
G. 

Decoding Algorithms using Side-Effect Machines 

Joseph Alexander Brown, BSc. (Hons.) 

Computer Science 

Submitted in partial fulfillment 
of the requirements for the degree of 

Masters of Science 

Faculty of Computer Science, Brock University 
St. Catharines, Ontario 

© September, 2009 



Go 

To Elizabeth Reading. 



"'-

Abstract 

Bioinformatics applies computers to problems in molecular biology. Pre­

vious research has not addressed edit metric decoders. Decoders for qua­

ternary edit metric codes are finding use in bioinformatics problems with 

applications to DNA. By using side effect machines we hope to be able to 

provide efficient decoding algorithms for this open problem. Two ideas for 

decoding algorithms are presented and examined. Both decoders use Side 

Effect Machines(SEMs) which are generalizations of finite state automata. 

Single Classifier Machines(SCMs) use a single side effect machine to classify 

all words within a code. Locking Side Effect Machines(LSEMs) use multiple 

side effect machines to create a tree structure of subclassification. The goal 

is to examine these techniques and provide new decoders for existing codes. 

Presented are ideas for best practices for the creation of these two types of 

new edit metric decoders. 
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Chapter 1 

Introduction 

1.1 Overview 

In bioinformatics, the ideas of information theory and biology are combined. 
Biological principles are described as mathematical models and via this a 
large tool-set is available. This tool-set is now manipulating the very codes 
that life is created from, allowing previously unthinkable changes to be made. 
Computers must now be used in the manipulation of this data due to the 
shear sizes involved. This tool-set currently has holes. Previous ideas in in­
formation theory have not accounted for the needs of this toolkit. Therefore, 
this thesis will aim to provide for some of these lacking areas. The codes 
have not been studied, not due to lack of need, but due to the relative age 
of the discipline for which they are created. 

The goal of this research will be to provide new generalized decoders for 
this tool-set using Side Effect Machines (SEMs). SEMs are powerful, small, 
and most importantly simple to implement. They are classifiers which have 
been used for bioinformatics. This thesis aims to extend their use into new 
ground: decoding. 

1.2 Problem Statement 

There is a goal in bioinformatics at the moment to allow the creation of De­
oxyribonucleic acid (DNA) sequences that can be inserted into an organism 
to uniquely identify it. These markers require the ability to correct errors so 
that mutations caused in the DNA will not affect the ability to recover the 

1 
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marker. DNA is analogous to a communication channel. Shannon asserts 
that the "fundamental problem of communication is that of reproducing at 
one point, either exactly or approximately, a message selected at another 
point" [35]. We must ensure this via the use of error correction using codes 
which take into account the problems with using DNA as a communication 
channel. 

DNA when used as a medium for a message has its own unique problems 
for error correction codes. An extremely restrictive distance metric, known 
as the edit metric, is used to allow for the types of common erros. Further, 
restrictions may be made by the allowances of biology affect the choice of 
a code used. The edit metric does not have code families with defined and 
simple decoders, unlike the Hamming metric codes. 

The problem with finding efficient decoders for a random non-linear code 
is still an open problem with no general solution. When viewing the graph 
representation of codespace, the Hamming metric has been found to have 
a relatively simple graph structure. The edit metric graph is a superset of 
the Hamming graph and contains more edges and less geometric regularity, 
thus finding a high distance between two points is harder [9]. As edit metric 
graphs are more complex, they do not yield simple decoding methods based 
on the graph structure. The Hamming metric has been well studied due to 
its applications to computer science for transmission and storage of data. 
Finding decoders for edit metric codes also becomes a more difficult task 
and currently the generalized decoder for bioinformatics problems is a linear 
search. Other decoders have been created for edit metric codes; none are 
generalized enough to allow for a code that can handle all possible sets of 
biological restrictions. 

1.3 Organization of the Thesis 

The body of the thesis is organized as follows: 
Chapter 2 gives an introduction and review of the noisy channel and error 

correction codes. Shown are some of the various metrics used in decoding, 
including the difficulty of the edit metric when compared to the Hamming 
metric. It also looks into the role of the bioinformatics problems which can 
be solved and how DNA can be transformed into codes. Finally, it gives a 
list of applications for which error correction codes for DNA are required. 

Chapter 3 shows previous work on the creation and decoding of the edit 
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metric. Critically viewed is how these methods are applied for bioinformatics 
problems. Finally, it shows an approach which could be taken using ideas 
from literature for a deterministic decoder. Sadly, the time required for its 
creation is prohibitive. 

Chapter 4 discusses the use of evolutionary algorithms in attacking hard 
optimization problems. Two processes of evolution are described in detail. 
The first is Genetic Algorithms which sees solutions as breeding organisms 
subject to the rules of Darwinian evolution. Genetic Algorithms are electrical 
analogues to biological chromosomes. The second is Evolutionary Program­
ming which make mutations to finite state machines. 

Chapter 5 introduces the Side Effect Machine, a generalization of finite 
state machines. This creates a classification method which is used in both of 
the approaches for finding decoders for edit metric codes. 

Chapter 6 shows the first look at a decoder using side effect machines: 
the Single Classifier Machine Decoder. It directly makes a probabilistic de­
coding. Special attention is made in regards to the explanation of runtime 
when compared to traditional methods. Differing settings are viewed for the 
evolutionary algorithms which produce them and these provide best practices 
in regards to the creation and use. 

Chapter 7 presents the Locking Side Effect Machine which uses the ideas 
of a tree structure in order to have subclassifications of codes. The design 
of the partitions is viewed critically and three methods of creating the inital 
partitions are compared - random, lexicographic and K-means clustering. 

Chapter 8 gives a summary of the methods presented and future areas 
of work using side effect machines which will be implemented. These future 
works include creating the code along with its decoder and the use of side 
effect machines in data mining. 

Throughout the thesis, footnotes within the text will add additional infor­
mation about results which were deemed interesting but were not necessary 
to the reading of the primary text and would break the flow of the discussion. 
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Chapter 2 

Review of Error Correcting 
Codes 

2.1 Noisy Channel 

Noise Source 

• 
I 
I 
I 

~ __ A_I_ic_e __ ~~ __________ ~~~ __________ ~>~I~ ___ B __ O_b __ ~ 
Figure 2.1: The Noisy Channel 

Communication is imperfect. The need for error correction stems from 
the creation of errors through noise. Noise is an all encompassing idea for 
anything which will degrade the ability to send information along a channel. 
Examples of channels include records, radio signals, or even DNA. Thus a 
scratch in a record, a thunder strike causing a hiss in a radio signal, or the 
incorrect sequencing of DNA create noise and cause errors. The noise can 
be small or large; compare a slight hiss on a radio signal to not receiving the 
signal when diving through a tunnel. This degradation will mean at least a 
loss in the ability to fully understand a message, and in the worst case cause 

4 
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a misunderstanding of a message; perhaps nothing can be recovered from a 
sent message. 

Discrete noise mathematically can be seen as an additive vector to the 
signal vector. Error Detection is the ability to test if this noise vector is 
non-zero. It does not however discover what the noise vector contains. Error 
Correction is the ability to discover the noise vector, allowing the subtraction 
of it from the signal vector and the recovery of the original meaning of a 
message. 

Meaning, however, does not refer to the semantic meaning of the message, 
but to the syntactic meaning of the message. In sending two messages such 
as "I enjoy a good game of Risk on a Friday night" and "I ate strawberries 
with cream without the strawberries and without the cream" we show the 
following. The first sentence has meaning in the normal sense and is a legal 
English sentence. The second is at most a horrid poem it terms of the 
meaning. Yet, it is also a legal English sentence. Ergo, both are correct. 
They have no spelling mistakes and break no grammatical rules. We have 
rules which govern the use of language, and redundancy introduced which 
allows us to make correction if a sentence has a mistake. The idea of a 
spelling mistake should be evidence of this ability to correct and gain meaning 
from imperfect communication. The English language does not use every 
combination and permutation of the twenty-six letters. This redundancy 
allows for correction of mistakes. Further, Cryptanalysis can be viewed as 
error correction, albeit the errors were caused with the reasoning that errors 
hide the message. Frequency analysis is used commonly on classical ciphers 
and uses the idea of the redundancy in the English language in order to 
'correct' the error and show the meaning of a message[26]. Moving away from 
caused noise to accidental noise, we can add helpful redundancies through 
the use of error correction codes. 

2.2 Error Correction and Codes 

Before the work of Claude Shannon the only way to remove noise in the signal 
was to change the channel - making a more powerful signal or making 
circuits less disrupted by electrical interference [31]. Shannon's Theorem 
[35] proved that on a noisy channel you can always send a message with an 
infinitesimally small level of error while still maintaining a decent information 
rate. The rate refers to the amount of information that can be sent in a given 
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Noise Source 

, , , , 

~_A_lic_e~r----L __ E_nC~Od_er __ Jr----~c:)~-----r-OD~eC~t~er--l----)~I Bob 

, , 
I redundancy I L _______________________ --' 

Figure 2.2: The Noisy Channel with a Correction Code 

6 

number of sent symbols. The proof is non-constructive. While we know that 
we can achieve a noiseless channel from a noisy channel, Shannon's Theorem 
gives no hints as to how this can be done. 

Shannon views sending a message as a selection from a list of all possible 
messages [35]. This selection is the process of transforming a message into 
a code which adds redundancy. He stated that if a message was not part 
of a list of special messages, the codewords, then the sender could not have 
selected it - it must be an error caused by noise. If the received message is 
not a codeword than it is called an error pattern. 

As we are looking at a subset of all possible selections, some of the code is 
redundant - the code does not carry data up to the maximum possible rate. 
In general the amount of redundancy of a code is indicative of its correction 
ability. However, it is in opposition to the rate of information being sent. 
There is, therefore, a trade off in the number of errors that can be corrected 
and the rate at which information can be transmitted via a code. 

2.2.1 Distance Metric 

A distance metric[36] on a set X is defined by a function d : X x X ---+ ~ 

where \/x, y E X: 

1. d(x,y);;:::O 

2. d(x,y) = 0 {::} x = Y 

3. d(x,y) = d(y,x) 

4. d(x, z) + d(z, y) ;;::: d(x, y) 
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2.2.2 Hamming Metric 

Given two equal length strings, x = {Xl, X2, ... ,xn} and Y = {YI, Y2, ... ,Yn}, 
the Hamming distance between them is defined as the number of locations 
in which their symbols differ[19]. That is, the Hamming distance is the 
minimum number of substitutions required to transform X into Y or Y into x. 
The algorithm for computing this relation is given in Algorithm 1. 

Input: Two Strings, x = {Xl, X2, ... , xn} and Y = {Yl, Y2,···, Yn} 
Output: Integer Value of the Hamming Metric Distance 
distance +- 0; 
for i +- 1 to n do 
I if Xi i:- Yi then distance +- distance + 1; 

end 
return distance 

Algorithm 1: Algorithm for Calculating Hamming Distance 

2.2.3 Edit Metric 

Given two stings, X = {Xl, X2, ... , xn} and Y = {YI, Y2,· .. , Ym}, the edit 
distance is defined as the minimum number of additions, substitutions or 
deletions required to transform X into Y or Y into x. It is also known as 
Levenshtein distance[28]. The fastest known algorithm for computing the 
edit distance is given in [37] and is reproduced as Algorithm 2. 

2.2.4 Edit Metric Codes 

A (n, M, d)q code is a set of words for which: 

1. n is the number of symbols in a word, also known as the length of the 
code 

2. M is the number of words used by the code, also known as the size of 
the code 

3. d is the minimum distance between codewords using the edit metric 

4. q is the number of symbols in the alphabet 
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Input: Two Strings, x = {Xl, X2, ... , xn} and Y = {YI, Y2,···, Ym} 
Output: Integer Value of the Edit Metric Distance 
int d[O, ... , n][O, ... , m]; 
for i +- 0 to n do 
I d[i] [0] +- i; 

end 
for j +- 0 to m do 
I d[O][j] +- j; 

end 
for i +- 1 to n do 

for j +- 1 to m do 
if Xi = Yj then 
I cost +- 0; 

else 
cost +- 1; 
d[i][j] = MIN( d[i -1][j] + 1, d[i][j -1] + 1, 
d[i - l][j - 1] + cost ); 

end 
end 

end 
return d[n] [m] 

8 

Algorithm 2: Dynamic Programming Algorithm for Calculating Leven-
shtein Distance [37] 

If the properties of a channel are not known in advance then we rely on a 
maximum-likelihood decoding rule in which an error pattern is corrected to the 
closest codeword in terms of the chosen distance metric[36]1. Small numbers 
of errors are more frequent in general and therefore this assumption makes 
sense in the general case. A code of this type can correct up to t = L (d - 1)/2 J 
errors [24, 36], (Figure 2.3). Some error patterns are equidistant to more than 
one codeword; in this case the correction is ambiguous. There can also be 
error patterns that are greater than t distance from every codeword and 
similarly they cannot be corrected. If a code contains no such error patterns 
that have these properties which prevent correction, it is known as a perfect 
code[24]. 

IThis rule has the minimum error when the channel input probabilities are equal[36]. 
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Figure 2.3: View of the Sphere Correction Bounds of Codewords u and v. 

The Difficult Metric 

Comparing the distance metrics, we see that the edit metric is more strongly 
connected than the Hamming metric. For example the Hamming distance 
between 01230123 and 12301230 is 8 since there is a substitution in each 
symboL However, the edit distance is only 2 as the deletion of the first symbol 
and the addition of symbol to the end would have the same effect. Figure 
2.4 shows the differences in the graph for binary strings of length three. 

The edit metric is seen as a much more difficult metric to create useful 
codes. This is due in part to its small of automorphism group. An auto­
morphism is a structure preserving transformation. It is an isomorphism 
from an object to itself. In codes this would mean two codes with differing 
codewords with the same error correction properties, number of codewords, 
and distances, that can be changed into each other via a one-to-one and onto 
mapping of the symbols in each codeword. 

Campbell in her PhD thesis[9] proves some of the geometrical reasons as 
to why creating codes and decoders for the edit metric is a hard problem. 
In order to create an equivalent code with the same properties but differ­
ent code words we can use an automorphism of the code. The Hamming 
metric allows automorphisms by any permutation of the columns of a code 
and/or any permutation of the symbols of the code. The edit metric's only 
automorphisms are to reverse all the words simultaneously or to permute the 
symbols. Thus, edit metric codes have considerably smaller automorphism 
groups when compared to the Hamming metric, as shown in Table 2.1 for a 
quaternary code. This relation makes searching for a code harder, as we can 
make fewer assumptions about its structure. 

In general, if the automorphism group is large then there are many equiv­
alent codes. Automorphisms are used to restrict the search space of codes; 
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Figure 2.4: Edit metric graph up to distance three. Substitutions are solid 
lines; additions and deletions are dotted lines. The empty codeword is rep­
resented by A.. 
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given any code, the equivalent codes are easily generated. A deliberate choice 
of which code to search for reduces the computational time to find a code. 

n Hamming Edit 
1 4 4 
2 8 8 
3 36 8 
4 96 8 
5 480 8 

n 4(n!) 4(2) 

Table 2.1: Number of automorphisms in a length n quaternary code 

2.2.5 Euclidean Metric 

The Euclidean metric is the 'ordinary' straight-line distance between two 
points in an n-dimensional space, d : JRn x JRn --+ JR. Given two vectors 
of a n-dimensional space, x = {XI, X2, ... ,xn} and Y = {YI, Y2, ... ,Yn}, the 
straight line between them is d(x, y) = V(XI - YI)2 + ... + (xn - Yn)2 that is 

d(x,y) = v2:~=1 (Xi - Yi)2. 

Input: Two Real Vectors, x = {Xl, X2, ... , xn} and Y = {YI, Y2,···, Yn} 
Output: Real Value of the Euclidean Distance 
int distance; 
for i +- 1 to n do 
I distance +- distance + (Xi - Yi)2 

end 
return vi distance 

Algorithm 3: Algorithm for Euclidean Distance 

Note that when checking for relative distance - is point A closer to 
point B or point C - the square root can be ignored. By ignoring the 
square root we avoid a computational cost associated with it. Further, if 
x, Y E Z then only integer math calculations are required which are faster 
than floating point calculations. This gives us the additional bonus of being 
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able to compare distances exactly without worrying about rounding errors2. 

2.3 Bioinformatics 

2.3.1 Deoxyribonucleic acid (DNA) 

The Deoxyribonucleic acid(DNA) is the digital code of life itself. See Figure 
2.5 for an image of the structure. DNA's long polymer backbone of nu­
cleotides consists of a phosphate group stripped of one oxygen atom, a sugar 
known as ribose and one base. It is sufficient to name each nucleotide by the 
base it contains as it is the only area which differs in a nucleotide. DNA has 
four base amino acids: 

purzne { 
aden~ne 
guamne 

(A) 
(G) 

{
cytosine (C) 

pyrimidine (T) thymine 

The strand of DNA connects all the nucleotides in a chain with covalent 
bonds which are very strong as the atoms share electrons. In many organisms 
a strand of DNA bonds with a inverse strand - A bonds with T and G bonds 
to C. These are known as interstrand bonds, created via a hydrogen bond, 
and are much weaker than the covalent bonds on the backbone. This setup 
of bonds allows for the strands to separate in order to replicate. Errors can 
occur in this replication. 

2.3.2 Biological Errors 

Two common types of errors in DNA[17] are: 

1. Base Pair Substitutions - occur when one or more base pairs in a gene 
are changed (substitution). 

2. Frameshift Mutations - occur when one or more base pairs are in­
serted (insertion) or removed (deletion) in a gene. It also changes 
the reading frame. 

2This 'fast distance' is commonly used in computational geometry. 
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Figure 2.5: Structure of Deoxyribonucleic acid (DNA) 

Base pair substitutions have two subtypes. The first is transition errors 
where one purine/pyrimidine is exchanged with another purine/pyrimidine. 
The second is transversions where a purine is swapped for a pyrimidine or 
a pyrimidine is swapped for a purine. See Table 2.2 for the enumeration of 
these errors. 

Frameshift Mutations are insertions and deletions that shift the reading 
frame. The reading frame is the start of three base points where the encoding 
proteins begins. Each three base pairs encode one of the twenty amino acids 
used in proteins or as a 'punctuation' which allows for the mRN A to know 
where to start and stop transcription. Insertions and deletions in sets of 
three base points do not shift the reading frame, but still cause changes in 
the function of the genome as the three base pair code is added or removed. 
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Error Type Mutational Error 
Transition A ---t G, G ---t A 

C ---t T, T ---t C 
Transversion A ---t C, C ---t A 

A ---t T, T ---t A 
G ---t C, C ---t G 
G ---t T, T ---t G 

Table 2.2: Base Pair Substitutions in DNA[17] 

Different mRN A stands can be encoded leading to a malfunctioning protein 
or no protein being created3 . 

Any number insertions and deletions will cause unwanted results when 
we use DNA as a data transfer media. Therefore, an error correcting code 
which is based in DNA must correct any number of insertions or deletions 
regardless of the change in the reading frame. 

2.3.3 Sequencing Errors 

Sequencing techniques are prone to errors. As a strand of DNA is sequenced, 
the process can create errors in the forms of substitutions, insertions and 
deletions. 

2.4 From DNA to Codes 

As DNA consists of four bases, we can make a bijective mapping to quater­
nary codes, that is, the values of 0, ... ,3. As the errors may be formed by 
additions, substitutions, or deletions, the distance metric chosen for the code 
must take this into account. Therefore, the edit metric is used. The code 
selected may also have to obey further restrictions laid out by the biological 
question it must solve. 

3The tiny virus known as ¢X174 uses the idea of reading frames to 'compress' its own 
genetic code [20] . Some of its nine genes overlap - that is it has two distinct genes encoded 
in the same stretch of DNA. One gene is even contained completely inside of another. This 
compression is allowed as the 'second' gene is shifted exactly one base pair relative to the 
first. An error in this virus would most likely cause huge problems in the coding of multiple 
functions of the virus. One may argue that the virus has a very high information rate, 
but it lacks error recovery. 
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2.5 Biological Applications of Codes 

One such application of biological error correction codes is in the 'barcoding' 
of Expressed Sequence Tags (EST) [3, 9]. Certain genes, significant areas of 
DNA which encode into proteins, are only expressed with suitable condi­
tions: drought, frost, damage and disease, and period of life cycle to name a 
few. DNA is translated first into RNA which is then translated into the final 
protein. The understanding of the location and purpose of a gene is there­
fore of great microbiological importance. For cost savings the sequencing of 
strands of DNA can be done in parallel, however this leaves the problem of 
finding the parameters to which a strand was exposed. Marking each strand 
with a unique identifier solves this issue effectively. As the strand must be 
sequenced this inserted marker is prone to error, adding a correction code 
removes the error and allows a better probability of correct identification. 

