
Generating Finite Integral Relation Algebras

by

© Si Zhang

Submitted in partial fulfihnent

of the requirements for the degree of

Master of Science

Department of Computer Science

Brock University

July 2010

St. Catharines, Ontario

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brock University Digital Repository

https://core.ac.uk/display/62642244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Relation algebras and categories of relations in particular have proven to be ex­

tremely useful as a fundamental tool in mathematics and computer science. Since

relation algebras are Boolean algebras with some well-behaved operations, every such

algebra provides an atom structure, i.e., a relational structure on its set of atoms. In

the case of complete and atomic structure (e.g. finite algebras), the original algebra

can be recovered from its atom structure by using the complex algebra construction.

This gives a representation of relation algebras as the complex algebra of a certain

relational structure. This property is of particular interest because storing the atom

structure requires less space than the entire algebra.

In this thesis I want to introduce and implement three structures representing

atom structures of integral heterogeneous relation algebras, i.e., categorical versions

of relation algebras. The first structure will simply embed a homogeneous atom

structure of a relation algebra into the heterogeneous context. The second structure

is obtained by splitting all symmetric idempotent relations. This new algebra is in

almost all cases an heterogeneous structure having more objects than the original

one. Finally, I will define two different union operations to combine two algebras into

a single one.

ii

Acknowledgements

I treasure the memory of the many discussion sessions I have had with Professor

Michael Winter who has not only directed me to this area of research but also pro­

vided me edifying experience. I would not have come this far without his unfailing

encouragement and guidance. He always makes time and efforts when I need his help.

I thank him for his patience, his constant support and assistance for the duration of

my thesis.

Besides my supervisor, I would like to thank the rest of my supervisory committee:

Dr. S. Houghten and Dr. B. Ross, who reviewed my work, asked me good questions,

and gave insightful comments. I thank Brock University for the financial support

during the course of this work.

Let me also say thank you to my dear friends: Yifeng Li, Jing Sun, Liang He, Fan

Zhang, Xiang Yin, Wei Wei, Huan Zhang, Chen Han and Yusi Cheng. Without their

help, I could not finish my studies.

Last, but certainly not least, I thank my parents, Zhigang Zhang, and Huanzhen

Dong, for giving me life in the first place, and for their enduring support. I would like

to thank my wife, Yutong Zhou for all the love and support she has given me during

my years of graduate studies at Brock University.

iii

Contents

Abstract

Acknowledgements

List of Tables

List of Figures

1 Introduction

1.1 Motivation.

1.2 Goals ..

1.3 Outline.

2 Background

2.1 Boolean Algebras

2.2 Category Theory

2.3 Heterogeneous Relation Algebras

2.3.1 IntegralObject

2.3.2 Symmetric Idempotent Relation.

iv

ii

iii

vii

viii

1

1

3

3

5

6

9

11

14

15

2.4 Homogeneous Relation Algebras . 29

2.4.1 Atom Structure . 29

2.4.2 Complex Algebra 31

3 Three Structures representing Relation Algebras 35

3.1 The Structure HomNA 35

3.2 The Structure SplitN A 37

3.3 CombineN A Structure 39

4 Implementation 41

4.1 Overview 41

4.2 Atom Structure Module 43

4.3 NA Structure 45

4.3.1 HomNA Module 46

4.3.2 SplitNA Module. 48

4.3.3 CombineNA Module 49

4.4 HetNA Module 50

4.5 MyTable Module 52

4.6 CUI 55

5 User Manual 58

5.1 Overview . 58

5.2 User Instruction. 59

5.3 File Organization 62

5.4 Example 62

v

6 Conclusions

6.1 Summary

6.2 Future Work.

Bib'liography

vi

70

70

71

73

List of Tables

1.1 Space Compare: Algebra vs. Atom 2

4.1 Functions of HomN A 47

4.2 Functions of SplitNA 49

4.3 Functions of CombineN A . 50

4.4 Operation Functions of HetN A 51

4.5 MyTable 52

vii

List of Figures

2.1 Cycle law for binary relations. 30

2.2 Associativity for composition. 33

3.1 The Structure SplitNA .. 38

3.2 CombineNA Structure .. 40

4.1 The Relationship of Modules. 42

4.2 The Framework of GUI . 56

4.3 Running Process 57

5.1 Graphic User Interface .. 59

5.2 User Input Area. 60

5.3 List Store Area. . 61

5.4 HomNA 6@(4,2) 63

5.5 SplitNA 3@(3,1) . 64

5.6 CombineNA . 65

5.7 ProductHNA 66

viii

C'hapter 1

Introduction

1.1 Motivation

Relation algebras have proven to be extremely useful as a fundamental tool in math­

ematics and computer science, e.g., program semantics, specification, derivation, set

theory, and logic (see for example [2, 10, 11, 13]).

The major advantage of relation algebras is that any property formulated in first­

order logic with at most 3 variables can be translated into an equation in the language

of relation algebras. Requiring some extra structure such as relational products this

translation can be extended to formulas with arbitrarily many variables. Since the

theory of relation algebras is equational, proofs of arbitrary properties become alge­

braic manipulations of equations similar to the kind of manipulation known from high

school. For this reason, relation algebras are considered to be part of algebraic logic.

However, since proving theorems can be difficult anyone facing such a task appre­

ciates any tool assisting him/her. In particular, having a vast amount of examples,

1

e.g., a collection of finite relation algebras, on which to test properties and to find

counterexamples is extremely useful.

Since relation algebras are Boolean algebras with some well-behaved operations,

every such algebra provides an atom structure. If the given relation algebra is com-.
plete and atomic, then the original algebra can be recovered from its atom structure

by using the complex algebra construction. This gives a representation of relation

algebras as the complex algebra of a certain relational structure (on its set of atoms

[9]). This property is of particular interest because storing the atom structure re-

quires exponentially less space than the entire algebra. An example of this reduction

is given in Table 1.1. The first column represents the number of atoms of the rela-

tion algebra. The second column represents the size of the composition table, which

contains the largest portion of data needed to store relation algebra. Finally, the last

column represents the size of the composition table reduced to atoms.

Table 1.1: Space Compare: Algebra vs. Atom

Atoms in RA The composition table size Reduced to atoms size

1 4 1

2 16 4

3 64 9

4 256 16

5 1024 25

n 2n x 2n nxn

2

In addition to reduction above it can be shown that considering so-called integral

algebras is sufficient. In fact, every relation algebra is equivalent to a matrix algebra

over a basis built from integral algebras [14, 15].

1.2 Goals

In this thesis I want to introduce and implement three structures representing atom

structures of integral heterogeneous relation algebras, i.e., categorical versions of re­

lation algebras. As already mentioned above those algebras are sufficient to generate

all finite heterogeneous relation algebras. The first structure will simply embed a ho­

mogeneous atom structure of a relation algebra into the heterogeneous context. The

second structure is obtained by splitting all symmetric idempotent relations. This

new algebra is in almost all cases an heterogeneous structure having more objects

than the original one. Finally, I will define two different union operations to combine

two algebras into a single one.

1.3 Outline

Now, we outline the contents of the subsequent chapters.

Chapter 2: presents the necessary background required for the thesis, including an

introduction of heterogeneous relation algebras, and an overview of homoge­

neous relation algebras.

Chapter 3: describes three methods of generating finite integral heterogeneous re­

lation algebras.

3

Chapter 4: presents a system which has implemented those three methods designed

in the previous chapter.

Chapter 5: offers a detailed user manual for the system.

Chapter 6: contains some concluding remarks, and some ideas about future work.

Parts of the thesis have been published in a conference [17]. In this paper the three

structures for gen~rating finite integral relation algebras as described in Chapter 3

are introduced. In addition the implementation which is presented in Chapter 4.3

was outlined.

4

Chapter 2

Background

Relation algebras have been studied since the latter half of the nineteenth century.

De Morgan (1864) and Peirce (1870) first founded the calculus of binary relations.

Schroder (1890 - 1905) carried on with their work. More than forty years later, Tarski

(1941) gave a first formal introduction to relation algebras. For more information,

see [9].

Originally, the theory of relations is homogeneous, i.e., every relation is considered

to be defined on a single and fixed universe U. In recent years a variant of this

theory based on category theory was developed in order to include relations with

different source and target. These approaches can be called heterogenous. Unlike the

homogeneous relation algebras, relations act between different sets in heterogeneous

relation algebras, e.g., the relation 'is-Illarried_to' which is a relation between the two

different sets of men and women. A classical (homogeneous) relation algebra can be

seen as a heterogeneous relation algebra with just one object (or single universe).

We have attempted to keep our notation and conventions in agreement with those

5

of the closely related subject of relation algebras, especially as presented in Maddux's

Relation Algebras [9j. We assume that the reader is familiar with the basic notions

from set theory and the theory of lattices.

In this chapter, first we will introduce the basic concepts of Boolean algebras and

category theory. Secondly, we will introduce heterogeneous relation algebras. Last,

we will review some fundamentals on (homogeneous) relation algebras.

2.1 Boolean Algebras

Since a relation algebra is based on a Boolean algebra, it is useful to review some

basic properties of Boolean algebras as well. For further reference see [3, 7, 9j.

Definition 1. An algebraic structure of the form Q3 = (B, U, -) where U is a binary

and is a unary operation is called a Boolean algebra if and only if it satisfies the

following three axioms (for all x, y, z E B):

1. xUy=yUx.

2. xU(yUz)=(xUy)Uz.

3. xUYUxUy=x.

The operation U is called union, and the operation is called complementation.

In addition to the union (U) and complementation (-) operation of a Boolean

algebra one may define intersection (n) by x n y = xU y. Furthermore, there are two

constants, the zero or empty element 0 and the one or universal element 1, which

are defined by 0 = x n x and 1 = x U x for an arbitrary x E B, respectively. A

6

Boolean algebra is also equipped with a partial order defined by: x ~ y if and only

if x U y = y. Notice that the property xU y = y is equivalent to x n y = x. The

element xU y is the greatest lower bound of x and y with respect to the order ~, i.e.,

xU y ~ x and xU y ~ y and whenever z ~ x and z ~ y, then xU y ~ z. Analogously,
,

x n y is the least upper bound of x and y. The concept of a greatest lower and a

least upper bound extends to any finite subset of B by iterating the operations U and

n, respectively. A Boolean algebra ~ is called complete iffl every subset of B has a

greatest lower and a least upper bound. Not every Boolean algebra is complete. For

an example we refer to [3, 7].

Any Boolean algebra is a distributive lattice, i.e., the equations x n (y U z)

(x n y) U (x n z) and xU (y nz) = (x U y) n (x u z) hold for all x, y and z.

