: 240; 
min-ratio: 2; 

} 

bigger -than: Frozen Food, Eggs & Dairy, Meats; 
attach: Magazines, Frozen Food, Eggs & Dairy, Meats, 

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned 
Food, Snack Food, Flowers; 

Canned Food { 
minimum: 1; 
maximum: 1; 
min-ratio: 2; 
area: 240; 

} 

attach: Magazines, Frozen Food, Eggs & Dairy, Meats, 
Vegetables & Fruit, Cleaning Items, Baking Goods, Canned 
Food, Snack Food, Flowers; 
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Snack Food{ 
minimum: 1· , 
maximum: 1· , 
area: 100; 
attach: Magazines, Frozen Food, Eggs & Dairy, Meats, 

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned 
Food, Snack Food, Flowers; 

} 

Flowers{ 
maximum: 1· , 
area: 180; 
attach: Magazines, Frozen Food, Eggs & Dairy, Meats, 

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned 
Food, Snack Food, Flowers; 

} 

Vegetables & Fruit 
{ 

minimum: 1· , 
maximum: 1· , 
area: 140; 
attach: Magazines, Frozen Food, Eggs & Dairy, Meats, 

Vegetables & Fruit, Cleaning Items, Baking Goods, Canned 
Food, Snack Food, Flowers; 

} 
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Full statistical data 
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Table C.1: Confidence in Directed Search over Random Search 

Average Best Fitness 
Objective Connect. Geom. Funct. Reach. Ratio Windows 
Random 8.0 260.3 0.1667 2.034 4.768 0.03333 
Directed 7.0 72.06 0.0 1.904 1.063 0.0 

Standard Deviation 
Objective Connect. Geom. Funct. Reach. Ratio Windows 
Random 3.256 400.7 0.3727 0.1503 3.139 0.1795 
Directed 0.0 155.4 0.0 0.08078 1.56 0.0 

Confidence I 95.4% 99.2% 99.3% 99.9% 99.9% 84.6% 

Table C.2: Confidence in Genetic Algorithm over Genetic Programming ap-
proach 

Average best fitness 
Objective Connect. Geom. Funct. Reach. Ratio Windows 
GA 7.0 72.06 0.0 1.904 1.063 0.0 
GP 9.333 245.2 0.4667 1.866 2.299 0.0 

Standard Deviations 
Objective Connect. Geom. Funct. Reach. Ratio Windows 
GA 0.0 155.4 0.0 0.08078 1.56 0.0 
GP 3.902 345.6 0.6182 0.104 3.542 0.0 

Confidence I 99.9% 99.4% 99.9% 5.585% 96.0% 50.0% 
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Table C.3: Confidence in Procedural assignment outperforming Evolutionary 

Average best fitness 
Objective Connect. Geom. Funet. Reach. Ratio Windows 
Procedural 7.0 72.06 0.0 1.904 1.063 0.0 
Evolutionary 7.417 3.584 0.0 54.43 0.679R 0.0 

Standard Deviations 
Objective Connect. Geom. Funet. Reach. Ratio Windows 
Procedural 0.0 155.4 0.0 0.08078 1.56 0.0 
Evolutionary 5.941 13.08 0.0 86.38 1.499 0.0 

Confidence 65.0% 0.80% 50.0% 99.9% 16.6% 50.0% 
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Table C.4: Statistical comparison of multi-objective ranking strategies 
D = Diversity preservation, N = Normalized 

Average best fitness 
Objective Connect. Geom. Funet. Reach. Ratio Windows 
Weighted 7.333 0.0 0.1667 1.827 0.0020 0.0 
Pareto 7.333 13.97 0.0333 1.9 1.462 0.0 
Ranked 7.0 0.0 0.0 1.875 0.2073 0.0 
N. Rank. 7.0 0.0 0.0 1.879 0.0 0.0 
D. Weighted 7.533 0.0 0.1333 1.789 0.2233 0.0 
D. Pareto 7.0 72.06 0.0 1.904 1.063 0.0 
D. Ranked 7.0 0.0 0.0 1.882 0.2016 0.0 
D. N. Ranked 7.0 0.0 0.0 1.877 0.0 0.0 