Second, there is the applications to intellectual property rights of seed 
producers [9] and protection of consumers to genetically modified organisms. 
Though the insertion of a sufficent marker into a genetically modified or­
ganism, copyright could be enforced. Foodstuffs would be tested to check 
for the presence of these markers. This in turn would allow for consumer 
protection for those who enjoy organic foods. The certification agents could 
monitor such foodstuffs for the presence of markers which signify genetic 
modification. Those which test positive for markers would not be certified 
organic. 

Third, the study of epidemics could also benefit from marking of bacteria. 
A case study in the rate of spread of disease could be tested by marking a 
benign pathogen, infecting a sample, and then testing for the marker in the 
populations near its introduction. In the case of livestock diseases, if the 
organism is gentically modified, the marker would allow for better tracing of 
a particular animal back to the point of origin. Labs also grow cultures of 
rare and harmful pathogens. Addition of marker code would allow tracing 
this pathogen back to the lab of origin if discovered in the wild. 
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Chapter 3 

Literature Review 

3.1 Edit Metric Code Creation 

3.1.1 Conway's Lexicode Algorithm 

Conway's lexicode algorithm is a greedy algorithm used to construct edit 
metric codes. To begin, let C be a (n, d) code with an empty set of codewords. 
Look at each possible codeword in turn, lexicographically, and add the word 
if it is at least Hamming Distance d from every word in C. It was originally 
defined for the Hamming metric, but the edit metric can be subsituted. 

Input: An Alphabet ~, a minimum distance d and an ordered subset 
Be ~n. 

Output: CONWAY(B), a subset of B that has pairwise minimum 
distance d. 

set R; 
forall s E B in order do 

if s is at least distance d from every member in R then 
I R+--RUs 

end 
end 
return CONWAY(B) +-- R 

Algorithm 4: Conway's Lexicode Algorithm 

The algorithm defined by Conway[10] considers B = ~n in lexicographical 
order. 

16 
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3.1.2 Evolutionary Additions 

Ashlock et al.(2002)[2] used Conway's lexicode algorithm as the basis for a 
genetic algorithm's fitness function. Called the greedy closure evolutionary 
algorithm, it seeds Conway's lexicode algorithm with a small code which 
satisfies the chosen minimum distance. The binary genetic operator compares 
the seeds and keeps any common words in the children. The remainder of 
the words in the seeds are then distributed randomly into the two children. 
Any child seeds violating the distance rules are given a fitness of zero. A 
seed not in violation is scored by the size of the code produced by Conway's 
lexicode algorithm using the seed as a starting point. 

Houghten et al. [25] provided a faster method for finding codes using Con­
way's lexicode algorithm. In this variation the codes themselves are stored 
as the chromosomes. In the binary operator a single new code is produced by 
shuffiing the two parent codes together and adding one new random codeword 
to the end. This resultant code then undergoes Conway's lexicode algorithm 
to remove words which do not satisfy the distance bounds. The codes found 
were smaller then those found in [2]. However, the process is much faster. 
This allows codes of larger n values to be discovered with less difficulty. The 
resultant code can also be added to by using the result from the GA as a 
seed for Conway's lexicode algorithm. 

Baker et al. [7] provided a heuristic for extending fixed length edit metric 
codes into variable length codes. This operates by taking the best fixed­
length edit code with the same parameters and then adding as many shorter 
length codewords that fit within the distance restriction. 

Ashlock et al.(2009)[4] improved on the work in [2] and [25] by finding 
that crossover was actually harmful to the process of finding codes. The evo­
lutionary algorithms using crossover would converge extremely quickly and 
then begin to find good solutions. Once diversity is removed, the crossover 
becomes ineffective as we have null crossovers - we are more likely to have 
a crossover which creates children identical to their parents. Therefore, by 
removing crossover the algorithm does not need this extra step of conver­
gence before mutation becomes the only effective way to make changes to 
the population. Mutation is also computationally faster and as such there is 
a speed increase. 
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3.2 State of the Art Decoders for Edit Metric 

3.2.1 Comma-free Codes 

Comma free codes were introduced by Crick et al.[12]in 1957. This paper 
presented the mathematical reasoning for how the amino acids, some twenty, 
could be coded by four nucleotides. They proposed that the most likely 
coding was 'non-overlapping', implying the existence of an unambiguous start 
and end to a codeword. 

A code is called comma-free if and only if given two codewords x = 

XIX2· .. Xn and Y = YIY2 . .. Yn, then the overlaps Xi· .. XnYl ... Yi-l, (0 < i :::; 
n) are not codewords. 

This allows the decoders to regain synchronization of the decoder, stop­
ping an error from propagating for the remainder of the code. However, 
comma-free codes do not make correction to insertion or deletion errors in 
the blocks in which the error originated. 

3.2.2 Marker Codes 

Marker codes were proposed by Sellers [34] in order to allow for correction 
in the edit metric. The marker code acts as a concatenation code - an 
inner code identifies the insertion and deletion errors and an outer code 
corrects the errors. A marker code adds a unique marker sequence to the 
end of each codeword. This marker sequence acts as a signal to the code to 
regain synchronization, allowing the outer burst-error-coding code to detect 
addition/ deletion errors between the markers and correct for them. The 
longer the added marker sequence to the burst-error-code, the more errors 
that can be corrected. The addition of these marker sequences does add extra 
redundancy which limits the rate at which the information can be sent. 

3.2.3 Watermark Codes 

Watermark codes were first described by Davey et al.[14] and further are 
compared with Marker codes by Ratzer and MacKay[33]. The code is also a 
concatenated code which relies on an optimal inner code to which it sends the 
errors. They combine, via a binary add, a random watermark string into an 
outer optimal error correcting code which is designed to correct substitution 
errors. This watermark is analogous to a sheet of paper where the watermark 



"'. 

CHAPTER 3. LITERATURE REVIEW 19 

is 'under' the data written 'on top' of it. When the sheet of paper is 'bent', 
similar to deletion of a character, or 'stretched', similar to the addition of 
a character, the known watermark gives clues as to where these happened. 
By inferring the location of the additions or deletions, the inner code first 
removes the additions which leaves the code a symbol short. This is an 
equivalent error to an incorrect final symbol due to a subsitution to a null 
symboL The error pattern after these removals is then passed to the outer 
error correction code as substitution errors. The outer code then corrects the 
errors as if there were substitution errors allowing the use of the Hamming 
metric. 

3.2.4 Suitability to General Bioinformatics Purposes 

These forms of codes do not solve the problem as presented, mostly due to 
how a set of codewords itself is edited to allow for correction. Marker codes 
would add long marker sequences of the same symbols which would directly 
affect the temperature of bonding for DNA, one of the more common con­
straints. Further, a longer sequence must be used to have the same amount 
of corrective ability. Watermark codes add a random vector. It is unknown 
therefore if a code created with watermarks will allow for biological con­
straints as the vector chosen will edit symbols. The problem then becomes 
selecting an inner code and a 'random' watermark which meet the constraints 
which may not be computable in a reasonable fashion - a marker cannot be 
uniformly random if we must have restrictions on it, and uniformly random 
markers are found to have the best properties[14]. 

3.2.5 Aho-Corasick Decoder 

An extension of a DFA, see Section 5.1.1, can be used in order to decode 
a message. Previously, finite state machines have been used to calculate 
the edit distance for a regular language. Konstantindis[27] proves that the 
problem is solvable in polynomial time and bounds are set on the size of 
the automation which will accept the language. Finite edit metric codes are 
regular languages as we can create an enumeration of each element. 

By viewing a decoding algorithm as a mapping of error patterns into 
partitions with their codeword, we can divide the set by using a finite state 
machine to accept or reject strings. This sorts error patterns into two groups 
at each stage. We repeatedly to split the set in half until we are left with a 
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Aho-Corasick 

Figure 3.1: Aho-Corasick Used as Part of a Decoder 

single partition and its codeword. The members of each partition would be 
enumerated by an application of the edit metric distance function. The Aho­
Corasick algorithm[l] could then take the partition as the keywords to create 
a finite state machine to decide upon which set to pass the error towards. 

Unfortunately, there is the need to enumerate the set and create the parti­
tions of the codewords with their error patterns. This requires computing the 
edit distance of each error pattern to all codewords which is computationally 
expensive. For a quaternary code this would be 0 ( 4 N M N2). The proposed 
Aho-Corasick method would before creation already have every error mapped 
to the correction which is in effect a look-up table decoder. Using this map­
ping the problem can be solved in 0(1). The Aho-Corasick algori~hm being 
run on this set then only gives a space complexity reduction as we only need 
to save the final machine that is created and not the entire mapping. The 
runtime complexity would increase to 0(Nlog2M) for the savings of only 
storing the machine. 

The creation time for a single code becomes even more unbearable when 
we consider the number of biological restriction codes that may need to be 
created. Each one would require its own decoder. The ideas of using a finite 
state machine, or another similar machine, for the classification does show 
promise. However, the generation time of the decoder must be taken into 
account. 



Chapter 4 

Review of Evolutionary 
Algorithms 

4.1 Genetic Algorithms 

"'-

Genetic Algorithms (GAs) are a form of evolutionary algorithm and meta­
heuristic, see [18, 21]. They use the principles of Darwinian Evolution, espe­
cially natural selection. The principles are also known as the survival of the 
fittest. They provide approximate solutions for optimization problems. 

4.1.1 Biological Backing 

The idea presented by a G A stems from the biological idea of a single species 
in a given isolated environment. In GAs this population has the goal of 
searching a problem instance and finding a good approximate solution; the 
solution is an organism in the population. The organisms are placed under 
pressure due to the environment (shelter, food, water) and therefore have a 
nominal ability to survive, and to breed. There is a fitness score on a problem 
instance which is used in selection for breeding. The organisms may breed or 
continue to live, using inheritance (Section 4.1.7), crossover (Section 4.1.7), 
and elitism(Section 4.1.6). During the breeding slight changes may appear in 
the organism that are from neither parent and are caused by a mistake in the 
genetic material; this is mutation (Section 4.1.7). As only the fit survive, the 
organism will hopefully become a specialist at survival in that environment 
and give a good approximation of an optimal solution. 

21 
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4.1.2 Solution Representation as a Chromosome 

The representation of the solution, known as a chromosome, is a data type 
that encodes all information necessary to represent one solution to the prob­
lem. The chromosome is not necessarily a direct mapping to the solution 
in that there may be a transcription step. This is similar to the biological 
theory of there being a genotype and phenotype. 

Darwin remarks "Isolation [ ... ] is an important element in the process of 
natural selection. In a confined or isolated area, if not very large, the organic 
and inorganic conditions of life will generally be in a great degree uniform; so 
that natural selection will tend to modify all of the individuals of a varying 
species throughout the area in the same manner in relation to the same 
conditions" [13]. Therefore by using this paradigm, upon a single problem 
the GA should in general see even different chromosomal representations, or 
species, converge to a solution which is fit. 

4.1.3 Initialization 

The population is normally initialized randomly. This is to ensure the entire 
search space is examined. The GA may also be initialized by a selection of 
good known solutions. This process is know as seeding. 

4.1.4 Fitness Function and Selection 

The fitness function is a mapping from a chromosome to a value that rep­
resents how well the candidate solution solves the problem. These rankings 
are then used to determine the breeding partners. This process is called se­
lection. The fitness function is problem specific and this function can be the 
deciding factor on the direction of the genetic algorithm's search paths. 

4.1.5 Generations 

The algorithm is allowed to run for a number of generations. In each genera­
tion the population undergoes an update. The fitness function is calculated 
for each member of the population and selection of breeding candidates is 
made. Genetic Operators are applied to the population and the result be­
comes the population in the next generation. Usually, the GA runs for a 
number of generations to ensure that it converges, where convergence is the 
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point at which the GA cannot make large improvements in the approxima­
tion. The point of convergence is normally decided by empirical testing. 
The stopping parameter may be defined by other factors coming from the 
results of the GA itself, such as the difference in the average solution fitness 
or reaching a defined value of fitness, with a upper bound defined to stop the 
GA in the worst case. In order to compare various sizes of population the 
number of breeding events is normally used as a stopping condition. This 
ensures that each population size has the same opportunity to make changes 
via applications of Genetic Operators. 

4.1.6 Elitism 

In order to ensure that we hold onto the best solution thus far, a small portion 
of the population, normally one chromosome, is selected to be elite. The 
fittest chromosome in a generation is copied to the next without modification. 
This chromosome is allowed to then also be selected to be a breeding parent 
in the normal course of selection. 

4.1.7 Genetic Operators 

The following types of operators are applied to the population probabilist i­
cally. 

Crossover 

Crossover creates new candidate solutions by combining the genetic material 
of two chromosomes together. Each child inherits some material from both 
parents, which hopefully causes the formation of a better solution that shares 
properties from both. 

Mutation 

Mutation promotes diversity in the population and prevents evolutionary 
stagnation. By making a small change to a single chromosome, the area 
searched by the GA expands. It is also used to prevent premature loss of 
helpful genetic data. 
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Inheritance 

The chromosome is copied into the new population unchanged. 

4.2 Evolutionary Programming 

Evolutionary Programming(EP) is a form of Evolutionary Algorithm created 
by Lawrence J. Fogel to model prediction problems [16]. Problems which 
predict the next symbol likely to occur given a sequence of symbols observed 
thus far are modeled through his technique. The EP model relies on the 
manipulation of a finite state machine which outputs the next predicted 
symbol on each transition. The finite state machine population is changed 
through mutation alone, where the parent is replaced by a child only if the 
number of errors produced by the child would be less than itself. 

The machine is used online - that is the problem instances are ongoing 
during the evolutionary process. Therefore, the concept of a generation is the 
number of mutations that can be applied and tested before the next predic­
tion instance is given on a new better machine. The mutation operators may 
include: changing the connections between the states, changing a transition 
output, changing the initial state, adding a state, or removing a state. 

A concept of a version of crossover is examined. The idea is to create 
a new state machine by looking at the majority logic of the machines. The 
states are combined and the output symbol is decided by the output of the 
machines. Fogel notes that at least three machines are needed to show a 
clear majority. 



"'-

Chapter 5 

Side Effect Machines 

5.1 Deterministic Finite Automation 

A Deterministic Finite Automation(DFA) is a type of automation which has 
no temporary storage and makes a binary classification of an input string. 
See [22, 29] for an introduction to their uses. The only memory it contains 
is the current state in which it resides. The string is read in one symbol at a 
time. Each symbol causes a state transition in the machine based upon the 
symbol read. When the string is empty, i.e. no symbols are left to read, the 
final state may be either an accepting or a denying state. This creates the 
binary classification of the string: belongs to the set or does not belong to 
the set. 

5.1.1 Formal Definition 

A Deterministic Finite Automation, M = (Q,~, 8, qo, F), is comprised of: 

1. A finite set of internal states, Q. 

2. A finite set of input symbols, ~. 

3. A transition function defined by 8 : Q x ~ ---t Q. 

4. An initial state, qo E Q. 

5. A set of final states which accept the string F ~ Q. 

25 
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1.2,3 

, 1 ·1 1·, 1"" 
4 

4 

received pattern Cl C2 C3 C4 

011231023133 2 4 3 3 
132123012313 1 6 1 4 
313000213221 2 5 1 4 

Figure 5.1: Example four state SEM with examples of output vectors 

5.2 Side Effect Machine 

The idea of a side effect machine is a generalized extension of the DFAs de­
cribed in Section 5.1. The side effect machine is less interested however in the 
accepting or denying states but instead in the value of a side effect counter. 
A counter is attached to each state in the machine. When the state is entered 
by the machine the counter value updates, normally by incrementing by one. 
This then provides an injective mapping from the string space of the input 
into a S-dimensional vector space, where S is the number of states in the 
machine. The classification therefore comes not from the final state of the 
machine but from the S-dimensional vector. 

5.2.1 Example 

Figure 5.1 shows a four state side effect machine. As a convention the SEM 
always begins on a set state, usually state 1. The classification vector is 
(Cl' C2, C3, C4) where Ci, 1 ::; i ::; 4, holds the number of times state i was 
entered. For example, an input of 011231023133 gives a path through the 
states of 312422433124. This path yields a classifying vector C = (2,4,3,3), 
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since state 1 is visited 2 times, state 2 is visited 4 times, and states 3 and 4 
are each visited 3 times. 

5.3 Background 

Side effect machine are based on other finite state machines. Recently such a 
machine was used to classify PCR primers which used an incremental reward 
fitness function[3]. The machine is allowed three responses when given a 
primer to classify: good, bad or no idea - (+,-,?). First the final state 
acted as the only classifier, then the idea was to score the primer based on 
+ giving 1 point, - giving -1 point and? giving no change in the decision. 

Side Effect Machines(SEM) were introduced fully in [6] where they were 
previously used in bioinformatics applications upon DNA. In [6] side effect 
machines were used to classify sequences of synthetic DNA to allow for the 
use of PCR primers. The approach was continued in [5] to look at biological 
data from zea mays(corn). The machines found good classification upon 
synthetic data but were weaker on the biological data. The reason for this 
was speculated to be the entropy of the biological DNA compared to the 
Synthetic approach; the greater the amount of entropy in the strings, the 
better the machines worked. 

The sequences were passed through a genetic algorithm which created 
candidate side effect machines. The machines then ran the primers and the 
results of the states were K-means clustered, see Section 7.2. Following that 
the classifications were evaluated via their Rand index(see Section 7.1). 

5.4 GA using SEM 

The search space of SEMs is large. In a quaternary machine each state has 
48 interconnections. These interconnections can be to any of the 8 states. 
Therefore, there are 84S ways to arrange the interconnections. This large 
search space for an optimization problem leads in the direction of using evo­
lutionary computation. GAs are a natural choice as they have previously 
been used in the creation of SEMs[5, 6]. In order to use a GA the represen­
tation and genetic operators must be defined, as in [5, 6]. 
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state 0 1 2 3 
1 3 2 2 2 
2 4 2 4 4 
3 2 1 4 3 
4 2 1 3 2 

Table 5.1: Example four state SEM transition matrix 

5.4.1 Representation 

The SEM is represented by a transition matrix. The matrix is of size S x I~I 
where S is the number of states in the machine and I~I is the number of 
symbols in the language ~. For example, the transition matrix in Table 5.1 
constructs the machine shown in Figure 5.1. 

5.4.2 Genetic Operators for SEM 

Crossover 

The crossover used is two point crossover. In this crossover two points are 
selected randomly in the first parent. All the edges between those points 
overwrite the edges in a second parent to create a single child chromosome. 
This creates a new SEM with states from both parents. An example is shown 
in Figure 5.2. 

Mutation 

Mutation takes one link in the SEM and changes the state it points to ran­
domly. An example of mutation is shown in Figure 5.3. The number of 
mutations, that is the number of links changed, in a single application of the 
operator can be varied. 
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state 0 1 state 0 1 state 0 1 
1 2 3 1 2 2 1 2 2 
2 2 1 2 3 3 2 2 1 
3 1 1 3 1 1 3 1 1 
( a) parent one (b) parent two (c) child 

Figure 5.2: Crossover of a 3 state binary SEM - crossover point is the second 
state, the selected edges are bold. 

state 0 1 state 0 1 
1 2 3 1 2 3 
2 3 1 2 3 1 
3 1 1 3 1 2 

(a) before mutation (b) after mutation 

Figure 5.3: Mutation in a 3 state binary SEM - mutation occurs in bold 
edge 
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Chapter 6 

Single Classifier Machine 
Decoder 

The Single Classifier Machine (SCM) Decoder is a SEM which uses the abil­
ities of a SEM to transform the error pattern into a classifying vector. The 
idea of this decoder is to remove the main loss in efficiency caused by cal­
culating the edit metric for each word. The SCM is a SEM which has been 
created to minimize the Euclidean distance of the vector results of an error 
pattern and its respective codeword. Preliminary results from this chapter 
were published in [8]. 

The creation of a SCM first involves finding a SEM which will classify the 
set, normally using a GA (see Section 4.1). After the creation ofthe SEM the 
codewords are run though the SEM and the vector results are saved. This 
forms a mapping from classifying vectors back to the codewords. The SEM, 
along with the mapping of vectors to codewords, forms the SCM decoder. 