The powerset P(A) of a set A is an example of a Boolean algebra. The operation

(U) and the operation () are given by union and complementation (relative to the

set A) of sets.

Definition 2. An element x of ~ is called an atom of ~ iff x i= 0 and there is no

nonzero element of ~ is below x. We denote by At~ the set of atoms of~, i.e.,

At(~) = {x I x =f o,x E ~ and Vy(y E ~,y ~ x =? Y = x or y = O)}.

For example, when B is the Boolean algebra with two elements 0 and 1 with 0 ~ 1,

then 1 is the only atom in the algebra. The singleton sets are the atoms in the power

set. There are also Boolean algebras that contain no atoms but we will not consider

these algebras throughout this thesis.

Definition 3. A Boolean algebra is atomic if for every element x =f 0 there is an

IThroughout this thesis we will use 'iff' as a shorthand for 'if and only if'.

7

atom a with a !;;;; x.

In particular every finite Boolean algebra is atomic. As already mentioned above

there are also non-atomic Boolean algebras but since we are mainly interested in finite

algebras we will only consider atomic ones.

In order to compare two different Boolean algebras the notion of a homomorphism,

i.e., a function preserving the structure of Boolean algebras, is of particular interest.

Definition 4. A homomorphism f between two Boolean algebras ~l and ~2 is a

function which preserves the Boolean operations, i.e., for all x, Y E ~l we have

1. f(x U y) = f(x) U f(y),

2. f(x) = f(x).

If it is possible to obtain a Boolean algebra from a given one by simply renaming

the elements, we consider the two algebras as being essentially the same, i.e., they

are isomorphic.

Definition 5. A homomorphism f : ~l ---t ~2 is called an isomorphism iff it is

a bijective homomorphism. ~l and ~2 are isomorphic iff there is an isomorphism

from ~l to ~2.

For example, if Al = {Xl , ... ,xn}, A2 = {YI, '" ,Yn} are two sets, then there is a

bijective function j : Al ---t A2 defined by j(Xi) = Yi for all! :::; i :::; n. This function j

can be extended to an isomorphism k : P(A1) ---t P(A2) between the Boolean algebras

P(At} and P(A2) by k(B) = {j(x) I X E B}.

8

2.2 Category Theory

Later in Chapter 2.3, we will introduce a variant form of relation algebras whose

definition is based on category theory. In this variant of the theory relations are

heterogeneous, i.e., they may have different source and target such as the relation

'is_married_to' already mentioned at the beginning of this chapter.

Definition 6. A category C consists of the following two collections:

1. A class of objects Objcj

2. A class of morphisms Morc. Each morphism f has a source object A and a

target object B, which is usually indicated by the notation f : A --t B. The

collection of all morphisms with source A and target B is denoted by C[A, B].

C is called locally small if C [A, B] is a set for every pair of objects A and B.

In addition, a category has a binary operation which is called composition (;). Com­

position is defined for each pair of morphisms f : A --t Band g : B --t C, and yields

a morphism, f; g : A --t C. The following axioms are valid:

Identity: For every object A, there is a morphism ITA, called the identity morphism

for A, such that for every morphism f : A --t B, we have f; ITA = ITB ; f = f·

Associativity: For all f : A --t B, g : B --t C, and h : C --t D, we have f; (g; h) =

(j; g); h.

In the definition above composition of morphisms has to be read from left to right,

i.e., f; g means first f, then g.

Below we have listed some typical examples of concrete categories:

9

Set: The category with sets as objects and functions as morphisms.

Vee: The category with vector spaces as objects and linear maps as morphisms.

Top: The category with topological spaces as objects and continuous functions as

morphisms.

There are also examples of categories that are not based on functions between

some (structured) sets. For instance, any ordered set is a category, where the objects

are elements of the set and there is exactly one morphism with source x and target

y iff x ::; y. The axioms of a category are satisfied because the reflexivity of the

order induces the identity morphisms and its transitivity implies the associativity of

composition.

A homomorphism between categories is called a functor.

Definition 7. Let C1 and C2 be categories. A functor F : C1 -+ C2 is a pair of

operations FObj : Objcl -+ Objc2' F'Mor : Morcl -+ Morc2 such that for each f : A -+

B,g:B-+CinC1,

• FMor(f) : FObj(A) -+ FObj(B)

• FMor(f; g) = FMor(f); FMor(g)

A functor F is called full if for all A, BE Objcl and every i E C2 [F(A), F(B)] there

is fECI [A, B] such that i = F(f).

F is called faithful if for all A , B E Objcl and for all f, h E CdA, BJ, F(f) =

F(h) implies f = h.

10

In category theory the weaker notion of equivalent categories is usually used in­

stead of the stronger notion of isomorphism. However, since we are mainly interested

in finite structures we will use the stronger concept of isomorphism.

Definition 8. A functor is called an isomorphism iff it is full, faithful and bijective

on objects. Two categories C1 and C2 are isomorphic if there exists an isomorphism

F: C1 ~ C2 •

Two isomorphic categories share all properties that are defined in terms of category

theory.

2.3 Heterogeneous Relation Algebras

In this section we recall some fundamentals on heterogeneous relation algebras. For

further details we refer to [5, 11, 10].

Definition 9. A heterogeneous relation algebra is a locally small category R. Its

morphisms are usually called relations. In addition, there is a unary operation ~B :

R[A, B] ---t R[B, A] between the sets of morphisms, called conversion. The opera­

tions satisfy the following rules:

1. Every set R[A, B] carries the structure of a complete atomic Boolean algebra

with operations UAB, nAB, - AB, zero elementJLAB, universal elementlrAB, and

inclusion ordering ~AB'

2. The Schroder equivalences

Q; R ~AC S <=> Q~; S ~BC R <=> S; R~ ~AB Q

11

hold for relations Q : A -t B, R: B -t C, and S : A -t C.

The definition of heterogeneous relation algebras is based on category theory. All

the indices of elements and operations are usually omitted for brevity and can easily

be reinvented.

Let ReI be the relation algebra which has sets as objects and concrete binary

relations as morphisms. A concrete binary relation R between A and B is a set of

pairs from A and B, i.e., R ~ A x B where A x B is the cartesian product of the

sets A and B . In the remainder of this thesis we will also write xQy for (x, y) E Q.

Suppose Q, S ~ A x Band R ~ B x C. Then the operations are defined as follows:

Converse: Q~ = {(y,x) E B x A I xQy},

Complement: Q = {(x, y) E A x B I (x , y) rf. Q},

Union: Q U S = {(x, y) E A x B I xQy or xSy},

Intersection: Q n S = {(x, y) E A x B I xQy and xSy} ,

Composition: Q; R = {(x, z) E A x C I (:3y E B) xQy and yRz}.

The following is an example of a composition in the heterogenous relation algebra

Rel.

Suppose A = {I, 2, 3} , B = {a , b, c}, C = {True , False} are objects in ReI, and

Q = {(I, True), (2, True), (3 , False)},S = {(False , a), (False, b), (True,c)}, T =

{(I , c), (2, c), (3, a), (3, b)} are relations with Q : A -t C, S: C -t Band T : A -t B.

Relations in ReI can alternatively be represented by Boolean matrices. For ex­

ample, the first matrix below represents Q in the following sense. The three rows

12

represent the three elements in A, and the two columns the two elements in C.

Therefore, the 1 in the upper left corner indicates that the first element of A, the

element 1, is in relation Q with the first element of C, the element True. Analogously,

the 0 in the lower left corner indicates that (3, True) ¢ Q.
,

Then

1 0

; (: :)
0 0 1

0
Q;8= 1 0 0 0 1 =T

1
0 1 1 1 0

Lemma 1. Given relations R : A -t B, Q : A -t B , 8 : B -t C , T : B -t C ,

P : A -t C, then we have:

(a) R; (8 n T) r;;, R; 8 n R; T

(b) R;8npr;;,R;(8nR~;p) andR;8npr;;,(Rnp;8~);8

(c) R; (8 U T) = R; 8 U R; T

(d) (R; 8)~ = 8~; R~

The proof of this lemma can be found in either of [9, 10, 11].

Since a heterogeneous relation algebra is a locally small category, where every

hom-set is a Boolean algebra, we define homomorphisms between relation algebras

based on functors and homomorphisms of Boolean algebras.

Definition 10. A homomorphism between two relation algebras Rl and R2 is a

functor F : Rl -t R2 so that the function induced by F between Rl [A, B] and

13

R 2[F(A), F(B)] is a homomorphism between Boolean algebras for every pair of objects

A and B .

Definition 11. A homomorphism F : Rl --7 'R2 is called an isomorphism iff it is

full" faithful and bijective on objects. Two relation algebras Rl and R2 are isomorphic

(Rl ~ R 2), iff there is an isomorphism from Rl to'R2.

Notice that if F : Rl --7 R2 is an isomorphism between relation algebras, then the

induced function between R1[A, B] to R 2[F(A), F(B)] is an isomorphism between

Boolean algebras for every pair of objects A and B .

2.3.1 Integral Object

Integral objects are of particular interest since it can be shown that certain heteroge­

nous relation algebras are equivalent to matrix algebras with coefficients given by

relations between integral objects. For further detail see [14].

Following the notion used in algebra, we call an object A integral if there are no

zero divisors within the subalgebra R[A, A]. Later on, the class of integral objects

will define the basis of R.

Definition 12. An object A of a relation algebra is called integral iff JLAA -I-lrAA and

for all Q, R E R[A, A] the equation Q; R = JLAA implies either Q = JLAA or R = JLAA .

The following example shows that not all objects are integral.

Let A = {1,2} be an object of ReI, and Q = {(I, I)} , S = {(2, I)} be relations in

R[A,A].

14

Then

However, neither Q = JL nor S = JL, i.e., the object A is not integral. Actually,

the integral objects in ReI are the singleton sets.

It can be shown [14, 15] that the property of being integral is equivalent to the

properties 'llA is an atom' or 'every relation not equal JLAA is total'.

The basis Bn of R is defined as the full subcategory given by the class of all

integral objects.

2.3.2 Symmetric Idempotent Relation

The notion of a splitting combines subobjects (or subsets) and the set of equivalence

cla..')ses of an equivalence relation into one concept [5]. In order to define this concept

we first need the notion of a partial equivalence or a symmetric idempotent relation.

Definition 13. A relation X : A -t A is called a symmetric idempotent relation, iff

X~ = X and X; X = X.

