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Abstract 11 

Abstract 

Second-rank tensor interactions, such as quadrupolar interactions between the spin-

1 deuterium nuclei and the electric field gradients created by chemical bonds, are 

affected by rapid random molecular motions that modulate the orientation of the 

molecule with respect to the external magnetic field. In biological and model mem­

brane systems, where a distribution of dynamically averaged anisotropies (quadrupo­

lar splittings, chemical shift anisotropies, etc.) is present and where , in addition, 

various parts of the sample may undergo a partial magnetic alignment, the numerical 

analysis of the resulting Nuclear Magnetic Resonance (NMR) spectra is a mathemat­

ically ill-posed problem. However, numerical methods (de-Pakeing, Tikhonov regu­

larization) exist that allow for a simultaneous determination of both the anisotropy 

and orientational distributions. An additional complication arises when relaxation 

is taken into account. This work presents a method of obtaining the orientation 

dependence of the relaxation rates that can be used for the analysis of the molecu­

lar motions on a broad range of time scales. An arbitrary set of exponential decay 

rates is described by a three-term truncated Legendre polynomial expansion in the 

orientation dependence, as appropriate for a second-rank tensor interaction, and a 

linear approximation to the individual decay rates is made. Thus a severe numerical 

instability caused by the presence of noise in the experimental data is avoided. At 

the same time, enough flexibility in the inversion algorithm is retained to achieve a 

meaningful mapping from raw experimental data to a set of intermediate, model-free 
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parameters suitable for further analysis in terms of specific kinds of molecular motions 

such as vibrations, flexing, kink and jog deformations, etc. 
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Chapter 1 

Introduction 

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and flexible analytical 
tool in exploring microscopic properties of matter. NMR is capable of detecting 
molecular motions and interactions through their effect on the macroscopic net nuclear 
magnetization of the sample. Since nuclei have almost no effect on electron clouds 
and chemical bonds in a molecule, detecting molecular motions and interactions by 
NMR is expected to produce no or negligible perturbation. In addition, because the 
magnetogyric ratio of a nucleus is several orders of magnitude smaller than that of an 
electron (e.g. J IH = 267.51 x 106rad S-1 T- 1 or ID = 41.064 X 106 rad s-1 T- 1 versus 
I e = -1. 76 x 1011 rad S- 1 T- 1 [1,2]), nucleus-nucleus and nucleus-electron interactions 
such as the dipole and quadrupole couplings are much weaker than electron-electron 
interactions. As a result, according to Heisenberg energy-time uncertainty principle, 
the time required to determine the energy associated with these nucleus-nucleus and 
nucleus-electron interactions is much longer than the time required to detect electron­
electron interactions. This lower bound on the duration of the detection of interactions 
sets forth an intrinsic time scale for NMR spectroscopy known as NMR time scale, 
TM [3]. 

The significance of a longer time scale becomes clear once disordered and partially 
ordered systems are to be dealt with, wherein all interactions are subject to extensive 
thermal fluctuations. Molecular tumblings with long correlation times compared to 
the NMR time scale result in an ensemble averaged and hence, a broad spectrum. 
On the other hand, fast motions, which are designated as motions with correlation 
times much shorter than the NMR time scale, translate into averaged interactions 
with sharply determined observables. Spectroscopically, this means having shifts 
in the position of resonance peaks as the indication of modified interactions rather 
than changes in spectral line widths. The advantage of NMR over other similar 
spectroscopies is in the fact that the NMR time scale is typically longer (for instance 
TM ~ 6 X 10- 6 sin 2H NMR) than most molecular motions. The resulting fast motion 
averages of tensorial interactions such as the quadrupole interaction, manifested in 
NMR spectral parameters such as splittings and relaxation rates, contain valuable 
information about the molecular structure and dynamics that may not be directly 
accessible otherwise [4, 5, 6, 7]. 

Interpreting and mapping obtained spectra to microscopic properties of the sam­
ple is the ultimate goal and, at the same time, the most challenging task in any 
spectroscopy. This is particularly true in case of disordered and partially ordered 
materials where simplifications based on various symmetries like those of periodic 
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crystals or totally random, isotropic liquid like systems are unavailable. NMR is one 
of the few spectroscopic techniques available wherein not only qualitative interpreta­
tion of spectra but also, in principle, quantitative analysis on the basis of fairly simple 
and manageable interaction models is possible [8]. However, in practice the presence 
of experimental noise superimposed on spectra over the course of data acquisition 
poses a serious difficulty in quantitative interpretation of the spectra [9]. 

Solid state NMR, as opposed to solution NMR, is a branch of NMR spectroscopy 
that primarily deals with anisotropic systems. It has proven to be particularly useful 
in studying soft condensed matter systems such as polymers, liquid crystals, proteins, 
and lipid membranes which are typical examples of partially ordered, anisotropic sys­
tems. These materials neither posses perfect periodic structure of crystals nor totally 
random structure of liquids. This heterogeneity in structure and order imparts unique 
properties to these materials and makes them very susceptible to order-disorder in­
terplay that dictates their organization. Studying lipid membranes is one of the areas 
that solid-state NMR has been extensively used in examining the structure and dy­
namics of lipids in membranes, due to its capability of discriminating order from 
disorder [10]. 

1.1 Lipids in Biological and Model Membranes 

Lipids are the main component of cell membranes in all living organisms. A cell 
membrane not only contains the cell and separates it from the outside environment 
but also is a medium through which the cell can function and interact with the out­
side world. According to the current view of cell membranes known as fluid mosaic 
model, the functioning of biological systems critically depends on membrane micro­
fluidity [11] which, in turn, is closely related to dynamical and structural properties 
of constituent lipid molecules in the membrane. Despite the fact that cell interactions 
with their environment often involve specific receptor proteins on their membranes, 
there are many fundamental cell phenomena which are membrane-based and mostly 
dependent on the micro-mechanical properties of the membrane. These include anes­
thesia [12], antimicrobial effect of some bactericides [13], and the effect of cholesterol 
on the cell membranes. Even the conformation of embedded receptor proteins, a cru­
cial factor in their functioning , is closely related to the mechanical properties of the 
membrane such as pressure profile and rigidity. 

Lipids are amphiphilic molecules (Fig. 1.1) , that is, they have a hydrophilic po­
lar headgroup and hydrophobic apolar fatty acid chains. Because of this structural 
heterogeneity, lipid molecules in aqueous dispersions prefer to form aggregations with 
the least exposure of the hydrophobic chains to water. This preference leads to a 
self-assembly phenomenon and the spontaneous formation of lipid aggregations with 
various topologies and thermodynamical properties. The topology and thermody­
namic phase of these aggregates critically depends on the lipid molecule properties 
such as chain length or headgroup charge, and on thermodynamical parameters such 
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Figure 1.1: pope lipid molecule (1-palmitoyl-2-o1eoyl-sn-glycero-3-
phosphocholine) Green spheres represent carbon atoms and white 
spheres are hydrogens. Reproduced from [14J. 
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Figure 1.2: Lipid bilayer A portion of a lipid membrane. Reproduced from [15]. 

as temperature, concentration of lipids, hydration, pressure, and ionic strength. The 
introduction of any additive capable of affecting the process of lipid aggregation such 
as another lipid molecule with different chain length or headgroup charge, other am­
phiphilic molecules (e.g., cholesterol), etc., can promote significant modification in the 
structural phase of the membrane. When water is abundant in aqueous dispersions, 
lipids typically organize themselves in a lamellar structure with hydrophilic head­
groups on either sides of the bilayer and hydrophobic chains in between (Fig. 1.2). 
Other structural arrangements (hexagonal-packed cylinders, cubic phase, etc.) are 
also possible. 

Depending on temperature and other thermodynamical parameters, liquid bilayers 
may also exhibit different thermodynamic phases with different dynamical properties. 
At low temperatures where the van-der-Waals attraction between hydrocarbon chains 
is dominant, lipid chains are rigid and ordered. This state of the lipid aggregation is 
referred to as the gelphase (L{3) or solid ordered (s.o.) phase. Under biological condi­
tions, where thermal fluctuations are strong enough to overcome the van der Waals 
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attraction but yet too weak to overcome hydrophobic and hydrophilic forces, lipids 
form a lamellar liquid crystal (La) or liquid ordered (l.o.) phase. Transition from the 
gel phase to the liquid-crystal phase significantly increases inter- and intramolecular 
motions and lipids' freedom. In La phase lipid molecules are free to diffuse laterally 
just like a 2D liquid [16]. Also, in this phase, across the bilayer there exists a char­
acteristic order profile such that chain segments away from the headgroups are more 
free (and less ordered) [17]. In general, the more extensive fluctuations at segments 
close to the free end of the fatty acid chains of lipids result from the cumulative effect 
of motions in above segments that affect not only those segments but also the rest 
of the chain. In contrast, the end of the chain attached to the glycerol backbone is 
constrained by the massive headgroup and experiences less motional freedom. 

A variety of modes of motion can occur in a lipid membrane in the lamellar liquid 
crystalline phase. The most common ones are the following [17]: 

• Rotation around C-C bond that occurs about the long axis of hydrocarbon 
chains. Because it requires less energy than other modes it is the fastest mode 
of motion with the time scale on the order of lOOps. 

• cis-kinks in hydrocarbon chains have a lifetime about 10 times longer than the 
time scale of rotation around the C-C bond, of the order of 1ns. 

• Lipid molecules bending (flexing) is another possible mode of intramolecular 
motions (Fig. 1.3) . 

• Rotational diffusion, which is the rotation of the entire lipid molecule including 
the headgroup about its long axis, can also occur with the correlation rate of 
2n /lOns. 

• Lateral diffusion in membranes, which is the most important mode of motions 
from the biological point of view, in essence is similar to Brownian motion in 
2D. It is a process well-described by a series of "jumps" of the lipid molecule 
from one vacancy in the liquid crystalline lattice to another. The rate of these 
jumps is about 107 s-1 to 108 S-1 with a diffusion constant of f'V 10-7 cm2 S-1. 

• The slowest mode among all these motions is the trans-membrane flip-flop of 
lipids (Fig. 1.4). Due to the enormous energy barrier required to move the 
the polar headgroup through hydrophobic interior of the membrane, the rate 
of this flip-flop process is significantly longer than other motions. The fastest 
reported rate is of the order of minutes but frequently the equilibration time in 
experiments with initially labeled lipids on one side of the bilayer ranges from 
hours to weeks [17]. 

In additions to these general motional modes there are two other motions that 
can modulate the orientation of H nuclei in C-H bonds which are important from the 
NMR perspective. They are the vibrational mode of the C-H bond with the time 
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Figure 1.3: Intramolecular motions of lipids, (A) Interchain rotation around C­
C bonds. (B) Kink formation. (C) Bending of the hydrocarbon chain. 
Reproduced from [17] 
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Figure 1.4: Intermolecular motions of lipids (D) Rotational diffusion. (E) Lateral 
diffusion. (F) Trans-membrane flip-flop movement. Reproduced from 
[17]. 
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scale of 1O- 14_1O- 15s [18] and the quantum mechanical exchange of H nuclei on the 
same methylene groups (or the methyl groups at the end each chain). An important 
property of lipid membranes in the La phase is that the net effect of these motions 
on the orientation of C-H bonds is an axially symmetric modulation with the long 
axis of the molecular or approximately, the bilayer normal as the symmetry axis. 

Current theoretical models for lipid aggregations are not yet offering a full and 
comprehensive description of lipid membranes. Most of these models either account 
for modifications in the membrane properties due to small modulations in pH, tem­
perature etc., or are phenomenological and based on the concept of "shape" of lipid 
molecules and on similar empirical information. Molecular simulations have been 
successful in predicting the behavior of membrane proteins or a bilayer region un­
der some simplifications. However, due to the large number of lipids involved in 
lipid membranes and the large number of parameters required to describe a lipid 
molecule, the short-time molecular modeling simulations are far from complete. In­
evitably, studying complex phenomena associated with model membranes and real 
biological membranes, which may involve other complex molecules as additives must 
involve experimental approaches. It is at the convergence of quantitative analysis 
of spectroscopic data and the growing sophistication of molecular models that the 
true understanding of biomembranes lies. This necessitates more sophisticated data 
analysis techniques. 

1.2 2H NMR in studying lipid membranes 

Various NMR techniques are routinely used in studying biological and model mem­
branes, each more suited for studying a particular region of lipids in membranes. For 
instance, 31 P NMR is particularly useful in studying the hydrophilic headgroup region 
of phospholipid membranes. 13C NMR, 1 H NMR and 2H NMR are in turn useful in 
studying the hydrocarbon region of membranes. 

Spectra obtained from the lipid membranes are generally dominated by strong 
proton-carbon dipolar interactions which result in a large number of overlapping 
resonance peaks and broadenings. Because of these broadenings, the analysis of 13C 

NMR and 1 H NMR spectra is rather difficult. Deuterium magnetic resonance offers 
some advantages: 

• Replacing 1 H atoms by 2H atoms through appropriate chemical substitution al­
lows for labeling both the fatty-acid chains and the headgroups. Unlike labeling 
in other spectroscopies such as electron paramagnetic resonance (ESR) or fluo­
rescence spectroscopy, labeling by deuterium is expected to introduce negligible 
perturbation in structural and dynamical properties of lipids . 

• Observed resonance lines in 2H NMR spectra can be assigned unambiguously 
to labeled sites. 
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• Magnetogyric ratio of 2H nucleus is smaller than that of IH nucleus (rD/,H = 

1/6.5) which results in much weaker dipolar coupling of 2H nuclei compared 
to the dipolar coupling in proton NMR, and a longer time scale of deuterium 
NMR. However, as a drawback, smaller magnetogyric ratio results in a weaker 
coupling of deuterium nuclei to magnetic fields hence, a lower sensitivity of 
deuterium NMR. 

• Since deuterium nuclei in its ground state has an angular quantum number of 
1, it possesses a non-zero quadrupole moment. As a result, deuterium NMR 
can easily detect anisotropic fast motions through the quadrupole coupling 
of deuterium nuclei to their surrounding electric field gradient. For a rapid 
isotropic motion only a single line can be observed in the spectrum while for 
an anisotropic fast motion each deuteron contributes a doublet to the spec­
trum (Fig. 1.5 ). The doublet spacing, !:lvQ, which is called splitting parameter, 
depends on the degree of anisotropy and on the orientation of the deuterium 
nucleus with respect to the static magnetic field[10]. 

In studying pure lipid membranes two properties of lipids are primarily sought: 
variation of motional order along the lipid chains known as the "order profile", and 
the correlation times of various molecular motions. The order profile represents how 
constrained segments on the hydrocarbon chains are in performing thermal motions, 
while the correlation times associated with various modes of motions indicate how 
fast those motions are. The structural and dynamical information about the lipid 
molecules is contained in the segmental order parameter SCD (n) and the relaxation 
rates of deuterium NMR spectra. 

Different segments on the fatty acid chains experience fluctuations with different 
amplitudes which, if labeled by 2H, results in differently averaged quadrupole interac­
tion. Averaged quadrupole interactions at different segments result in the presence of 
doublets with different quadrupole splittings in spectra and, thus, in anisotropy dis­
tributions(Fig.1.6). Experimentally, these distributions are given by 2H NMR spectra 
from an oriented bilayer sample, (Fig. 1. 7) referred to as oriented spectra. In deal­
ing with oriented spectra, the determination of segmental order parameters from 
quadrupolar splittings is straight forward. SCD is related to the splitting !:lvQ by 
following relationship: 

A _ 3 e2 qQ S 3 cos2 {3 - 1 
D.vQ - --- CD-----

2 h 2 
(1.1 ) 

where {3 is the angle between the symmetry axis of fast modulations of the C-D bond 
(the bilayer normal in lipid membranes) and the magnetic field of the spectrometer, 
and wQ = e2%Q is the characteristic quadrupole frequency (wQ ~ 170kHz for C-D 
bonds). Also, relaxation rates can be simply determined by separately fitting the 
peaks of each doublet to an exponential in a series of partially relaxed spectra [10]. 