To decode a given error pattern, the SCM produces its classifying vector, 
which is then compared via Euclidean distance to the classifying vector of 
each codeword. The codeword with the closest vector is the decoded error 
pattern. Note that the SEM will classify incorrectly at times; we search for a 
SEM which is correct in the majority of cases. Verification that we have the 
correct result could be made by calculating the Levenshtein or edit distance 
of the error pattern to the chosen codeword. If this is within the correction 
capacity of the code, the maximum number of errors a code can correct, 
then we have made the correct decoding at the additional cost of runtime. A 
negative verification would have an error response such as 'unable to decode'. 

30 
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6.1 Fuzzy Classification 

The SCM can also be extended to make a fuzzy classification. The SCM 
already has stored each codeword's classifying vector, and we compare the 
error pattern's classifying vector when we make a direct classification. In a 
direct classification we choose the codeword with the closest vector. In a fuzzy 
classification, the classification vectors of all codewords are inserted into a list 
sorted in increasing order of Euclidian distance to the classification vector 
of the codeword. This list of codewords is then compared to the received 
pattern using Levenshtein distance until we find a distance which is less than 
or equal to the correction capacity of the code-a correct decoding. 

A tolerance value can be selected for the range of distance if we want to 
restrict runtime and return 'unable to decode'. This value is the maximum 
radius of a hypersphere about the error pattern's classifying vector within 
which we look for valid codewords. The fuzzy classification will find Leven­
shtein distance for every codeword where the Euclidean distance from the 
error pattern's classifying vector to the codeword's classifying vector is less 
than a chosen radius-the tolerance value. If this tolerance is made infinite 
then we look at every codeword. The fuzzy-SCM creates a list of codewords 
as input to a linear search. The goal is to ensure a correct decoding earlier 
in the list. 

6.2 Runtime Complexity 

Recall that n is the length of a codeword, M is the number of codewords 
in a code, and 8 is the number of states in a SEM. Without using a SEM, 
the general decoding technique used for biological purposes is a linear search 
taking 0(Mn2), as we must calculate the Levenshtein distance of the error 
pattern to every codeword and select the smallest. The SEM produces the 
classifying vector for the error pattern in O(n) as the SEM must make a tran­
sition for each symbol and add to the classifying vector. The SEM requires 
0(8) time to find the Euclidean distance from the error pattern's classifying 
vector to a given codeword's classifying vector, and this must be done for 
each of the M codewords. The SCM therefore requires a total of O(n + 8M) 
time to decode the error pattern. This becomes 0(n2 + n + 8M) if we verify 
the correctness. 

The fuzzy machine would require 0(Mn2 + n + 8M) time to decode if 
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we were to allow the tolerance value to be infinite, as it may need to make 
a verification of the correctness for every codeword. However, the upper 
bound does not show the true runtime accurately. The fuzzy-SCM decoder 
will probabilistic ally, based on the properties of the SEM, make the correct 
classification in cn2 + n + 8M for some small integer t. By setting the 
tolerance and accepting some errors we can reduce the worst case runtime. 
Finding a SEM which classifies effectively is the determining factor on the 
runtime. 

6.3 Experimental Settings 

The generational population was varied with settings of 11, 25, 51, and 101 
chromosomes. One chromosome of the population is considered elite. The 
tests were allowed to run for 100000 mating events to ensure convergence. 
The crossover rate is set to 90% and mutation rate to 10%. Selection was a 
K-2 Tournament and a chromosome may be subject to both crossover and 
mutation in the same round of breeding. The number of mutations is allowed 
to vary with the settings of 1, 2, 7, and 12. Each training set was run with 
30 different pseudo random number seed values for statistical significance. 
The fuzzy SCM was examined with a tolerance of an Euclidean distance of 
3. This value was selected by looking at the average Euclidean distance of 
the errors to the correct codeword for the non-fuzzy SCM. 

6.3.1 Distance Two 

For each code, two sets of error patterns were generated randomly. Errors 
of distances 1 and 2 were examined. Error patterns at distance 1 from a 
codeword were selected to view the effect of a single substitution error, and 
those at distance 2 were selected to examine a combination of a single inser­
tion and a single deletion, or two substitutions. Two sets of n error patterns 
using these distances were created for each codeword. The first set was used 
for the training of the GA on that codeword, and the second was used to 
verify that the GA was learning the patterns and not just memorizing. Five 
(12, M, 7)4 codes were tested, available in Appendix A. 
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Crossover and Mutation Settings 
# Mutations 
SEM States 
Population 

Elite 

6.3.2 Distance Three 

90%/10% 
1,2,7 and 12 
6, 12, and 18 

11, 25, 51, and 101 
1 

The error correcting ability of the SCM was then tested upon t = 3 errors 
which is the full number of errors that a distance d = 7 code can correct; 
remember from Section 2.2.4 that t = L(d - 1)/2J and in this case t = 

L(7 - 1)/2J = 3. Distance three errors are the upper bound on the correction 
ability for this set of codes. The errors were generated as for distance two 
tests, adding the distance three errors which are either three substitutions, 
or a substitution and deletion followed by an insertion. 

Crossover and Mutation Settings 
# Mutations 
SEM States 
Population 

Elite 

6.3.3 New Fitness Function 

90%/10% 
1,2,7 and 12 
6,12, and 18 

11, 25, 51, and 101 
1 

The origional fitness function was the number of corrections made equaled 
the fitness. The fitness function was then modified to take into account the 
distance of the corrected error pattern during training. Greater emphasis 
was placed on the correction of error patterns at higher distances from cor­
responding codewords. The fitness function equated the score of a single 
example from the training set to the distance from its corresponding code­
word, e.g. a correction of a three error example would add three points to 
the fitness for the SCM. The training and verification data was the same as 
the distance three tests. 

Crossover and Mutation Settings 
# Mutations 
SEM States 
Population 

Elite 

90%/10% 
1,2,7 and 12 
6,12, and 18 

11, 25, 51, and 101 
1 
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6.4 Results 

6.4.1 Distance Two 

The full tables for these results are in Appendix B.1. For each distance there 
were nM error patterns tested for each distance. A perfect classification 
would need to correct all these errors. 

The greatest difference in the results happens due to the number of states 
in the side effect machines. The implication being that the representation 
of the space is only fully explored when a larger SEM space is allowed. The 
most drastic change happens between 6 and 12 states and is statistically sig­
nificant. Smaller numbers of states require a higher number of mutations per 
application of the mutation operator to occur in order to fully be explored. 
The number of mutations hinders performance for larger populations as the 
power of selection pressure is removed. The small population effects experi­
enced in the tests for PCR primers[5] are not present in this application of 
SEMs. 

There is a close relation in the numbers of corrected codewords in the 
training and verification sets. This shows that the SEM is learning the at­
tributes which make up the mapping from error pattern to codeword and not 
simply memorizing the training sets. 

For the first code, decoders with a population of 51, using 2 mutations, 
gave the best average fitness for both the 12 and 18 state SEM. The 18 state 
SEM is slightly better. Further, these sets also have a reduced standard 
deviation compared to other sets. The best SCM of this type was an 18 state 
SEM created with a population of 25 with 1 mutation. It corrected 81% of 
all errors from both the training and verification data. The SCM is a highly 
effective classifier for this information as a random selection of one codeword 
from the possible fifty-five would lead to only 1.81% of error patterns being 
corrected. 

Fuzzy 

The fuzzy-SCM provided a ten percent increase in the ability of classification 
at the tolerance level of 3. The standard deviation of the results was greater 
than the normal SCM, which is to be expected. The smaller populations 
of machines fared better as the fuzzy classification is able to generalize the 
errors and place like codewords together. However, the GA lacks the ability 
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to leave local optima at smaller populations due to the selection pressure 
incurred. 

The same settings on the Fuzzy machines gave the best results as the 
direct SCM. However, the 12 state machine scored slightly better, especially 
when correcting the harder distance 2 errors. Interestingly, a fuzzy-SCM 
created with 12 or 18 states fared as well as the best direct SCM decoder, 
even if their direct decoder was lacking. We must however look at the expense 
of runtime caused by this gain. The larger the gain in correction ability, the 
more times we must rely on additional tests of Levenshtein distance. Clearly, 
it is better in terms of runtime to start with a good direct decoder, rather 
than a weaker one, before adding the fuzzy classification. 

For the first code tested, the best SCM of this type was a 12 state SEM 
created with a population of 25 with 1 mutation. It corrected 93.86% of the 
all errors from both the training and verification data, see Figure 6.1. The 
structure of this machine is astounding in how it mirrors the code. Each state 
has at least one entry into it. However, the initial state 1 is only entered by 
itself in a loop and state 8 is only entered by itself in a loop and by state 1. 
These two states act as collectors for runs of the values of 3 and 1 respectively 
at the start of a word. The SEM is more likely to enter some states based 
on a single value, e.g. a value of 0 is most likely to send the machine to state 
9. After seeing the machine, we noticed there is a large number of runs of 
a single value in the (12, 55, 7)4 code. Therefore, the GA evolved the SEM 
to use runs of the same value in order to act as a classification method; we 
expect the GA to find a method of classification and this classifies the code 
adequately. 

6.4.2 Distance Three 

The results in terms of the number of states, number of mutations, and fuzzy 
machines were close to what was found for the distance two tests as shown 
in Section 6.4.1. Distance three errors were the hardest to correct. Adding 
correction to distance three causes a reduction of correction to distance one 
errors. Table 6.2 shows the results of training a 12 state machine using a 
population of 51 and allowing up to 2 mutations. 



cr.. 

CHAPTER 6. SINGLE CLASSIFIER MACHINE DECODER 36 

state 0 1 2 3 state 0 1 2 3 
1 2 8 3 1 7 9 6 10 4 

2 9 6 3 4 8 2 8 3 4 

3 9 6 10 4 9 12 7 5 2 
4 11 6 3 4 10 9 6 3 4 

5 9 7 10 4 11 9 7 5 4 

6 9 6 5 4 12 9 7 5 2 

Figure 6.1: Best fuzzy machine for the first code - 12 states - corrects 
93.86% of errors in training and verification 
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6.4.3 New Fitness Function 

A subset of the tests is shown in Table 6.1 as a good indication of the rest of 
the results. The parameter settings for this table were: 12 states, population 
of 51, 90% crossover, and 10% mutation. The change to the fitness function 
hindered the ability of the SCM to classify the code. There is a statistically 
significant reduction in the ability to decode distance one errors for every 
code, excepting the verification of the exact machine in Code #3 and #4. 
Distance two error correction is hindered to a statistically significant level 
in the codes. The distance three error range which we aimed to correct was 
not improved. Code #5 had the worst results for this technique. Therefore, 
this change to the fitness function is not recommended. By reaching for the 
errors at a greater distance we lose the ability for the decoder to generalize 
all errors. 

6.5 Number of States 

Figures 6.2-6.6 show the average and a 95% confidence interval created dur­
ing a study of how the number of states affects the memorization of the 
training set. The runs were conducted on each of the five codes with a popu­
lation of 51 machines, with 90% crossover rate and 10% mutation rate. They 
allowed two mutations. The number of states differs between 2 and 30; not­
ing of course that a one state machine has a fitness of zero as all codewords 
would map to the same vector. 

Crossover and Mutation Settings 
# Mutations 
SEM States 
Population 

Elite 

90%/10%% 
2 

2-30 
51 
1 

As expected, as the number of states increases at the beginning there is a 
gain in the effect of memorization and generalization. However, this gain is 
subject to diminishing returns as good smaller machines are found and the 
additional states are never used. Notice how the beginning of this long flat 
region in all five of the testing codes begins when the number of states is 12, 
which is equal to the length of the codes tested. Some of the extra states are 
never used and may actually hinder the evolutionary process later on. This 
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Figure 6.2: Code #1, Correcting up to three errors: Average fitness of best 
machine over 30 runs with 95% confidence interval with varying numbers of 
states. Perfect score is 1980. 



CHAPTER 6. SINGLE CLASSIFIER MACHINE DECODER 

1400 

1200 

1000 

U) 

800 j! 
.!!! en i '11= 

600 

400 

200 

~ 

0 
0 5 

~ 
! 

Verification I---+----l 
Training "--X--" 

. I I I % % I % I I I I - I I _ _ 
. ~ , I I I I I I I I I I I 'I . , I 1*' 
I~ ! III!I! 

10 15 20 25 30 
# Correct 

39 

Figure 6.3: Code #2, Correcting up to three errors: Average fitness of best 
machine over 30 runs with 95% confidence interval with varying numbers of 
states. Perfect score is 2016. 
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Figure 6.4: Code #3, Correcting up to three errors: Average fitness of best 
machine over 30 runs with 95% confidence interval with varying numbers of 
states. Perfect score is 2016. 
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Figure 6.5: Code #4, Correcting up to three errors: Average fitness of best 
machine over 30 runs with 95% confidence interval with varying numbers of 
states. Perfect score is 1944. 
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Figure 6.6: Code #5, Correcting up to three errors: Average fitness of best 
machine over 30 runs with 95% confidence interval with varying numbers of 
states. Perfect score is 2124. 
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is evidenced in the verification data which diverges from the training data as 
the number of sates increases. Seeing as how the number of breeding events 
is unchanged as the size of the search space is increased with the number of 
states this also makes the effect of exploitation via GA more difficult. 

The efficiency of the decoder rests upon the number of states in the side 
effect machine, S. Note that the method of evolution used combines machines 
of a set size, but this size is not necessarily the number of states a machine 
uses. Through the process of evolution, states can be cut away by having no 
incoming edges. Further, there can be states which, while having incoming 
edges, are not reachable by an n length string in n or less moves through the 
SEM. This means that a setting of S states has as a subset all 1, ... , S - 1 
state solutions. 

6.6 Crossover v. Mutation 

There exists a misconception that without crossover a genetic algorithm is 
just. a random search. This is not the case as it does not take into account 
the idea of selection. There is a fear that removing the crossover rate and in­
creasing the mutation rate makes a work less important and that it could be 
replaced via a random search. The rates of crossover and mutation should be 
judged upon the problem instance empirically and then allow for a discovery 
as to the reasoning behind why a crossover or mutation is successful or un­
successful. Tests were therefore carried out to look at the rates of crossover 
and mutation in order to view the relative effect of each genetic operator to 
finding the solution. 

6.6.1 Experimental Settings 

Code #1 was selected to undergo further tests at a distance of two in order to 
establish the effects of changing the crossover and mutation rates. The tests 
were carried out with the number of breeding events set to 50000 to allow 
for a faster runtime. Tests were made with the crossover set to the values of 
0, 50, 75, 80, 90 and 100 percent. The mutation was set to the values of 10, 
20 and 50 percent. 

Secondly, distance three tests were carried out with just 50% mutation 
on all of the five testing codes. The tests were carried out with the number 
of breeding events set to 50000 to allow for a faster runtime. 
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Crossover Rate 
Mutation Rate 
# Mutations 
SEM States 
Population 

Elite 

6.6.2 Results 

0, 50, 75, 80, 90 and 100% 
10, 20 and 50% 
1, 2, 7, and 12 

12 
51 

1 

44 

A section of these tests with the number of states set to 12 and with a 
population of 51 is in Appendix B.2. High mutation with low crossover fared 
as well as high crossover with low mutation. Most noticeable is when the 
mutation is set to 50 percent; it provides a benefit regardless of the crossover 
rate. 

This benefit is also significant in that average of some of the 50% mutation 
only runs are close to the best runs found for the previous distance two 
tests. Previous tests had double the number of breeding events; twice the 
amount of runtime to find a good solution. Further, the mutation operation 
is computationally cheaper than crossover. 

Tests on distance three codes gave similar results. The results are shown 
in Table 6.2. While it may be noted that the benefit is only statistically 
significant in a few occasions, tests are never signficantly worse. Thus, us­
ing mutation only does as well or better than having crossover rates at the 
conventional setting. 

6.6.3 Unsuitability of the Problem for Crossover 

There are many reasons why this problem shows an unsuitability for crossover 
and why a mutation only operator is prudent. The first revolves about the 
idea of breeding partners being of a similar genetic stock. The crossover 
of states between two machines which are not similar enough will lead to 
the creation of unused states and disruption of structures. It is an infertile 
crossover. When the machines are too similar the crossover becomes ineffec­
tive. Therefore, after a level of connectivity has been established, crossover 
has a large chance of breaking the connectivity and creating children which 
are of extremely low fitness. Secondly, there is a large number of isomorphic 
side effect machines. Two good machines might have a similar fitness yet 
still provide infertile crossovers. The application of mutation alone would 
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allow for an exploration of these two isomorphic groups, the best one killing 
off the other via selection. Third, these flaws could be fixed by changing the 
representation of the machine. However, storing a SEM as just its transition 
matrix and making edits via this mechanism is understandable, simple, and 
elegant. 

The idea of Evolutionary Programming as shown in Section 4.2 shows how 
mutation only on finite state machines can be effective without a change to 
the representation. As side effect machines share this common representa­
tion, one can have a hypothesis that the ideas are transferable. 
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p t rs arame e E xac Fuzzy 
Code Fitness Type Distance Average Std Dev Average Std Dev 

Code #1 Old Training 1 557.8 17.8681 584.1 20.6404 
2 470.033 17.6058 514.433 23.313 
3 316.633 19.0543 395.367 36.646 

Verification 1 541.4 20.1351 573.933 22.3374 
2 452.9 17.529 511.4 26.363 
3 284.033 17.0567 377.5 35.08 

New TrainIng 1 521.367 25.512 559.567 28.2265 
2 445.867 23.8454 504.5 33.5803 
3 307.6 17.2838 408.833 33.0601 

Verification 1 514.333 28.9486 552.8 30.9576 
2 440.833 28.7559 504.3 37.4379 
3 283.767 18.7445 391 36.9967 

Code #2 Old Training 1 544.733 19.7063 580.9 20.3272 
2 460.167 20.3624 528.867 25.2624 
3 302.567 24.0569 418.767 37.4725 

Verification 1 530.6 22.9175 573.6 25.62 
2 425.6 23.9937 505.167 31.9483 
3 282.333 23.9559 416.767 35.1624 

New TrainIng 1 519.033 29.706 558.767 28.1862 
2 450.167 27.5594 513.8 31.3417 
3 303.8 27.3324 397.6 41.7121 

Verification 1 514.433 32.3608 556.367 32.3723 
2 415.733 30.4755 486.167 35.4256 
3 277.967 28.3458 399.4 38.627 

Code #3 Old Training 1 543.367 22.4553 585 24.9579 
2 457.567 18.7868 533.167 27.4554 
3 304.833 23.5139 436.467 42.1006 

Verification 1 531.4 25.4539 575.533 27.797 
2 439.833 25.5884 523 35.9722 
3 279.5 22.1682 417.233 43.3595 

New Training 1 525.633 30.6757 565.367 31.6266 
2 448.067 25.8723 513.267 37.1474 
3 309.433 23.3632 416.5 48.1862 

Verification 1 519.167 31.8651 559.033 34.5228 
2 431.1 27.5297 501.2 39.3826 
3 276.167 24.8569 395.4 53.2668 

Code #4 Old Training 1 521.367 26.4099 559.233 26.9004 
2 441.7 18.9412 514.667 29.7024 
3 284.033 17.6567 407.767 41.3961 

Verification 1 506.233 28.9705 553.8 26.313 
2 421.767 24.8938 504.5 .33.0306 
3 259.267 23.7195 395.2 46.972 

New TrainIng 1 503.633 29.808 541.3 28.9353 
2 433.2 23.0268 496.933 25.6111 
3 289.467 19.7759 390.533 33.7514 

Verification 1 494.767 28.2546 536.933 25.5477 
2 417.967 27.1921 488.167 29.3188 
3 258.033 28.629 373.467 40.0472 

Code #5 Old Training 1 558.467 22.2614 599.767 24.5184 
2 474.6 17.3555 553.5 27.2381 
3 312.533 22.6072 446.933 41.3896 

Verification 1 555.6 27.0154 598.467 26.2425 
2 459 23.5548 544.067 33.8923 
3 281.7 21.2654 432 42.0025 

New Training 1 530.133 25.8907 573.733 23.5518 
2 456.767 20.2258 523.167 25.6315 
3 311.3 23.0594 410.367 38.2438 

Verification 1 530.867 27.6153 575.4 24.5716 
2 447.1 27.4708 521.033 31.194 
3 266 24.6241 388 37.3215 

Table 6.1: Effect of the New Fitness Function - Statistically Significant 
Results in Bold 
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Parameters Exact Fuzzy 