Suppose A = {Peter, Jon, Mary, Paul, Carly, Anna, Debbie, Dave} is a set of per­

sons and an object in ReI. Let X : A --1 A be the relation on this set of persons that re­

lates two persons if they went to the same country for vacation this year. We have X =

{(Peter, Peter), (Peter, Mary), (Peter, Paul), (Jon, Jon), (Mary, Peter), (Mary, Mary),

(Mary, Paul), (Paul, Peter), (Paul, Mary), (Paul, Paul), (Anna, Debbie), (Anna, Anna),

15

(Debbie, Debbie), (Debbie, Anna)} or as a Boolean matrix:

Peter Jon Mary Paul Carly Anna Debbie Dave

Peter 1 0 1 1 0 0 0 0

Jon 0 1 0 0 0 0 0 0

Mary 1 0 1 1 0 0 0 0

Paul 1 0 1 1 0 0 0 0

Carly 0 0 0 0 0 0 0 0

Anna 0 0 0 0 0 1 1 0

Debbie 0 0 0 0 0 1 1 0

Dave 0 0 0 0 0 0 0 0

Notice that Carly and Dave did not go on vacation this year so that they are not in

relation to themselves. X is a partial equivalence relation that has three equivalence

classes - the sets {Peter, Mary, Paul}, {Jon} and {Anna, Debbie} - and two elements

that do not belong to any equivalence class - the elements Carly and Dave.

Some basic properties of symmetric idempotent relations needed throughout the

thesis are listed in the following lemma.

Lemma 2. If X : A ---7 A and Y : B ---7 B are symmetric idempotent relations, then

(a) X;(QnR);Y=X;Q;YnX;R;Y JorallQ,R:A---7B withX;Q;YJ;;;;Q,

(b) X;X;Q;Y;Y J;;;; Q Jar all Q: A ---7 B ,

(c) Q J;;;; X; Q; Y or all Q : A ---7 B with X; Q; Y ~ Q,

(d) X;X;Q;Y;Y = Q for all Q: A ---7 B with X;Q;Y = Q.

16

Proof. (a) We have X; (Q n R); Y !;;:; X; Q; Y n X; R; Y Lemma 1 (a)

For the converse inclusion we have

X;Q;Y nX;R;Y!;;:; X; (X~;X;Q;Y n R;Y) Lemma 1 (b)

=x;(X;Q;YnR;Y) X~=X andX;X=X

!;;:; X; (X; Q; Y; Y~ n R); Y Lemma 1 (b)

=X;(X;Q;YnR);Y Y~=YandY;Y=Y

!;;:;X;(QnR);Y X;Q;Y!;;:;Q

(b) The assumption follows from

X'Q'Y C X'Q'Y , , - , ,

{:} X'Q'Y'Y~ C X'Q , " - , Schroder equivalences

{:} X;Q;Y;Y!;;:; X;Q Y~=Y

{:} X'Q C X'Q'Y'Y , - , , ,

{:} X~· X'Q'Y'Y C Q , , , , - Schroder equivalences

{:}X'X'Q'Y'YCQ , , , , - X~=X

17

(c) We have

X;Q;Y!;;;;;Q

{:} Q;Y~!;;;;; X;Q

{:}Q;Y!;;;;;X;Q

{:}X;Q!;;;;;Q;Y

{:}X~;Q;Y!;;;;;Q

{:} X;Q;Y!;;;;; Q

{:} Q!;;;;; X;Q;Y

Assumption

Schroder equivalences

Schroder equivalences

X~=X

(d) From (b) , we obtain the inclusion!;;;;; . The converse inclusion follows from Q =

X;Q;Y!;;;;; X;X; Q;Y; Y using (c). o

Now, we are ready to define the concept of a splitting.

Definition 14. Let n be a relation algebra, and X : A -t A be a symmetric idem-

potent relation. Then an object B together with a relation R : B -t A is called a

splitting of X iff R; R~ = IB and R~; R = X.

Consider again the set A of persons and the symmetric and idempotent relation

X : A -t A from above. The object B of the splitting of X is the set of the

equivalence classes, Le., it is the set containing the three sets {Peter, Mary, Paul},

{Jon} and {Anna, Debbie}. The splitting R : B -t A is the relation that relates

18

every equivalence class to its elements, i.e., it is given by R =

Peter Jon Mary Paul Carly Anna Debbie Dave

{Peter, Mary, Paul} 1 0 1 1 0 0 0 0

{Jon} 0 1 0 0 0 0 0 0

{Anna, Debbie} 0 0 0 0 0 1 1 0

Theorem 1. Every relation algebra can be faithfully embedded into an algebra that

provides all splittings.

Proof. Let n be a relation algebra, and define a relation algebra n+ as follows. The

class of object Obh.+ is the class of all SID (symmetric idempotent relations) from

n. Given two SID X : A ---+ A and Y : B ---+ B, the set of relations between X and

Y in n+ is defined by n+[X, Y] = {R : A ---+ B I X; R; Y = R}. All operations

except complement are inherited from n. The complement of S E n+[X, Y] is given

by X; S; Y. Therefore, given T , S E n+[X, YJ, Q E n+[Y, Z] and R E n+[X, Z] we

need to show:

1. X;T;Q; Z = T;Q,

2. X ; (TnS);Y=TnS,

3. X;(TUS);Y=TUS,

4. The operation U together with the complement X; S; Y for S E n+ [X, Y] forms

a Boolean algebra, i.e., we have X; X; Q; Y U X; R; Y; Y U X; X; Q; Y U R; Y =

Q for all Q, R E n+[X, Y].

19

6. lIx =X,

7. The Schroder equivalences are valid, i.e.,

We now show each of Equations 1-7 above:

1. Suppose T E n+[X, Y] and Q E n+[Y, Z]. Then we have

X'T'Q'Z=X'X'T'Y'Y'Q'Z'Z , " ""'" T = X·T·Y and Q = Y'Q'Z , , , ,

=X'T'Y'Y'Q'Z , , , , , x = X; X and Z = Z; Z

=T;Q X'T'Y = T and Y'Q' Z = Q , , , ,

2. Suppose T, S E n+[X, Y]. Then we have

X;(TnS);Y=X;T;YnX;S;Y Lemma 2 (a)

= Tn S T = X; T; Y and S = X; S; Y

TnS=X;T;YnS T=X;T;Y

~ X; (T; Y n X~; S) Lemma 1 (b)

~ X; (T n X~; S; Y~); Y Lemma 1 (b)

=X;(TnX;S;Y);Y X=X~andY=Y~

=X;(TnS);Y S=X;S;Y

20

3. Suppose T, S E R+[X, Y]. Then we have

X· (T U S)· Y = (X· TuX· S)· Y , , , " Lemma 1 (c)

= X;T;YUX;S;Y Lemma 1 (c)

=TuS T=X;T;YandS=X;S;Y

4. X;X;Q;YUX;R;Y;YUX;X;Q;YuR;Y

= X· (x·Q·YnX·R·Y)·YUX· (X·Q·YnR)·Y , " '" '" , Definition of n

= (X;X;Q;Y;Y nX;X;R;Y;Y) U (X;X;Q;Y;Y nX;R;Y) Lemma 2 (a)

= (QnR) U (QnX;R;Y)

= Q n (R U X; R; Y)

= Q n (X;R;Y UX;R;Y)

=QnX;(RUR);Y

= X;Q;Y nX; (RU R);Y

= X; (Q n (RU R));Y

=X;Q;Y

=Q

5. Suppose S E R+[X, Y]. Then we have

=X;S;Y~

21

Lemma 2 (d)

Definition of U

Lemma 1 (c)

Lemma 2 (a)

X = X~ and Y = Y~

Lemma 1 (d)

6. Suppose 8 E n+[X, Y]. We have to show that X; 8 = 8 for all 8 E n+[X, Y]

and T;X = T for all T E n+[z, X].

X;8=X;X;8;Y 8=X;8;Y

=X;8;Y X=X;X

=8 X;8;Y=8

7. 8;Q ~ R

Schroder equivalences

::::} y. 8~' R- Z C y. Q' Z , , , - , ,

{:} y. y . 8~' X· R- Z C y. Q' Z , , , , , - , , (5)

{:} Y;8~;X;X;R;Z ~ Y;Q;Z Y; Y = Y and X; X = X

{:} 8~' X· R- Z C y. Q' Z , , , - , , (5)

The converse implication is shown by

8~'X' R-Z· C y.Q. Z , , , ,- , ,

{:}8'Y'Q'ZCX'R-Z , , , - , , Schroder equivalences

::::} X'8'Y' Q'Z' Z C X· X· R-Z'Z , , , , , - , , , ,

{:} X;X;8;Y;Y;Q;Z;Z ~ X;X;R;Z;Z X;8;Y = 8

{:} X;8;Y;Y;Y;Q;Z;Z ~ X;X ;R;Z;Z XiX = X and Y;Y = Y

{:} X; 8; Y ; Q ~ R Lemma 2 (d)

{:}8;Q~R X;8;Y=8

The second equivalence is shown analogously.

22

We have just shown that R+ is a relation algebra, which inherits all operations

from R. The next thing we have to prove is that R can be faithfully embedded into

R+.

Define a functor F : R --t R+ by F(A) = ITA for every object A in R, and

F(T) = T for every relation. This functor is obviously full and faithful.

The last thing we have to show is that R+ provides all splittings. Let U be SID

in R+, where U : X --t X. By definition we know that U~ = U, U; U = U and

X; U; X = U Therefore U is also an object in R+. Furthermore, we have

U;U;X = U;X

=X;U;X;X

=X;U;X

=U

i.e., U E R+[U,X]. From

U;U=U

U=X;U;X

X;X=X

X;U;X=U

U; U~ = U = ITu and U~; U = U

We conclude that the object U and the relation U E R+ [U, X] is a splitting of

U E R+[X,X]. 0

Later, in Chapter 3, we will use the concept of symmetric idempotent relations to

define one structure that represents atom structures of heterogenous relation algebras.

Definition 15. Given two relation algebras Rl and R 2 , define their direct sum

Rl +0 R2 as follows:

• The class of object Obj(Rl+oR2) is the union of all objects from Rl and R 2 •

23

• The set of relations between objects A and B is defined by:

'R.dA, B], A, B E Obj'R1

('R.1 +0 'R.2)[A, B] = 'R.2 [A, BJ, A, B E Obj'R2

otherwise .

• For Q : A ~ B, S: B ~ C, the composition (;) is defined by:

{

Q;S,
Q;8=

JLAC , otherwise.

Theorem 2. The directed sum of two relation algebras is also a relation algebra, and

the given relation algebras can be embedded into it.

Proof. Since 'R.1 and 'R.2 are relation algebras, and JL is the only element between

objects of different inner relation algebras, each set ('R.1 +0 'R.2) [A, B] is a Boolean

algebra.