Unlike oriented samples, typical biological and model-membrane samples form 
spherical or nearly spherical vesicles, often elongated by the external magnetic field 
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Figure 1.5: Quadrupolar splitting: Anisotropic fast motions result in partial aver­
aging of the quadrupole interaction which results in having two resonance 
peaks separated by !:lvQ. The quadrupolar splitting parameter !:lvQ is di­
rectly related to the averaged part of the quadrupole interaction and the 
structural order parameter at the location of the deuteron. More exten­
sive fluctuations result in a smaller order parameter and hence, a smaller 
!:lvQ. 



Chapter 1. Introduction 11 
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-40 -20 0 20 40 
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Figure 1.6: Anisotropy distribution of fully deuterated pope lipid with 16 carbon 
positions on each chain. 
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Vesicle 

Oriented Multibilayer 

Figure 1.7: Oriented multibilayer vs a unilamellar vesicle: An oriented multi­
bilayer is a stack of lipid bilayers on a fiat substrate with water layers 
separating lipid bilayers. The orientations of lipids as determined by their 
long molecular axes are all the same and perpendicular to the substrate. 
On the other hand, vesicle domains have different orientations. For in­
stance, the above spherical vesicle is described by a powder distribution, 
i. e. p(fJ) = sin(fJ). 
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[9, 19], which gives rise to an orientation distribution of molecular domains (Fig. 1.7). 
Each labeled position on the lipid chains contributes a doublet to the observed spec­
trum with a quadrupolar splitting given not only by the order parameter at each 
position on the chain, but also by the motionally averaged orientation of the C-D 
bond with respect to the static magnetic field. When there is an orientation distri­
bution of microscopic domains, the superposition of doublets corresponding to these 
differently oriented domains produces a powder spectrum (Fig. 1.8). 

Mathematically, a powder spectrum is nothing but a convolution of the two dis­
tributions. If g(v) and p(f3) respectively represent the anisotropy and orientation 
distributions, then the resultant powder spectrum f(w) can be written as: 

f(w) = J g(v) [p(f3) ~~l dv (1.2) 

where w = v3COS~j3-1 [20, 21]. 
Low sensitivity associated with 2H NMR makes preparing oriented bilayers with 

enough deuterium concentration required for obtaining a clean spectrum a laborious 
task [10]. Also, oriented bilayers are slightly different from a vesicular membrane in 
their mechanical properties. Because of the non-zero natural curvature of vesicular 
membranes, tension in the two leaflets of the lipid bilayer is slightly different. There­
fore, obtained information from an oriented sample may not reflect exactly the same 
properties of a vesicular or a real biological membrane [17]. Consequently, it is more 
favorable to obtain structural and dynamical properties of lipid membranes directly 
from powder spectra of vesicular model or real membranes. 

Extracting the two anisotropy and orientation distributions from a powder spec­
trum is known as the de-Pakeing problem and requires solving the convolution inte­
gral of Eq. 1.2. Integral equations like this convolution equation are usually unstable 
and mathematically ill-posed, that is, they may not posses a unique or a stable solu­
tion. Besides, extracting the two anisotropy and orientation distributions from only 
one powder distribution is a highly under-determined problem. Due to these two 
restrictions and the unavoidable presence of noise in 2H NMR spectra, any attempt 
to solve the problem through routine solving procedures are likely to fail. However, 
regularization algorithms can be used to extract information from ill-posed problems 
like the de-Pakeing problem. Regularization incorporates prior physically reasonable 
expectations and external information, such as continuity of the underlying distri­
bution function. For example, it can be assumed that the anisotropy distribution 
is continuous and that the orientation distribution, on the basis of physical models 
for elongation of a vesicle in a strong magnetic field, is restricted to a family of el­
lipsoidal shapes. In this way the problem can be solved and the distributions can 
be fairly accurately determined, subject to the validity of the underlying assump­
tions [9, 19, 22, 23] . It must be noted that in a broad range of inverse problems 
the assumptions required to achieve regularization are quite generic, rigorous, and 
physically reasonable. Because of that, inverse theory methods found use in a variety 
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Figure 1.8: Powder spectrum: (a) broadening of a single peak due to the powder 
orientation distribution. (b) powder spectrum of a fully deuterated PO PC 
sample. 



Chapter 1. Introduction 15 

of physical fields as discussed in Chapter 3. 
Site-specific relaxation rates contain additional information about the order profile 

of the fatty acid chains and the nature of molecular motions; they are also directly 
related to the correlation times of fast motions at any labeled site. For example, 
measuring relaxation rates makes it possible to investigate the correlation time of 
fast motions through the dependence of relaxation rates on the Larmor frequency 
Wo [4]. In 2H NMR, the dominant relaxation mechanism is the fluctuation of the 
quadrupole Hamiltonian caused by molecular motions which, unlike relaxation due 
to the dipole interaction, offers the great advantage of unambiguously relating the 
observed relaxation rates to molecular motions at each segment along the chain [10]. 

Analogous to the quadrupolar splitting parameter, various relaxation rates as­
sociated with different observables of the deuterium nuclei, such as transverse and 
longitudinal relaxations, are orientation-dependent (Fig. 1.9). The orientation de­
pendence of relaxation rates can be expressed in terms of three relaxation parameters 
scaled by known scaling functions [4]. These relaxation parameters can be determined 
experimentally from an oriented sample by changing its orientation with respect to 
the direction of the static magnetic field and fitting each decaying doublet in the 
obtained partially-relaxed oriented spectra separately to an exponential. Repeat­
ing this procedure for different orientations allows for finding relaxation parameters 
corresponding to each doublet [24]. Alternatively, it is possible to determine this 
information from partially-relaxed powder spectra of samples that have been labeled 
only at one position on the chain by measuring decay rates of three specific points 
on the powder pattern spectra corresponding to the shoulder with 0°, the edge with 
90°, and the centre with 54.74° which are easy to identify [4, 6]. 

Observing relaxation in order to extract relaxation parameters from the orienta­
tion dependence of relaxation rates not only is limited by the signal-to-noise ratio 
which can be considered as a technical difficulty, but is also fundamentally limited 
by lateral diffusion. Lateral diffusion in non-oriented samples randomly changes the 
orientation of individual lipids and mixes lipids from different domains with different 
relaxation histories. Thus it tends to obscure the orientation dependence of relaxation 
rates that eventually, after complete mixing, results in just one relaxation rate at all 
orientations. Lateral diffusion is usually slow enough compared to the relaxation rates 
and what is considered as domains in membranes are big enough (containing rv 104 

lipid molecules) to allow observing a partial relaxation. 
The resulting difficulties in interpreting the measured relaxation rates are the 

likely reason why few experimental observation have been attempted in multiply-site 
labeled samples, even though the experiments are not particularly difficult to do. 
Similar to the convolution-integral formulation of the de-Pakeing problem (Eq. 1.2), 
the longitudinal relaxation of 2H NMR powder spectra can be described by following 
convolution integral: 
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Figure 1.9: Simulated partially-relaxed spectra based on longitudinal relaxation 
rates obtained from oriented single site labeled pope samples from [24]. 
As the time goes on not only does the amplitude of the powder spectrum 
decrease, but its shape also changes such that the shoulders of the spec­
trum experience a faster relaxation than the center of it. This is typical 
of most biological and model membrane systems. 
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few, T) ~ / i;. gi(V) [P(,il) ~l e- T /1,"'([3) dv (1.3) 

where i is the segment position on the chain and 9i(V) is the doublet corresponding 
to the ith segment. In fact, the above relation can be considered as the generalized 
de-Pakeing problem. The orientation-dependence of the relaxation rate associated 
with the ith position on the hydrocarbon chain, ~, is usually in the form of: 

Tl ((3) 

1 (i) (i) (i) 
C) = Jo oPo((3) + J11 (WO)P1 ((3) + J22(2wO)P2((3) (1.4) 

T1 ~ ((3)' , , 

where Pk((3) are known scaling functions and J6~6, Jti (wo) and, J~~~(2wo) are the 
relaxation parameters ought to be found. Further justification for this form of the 
relaxation-rate parameterization will become clear in Chapter 2. 

The aim of this thesis is to propose a numerical pseudo-inversion procedure based 
on advanced regularization tools. Solving ill-posed inverse problems to extract re­
laxation parameters as well as a more accurate estimations for the anisotropy and 
orientation distributions from a series of partially-relaxed powder spectra is the ulti­
mate goal. 
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Chapter 2 

Theory of 2H NMR 

Generally, what can be directly observed in any NMR experiment is the in-phase 
precession of nuclear spins manifested in the precession of the sample's net nuclear 
magnetization around the magnetic field of the spectrometer. The observation du­
ration of this precessing nuclear magnetization is severely limited by its fast decay 
due to local magnetic field inhomogeneities that result in slightly different preces­
sion frequencies of the nuclear spins. The term free induction decay (FID) is used 
to refer to this decaying nuclear magnetization. The Fourier transform of the FID 
signal is what is referred to as the spectrum and consists of one or several resonance 
peaks corresponding to photons radiated by the nuclear spins. The location of these 
resonance peaks depend on the interactions of the nuclei, while the amplitudes are 
related to the pre-observation history of the nuclear ensemble. Changes in the am­
plitudes of resonance peaks that result from different pre-observation evolutions can 
be attributed to various relaxations, exchange processes, and so forth. 

When the sample is placed in the spectrometer and exposed to its strong magnetic 
field , the Zeeman interaction between this strong magnetic field and the nuclear spins 
lifts the degeneracy in the energy levels of the nuclear ensemble. Consequently, the 
population of nuclei in different quantum states is given by the Boltzmann factors 
(Fig. 2.1). The partial alignment of nuclear spins along the magnetic field of the 
spectrometer produces a net longitudinal magnetization, but since this magnetization 
is typically four orders of magnitude smaller than the diamagnetic field of electronic 
spins, its direct detection is impractical [26]. 

Irradiating the sample with a sequence of radio-frequency pulses with precise 
frequency, amplitude, and durations makes it possible to manipulate its net nuclear 
magnetization. An RF pulse in NMR is basically an oscillating magnetic field at 
the Larmor frequency of the intended nuclear species in the direction perpendicular 
to the external magnetic field. Applying a sequence of RF pulses with the precise 
timing and durations allows to rotate nuclear spins arbitrarilyl. A simple though 
important instance of such RF pulses is the so-called 90~ pulse that starts most of 
NMR experiments by rotating the nuclear spins by 900 about the x-axis of the rotating 
frame. This rotation brings the net nuclear magnetization into the xy-plane and makes 
it observable through its precession around the magnetic field of the spectrometer. 

IThe magnetic field of an RF pulse with exactly the same frequency of the Larmor precession 
frequency of the intended nuclei species is effectively static in the rotating frame of nuclear spins. 
Nuclear spins precess around this magnetic field of the RF pulse in the rotating frame which allows 
for manipulating their orientation by controlling the duration of the RF pulse. 
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Figure 2.1: Partial alignment of nuclear spins along the strong magnetic 
field of the spectrometer represent the classical view of the Boltzmann 
distribution of the populations in various quantum-mechanical states. Re­
produced from [25] 

Since the magnetogyric ratio of different nuclear species are different and because of 
the very high Larmor frequency (hundreds of MHz) in a typical several-Tesla magnetic 
field, applied RF pulses rotate the nuclear magnetization of only the intended nuclei. 

The above description summerizes the so-called classical picture of NMR. How­
ever, nuclear magnetic resonance is intrinsically a quantum mechanical phenomena. 
Classical models that treat nuclear spins as classical magnetic dipoles are useful in 
modeling general aspects of nuclear resonance, but fail to account for phenomena 
such as orientation-dependence of relaxation rates or shifts in the location of reso­
nance peaks due to fast-motion averaging of tensorial interactions. Knowing these 
relations is vital in analyzing NMR spectra, and thus necessitates a rigorous and 
precise quantum-mechanical formulation of the evolution of the nuclear ensemble. 

2.1 2H NMR Hamiltonian 

After the Zeeman interaction, the dominant interaction between a deuterium nucleus 
and its surroundings is the quadrupole interaction. The total Hamiltonian of the 
deuterium nucleus can be written as [10]: 

A A A 

H = Hz+HQ (2.1 ) 
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where Hz -,vI. Eo and HQ are respectively the Zeeman and the quadrupole 
Hamiltonians. In the Zeeman Hamiltonian 'v is the magnetogyric ratio of the deu­
terium nucleus, Eo is the static magnetic field of the Aspectrometer which is usually 

along the z axis of the lab coordinate system, and I is the total angular momen­
tum operator of the deuterium nucleus. The Larmor frequency, Wo = -,Bo, for a 
deuterium nucleus in a 7T magnetic field is about 27r x 46MHz. 

2.1.1 Quadrupole Hamiltonian 

A nucleus is a distribution of charge and can experience an electrostatic interaction 
with its surrounding electron cloud. The quadrupole interaction is the third term in 
the expansion of this electrostatic interaction of the nucleus. The first term is the 
point charge approximation and has no effect on the orientation of the nucleus. The 
second term is the electric dipole approximation that vanishes based on the parity 
symmetry of all known nuclei. The third term is the quadrupole approximation for 
the charge distribution of the nucleus. The Wigner-Eckart theorem provides the link 
to relate the distribution of nucleons to the total angular momentum state of the 
nucleus [27]. Moreover, it states only nuclei with quantum numbers greater or equal 
to 1 can possess quadrupole moments. Note that in the case of 2H nuclei there is 
no 4th or higher terms in the expansion of the electrostatic interaction of the nucleus 
with its surrounding electron cloud [26]. 

The quadrupole Hamiltonian in its most general form can be written as [28]: 

H = eQ t. V. t 
Q 21(21 - l)h 

(2.2) 

where 1 and Q are the quantum number and the quadrupole moment of the nucleus, 
V is the electric field gradient tensor (EFG) related to the electric field at the location 
of the nucleus by: 

(2.3) 

By definition, V is a symmetric tensor and hence diagonalizable. The principal axis 
coordinate system (PACS) of the EFG tensor is the particular coordinated system in 
which V becomes diagonal. Indicating axes of the PACS by XYZ, the EFG tensor 
in the PACS will have the form: 

v~ (T + v~z) (2.4) 

The diagonal entries of the EFG tensor must satisfy the Laplace's equation, i.e., 
Vxx + Vyy + Vzz = O. Therefore, in the PACS, V is totally determined by only two 
parameters. These two parameters can be chosen as: 
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Vzz 
q=­

e 
Vxx - Vyy 

rJEFG = T7 
vzz 

21 

(2.5) 

(2.6) 

where q and rJEFG are known as the strength and the asymmetry of the EFG tensor. 
In the PACS the quadrupole Hamiltonian can be written as: 

A eQ 1 ( A2 2 A2 A2 ) 
HQ = 21(21 _ l)n 2 Vzz (31z - I ) + (Vxx - Vyy)(L + 1+) (2.7) 

For a deuterium nucleus in a C-D bond, since the surrounding electron clouds of the 
bond is axially symmetric, rJEFG vanishes, and the quadrupole Hamiltonian becomes: 

(2.8) 

WQ = e2'hQ is the characteristic frequency of the quadrupole interaction, and about 
27r x 170kHz for deuterium nuclei in C-D bonds [10]. 