Code Crossover Mutation Type Distance Average Std Dev Average Std Dev 

Code #1 90 10 Training 1 539.333 22.7995 578 22.5511 
2 458.1 22.628 527.867 27.4575 
3 301.2 22.5853 428.433 35.3306 

Verification 1 525.967 25.4551 570.267 25.8096 
2 449.6 28.6002 527.233 27.281 
3 281.9 21.2609 417.567 33.739 

0 50 '!'raining 1 543.6 25.8064 585.8 25.3791 
2 460.167 23.2662 535.8 27.4231 
3 302.8 20.9998 438.033 38.111 

Verification 1 530.3 27.9792 576.2 29.3333 
2 451.5 25.3659 534.567 31.2528 
3 281.167 24.2531 430.933 33.8892 

Code #2 90 10 Training 1 544.733 19.7063 580.9 20.3272 
2 460.167 20.3624 528.867 25.2624 
3 302.567 24.0569 418.767 37.4725 

Verification 1 530.6 22.9175 573.6 25.62 
2 425.6 23.9937 505.167 31.9483 
3 282.333 23.9559 416.767 35.1624 

0 50 Training 1 553.067 24.1746 586.8 24.0149 
2 471.067 20.2177 541.3 27.1752 
3 310.967 20.4863 438.2 35.5551 

Verification 1 544.7 20.6801 584.067 23.7558 
2 442.1 24.8726 522.433 28.0734 
3 291.567 20.5455 438.767 31.0236 

Code #3 90 10 Training 1 543.367 22.4553 585 24.9579 
2 457.567 18.7868 533.167 27.4554 
3 304.833 23.5139 436.467 42.1006 

Verification 1 531.4 25.4539 575.533 27.797 
2 439.833 25.5884 523 35.9722 
3 279.5 22.1682 417.233 43.3595 

0 50 Training 1 548.367 23.535 585.4 21.9539 
2 462.4 23.261 531.867 ·27.5026 
3 316.933 16.9806 439.367 32.8995 

Verification 1 537.7 26.1153 575.533 24.5058 
2 445.9 19.0505 524.733 27.5793 
3 285.967 23.4013 424.667 38.2752 

Code #4 90 10 Training 1 521.367 26.4099 559.233 26.9004 
2 441.7 18.9412 514.667 29.7024 
3 284.033 17.6567 407.767 41.3961 

Verification 1 506.233 28.9705 553.8 26.313 
2 421.767 24.8938 504.5 33.0306 
3 259.267 23.7195 395.2 46.972 

0 50 Training 1 528.567 27.4524 563.4 24.5351 
2 449.067 23.5225 518.933 26.8417 
3 291.233 24.0039 417.267 37.4948 

Verification 1 515.533 30.6512 557.3 25.0078 
2 432.733 26.6703 512 30.3497 
3 269.367 28.1198 407.033 41.8219 

Code #5 90 10 Training 1 558.467 22.2614 599.767 24.5184 
2 474.6 17.3555 553.5 27.2381 
3 312.533 22.6072 446.933 41.3896 

Verification 1 555.6 27.0154 598.467 26.2425 
2 459 23.5548 544.067 33.8923 
3 281.7 21.2654 432 42.0025 

0 50 Training 1 559.4 27.5238 603.867 29.6773 
2 477.8 19.3505 563.3 31.1616 
3 308.033 23.5042 451.533 40.3867 

Verification 1 557.533 27.295 606.2 29.4611 
2 460.033 22.3568 554.5 32.2808 
3 278.967 22.8526 439.333 41.8868 

Table 6.2: Crossover v. Mutation - Statistically Significant Results in Bold 
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Chapter 7 

Locking Side Effect Machine 
Decoder 

The idea of a locking side effect machine comes from a single dial combination 
lock. In a single dial combination each number must be put in one at a time 
to move to the next number. Each cam is rotated in a clockwise and then 
counter clockwise fashion in turn. This process therefore makes a subclas­
sification at each cam to allow the process to continue or to reset the lock. 
The final number then unlocks the entire lock. Therefore, final classification 
is made by a set of interlinking machines which have subclassifications. In 
this analogy each side effect machine is a cam in the lock. The subclassifi­
cation for each machine is how many times the lock would be turned in the 
necessary direction. If the correct number of turns is made then it is passed 
to the next side effect machine in the chain. Otherwise, it returns back to 
the first level. 

Locking Side Effect Machines (LSEM) use the idea of multiple levels to 
split the codewords into partitions to better classify the code. The error 
pattern is inserted into the first layer of the LSEM decoder. Each layer first 
runs the error pattern through a SEM which produces the classifying vector. 
This classifying vector is then measured via Euclidean distance to the clas­
sifying vector of each of that SEM's codeword classifying vectors. K-nearest 
neighbours (KNN) is then run upon the output (Section 7.3). This gives the 
classification of the error pattern. There are K more SEMIfinal codewords 
under the current layer. It is a tree structure (Figure 7.1). If the classifica­
tion points to a SEM, then a new layer is entered and the process continues. 
Otherwise, we have reached a final codeword and that final codeword is re-

48 
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Figure 7.1: Locking Side Effect Machine Decoder Tree Structure 

turned as a result. This process does require an exponential number of SEMs 
to be created. The process of creating further layers can be stopped at any 
layer, with either to a SCM or a linear search used to complete the decoding. 

7.1 Rand Index 

The Rand index [32] is used to determine how well a clustering of data par­
titions has been classified into sets. This measure works well as a fitness 
metric. It tests for the similarity of two partitions of a set even when the 
number of data points for each set is uneven. If we have a goal partition we 
compare it to a candidate partition. The index returns a real value in [0,1], 
where 1 is a perfect classification and 0 is an incorrect classification. Given 
a set S of n elements and two partitions, X and Y of S, we can define the 
following: 

a, the number of pairs of elements in S that are in the same set in X and 
in the same set in Y. 

b, the number of pairs of elements in S that are in different sets in X and 
in different sets in Y. 

c, the number of pairs of elements in S that are in the same set in X and 
in different sets in Y. 

d, the number of pairs of elements in S that are in different sets in X and 
in the same set in Y. 

The Rand index, given in [32], is: 

R= a+b a+b 
a+b+c+d G)· 
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As we can easily determine the partitioning we require, that is the sets 
of errors and their codewords, the Rand index will compare the side effect 
machine's results. The adjusted Rand index[23] is used in this study as it 
corrects for random chance and is calculated in a much sorter runtime. 

7.2 K-Means Clustering 

K-means Clustering is an unsupervised algorithm which splits a set of data 
points into K groups. See [30] for the algorithm. The initial set of K means, 
which are not necessarily data points, are placed into the dimensional space. 
The data points are then assigned to the closest, in terms of a distance metric, 
K mean. The center of mass or centroid is calculated for each of the K sets. 
The K mean is then changed to the location of the centroid and the process 
of assignment of data and centroid finding continues until no data points are 
reassigned. 

7.3 K-Nearest Neighbours 

The goal of K-Nearest Neighbours (KNN) is to assign a previously unclas­
sified data point to the nearest set of previously classified points [11 , 15]. 
The classification is unsupervised. KNN assigns an unknown data point by 
finding the classification of the K nearest known data points and taking a 
majority vote. Ties are broken using some reasonable deterministic method. 

In this study the codewords' classification vectors are the previously clas­
sified data points, and these are the only ones stored by our algorithms. All 
received patterns' classification vectors become the data points yet to be clas­
sified. Therefore, a SEM's goal is to place a received pattern's classification 
vector close to that of the correct codeword's classification vector. 

7.3.1 K-Nearest Neighbours with Homes 

One of the problems with KNN for the classification of codewords is that a 
codeword is not guaranteed to be properly classified. When a codeword comes 
in as a received vector there could be close codewords from the opposing set. 
Therefore, we make the addition that if a received pattern lands upon a 
codeword it is classified to that codeword. 
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7.4 Runtime Complexity 

Recall that n is the length of a codeword, M is the number of codewords in 
a code, and S is the number of states in a SEM. Let K be the number of 
partitions we are cutting the code into at each layer. A full decoder using 
this method is O((n + SM)lo9kM). 

The layered structure of the classification means that for each layer (L = 

0, ... , l09kM -1) the Euclidean distance would only be measured to ~ points. 
In the worst case this can be M for the number of codewords for a layer to be 
tested. Therefore, each layer takes n+SM time to run the side effect machine 
to find the classification vector and then find the Euclidean distance to each 
of the classifying vectors of the codewords to run KNN. There is l09kM layers 
giving a final runtime of O((n + SM)lo9kM). 

Once again the order hides the true complexity. As there are fewer code­
words to consider at each layer, the side effect ~achine necessary to make a 
classification in the later levels most likely can be smaller. This leads to a 
reduction in the S value in later levels. 

All of these complexities are assuming that the tree structure created by 
the decoder is a height-balanced tree! in order to ensure that its depth is 
logarithmic. It is not necessary that the tree be complete as this implies that 
all nodes are on the left. 

7.5 Initial Tests 

7.5.1 Experimental Settings 

The initial tests were carried out on Code #1 with a population of 51 ma­
chines. Two sets of experiments where undertaken using: 1) 90% crossover 
and 10% mutation and 2) a 50% mutation only setting. Up to two mutations 
were allowed. Code #1 was split into an equal partitioning which allowed a 
maximum difference of one word and codewords in each partition were ran­
domly chosen. The K values of 3 and 5 were used in KNN. The SEM was 
allowed to have 3, 6, 9, 12 and 18 states. Two sets of error patterns were 
generated randomly. Two sets of n error patterns using upto distance three 
were created for each codeword. The first set was used for the training of the 

1 AVL trees are examples of height-balanced trees, used to make the look up of a node 
logarithmic. 
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GA on that codeword, and the second was used to verify that the GA was 
learning the patterns and not just memorizing. Five (12, M, 7)4 codes were 
tested, available in Appendix A. 

Crossover and Mutation Settings 90%/10% and 0%/50% 
# Mutations 2 
SEM States 3, 6, 12, and 18 
Population 51 

Elite 1 
KNN 3 and 5 

7.5.2 Results 

Figures 7.2-7.5 show the results of the training for the first three layers. They 
are presented in the tree structure of the final decoder. The tree showing the 
mean and standard deviation of the training set for each node. 

The results were not good for the training set. The top level of clas­
sification never broke much higher than 0.6 on the Rand index even when 
using a 18 state SEM. The belief is that the random partitioning of the ini­
tial codewords greatly hinders the ability of the SEM to find patterns. This 
is a disappointing result considering that the machine only needs to split 
the code in half, so a random assignment would have a 50% rate of suc­
cess. Therefore, more advanced methods for the initial partitioning need to 
be considered. These tests show evidence that the deeper levels have easier 
classifications which will require fewer states. The right side in the second 
level of classification for example has one fewer codeword than the right and 
this effect can be seen in the greater Rand index values. 

The mutation only strategy provided better results when the machines 
were smaller. As the machines grew the difference was less noticeable. The 
same can be said of the K value for KNN. In smaller machines, looking at five 
neighbours was more helpful, while larger machines removed this gain since 
larger machines would allow for larger distances in the Euclidean classifica­
tion vectors and smaller machines would group their findings closer together. 
The number of neighbours that are required to be considered would depend 
on how close the groupings of classification vectors are to each other. A 
larger representation provided by more states would allow for greater sepa­
ration between the codeword points and fewer would have to be tested by 
KNN. 
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.5823 .0113 

.6039 .0238 .6581 .0642 
~ ~ 

.6470 .0650 .6667.0684 .6619.0602 .6663 .0580 
(a) 3 State 11achines 

.6432 .0180 

.6651 .0279 .7158 .0651 
~ ~ 

.7117.0720 .7255.0689 .7188.0611 .7201 .0579 
(b) 6 State 11achines 

.6511 .0183 

.6749 .0314 .7286 .0655 
~ ~ 

.7199 .0719 .7368 .0703 .7351 .0629 .7369 .0596 
( c) 9 State 11achines 

.6427 .0149 

.6689 .0333 .7349 .0755 
~ ~ 

.7197.0788 .7433 .0811 .7417.0716 .7432.0675 
(d) 12 State 11achines 

.6456.0136 

.6810 .0414 .7479.0821 
~ ~ 

.7351 .0851 .7603.0870 .7562.0783 .7604 .0742 
(e) 18 State 11achines 

Figure 7.2: Crossover 90%, Mutation 10%, and for KNN, K = 3 
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.5864.0104 

.6085 .0236 .6655 .0662 
~ ~ 

.6538 .0681 .6738 .0709 .6703 .0620 .6742 .0591 
(a) 3 State Machines 

.6499.0170 

.6726.0291 .7235 .0647 

~ ~ 
.7169.0696 .7328.0682 .7290 .0616 .7324 .0591 

(b) 6 State Machines 

.6494.0217 

.6716 .0319 .7341 .0747 
~ ~ 

.7237 .0800 .7442 .0797 .7371.0708 .7398 .0672 
( c) 9 State Machines 

.6430.0260 

.6717 .0378 .7320 .0736 
~ ~ 

.7208 .0781 .7415 .0789 .7402 .0718 .7418 .0676 
(d) 12 State Machines 

.6417 .0175 

.6812 .0446 .7491 .0799 
~ ~ 

.7381 .0897 .7572 .0864 .7562.0759 .7597.0717 
(e) 18 State Machines 

Figure 7.3: No Crossover, Mutation 50%, and for KNN, K = 3 
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.5867 .0143 

.6053 .0224 .6564 .0614 
~ ~ 

.6499 .0672 .6648 .0654 .6588 .0575 .6625 .0553 
( a) 3 State Machines 

.6308.0171 

.6543 .0289 .7059 .0635 

~ ~ 
.6999 .0708 .7140 .0681 .7085 .0595 .7090 .0567 

(b) 6 State Machines 

.6368 .0217 

.6588 .0301 .7155 .0696 

~ ~ 
.7050.0723 .7250.0739 .7192.0654 .7186.0615 

( c) 9 State Machines 

.6254.0184 

.6518 .0332 .7136 .0740 

~ ~ 
.7051 .0819 .7231 .0794 .7181 .0694 .7209.0663 

(d) 12 State Machines 

.6309.0171 

.6656 .0420 .7380 .0835 
~ ~ 

.7233 .0898 .7473 .0900 .7447 .0791 .7460 .0743 
(e) 18 State Machines 

Figure 7.4: Crossover 90%, Mutation 10%, and for KNN, K = 5 
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.5936 .0167 

.6123 .0229 .6653 .0653 
~ ~ 

.6587 .0691 .6759 .0686 .6679 .0611 .6705 .0577 
(a) 3 State 11achines 

.6431 .0138 

.6627 .0236 .7185 .0667 
~ ~ 

.7112 .0733 .7280 .0712 .7224 .0629 .7216 .0594 
(b) 6 State 11achines 

.6438 .0265 

.6611 .0314 .7215 .0728 
~ ~ 

.7108 .0784 .7302 .0782 .7246 .0682 .7250 .0649 
( c) 9 State 11achines 

.6282 .0283 

.6571 .0384 .7221 .0755 
~ ~ 

.7094 .0831 .7294 .0820 .7276 .0729 .7297 .0687 
(d) 12 State 11achines 

.6226 .0181 

.6622 .0438 .7347 .0823 
~ ~ 

.7200 .0903 .7432 .0891 .7425 .0787 .7445 .0740 
(e) 18 State 11achines 

Figure 7.5: No Crossover, Mutation 50%, and for KNN, K = 5 
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7.6 Methods for Finding Partitions 

7.6.1 Experimental Settings 

The methods for finding partitions were trained on the top level classification, 
seen as the hardest to make. All of the five testing codes were used. Two 
settings for crossover and mutation were used: 90%/10% as it is the most 
common setting and 0%/50% to test the usefulness of the mutation-only 
strategy. The SEM was allowed to have up to 3, 6, 9, 12 and 18 states. The 
population was 51 side effect machines. The training and verification data 
was the same as used for the first set of tests. 

Crossover and Mutation Settings 90%/10% and 0%/50% 
# Mutations 2 
SEM States 3, 6, 12, and 18 
Population 51 

Elite 1 
KNN 3,5,7, and 9 

The three different methods used are examined below. 

7.6.2 Random 

The random case acts as the control group for all further studies. The code­
words are randomly divided into two groups. The two groups are selected to 
have a difference in size of not more than one codeword between them. 

7.6.3 Lexicographic 

SEMs in Chapter 6 have shown that they have these collecting states on the 
same symbol. Therefore, a partitioning which makes use of this property 
may lead to better classification. Keeping this in mind, the next method is 
to divide the code partitions lexicographically. It groups the code in this case 
into two partitions based on the first symbol, i.e. codewords beginning with 
o and 1 as the first group; 2 and 3 as the second. 

There is the concern that the classifications provided by a SEM using this 
method will have a disproportionate amount of errors on the symbol used 
for partitioning. The sole reason behind classification could by caused by 
the symbol used in the partitioning. As an example, this could lead to an 
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error in the first symbol in the first layer to cause a misclassification more 
frequently. 

7.6.4 K-means Clustering 

The other idea is to use K-means clustering to generate the initial partition­
ing of the code. This initial partitioning then acts as a basis upon which the 
evolution will progress. That is, if the codewords are close in terms of Eu­
clidean distance then we want the classification vectors to be close in terms 
of the Euclidean distance as welL 

The success of the partitioning provided by K means was tested by looking 
at the intracluster distance over the intercluster distance. That is, the data 
points within the same cluster should be tightly packed, while the space 
between clusters should be large. 

The intracluster distance was measured by taking the mean distance of 
each data point to every other within the same cluster, then taking the mean 
across all clusters. No single large cluster thus dominated the value. The 
intercluster distance was calculated by taking the mean distance from each 
K-means centroid to every other. 

The lower the value produced by dividing the intracluster distance by 
the intercluster distance, the tighter the clustering and the farther apart 
the clusters are from each other. Thirty runs of the K-means algorithm 
were made and the best result was taken. K-means will sometimes create a 
partitioning with only one data point within a cluster. The code was written 
to respond with an error if this is the case. The partitioning should have sets 
that are equal in size as much as possible in order to allow for the reduction 
in runtime provided by the division. 

The values for the codes are shown below. Thirty runs of K-means were 
created to allow statistical significance. The lowest valued partition was used 
in the tests. 

Code Best (Lowest) Average Standard Deviation 
1 38.44 59.09 11.23 
2 40.75 49.78 8.83 
3 44.18 59.60 16.10 
4 37.02 52.57 7.39 
5 43.24 55.14 8.54 
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7.7 Results 

7.7.1 Partitioning Methods 

For the partitioning methods the lexicographic sample provides the best clas­
sification in the majority of instances. This is attributed to the idea that the 
classification is heavily weighted on the first symbol. K-means is significantly 
better than random in all codes excepting Code #2 and is ranged between 
0.7 and 0.8 on the rand index. In mutation only tests the K-means method 
is significantly better than the lexicographical method in Codes #1 and 4. 

On Lexicographic Partitioning 

The use of lexicographic partitioning, while the best method of classification, 
has the concern of misclassification based on the first symbol. This could be 
avoided via a careful selection of training examples which show errors in the 
first symbol more than average. This would strengthen the resistance of the 
machine to those types of errors. How this affects the training will be left 
for future study. 

Further, lexicographic partitioning could be used for the first few levels 
of the LSEM. As the classification level of the random partitioning method 
increases on smaller classifications for later levels we could use this method. 
The concerns about the level symbol bias remain in those levels created by 
Lexicographic LSEM. These concerns could be removed in lower levels by 
using SCM, random LSEM, or linear search techniques. 

7.7.2 Number of Neighbours 

The number of neighbours tested has no effect on the correction ability. 
Figures 7.6-7.25 show the 95% confidence interval with a constant number 
of 12 states. The change given by the number of neighbours is not statistically 
significant and is almost constant. 

7.7.3 Number of States 

The number of states follows a similar pattern to the result for SCM. Figures 
7.26-7.45 show the 95% confidence interval with a constant neighbourhood 
of 3. The inflection point occurs at around 6 states and the gains level off 
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at about this point. More states slightly hinders the K-means partitioning 
beyond this point. 

7.8 Crossover v. Mutation 

The use of crossover for this method is much more useful than for a SCM. 
The problems with crossover upon this representation have been discussed 
in Section 6.6.3. 