For each triple of morphisms T E ('R.1 +0 'R.2)[A, BJ, 8 E ('R.1 +0 'R.2)[B, C] and

Q E ('R.1 +0 'R.2)[C, D]; the associativity (T; 8); Q = T; (8; Q) holds if A, B, C, Dare

all either from 'R.1 or'R.2 . Otherwise one of the relations T,8 or Q equals JL Assume

T = JLAB , then we have

(T; 8); Q = (JLAB; 8); Q

T; (8; Q) =JLAB ; (8; Q)

24

The other cases are similar.

Therefore (T; 8); Q = T; (8; Q), and the associativity is valid.

If all relations are in one of the relation algebras R1 or R 2, the Schroder equiva-

lences are vaild. Otherwise assume T E (R1 +0 R 2)[X, Yl , 8 E (R1 +0 R 2)[X, Zl and .

T;Q = T;JLyz

=JLxz

[;;;xz 8

=JLyZ

[;;;YZ Q

the definition of composition

8 E (R1 +0 R 2) [X, Zl

8 E (R1 +0 R 2) [X, Z]

the definition of composition

Therefore T; Q [;;;xz 8 {:} T~; S [;;;YZ Q. The other equivalences are shown analo-

gously.

R1 and R2 are embedded into (R1 +0 R 2) because the class of object Obj('Rl+o'R2)

is the union of all objects from R1 and R 2. o

In the case of integral relation algebras the directed sum can be enlarged by using

a two-element Boolean algebra instead of the trivial one-element Boolean algebra as

the intermediate morphism sets.

Definition 16. Given two integral relation algebras R1 and R21 define their en-

larged sum R1 +1 R2 as follows:

• The class of object Obj('Rl+l'R2) is the union of all objects from R1 and R 2.

25

• The set of relations between objects A and B is defined by:

R 1 [A, B],

(R1 +1 R 2)[A, B] = R2 [A, B],

A,B E Objnl

A,B E Objn2

• For Q : A ---t B, S: B ---t C, the composition (;) is defined by:

Q; S, A, B, C E Objnl or A, B, C E Objn2

Q; S = JLAC , Q = JLAB or S = JLBc

T AC , otherwise

Theorem 3. The enlarged sum of two integral relation algebras is also a relation

algebra, and the given relation algebras can be embedded into it.

Proof. The proof of this theorem is very similar to the proof of Theorem 2. Therefore,

we just show the Schroder equivalences as an example.

Suppose T E (R1 +1 R 2)[X, Y], S E (R1 +1 R 2)[X, Zj and Q E (R1 +1 R 2)[Y, Z],

where X, Y E Obk1 and Z E Objn2'

If Q =JLyZ, then we obtain

T;Q = T;JLyz

=JLxz

I;;:xz S

= T'~;JLxz

=JLyZ

26

the definition of composition

S E (R1 +1 R 2)[X,Zj

Lemma 1 (b)

T;Q !;xz S

the definition of composition

If T = JLXY , then

T;Q =JLXy;Q

=JLxz

[;;;xz S

T~; S =JLyX ; S

=JLyZ

Otherwise we get

T;Q = T;lryz

=lrxz

[;;;xz S

T~; S = T~;lrxz

=lryZ

[;;;YZ Q

the definition of composition

the definition of composition

the definition of composition

S E (R1 +1 R 2) [X, Z]

S E (R1 +1 R 2) [X, Z]

the definition of composition

Therefore T; Q [;;;xz S {? T~; S [;;;YZ Q. The other equivalences are shown analo­

~~ D

Another way of constructing a relation algebra from given ones is to consider pairs

of relations.

Definition 17. Given two relation algebras R1 and R 2, their product R1 x R2 is

defined by:

• The class of object Obj(1'-lX'R2) = {(A,B)IA E Obj'R1,B E Obj'R2}

27

• The set of relations in R1 x R2 is a set of pairs, the first element is a relation

from R1 and the second element is a relation from R 2.

• The composition is inherited from R1 and R2 and applied componentwise.

Theorem 4. The product of two relation algebras is also a relation algebra.

Proof. Given two relation algebras R1 and R 2, and we define the product of two

relation algebras R1 x R2 by following its definition. The set of relations in R1 x R2

carries the structure of a complete atomic Boolean algebra.

For each set of morphisms in R1 x R 2, we need to show the associativity. Let

Q1 : Xl ----> Yl,81 : Y1 ----> Zl, and T1 : Zl ----> Xl, where Xl, Yl, Zl E ObjRl; and

Q2 : X 2 ----> Y2, 82 : Y2 ----> Z2, and T2 : Z2 ----> X 2, where X 2, 12, Z2 E ObjR2·

(Q1, Q2); ((81,82); (T1' T2)) = (Q1, Q2); (81 ; T1, 82 ; T2)

= (Q1; 81; T1, Q2; 82 ; T2)

((Ql, Q2); (81,82)); (T1' T2) = (Q1; 8 1, Q2; 82); (T1' T2)

= (Q1; 8 1; T1, Q2; 82 ; T2)

Therefore (Q1, Q2); ((81,82); (Tl, T2)) = ((Q1, Q2); (81,82)); (T1' T2)

Now we need to show the Schroder equivalences.

(Q1, Q2); (81 , 82) ~ (T1' T2) {:} (Q1; 8 1 , Q2; 82) ~ (T1' T2)

{:} Q1; 8 1 ~ T1 and Q2; 82 ~ T2

{:} Q1~;81 ~ T1 and Q2~;82 ~ T2

The other equivalences follow analogously.

28

o

2.4 Homogeneous Relation Algebras

In this section we review the basic concepts of homogeneous relation algebras. For

further details we refer to [9, 4]. A homogeneous relation algebra is a heterogenous

relation algebra with one object.

2.4.1 Atom Structure

Every relation algebra provides an atom structure, i.e., a relational structure on its

set of atoms. For further details not mentioned in this chapter we refer to [8].

The operations of the underlying Boolean algebra correspond to the set-theoretic

operations of union, intersection and complement on sets of atoms. Some additional

structure on atoms is needed to recover composition and converse of the relations.

Notice that the converse of an atom is an atom again. For a proof see [8].

Definition 18. Let R be a finite homogenous relation algebra. The atom structure

ofR is a structure of form Q(.t(R) = (At(R),C,~,I), where At(R) is the set of

atoms ofR, C = {(x,y,z) : z ~ x;y} is a ternary relation on At(R), i.e., C ~

At(R) x At(R) x At(R) and I = {x : x E At(R) , x ~ lI}.

We need to prove the following theorem in order to define the concept of a cycle.

This concept can be used to represent the ternary relation C in a more compact

manner.

Theorem 5. Let Q(.t(R) be the atom structure of a finite homogeneous relation algebra.

Then (x, y, z) E C iff (x, z, y) E C iff (y, '1, x) E C iff (V, x, '1) E C iff ('1, x, V) E C iff

(z,V,x) E C.

29

Proof. (x, y, Z) E C

{:} Z ~ x; y

{:} z n x; y of- 0 z is an atom.

{:} x;y g z Boolean algebra property.

Schroder equivalences.

Boolean algebra property.

y is an atom.

(x~,z,y) E C

All other implications are shown analogously. o

Due to the theorem, we define a cycle [x,y,z] by

[x, y, z] = {(x, y, z), (y, z, x), (z, 1), x)(x, z, y), (1), x, z), (z, x, 1))}

A cycle can nicely be visualized by the following diagrams.

z x x

1\z 1\£ 1'\
• II .. y-y -z.

Figure 2.1: Cycle law for binary relations.

30

If one of the directed triangles in Figure 2.1 is in the relation C of an atom

structure of a relation algebra, then so are the others. In other words, the relation C

is the union of certain cycles. Furthermore, it is sufficient to store only one element

as the representative of a cycle.

For an example consider the set A = {I, 2} and the relation algebra R with object

A and all binary relations on A. Represented as Boolean matrices, the atoms of R

are the following four relations:

The atom structure is, therefore, given by

At(~) = {a,b,e,d}, and I(~) = {a,d}.

Ii = a, b = e, C = b, d = d.

By the definition of cycle structures, we obtain

C(~) = {[a, a, a], [b, e, a], [e, b, d], [d, d, d]}.

The atom structure of ~ is QH(~) = (At(~), C(~), ~,I(~)).

2.4.2 Complex Algebra

We are now interested in the converse process, i.e., defining a relation algebra if an

atom structure is given.

31

Definition 19. Let be 6 = (U, C, f, J) a relational structure such that C ~ U x U x

U, f : U --+ U and J ~ U. The complex algebra of6 is ctm(6) = (P(U), U, -,;, ~,J),

where X; Y = {z : (:3x E X)(:3y E Y)((x, y, z) E C)}, and X~ = {Jx : x E X}, for

any subset X, Y ~ U . .
We continue with the example which was given in the previous section. In this

case, the given relational structure is 6 = Q(t(~) = (At(~), C(~), ~,J(~)).

A finite relation algebra is completely determined by the action of composition on

its atoms. The cycles completely determine the composition operation.

Let X = {a, b}, Y = {c, d}, we have {a, b}; { c, d} = {a, b} by the definition of the

relation C(B). This corresponds to the composition of the following two matrices in

the original algebra.

By the definition of the relation C(B), and {a,b}~ = {Ja,fb} = {a,c}. This

corresponds to the union of the following two matrices in the original algebra.

(: :) u (::) (::)

The connections between atom structures and complex algebras have been pre-

sented in [8] as following: If Q(is a complete and atomic relation algebra, then

Q(~ ctm(Q(t(Q()). Furthermore, any two complete and atomic relation algebras Q(

and ~, Q(~ ~ iff Q(t(Q() ~ 5.2(t(~).

32

It is well-known that every atomic relation algebra induces a particular structure

on its atoms: its atom structure. In particular, composition is represented by a set of

triples of atoms, i.e., by a ternary relation. Conversely, given an atom structure one

may form the complex algebra thereof. The structure obtained is, in general, neither

integral nor a relation algebra.

Following properties in [9] characterize the atom structure that lead to a relation

algebra.

Theorem 6. Given Qt = (U, C, ~, I), Itm(Qt) is a relation algebra iff

1. if (x, y, z) E C, then [x, y, z] ~ C.

2. x = y iff there is some i E I such that (x, i, y) E C,

3. if (v, w, x), (x, y, z) E C then there exists u E U such that (w, y, u), (v, u, z) E C

as shown in Figure 2.2.

u

v

Figure 2.2: Associativity for composition.

When I' is an atom, I is a singleton, i.e., I = {e}.

33

Theorem 7. Given Qt = (U,C, ~,{e}),

• Itm(Qt) is integral iffQt satisfies condition (a) .

• Itm(Qt) is a relation algebra, iff Qt satisfies conditions (a) and (b).