The above expression for the quadrupole Hamiltonian is only valid in the PACS 
of the C-D bond. To transform it to an arbitrary coordinate system, the angular 
momentum operator iz in the above expression should be rewritten in the new co­
ordinate system operators ix, iy , and t. Because of the axial symmetry of the EFG 
tensor, only two angles B, ¢ (instead of the three Euler angles) suffice to specify the 
transformation of the quadrupole Hamiltonian from the PACS to the new coordinate 
system x y z. It turns out that the transformed quadrupole Hamiltonian can be writ­
ten in a compact and elegant form by means of 2nd-rank irreducible tensor operators 
and 2nd-rank spherical harmonics as following [6],[27]: 

(2.9) 
m =-2 

where fJ;) are 2nd-rank irreducible tensor operators given in Table 2.1 [27]. 
The appearance of 2nd rank irreducible tensor operators in Eq. 2.9 is not surpris­

ing as the derivation of the quadrupole Hamiltonian by the Wigner-Eckart theorem 
is based on the irreducible tensor operators. The characteristic frequency of the 
quadrupole interaction, wQ, represents the strength of the quadrupole coupling be­
tween the nuclei and the gradient of their surrounding electric field; its reciprocal, as 
was mentioned before, defines the so-called "NMR time scale" . 

The presence of molecular motions provides continuous orientational modulation 
of the C-D bond and thus the time-dependence of the PACS orientation which gives 
rise to the time-dependence of the quadrupole Hamiltonian. The instantaneous ori­
entation of the PACS with respect to the lab frame can be represented by B(t), ¢(t) 
where B(t) is the angle between the C-D bond and the z axis of the lab frame. Fast 
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TPJ 2 
j2 
+ T(2) 

1 -(j)+ + j+t) 
r,(2) {i(3j; - j2) 0 

T(2) (tL+Lt) -1 
T(2) 

-2 j: 

Table 2.1: 2nd-rank irreducible tensor operators 

molecular motions with time scales much shorter than wQ1 result in averaging this 
time-dependent quadrupole Hamiltonian. The averaging can be conceived either as 
averaging EFG tensor to get an averaged EFG tensor with an averaged PACS, or as 
averaging the quantum operator part of the quadrupole Hamiltonian (Eq. 2.2). From 
the definition of vector operators in quantum mechanics, it can be readily seen that 
these two averaging procedures are the same and translatable to each other2. 

To distinguish the static orientation of the averaged quadrupole interaction from 
its fluctuating part, transformation from the instantaneous orientation of the PACS 
into the lab frame can be performed in two steps. First, the orientation of the instan­
taneous PACS with respect to the averaged PACS determined by 8'(t),¢'(t) and then 
the orientation of the averaged PACS with respect to the lab frame indicated by (3,0: 
(Fig. 2.2). To accommodate this two-step transformation, Eq. 2.9 should be recast 
explicitly in terms of 8'(t), ¢'(t), (3, and 0:. Second-rank spherical harmonics trans­
form from one coordinate system to another according to the following transformation 
rule: 

2 

Y2,m(8, ¢) = L D~~~(o:, (3, <p)Y2,n(8', ¢') (2.10) 
n=- 2 

where D~~~(o:, (3, <p) is the mn entry of the Wigner D-matrix and 0:, (3, <p are the 
Euler angles of the transformation from the coordinate system of Y2,n (8', ¢') to the 
coordinate system of Y2 ,m(8, ¢). The Wigner D-matrix is related to the reduced 
Wigner D-matrix (or d-matrix, see Table 2.2) by: 

D(2) (0: (3 In) = eim'ad(2) ((3)e im'P 
m',m , ,r m',m (2.11) 

2Vector operators transform from one coordinate system to another just like ordinary vectors. 
More specifically, spherical harmonics transform exactly in the same way that 2nd-order irreducible 
tensors do, i.e., by the Wigner D-Matrix. 
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Figure 2.2: Orientation of the C-D bond 

23 



Chapter 2. Theory of 2 H NMR 24 

where for a "z-y-z" Euler transformation d(2; will be all real [29] . m,m 

m' 2 1 0 -1 -2 

2 (Heos (3)2 H~OS /3 sin,6 If sin2 ,6 1 -~OS /3 sin,6 (l-cos/3)2 
4 4 

1 - H~OS /3 sin ,6 cos2,6 - 1-~os/3 If sin 2,6 - cos2 ,6 + H~OS /3 l-eos/3 . ,6 -2- S111 

0 If sin2 /3 -If sin 2,6 
3eos2 /3 - 1 If sin 2,6 If sin2 /3 2 

-1 l-eos/3 . ,6 - cos2 ,6 + H~OS /3 -If sin 2,6 cos2,6 - 1-~os/3 H~OS /3 sin,6 --2- S111 

-2 (l-eosj3)2 I-cos /3 . ,6 j"i sin2 ,6 - H~OS /3 sin,6 (Heos (3)2 
4 --2- S111 4 

Table 2.2: Wigner small d-matrix entries [29] 

The quadrupole Hamiltonian in this two-step representation of the orientation will 
be: 

HQ( t) ~ wQ mt, i',~) [nt, D~:~m (a, (3, '1') Y2,n (B' (t), qI' (t)) 1 (2.12) 

As a direct consequence of axial symmetry of the EFG tensor of C-D bonds there 
will be a class of equivalent PACSs rather than a unique PACS. Consequently, only two 
angles ,6, a suffice to determine the orientation of the averaged PACS with respect to 
the lab frame, and the third angle rp in Eq. 2.12 has no effect on the transformation 
and can be ignored. It should be stressed that in spite of axial symmetry of the 
EFG tensor of the C-D bond, the averaged EFG tensor over a non-axially symmetric 
fluctuation may not be axially symmetric in general [10]. 

The molecular motions in lipid membranes are such that the averaged orientation 
of C-D bonds do possess axial symmetry with the bilayer normal as the axis of sym­
metry. Because of this axial symmetry, among the five spherical harmonics in Eq. 2.9 
only Yo,o survives the averaging. Representing the averaged quadrupole Hamiltonian 

by HQ, Eq. 2.12 becomes: 

2 

HQ = WQSCD L f;;) D6~~m(a, /3, 0) (2.13) 
m=-2 

where the previously introduced order parameter SCD is given by: 

S _ / 3 cos2 8' ( t) ) 
CD - \ t 

2 
(2.14) 
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Figure 2.3: Energy levels of a 2H nucleus Va is the Larmor frequency and vQ is 
the quadrupolar splitting parameter in units of Hz. This energy diagram 
is highly exaggerated for the sake ofrepresentation, in 2H NMR Va » vQ . 

Since only Yo,a (B' (t), ¢' (t)) survives the averaging with n = 0, Eq. 2.13 is independent 
of a and the whole orientation dependence is determined only by {3. Here (. .. It 
represents averaging over time which, since this averaging originates from the energy­
time uncertainty principle, is subject to t « wQ1 constraint (averaging over times 
shorter than the NMR time scale) [10]. 

2.1.2 Energy Levels 

Because the Zeeman interaction of a deuterium nucleus with the high magnetic field 
of the spectrometer is much stronger than the quadrupole interaction (wa » wQ), the 
Zeeman energy levels of a 2H nucleus will be the weakly perturbed by the quadrupole 
interaction (Fig. 2.3). The modification in the Zeeman energy levels due to the pres­
ence of the quadrupole interaction can be obtained from the first-order perturbation 
theory. The first-order perturbation only takes into account the diagonal elements of 
the quadrupole Hamiltonian in the eigenbasis representation of the Zeeman Hamil­
tonian. The resultant projected quadrupole Hamiltonian is usually referred to as 
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the secular part of the quadrupole Hamiltonian [26]. The total Hamiltonian in this 
high-field approximation can be written as: 

(2.15) 

where Ez is the magnetic field seen at the nucleus that may be different from Eo due 
to the presence of chemical shifts3 , and {3 is the angle between the symmetry axis of 
the averaged PACS axis and the magnetic field of the spectrometer. 

As seen in Fig. 2.3, the perturbation in the Zeeman energy levels due to the 
quadrupole Hamiltonian, despite being very weak, has a significant effect on the 
spectrum. In the absence of the quadrupole interactions the spectrum will only 
contain a single resonance line at Wo corresponding to two photons with the same 
frequency. The introduction of the quadrupole interaction (for I = 1 nuclei) results 
in having two photons with slightly different frequencies, and hence two resonance 
lines separated by 43nwQSCD [10]. For deuterium nuclei in lipid membranes SCD ~ 0.2 
or less [4]. 

2.2 Relaxation 

Relaxation is the macroscopic manifestation of the incoherent evolution of the nuclear 
ensemble. Relaxation is inherently irreversible, and should not be confused with the 
reversible loss of coherence due to chemical shifts, which causes different nuclei to 
experience different local magnetic fields and precess at different Larmor frequen­
cies. More severe local magnetic field inhomogeneities translates into a faster loss of 
coherence in the nucleus ensemble which causes a rapid de-phasing of the observed 
signal during the FID period. However, if the chemical shift tensor remains constant 
over the course of the experiment, it is possible to reverse the evolution of the nuclear 
ensemble by applying appropriate RF pulse sequences to refocus nuclear spins and re­
cover the coherence. This reestablishment of coherence and recovering the seemingly 
lost order is known as the echo phenomenon4 . 

Overcoming the fast decay of the FID signal due to reversible de-phasing allows 
for observing slower irreversible relaxations with stochastic origins. Irreversible relax-

3The strong magnetic field of the spectrometer, Eo, affects the electron spins. The way the local 
diamagnetic fields are affected by these electrons is described by the chemical-shift tensor (J cs [28]: 

4NMR echo is analogous to mixing a drop of ink in a highly viscous fluid. Stirring the fluid 
seemingly obliterates the initial order, but by reversing the stirring direction the drop can be restored. 
Since the diffusion rate in viscous fluids is slow this mixing process is reversible over the stirring 
time scale. Similarly, since the lateral diffusion in lipid membranes is much slower than the FID 
time scale, it is possible to reverse the decay of the FID signal. 
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ation due to a fluctuating interaction such as the quadrupole or dipole interaction is 
separated empirically into two categories, spin-lattice and spin-spin relaxations [25]. 
The spin-lattice relaxation which is also known as the longitudinal relaxation is the 
evolution of the nuclear ensemble toward thermal equilibrium with the lattice and re­
gaining its initial alignment along the magnetic field. The relaxation rate associated 
with this longitudinal relaxation is denoted by TI . Despite the misleading termi­
nology, the spin-spin relaxation or transverse relaxation, which is the phenomena of 
irreversible loss of coherence during the precession of nuclear spins in the xy-plane, is 
not necessarily caused by dipolar interactions between two nuclei. The fundamental 
distinction that defines the spin-spin relaxation, also referred to as the transverse 
relaxation, is that it doesn't involve energy exchange with the lattice. 

Felix Bloch in his phenomenological formulation of relaxation in terms of expo­
nentially decaying functions , distinguished the two relaxations by attributing them 
with two distinct time constants, TI for the . longitudinal relaxation and T2 for the 
transverse relaxation. Indicating nuclear magnetism with iII and the equilibrium 
magnetization with Mo, Bloch's equation can be written as [30]: 

(2.16) 

The inclination of nuclei toward reestablishment of thermal equilibrium state is 
the origin of longitudinal relaxation. Immediately after any RF pulse that moves 
nuclear spins away from their thermal equilibrium state, the nuclear ensemble evolves 
to resume its equilibrium state. Unlike transverse relaxation, longitudinal relaxation 
involves exchange of energy with the lattice5 and dissipation of absorbed energy from 
the RF pulse. 

2.2.1 Observing Longitudinal and Transverse Relaxations 

The relaxation times of the longitudinal and transverse relaxations are typically much 
longer than the duration of the FID decay, and the effective duration of the the 
experiment should be somehow extended beyond the FID period. Also, in the case 
of longitudinal relaxation where direct observation of nuclear magnetization along 
the z axis is not possible, indirect detection experiments should be devised. These 
requirements can be met by applying the solid (quadrupole) echo pulse sequence in 
observing transverse relaxation and the inversion recovery sequence in the case of 
longitudinal relaxation [25]. 

The basic idea of the solid-echo pulse sequence is very similar to that of the spin­
echo sequence. In spin-echo experiments after the starting gO~ pulse, another 180~ 
pulse is applied after some time (T) which reverses the precession of nuclear spins in 
the x-y plane and results in refocusing and recovering the full signal after waiting the 

5In spin-lattice relaxation theory, lattice is anything that can interact with the nuclei and serves 
as a thermal reservoir for the nuclear ensemble. 
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Figure 2.4: Quadrupole echo pulse sequence 

exact same time that it took for nuclear spins to de-phase, i. e.) T. 

Spin-echo pulse sequence cannot be applied to nuclei that possess quadrupole 
interactions. The problem with applying this 90~ - T - 180~ - T spin echo sequence 
to nuclei with I > ~ is that it fails to reverse the evolution due to the secular part 
of the averaged quadrupole Hamiltonian. However , the spin echo sequence can be 
modified by replacing the second 180x pulse with an 90±y pulse which results in the 
solid-echo pulse sequence [28] (Fig. 2.4). 

Unlike the spin-echo and solid-echo pulse sequences, the inversion recovery se­
quence starts with a 180~ pulse which inverts the direction of the nuclear magnetiza­
tion of the sample. As expected, right after this pulse the nuclear ensemble evolves to 
resume its thermal equilibrium state that results in the decay of the reversed magne­
tization which is now in the - z direction. To track this decay, after a time T another 
90~ is applied to bring the magnetization to the xy-plane and observing the FID 
signal [4, 25]. Obviously, a longer delay between the two pulses results in a weaker 
obtained FID signal which allows the tracking of the longitudinal magnetization decay 
(Fig. 2.5). 

2.2.2 Spin-lattice Relaxation Theory 

In the framework of the spin-lattice relaxation theory, relaxation is assumed to be the 
result of evolution under a fluctuating Hamiltonian with a vanishing time average. In 
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Figure 2.5: The inversion recovery process (reproduced from [25]). 
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the case of deuterium nuclei this relaxation Hamiltonian is the averaged part of the 
quadrupole Hamiltonian: 

(2.17) 

More explicitly this relaxation Hamiltonian can be written as: 

2 

HR(t) = WQ L tJ;l [Y2, - m(e(t), ¢(t)) - (Y2,-m(e(t), ¢(t)))t] (2.18) 
m=-2 

Since only ensemble-averaged observables matter rather than observables of a single 
nucleus, the best way of formulating the relaxation is in terms of density matrix. The 
evolution of the density matrix p(t) under the complete, un-averaged Hamiltonian is 
given by: 

d~~t) = -i [H, p(t)] (2.19) 

or equivalently: 

d~~t) = -i [H,p(O)] -it [H, [H,p(t')]] dt' (2.20) 

which, as it will be seen shortly, is more suitable in obtaining the master equation 
of relaxation. Transforming this density matrix evolution equation to the interaction 
representation singles out the effect of the relaxation Hamiltonian: 

d~~t) = -i [H(t), p(O)] - it [H(t), [H(t'), p(t')]] dt' (2.21 ) 

where p(O) and H(t) are the density matrix and the total Hamiltonian in the inter­
action representation. The transformation to the interaction representation is usu­
ally constructed from the averaged, time-independent part of the total Hamiltonian, 
Ho = Hz + (HQ(t)) , which results in: 

However, transforming to intermediate representations with just part of the time­
independent Hamiltonian is also possible [31]. Since in 2H NMR the Zeeman inter­
action is much stronger than the averaged quadrupole Hamiltonian (Hz» (HQ(t))), 
the averaged quadrupole Hamiltonian in Ho can be ignored. 