In mutation only tests the K-means and random methods have improve­
ment until the 6 or 9 state machines. The lexicographical method degrades 
as the number of states increases levelling off at 12 states, which is the length 
of the code. The larger search space hinders the ability of mutation to find a 
compact SEM. For random and K-means methods the increased search space 
allows for more differentiation beyond the initial symbol that can guide the 
lexicographical method. Tests using crossover maintain a regular progression 
which reaches its peak at 6 states. 

In terms of the number of neighbours the rates of crossover and mutation 
does not make a significant change and using crossover shows an advantage. 
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Figure 7.6: Comparison of Neighbours for Code #1, 90%/10% - Training 
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Figure 7.7: Comparison of Neighbours for Code #1, 90%/10% - Verification 
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Figure 7.8: Comparison of Neighbours for Code #1, 0%/50% - Training 
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Figure 7.9: Comparison of Neighbours for Code #1,0%/50% - Verification 
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Figure 7.10: Comparison of Neighbours for Code #2, 90%/10% - Thaining 
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Figure 7.11: Comparison of Neighbours for Code #2, 90%/10% - Verifica­
tion 
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Figure 7.12: Comparison of Neighbours for Code #2, 0%/50% - Training 

0.9 

0.8 
1,j 
"0 
.5 
"C 

" m a: 
0.7 ! 

0.6 

0.5 
2 3 4 

! 
1 

f 

* * I ± 

5 6 7 
Neighbours 

Random I--+--l 
Lexicographic e--X--" 

Kmeans ~--*---: 

! 

!! 
± 

8 9 10 

Figure 7.13: Comparison of Neighbours for Code #2, 0%/50% - Verification 



"'-

CHAPTER 7. LOCKING SIDE EFFECT MACHINE DECODER 65 

~ 
'0 
E 
'0 c: 
~ 

Random f-----+---l 

Lexicographic b--X--" 
Kmeans ~--"*---: 

0.9 

~ :!: )!; ~ 
0.8 

¥. ¥. ~ jj 

0.7 

0.6 

0.5 '--_--' __ ---L __ --'-__ --'-__ -'-~ _ __'_ __ _'__ _ ___' 

2 3 4 5 6 
Neighbours 

7 8 9 10 

Figure 7.14: Comparison of Neighbours for Code #3, 90%/10% - Training 

Random f-----+---l 

Lexicographic !---)(---! 

Kmeans ~--"*---: 

0.9 

0.8 ~ ~ f. ~ 
~ 
'0 
E 
'0 ~ ~ ~ ¥. c: 
~ 

0.7 

0.6 

0.5 '-----''------'-----'-----'-----'-----'----'------' 
2 3 4 5 6 7 8 9 10 

Neighbours 

Figure 7.15: Comparison of Neighbours for Code #3, 90%/10% - Verifica­
tion 



... -

CHAPTER 7. LOCKING SIDE EFFECT MACHINE DECODER 66 

iii 
"0 

-= "0 c: 
m a: 

0.9 

0.8 

0.7 f. 
~ 

0.6 

f , 
f. 
~ ~ 

Random f-+--l 
Lexicographic '--X--" 

Kmeans ~--"*---: 

T 

f 

~ 

0.5 '--__ '--__ .1.--__ .1.--__ .1.--__ .1.--__ .1.--__ .1.--_----' 

2 3 4 5 6 7 8 9 10 
Neighbours 

Figure 7.16: Comparison of Neighbours for Code #3, 0%/50% - Training 

0.9 

0.8 
iii 

"0 

-= 
"0 c: 
tl 

0.7 , 
'i' 
~ 

0.6 

± 

0.5 
2 3 4 5 

, 
f 
~ 

" 

6 7 
Neighbours 

Random f-+--l 
Lexicographic c--x--., 

Kmeans ~--"*---: 

, 
f. 

~ 

± 

8 9 10 

Figure 7.17: Comparison of Neighbours for Code #3,0%/50% - Verification 



"-

CHAPTER 7. LOCKING SIDE EFFECT MACHINE DECODER 67 

!ij 
"C 
.5 
"C 
c: 
IP. 

0.9 

~ 
0.8 

~ 

0.7 

0.6 

:i< !I< 

~ ~ 

Random t--+----l 
Lexicographic c--x--" 

Kmeans , .. ", ... , 

at 

iii 

0.5 '---_---''--_--L __ --'-__ -'-__ -'-__ -'-__ -'--_----' 

2 3 4 5 6 7 8 9 10 
Neighbours 

Figure 7.18: Comparison of Neighbours for Code #4, 90%/10% - Training 

!ij 
"C 
.5 
"C c: 
IP. 

0.9 

0.8 ~ 
,. 
S 

~ iii 

0.7 

0.6 

,. 
S 

~ 

Random t--+----l 
Lexicographic ,--x--" 

Kmeans , .. ", ... , 

,. 
S 

~ 

0.5 '---_---' __ ---1. __ ---'-__ -'-__ --'-__ -'-__ -'--_----' 

2 3 4 5 6 7 8 9 10 
Neighbours 

Figure 7.19: Comparison of Neighbours for Code #4, 90%/10% -. Verifica­
tion 



CHAPTER 7. LOCKING SIDE EFFECT MACHINE DECODER 68 

0.9 

0.8 
1.1 
'0 

-= 
'C 
C .. 

" ~ II: 
0.7 ~ l' 

0.6 

'" 
0.5 

2 3 4 5 

" 
~ 

'" 

6 7 
Neighbours 

Random f---!---< 
Lexicographic c--)(--­

Kmeans ,--"'---, 

" 
f 

'" 

8 9 10 
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Figure 7.28: Comparison of States for Code #1,0%/50% - Training 
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Chapter 8 

Conclusion 

8.1 Side Effect Machines for Decoding 

Side effect machines are small, efficient, and most importantly simple to 
understand. They are generalizations of finite state machines. They are also 
powerful when used for bioinformatics applications. This has directed their 
use towards the decoding of error correcting codes. 

Error correcting codes for use in bioinformatics do not always use the 
well-understood and well-used Hamming metric, but instead sometimes use 
the edit metric in order to represent errors caused by the insertion, deletion 
and substitution of base pairs. These errors were caused either while the 
organism is out in the field or during the sequencing. Error correcting codes 
for these uses have been examined. Research into the decoders is lacking, 
especially since codes which take into consideration biological restrictions 
will not often have well defined stuctures. 

This thesis aimed to contribute to these missing areas. Two new types of 
generalized decoders were examined: Single Classifier Machines and Locking 
Side Effect Machines. Both show promise for correcting the type of errors 
shown by biology while taking into account the restrictions. They are gen­
eralized decoders for the edit metric. 

Single classifier machines work by using a single side effect machine to 
classify all words within a code. As they use the Euclidean metric, instead of 
the edit metric, there is a reduction in the runtime to properly classify a code. 
This runtime however has the cost of making the decoder probabilistic. There 
is a gain in speed for a loss to the correction ability. Therefore, fuzziness is 
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added with the idea that the single classifier machine will work as a sorting 
algorithm for the codewords inside of a linear search. This sorting allows 
for gains in runtime as it moves the most likely codewords forward at less 
than the cost of measuring the edit metric of one codeword. Classifications 
were found that are correct over eighty percent of the time on distance one 
errors; the runtime is substantially reduced for the most frequent of errors. 
All codewords also are correctly classified in the minimal amount of runtime. 

Locking side effect machines use the idea of breaking the code into sub­
classifications. Multiple side effect machines work together in a tree structure, 
each making a classification as to what side effect machine to use next, until 
the result is fully classified. This requires an exponential number of machines 
to the problem instance, and so usually this tree structure would end at some 
point and the final classification would be done by single classifier machines 
or a linear search. The hard work of breaking down the code would allow for 
a better final classification. 

The use of genetic algorithms is required as there is a large search space 
and because a deterministic creation was shown to have intractable cost for 
its creation. The genetic algorithms do not require complete enumerations 
of the errors, and the subset of errors it requires can be created in minimal 
time by taking codewords and causing errors up to a bound, using a random 
number generator. 

The decoder is allowed to have a longer time to be created as its runtime 
cost is offset by the number of corrections it makes; it only needs to be 
created once while it can be indefinitely used as a decoder. However, as these 
biological codes are generalized and are used for specific purposes, we need to 
be able to generate decoders within a reasonable runtime. This is provided 
by using decoders created by evolution as we can take the best decoder we 
find within a set runtime and know that it is a reasonable approximation for 
the amount of time available for a search. 

Side effect machines have been shown to have the ability to be used in 
bioinformatics as a tool for solving problems in decoding. Their use adds new 
tools that are used to understand the code of life itself. It has not escaped 
attention, that in the future these roles will need to be expanded upon for 
use in bioinformatics and other applications. 
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8.2 Future Work 

8.2.1 Side Effect Machines for Decoding 

While this marks the end of this thesis on the topic of Side Effect Machines 
for decoding, we have barely scratched the surface in terms of the capabilites 
of these machines. The creation of the Side Effect Machines shows the most 
room for new techniques. This includes, introducing an ability for a SEM to 
have feature selection and extraction. This can be accomplished by adding 
to the chromosome another vector which acts to flag which states counters 
would be used in the classification vector. Modifiying the SEM by adding to 
a chromosome a vector of values giving the increment by which a counter for 
that state will increase would also allow for a variation of feature selection. 
Both modifications would increase the size of the search space, and therefore, 
the representational ability of a smaller SEM. This might lead to better 
solutions and better runtimes by allowing for a smaller machine. 

From using LSEMs, we have a subclassification at each level, and we 
must measure the Euclidean distance to a subset of those M words at each 
level when we use KNN. However, by using K-means points instead of the 
codeword's classification vectors, we would only need to measure a codeword 
to the saved K centroids. This would reduce the runtime, because we only 
look at a constant number of calculations of the Euclidean distance, and 
also reduce space complexity, since we only need a constant number to save 
the Centroid classification vector. This idea was not implemented currently 
due to concerns over how the K-means would work when the space is not 
necessarily easily separable. If we could find an algorithm which acts like 
K-means but which does not have these concerns of hyperplane-separability, 
then there can be a change to the number of Euclidean measures to a constant 
value of the K value. 

Perhaps more importantly, the SCM and LSEMs should be applied to 
other codes. Only a small subset of the various codes that exist have been 
tested and there are infinitely many codes. It would be of interest to find an 
under lying structure relating good SEM decoders to their codes. This leads 
to a further idea for future work, namely creating the code in conjuction with 
its decoder. 
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8.2.2 Error Correcting Codes and Decoders 

Error correcting codes allow for transmission of data even when there is noise 
by introducing redundant data. This data allows us to repair or detect errors 
made during transmission or transcription. How we add this redundancy has 
effects on the ability of the code to be used in various applications. 

Error correcting codes have a number of properties which define their use­
fulness for a particular task. These properties include: the number of errors 
that can be corrected, the number of codewords and the ease of decoding. 
All these properties may be in conflict. For example, looking at two codes 
of a given length, the one which corrects more errors will usually have fewer 
codewords. Sometimes, codes with useful properties are very difficult to de­
code based on their structure. Conversely, good decoders do not necessarily 
correspond to useful codes. 

The idea of generating a code or decoder first has a potential flaw as 
we sacrifice some properties for others. By using evolutionary computation 
techniques side-effect machine decoders will be created and the code they 
require will be extracted from the decoder. Seeing the code and decoder, the 
technique will score the decoder and code based on the set of useful proper­
ties: the number of codewords, error correction ability, ease of decoding, etc. 
As these decoders are being used for bioinformatics, the created code and 
decoder may need to take into account biological restrictions; for example, 
some DNA strings, or combination of strings, cannot be used in applications. 
These restrictions vary depending on the application. A wide variety of codes 
are required. 

8.2.3 Side Effect Machines for Data Mining 

The Side Effect Machine acts as a general classifier and could have uses 
beyond those in bioinformatics. One such place is in data mining, with the 
idea of classification of a consumer on an Internet shopping website. Using 
a SEM to track pages and moves between them would be natural - page 
'hits' and links have similar functions to the counter on a state and the links 
between states. Such a classifier would allow the monitoring of behaviours 
allowing the site to predict, based on past profiles, how a consumer will 
act. This would allow for the introduction of targeted advertisements or 
promotions. 
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Appendix A 

Edit Metric Error Correcting 
Codes 

A.1 (12, M, 7)4 Codes 

203322200030 
002123112122 
322200000331 
200111023301 
211123212331 
222211312230 
323102101000 
033111122003 
203301031121 
110033001233 
021332013320 

003023122333 
031313021111 
333312133303 
110333333201 
302133303300 
233033300130 
112222332030 
123332031120 
330003322320 
201311111001 
231010030102 
303032113221 

122201323111 
322333112333 
210211111111 
001003000011 
131211021123 
301212123020 
312222333332 
030132320213 
223333330223 
232332233131 
311233031022 

121002103222 
112031122201 
111200313303 
130000020022 
122322022210 
332111103130 
011131300300 
100333222222 
111322211202 
011310332132 
123111130321 

201022022323 
333033323000 
333222210121 
311030111310 
100213302003 
103031233330 
200003333202 
212302302011 
000001311133 
133310001332 
202231001313 

Table A.l: (12,55,7)4 Code - Code #1 

222310110222 
032220323311 
031111113320 
003000011132 
030110000233 
201113023332 
110330111333 
323113300212 
300001200222 
220223003211 
111322100003 

100021313032 
121200103232 
032321220102 
012333020033 
223300122103 
122012112331 
333223023123 
211020022220 
102100112000 
322020001003 
220033133122 

223221331133 
010220033022 
031202311222 
213312321310 
000100223101 
021033220221 
111211112213 
111112230121 
130120130011 
121313313023 
333300202021 

Table A.2: (12,56, 7)4 Code - Code #2 

89 

323121322222 
330020312031 
003221320331 
220012120132 
022230320002 
221100030102 
333011002211 
012003221100 
331330002100 
000220001220 
013333313111 

230002203333 
002031310210 
222123222013 
112100033113 
022211000301 
101312222202 
332213121000 
300111232030 
311323312331 
310021101131 
301222211110 
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112331001212 
013111222113 
120031332100 
311333321333 
213030021101 
113222113223 
000311000110 
030222223333 
103302000032 
230333030213 
031300133033 
220012330011 

120131133201 
032303033310 
300222333220 
302313020030 
221010100220 
022332300133 
112311012232 
031222020132 
320113100002 
110211131110 
003010201111 

122222330000 
000200313133 
021213331210 
110313313200 
112322102111 
2' 2 0 3 0 0 3 3 3 3 1 2 
012103320331 
221223010131 
111110322213 
330222233332 
330002310122 
033333220032 

002020212211 
100332111311 
031213320002 
223213321123 
021232111022 
221023333330 
012033003133 
110000120310 
333122022130 
200232222002 
221130122313 

131203222231 
111103111001 
301221322312 
333021113300 
121211100033 
311330102200 
101011032321 
233110230331 
111022302132 
202111120121 
332331300030 

330023331122 
132001111132 
000322303222 
203303112322 
332222210121 
012221303001 
020000010003 
200002231133 
100131220233 
301012011203 
312112113110 

Table A.3: (12,56, 7)4 Code - Code #3 

201032200313 
022000020213 
321012211133 
212022223203 
102003331131 
112130300011 
222230233232 
103033222022 
213010033122 
110001222331 
031103310230 

133111000213 
200111333133 
123322011120 
111132023330 
001121011203 
230213210223 
331200322312 
333201103133 
320310222221 
022231111030 
230000130301 

003330122210 
023222132111 
022112233000 
233333302112 
222112002311 
101201211012 
000210003302 
022113322122 
112202120000 
113331330300 
030312131332 

Table A.4: (12,54,7)4 Code - Code #4 

320111202011 
311333000112 
111122131330 
123002222231 
333121211033 
000022203203 
000331101113 
332233313111 
032023022101 
013111110012 
322220023230 
030010213311 

131320311102 
111200223322 
022320110033 
132013301123 
220111131233 
110021201132 
233210020021 
212330020300 
303032332130 
233031301010 
300011300333 
222020211120 

103112330222 
132231322333 
322033230202 
111311200003 
032310103202 
202303310223 
201222200022 
331331223120 
002312323030 
121100033101 
203210112110 
203111033300 

Table A.5: (12,59, 7)4 Code - Code #5 

033332332301 
300103013012 
322302020113 
022300223220 
011120233302 
222100031022 
332010020222 
113123333111 
132313233022 
002210111330 
323200331201 

310303111211 
211121130322 
310020300103 
311322231021 
013300321001 
333332232233 
101300203223 
233110220100 
223133112333 
200001112222 

100203210001 
133321303231 
200133221321 
211023123221 
321302132003 
312211212232 
333000002332 
003130001231 
000011122222 
220103002222 
302001001200 
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Results of SCM Decoders 

B.l Distance Two Decoders 

Measured is the average number of corrections for the best machines found 
during 30 evolutions. 

91 



Go 

APPENDIX B. RESULTS OF SCM DECODERS 92 

Parameters Exact Fuzzy 

Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 403.167 26.1891 508.633 18.3049 
2 316.467 22.6955 470.067 19.3443 

Verification 1 395.967 26.1356 506.333 17.3609 
2 288.033 28.6831 447.233 20.8702 

2 'Training 1 415.633 17.6742 520.133 28.0563 
2 323.033 12.9707 476.533 29.3219 

Verification 1 408.3 18.3851 513.867 28.3704 
2 298.533 19.0837 454.867 30.9279 

7 Training 1 414.633 18.8487 515.367 25.3778 
2 332.333 14.0107 474.433 29.2866 

Verification 1 402 20.4872 507.467 26.4975 
2 299.567 12.6455 451.933 25.6447 

12 Thaining 1 419 18.7929 517 16.8605 
2 330 14.0614 472.333 20.0161 

Verification 1 407.3 19.1548 508.067 15.66 
2 295.3 19.3376 448.233 22.1464 

25 1 Training 1 403.467 23.3589 515.867 28.5449 
2 321.5 20.3025 474.3 36.9773 

Verification 1 394.7 25.2247 511.7 30.2975 
2 297.5 22.5813 455.833 33.5611 

2 Training 1 422.467 19.5391 519.4 25.0924 
2 334.067 17.1181 478.367 26.6697 

Verification 1 410.433 19.242 511.933 25.9441 
2 304.767 19.8506 456.267 25.8389 

7 TraInIng 1 417.833 23.9065 523.067 21.5422 
2 329.467 17.9746 478.067 26.92 

Verification 1 409.433 25.3944 518.033 22.9113 
2 305.333 23.0327 462.167 28.8385 

12 Training 1 415.433 16.7305 513.367 27.6711 
2 325.033 11.4876 466.333 26.8654 

Verification 1 403.733 18.9408 503.233 30.9824 
2 297.8 16.2362 447.533 28.0317 

51 1 Training 1 409.2 20.8184 511.3 28.3709 
2 322.2 15.6545 464.1 29.3755 

Verification 1 401.667 21.0243 504.233 28.9455 
2 296.6 21.8215 448.7 29.3447 

2 Training 1 410.467 19.0656 511.2 32.8438 
2 327.4 17.6998 468.867 31.4541 

Verification 1 398.333 19.8274 505.3 31.6774 
2 301.033 19.7335 449.833 37.2819 

7 TraIning 1 417.933 18.0515 516.767 24.5338 
2 332.867 14.4144 475.8 24.626 

Verification 1 408.033 16.0419 509.633 22.0587 
2 303.933 16.4776 454 30.1811 

12 Training 1 424.067 11.6971 520.867 26.844 
2 332.1 14.0721 476.433 27.8267 

Verification 1 410.567 15.0532 511.833 26.7828 
2 303.1 12.7424 456.5 25.8147 

101 1 fiaining 1 410.767 20.0253 515.9 21.2868 
2 322.567 13.302 466.7 24.9788 

Verification 1 395.267 21.6109 505.667 25.8701 
2 293.767 21.1785 450 29.6892 

2 Training 1 416.233 20.4647 512.133 24.5634 
2 326.067 14.1347 466.4 28.9561 

Verification 1 405.667 23.228 504.367 25.143 
2 297.933 17.8479 446.133 29.9939 

7 'Training 1 426.333 18.9506 516.267 21.2634 
2 330.467 14.5098 463.8 27.8015 

Verification 1 410.9 21.9173 504.367 25.5903 
2 307.967 15.253 448 28.836 

12 Training 1 419.933 18.1468 509.7 22.0237 
2 332.9 16.2509 466.4 22.1057 

Verification 1 408.333 21.5908 504 22.4638 
2 304.433 20.7143 446.233 24.6712 

Table B.l: 6 States - (12,55,7)4 - Code #1 - Perfect Score is 660 
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Parameters Exact Fuzzy 
Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 537.5 28.1446 587.9 28.773 
2 456.467 22.6514 542.067 35.0644 