(a) if x =1= y then there is some w E U rv {e} such that (x, w, y) E C.

(b) if (v,w,x), (x,y,z) E C and v =1= z, w =1= y then there exists u E U rv {e} such

that (w,y,u), (v,u,z) E C.

Later, in Chapter 4, we will use these properties to check whether the complex

algebra of a given relational structure on a set is a relation algebra .

34

Chapter 3

Three Structures representing

Relation Algebras

In this chapter we want to introduce three structures representing atom structures

of integral heterogenous relation algebras. The first structure simply embeds a ho­

mogeneous atom structure into the heterogenous context. The second structure is

obtained by splitting all symmetric idempotent relations. Finally, we define a struc­

ture representing the direct and the enlarged sum of two algebras.

3.1 The Structure HomNA

In this section we define the structure HornN A. Recall that this structure resembles

the atom structure of a relation algebra. The abbreviation NA stands for nonasso­

ciative. If condition (b) of Theorem 7 is not satisfied, then the composition in the

complex algebra is not associative, and hence, the use of this name.

The following structures and operations were implemented in the programming

35

language Haskell. Therefore, we present the structures in a Haskell-pseudocode, i.e.,

using constructors and tuple notation to represent structures.

Definition 20. The structure RNA (name, n, s , i , eye, i sRA) is called a H omN A where

• n is the number of atoms,

• s is the number of symmetric atoms, i.e., 1 :::; s :::; n,

• i is the index of the structure within all possible structures with n atoms and s

symmetric atoms,

• eye is the ternary relation for composition given by cycles (cf. [9]) ,

• isRA is true iff the structure is an integral relation algebra.

As a representation of the atoms we use natural numbers 1, . . . , n with the follow­

ing conventions. The identity, which is an atom in an integral structure, will always

be atom 1. The atoms 1, ... , s are symmetric, and the remaining atoms s + 1, ... , n

are non-symmetric with m~ = m + 1 if m - s is odd and m~ = m - 1 if m - s is

even. Consequently, n - s must be even.

The Boolean part of the complex algebra of an HomNA is defined as usual, and

the converse operation on sets is defined componentwise. In the following we want

to briefly explain how to compute composition in the complex algebra. First of all,

the ternary relation eye is given by cycles [9J . Recall that a cycle is a triple of atoms

[x, y, zJ representing up to six triples, i.e.,

36

Furthermore, we omit the cycles involving the identity, i.e., the cycles [x, 1, xl for

every atom x. eye can now be computed as the union of the identity cycles and the

cycles of the structure.

We want to illustrate the whole concept by an example. Consider the HomNA

HNA (4,2,98, {[2, 2,2] , [2,2,3] , [3,3, 3J} , True). This structure has 4 atoms with

the following converse operation

1 ~ = 1, 2~ = 2, 3~ = 4, 4~ = 3.

Expanding the set of cycles we get

eye = {(1,1,1),(2,1,2),(2,2,1),(1,2,2),(3,1,3),(4,3,1),(1,4,4),(4,1,4),

(3,4,1), (1,3,3),(2,2,2), (2,2,3), (2,3,2),(3,2,2),(2,2,4), (2,4,2),

(4,2,2),(3,3,3),(4,3,3),(3,4,3),(4,4,4),(3,4,4),(4,3,4)}.

Composition in the complex algebra is now defined by

X ;Y:= {zlx E X ,y E Y,(x,y,z) E eye}.

Now, consider the sets of atoms A = {2, 3} and B = {2}. Then we have

A~ = {2~, 3~} = {2, 4}, A; B = {2; 2} U {3; 2} = {1, 2, 3, 4}.

3.2 The Structure SplitN A

In this section we want to introduce the structure SplitNA. A SplitNA is generated by

splitting all symmetric idempotent relations of a HomNA. For each of the additional

objects of this category according to the embedding sketched in Section 3.1 a HomNA

37

is computed and stored in the new structure. In addition, for each heterogeneous hom­

sets, i.e., the sets of relation with different source and target, the number of atoms is

computed. For each such number its extension, i.e., the original relation, is stored.

Definition 21. The structure SNA(root,objs,atoms) is called a SplitNA where

• root is a HomNA (the root of this structure),

• obj s is a set of HomNAs representing the objects,

• atoms is a function mapping hom-set to a list of relations of the root object.

Notice that in the actual implementation the elements of objs are in fact just

triples consisting of n, sand i. This information together with the enumeration

algorithm implemented is sufficient to identify the corresponding HomNA.

We illustrate this structure by an example. The whole SplitNA including the

function atoms is visualized in the Diagram 3.1:

.3}

Figure 3.1: The Structure SplitNA.

38

We start with the HomNA with n = 3, s = 1 and i = 1 as the root ob­

ject. This algebra has exactly three symmetric and idempotent relations: the iden­

tity, the empty and the universal relation. The identity generates the original al­

geb~a as an object of SplitNA. The other two relations generate HomNAs with

n = 0, s = ° and i = ° and n = 1, s = 1 and i = 0, respectively. Therefore objs =

[(0,0,0), (3, 1, 1), (1, 1,0)] and we indicate each object by its index in objs. In this

case, atoms = [((0,0), [J),((0,1), [J),((0,2) ,[J), ((1,0) ,[J),((1,1) ,[[1 J, [2],[3]]), ((1,2), [[1,2,3]]),

((2,0), [J), ((2,1), [[1 ,2,3]]), ((2,2), [[1 ,2,3]])].

For example, there are no atoms between the objects (0,0,0) (index 0) and (3 ,1,1)

(index 1) . On the other hand, there is exactly one atom between (1,1,0) and itself.

This atom is the the union of the atom 1,2 and 3 of the original relation algebra, i.e,

the object (3,1,1).

3.3 CombineNA Structure

In this section we introduce the structure CombineNA. This structure implements

the directed as well as the enlarged sum of two algebras as defined in Section 2.

Therefore, it consists of a list of inner NAs, i.e., each element is a HomNA, SplitNA

or CombineNA. Furthermore, it indicates whether the hom-sets between objects of

different inner NAs has ° or 1 atom. The structure is visualized in Figure 3.2. In

this example there are two NAs. NA#O is a HomNA, and NA#l is a SplitNA. The

CombineNA was generated by specifying that there should be ° atoms in the hom-sets

between objects of different inner NAs (dashed arrows). Le., that we use the direct

sum construction.

39

NA #0 NA #1

Figure 3.2: CombineNA Structure.

Composition of relations within one of the inner structures of a CombineNA is

computed within that inner structure. If one of the parameters of a composition is a

relation between inner structures, the result is uniquely determined by the axioms of

integral nonassociative relation algebras.

40

,

Chapter 4

Implementation

4.1 Overview

In this chapter, we present the implementation of our work. In general, the system

is capable of doing the following three tasks.

1. Compute all relation algebras with n atoms and s symmetric atoms. This works

using the tables on the disk. We first divide the table entries into two parts:

non-isomorphic NAs and isomorphic NAs. For isomorphic NAs entries, we just

need to check isRA property for the first element in the isomorphic list, and

the rest is filled automatically. Conversely, non-isomorphic NAs entries have to

check the i sRA property all the time.

2. Provide a user interface in which a user can design a basis using the three

structures from Chapter 3. During this process the structure, i.e., how the

basis is built, is kept.

41

3. Export a basis as a heterogeneous algebra suitable to be used by another pro­

gram. The algebras are stored in XML. This format can be used by the ReAlM

system [1]. The additional information of how the basis was constructed is not

stored.

The system has been developed using the functional programming language Haskell.

A Haskell program consists of a collection of modules. A module defines a collection

of values, datatypes, type synonyms, classes, etc. We will discuss how each module

of the system relates to our work. Figure 4.1 shows the dependencies between the

modules of the system. The user interface has been developed by using GTK and

Figure 4.1: The Relationship of Modules.

the Haskell library Gtk2Hs. The graphic has been generated by Graphviz which is a

graph visualization software. Throughout this chapter we assume that the reader is

familiar with the language Haskell and its standard libraries.

42

4.2 Atom Structure Module

The Atom Structure Module groups a set of related functionalities into a single

package and manages them. It exports some of these resources and makes them

available for other modules, e.g., HomNA, HetNA.

In Chapter 2, we introduced the atom structure, which is a relational structure

on a set of atoms of a finite relation algebra. In our module, atoms are integers from

1 to n, where 1 is the identity. The atoms 1, ... , s are symmetric, and the remaining

atoms s + 1, ... , n are non-symmetric with m ~ = m+ 1 if m - s is odd and m ~ = m-1

if m - s is even. Consequently, n - s must be even, in order to obtain a well-defined

converse operation.

We also define three data types:

type Ternary = (lnt,lnt,lnt)

type Cycle = [Ternary]

type lsoMap = lORef (M.Map (lnt,lnt) [[lnt]])

As a representation of the atoms we use the integer numbers; therefore Ternary is

a triple of Int. Recall that a cycle is a triple of atoms, which are related by the

property of Theorem 5. We use a list of Ternary to represent a Cycle. IsoMap is

an IO Reference that helps to access the data from files. It makes the data on disk

available to other programs that might be reading it concurrently. Given nand s,

the system will load the list of [Int] from a file , each [Int 1 represents an isomorphism.

With the converse operation and the type Cycle, we can define the cycle structure

by its definition.

cycleSet :: Eq a => (a->a) -> (a,a,a) -> [(a,a,a)]

43

cycleSet f (x,y,z) = nub [(x,y,z),(f x,z,y),(y,f z,f x),

(f y,f x,f z),(f z,x,f y),(z,f y,x)]

In order to determine whether a given atom structure leads to a relation algebra, we

need to implement the two properties mentioned at the end of Chapter 2.

isRA :: (Num a, Enum a) => (a->a) -> a -> [(a,a,a)] -> Bool

isRA f n na = (is Integral f n na) && (and

[all (existU f n na) (match f tl t2)1 tl<-na, t2<-na])

The islntegral function implements property (a) from Theorem 7.

isIntegral :: (Num a, Enum a) => (a->a) -> a -> [(a,a,a)] -> Bool

is Integral f n c = and [any (\w -> cycElem f (x,w,y) c) [2 .. n]

I x<-[2 .. n], y<-[2 .. n], x/=y]

The existU function implements property (b) from Theorem 7.

existU :: (Num a,Enum a) =>

(a->a) -> a -> [(a,a,a)] -> (a,a,a,a,a) -> Bool

existU f n c (v,w,x,y,z) = any (\u -> (isIn (w,y,u) c) &&

(isIn (v,u,z) c» [2 .. n]

where isIn = cycElem f

Recall that a homogeneous relation algebra can be seen as a heterogeneous relation

algebra with just one object. In HomNA module, atoms are simply integers; however

each atom has a source object and a target object in HetNA module. Since atom

structures are a commonly used module in our system, all functions are implemented

polymorphically, i.e., they are universally quantified in some way over all types.