This semi-classical formulation of relaxation treats the lattice as a classical sys­
tem that can exchange energy with the nuclei unrestrictedly. However, the precise 
approach to relaxation requires taking into account the fact that the lattice itself is a 
quantum mechanical system that has its own finite temperature density matrix and 
population distribution. To accommodate the finite temperature of the lattice in this 
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semi-classical picture, the thermal equilibrium density matrix of the nuclear ensemble 
should be phenomenologically inserted into the relaxation equation by replacing p(t) 
with p(t) - Peq [31] where: 

Then the modified equation becomes: 

Since it is assumed that there are no correlations between remote parts of the 
nuclear ensemble, separate parts of the ensemble relax independently of each other. 
Hence, each of them experiences a different evolution history that leads to a different 
density matrix p. Therefore, to obtain an equation that describes the evolution of 
the ensemble observables, Eq. 2.22 should be averaged over the whole ensemble: 

(2.23) 

Based on the ergodic theorem, the ensemble average of the oscillating relaxation 
Hamiltonian is equivalent to its time average which by definition is zero. In addition, 
since the initial and equilibrium density matrices are the same for all nuclei in the 
system, the first term on the right hand side of Eq. 2.22 vanishes. However, the second 
term, which contains the product of the relaxation Hamiltonian with itself does not 
vanish after averaging. Inserting the quadrupolar relaxation Hamiltonian (Eq. 2.18) 
into Eq.2.23 gives: 

d~~t) = -wQ L it [T;;) (t), [T~)t (tf), (p(tf) - Peq)]] Fm(t)F:n, (tf) dtf 
m,m' 0 

(2.24) 

where Fm(t) = Y2,-m(O(t), ¢(t)) - (Y2,-m(O(t), ¢(t)))t are random functions with a 
vanishing average but a non-vanishing auto-correlation: 

(2.25) 

Also, from the definition of 2nd-rank irreducible tensors, [T;;) , t] = mT;;) , and, as 

mentioned, the fact that fIo is dominated by the Zeeman Hamiltonian, the 2nd-rank 
irreducible tensor operators in the interaction representation will be: 

(2.26) 
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where Wo is the Larmor frequency. 
Since Eq. 2.24 contains the sought density matrix p(t) in the argument of the 

integral on the right hand side, its solution will have dependence on the past history 
of p(t). Hence, it has memory and cannot represent a master equation [32]. Also, 
for the same reason an analytical solution to Eq. 2.24 is almost impossible. However, 
under some conditions it is possible to approximate Eq. 2.24 with another equation 
by replacing p(t/) with p(t) which satisfies conditions of a Markovian process and 
allows for an analytical solution. 

Typically, Fm(t)F:'n,(t') is a fast decaying function with a characteristic decay time 
Tc. When the evolution time scale of p(t) (in fact, the relaxation time T) is much longer 
than Tc , then the replacement of p(t/) with p(t) and the extension of the upper limit of 
the integration to infinity is justified. In addition, T » Tc means each density matrix 
in the ensemble has already gone through evolution under the fluctuating relaxation 
Hamiltonian long enough such that p(t) = p(t). Also, in systems like lipid membranes 
where the net effect of molecular motions has axial symmetry, only auto-correlations 
with the same indices are non-vanishing i.e., Gm,m'(T) = 6m,m,Gm,m(T). Incorporating 
the above approximation and axial symmetry in Eq. 2.24 and transforming it back 
to the laboratory representation, the master equation of relaxation for the deuterium 
nucleus ensemble is obtained [31]: 

d~~t) = -i [ilo,p(O)] - w~ L roo eimWoT [T~) , [T~)t, (p(t) - Peq )]] Gm,m(T) dT 
m Jo 

(2.27) 
The above equation can be simplified further by rewriting it in terms of spectral 

densities which are defined as the Fourier transformation of the auto-correlations on 
positive time. Spectral densities associated with random functions Fm(t) are defined 
as: 

(2.28) 

Also, reduced spectral densities can be introduced to separate the dynamical and 
structural information encoded in the spectral densities as: 

(2.29) 

Reduced spectral densities are Fourier transform of the reduced auto-correlation func­
tions gm,m,(T) over positive time where reduced auto-correlations are defined by [24]: 

(2.30) 

The advantage of using spectral densities is that the relaxation rates, as it will be 
shown, are linear combinations of the spectral densities. The spectral densities for a 
motion with a single correlation time Tc will be: 
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Tc 
Jm m(mWO) = Gm m(O) ( )2 

' , 1 + mWOTc 
(2.31) 

Finally the master equation of relaxation becomes: 

d~~t) = -i [Ho,p(O)] - wQ L [T~), [T~)t, (p(t) - Peq)]] Jm,m(mw) (2.32) 
m 

Most of the time the evolution of the expectation value of some observable is 
desired rathAer than that of the density matrix itself. The expectation value of an 
observable Q is given by: 

(Q) = Tr[pQ] 

For any time-independent observable Q the evolution of its expectation value is gov­
erned by: 

m 

(2.33) 
where (Q)eq = Tr[QPeq] and (Q)(t) = Tr[Qp(t)]. For example, the evolution of the 
longitudinal magnetization as the expectation value of t operator is given by: 

m 

(2.34) 
Finally, it should be noticed that in the derivation of the master equation non­

secular parts of the averaged quadrupole Hamiltonian have been neglected which 
based on the dominance of Zeeman Hamiltonian in Ho is expected to not appreciably 
affect the master equation of relaxation and its solutions. 

2.2.3 Solutions of the Master Equation 

The master equation of relaxation for deuterium nuclei (Eq. 2.32) is a coupled first­
order linear ordinary differential equation. This differential equation can be solved 
in two ways, either by going through the routine way of solving ODEs by means of 
Laplace transformation, or by finding a basis for the density matrix that decouples 
the differential equation (at least partially). 

When Ho is proportional to t operator (neglecting the averaged quadrupole 
Hamiltonian), spin-1 basis operators given in Table 2.3 decouple the master equa­
tion [33]. 
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1 A A A A 

P6 = y'2(Iylz + IzIy) 

Ps = ~(ixiy + iyix) 

Table 2.3: Spin-l basis operators 

The commutation relations between the operators of Table 2.3 are given in Ta­
ble 2.4. 

Table 2.5 represents the expansion of the 2nd-rank irreducible tensor operators in 
terms of the basis operators of Table 2.3. For instance, from the above commutation 
relations and Eq. 2.34 and Tables 2.3, 2.4, 2.5 the longitudinal relaxation rate can be 
determined: 

1 2 
Tl = 4wQ(J1,l(WO) + 4J2,2(2wO)) (2.35) 

Similarly the transverse relaxation rate will be: 

(2.36) 

When there are terms containing i; in Ho the basis functions of Table 2.3 fail 
to decouple the master equation. However, it is still possible to write the density 
matrix p as a linear combination of these basis operators and then solve the resultant 
linear set of equations. Alternatively, Laplace transformation can be applied to the 
master equation which implicitly uses another basis operators. The density matrix of 
deuterium nuclei system is a 3 x 3 Hermitian, traceless matrix whose entries can be 
determined by eight time-dependent real functions. 

( 
Pll P12 + if212 P13 + if213 ) 

P = P12 - if212 P22 P23 + if223 

P13 - if213 P23 - if223 1 - (Pll + P22) 

Then the master equation of relaxation can be written explicitly in these eight real 
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PI 0 P3 -P2 -yI3P6 -Ps yl3P4 + P7 -P6 

P2 -P3 0 PI yl3P5 -yI3P4 + P7 Ps -P5 

P3 P2 -PI 0 0 P6 -P5 2Ps 
P4 yl3P6 -yI3P5 0 0 V2P2 -yI3PI 0 

P5 g yl3P4 - P7 -P6 -yI3g 0 P3 P2 
P6 -yI3P4 - P7 -Ps P5 yl3g -P3 0 PI 
P7 P6 P5 -2Ps 0 -P2 -PI 0 
Ps -P5 P6 2P7 0 g -P2 -2P3 

Table 2.4: Commutation relations between spin-l basis operators (given in 
Table 2.3) 

functions. 
Pn (t) Pn (t) 
P22 (t) P22 (t) 
PI2 (t) PI2 (t) 

d PI3 (t) =M P13(t) (2.37) 
dt P23(t) P23 (t) 

(l12(t) (!12(t) 
(!13 (t) (!13 (t) 
(!23 (t) (!23 (t) 

where M is the 8 x 8 kernel of the re-written master equation in the basis of those 
eight real functions. Using Laplace transformation, solving the master equation of 
relaxation reduces to solving an eigenvalue/eigenvector problem with relaxation rates 
given by the real part of solutions of: 

det(M -)..I) = 0 (2.38) 

For flo = wot + E(3]; - ]2) the relaxation rates obtained from Eq. 2.32 will be given 
by the real part of the evolution frequencies given in Table: 2.6. with basis operators 
given in Table: 2.6 that decouple the master equation of relaxation when the secular 
part of the quadrupole Hamiltonian hasn't been neglected: 

These eigenstates are neither orthonormal nor real, but real orthonormal basis 
function can be constructed from their linear combinations. Such combinations are 
automatically realized to meet the boundary conditions at t = O. 

P5 

-P6 

-2P7 

0 

-PI 
P2 
2P3 

0 
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Table 2.5: 2nd-rank irreducible operators in terms of Table 2.3 

2.2.4 Orientation-dependence of Relaxation Rates 

As in de-Pakeing problem where the determination of segmental order parameters 
is desired regardless of the orientation of microscopic domains, in finding relaxation 
rates desired quantities are the averages of auto-correlations Gm,m(O) and the reduced 
spectral densities jm,m (mwo). Orientation dependence of spectral densities Jm,m (mwo) 
arises from the orientation dependence of spherical harmonics through Gm,m(O). Fol­
lowing the same two step transformation approach from the local molecule-bond 
system of reference to the laboratory frame that was used in determining the orien­
tation dependence of the quadrupole splitting and using the transformation rule for 
spherical harmonics (Eq. 2.10) the orientation dependence of auto-correlations and 
therefore spectral densities can be determined. 

Assuming no correlation between motions with different correlation times, spectral 
densities can be written in the form of Eq. 2.31. The only orientation dependent 
parts of spectral densities in this form are Gm,m(O). Hereafter subscripts "domain" 
and "LAB" will be used to distinguish Gm,m(O) in molecule-bond system of reference 
from the laboratory frame. The transformation of auto-correlations from the local 
molecule-bond system to the laboratory system can be written as: 

2 2 

Gm,m,(OhAB = L L D~:~(Q,f3,cp) (D~~:m'(Q,f3,CP))* Gn,n,(O)domain (2.39) 
n=-2n'=-2 

where Q, 13, and cp are the Euler angels of the transformation. Following the same 
line of reasoning that led to Eq.2.13 and considering anisotropic motional averaging, 
the above equation reduces to: 
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>'5 = -4W~J2(2wo) - 6W~Jl(WO) - 6w~Jo(0) + iwO - v16Jr - E2 

>'6 = -4W~J2(2wo) - 6W~Jl (wO) - 6w~Jo(0) + iwO + v16Jr - E2 

Table 2.6: Evolution frequencies 

2 

Gm,m(OhAB = L [DR~(cy, (3, 0)]2 Gn,n(O)domain 
n=-2 

37 

(2.40) 

Since the entries of the Wigner d-matrix in Euler transformations with the "z-y-z" 
convention are all real, the above equation simplifies to: 

2 

Gm,m(OhAB = L [d~~~((3)]2 Gn,n(O)domain (2.41 ) 
n=-2 

where again (3 is the angle between the symmetry axis of fluctuations and the z 
direction of the laboratory frame. 

The orientation dependence of longitudinal relaxation rate ';1 based on the above 
orientation dependence of Gm,m(O) will be: 
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(~ 
0 

~) G 
0 1J PI = -2 P2 = 0 

0 0 

G 
0 

D (~ 
0 

~) P3 = 0 P4 = 0 
0 0 

(~ 
0 

~) (! 0 

~) P5 = 0 P6 = 0 
4h -4h 

vI6Jr-ELiE VI6Jr-E2+iE 

p, = (~ 
1 

o ) 
ps = (~ 

1 
o ) 0 4h 0 -4h 

Vl6J~_E2+iE VI6J~_ELiE 
0 0 

Table 2.7: The basis operators for the master equation with secular part of 
the quadrupole Hamiltonian 

= 4w b [ii, I (Wo) nt, [d~~( un r G n,n (0) damnin Hi,,' (2wo) nt, [d~~l (ill r G n, n (0) d='nin 1 
(2.42) 

For fast motions (TcWo « 1), reduced spectral densities can be assumed to be the 
same for all three spectral densities and equal to jo,o(O) which is Wo independent. 
With this approximation the transformation equation simplifies to: 

1 2 . [~ [(2) ] 2 ~ [(2) ] 2 1 Tl LAB = 4wQJo,0(0) n~2 dn,1 ((3) Gn,n(O)domain + 4 n~2 dn,2((3) Gn,n(O)domain 

(2.43) 
Indicating spectral densities at (3 = 00 , which are also referred to as relaxation pa­

rameters, with 10,0(0) 1,6=0, 11,1 (Wo) 1,6=0, and 12,2(2wO) 1,6=0, the longitudinal relaxation 
rate at any orientation can be written as a linear combination of these relaxation 
parameters in the following way: 
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Figure 2.6: Functionality of the three scaling functions of longitudinal re­
laxation rate, Po (/3), PI ((3), and P2 ((3) 

(2.44) 

where the scaling functions Po ((3) , PI ((3) , and P2((3) can be determined from Table 2.2, 
Eq. 2.43 : 

Po((3) = ~ sin2 (3 (2.45) 

The orientation dependence of these three orientation scaling functions is shown in 
Fig 2.6. It should be noted that other ways of parameterizing the orientation de­
pendence of relaxation rates are possible. For example, the first three even Legendre 
polynomials have been suggested as a general basis functions for the orientation de-
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Figure 2.7: The first three even Legendre polynomials as candidate basis for 
representing a general orientation dependence of relaxation rates. 

pendence of relaxation rates [4] as: 

(2.46) 

where, 

Po(cos(,8)) = 1 , P2(COS(,8)) = ~ cos2(,8) - ~ 
35 15 3 

P4(COS(,8)) = gcos4(,8) - 4cos2(,8) +"8 (2.47) 

Fig 2.7 depicts these three Legendre polynomials. 
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2.3 Relaxation and Order Profiles of Lipids in 
the La Phase 

41 

Molecular motions in deuterated lipid bilayers average the quadrupole Hamiltonian 
over motions with correlation times shorter than the NMR time scale; and give rise to 
the appearance of relaxation due to the stochastic time-dependence of the quadrupole 
Hamiltonian, and as a result, to non-zero spectral densities. The time averaging of 
the quadrupole interaction can only differentiate fast from slow motions: any motion 
with a correlation time longer than the NMR time scale results in averaging the 
observables of the averaged quadrupole Hamiltonian over fast motions. On the other 
hand, according to the spin-lattice relaxation theory the only thing that matters to 
relaxation is the correlation time of the motion, Te , compared to wa 1 . Care must be 
taken in treating the effect of very slow motions on relaxation through the master 
equation which gives a valid description of relaxation as long as the decay time, T, 
of auto-correlations satisfies Te « T. 