Verification 1 525.9 30.5968 582.367 29.8334 
2 410.067 23.0516 520 36.8782 

2 Training 1 544.567 25.4256 586.4 27.6637 
2 462.367 21.3888 543.6 33.1201 

Verification 1 531.1 28.1931 581.567 31.511 
2 413.267 21.7128 518.7 37.7671 

7 Training 1 539.433 24.2468 588.167 24.1776 
2 451.7 21.7083 540.567 32.6884 

Verification 1 527.067 27.9037 581.3 25.8379 
2 411.267 22.2027 522.667 32.9402 

12 TrainIng 1 531.16 23.0263 580.067 28.2525 
2 440.667 19.2467 529.633 36.4488 

Verification 1 515.167 27.8717 571.667 32.5665 
2 402.367 21.0672 510.533 38.2962 

25 1 Training 1 540.567 29.6039 593.3 30.0989 
2 453.633 26.2842 544 33.721 

Verification 1 524.167 36.3907 583.467 34.4581 
2 409.733 28.8503 526.267 37.4478 

2 Training 1 545.833 22.7658 596.533 28.1275 
2 462.067 23.2393 548.467 29.5013 

Verification 1 531.167 30.2166 589.567 33.4599 
2 415.067 22.8834 526.933 35.2684 

7 Thaining 1 542.1 20.4642 589.267 23.4637 
2 455.867 16.8681 542 27.1636 

Verification 1 526.1 24.9653 582.867 23.7788 
2 411.367 22.132 523.133 31.3432 

12 'ITaining 1 526.433 25.1255 577.867 28.0624 
2 438 21.3945 525.9 31.7364 

Verification 1 513.4 29.056 571.567 30.2423 
2 397.433 24.332 506.067 35.7924 

51 1 '!Taining 1 532.833 29.7508 577.6 32.2004 
2 450.567 28.4662 531.467 38.7456 

Verification 1 517.833 32.6719 570.4 35.4572 
2 400.8 25.9581 508.633 41.7245 

2 Training 1 552.2 15.4795 600.1 18.0657 
2 460.6 16.7838 552.5 22.3202 

Verification 1 535.133 18.7759 592.7 19.6261 
2 416.933 18.5861 534.6 29.0096 

7 TraInIng 1 535.367 25. 059 580.5 24.1343 
2 453.533 23.0138 530.933 33.5764 

Verification 1 524.2 30.1484 574.167 27.1243 
2 412.6 17.9781 511.733 34.0466 

12 Training 1 535.333 19.9332 582.9 26.0535 
2 449.567 15.7714 537 30.8422 

Verification 1 521.767 24.1614 574.4 27.9909 
2 404 15.9525 514.733 33.5969 

101 1 'fraining 1 544.667 20.9043 588.8 21.7769 
2 461.2 20.3239 544.5 26.4624 

Verification 1 528.9 27.7704 580.467 25.5245 
2 414.8 22.2624 524.6 29.6539 

2 Training 1 535.933 29.71 579.767 32.9437 
2 451.233 24.7479 533.2 35.4278 

Verification 1 520.567 33.8533 571.967 34.0886 
2 404.067 29.4594 512.367 42.7273 

7 Training 1 532.933 25.8963 573.233 30.8944 
2 444.967 21.3242 520.7 37.8893 

Verification 1 518.2 28.4586 565.833 33.1539 
2 407.067 24.2671 503.033 38.4882 

12 Training 1 531.667 20.295 575.9 22.8644 
2 449.767 18.9458 531.1 28.8054 

Verification 1 515.767 26.8825 567.267 27.958 
2 403.133 25.0417 505.933 33.4828 

Table B.2: 12 States - (12,55, 7)4 - Code #1 - Perfect Score is 660 
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Parameters Exact Fuzzy 
Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 557.6 20.4174 596.433 23.8887 
2 471.5 18.2695 531.133 26.9005 

Verification 1 538.1 23.7521 587.133 26.299 
2 415.633 21.503 499.1 32.7492 

2 Training 1 560.9 21.1438 093.767 27.5639 
2 468.433 20.7492 524.433 32.9029 

Verification 1 541.167 27.5845 581.4 33.3969 
2 413.633 22.2749 493.9 37.9449 

7 Training 1 538.867 24.1657 577.4 27.2265 
2 450.567 23.2003 505.333 30.7777 

Verification 1 517.3 27.6906 565.567 30.7321 
2 397.067 27.2143 474.833 35.8821 

12 Training 1 537.433 24.71:114 076.133 29.1414 
2 446.633 30.8841 509.8 36.8533 

Verification 1 516.6 31.6539 564.833 36.4267 
2 394.9 34.1552 480.6 43.4032 

25 1 Training 1 547.733 24.5412 583.033 26.8399 
2 461.3 24.7416 515.433 29.417 

Verification 1 524.967 29.8946 571.067 30.4324 
2 406.033 30.893 484.033 34.4829 

2 Training 1 553.533 23.0558 583 24.5216 
2 469.767 24.2539 518.4 32.6059 

Verification 1 534.367 31.2746 573.9 31.3999 
2 415.533 27.1455 489 34.3602 

7 Training 1 535.767 23.2U48 576.033 26.1184 
2 437.633 24.2309 499.8 31.2403 

Verification 1 509.233 25.1021 559.933 30.8321 
2 390.1 29.0699 472.767 38.8078 

12 TraIning 1 532.667 26.2722 571.267 31.0938 
2 441.767 29.3301 497.667 39.237 

Verification 1 510.033 33.4195 556.2 38.2536 
2 391.067 30.0103 467.667 40.8372 

51 1 Training 1 551.333 20.1089 584.8 22.8781 
2 464.533 15.8956 515.4 26.1146 

Verification 1 527.367 23.3142 571.867 25.9412 
2 411.933 19.2943 488.8 27.1755 

2 Training 1 559.733 17.0434 595.267 20.6163 
2 469.133 16.8947 527.4 27.4887 

Verification 1 536.633 22.4614 584.867 26.0593 
2 413.267 18.9372 499.233 32.6018 

.( Training 1 53'(.667 24.6441 0'(9.567 0.3.3115 
2 450.633 24.2565 508.5 32.6388 

Verification 1 514.6 26.6285 565.167 26.3414 
2 397.567 25.6686 480.333 34.7606 

12 Training 1 529.8 29.4076 071.933 33.1277 
2 441.833 29.0054 503.2 39.052 

Verification 1 509.167 33.9351 560.3 41.0585 
2 390.667 32.1562 475.333 43.219 

101 1 Training 1 552.6 26.3695 584.2 28.5807 
2 464.9 21.6243 513.133 28.8728 

Verification 1 529.6 32.4628 573.267 33.8434 
2 409 23.5255 486.6 33.2551 

2 Training 1 544.067 22.1965 570.433 25.9012 
2 463.733 19.0044 504.7 25.3855 

Verification 1 518.8 23.5949 553.667 31.1186 
2 403.633 18.576 467.867 29.534 

7 'training 1 537.167 20.4738 573.567 22.4402 
2 454.567 19.9183 507 26.4106 

Verification 1 517.367 25.6911 562.8 25.9448 
2 402.9 21.2836 479.667 34.6801 

12 Training 1 526.533 29.5223 560 34.4343 
2 438.9 29.8356 490.567 36.7336 

Verification 1 503.9 31.6787 549 37.4497 
2 392.533 30.8542 463.467 43.8231 

Table B.3: 18 States - (12,55, 7)4 - Code #1 - Perfect Score is 660 
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Parameters Exact Fuzzy 
Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 411.967 27.2175 518.533 27.1188 
2 322 21.7383 473.2 30.7576 

Verification 1 409.5 24.3392 520.267 25.6904 
2 301.5 24.5747 457.7 31.8976 

2 Training 1 427.633 32.0457 525.867 20.6577 
2 335.267 31.6118 482 19.4032 

Verification 1 417.933 28.8156 523.767 18.2637 
2 313.333 33.0499 466.567 24.2866 

7 Training 1 430.8 19.3344 523.133 18.1122 
2 339.6 14.6913 478.8 20.8895 

Verification 1 418.733 19.0606 521.667 17.3907 
2 315.867 18.0931 465.367 20.5636 

12 Training 1 433.233 20.5438 526.2 10.0358 
2 337.3 14.2397 479.6 13.5407 

Verification 1 422.533 18.7557 523.4 12.3891 
2 314.1 21.4337 465.9 15.7115 

25 1 Training 1 417.967 22.079 527.233 20.9757 
2 331.433 14.4501 485.233 21.3132 

Verification 1 409.333 20.0763 525.4 22.6497 
2 306.533 15.6838 466.733 24.5215 

2 Training 1 431.233 18.7592 531.733 15.9632 
2 338.667 14.8657 481.967 20.3444 

Verification 1 422.867 17.8552 529.3 16.869 
2 318.3 15.013 469.633 20.9852 

7 Training 1 430.633 19.2542 526.767 14.6398 
2 336.8 19.1894 479.467 17.9438 

Verification 1 415.433 23.2552 521.567 14.1828 
2 315.267 18.379 468.1 19.0015 

12 Training 1 425.9 20.652 522.7 22.0159 
2 340.4 16.9331 480.1 22.7874 

Verification 1 415.467 19.9183 521.1 22.3072 
2 315.633 17.3732 466.467 26.6066 

51 1 Training 1 421.867 21.8423 524.9 19.6896 
2 330.8 18.1268 478 23.3194 

Verification 1 412.333 20.7702 524 19.6065 
2 313.3 19.6366 467.767 21.4905 

2 Training 1 431.433 16.0381 524.567 16.9476 
2 339.667 16.2658 476.367 17.9338 

Verification 1 419.133 17.5945 522.1 15.3271 
2 316.7 19.6927 466.3 19.4726 

7 Training 1 431.7 20.4251 527.633 18.4606 
2 336.033 15.4373 481.467 22.2024 

Verification 1 419.033 16.841 523.9 22.3443 
2 315.133 20.701 470.967 22.9384 

12 Training 1 437.167 18.0938 524.467 18.8711 
2 336.5 16.387 474.933 21.0696 

Verification 1 428.1 20.2422 521.433 20.3057 
2 321.267 20.7795 464.8 19.1625 

101 1 Training 1 423 25.5329 518.267 17.8575 
2 331.667 15.457 473.167 17.9752 

Verification 1 412.4 24.2723 515.833 15.9094 
2 306.667 21.6752 456.4 22.5612 

2 Training 1 429.033 13.074 522.367 19.5263 
2 338.667 14.5349 475.567 23.1899 

Verification 1 419.033 18.0793 519.467 18.9641 
2 314.533 15.3505 461.4 22.5978 

7 ·lraining 1 430.4 11.996 521 15.378 
2 337.867 14.0706 475.233 14.7851 

Verification 1 421.733 19.104 518.133 14.5951 
2 316.5 15.0442 459.533 20.4311 

12 Training 1 428.567 14.1194 521.2 18.438 
2 336.967 14.0209 475.6 20.0802 

Verification 1 418.367 17.6117 518.567 18.5727 
2 315.133 20.8818 459.933 20.8474 

Table B.4: 6 States - (12,56,7)4 - Code #2 - Perfect Score is 672 
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APPENDIX B. RESULTS OF SCM DECODERS 96 

Parameters Exact Fuzzy 
Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 543.133 31.3212 584.467 28.1103 
2 455.733 27.5204 537.9 32.009 

Verification 1 529.367 35.6946 579.133 30.9591 
2 425.533 28.874 523.167 36.9212 

2 Training 1 548.7 23.0249 592.4 21.8783 
2 454.733 19.4386 540.967 26.2619 

Verification 1 537.233 25.4107 590.167 24.7777 
2 423.833 25.1013 530.6 32.2828 

7 Training 1 528.7 25.6463 579.367 25.543 
2 441.2 25.4469 528.2 30.9007 

Verification 1 517.6 27.6762 578.167 24.4429 
2 408.167 30.402 511.6 33.2686 

12 Training 1 532.767 22.8785 585.933 27.4364 
2 439.5 19.6306 532.933 24.4384 

Verification 1 523.267 25.5261 581.567 26.8645 
2 411.133 26.3029 521.933 34.1447 

25 1 Training 1 537.067 28.4641 579.533 25.8587 
2 450.067 21.1153 525.233 26.9478 

Verification 1 521.067 31.9913 571.833 28.9412 
2 419.467 26.9709 510.067 31.9751 

2 TraIning 1 549.5 19.8698 591.433 20.6259 
2 459.167 19.4335 542.767 24.5212 

Verification 1 536.533 22.8801 586.033 22.4369 
2 428.6 26.5494 527.967 28.9297 

7 TrainIng 1 530.667 27.561 580.233 25.087 
2 447.267 26.9686 528.433 30.2936 

Verification 1 518.867 27.9442 576.9 26.8654 
2 410.3 33.3168 510.8 36.5828 

12 TrainIng 1 524.933 26.1428 574.2 25.6009 
2 439.267 23.1426 520.567 30.7253 

Verification 1 512.533 28.0181 569.3 29.2388 
2 406.4 29.6887 504.233 39.5489 

51 1 Training 1 542.967 26.6011 584.667 23.9184 
2 455.6 21.4711 537.733 29.4372 

Verification 1 530.4 28.5604 582.667 26.142 
2 421 24.6884 520.033 29.7594 

2 Training 1 541.167 23.4375 587.133 22.6224 
2 455.333 15.6917 539.7 21.1923 

Verification 1 527.367 24.3728 583.967 23.3511 
2 420.9 21.8022 520.6 25.2922 

7 TraIning 1 526.567 27.2304 5 7.433 32:7105 
2 439.467 25.542 524.667 37.7773 

Verification 1 514 30.8847 571.867 37.2038 
2 407.867 26.2294 509.033 37.7866 

12 Trroning 1 517.733 25.9282 569.567 29.1674 
2 435.5 18.7428 516.767 29.6167 

Verification 1 503.1 25.9633 565.433 29.5118 
2 402.933 25.4259 500.3 36.5052 

101 1 Training 1 539.833 29.0589 580.4 26.6207 
2 454.6 23.8698 529.2 28.5372 

Verification 1 522.867 33.2086 574.3 29.5788 
2 420.8 25.5564 512.867 34.2151 

2 TraIning 1 544.267 26.3582 585.233 23.2508 
2 455.733 22.4422 536.933 25.6514 

Verification 1 532.867 30.3096 583.467 24.0771 
2 426.1 28.3736 523.1 31.7993 

7 TraIning 1 532.4 29.5385 073.3 31.8998 
2 454.033 25.1951 527.133 34.5889 

Verification 1 523.333 31.0265 569.933 35.2899 
2 418.833 36.3935 505.3 43.8573 

12 TraIning 1 515.567 23.6434 561.567 25.5905 
2 435.767 18.207 508.567 27.426 

Verification 1 504.2 24.0422 557.833 26.6886 
2 405.4 20.1299 490.867 30.08 

Table B.5: 12 States - (12, 56, 7)4 - Code #2 - Perfect Score is 672 
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APPENDIX B. RESULTS OF SCM DECODERS 97 

Parameters Exact Fuzzy 
Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 553.333 21.933 594.333 29.0556 
2 459 20.9614 523.533 31.2374 

Verification 1 536.033 25.3166 588.467 30.3448 
2 405.8 26.1658 491.967 40.4078 

2 Training 1 561.1 26.4488 597.133 27.2975 
2 465.8 35.3226 523.4 37.8359 

Verification 1 545.567 34.5031 592.3 33.3127 
2 418 36.437 502.4 44.5108 

7 Training 1 535.933 27.6467 574.667 33.7418 
2 444.7 26.3349 507.633 39.5234 

Verification 1 519.767 31.0113 571.433 33.7421 
2 401.8 32.6511 484.767 46.8833 

12 Traming 1 530.867 25.7089 580.033 27.3779 
2 431.6 28.7289 502.133 28.9014 

Verification 1 517.2 26.4984 575.633 27.4383 
2 386.933 33.2264 477.233 32.7168 

25 1 Training 1 555.1 25.136 587.1 27.0139 
2 464.933 21.5662 516.6 34.4059 

Verification 1 538 27.4327 580.667 28.2065 
2 419.967 29.4366 495.833 36.5354 

2 Training 1 559.5 26.4455 595.733 20.134 
2 468.933 22.8125 525.133 27.2482 

Verification 1 544.3 33.2412 589.5 29.2937 
2 424.067 29.429 501.567 34.2322 

7 Training 1 536.7 27.0824 5Tr.,,33 26.4762 
2 441.433 28.5388 504.067 30.9916 

Verification 1 517.633 25.5093 570 27.3357 
2 399.8 33.6405 482.833 37.8437 

12 'lraimng 1 526.9,,3 31.1503 567.033 41.0101 
2 430.933 26.078 492.333 46.2432 

Verification 1 511.667 34.8893 564.133 42.3171 
2 385.367 35.5833 468.933 54.7867 

51 1 Training 1 539.233 25.5851 568.733 29.4395 
2 447.733 24.5805 497.7 29.2765 

Verification 1 519.467 30.5216 559.567 31.1821 
2 403.633 25.817 471.933 36.4038 

2 Training 1 548.3 25.0009 586.1 23.9386 
2 462.933 24.2187 519.8 23.6489 

Verification 1 531.5 26.422 578.633 27.1795 
2 417.333 27.0317 494.533 28.1789 

7 TrainIng 1 540.267 20.5476 577.033 24.5532 
2 451.967 17.7443 504.733 26.0436 

Verification 1 519.733 23.6526 567.833 28.3355 
2 408.633 24.7212 482.467 31.777 

12 Training 1 528.367 25.7809 574.4 27.1618 
2 440.3 25.252 502.333 29.8194 

Verification 1 513.6 28.5483 568.767 30.465 
2 393.833 26.8535 477.467 30.9758 

101 1 Training 1 553.167 25.163 583.2 26.0323 
2 468.367 21.6149 520.633 25.3139 

Verification 1 536.1 26.3927 576.033 29.4647 
2 424.2 25.3287 497.633 34.0947 

2 Training 1 533.267 29.5739 562.5 30.3187 
2 451.067 30.6627 498.6 29.5374 

Verification 1 516.133 32.7011 554.567 32.2893 
2 404.333 34.913 471.867 35.0799 

7 TraIning 1 531.867 28.54 503.M33 29.863 
2 450.9 23.9948 500.133 29.1426 

Verification 1 513.167 33.9097 556.633 34.8133 
2 404.133 29.8534 470.4 36.1983 

12 Training 1 526.567 23.0945 563.967 26.6723 
2 442.233 17.3914 500.3 30.0725 

Verification 1 511.7 26.4368 558.067 30.5252 
2 402.633 20.7189 475.967 31.1132 

Table B.6: 18 States - (12, 56, 7)4 - Code#2 - Perfect Score is 672 
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APPENDIX B. RESULTS OF SCM DECODERS 98 

Parameters Exact Fuzzy 
Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 418.167 17.6168 514.467 26.0275 
2 333.567 16.1836 470.267 25.4625 

Verification 1 400.9 17.779 504.633 28.17 
2 311.833 22.4101 463.333 30.2431 

2 TraIning 1 420.933 18.2831 525.233 22.8755 
2 345.333 17.2013 487.633 25.8423 

Verification 1 412.933 14.3261 520.9 22.8403 
2 316.1 18.0867 478.367 27.6761 

7 Training 1 418.633 20.2918 521.2 25.4564 
2 339.867 16.9334 481.567 27.353 

Verification 1 405.133 23.0886 514.9 24.2051 
2 316.533 21.2485 475.733 28.8096 

12 Thaining 1 420.667 19.3397 519.133 22.6818 
2 343.667 13.7448 486.5 24.4861 

Verification 1 411.633 16.8942 514.2 25.6117 
2 313.633 21.5174 473.033 27.7681 

25 1 Training 1 415.933 21.2667 524.4 25.7917 
2 332.233 24.3915 486 30.2962 

Verification 1 405 23.7124 518.233 24.8147 
2 304.233 26.0632 474.3 28.5067 

2 Training 1 424.967 16.7053 521.1 19.5031 
2 344.467 15.8086 482.7 24.5766 

Verification 1 410 15.4875 511.767 23.566 
2 317.533 16.4542 471.2 26.6179 

7 Training 1 415.9 17.0341 519.467 24.4664 
2 342.733 15.9955 484.067 27.1737 

Verification 1 403.9 18.6258 513.733 27.5467 
2 313.033 16.6433 468.667 31.4876 

12 Training 1 421.2 19.1858 525.9 23.5025 
2 345.467 18.3843 485.633 29.284 

Verification 1 406.967 18.5834 518.567 25.8613 
2 312.167 24.3113 472.667 24.5727 