44

For instance, function cycleSet takes a polymorphic function f as a parameter.

This function represents the converse operation of the algebra. In the case of a

HomNA atoms are simply integers and one might pass function converse applied to

the numbers n and s. On the other hand, if we work with any of the heterogeneous

structures, the atoms are triples consisting of source and target object and the number

of the atom so that we have to use a different converse operation.

4.3 N A Structure

The implementation of the modules HomNAs, Spli tNAs, and CombineNAs follow the

same pattern. There is only a difference in the way they are organized. For example,

we are able to represent atoms by integers in HomN A structure, i.e., a relation is an

element of the datatype (Set lnt). We have to distinguish each object and represent

atoms by adding a source object and a target object in the SplitNA structure, i.e., an

atom is of the form (lnt, lnt, lnt) where the first two integers indicate the objects

and the third integer the actual atom. Consequently, a relation is of type (lnt,

lnt, Set lnt). In CombineNA structure, the source object and the target object are

represented by a pair of integers instead, i.e., ((lnt, lnt), (lnt, lnt), Set lnt). If

the source object and target object are from the same category, then the first integers

in the pairs are the same. The second integer in the pair is the index of objects in

the category. So that we declare a new type called NA, and use case expressions to

handle the differences.

There are three ways to create an NA. We can create an NA by being given a

HomNA, a SplitNA, or a CombineNA.

45

data NA = NaH HomNA

NaS SplitNA

NaC CombineNA

deriving (Ord,Eq,Show,Read)

The function checkRA is used to test whether a NA is a RA or not .

checkRA :: NA -> Boo1

beRA hna checkRA (NaH hna)

checkRA (NaS sna)

checkRA (NaC cna)

beRA (rootObject sna)

and [checkRA xlx<-naList cna]

4.3.1 HomNA Module

By Definition 20 in Chapter 3, we defined a new data type HomNA using the data

keyword.

data HomNA HNA {

name String,

atomN Int,

atomS Int,

index Integer,

beRA Boo1,

cycList Cycle

} deriving (Ord,Eq,Show,Read)

Recall that a HomNA resembles the atom structure of a nonassociative relation alge­

bra. By importing the Atom Structure module, the user only needs to provide three

parameters in order to construct such a complicated structure.

46

createHNA :: Int -> Int -> Integer -> HomNA

The user can produce a new HomN A out of two given HomN As by calling the function

prodHNA.

prodHNA :: HomNA -> HomNA -> HomNA

Given a HomNA, the following operations are defined.

Table 4.1: Functions of HomNA

Nullary Operations Unary Operations Binary Operations

idHNA converseHN A unionHNA

zeroHNA complementHN A intersectHN A

topHNA compositHNA

Following Definition 14 in Chapter 2, we defined a function which returns all

symmetric idempotent relations for a given HomNA. We first check symmetry and

idempotent then find the relations that satisfy the predicate among all relations of

the given HomNA.

allSidHNA :: HomNA -> Set (Set Int)

allSidHNA na = filter (\r -> (converseHNA na r)==r

&& (compositHNA na r r)==r

) (allRelationsHNA na)

The method homToDot is a simple mechanism for translating a Haskell date type

into a Dot-Format text string. The string will be used by Graphviz to create a graph

representation for this Haskell date type.

47

homToDot HomNA -> String

4.3.2 SplitNA Module

By Definition 21 in Chapter 3, we defined a new data type Spli tNA using the data

keyword.

HomNA,

data SplitNA = SNA {

rootObject

splitObjects

atomCorresp

[Object] ,

[((Int,Int),[S.Set Int])]

} deriving (Ord,Eq,Show,Read)

The object type is just a triple consisting of n, sand i. It is sufficient to identify the

corresponding HomNA.

type Object = (Int,Int,Integer)

Recall that a SplitNA is generated by splitting all symmetric idempotent relations of a

HomNA. By importing the HomNA module, the user can generate a SplitNA structure

easily.

createSNA :: HomNA -> SplitNA

The user can produce a new SplitN A out of two given SplitN As by calling the function

prodSNA.

prodSNA :: SplitNA -> SplitNA -> SplitNA

Given a SplitNA, the following operations are defined.

48

Table 4.2: Functions of SplitNA

Nullary Operations Unary Operations Binary Operations

idSNA converseSN A unionSNA

zeroSNA complementSN A intersectSNA

topSNA compositSN A

Since two different SplitNAs may contain the same HomNAs as objects, the user

should give a name in order to distinguish one from another. Compared with the

homToDot function, there is one more string parameter.

splitToDot :: SplitNA -> String -> String

4.3.3 CombineN A Module

In Chapter 3, we introduced the direct sum and the enlarged sum as unions of relation

algebras. The structure CombineNA is their representation in Haskell.

data CombineNA = CNA {

naList

interAtoms

[NA] ,

Int

} deriving (Ord,Eq,Show,Read)

For each of the two versions of a sum of relation algebras, there is a corresponding

operation to create an instance of a CombineNA: createCombO, createComb1.

createCombO

createCombl

[NA] -> CombineNA

[NA] -> CombineNA

49

Table 4.3: Functions of CombineNA

Nullary Operations U nary Operations Binary Operations

idCNA converseCN A unionCNA

zeroCNA complementCN A intersectCNA

topCNA compositCNA

Given a CombineNA, the operations above are defined.

As usual, there is a function for translating a Haskell date type into a Dot-Format

text string. There is an integer list as a parameter, because it will be used for

displaying each member of the CombineNA in the same cluster when Graphviz creates

the graph.

combToDot CombineNA -> [Int] -> String -> String

4.4 HetNA Module

Following Definition 9 in Chapter 2, we defined the data type HetNA as follows:

data HetNA = HtNA {

nList

sList

objNum

cList

raVal

[(Int,Int,Int)] ,

[(Int,Int)] ,

Int,

[Triple] ,

Bool

} deriving (Ord,Eq,Show)

50

nList is the list of atoms where the first and the second integer denote the source

and target object. sList is the list of symmetric atoms. Since symmetric atoms must

have same source and target there is just one integer for those objects. The number

of objects is represented by objNum. cList is the ternary relation for composition

given by cycles. If an element of type HetNA is a relation algebra then raVal equals

to true and to false otherwise.

Given an NA, we can construct a HetNA by calling createHtNA.

createHtNA :: NA -> HetNA

Those HomNA's operations can also be applied to HetNAs by adding type rules.

Table 4.4: Operation Functions of HetNA

Nullary Operations Unary Operations Binary Operations

idHtNA converseHtNA unionHtNA

zeroHtNA complementHtNA intersectHtNA

topHtNA compositHtNA

The following function can be used to store an HetN A in an XML file:

saveHetNA :: HetNA -> String -> String -> IO ()

The first string parameter is the file name, and the second string parameter is the

name of the structure.

51

4.5 MyTable Module

The system is capable of computing all integral homogeneous relation algebras with

n atoms and s symmetric atoms. In order to do so, the system checks the properties

of Theorem 7 for all possible sets of cycles. The result is saved in a list on the hard

disc.

During the computing process, the system could be stopped at any point. If we did

not save our data before the system was halted, we would have to compute the same

data again. For optimization reasons, the system is designed to handle unexpected

halt.

We imagine that there is a table in our system like Figure 4.5. Given nand s,

there are 2Q(n,s) possible sets of cycles where Q(n, 8) = ~ (n - 1) [(n - 1)2 + 38 - 1] are

described in [8]. The first column stores the indices of 2Q(n,s) atom structures. The

second column stores the Boolean values which indicates whether the atom structure

leads to a relation algebra. The third column stores the list indices of atom structures

that are isomorphic to the current one.

Table 4.5: MyTable

Index I isRA I Isomorphic List I

1 T [2]

2 T [1]

3 F [18,19,20]

2Q(n,s) F []

52

Recall that any two complete and atomic relation algebras are isomorphic to each

other if and only if their atom structures are isomorphic. In our example in Figure

4.5, we already have computed the first row and it is isomorphic to the second row,

so that it is not necessary to compute the Boolean value isRA for this atom structure ,

again.

Our implementation does not use the same kind of table as in Figure 4.5, since

such a table would become extremely large for larger numbers of atoms. We only

use one byte to represent one row in the table above and we write them in sequential

order.

So far we have just computed this table for n = 6 and s = 2. For further comments

on the limitation of the system with respect to the value of nand s see Chapter 6.

Since there are 2Q (n,s) possible sets of cycles, it is easy to represent the index of

atom structures in Q(n, s) binary form.

For example, given n = 4 and s = 2, then the set of all possible cycles is:

[(2,2,2), (2, 2, 3), (2,3,3), (2,3,4), (2,4,4), (3,3,3), (3,3,4)]

where each ternary in the set represents its own cycle set.

The atom structure [(2,4,4), (3, 3, 3), (3,3,4)] has index 7, which is 0000111 in

binary form.

Given an index, the indexTo function finds the corresponding ternary list.

indexTo :: Int -> Int -> Integer -> Cycle

indexTo n s i I i«2-len) = [tl(b,t) <- list,b == 1]

where list = zip (bList len (binary i)) (allCycles (converse n s) n)

len = qNS n s

53

Given a ternary list, the fromlndex function finds the corresponding index num­

ber.

fromIndex :: Int -> Int -> Cycle -> Integer

.fromIndex n s ts ts [] = 0

ts /= [] = decimal [bl(b,t) <-(update n s ts list)]

where list = zip (bList len (binary 0)) (allCycles (converse n s) n)

len = qNS n s

We implemented the isomorphic list in the following steps: First, find the atom

structures at the given index and convert the given index to a Q(n, s) binary form.

Secondly, find all map functions for atoms, then apply every map function on each

cycle of the atom structures componentwise; after that we will receive a list of new

atom structures. Finally, find the indices for each new atom structures and sort the

list, so that the first element is the minimum isomorphic index.

Note that we obtain all map functions by calling mapFunctions. It simply com­

bines the direct product of the symmetric atoms' permutation list and the asymmetric

atoms' permutation list.

mapFunctions :: Int -> Int -> [[Int]]

mapFunctions n s = sList 'combine' asList [[x,x+1] I x <- [s+1,s+3 .. n]]

where sList = permutations [2 .. s]

asList 1 = concatMap (\x->foldl combine [[]] (map permutations x))

(permutations 1)

In the MyTable module, we define a new data type Table by given a handle and

a start position of the file.