Since relaxation emerges from averaging the incoherent evolution of spins over an 
ensemble, it is crucial to properly define the ensemble in formulating relaxation. This 
definition itself depends on the time scale of the experiment and the correlation times 
of various motional modes. In an extreme case of the time scale of the experiment 
and observation being long enough to allow lateral diffusion to completely mix all 
orientations, the ensemble will be the whole system. It should be noted that the 
preceding description of spin-lattice relaxation based on the relaxation Hamiltonian 
of the Eq. 2.17 is merely based on disregarding slow motions. 

2.3.1 A Puzzle 

From the structure of lipid bilayers in the La phase, it is expected that segments close 
to the end of hydrocarbon chains of lipids experience more extensive fluctuations. 
Indeed, all experiments with oriented or powder samples of various lipids indicate 
a decreasing segmental order parameter along the chain. This characteristic order 
parameter profile typically has a plateau region corresponding to carbon positions on 
roughly the upper half of the chain, and a rapidly decreasing region associated with 
segments on the lower half of the chain [4, 10, 6J. This plateau region is not seen 
for lipids in the hexagonal HIJ phase, which suggests geometrical and packing origins 
for the presence of this plateau region in the La phase (Fig. 2.9). Also, it can be 
anticipated that increasing the temperature results in more pronounced fluctuations 
and thus smaller overall order parameters. This agrees with experimental results. 

When there are no correlations between motions with different correlation times, 
auto-correlations can be written as linear combinations of exponentially decaying 
functions with different decay rates associated with various motional modes and the 
spectral densities can be written as: 
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Figure 2.8: Normalized segmental order parameter profiles of lipids in La: 
(6) andHIJ (.) phases (reproduced from [4]) . 
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(N) 

Jm,m(mWO) = L G~:n(O) Te (N) 
N 1 + (mWOTe )2 

(2.48) 

where N is the index of the modes of motions characterized by correlation times 
TJN) [6]. Each term in the above equation corresponds to a spectral density for a 
single correlation time (Eq. 2.31). The dependence of auto-correlations and spectral 
densities of the form of Eq. 2.31 on the correlation time is represented in Fig. 2.9. 
Following the same line of reasoning as above and assuming no significant difference 
in the nature of fast intramolecular motions at different carbon positions, it can be 
expected that since segments down the chain have a smaller order parameter, they 
should possess more extensive fluctuations and hence bigger spectral densities and 
faster relaxation. In addition, it can also be argued that analogous to the effect 
of increasing temperature on the order parameter, relaxation rates associated with 
different segments along the chain should increase as the temperature increases. 

Surprisingly, the relaxation rates of segments close to the end of the hydrocarbon 
chains are slower than those of sites close to the head group region; and also as the 
temperature increases the relaxation rates tend to decrease (Fig. 2.10 and Fig. 2.11) [6, 
5,24]. 

All experiments indicate that the relaxation profile follows the order profile and 
has the same plateau region or, more precisely, that the relation between the relax­
ation rate and the square of the order parameter, SbD' is linear within experimental 
errors [6]. Despite the fact that the relation between the spectral densities and molec­
ular motions is more complicated than that of the order parameter, such a significant 
discord is surprising. 

From Figure 2.9b it can be seen that for the intermediate correlation time regime 
marked by Te comparable to wo\ TI , the relaxation time assumes its minimum and the 
relaxation is very effective. In the short correlation time regime, as the correlation 
time decreases, either through increasing temperature or through going down the 
chain where van der Waals attractions are weaker, the relaxation rate increases. The 
opposite effect is expected in the long correlation time regime. On this basis, one may 
argue that increasing the temperature results in shorter correlation times and thus 
longer relaxation time TI . Applying the same logic to the case of relaxation profile 
and assuming the dominance of the change in the correlation times of motions, Te , 

over the extent of motions, Gm,m(O), along the chain, the descending relaxation profile 
of lipid bilayers in the La phase can be rationalized. However, numerical values for 
the longitudinal relaxation rates suggest correlation times much shorter than WOI 

which is in direct conflict with the experimentally observed decrease in longitudinal 
relaxation rates as the Larmor frequency increases. 

Typically the longitudinal relaxation rate in lipid bilayers is on the order of tens 
of milliseconds [4, 24, 6] while the transverse relaxation is one the order of tens 
of microseconds [4, 33]. These values suggest a very short-correlation-time regime, 
since defining spectral densities for a single correlation time, as in Eq. 2.31 yields 
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Figure 2.9: Spectral density and longitudinal relaxation rate dependence on 
Tc: (a) The spectral densities as a function of the Larmor frequency. (b) 
The longitudinal relaxation rate T1 as a function of molecular motions rate 
(T; 1). The dashed line represents T1 functionality for a higher Larmor 
frequency. Fast and slow motions here are designated based on their 
correlation time compared to the W01 which is typically much shorter 
than the NMR time scale. The curves are calculated under the assumption 
that a single random motion with a correlation time Tc causes relaxation. 
Reproduced from [25]. 
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from [34]). 



Chapter 2. Theory of 2 H NMR 46 

'4 
5 ~. (14 

o~ 
i 

2.B 2.9 3.0 11 2.8 2.9 3.0 3.1 

Figure 2.11: Relaxation time Tl versus temperature for various carbon po­
sitions in DPPC(reproduced from [5]). 
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comparable relaxation rates for longitudinal and transverse relaxations. 

2.3.2 Non-Collective versus Collective Models for Slow 
Motions 

47 

It has been suggested that [7] when there is no correlation between motions, fast and 
slow motions (on the NMR time scale) contribute to the longitudinal relaxation rate 
differently: 

111 
-=-+­
TI TI! TIs 

(2.49) 

where 1/TI! and liTIs are the contributions from the fast and slow motions, respec­
tively. The fast motion is treated as a single correlation rate motion, while it has 
been advocated that slow motions result in direct averaging of relaxation rates [6]. 
Slow motions in this treatment are assumed to have correlation times longer than 
wQI but still much shorter than the relaxation time TI . Two models for slow motions 
can be considered: (i) non-collective models in which each of the slow motions can 
be described with a single correlation time, without explicitly considering long-range 
cooperative motions; and (ii) collective models where slow motions are described by a 
continuous distribution of, for instance, bilayer disturbances. It has been shown in [6] 
that unlike the non-collective models which result in W02 dependence, the collective 

1 

models give rise to W~2 dependence. 
Experimentally observed linear dependence of relaxation rates on SeD has been 

explained by averaging the orientation-dependent relaxation rates due to fast motions. 
This averaging results in SbD dependence [7]. 

2.3.3 Resolution 

Interpretation of experimentally measured longitudinal relaxation rates as a function 
1 

of the Larmor frequency is not without difficulty. Initial reports concluded that W~2 
represents a better fit to the data and hence that collective motions are the dominant 
mechanism for the longitudinal relaxation in the long-correlation-time regime [35]. 
Later, more precise investigations along with the data from I H relaxation led to the 
interpretation that the longitudinal relaxation rates of 2H NMR spectra exhibit a 
W02 -dependence on the Larmor frequency and there is no need to appeal to collective 
models for slow motions to explain the relaxation phenomena in lipid bilayers [36, 37, 
38]. 

It was therefore concluded that two types of molecular motions are mainly respon­
sible for the relaxation in lipid bilayers: motions in the very short correlation time 
regime and non-collective motions in the intermediate or long correlation time regime, 
with the latter contributing only to the transverse relaxation. In this way, large dif­
ferences between the longitudinal and transverse relaxation rates in lipid bilayers can 
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be explained. 
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Inverse problem, in the sense of Eqs. 1.2 or 1.3, where the distribution of, say, 
anisotropies g (v) needs to be extracted from the measured data, f (w ), presents unique 
computational challenges [39]. The two central difficulties are: (i) typically, the de­
termination of model parameters from data in non-linear inverse problems requires 
direct search of the parameter space which poses a serious difficulty as the number 
of model parameters increases; and (ii) most of the inverse problems, regardless of 
being linear or non-linear, are not well-posed. In mathematics a well-posed problem 
is defined to have the following properties [40] : 

1. For all admissible data, a solution exists 

2. For all admissible data, the solution is unique 

3. The solution depends continuously on data and is stable, namely, arbitrarily 
small variation of coefficients, parameters, initial or boundary conditions, etc., 
gives rise to small solution changes. 

Consequently, any problem that fails to fulfill even one of these criteria is considered 
an ill-posed problem. 

Thus ill-posed problems may not possess a unique or stable solution. However, 
instead of finding an exact solution, one might modify the inverse problem slightly 
by imposing some external constraints such as non-negativity, smoothness, etc., on 
its expected solution in order to construct a stable pseudo-inverse solution. Methods 
and algorithms implemented to improve stability of ill-posed pseudo-inverse solutions 
are known as regularization techniques. It should be noted that among all ill-posed 
problems those which arise from the violation of the third condition are the most 
problematic ones. 

Ill-posed inverse problems are abundant in real-world problems. They are fre­
quently encountered in astronomy, geophysics, high-energy physics, and in all disci­
plines requiring data analysis. Paradoxically, even some mathematicians like Hadamard, 
who himself pioneered the concept of ill-posed problems, believed that ill-posed prob­
lems are artificial and irrelevant to real physical systems [41]. However, if one over­
comes this bias, pseudo-inverse solutions offer a powerful tool for making progress in 
data-analysis that seen intractable at first. 
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3.1 Discrete Linear Ill-posed Problems 

Most of the inverse problems arising in physics are structurally linear and usually 
in the form of convolution integral equations. An important class of such problems 
are Fredholm integral equations the of pt-kind that can be written in the following 
generic form: 

J K(s, t)g(t) dt = f(s) (3.1 ) 

where f(s) is the available distribution (measured data) and g(t) is the unknown 
distribution (desired parameters) that needs to be determined. K (s, t) is called the 
kernel of the integral equation and is known. As can be readily shown, Eq. 3.1 does 
not possess a unique solution. If gans(t) is an answer to the above equation then any 
gans(t) + agnull(t) will also be a solution where a is a real number and gnull(t) is a null 
solution to 3.1: 

J K(s, t)gnull(t) dt = 0 (3.2) 

It is possible to get around the non-uniqueness of the solution by confining possible 
solutions to a subspace of the whole solution space by disregarding null solutions. 
However, as a direct result of it being an integral equation, not only Eq. 3.1 does not 
have a unique solution, but also the non-unique solutions are highly unstable. To 
see the origin of this instability, consider the effect on g(t) of adding an oscillating 
function n( s) with vanishing average to f (s) in Eq. 3.1. If oscillations of n( s) are much 
faster than the scale over which K(s, t) as a function of s changes appreciably then the 
integration will averaging them out. Hence, small changes in f(s) may correspond to 
large fluctuations in g(t), leading to an instability. In practice, a discretized version 
of Eq. 3.1 is used: 

L K(Si' tj)g(tj ) = f(Si) 
j 

(3.3) 

or using Ki,j = K(Si' tj) and f = {f(sd} , 9 = {g(tj)}, for a discrete set of {Si} , 
{t j } values, Eq. 3.3 can be written in a more compact form as: 

Kg=f (3.4) 

It should be noted that the sizes of the sets of {Si} and {t j } are not completely 
arbitrary. A fine-grid discretized g(tj ) combined with a coarse-grid f(Si) results in 
an under-determined problem which will be severely ill-posed. On the other hand, 
choosing a more coarse-grid discretization of g( tj) may address the severe instability 
of the original problem, but at the same time, its loss of flexibility may introduce 
errors in compatibility with f(Si). In fact, discretization itself is an elementary and 
often not very effective way of regularizing an inverse ill-posed problem. 
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Despite the fact that finite-dimensional linear maps, like K in Eq. 3.4, are contin­
uous in rigorous mathematical terms, they still can result in a numerically unstable 
problem. To make this point more clear and gain more insight into the behavior of 
finite dimensional linear equations it is necessary to first transform the kernel to a 
more manageable form. This transformation is provided by the singular value decom­
position. 

3.2 Singular Value Decomposition 

Singular value decomposition (SVD) is a powerful tool in linear algebra for solving 
sets of linear equations, least squares (LS) problems, and constructing pseudo-inverse 
solutions when the exact solution doesn't exist. According to SVD theorem, any 
arbitrary m x n matrix K can be decomposed into a diagonal matrix Emxn and two 
left and right unitary matrices Umxm and Vnxn: 

":) V~xn 
mxn 

(3.5) 

Any simultaneous substitution of ith with jth rows of U, V and O"ii with O"jj in E 
results in a valid SVD of the original matrix K. Because of this arbitrariness in the 
order of singular values, SVD transformation is conventionally defined in a way that 
singular values decrease from top-left to the bottom-right corner of the transformed 
matrix E. Since the rows of unitary matrices U and V are nothing but the left and 
right eigenvectors of the matrix K (including null vectors), the SVD can be rewritten 
in a more explicit form: 

min{m,n} 

Kmxn = L UiO"iiVJ 
i=l 

(3.6) 

Because the left and right eigenvectors of K form two orthonormal basis vectors for 
m- and n- dimensional spaces that K acts between, the solution to any LS problem 
of the form f = K!J can be written as: 

min{m,n} 

!J = L 0";;1 (Ui.f) Vi (3.7) 
i = l 

Accordingly, the pseudo-inverse matrix K - 1 is defined as: 

(3.8) 

where E- 1 is a matrix whose non-zero, diagonal elements are the reciprocal of the 
diagonal elements of E. Since the pseudo-inverse of an invertible square matrix hap-
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pens to be exactly the inverse matrix, the pseudo-inverse matrix can be considered 
as a generalized inverse matrix. In fact, Eq. 3.7 is the definition of M oore-Penrose 
generalized inverse matrix. Ortho-normality of the right and left eigenvectors of the 
matrix ensures that the answer obtained from Eq. 3.7 gives the best fit to the data 
vector f, in the sense of having the least possible mismatch norm. 

Instability emerges in constructing the solution 9 from the data f when the kernel 
K is ill-conditioned. A matrix is considered ill-conditioned when it has a big condition 
number. The condition number for any matrix is defined as the ratio of relative error 
introduced in 9 by adding a perturbation vector ii to f, to the relative error in f: 

IIK-1iiII/IIK-1 iii 
Cond(K) = Iliilllllill (3.9) 

By virtue of SVD, the condition number can be expressed only in singular values as 
the ratio of the biggest to the smallest non-zero singular value of K as following: 

Cond (K) = Cl max 

Clmin 
(3.10) 

Clearly, a bigger condition number of the kernel K in the linear inverse problem 
Kg = f results in a more severe instability in the solution g. In fact all small singular 
values give rise to the amplification of components with many sign changes which 
is analogous to the high frequency amplification effect of the original un-discretized 
inverse integral equation (Eq. 3.1). Zero singular values in the SVD of any matrix 
are the indication of the linear dependence of corresponding rows or columns of the 
matrix. The number of such zero singular values defines the dimensionality of the null 
subspace of the matrix. Accordingly, very small singular values also translate into 
very weak linear independence of the associated rows or columns of the matrix which 
is considered as numerical rank deficiency. The root of this amplification effect of 
small singular values can be readily seen from the presence of inverse singular values 
in the plain LS solution (Eq. 3.7). Components amplified by small singular values are 
nothing but corresponding right and left eigenvectors to those singular values which 
are numerically linearly dependent. 