Standard Deviations 
Objective Connect. GeOIT.. Funet. Reach. RaJ.! -".v V.'indows 
Weighted 0.7454 0.0 0.3727 0.1046 0.0109 0.0 
Pareto 1.795 57.25 0.1795 0.0797 2.16 0.0 
Ranked 0.0 0.0 0.0 0.0025 0.778 0.0 
N. Rank. 0.0 0.0 0.0 0.0224 0.0 0.0 
D. Weighted 0.8844 0.0 0.3399 0.0789 0.75 0.0 
D. Pareto 0.0 155.4 0.0 0.0808 1.56 0.0 
D. Ranked 0.0 0.0 0.0 0.0226 0.6516 0.0 
D. N. Ranked 0.0 0.0 0.0 0.0055 0.0 0.0 

Confidence in Diverse Normalized Ranked over other methods: 
Weighted 99.3% 50.0% 99.3% 0.48% 84.6% 50.0% 
Pareto 84.6% 90.9% 84.6% 94.2% 99.9% 50.0% 
Ranked 50.0% 50.0% 50.0% 12.1% 92.8% 50.0% 
N. Rank. 50.0% 50.0% 50.0% 71.6% 50.0% 50.0% 
D. Weighted 99.9% 50.0% 98.4% 0.01% 94.9% 50.0% 
D. Pareto 50.0% 99.5% 50.0% 96.7% 99.9% 50.0% 
D. Ranked 50.0% 50.0% 50.0% 88.9% 95.5% 50.0% 



APPENDIX C. FULL STATISTICAL DATA 109 

Table C.5: Confidence in weighting objective values over equal weighting 

Average best fitness 
Objective Connect. Geom. Funct. Reach. Ratio Windows 
Equal 7.833 0.0 3.233 1.274 0.0 0.0 
Weighted 7.0 72.06 0.0 1.904 1.063 0.0 

Standard Deviations 
Objective Connect. Geom. Funct. Reach. Ratio Windows 
Equal 2.083 0.0 2.093 0.5043 0.0 0.0 
Weighted 0.0 155.4 0.0 0.08078 1.56 0.0 

Confidence I 98.6% 0.55% 99.9% 0.01% 0.01% 50.0% 



Appendix D 

Detailed fitness penalties 

Listing D.l: Complete description of penalties to reconstructed real house 
GEDMETRIC: M Bedroom has width 6 .44444 , less than the desired 

10, penalty of 12.642 
CONNECTIVITY: Distance from Dining to nearest Bathroom is 3 

scaled to 3 
CONNECTIVITY: Distance from Bedroom to nearest Bathroom is 3 

scaled to 1.5 
CONNECTIVITY: Distance from Bedroom to nearest Bathroom is 3 

scaled to 1.5 
CONNECTIVITY: Distance from Eating to nearest Bathroom is 3 

scaled to 3 
REACHABIE: Depth of Outside is 0, scaled to 0 
REACHABIE: Depth of Kitchen is 4, scaled to 0.333333 
REACHABIE: Depth of Dining is 3, scaled to 0.25 
REACHABIE: Depth of Entry is 1, scaled to 0.0833333 
REACHABIE: Depth of Bedroom is 4, scaled to 0 .333333 
REACHABIE: Depth of Bedroom is 4, scaled to 0.333333 
REACHABlE: Depth of Eating is 3, scaled to 0 . 25 
REACHABIE: Depth of Living is 2, scaled to 0.166667 
REACHABIE: Depth of Hallway is 3, scaled to 0.25 
REACHABIE: Depth of M Bedroom is 4, scaled to 0.333333 
REACHABIE: Depth of Bathroom is 4, scaled to 0.333333 
REACHABIE: Depth of M Bathroom is 5 , scaled to 0.416667 
RATIO: Bathroom has larger ratio than 1.5, its ratio is 1.99049, 

penalty of 0.490488 
RATIO: M Bathroom has larger ratio than 1.5, its ratio is 

1.99049, penalty of 0.490488 
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