54

newtype Table = Tab (Handle,Int)

type RATable = MVar Table

We will create a new Table without filling the isRA field if no such a file exists.

Otherwise we will load a Table from an existing file.

Haskell I/O Handle allows us to perform specific operations at any locations in

the file.

The function getRAValue will return isRA value in the given Table at the index

getRAValue :: RATable -> Integer -> 10 (Maybe Bool)

Given a Table, Handle Position, isRA Value, the function updateRATable updates

the Table value at the file position

updateRATable :: RATable -> Integer -> Bool -> 10 ()

Haskell maintains internal buffers for files. Our data may not be flushed out to

the operating system until we call closeRATable.

closeRATable :: RATable -> 10 ()

4.6 GUI

The framework of the graphic user interface is developed using Glade which is an

interface designer that allows the user to graphically layout an application window

and its dialogs. Below in Figure 4.2 there is a screenshot of Glade during the design

of the graphical user interface of our system. Glade saves the interface in XML files,

that will be loaded by the application at runtime.

The library Gtk2Hs is the Haskell binding for GTK and Glade.

55

(~

Figure 4.2: The Framework of GUI

import qualified Graphics.UI.Gtk.Glade as Glade

Just xml <- Glade .xmlNew "My_GUI.glade"

window <- Glade.xmlGetWidget xml Gtk.castToWindow "window!"

The Haskell code above shows how to import and use the user interface designed

in Glade. First, we have to import the module Graphics. UI. Gtk. Glade. The XML

file generated by Glade is loaded in the next line, and finally, the main window is

created using its name used within Glade. For further details of developing and using

graphical user interfaces with Glade and Haskell we refer to [12] .

The system interface is made up of four main parts: the graph display area, the

system message box, the internal list of algebras created so far , and the user input

area.

The graph display area shows result pictures which are corresponding to the user

inputs. By selecting an item in the NA list store,the corresponding picture will be

displayed in the graph display area. Each N A structure has a to String method that

56

can convert the data type into the Dot language. Figure 4.3 shows the running

process. The Dot language is used by Graphviz (a graph visualization software) to

generate pictures. For further details we refer to [6].

Graphviz
Create Graphs

Figure 4.3: Running Process

The system message box shows system messages which helps the user to under-

stand each step of the system operations. It displays error messages, file location

messages, and user Input/Output messages.

The internal list of algebras store presents the internal process results. It allow

the user to choose items in the list. Those chosen items can be used for creating a

CombineNA structure, deleting, or saving as a xml file.

57

,

Chapter 5

User Manual

In this chapter, we present how to use our system. We start by giving a brief overview

of the system. After that we describe how we organize the system documents. At the

end, we give a thorough example to demonstrate our system.

5.1 Overview

The system was intended for generating finite integral relation algebras using Win-

dows operating system. It provides graph representations to visualize different struc-

tures of finite integral relation algebras. The system has interrupt capability to handle

unexpected halting. It allows the users to save their final results as files in xml for-

mat. The intermediate results and structure graphs are available for reloading. The

system has an easy to use graphical user interface. Figure 5.1 is a screenshot of the

system's graphical user interface.

58

.,
~ 'SplitNA # 2

~ CCimbintNAO *'.3

~ Coml:intNAl #"

~:~,;::~:e::t,~";7::'~~~,~:!i~~l':='I'l~won Argtbras.

'~,"'on '",m",'\i, ""':l

Figure 5.1: Graphic User Interface.

5.2 User Instruction

In order to run our system properly, the user has to install a GUI library which is

called Gtk2Hs. The user should consult the gtk2hs downloads site at

http://www.haskell.org/gtk2hs/downloadj.

In order to create a homogeneous relation algebra, the user should specify the

number of atoms (n), the number of symmetric atoms (s), and the index of structure

within all possible structures with nand s. There are three spin buttons for user

input in the top right corner which can be seen in Figure 5.2. Two numbers nand n

are positive integers which n - s is even and n is greater or equal to s. The index is

start from 0 to 2Q(n,s). The system will automatically check whether the input index

is in the range or not. If user inputs invalid data, the system will report an error

message:

59

Figure 5.2: User Input Area.

"Invalid Input Data. (1<=S<=N && even (N-S) && O<=i<2~Q(N,S»"

The messages will be displayed by the system message box at the bottom left

corner of the GUI. Furthermore, when the user applies any kind of operations, the

system message box will also display the correspondent messages. Below the user

input area, there are eight operation buttons.

HomNA: create a HomNA and save in the NA list below.

SplitNA: create a SpiitNA and save in the NA list below.

CombineNAO: create a CombineNA which has 0 inter atom in the hom-sets between

objects of different inner NAs.

CombineNAl: create a CombineNA which has 1 inter atom in the hom-sets between

objects of different inner NAs.

ProductHNA: given two HomNAs, produce a new one.

ProductSNA: given two SplitNAs, produce a new one.

ProductCNAO: given two CombineNAs which both have 0 inter atom, produce a

new one.

60

ProductCNAl: given two CombineNAs which both have 1 inter atom, produce a

new one.

There is a view on the right side which shows all the NAs currently stored in the

system, like in Figure 5.3. In our case, there are two NAs.

The list ·of NAs

~~>()ice 0> TXp~.o , !rI .dic;~ .
li¥J HomNA # 1

~ SplitNA #2.

Figure 5.3: List Store Area.

The Choice indicates whether the NA is chosen. The Type means the type of NA.

The Indices is the current NA 's index amount all NAs be stored in the system. By

selecting an item in the view, the corresponding picture will be displayed. The user

has the freedom to choose a list of NAs which would be used for creating a CombineNA

structure or would be deleted from the system.

The user also is free to choose an NA to save as an XML file , and the XML file

will be used as inputs of the other system which is called ReIAIM. When the user

saves a NA to a file, the system will ask for the file name and the name of the output

structure (the default name is hetRel). Not only is the user able to save the current

list to a file , but also to load a list from a file. At the end, the user can close the

61

program by clicking on the Quit button.

5.3 File Organization

,
There are two root directories. The first one is System, the second one is Algebras.

The System contains all the intermediate files are created by the system during the

generation of the finite relation algebras. These files are only used by the system.

Docs: contains the Haskell source code documentation of the system.

IsoMap: contains all Isomorphisms of the given RA.

RAs: contains the RA tables.

Algebras contains all the intermediate files created by the system during the

representation of the finite relation algebras. These files may be used by an external

program.

Dot File: contains dot files used by an external program . .

Graph: contains graph representations for NA Structures.

NaList: contains the lists of NA which are loaded by the system.

XML: contains the information about heterogeneous relation algebras.

5.4 Example

In this section we provide a thorough example for the use of the system. In this

example we apply all kinds of operations and save the result in different formats.

62

1. Create a HomNA:

First, we are going to create a homogeneous relation algebra. After selecting

n=4 and s=2 in the input area on the top right corner of the graphical user in-

terface, the proper index range, i.e., 0-127, is displayed. We select 6 as the index

and press the button labeled 'HomNA'. The system creates the corresponding

structure, adds it to the list of structures in the lower left corner, and displays

the result as shown in Figure 5.4.

HomNA

~

j'l Progran, th.tgenfrating Finit~ Jntf9r.l Re.lation Algebra5.
he- Tot.1 number of Non hcnlorphic RAt: 37
tf.ateaHomNA.

Figure 5.4: HomNA 6@(4,2)

If this is the first time ever that a homogeneous relation algebra with 4 atoms

and 2 symmetric atoms is generated, the system will generate the files 'IsoMapA_2'

in the folder 'IsoMap' and the file 'RAsA_2 ' in the folder 'RAs ' as described

in Chapter 4. Notice that this may take some time depending on Nand S. In

addition, the system will produce two file related to the image shown in Figure

5.4. These files are the file 'HomNA1.dot' in the folder 'DotFile', and the file

'HomNA1.png' in the folder 'Graph'.

63

2. Create a SplitNA:

Secondly, we create an instance of the SpiitNA structure. Similar to creation

of the first structure we enter N=3 and S=1 on the top right corner. Again,

the proper index range (0-3) is displayed, and we select 3. This time we press

the button labeled 'SplitNA'. As before the system generates the structure and

displays it as a graph as seen in Figure 5.5. The system will generate similar files

SplitNA

i~ iI Program that grnerating Finitl! Integr~1 Relatiol1 Aigebra~.
he Total numb6 of Non I~omorphic RAs = 3
tutl: • .sp~tNA

Figure 5.5: SplitNA 3@(3,1)

as in our first example on the disc. This time the files are called 'IsoMap_3_1',

'RAs3_1', 'SplitNA2.dot' and 'SplitNA2.png', of course.

3. Create a CombineN A:

So far, we have created two algebras which are stored in the internal list of

algebras. Now we use those algebras in order to build a more complex struc-

ture. First, we select the previous two structures in the list of algebras in the

lower right corner of the application. Then we press the button labeled 'Com-

64

BineNAO', and the system will create a CombinNAO structure. A new algebra

called 'ComBineNAO #3' is created and added to the list . We select this new

algebra and press the button labeled 'CombineNA1'. The result is shown in

Figure 5.6. This time the system only generates the dot and png files for the

i, I Program lhat'genua6ng Fi~ite in1egril l Refation.Alg~bfiS.
Totil nunlbf:r Qf rfon.lso.nlorphic RAs., 37

bf N'on ls"pmorphic ItA!; =, 3

Figure 5.6: CombineNA

two new algebras in the corresponding folders.

4. Product of two NAs:

In order to demonstrate the product functions, the user should have already

created at least two structures of the same type. For example in Figure 5.7

the algebras HomNA 1@(2,2) and HomNA 3@(3,1) have already been created,

and the algebra HomNA 20503@(6,2) was obtained by using the ProductHNA

function. As before, dot and png files were created during this process.

5. Save and Load NA List:

The system has created seven N As in the list since its inception. To save them,

65

HomNA

,is,. P~fam ~t generating finitelntt.~ril~RdlJtion A1g~t.s.
he lotJlnunibu ~f Nonl!omorp,hic RAs= 2
t9te.aHorylNA
he 1.tlti!'1 "'Imber cf Non Jsomo~t: RAs ::: 3
reatellHomNA .

1>:~:~;:~~;:;~;::GmNAi'Pfl9 I~ "nlNAl.p.ng
reate a new HomNA which i5.' produc.t-of twit ~e_[ed~ !.Iomt:-jAs

Figure 5.7: ProductHNA

press SaveList button and name your file in the upcoming dialog. In the

subfolder NaList of the folder Algebras the file NAseven will be generated.

When we need to use the list again, we should press the LoadList button and

select the file in the upcoming dialog.