A Gaussian noise vector with a correlation matrix proportional to unity is a totally 
random vector with no correlation between its components, or a white noise. Such a 
noise vector may contain components corresponding to eigenvectors associated with 
small singular values that are responsible for instability. Because of the presence 
of these components, the effect of adding noise to the data f may severely affect 
the obtained solution g. Besides noise, finite precision of numerical computations 
that results in a round-off error can yield a similar effect. Thus, in practice, solving 
a severely ill-posed problem even in the absence of noise by LS methods is merely 
impossible. 
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3.3 Variational Regularization 

Generally, regularization is the process of approximating an ill-posed problem by a 
family of neighbouring well-posed ones. This approximation can be done either by 
varying the discretized kernel of the ill-posed problem to get a well-behaved kernel 
that defines a well-posed problem, or by confining the solution space to avoid mapping 
to noise components. As a result of this approximate nature of regularizations, there 
will always be an error associated with any regularization known as regularization 
error. Variational regularizations are those that rely on regularizing the ill-posed 
problem by modifying the kernel. Usually in regularization algorithms the adherence 
of the approximated problem to the original ill-posed problem is controlled by one 
or several parameters known as regularization parameters. The final pseudo-inverse 
solution to an ill-posed problem is constructed by choosing a regularization parameter 
or a set of parameters that gives the best compromise between the noise-filtering effect 
of the regularization and the regularization error. Because of the presence of the 
regularization error, most of the time in the form of systematic rather than random 
shifts in the results, confidence interval estimation is not feasible. However, it is 
possible to neglect the regularization error and define the confidence interval from 
the noise amplitude in the regularized solution. 

3.3.1 Truncated Singular Value Decomposition 

The simplest way of regularizing a linear inverse problem is by modifying the Moore­
Penrose generalized inverse operator so that it can accommodate the numerical rank 
deficiency of the kernel. The origin of instability in the solution of a linear inverse 
ill-posed problem is the presence of a cluster of small singular values in the SVD of 
the kernel. In constructing the Moore-Penrose inverse operator of the kernel, we may 
consider these small singular values in addition to the null subspace represented by the 
singular values that are zero, thus generating a generalized inverse operator (a pseudo­
inversion operator) that is likely to be well-behaved. This is equivalent to filtering the 
singular values of the kernel prior to constructing the generalized inverse operator. 
The filtering can be performed by imposing a step filter or simply by truncating the 
singular values smaller than some threshold value. This way of regularizing a linear 
ill-posed problems is known as truncated singular value decomposition (TSVD). The 
threshold value or the index of the smallest unfiltered singular value (Jii plays the role 
of a discrete regularization parameter in the TSVD regularization. 

The shortcoming of TSVD method is in its inflexibility in filtering the singular val­
ues that usually results in a big regularization error. This is particularly problematic 
when the ill-posedness of the problem is due to a continuum of gradually decaying 
singular values instead of a distinct cluster of small singular values, or, more tech­
nically, when the concept of numerical rank deficiency fails to describe the ill-posed 
behavior of the kernel, TSVD fails to give good results [42]. 
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3.3.2 Tikhonov Regularization 

Tikhonov regularization is a class of regularizations having a common structure. Be­
cause of its flexibility and effectiveness in treating a variety of linear inverse prob­
lems, Tikhonov regularization has been widely adopted and is the most widespread 
regularization technique in dealing with linear ill-posed inverse problems. It can be 
approached in two ways, either as the most general form of regularizations based on 
filtering singular values of the kernel or as an optimization problem. 

The basic idea in any Tikhonov regularization is to minimize the following expres­
SlOn: 

(3.11) 

where L is a constraint matrix that imposes a desired property on the sought ideal 
solution, and A is the regularization parameter. Minimizing W(A) with respect to 9 
results in the following pseudo-inverse solution for the problem that depends only on 
the regularization parameter A [42]: 

(3.12) 

In this way, the formidable task of finding the pseudo-inverse solution reduces to a 
minimization problem that depends only on one parameter, A. Choosing a large A 
biases g(A) to satisfy the imposed expectation through L while solutions obtained 
from choosing a small A retain compatibility with the data f by minimizing the 
mismatch norm Ilf - Kgll· In a way analogous to the Moore-Penrose generalized 
inverse, a regularization operator R(A) is sometimes defined: 

g(A) = R(A)f 

where for Tikhonov regularizations this regularization operator can be identified ex­
plicitly in terms of Land K as [42]: 

(3.13) 

It is not possible or easy to come up with a constraint matrix L that gives the 
best description of the ideal solution, for an arbitrary inverse problem. There exists 
a class of smoothing constraint matrices that can be applied in regularizing most of 
ill-posed problems irrespective of their specific details, especially those that originate 
in physical measurements. These smoothing matrices are discrete approximations of 
derivative operators and generally target the severe noise amplification of ill-posed 
problems by demanding a smooth regularized solution. Among these smoothing ma­
trices, discretized version of the oth (Lo = 1) and 2nd derivative operators are partic­
ularly important for their simple interpretation. The corresponding matrix to the 2nd 

derivative operator (L2 ) is closely related to the discretized curvature integral of a 
curve. Hence, choosing L2 in Eq. 3.11 results in a regularized solution with the least 



Chapter 3. Ill-posed Inverse Problems and Regularization 55 

possible curvature. The L2 constraint matrix can be represented as: 

-2 1) (n~2),n 
(3.14) 

Imposing the Lo matrix, which is known as the minimum norm constraint, is equiva­
lent to imposing F>..(eJ) = CT2~>..2 filter on the singular values (eJii) of the kernel [43]. The 
Lo norm targets the severe noise amplification without making any further assump­
tion about the properties of the ideal solution to the problem, so it can be applied in 
regularizing a broad range of linear ill-posed inverse problems. It should be noticed 
that when the solution is expected to be smooth with strong correlation between 
adjacent points, imposing the L2 constraint gives better results compared to the Lo 
constraint. Also, as can be expected from the analogy with the discretized curva­
ture integral, imposing the L2 constraint gives better results for finer-grid discretized 
solutions. 

To gain a deeper insight into Tikhonov regularization and the origin of Tikhonov 
expression in Eq 3.11, suppose the amplitude of the noise superimposed on the data, 
IIJnoise ll, is known. Using Lagrange 's method of undetermined multipliers, the ideal 
solution 9 can be determined through imposing constraint matrix L and finding a 
solution that minimizes the mismatch a constraint Ilf - Kgl12 - IIJnoiscl1 2 = O. 

The exact solution will then satisfy the following two equations: 

g()..) = (KT K + )"LT L) ~ l KT f 
Ilf - Kg()..) 112 -llJnoise l1 2 = 0 

(3.15) 

(3.16) 

In practice, the specific Jnoise may not available, but since it only enters into the 
determination of the Lagrange's multiplier, the regularization problem is reduced to 
finding a proper choice of the regularization parameter, for a given L. This observation 
not only explains why Tikhonov regularization is robust and flexible but also suggests 
a way to choose an optimal regularization parameter in Tikhonov regularizations, 
namely, through the use of the discrepancy principle. 

3.4 Regularization Parameter Selection Methods 

An essential part of any regularization algorithm is the selection of an optimal regu­
larization parameter. Since finding the exact regularization parameter requires know­
ing the exact solution, an approximate value of the exact regularization parameter 
is sought through the investigation of the pseudo-inverse solution as a function of 
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regularization parameter. Consequently, the final regularized solution may contain 
regularization error due to choosing a regularization parameter slightly different from 
the exact one, in addition to the regularization errors associated with the presence of 
the noise. 

3.4.1 Discrepancy Principle 

Discrepancy principle is the most widely-used method of choosing regularization pa­
rameters based on the noise-level estimation. If an ill-posed problem is self-consistent 
in the sense that there exists an exact solution fiexact' such that K fiexact = !exact' then 
the optimal value of the regularization parameter would be the one that satisfies the 
following criterion: 

Ilf - Kfi(A) II = be (3.17) 

where be is the estimated error in data f and should be less or at most equal to 
II a noise II· For a discrete regularization parameter of the TSVD, the smallest index i 
should be chosen that satisfies Ilf - Kfi(i) II ::; be. 

3.4.2 L-curve Criterion 

L-curve is a powerful and convenient graphical tool not only in determining the 
optimal regularization parameter but also in analyzing the behavior of discrete ill­
posed inverse problems. L-curve is the plot of the square of residual norm (i.e., 
Ilf - Kfi(A) 112) versus the square of the imposed constraint norm! IILfi(A)112 on the 
log-log scale for all allowed regularization parameters A [42]. For regularizations with 
a continuous regularization parameter the L-curve is a continuous curve while for dis­
crete regularizations such as TSVD the L-curve consists of a discrete set of points. The 
name arises because of a characteristic L-shape appearance typical of this plot, with a 
distinct corner separating vertical and horizontal regions of the curve (Fig. 3.1) [42]. 

Over-regularizing by choosing too large a value for the regularization parameter 
results in a small solution constraint norm but a large residual norm, and hence points 
at the far right region of the curve. On the other hand, poorly regularized solutions 
corresponding to choosing too small a value of the regularization parameter result in 
the noise components entering the solution, a case of a small residual norm and a 
large solution constraint norm. These un-regularized or poorly regularized solutions 
are located in the top left region of the L-curve, close to the vertical axis. The exact 
regularization parameter A exact , which by definition gives the best trade-off between 
the two solution and residual norms, is anticipated to be at the corner of the L-curve. 
Therefore, finding the optimal regularization parameter Aopt as a good approximation 
to Aexact reduces to a precise characterization of the corner in the L-curve [43]. 

1 For TSVD or iterative regularizations, the solution norm or other measures may be used instead 
of the constraint norm. 
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log 

Figure 3.1: L-curve, poorly regularized solutions corresponding to choosing small 
A have a big constraint norm and a small residual norm are located at 
the vertical part of the curve while over regularized solutions resulted 
from choosing big values for regularization parameter are located at the 
horizontal part of the curve. 



Chapter 3. Ill-posed Inverse Problems and Regularization 58 

To achieve this [44], the point of maximum curvature of the L-curve is taken to 
correspond to the optimal regularization parameter. If the coordinates of points on 
the L-curve, parameterized by >., are given by X ()..), Y ()..), then: 

X()") = log(lli - Kg()..) 112) (3.18) 

and assuming that X()"), Y()") vary smoothly with>., the curvature function of the 
L-curve fi:()..) is: 

X"()..)Y'()..) - Y"()..)X'()..) fi: ( )..) - --'--'--------'--'--:----
- (X'()..)2 + Y'()..)2)~ 

where (') denotes differentiation with respect to )... 

3.5 Iterative Regularizations 

(3.19) 

The goal in any regularization algorithm is to avoid the presence of amplified noise 
components in the pseudo-inverse solution. In non-iterative regularization techniques 
such as Tikhonov or TSVD this goal is pursued through kernel variation. Alterna­
tively it is possible to use iterative methods, keeping the kernel intact while con­
straining possible solutions so as to avoid mapping the noise. However, both the 
mathematical formulation and the practical implementation of solutions based on the 
constrained solution space is not easy. 

Iterative methods differ from non-iterative methods in several important way [42]: 

• Iterative methods don't alter the kernel. Since the matrix-vector multiplication 
and the saxpy2 operation (i. e., a f-- a + b) are the only operations in iterative 
methods, in regularizing ill-posed inverse problems by iteration there is no need 
for determining the SVD of the kernel. 

• The main issues in iterative methods are the convergence and the rate of con­
vergence. Iterative methods such as Landwebe-".. method in finite iteration are 
almost insensitive to the presence of noise in data. 

• Since the generalized inverse of the kernel or the reciprocal of its singular values 
are not used into constructing the iterative solution, mapping the noise may take 
many iterations, particularly when the signal-to-noise ratio (SNR) is high3 . 

• Iterative methods are the only methods of choice in problems where matrix 
representation of the kernel is not available and only the effects of the matrix­
vector products (i.e., Kg and Ktg) are defined. 

2Saxpy is a basic algebraic operation which is the combination of scalar multiplication and vector 
addition 

3 "The CG [conjugate gradient] method often produces iteration vectors in which the spectral 
components associated with the large eigenvalues tend to converge faster than the remaining com­
ponents" [42, P.142] 



Chapter 3. Ill-posed Inverse Problems and Regularization 59 

3.5.1 Landweber Iteration Method 

One of the regularization methods based on iteration is the Landweber iteration. It is 
a classical iteration method that was originally developed for finding the ~olution of 
large-scale well-posed problems but was found to have regularization effects as well. 
Landweber iteration method is based on transforming the "normal equation" , 

(3.20) 

into its equivalent fixed point equation: 

(3.21) 

where g(O) is the starting vector or the initial guess (usually taken to be zero) and w 
is a real parameter satisfying 0 < w < 211Kt KII- 1 to ensure non-expansivity of the 
fixed point operator 1 - KtK, and hence, the convergence of the iteration [45],[42]. 
The iteration index, k, is the discrete regularization parameter in Landweber itera­
tion method which its optimal value can be determined by regularization parameter 
selection methods such as the discrepancy principle or L-curve. 

In the classical Landweber iteration (Eq. 3.21), the pseudo-inverse solution, g, 
is subjected to no constraint. To improve the regularizing effect of the classical 
Landweber iteration method and make it a more flexible tool, desired properties of 
the pseudo-inverse solution may be imposed at each iteration as following [42]: 

(3.22) 

where P is a projection operator that imposes the so-called "hard constraints". 
The main disadvantage of the Landweber iteration method is its slow convergence 

rate that necessitates many iterations. To overcome this limitation, other faster 
iteration methods and in particular conjugate gradient-based methods can be applied 
in regularizing ill-posed inverse problems. 

3.5.2 Conjugate Gradient Iteration Method 

Currently there is a lots of interest in CG-based regularization methods mostly for 
their efficiency in dealing with large-scale problems. Like the Landweber iteration 
method, the conjugate gradient (CG) method was originally designed for solving large­
scale linear equations with positive definite, symmetric matrices. These restrictions 
on the kernel in an arbitrary problem can be satisfied by transforming the linear 
equation, 

l=Kg, (3.23) 

to its corresponding normal equation of the problem: 

(3.24) 
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Denoting the CG error at each iteration step by: 

(3.25) 

where ins is the sought least square solution to the problem, then the CG iterate !fk) 

can be written as [42, 46]: 

k-l (r:(i)) _ (r:(k)) ~ 
[/k) = [/0) + L r; 9 ~ r; 9 Kt(f _ g(i)) 

i=l IIKt(f - g(i))112 
(3.26) 

An important property of the iterates !fk) in the CG method is the orthogonality 
of corresponding residual vectors, 

(3.27) 

which with zero starting vector, !f0) = 0, results in the monotonic growth of the 
solution norm II!fk) II with k. This, along with the monotonic behavior of the residual 
norm Ilf - Kgll, is a crucial criterion that ensures the reliability of the L-curve method 
in finding the optimal truncation index, kt [42]. 

There exist several mathematically equivalent implantation of the CG algorithm 
which are merely five simple statements for each iteration. However, it has been 
experimentally determined that one of them that usually referred to as CG LS (or in 
some literature CGNE) is the most stable one. The CGLS implementation of the CG 
method can be stated as [42]: 

O!k IIKtr\k-l) 112 I IIK d\k- l) 112 

~(k) 
9 

~(k- l) + d\k- l) 9 O!k 

r\k) r\k-l) - O!kK d\k-l) (3.28) 

f3(k) IIKr\k-l) 112 IIIKr\k-l) 112 

d\k) Kt r\k) + f3(k)d\k-l) 

where r\k) is the residual vector and d\k) is an auxiliary n-vector (n is the dimension­
ality of KtK). The CGLS algorithm is initialized with the starting vector g(O) which 
results in following initial values for r\0) and d\O): 

(3.29) 
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3.6 Successful Pseudo-Inversion 

Successful pseudo-inversion in ill-posed inverse problems critically depends on apply­
ing the appropriate regularization method to the inversion process. The ill-posedness 
of different ill-posed inverse problems are usually different in nature and severity, 
and the fact that regularization algorithms inherently are not definite tools, which 
necessitates knowing the behavior of the problem in hand to be able to determine the 
effective regularization method. 