51 1 Training 1 422.267 18.2906 519.233 16.7078 
2 339.1 19.2432 476.867 16.094 

Verification 1 410.6 16.5396 513.633 15.4283 
2 318.467 20.1164 467.267 19.9619 

2 Training 1 418.267 21.2021 516.367 28.4962 
2 341.9 20.5801 482.667 31.4471 

Verification 1 408.767 26.701 515.233 29.5631 
2 316.4 16.988 470.633 32.7071 

7 TrainIng 1 425.167 15.1:<95 528.1 25.0645 
2 350.033 15.3297 491.167 29.6358 

Verification 1 410.867 16.7409 520.733 25.0763 
2 317.567 21.5658 483.2 29.0189 

12 Training 1 428.567 17.3099 531.2 19.6353 
2 338.867 25.6955 483.5 30.6974 

Verification 1 409.667 17.7829 518.667 21.7467 
2 318.8 23.8218 481.4 27.4699 

101 1 Training 1 416.367 16.3844 517.667 23.0117 
2 338.167 16.8033 480.6 21.0395 

Verification 1 403.733 21.5677 511.6 21.1751 
2 314.033 21.0131 471.833 26.9586 

2 Training 1 426.767 18.4591 525.867 19.4045 
2 349.067 16.7763 486.5 26.7527 

Verification 1 411.633 17.2576 517.967 20.8335 
2 324.833 21.4204 483.433 25.2951 

7 Training 1 422.467 13.0041 523.9 21.9268 
2 347.833 15.6516 487.9 25.1387 

Verification 1 411.967 18.5667 521.1 23.348 
2 316.867 17.8996 476.067 27.1597 

12 Training 1 425.6 14.7045 523.3 22.1019 
2 347.167 17.3545 489.867 25.9638 

Verification 1 411.867 14.936 516.833 23.628 
2 316.667 18.7953 475.7 29.1431 

Table B.7: 6 States - (12,56,7)4 - Code #3 - Perfect Score is 672 
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APPENDIX B. RESULTS OF SCM DECODERS 99 

Parameters Exact Fuzzy 

Population # Mutations Type Distance Average Std Dev Average Std Dev 
11 1 Training 1 552.933 19.9481 604.3 28.1843 

2 479.467 19.3154 570.733 31.6706 
Verification 1 535.867 24.8634 601.2 30.9242 

2 424.1 23.6473 552.667 36.5026 
2 Traimng 1 550.3 27.4856 599.833 29.6335 

2 470.933 21.5037 560.5 33.2698 
Verification 1 534.133 30.1247 596.1 29.7267 

2 421.133 22.3479 543 35.7559 
7 Training 1 542.9 22.884 597.533 27.7498 

2 464.367 22.4399 556.5 31.8842 
Verification 1 525.433 29.178 592.533 30.6917 

2 418.467 25.3945 539.567 33.8166 
12 TraIning 1 537.233 25.6981 593.767 26.8594 

2 457.867 22.3433 549.067 34.778 
Verification 1 520.5 26.0394 587.533 30.2184 

2 414.3 24.7388 535.3 37.2347 
25 1 Training 1 552.433 24.83 602 26.0927 

2 475.133 18.621 565.2 33.3977 
Verification 1 535.067 30.5512 599.2 31.3483 

2 427.033 25.1252 547.833 34.1367 
2 Training 1 547.833 25.8031 600.467 31.223 

2 470.8 27.3526 558.2 36.3919 
Verification 1 530.867 31.2969 594.333 35.5793 

2 425.233 27.2393 543.6 37.3138 
7 TrainIng 1 536.5 25.0706 594.467 30.9268 

2 455.6 27.7918 545.567 38.7215 
Verification 1 517.867 29.8106 585.5 36.0342 

2 415.167 21.8697 534.833 37.0108 
12 Training 1 529.733 25.4273 580.267 31.4477 

2 456.833 20.194 539.067 35.1714 
Verification 1 510.933 28.6536 574.233 32.7042 

2 410.8 21.5573 522.4 36.2877 
51 1 Training 1 543.067 29.61 582.3 34.4565 

2 470.6 27.315 542.9 37.4593 
Verification 1 524.967 33.4112 575.1 36.8813 

2 427.567 23.0033 528.4 37.2453 
2 Training 1 546.1 27.5735 594.8 27.2882 

2 469.267 24.3791 554.067 34.1588 
Verification 1 526.733 32.6644 590.233 32.4215 

2 418.133 26.3906 536.167 38.3155 
7 Training 1 524.967 23.959 576.367 30.2945 

2 457.067 20.6513 535.267 31.879 
Verification 1 508.7 28.7284 571.833 33.4665 

2 409.333 22.7268 515 40.0818 
12 Training 1 536.8 22.6661 593.067 22.7171 

2 459.2 22.6158 550.467 30.4877 
Verification 1 519.667 26.5425 588.567 26.7848 

2 416.033 23.018 535.9 30.9475 
101 1 Training 1 539.533 30.3642 583 31.2178 

2 466.833 26.4107 545.6 35.8585 
Verification 1 520 34.0719 577 36.0383 

2 419.6 27.7571 528.733 39.664 
2 Training 1 542.367 23.7465 591.033 23.3393 

2 468.767 21.2565 551.233 26.5845 
Verification 1 524.867 24.3958 584.167 25.9629 

2 416.9 20.9932 529.067 33.9472 
7 Training 1 530.333 24.842 576.5 27.7982 

2 457.333 23.6167 532.867 36.9583 
Verification 1 510.3 26.5942 568.867 30.5577 

2 410.733 20.1425 514.167 34.9513 
12 Training 1 520.4 27.7409 571.8 33.6948 

2 447.8 24.3061 526.533 39.4756 
Verification 1 502.067 31.3775 565.467 37.4789 

2 405.833 27.9422 510.433 38.0822 

Table B.8: 12 States - (12,56, 7)4 - Code #3 - Perfect Score is 672 
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APPENDIX B. RESULTS OF SCM DECODERS 100 

Parameters Exact Fuzzy 
Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 572.333 22.5409 612.6 24.8063 
2 477.733 27.2763 548.967 29.592 

Verification 1 553.133 24.2384 607 26.2087 
2 422.533 28.8262 518 32.2512 

2 TraIning 1 564.3 29.4842 604.633 27.8264 
2 476.7 33.2173 543.467 36.1508 

Verification 1 543.667 33.1385 597.467 32.1952 
2 422.533 35.1399 519.433 37.396 

7 Training 1 555.067 19.3176 600 19.7694 
2 465.3 23.7924 535.967 25.8049 

Verification 1 533.8 23.5671 593.233 24.7354 
2 419.733 23.6599 515.633 29.2628 

12 TraIning 1 533.467 31.1368 582.967 33.6631 
2 446.7 29.6592 518.8 33.7623 

Verification 1 510.433 36.0705 573 37.97 
2 391.633 31.2471 492.167 37.8765 

25 1 Training 1 555.933 23.6802 595.033 30.8215 
2 472.867 22.0622 533.5 32.3832 

Verification 1 535.367 26.5739 586 34.6101 
2 415.3 26.9356 506.467 39.4075 

2 Training 1 561.333 24.6105 603.133 22.7971 
2 478.167 29.3705 544 31.8174 

Verification 1 541.833 30.2793 595.233 26.1965 
2 428 26.5278 524.3 33.4315 

7 TrainIng 1 547.967 28.6471 585.567 33.9824 
2 461.8 25.6117 523.5 38.3107 

Verification 1 526.4 29.9604 577.8 36.1791 
2 413.267 22.5464 504.967 37.985 

12 Training 1 529.5 30.8609 570.633 35.2855 
2 449.767 29.1248 507.2 37.5614 

Verification 1 509.433 37.6432 560.533 38.0759 
2 395.133 29.7388 477.2 44.2223 

51 1 Training 1 553.433 26.5131 591.067 25.8403 
2 475.533 26.0619 531.133 28.5231 

Verification 1 533.033 26.5284 583.733 26.4665 
2 422.633 29.5255 503.767 31.028 

2 Training 1 559.167 27.2562 599.633 27.6099 
2 482.067 25.8576 545.033 33.8399 

Verification 1 536.2 29.7129 591.2 31.3846 
2 422.333 26.7882 520.733 36.5569 

7 Training 1 538.133 33.5114 578.867 39.2136 
2 455.933 30.1433 513.5 42.7267 

Verification 1 515.933 41.3204 569.467 45.6665 
2 402.733 28.7785 488.133 46.6408 

12 Training 1 528.5 30.1545 571.4 27.2771 
2 449.767 25.9438 507.2 26.0178 

Verification 1 506.633 30.6093 560.767 27.3568 
2 400.167 30.0311 483.3 27.6482 

101 1 Training 1 539.433 28.335 569.9 34.0956 
2 470.033 28.3555 520.4 40.8509 

Verification 1 518.633 34.0755 563.7 36.8484 
2 414.367 30.185 490.6 44.9495 

2 Training 1 552.9 32.4785 588.267 32.945 
2 479.667 28.2969 533.9 32.9758 

Verification 1 533.667 37.3228 582.5 34.2493 
2 427.067 29.8397 510.467 38.0315 

7 '!raining 1 531.1 29.5382 566.9 3 .598 
2 463.333 22.6538 517.367 36.2658 

Verification 1 513.833 30.496 561.5 37.8734 
2 408.767 26.6868 490.3 43.9146 

12 Training 1 537.9 23.1953 575.6 32.9886 
2 459.267 22.6593 515.833 34.2768 

Verification 1 516.3 27.1092 565 35.3329 
2 410.467 24.291 492 41.0844 

Table B.g: 18 States - (12,56,7)4 - Code #3 - Perfect Score is 672 
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APPENDIX B. RESULTS OF SCM DECODERS 101 

Parameters Exact Fuzzy 
Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 397.367 31.4637 501.4 30.4094 
2 303.5 20.5473 453.267 30.5534 

Verification 1 388.5 32.0127 499.667 30.6001 
2 294.667 23.1447 451.367 28.1578 

2 TraIning 1 404.2 19.4376 502.733 19.6993 
2 309.633 16.7527 457.767 22.5949 

Verification 1 397.333 19.1695 499.4 21.4502 
2 297.767 16.7161 457.133 21.1395 

7 Training 1 404.167 26.5214 507.233 20.015 
2 316.033 20.9901 461.1 26.3718 

Verification 1 397.7 26.6279 503.733 25.3947 
2 304.733 16.2924 460.633 26.2803 

12 'l'raining 1 402.433 21.561 499.7 24.2489 
2 315.333 15.6323 455.667 27.4607 

Verification 1 402.267 23.9827 501.1 25.8595 
2 305.367 17.4899 454.667 27.7977 

25 1 Training 1 397.4 28.5109 498.333 24.2136 
2 305.1 22.5547 457.867 28.4359 

Verification 1 398.1 29.7082 502.233 25.6349 
2 300 24.4089 456.733 25.7989 

2 Training 1 403.333 28.0016 503.133 26.4741 
2 313.633 20.6071 454.267 29.9539 

Verification 1 395.167 32.0819 499.667 29.433 
2 304.667 19.6141 458.533 31.3641 

7 Training 1 402.2tr7 19.8163 492.5 19.8525 
2 316.533 13.2059 451.1 16.9875 

Verification 1 398.9 17.8119 492.067 20.0756 
2 308.7 16.191 447.867 20.485 

12 Training 1 409.367 21.4869 509.767 18.3429 
2 320.1 14.2837 467.367 22.8103 

Verification 1 406.8 19.2253 511.867 17.9899 
2 307.867 17.1036 463.633 20.4981 

51 1 Training 1 405.4 25.5527 495.767 30.0295 
2 312.7 15.996 451.633 32.0231 

Verification 1 401.1 25.8221 495.667 31.6242 
2 300.4 18.2693 448.8 36.0281 

2 Training 1 403.6 27.3428 504.7 32.3506 
2 309.733 18.1582 455.333 33.0531 

Verification 1 394.567 31.8322 500.567 34.3518 
2 294.733 20.4382 455.4 38.0259 

7 TrainIng 1 410.333 21.191 504.867 22.8061 
2 317.1 16.6637 457.267 25.2422 

Verification 1 401.433 22.2132 503.5 22.7304 
2 311.333 20.6219 458.367 26.2816 

12 Training 1 410.667 24.47 505.167 26.0438 
2 312.767 14.576 455.433 31.0236 

Verification 1 403.467 24.1243 503.367 28.9857 
2 305.667 13.8273 456.533 31.9997 

101 1 Training 1 405.633 25.6105 492.567 24.2639 
2 305.9 14.5634 444.4 24.8591 

Verification 1 405 23.3947 492.667 24.8004 
2 302.733 20.7812 445.167 29.0352 

2 Training 1 407.533 21.3052 503.5 23.629 
2 307.467 17.0996 456.933 30.4324 

Verification 1 399.833 26.757 500.633 29.4753 
2 298.9 21.4353 455.233 31.5438 

7 Training 1 412.533 19.3991 501.633 25.011 
2 319.1 13.6011 453.4 27.3478 

Verification 1 410.733 20.1801 502.933 25.0516 
2 311.267 11.4649 455.567 28.5641 

12 Training 1 410.567 19.6411 500.433 21.3649 
2 311.633 15.1691 455.1 23.7332 

Verification 1 404.767 20.7525 498.133 23.184 
2 302.167 18.0804 451.867 25.246 

Table B.1O: 6 States - (12,54,7)4 - Code #4 - Perfect Score is 648 



APPENDIX B. RESULTS OF SCM DECODERS 102 

Parameters Exact Fuzzy 
Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 515.4 24.3106 563.9 25.7191 
2 432.9 22.5944 518.7 29.1809 

Verification 1 504.6 29.3065 561.433 29.2394 
2 406.533 25.0541 504.067 31.1481 

2 'training 1 525.033 30.8125 571.433 28.4904 
2 440.967 32.5698 527.633 37.8932 

Verification 1 518.733 37.0321 569.733 31.906 
2 415 33.0183 514.967 36.678 

7 Training 1 515.933 24.3508 564 21.7842 
2 426.633 22.466 514.333 32.259 

Verification 1 501.433 32.5372 558.867 29.2088 
2 403.567 24.9091 502.9 31.7233 

12 TrainIng 1 510.4 26.444 562.4 26.6272 
2 423.033 25.7099 509.9 37.7088 

Verification 1 497.333 31.6809 555.167 32.673 
2 396.167 28.5731 492.7 39.2623 

25 1 Training 1 527.633 27.9254 574.867 21.002 
2 442.3 27.7142 526.933 31.6902 

Verification 1 515.3 30.9484 571.567 23.7104 
2 412.433 29.3982 513.633 30.2501 

2 Training 1 520.867 28.0636 566.3 26.9407 
2 437.633 26.7923 520.733 34.9462 

Verification 1 506 34.6957 558.533 30.4877 
2 409.533 29.755 509.233 38.5475 

7 TraInIng 1 520.267 22.0531 57u.867 23.2598 
2 435.333 17.5014 524.433 29.2371 

Verification 1 507.233 26.9926 563.467 27.6664 
2 408.8 21.8038 507.867 34.0372 

12 Training 1 511.433 2'(.3593 063 28.0983 
2 433.567 23.175 517.333 33.1957 

Verification 1 501.6 30.9612 559.067 29.054 
2 407.5 24.8606 505.3 35.449 

51 1 Training 1 523.633 21.3549 568.8 18.5089 
2 441.667 20.5247 521.1 29.635 

Verification 1 513.3 28.3234 564.9 24.3485 
2 412.5 24.9285 508.333 30.7911 

2 Training 1 517.1 32.1273 563.9 32.594 
2 440.333 28.3395 516.833 40.8074 

Verification 1 503.733 37.9963 557.9 38.0121 
2 409.267 32.6992 503.9 43.2757 

7 TraInIng 1 517.833 19.759 566.133 25.908 
2 432.367 17.2576 518.433 31.2186 

Verification 1 502.7 25.2725 559.8 29.9694 
2 405.833 17.1426 505.767 34.3488 

12 Training 1 517.067 22.6745 567.233 25.1337 
2 430.667 17.8738 520.133 29.1189 

Verification 1 508.433 24.741 566.233 26.0724 
2 404.233 19.6288 507.8 28.0755 

101 1 Training 1 521.433 24.7103 571.067 24.1474 
2 439.9 21.586 522.567 28.2607 

Verification 1 509.433 31.1699 565 26.1982 
2 412.067 27.0197 511.2 28.4586 

2 Training 1 527.333 26.4879 570.3 24.4232 
2 441.267 21.2667 525.967 29.8369 

Verification 1 516.9 29.6059 568.367 27.5312 
2 415 22.7838 515.067 30.3246 

Training 1 513.167 29.3811 557.233 30.2218 
2 430.033 24.8991 507.833 40.548 

Verification 1 501.8 34.72 549.967 35.8709 
2 408.167 26.2811 497.267 41.3754 

12 Training 1 509.6 24.0568 556.233 28.8357 
2 428.4 19.406 509.833 32.6202 

Verification 1 499.667 24.8933 553.167 28.5996 
2 400.933 21.6316 494.3 34.8802 

Table B.ll: 12 States - (12,54,7)4 - Code #4 - Perfect Score is 648 
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Parameters E act x Fuzzy 
Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 547.367 19.4962 590.233 21.9084 
2 450.967 24.7058 518.167 25.1068 

Verification 1 528.9 24.2691 582.667 24.9653 
2 416.133 27.7746 506.2 29.1883 

2 Training 1 536.267 18.0515 576.3 20.5446 
2 447.633 24.1525 506.033 28.5494 

Verification 1 521.767 25.2227 571.167 25.1219 
2 413 26.3727 490.933 34.4343 

7 Training 1 520.633 22.3151 556.933 30.4958 
2 433.9 23.1582 486.333 35.6248 

Verification 1 497 25.7535 545.033 36.0081 
2 396.367 27.2631 466.2 43.9227 

12 Training 1 513.8 27.2263 559 29.7275 
2 422.4 31.2571 490.1 36.1676 

Verification 1 497.6 36.4631 551.467 36.5379 
2 385.267 34.1881 474.6 37.7885 

25 1 Training 1 534.933 25.064 571.867 26.999 
2 445.167 29.5683 502.5 35.2956 

Verification 1 516.7 28.1267 564.3 33.7906 
2 407.433 29.37 485.867 37.7101 

2 Training 1 537.9 28.5975 574.033 31.6723 
2 443.833 28.6442 501.233 43.454 

Verification 1 516.433 33.2915 567.167 35.8484 
2 407.133 31.298 488.233 46.3909 

7 Training 1 528.167 27.8618 560.933 31.2498 
2 437.833 32.4623 491.533 37.8178 

Verification 1 513.267 34.5113 555.167 35.5829 
2 405.933 33.8271 476.167 41.2612 

12 Training 1 514.867 23.6712 559.933 28.0786 
2 428.233 26.3984 490.867 30.5611 

Verification 1 498.667 27.2641 552.433 30.9445 
2 389.4 27.772 472.567 37.016 

51 1 Training 1 531.5 21.9352 567.7 25.6866 
2 444.433 25.4717 497.5 26.5587 

Verification 1 511 26.1283 559 28.233 
2 403.8 26.7032 481.4 33.1377 

2 Training 1 538.067 28.4313 575 26.9789 
2 445 31.6086 505.233 34.1717 

Verification 1 514.267 32.5597 565.8 33.4843 
2 407.167 31.1383 489.5 38.0922 

7 Training 1 522.833 22.3315 559.433 23.906 
2 433.2 21.8181 490.3 36.2569 

Verification 1 502.167 27.0084 548.6 29.2747 
2 396.7 28.732 471.633 38.1679 

12 Training 1 509. 67 27.1327 556 31.7653 
2 422.9 30.5618 485.867 38.791 

Verification 1 489.5 35.9211 547.567 37.6762 
2 386.933 33.3166 471.3 40.2314 

101 1 Training 1 537.967 25.6374 571.967 30.3991 
2 455.1 22.573 508.167 34.9966 

Verification 1 519.8 30.6441 562.833 35.3847 
2 419 27.9223 492 35.4343 

2 Training 1 524.167 30.1971 554 31.9828 
2 442.3 30.4553 485.767 39.7914 

Verification 1 507.1 36.2143 546.867 36.8433 
2 406.1 34.9939 467.8 44.0645 

7 Training 1 509.533 23.19 541.033 26.5037 
2 426.033 20.1725 473.233 26.7217 

Verification 1 491.433 23.1452 532.867 30.0112 
2 392.567 21.2598 451.5 28.6859 

12 Training 1 507.233 22.8393 545.8 31.4976 
2 425.533 20.1302 480.1 34.4977 

Verification 1 493.467 25.808 539.1 34.7219 
2 390.433 23.9679 465.4 37.1368 

Table B.12: 18 States - (12,54,7)4 - Code #4 - Perfect Score is 648 
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Parameters Exact Fuzzy 
Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 426.167 23.7938 537.4 23.8394 
2 331.933 24.4878 487.567 24.3391 