6. Output the chosen NA as an XML File:

We are able to save HomNAs, Spli tNAs, and CombineNAs in an XML format.

The only difference depending on the kind of structure that is stored is in the

way the atoms are represented. In the heterogeneous structures, the atoms

are triples consisting of source and target object and the number of the atom.

(Recall Section 4.3 of the previous chapter).

The following shows the content of the file hetH.xml in the folder XML which

was generated by saving the algebra HomNA #1 in XML format.

<hetRel name="hetRel#1" isRA="False">

<objects number="1" />

66

<atoms source="O" target="O" number="4" symmetric="2" />

<cycles>

«0,0,1),(0,0,1),(0,0,1» «0,0,1),(0,0,2),(0,0,2»

«0,0,1),(0,0,3),(0,0,3» «0,0,1),(0,0,4),(0,0,4»

«0,0,2),(0,0,4),(0,0,4» «0,0,3),(0,0,3),(0,0,3»

</cycles>

</hetRel>

The next example shows the content of the file 'hetS.xml' which was generated

by saving the algebra SplitNA #2 in XML format.

<hetRel name="hetRel#2" isRA="True">

<objects number="3" />

<atoms source="O" target="O" number="O" symmetric="O" />

<atoms source="O" target=" 1" number="O" />

<atoms source="O" target="2" number="O" />

<atoms source="1" target="O" number="O" />

<atoms source="1" target="l" number="3" symmetric="1" />

<atoms source="1" target="2" number="l" />

<atoms source="2" target="O" number="O" />

<atoms source="2" target="l" number="l" />

<atoms source="2" target="2" number="l" symmetric="l" />

<cycles>

«1,1,1),(1,1,1),(1,1,1» «1,1,1),(1,1,2),(1,1,2»

«1,1,1),(1,1,3),(1,1,3» «1,1,1),(1,2,1),(1,2,1»

«1,1,2),(1,1,1),(1,1,2» «1,1,2),(1,1,2),(1,1,2»

67

«1,1,2),(1,1,2),(1,1,3)) «1,1,2),(1,1,3),(1,1,1))

«1,1,2),(1,1,3),(1,1,2)) «1,1,2),(1,1,3),(1,1,3))

«1,1,2),(1,2,1),(1,2,1)) «1,1,3),(1,1,1),(1,1,3))

«1,1,3),(1,1,2),(1,1,1)) «1,1,3),(1,1,2),(1,1,2))

«1,1,3),(1,1,2),(1,1,3)) «1,1,3),(1,1,3),(1,1,2))

«1,1,3),(1,1,3),(1,1,3)) «1,1,3),(1,2,1),(1,2,1))

«1,2,1),(2,1,1),(1,1,1)) «1,2,1),(2,1,1),(1,1,2))

«1,2,1),(2,1,1),(1,1,3)) «1,2,1),(2,2,1),(1,2,1))

«2,1,1),(1,1,1),(2,1,1)) «2,1,1),(1,1,2),(2,1,1))

«2,1,1),(1,1,3),(2,1,1)) «2,1,1),(1,2,1),(2,2,1))

«2,2,1),(2,1,1),(2,1,1)) «2,2,1),(2,2,1),(2,2,1))

</cycles>

</hetRel>

Our final example shows the content of the file 'hetC.xml' which was generated

by saving the algebra CombineNAO #3 in XML format.

<hetRel name="hetRel#3" isRA="False">

<objects number="4" />

<atoms source="O" target="O" number="4" symmetric="2" />

<atoms source="1" target="1" number="O" symmetric="O" />

<atoms source="1" target="2" number="O" />

<atoms source=" 1" target="3" number="O" />

<atoms source="2" target="1" number="O" />

<atoms source="2" target="2" number="3" symmetric="1" />

<atoms source="2" target="3" number="1" />

68

<atoms source="3" target="l" number="O" />

<atoms source="3" target="2" number="l" />

<atoms source="3" target="3" number="l" symmetric="l" />

<cycles>

«0,0,1),(0,0,1),(0,0,1)) «0,0,1),(0,0,2),(0,0,2))

«0,0,1),(0,0,3),(0,0,3)) «0,0,1),(0,0,4),(0,0,4))

«0,0,2),(0,0,4),(0,0,4)) «0,0,3),(0,0,3),(0,0,3))

«2,2,1),(2,2,1),(2,2,1)) «2,2,1),(2,2,2),(2,2,2))

«2,2,1),(2,2,3),(2,2,3)) «2,2,1),(2,3,1),(2,3,1))

«2,2,2),(2,2,1),(2,2,2)) «2,2,2),(2,2,2),(2,2,2))

«2,2,2),(2,2,2),(2,2,3)) «2,2,2),(2,2,3),(2,2,1))

«2,2,2),(2,2,3),(2,2,2)) «2,2,2),(2,2,3),(2,2,3))

«2,2,2),(2,3,1),(2,3,1)) «2,2,3),(2,2,1),(2,2,3))

«2,2,3),(2,2,2),(2,2,1)) «2,2,3),(2,2,2),(2,2,2))

«2,2,3),(2,2,2),(2,2,3)) «2,2,3),(2,2,3),(2,2,2))

«2,2,3),(2,2,3),(2,2,3)) «2,2,3),(2,3,1),(2,3,1))

«2,3,1),(3,2,1),(2,2,1)) «2,3,1),(3,2,1),(2,2,2))

«2,3,1),(3,2,1),(2,2,3)) «2,3,1),(3,3,1),(2,3,1))

«3,2,1),(2,2,1),(3,2,1)) «3,2,1),(2,2,2),(3,2,1))

«3,2,1),(2,2,3),(3,2,1)) «3,2,1),(2,3,1),(3,3,1))

«3,3,1),(3,2,1),(3,2,1)) «3,3,1),(3,3,1),(3,3,1))

</cycles>

</hetRel>

69

Chapter 6

Conclusions

This chapter begins with a summary of the work in this thesis and the conclusions

reached. This is followed by a discussion of the areas that require further investigation

and the work planned in the future.

6.1 Summary

In this thesis, we focused on generating atom structures of finite integral heteroge­

neous relation algebras. We were able to define three new data types and operations

representing such structures. Following the theoretical work, we have implemented

a Haskell library which can be used to compute atom structures of finite integral

relation algebras. In addition, we have developed a system with a graphical user in­

terface that allows users to create, visualize, and store such atom structures for later

use. Except for a simple program enumerating the non-isomorphic integral homoge­

nous relation algebras up to six atoms [9], the system developed in this thesis is the

first of its kind. In particular, there is no system that generates any heterogeneous

70

structures. However, the results of our system, i.e., the algebras constructed, can

be used by the system developed by Z. Ahmed in [1]. His program allows users to

execute computations in matrix algebras where the coefficients are relations from a

heterogeneous integral relation algebra. Recall that every algebra is equivalent to a

matrix algebra.

6.2 Future Work

The current system also has its limitations. The huge amount of homogenous integral

relation algebras for n > 5 makes it almost impossible to use any algebras of that

size. In fact, the number of non-isomorphic relation algebras with n = 6 and s = 6 is

already 3,849,820. For any n > 6 the number of algebras is still unknown [9].

Although we have accomplished a lot in this thesis, there is room for additional

work, which can be built on the current implementation. Some of these ideas are

presented below.

Concurrency: The computation of all atom structures with n atoms could be done

using multiple threads or even multiple computers in order to gain a significant

speed up. The current state of concurrency in Haskell did not allow us to

implement this feature so far.

External implementation: This point is related to the first one. Instead of using

the concurrency of Haskell, one could implement the search of all atom struc­

tures with n atoms in a different language. Since efficiency is crucial in that task

a suitable language could be C or C++. The functionality of those programs

71

could be utilized within Haskell by using the foreign function interface FFI. In

addition, this C or C++ program could be a parallel program.

More kinds of unions: We have implemented two kinds of unions of heterogenous

, relation algebras, the direct and the enlarged sum. These two structures in­

troduce 0 and 1 atom in between the input algebras, respectively. There are

examples of a basis that has larger intermediate structures. For example, the

number ofrelations between two objects A and B in a SplitNA is usually larger

than 2. These objects are HomNAs themselves so that it should be possible to

create the algebra consisting of A and B and all relations between using a sum.

How to create such algebras in general is unknown so far, and subject of further

research.

72

,

Bibliography

[1] Z. Ahmed. Realm - a system to manipulate relations. Master's thesis, Brock

University, 2009.

[2] R. Bird and O. de Moor. Algebra of Programming. Prentice-Hall, 1997.

[3] G. Brikhoff. Lattice Theory. AMS, third edition, 1995.

[4] 1. Diintsch. Relation algebras and their application in temporal and spatial

reasoning. Artificial Inteligence Review, 23:315-357, 2005.

[5] P. Freyd and A. Scedrov. Categories, Allegories. North-Holland, 1990.

[6] E. Gansner, E. Koutsofios, and S. North. Drawing graphs with dot, January 2006.

[7] S. Koppelberg. General Theory of Boolean Algebras. North Holland, 1989.

[8] R. D. Maddux. Finite integral relation algebras. In Lecture Notes in Mathematics

1149, pages 175-197. Springer-Verlag, 1985.

[9J R. D. Maddux. Relation Algebras, volume 150 of Studies in Logic and the Foun-

dations of Mathematics. Elsevier Science, 2006.

73

[10] G. Schmidt, C. Hattensperger, and M. Winter. Heterogeneous relation alge­

bras. In C.Brink, W.Kahl, and G.Schmidt, editors, Relational Methods in Com­

puter Science, Advances In Computing Science, chapter 2, pages 39-53. Springer­

Verlag, 1997.

[11] G. Schmidt and T. Strohlein. Relations and Graphs. Discrete Mathematics for

Computer Scientists. EATCS Monographs in Theoretical Computer Science.

Springer-Verlag, 1993.

[12] B. O. Sullivan, J. Goerzen, and D. Stewart. Real World Haskell. Oreilly, first

edition, November 2008.

[13] A. Tarski and S. Givant. A Formalization of Set Theory without Variables.

Handbook of Boolean Algebras (Vol. 1). AMS, 1988.

[14] M. Winter. Relation algebras are matrix algebras over a suitable basis. Technical

Report 1998-05, UniversiUit der Bundeswehr Miinchen, November 1998.

[15] M. Winter. A pseudo representation theorem for various categories of relations.

TAC Theory and Applications of Categories, 7(2):23-37, 2000.

[16] M. Winter. Products in categories of relations. The Journal of Logic and Alge­

braic Programming, pages 145- 159, 2008.

[17] S. Zhang and M. Winter. Three structures for generating finite integral relation

algebras. PhD Program of RelMiCSjAKA, pages 28-32, 2009.

74