To achieve an effective extraction of the anisotropy distribution and relaxation 
parameters from partially-relaxed powder spectra, it is necessary to first investigate 
the mathematical structure of the involved convolution integrals in more details. 
Particularly, properties such as non-linearity, the size of the problem, the behaviour 
of the discretized kernel are of prime importance in devising the effective pseudo­
inversion procedure. 
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Chapter 4 

Extracting the Relaxation Rates 

Extracting relaxation rates from partially-relaxed powder spectra is an extension and 
generalization of conventional de-Pakeing. In practice, due to the so-called "dead 
time" of the receiver which is an instrumental limitation in NMR experiments, FID 
observation starts later than T = 0, typically offer a delay of about several microsec­
onds. Echo sequences do allow one to bypass this limitation [4], but may result in 
some tiny distortions due mainly to the orientation-dependent transverse relaxation. 
Thus, experimentally obta'ined spectra might not represent the ideal spectra at T = O. 
Extracting the anisotropy distribution from such partially-relaxed powder spectra us­
ing conventional de-Pakeing, may result in systematic errors. Being able to de-Pake 
a set of several partially-relaxed powder NMR spectra simultaneously while account­
ing for relaxation, not only offers access to the valuable information contained in 
the spectral densities, but also results in much better estimates for anisotropy and 
orientation distributions. 

4.1 De-Pake 

As was mentioned in the Introduction, deuterium NMR powder spectra are the con­
volution of the orientation and anisotropy distributions, 

f(w) = J g(v) [p( ;3) ~~] dv, (4.1) 

where w = v P2 (cos fJ) . Linearity with respect to the anisotropy distribution is the 
key feature of the above convolution integral that allows for applying pseudo-inversion 
algorithms to de-Pake the powder spectra. 

In practice, since the assumption of a random powder distribution of domain orien­
tations may not strictly hold, the orientation distribution has to be determined at the 
same time. Unlike the anisotropy distribution, the determination of the orientation 
distribution in practice is done by choosing from a class of physically reasonable dis­
tributions. In the case of vesicular model membranes, considering the elongation of a 
vesicle under the effect of the strong magnetic field of the spectrometer, the following 
general forms can be expected for the orientation distribution of the vesicle [9J: 

sin(fJ) 
PE(fJ) ex: [1 _ (1 - K,) cos2(fJ )J2 (4.2) 
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in which '" is a parameter that describes the elongation of the vesicle and uniquely 
characterizes any distribution of this form. This class of distributions, known as the 
ellipsoidal model is based on the assumption that there is a strong correlation between 
adjacent domains; this tends to neglect thermal fluctuations [47]. On the other hand, 
assuming a weak correlation between the orientation of adjacent domains leads to the 
Boltzmann model with the following generic form: 

PB((3) ex sin((3) exp[", cos2 ((3)] (4.3) 

Here", is inversely proportional to the temperature and cos2 ((3) indicates the orientation­
dependence of interaction energy between the membrane domains and the magnetic 
field. '" = 0, which corresponds to high temperatures, results in totally random dis­
tribution of domains while, on the other hand, 1"'1 » 1 gives rise to perfect order [47]. 
Other physically reasonable models can be considered. An essential feature of all such 
models should be their ability to vary significantly the shape of the distribution as a 
function of "'. 

Eq. 4.1 is bilinear in the two anisotropy and orientation distributions. Its dis­
cretized version can be rewritten explicitly in the two discretized distributions as: 

( 4.4) 

where JC is independent of the two distributions and is related to the scaling relation 
of the de-Pake problem, i. e., the P2 (cos (3) scaling relation. For linearly-independent 
orientational distributions, it is likely that the true distribution defines a consistent 
kernel (physically and mathematically) with the powder spectrum f The effect of 
choosing an orientation distribution ptrial other than the true one ptrue adds a compo­
nent gerror to the true anisotropy distribution gtrue, given by the following equation: 

JCi. (ptwe _ ptrial )gtrue = JCi. ptrialgerror 
),k) ) k ),k) k 

Most of the time this component leads to non-physical features in the extracted 
anisotropy distribution gtrue + gerror such as negativity which is the indication of in­
consistency between the chosen model based on choosing ptrial for the orientation 
distribution and the spectrum. Therefore, the best estimate for the anisotropy distri­
bution, g(v), and orientational distribution parameter, "', from a class of orientation 
distributions can be found simultaneously, by examining all orientational distribu­
tion choices and selecting the one that gives the best match and the most physically 
plausible result [9]. 

4.2 Partially Relaxed Powder Spectra 

Partially-relaxed powder spectra can be described by modifying the convolution in­
tegral of Eq. 4.1 as follows: 
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f(W,T) = L J g(i)(V) [p(p)~~] e- TC /)« (3 ) dv 
2 

(4.5) 

where g(i)(v) is the contribution of the ith molecular site (the ith doublet in the case 
of 2H NMR) to the anisotropy distribution g(v): 

(4.6) 

and T(i~(,6) is the relaxation rate associated with it, a domain at an angle 13 from the 

z axis of the lab frame. The relaxation rate T(i~(,6) is related to the three relaxation 

parameters which can be either Jg6(O) , Ji~i (wo), and Jt~(2wo) or C6i) , C~i) , and cii ) 

as coefficients of respectively Eq. 2.44 or Eq. 2.46 for ith carbon position, depending 
on the parameterization chosen. 

Multiple doublets, with their own orientation-dependent relaxation rates, scaled 
through the P2( cos 13) by the powder superposition of domains, which itself may have 
been partially skewed by the alignment in the magnetic field all provide overlapping 
contributions to Eq. 4.5, making the inverse problem intractable. Still, although non­
linear exponential dependence on the orientation-dependent relaxation rates hinders 
the calculations, it does not make it impossible to deal with. In the case of a single 
labeled site where for 2H NMR the anisotropy distribution contains only one dou­
blet, the problem can be solved like a conventional de-Pake problem but with three 
additional relaxation parameters. 

If the unrelaxed spectrum at T = 0 were available, it would become possible 
to determine g(i)(v) distributions and thus potentially to solve the inverse problem 
either by searching the relaxation parameter space by the brute force or through 
methods such as descending gradient. However, in practice the spectrum at T = 0 is 
not experimentally accessible. Typically the transverse relaxation rate in lipids is of 
the order of tens of microseconds which does result in systematic distortions in the 
spectra. 

4.2.1 Linearization 

Progress can be made if the problem is linearized. This is usually done by approx­
imating the non-linear equation in the neighborhood of a point by its derivative at 
that point. In the case of extracting the anisotropy distribution and the relaxation 
parameters from partially relaxed spectra the exponential dependence on relaxation 
parameters suggests solution through linearization around T = O. The derivative of 
Eq. 4.5 with respect to T at T = 0 is: 

df(w,T) I =~J- 1 (i)()[(r:i)OP]dV 
dT 7= 0 L: T(i) (13) g v p jJ ow (4.7) 
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which is linear in both g(i) (v) distributions and in the relaxation parameters. The 
bilinear form of the above equation in unknown quantities still poses the same dif­
ficulties as the original problem (Eq. 4.5). However, it might be possible to use the 
spectrum at the smallest accessible T to find approximate g(i)(v) distributions, and 
then from that, and from Eq. 4.7, the relaxation parameters. Solving the problem 
in this way not only is very sensitive to the presence of noise in the the spectrum 
corresponding to the shortest T value, but also it does not use the information con­
tained in the partially-relaxed spectra at T values comparable to the relaxation time 
T. One way to make a better use of the available data is to observe the spectra at 
several short T values where linear approximation to the exponentials is still valid. A 
more robust and general form of numerical derivation can be implemented through 
polynomial interpolation. In fact, the most accurate way of performing numerical 
calculations such as calculation of derivatives and integration in numerical analysis 
is based on polynomial interpolation [48] . In this way not only all the information 
contained in the available partially-relaxed spectra is used, even at T values where 
linear approximation to the exponential fails, but also the true spectrum at T = ° 
can be obtained by extrapolation. 

4.2.2 Vandermonde and Newton Interpolations 

Vandermonde interpolation is one of several numerical interpolation methods of find­
ing a polynomial that goes exactly through a set of given data points. Obviously the 
number of parameters in determining the polynomial should not exceed the number 
of data points to ensure the uniqueness of the polynomial. Given a set of points 
(TZ, f (TZ)) for l = 0, ... , (n - 1), Vandermonde interpolation, maps this set of n points 
to a set of n coefficients of monomials, 

n-l Z 

P(T) = Laz ~! 
z=o 

(4.8) 

where az are the interpolation coefficients and P( T) is the polynomial replacing the 
data. 

This interpolated polynomial is expected to regenerate data the points at any given 
TZ. From this criterion and from the fact that the polynomial is a linear combination 
of unknown interpolation coefficients, the Vandermonde transformation matrix that 
maps the data points to the polynomial coefficients can be explicitly written as: 

f( TO) 1 TO 
n-l 

TO ao 

f(Td 1 Tl 
n- l 

al Tl 
(4.9) 

f( Tn-I) 1 Tn-l 
n-l 

an- l Tn- 1 n,n 

This transformation matrix is in principle invertible, but it has a high condi-
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tion number that rapidly grows with the size of the matrix, n. Thus, it is severely 
ill-conditioned. As the matrix dimensionality increases the last columns rapidly be­
come numerically dependent, especially when the entries in these columns exceed the 
precision of the machine, where the round-off errors occur and they become exactly 
dependent. Such high powers of T should be avoided. 

There exist other interpolations which map data points to coefficients of Newton 
polynomials instead of monomials as in the Vandermonde interpolation. For a set of 
points (TZ, f (TZ)) with l = 0, ... , (n - 1) Newton polynomials are defined as: 

j-1 

nj ( T) = II (T - Tk) j=2, ... ,(n-1) (4.10) 
k=O 

The most famous and widely adopted of interpolations based on the above Newton 
polynomials is Newton's interpolation which has an upper triangular transformation 
matrix: 

n1 (TO) 0 0 
n1(T1) n2(Td 

(4.11) 

n1(Tn-d n2(Tn- 1) nn-1 (Tn- d n,n 

This form significantly simplifies numerical calculations, particularly in large-scale 
problems. The Vandermonde and Newton interpolations are in essence the same 
and are related by a unitary transformation of the change of basis from the Newton 
polynomials to monomials. However, in practice Newton's interpolation is less ill­
posed than the Vandermonde interpolation [48]. 

4.2.3 Linearizing the Problem by the Vandermonde 
Interpolation 

Interpolating Eq. 4.5 with respect to T by the Vandermonde interpolation gives: 

n- 1 Z 

f(w, T) = L az(w) ~! ( 4.12) 
z=o 

with coefficients az(w): 

(4.13) 

Through this interpolation, partially-relaxed spectra are transformed into new 
distributions az(w). Two of these az(w) coefficients are particularly important: l = 0 
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and I = 1 which are linear in both anisotropy and orientation-dependent relaxation 
rates: 

ao(w) - f(w, 0) = J g(v) [p({3) ~~] dv 

al(W) = L J(-T(i~({3))g(i)(V) [p({3)~~l dv 
t 

( 4.14) 

The distribution that corresponds to I = 0 is the extrapolated spectrum at T = 0 
which in turn can be used to determine f'C (the orientation distribution parameter) 
and the anisotropy distribution g(v); and then g(i)(v) distributions can be determined 
by separating the peaks. With the help of g(i) (v) and the orientation distribution 
p({3), a straightforward numerical deconvolution leads to the extraction of relaxation 
parameters from the distribution of the second coefficients al (w). 

It is possible to use the Newton interpolation instead of the Vandermonde in­
terpolation and at the end translate everything back by the unitary transformation 
that transform Newton interpolation matrix to Vandermonde matrix or, alternatively, 
by directly calculating ao (w) and al (w) from the Newton interpolation polynomials, 
nj (T), and their coefficients, Cj (w), as follows: 

n 

ao(w) = L cj(w)nj(O) 
j=O 

n d 
al(w) = LCj(w)dTnj(T)IT=O 

[= 0 

However, the general outline of the calculational strategy remains the same. 

4.2.4 Limitations 

( 4.15) 

Normally obtaining an NMR spectrum requires repeating a numbers of scans to 
achieve an acceptable signal-to-noise ratio which, depending on the concentration 
of nuclei of interest in the sample, may take a long time. This limits the number of 
partially-relaxed spectra that can be observed. On the other hand, linearizing Eq. 4.5 
replaces the first two coefficients in the exact expansion of exponential decays with 
the first two coefficients of the polynomial obtained from the interpolation. The ac­
curacy of this approximation depends on two factors: the number of points in T (the 
number of observed spectra), and the longest observed T . These two factors can be 
combined in a single criterion as: 

T (_)njn!« 1 
Tmin 

( 4.16) 
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where n is the number of observed spectra and T~in is the relaxation rate of the fastest 
relaxation. Eq. 4.16 represents a mathematical prescription of what constitutes a set 
of exponential data that can be successfully analyzed through inversion. 

4.2.5 Regularizing the Extraction of Relaxation Parameters 

In the presence of noise, the procedure outlined above requires three regularizations. 
First and the most crucial of all is regularizing the interpolation. Interpolating the 
data either by Vandermonde or Newton interpolation is very vulnerable to noise and 
can yield a significant regularization error. The other two regularizations are asso­
ciated with the determination of the anisotropy and orientation distributions from 
the extrapolated spectrum at T = 0 and the extraction of relaxation parameters from 
al (w), which both depend on the result of the interpolation. In fact, the greatest 
challenge in regularizing this extraction problem arises from the application of suc­
cessive regularizations. The extracted regularization parameter at the end is critically 
dependent on the effectiveness of the previous two regularizations. 

Although Newton's interpolation matrix is numerically less ill-posed than the 
Vandermonde matrix, using Vandermonde interpolation allows for imposing a simple 
constraint on the solution which can be very advantageous in the regularization. 
As seen in Eq. 4.13, the coefficients of the monomials interpolating a combination 
of exponentially decaying functions are expected to be alternatively positive and 
negative. It is likely the reason why using direct, variational regularization methods 
such as TSVD and Tikhonov regularizations for noise levels higher than 0.1 % results 
in either a poorly regularized interpolation that translates into huge uncertainty in 
extracted relaxation parameters, or introduces a big regularization error that again 
biases the final result (results not shown) . Of course imposing the appropriate sign 
on the solution of the interpolation, in principle, is expected to result in very accurate 
results, but implementing such algorithms requires a direct search of the constrained 
solution space which is not feasible for problems of non-trivial sign. 

The failure of variational regularization methods in properly regularizing the inter­
polation necessitates using iterative methods. As described in the previous chapter, 
iterative methods are essentially independent of the SVD of the kernel. At the same 
time, the Vandermonde and Newton interpolation matrices are equivalent to within a 
unitary transformation, and so there is no difference between them in implementing 
an iterative algorithm. The Landweber iteration method allows for imposing hard 
constraints, but because iterative regularizations are fundamentally path-dependent 
methods in the solution space, imposing the appropriate sign of the expected solution 
as a hard constraint in this problem may prevent the convergence of the iteration. 
Among all of the regularization methods mentioned in the previous chapter, CG was 
found to be the best way of regularizing the interpolation. The only problem with the 
CG method is that since it has a very fast convergence rate, effective regularization 
requires a proper choice of the truncation index. Despite the fact that the L-curve 
criterion is not very successful in determining the optimal regularization parameter 
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in regularizations with discrete regularization parameter, but it still can be used to 
approximate the optimal truncation index in the CG method. 

To determine the anisotropy distribution and the g(i) (1/) distributions from ao(w) 
(the extrapolated powder spectrum at T = 0), conventional de-Pake can be applied. 
Typically, doublets corresponding to carbon positions close to the end of the hydro­
carbon chains of lipids are well resolved and separate. While those corresponding to 
carbon positions in the upper half of the chain are tend to overlap. As described 
at the end of Chapter 2, the carbon positions on the upper half of the hydrocarbon 
chains of lipids constitute the plateau region in both the segmental order and relax­
ation profiles. Since the relaxation rates are almost the same within the plateau, 
all unresolved doublets can be treated as a single position, of appropriately higher 
spectral intensity. A series of paired Gaussian peaks can then be used to fit to the 
anisotropy distribution. The Gauss-Newton method is the most widely used numeri­
cal tool in fitting and non-linear least squares problems [49]. The advantage of using 
this method is that it allows one to impose constraints such as constant area of the 
peaks or equal widths, and to make some assumptions about the positions of the 
peaks [4, 24]. 

The final step is the determination of relaxation parameters from the distribution 
of the second coefficients of the interpolated partially-relaxed spectra, al (w). Since 
this determination is a very delicate problem and does not tolerate the regularization 
error arising in Tikhonov regularizations, iterative methods should be applied instead. 
Unlike the interpolation, extracting regularization parameters can be performed by 
the Landweber method that allows for imposing non-negativity constraint in each 
iteration. Low convergence rate of the Landweber iteration method reduces the sen­
sitivity of the obtained regularized solution to the choice of the truncation index. To 
determine the truncation index in this regularization, the discrepancy principle can 
be used. 

4.3 Summery of the Numerical Strategies 

To summarize, the following numerical approach has been devised as a suitable nu­
merical strategy of inverting a series of partially-relaxed NMR spectra as defined by 
Eq. 4.5 (Table. 4.1). The implementation of this extraction procedure was done in 
"SClLAB" [50] environment which is a vector based programming language suitable 
for this type of numerical calculations [9]. 
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DePaking: 

f(w) = J g(//) [p(;J)~~ ] dl/ 

1 

Include relaxation: 
f(w, T) = J g(l/)e-T/ T((3,V) [p(;J) ~~] dl/ 

1 

For a multi-site linearized superposition: 
g(//) = l:i g(i) (1/) 

e-T/ T ((3 ,V) = '\""'. '\""' (_1_) I Tl 
0t 01 T(z) ((3) I! 

1 

Input, 2D data: 

1 

Polynomial approximation in T: 

1 

Extracting 9 (1/) from ao (w ) : 

1 

Finding g(i) (1/) from 9 (1/): 

1 

Extracting relaxation parameters from al (w ): 
C~, C~, C1 

Table 4.1: The summery of the extraction procedure 

70 
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Chapter 5 

Numerical Experiments 

To test the numerical inversion procedure outlined in the previous chapter, two sim­
ulated partially-relaxed spectral data sets were developed and tested, under a variety 
of random noise condition. Both sets were based on the experimentally measured 
2H NMR relaxation parameters for perdeuterated hexamethylbenzene [4, 51] and for 
chain deuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid [24]. 

In each case, experimentally-determined anisotropy distributions, a single split­
ting in the case of HMB, and a set of 15 splittings forming a typical bilayer order­
parameters profile for POPC, were used to generate the T = 0 powder spectrum. The 
experimentally measured relaxation rates and their parameters Co, C2 , and C4 [24] 
were then used to generate a series of 16-32 partially-relaxed spectra, to form a 2D 
NMR data set. Random Gaussian noise was added, with 0.1%-10% relative amplitude 
to the powder spectrum, and the resulting data sets were subjected to the inversion 
process as outlined above. In general, inversion results are in excellent agreement 
with inputs used to generate the data sets. To help analyze the performance of the 
numerical procedure, the results in the following sections are presented in terms of 
the difference between the "true" inputs and the "calculated" results of the inversion. 

5.0.1 Hexamethylbenzene results 

HMB is a ring-shape molecule with 6 CH3 groups (Fig. 5.2) whose 2H NMR spectrum 
has characteristics similar to a single-site-labeled lipid sample. The anisotropy distri­
bution of HMB, is a doublet separated by 33. 7 kHz corresponding to SeD ~ 0.1 [4]. 
The relaxation parameters reported in [4] in terms of the coefficients of the Legendre 
functions (Table 5.1) have been obtained from measuring the relaxation rate at three 
regions of the powder spectra: the centre, shoulder and the edge which are correspond 
to (3 = 54.74° , (3 = 90°, and (3 = 0° respectively. The orientation dependence of the 

Co C2 C4 
18.9 14.9 -0.56 

Table 5.1: HMB relaxation parameters (all values in S- l) 
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Figure 5.1 : Orientation dependence of HMB relaxation rates , {3 is the angle 
between the C6 axis of symmetry of the HMB molecule and the magnetic 
field of the spectrometer (Fig. 5.2). 

longitudinal relaxation rate for HMB based on the reported relaxation parameters is 
given in Fig. 5.1. A set of HMB powder spectra was simulated for T = 0 to T = Is 
as shown in Fig. 5.3. From this simulation, 16 spectra corresponding to equispaced 
T values starting at T = 5ms, 5ms apart, were used as data to extract the three 
relaxation parameters. Six noise levels were examined by adding a random vector 
with vanishing mean and 0.1 %, 0.2%, 0.5%, 1%, 5%, and 10% relative amplitudes to 
the data. To determine the confidence intervals for each noise level, the extraction 
process was repeated 100 times using different random noise vectors, and the resulting 
averages and their standard deviations reported as shown in Fig. 5.4 and Table 5.2. 

5.0.2 I-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 
(POpe) results 

Unlike HMB, direct measurement of the relaxation parameters for pope were not 
available in the literature. For testing purposes, a relation based on the motional 
model of HMB in [4] was again used to generate the relaxation parameters from the 
available relaxation rates. There are experimentally measured relaxation rates at two 
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Figure 5.2: HMB Orientation, Me indicates the position of the six methyl groups. 
Reproduced from [52]. 
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Figure 5.3: Simulated HMB powder spectrum relaxation, the above anisotropy 
distribution along with relaxation parameters of Table 5.1 were used to 
simulate the relaxation. 
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Figure 5.4: Extracted anisotropy distribution for HMB data set in the pres­
ence of 0.1%, 0.2%,0.5%, 1%, 5%, and 10% noise. The top figure repre­
sents the exact and extracted anisotropy distributions in the presence of 
0.1 % noise and the bottom figure represents the exact anisotropy distribu­
tion with the mismatches between the extracted distributions for different 
noise levels and the exact one. 
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Co 

Exact 18.9 14.9 -0.56 
Extracted from 0.1% 18.8 ± 0.005 14.7 ± 0.02 -0.64 ± 0.02 
Extracted from 0.2% 18.8 ± 0.01 14.7 ± 0.04 -0.64 ± 0.04 
Extracted from 0.5% 18.8 ± 0.03 14.7 ± 0.1 -0.62 ± 0.09 
Extracted from 1 % 18.8 ± 0.056 14.7 ± 0.22 -0.59 ± 0.19 
Extracted from 5% 18.78 ± 0.27 14.29 ± 1.08 -0.53 ± 0.68 
Extracted from 10% 18.75 ± 0.55 13.16 ± 1.96 -0.48 ± 0.98 

Table 5.2: Extracted relaxation parameters from data in the presence of 
0.1%, 0.2% 0.1%, 0.5%, 1%, 5%, 10% noise with their standard de­
viations (all values in S- l). 

orientations (typically 00 and 900 ), from experiments with oriented bilayers, but the 
determination of three relaxation parameters, whether in terms of the coefficients 
of Legendre polynomials or the spectral densities themselves at {3 = 0, requires the 
knowledge of relaxation rates at least at three distinct orientations. The relaxation 
profiles reported in [24] along with the following model were used to generate realistic 
relaxation parameters and to test inversion algorithm: 

(5.1) 

where 34e = A [4, p.93]. No claim that this is, indeed, the relaxation behaviour in 
POPC is being made. However, a successful inversion to obtain back the relaxation 
behaviour of Eq. 5.1 would be a reassurance that the method used would report the 
true dependence when applied to the appropriate experimental data. 

The re-calculated profiles of relaxation parameters are shown in Fig. 5.5. A closer 
look reveals that this relaxation profile does not manifest the plateau region, contrary 
to what was discussed at the end of Chapter 2. These relaxation quantities have been 
obtained from a fully deuterated, oriented bilayer where, due to the congestion of 
resonance peaks, the relaxation rates of each carbon position are not separable. It 
has been assumed in [24] that the profile of relaxation rates and the segmental order 
profile are linear in carbon position. Also it should be noted since, the relaxation 
rate of the last carbon position has been measured originally in [24], an extrapolated 
the relaxation profile of the second half of the chain was used. This extrapolated 
relaxation rate for the terminal CH3 group may not be valid. The simulation of the 
POPC powder spectrum relaxation for T = 0 to 200ms is shown in Fig. 5.5. 

The results for extracted anisotropy distributions (the mismatches), are shown in 
Fig 5.6. 16 spectra corresponding to T values from 1ms to 16ms were used to extract 
the relaxation rates for 0.1 %, 0.2%, and 0.5% noise levels, and for each noise level 100 
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Figure 5.5: Relaxation of the pope powder spectrum, the anisotropy distri­
bution (the top left figure) along with the obtained relaxat ion parameters 
(the top right figure) were used to simulate the relaxation of the PO PC 
powder spectra (the bottom figure). 
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different noise realizations were averaged to establish the confidence intervals. The 
results are shown in Figures 5.7, 5.8, and 5.9. 

Overall, the agreement of the results of these inversion with the model parameters 
used in generating the test data sets is excellent. An examination of the stability of 
the inversion in the presence of an increases random noise in the data shows a propor­
tional, non-catastrophic, loss of stability, an evidence of a successful regularization of 
the inversion problem. A decrease of signal-to-noise ratio (SNR) in the data can be 
compensated for by an increase in the number of data sets used. For example, inver­
sion results from 32 partially-relaxed spectra spaced by 2ms and starting from 1ms 
in the presence of 1%, 5%, and 10% noise are given in Figures. 5.10, 5.11, and 5.12; 
they are comparable to those obtained earlier, from a smaller data set at a higher 
SNR. Note that experimentally, SNR grows as a square root of the experimental time, 
while increasing the number of T values is directly proportional to it. 
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Figure 5.6: Extracted anisotropy distribution for pope data set, the ex­
act anisotropy distribution and the mismatch between the extracted 
anisotropy distribution and the exact one for six tested noise levels are 
represented. 
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Figure 5.7: Extracted relaxation parameters from pope data set in the 
presence of 0.1% noise, 16 spectra partially-relaxed spectra were used 
for this noise level. 
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Figure 5.8: Extracted relaxation parameters from pope data set in the 
presence of 0.2% noise, 16 spectra partially-relaxed spectra were used 
for this noise level. 
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Figure 5.9: Extracted relaxation parameters from pope data set in the 
presence of 0.5% noise, 16 spect ra part ially-relaxed spectra were used 
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Figure 5.10: Extracted relaxation parameters from pope data set in the 
presence of 1 % noise, 32 spectra partially-relaxed spectra were used 
for this noise level 
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Figure 5.11: Extracted relaxation parameters from pope data set in the 
presence of 5% noise, 32 spectra partially-relaxed spectra were used 
for this noise level. 
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• Figure 5.12: Extracted relaxation parameters from pope data set in the 
presence of 10% noise, 32 spectra partially-relaxed spectra were used 
for t his noise level. 
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Chapter 6 

Concluding Remarks 

In preceding chapters, the orientation-dependent relaxation phenomenon in deu­
terium NMR spectra of lipid bilayers was described. Fundamentally, it is the na­
ture of molecular motions that determines the correlation times, spectral densities, 
and in turn, the observed dependence of relaxation rates on the Larmor frequency, 
temperature, and the position on the chain. New basis functions for the orienta­
tion dependence of the longitudinal relaxation rate, A, under the assumption of the 
short correlation time regime were introduced. For the purpose of numerical inversion 
and NMR data analysis, several regularization techniques along with other numeri­
cal methods were combined to propose a model-free extraction algorithm based on 
linearization through interpolation. 

It was shown that it is practically possible to tackle numerical difficulties arising 
from the orientation-dependence of relaxation rates in de-convolving powder spectra 
and thus to extend the conventional de-Pakeing problem to partially-relaxed NMR 
powder spectra by deploying appropriate inverse-problem algorithms. The reliability 
of the proposed extraction algorithm was examined against simulated data based on 
experimentally measured relaxation rates from oriented bilayer samples of pope and 
powder samples of HMB. Although the emphasis of this work was on lipid molecules 
in the Lex phase, as long as axial symmetry of the EFG tensor and the general features 
of molecular motions hold, the results remain directly applicable to other systems. 
This was confirmed in the case of HMB. In addition, since relaxation due to other 
mechanisms such as dipolar interaction can be cast in exactly the same mathematical 
form as that of quadrupolar relaxation [53] and the fact that this extraction algorithm 
is model-free, it can be applied to other relaxation mechanisms as well. 

It was found that the accuracy of extracted relaxation rates crucially depends on 
the noise level, the number of partially-relaxed spectra used as input, the value of the 
longest observed T value as compared to the fastest relaxation time, and the number 
of extracted relaxation parameters being sought. To some extent, the accuracy of 
estimated relaxation rates can be improved by increasing the number of observed 
spectra. The overall deviation of results from the exact relaxation parameters due 
to the regularization error can be diminished by improving the criterion of Eq. 4.16, 
namely, either by decreasing the value of the longest observed T value or increasing 
the number of used partially-relaxed spectra in the extraction. The anisotropy dis­
tributions recovered even in the presence of 1 % noise are remarkably accurate, and 
this signifies that the precision essential for extracting experimental relaxation rates 
has been achieved. 
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In the course of this project, iterative regularizations based on iteration methods 
such as CG and Landweber were found less perturbative (compared to Tikhonov and 
TSVD regularizations) and more efficient which would probably be of great potential 
interest in future work. These methods are particularly important for their ability of 
dealing with large-scale problems that may naturally arise in treating other 2D decon­
volution problems in NMR. Since they do not rely on SVD and consist of elementary 
operations, they are immediately implementable in non-matrix-based programming 
environments. 

The newly-developed basis functions for the orientation dependence of the longi­
tudinal relaxation rate differ from conventionally used ones, such as first three even 
Legendre polynomials. This new basis (Eq. 2.45) emerges naturally from the orienta­
tion dependence of the spectral densities under the assumption that the correlation 
time of motions is very short which is in part justified by the longitudinal relaxation 
rate of the order of tens of milliseconds. The basis functions in this new basis are 
not orthogonal, but since the experimentally observed P4 (cos (3) is very small ('" 0.03 
in HMB), coefficient of compared to those of Po (cos (3) and P2 (cos (3), this suggests 
that the orientation-dependence of relaxation rates has no cos4 (3 contribution. This 
of course, is one of the features of the proposed basis, and this indicants confirmation 
of its suitability is gratifying. 

Examination of experimental data lays beyond the scope of this project, but all 
of the successful numerical testing performed is and assurance that the relaxation 
parameters extracted from the experimental data will represent the true value of the 
molecular motion in biomembranes and similar anisotropic systems. 
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