Verification 1 404.933 25.0309 520.533 22.7925 
2 327.3 23.8864 486.633 25.5268 

2 'lraining 1 438.867 24.5494 550.367 26.9066 
2 343.967 19.1284 505.867 25.6632 

Verification 1 420.2 24.5531 536.033 24.4434 
2 330.167 20.3488 496.833 26.0425 

7 Training 1 451.133 27.8255 551.067 22.4145 
2 351.267 12.8544 500.8 24.0694 

Verification 1 427.767 26.2385 532 25.1025 
2 345.733 21.3557 500.2 25.5186 

12 '!raining 1 439.067 23.6482 544.133 23.6114 
2 342.667 19.4959 499.3 27.7142 

Verification 1 418.867 23.3884 528.5 26.5223 
2 334.633 24.1825 497.333 24.8795 

25 1 Training 1 426.6 31.0568 548.767 20.6643 
2 333.667 25.2741 502.467 29.8487 

Verification 1 407.3 32.8981 535.3 27.2082 
2 323.1 30.3524 499.467 30.3573 

2 Training 1 443.433 20.1557 546.933 21.9481 
2 345.733 18.0878 501.933 24.7734 

Verification 1 422.667 18.9251 529.9 27.3437 
2 332.7 23.4096 493.567 29.8175 

7 Training 1 439.067 24.338 551.3 20.0106 
2 343.733 14.3741 507.2 20.2508 

Verification 1 417.933 21.7714 536.133 22.5492 
2 330.733 21.2991 500.733 25.2927 

12 Training 1 450.733 19.3817 553.8 16.4828 
2 348.8 18.2519 506.533 20.6193 

Verification 1 427.9 22.5516 535.767 21.6264 
2 340.1 20.1586 502.767 20.9477 

51 1 Training 1 434.1 24.0507 543.133 25.2556 
2 338.067 19.0425 496.367 30.3866 

Verification 1 414.2 22.4075 526.2 29.3556 
2 326.6 20.8353 492.933 25.6501 

2 Thaining 1 435.367 27.8512 541.767 27.4938 
2 345.033 18.7423 493.567 33.2562 

Verification 1 411.9 31.1596 525.533 35.1438 
2 331.8 26.3536 489.5 32.679 

7 Training 1 440.933 22.2787 546.967 20.8517 
2 351.033 14.8567 502.333 20.0333 

Verification 1 418.733 21.0663 529.967 22.5793 
2 332.133 18.7501 498.2 23.9747 

12 Training 1 445 20.8029 547.333 15.7553 
2 345.8 16.7567 503.567 17.0105 

Verification 1 425.567 24.0283 532 20.9975 
2 334.767 22.3092 500.1 17.0422 

101 1 Training 1 430 22.7944 539.1 22.4612 
2 338.867 11.5929 493.1 23.0282 

Verification 1 412.9 24.2876 525.367 22.6221 
2 332.2 21.6419 494.4 25.0965 

2 Training 1 440.967 25.6454 545.767 18.829 
2 348.6 18.4252 500.167 20.2707 

Verification 1 420.3 26.8664 532.2 22.4075 
2 337.533 17.5081 496.733 23.4858 

7 'lralnlng 1 442.367 23.0479 548.5 18.6598 
2 348.133 14.5383 503.667 24.9473 

Verification 1 422.567 24.9201 532.6 24.295 
2 336.5 18.9314 501.433 26.418 

12 Training 1 438.267 17.9941 542.4 15.6218 
2 346.933 14.1712 495.3 21.1222 

Verification 1 416.467 22.4726 523.867 21.9525 
2 334.467 19.062 490.767 22.2132 

Table B.13: 6 States - (12,59,7)4 - Code #5 - Perfect Score is 708 
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Parameters Exact Fuzzy 
Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 569.933 28.4919 621.3 24.9816 
2 478.767 22.2054 573.267 30.7469 

Verification 1 543.933 30.3178 610.033 28.2018 
2 444.5 29.0561 562.3 35.6149 

2 Training 1 571.033 27.0383 621.167 25.5803 
2 483.267 21.004 575.1 28.8556 

Verification 1 547.367 29.5115 611.633 26.9386 
2 450.667 27.1932 563.233 31.9554 

7 Training 1 558.9 22.7707 616.167 29.9541 
2 471.3 22.4701 569.7 34.3754 

Verification 1 535.033 27.1655 605.467 35.3434 
2 436.333 25.4143 554.833 37.2513 

12 Tralning 1 547.333 32.7607 608.167 30.9751 
2 461.867 29.0478 558.667 36.0549 

Verification 1 526 34.9413 593.533 33.9388 
2 430.8 26.1658 544.267 38.255 

25 1 Training 1 564.967 25.2429 621 27.6879 
2 481.733 23.8616 576.267 30.8846 

Verification 1 539.633 30.2124 609.533 33.5803 
2 439.167 27.5294 557.467 40.8519 

2 Training 1 568.467 28.0538 621.167 29.1537 
2 481.4 24.1184 575.4 35.3188 

Verification 1 545.6 34.6117 609.733 32.602 
2 447.167 32.6191 560.767 39.0708 

7 Training 1 554.767 29.7932 614.367 32.4446 
2 465.5 21.133 561.733 34.6817 

Verification 1 529.233 34.8541 600.733 39.3945 
2 433.267 31.4061 548.033 34.929 

12 Training 1 553.733 29.3692 610.367 28.2714 
2 465.167 23.6674 564.067 29.8709 

Verification 1 529.9 27.998 599.533 28.9908 
2 434.4 29.9432 551.333 36.8457 

51 1 Training 1 563.1 21.9692 615.767 28.2522 
2 478.9 19.0396 569.267 32.1279 

Verification 1 540.367 26.6904 607.1 32.9465 
2 441.967 25.6737 553.067 38.0117 

2 Training 1 574.133 17.0187 630.867 23.4311 
2 483.1 20.1055 585.467 26.9287 

Verification 1 549.733 20.6447 621.767 25.6618 
2 451.067 24.9619 574.633 28.8235 

7 Training 1 560.533 29.5667 611.233 31.7736 
2 474.333 22.4336 563.333 35.8092 

Verification 1 539.133 33.8381 598.767 36.0896 
2 441.967 28.6952 549.3 42.7681 

12 '!raining 1 547.5 30.8699 603.2 35.0786 
2 466.8 21.1014 554.733 37.89 

Verification 1 523.233 38.7847 589.1 42.987 
2 427.3 25.0271 536.867 44.8851 

101 1 Training 1 561.867 18.4704 611.467 19.5743 
2 480.033 19.2542 565.3 21.3947 

Verification 1 539.1 22.9247 602.133 22.3726 
2 442.333 24.0622 550.5 25.3782 

2 Training 1 562.333 26.4931 610.733 31.5332 
2 476.7 18.5159 566.7 32.0389 

Verification 1 539.067 28.9505 599.633 33.8501 
2 442.1 26.2118 551.5 39.9955 

7 Training 1 552.633 26.3262 604.933 26.8134 
2 468.867 23.5968 556 33.4798 

Verification 1 529.167 33.353 594.467 34.8294 
2 438.533 25.6216 543 35.4868 

12 Training 1 542.3 25.9418 592.667 28.3966 
2 458.433 24.7131 542.733 32.6475 

Verification 1 519.667 29.4622 580.833 30.7852 
2 427.167 28.3355 525.5 36.4122 

Table B.14: 12 States - (12,59,7)4 - Code #5 - Perfect Score is 708 
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Parameters Exact Fuzzy 
Population # Mutations Type Distance Average Std Dev Average Std Dev 

11 1 Training 1 575.5 27.9837 617.8 30.6081 
2 481.167 26.4641 543.133 37.1667 

Verification 1 545.733 29.0421 602.567 34.1888 
2 427.467 27.0717 518.267 39.7873 

2 Training 1 583.267 30.0218 620.633 35.2484 
2 483.633 30.161 547.967 39.7965 

Verification 1 554.667 36.8514 608.7 41.7514 
2 440.567 31.2616 530.2 44.0692 

7 'Training 1 570.667 27.6858 614.333 31.6046 
2 478.1 21.5668 547.867 31.4804 

Verification 1 541.8 27.3198 600.433 34.945 
2 436.267 25.0846 527.433 35.8403 

12 Trainlng 1 560.267 30.7918 605.167 34.5464 
2 467.333 33.1708 536.033 41.6699 

Verification 1 533.467 37.9271 589.533 39.6369 
2 420.333 35.8785 513.333 42.8971 

25 1 Training 1 583.033 28.3251 619.367 29.9534 
2 493.8 27.1844 554.033 35.624 

Verification 1 555.5 30.1945 605.267 33.4024 
2 447.133 29.2182 530.8 38.6812 

2 Training 1 587.933 23.7878 629.9 24.0894 
2 496.567 22.5215 562.733 26.5745 

Verification 1 563.267 27.5818 620.8 27.9092 
2 448.767 35.3189 540.767 31.7106 

7 Training 1 565.233 29.9502 613.733 33.9969 
2 468.833 30.8926 543.9 37.4979 

Verification 1 538.3 32.4177 601.633 37.9532 
2 421.967 32.6649 523.367 43.1776 

12 Training 1 558.2 25.2606 602.667 33.583 
2 468.067 24.1031 539.833 35.6951 

Verification 1 532.467 27.4059 591.033 34.8103 
2 423.833 27.4315 515.933 43.4772 

51 1 Training 1 579.767 20.236 613.467 22.2768 
2 487.467 16.9273 548.667 27.6397 

Verification 1 552.633 21.2026 599.367 25.9608 
2 442.533 18.5635 524.633 32.3606 

2 Training 1 582.767 26.67 622.133 27.455 
2 490.467 22.9688 556.033 32.4638 

Verification 1 555.467 32.5203 609.1 31.4339 
2 446.233 27.0474 533.733 36.4833 

7 Training 1 562.2 25.6803 602.467 29.451 
2 474.533 25.4758 534.533 36.5162 

Verification 1 534.1 32.6194 587.567 37.287 
2 427.367 28.2116 509.767 39.0046 

12 Training 1 564.033 28.3251 607.433 29.3089 
2 472.733 25.0763 544.7 33.76 

Verification 1 537.1 33.3315 595.167 37.2263 
2 428.133 32.5754 518.7 36.2664 

101 1 Training 1 573.767 30.4537 607.267 37.2178 
2 483.767 25.3876 539.633 33.8195 

Verification 1 544.5 35.3892 592.367 40.3335 
2 433.867 30.1213 511.733 43.7114 

2 Training 1 570.8 27.3564 608.433 32.9824 
2 484.833 26.4433 548.033 39.4142 

Verification 1 542.8 33.8479 593.833 36.9324 
2 434.4 29.2499 521.133 47.4071 

7 Training 1 562.867 24.281 600.833 24.9967 
2 479.367 17.8045 541.7 27.3485 

Verification 1 533.9 32.5538 586.367 30.3616 
2 433.167 28.8146 517.433 37.42 

12 Training 1 548.167 24.7025 586.867 28.0821 
2 459.533 23.3781 516.833 35.246 

Verification 1 516.567 27.7609 568.3 30.858 
2 420.467 24.4847 495.2 31.3307 

Table B.15: 18 States - (12,59,7)4 - Code #5 - Perfect Score is 708 



"'-

APPENDIX B. RESULTS OF SCM DECODERS 107 

B.2 Effect of Crossover and Mutation 

Measured is the average number of corrections for the best machines found 
during 30 evolutions. # Mutations refers to the maximum number of edges 
which will be changed via the mutation operator. 
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Parameters Exact Fuzzy 
Crossover Mutation # Mutations Type Distance Average Std Dev Average Std Dev 

0 10 1 Training 1 529.533 29.3043 579.133 31.3245 
2 438.367 26.8912 529.233 34.9538 

Verification 1 513.367 35.8373 570.767 37.0244 
2 393.667 29.99 509.5 39.6708 

2 Training 1 523.6 26.1621 581.767 21.431 
2 436.933 25.2586 526.233 28.9169 

Verification 1 504.633 32.5571 570.867 29.2901 
2 387.233 28.1041 502.067 32.3056 

7 Training 1 506.6 22.4984 570.9 26.0323 
2 416.633 21.9238 516.167 32.9054 

Verification 1 492.767 28.4892 561.867 33.569 
2 377.3 26.3218 495 39.1637 

12 Training 1 489.8 28.8676 557.8 32.504 
2 400.933 27.3672 503.467 36.8105 

Verification 1 473 36.5994 547.5 37.7256 
2 366.367 32.1789 484.367 41.2499 

20 1 TraIning 1 545.833 23.0787 593.9 26.9295 
2 455.233 24.4225 541.767 34.4891 

Verification 1 530.667 30.4714 585.6 33.2748 
2 409.833 25.9523 526.5 39.9083 

2 Training 1 534.433 25.1789 585 27.5706 
2 451.933 21.3847 537.1 32.023 

Verification 1 521.7 28.1782 578.467 29.8776 
2 411.433 28.098 522.067 35.1567 

7 Training 1 529.5 24.6587 583.133 29.4287 
2 442 16.6381 535.667 30.4861 

Verification 1 514.833 25.6462 576.533 27.574 
2 395.7 20.9961 516.3 38.0745 

12 -,:raining 1 509.833 22.2464 567.1 25.8662 
2 426.7 19.126 511.133 36.7064 

Verification 1 495.2 24.0909 556.867 30.3676 
2 382.967 21.8766 490.6 39.2275 

50 1 Training 1 544.1 27.4997 591.133 23.8858 
2 457.267 23.6146 542.433 26.8144 

Verification 1 524.7 33.6474 581.1 28.2249 
2 411.2 26.3889 521.2 32.1413 

2 Training 1 552.067 17.2765 598.467 16.0167 
2 463.7 17.2929 554 20.7597 

Verification 1 538.6 24.2211 592.233 21.5337 
2 419.667 16.9875 532.367 22.8178 

7 Training 1 528.6 20.3446 580.5 24.2512 
2 447.367 15.262 535.333 24.9183 

Verification 1 514.3 23.9571 573.533 27.9689 
2 402.867 17.3875 514.533 33.608 

12 Thaining 1 521.16 23.2202 577.833 31.1903 
2 436.6 21.5784 527.8 35.9601 

Verification 1 508.333 27.4821 569.367 34.5737 
2 389.3 23.2248 503.467 39.5097 

Table B.16: 12 States, Population 51, No Crossover - (12,55,7)4 
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Parameters E act x Fuzzy 

Crossover Mutation # Mutations Type Distance Average Std Dev Average Std Dev 

50 10 1 Training 1 536.5 26.4246 584.567 25.6927 
2 451 26.1969 538.9 30.9464 

Verification 1 525.033 32.3978 581.233 28.717 
2 408.7 27.2158 517.4 33.6776 

2 Training 1 518.6 29.8023 575.033 36.739 
2 435.1 24.5095 520.667 36.0128 

Verification 1 505.033 32.7556 566.733 37.2614 
2 390.867 27.7635 496.967 42.7878 

7 Training 1 516.667 23.5523 570.6 24.2751 
2 426.533 23.9579 513.667 29.2048 

Verification 1 498.8 30.1083 559.8 29.3345 
2 391.2 25.4008 497.367 31.4253 

12 Training 1 502.033 32.1349 564.1 31.2204 
2 413.767 21.7821 507.933 32.7508 

Verification 1 483.133 32.9542 554.067 31.5441 
2 376.2 29.7048 488.033 38.5661 

20 1 TrainIng 1 539.433 23.6216 588 23.5928 
2 453.433 24.9201 539.667 34.5057 

Verification 1 524.433 31.5405 578.8 27.2604 
2 408.867 26.9914 520.167 38.1938 

2 Thaining 1 538.767 22.7606 583.833 25.3392 
2 453.467 20.4951 535.633 28.9357 

Verification 1 524.3 24.7806 575.467 26.6946 
2 407.567 20.4276 515.867 32.8809 

7 Traming 1 536.2 2·(.9882 584.933 29.667 
2 451.867 24.5564 540.133 31.6214 

Verification 1 523.667 30.5392 580 30.3383 
2 407.933 25.2981 516.6 38.055 

12 Training 1 531.933 19.2639 578.833 24.662 
2 443.467 17.5926 525.733 25.1847 

Verification 1 514.267 25.3934 569 30.0287 
2 403.6 19.925 507.7 30.1618 

50 1 Training 1 551.6 19.258 598.967 21.8387 
2 461.833 19.4051 554.867 30.4254 

Verification 1 538.267 25.6635 594.233 24.8564 
2 418 17.7841 536.467 30.4243 

2 TrainIng 1 550.4 19.2436 590.367 22.1476 
2 468.067 18.4745 546.333 21.1388 

Verification 1 535.567 19.8836 582.067 20.5341 
2 420.9 18.3027 525.133 21.497 

7 Training 1 544.033 16.9207 587.233 20.3583 
2 461 14.319 546.7 20.7766 

Verification 1 530.7 19.0845 581.1 22.335 
2 413.233 17.1679 522.433 26.6105 

12 Training 1 542.667 17.12·( 597.333 15.0295 
2 453.267 16.1457 552.933 22.6273 

Verification 1 528.667 23.9789 590.367 17.4366 
2 412.567 17.4942 536.5 24.3562 

Table B.17: 12 States, Population 51, 50% Crossover - (12,55,7)4 
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Parameters Exact Fuzzy 
Crossover Mutation # Mutations Type Distance Average Std Dev Average Std Dev 

75 10 1 Training 1 523 27.5744 574.033 31.0044 
2 441.467 25.1735 523.633 36.3797 

Verification 1 505.867 31.9318 565.7 33.1019 
2 399.7 27.7118 501.133 35.3658 

2 Training 1 528.867 22.1915 585 22.237 
2 445.3 19.0646 533.433 28.723 

Verification 1 516.4 25.0401 579.367 24.6499 
2 400.567 21.0348 510.6 32.1286 

7 '!raining 1 518.233 23.2997 575.267 23.22 
2 437.367 21.0508 523.367 27.5887 

Verification 1 502 31.5802 565.667 28.025 
2 387.8 26.5205 501.5 32.429 

12 Training 1 508.333 22.6477 566.833 28.5018 
2 423.867 21.4793 509.067 29.5669 

Verification 1 493.367 23.4322 558.933 30.3894 
2 385.4 25.6308 489.233 39.9385 

20 1 'lraining 1 549.467 22.0168 596.067 20.3858 
2 460.067 19.6187 549.3 27.1066 

Verification 1 536.133 28.3315 590.667 25.782 
2 417.2 21.4177 528.8 29.0403 

2 Training 1 546.067 18.4502 588.9 21.9849 
2 457.4 17.065 539.567 26.2766 

Verification 1 530.267 22.5418 580.9 23.8304 
2 413.633 20.4425 517.433 29.2712 

7 Training 1 533.933 23.5649 587.233 24.805 
2 446.2 19.4624 532.467 27.6639 

Verification 1 515.533 28.9717 577.833 28.7931 
2 408.8 23.7275 521.1 33.7653 

12 Training 1 532.067 24.8789 577.967 28.0621 
2 448.9 25.8782 529.2 27.3816 

Verification 1 518.933 27.7214 572.1 28.618 
2 410.7 27.8024 509.067 34.8187 

50 1 Training 1 540.1 38.8564 583.4 33.8593 
2 458.067 31.2884 536.067 41.7884 

Verification 1 527.067 40.1437 577.733 36.3526 
2 409.133 32.4661 516.367 42.4544 

2 Training 1 553.533 21.687 593.267 19.9256 
2 466.467 15.0327 546.7 23.2025 

Verification 1 539.033 24.8686 586.3 20.8957 
2 420.667 18.8741 526.767 27.1746 

7 Training 1 548.133 27.0717 588.333 29.5289 
2 458.733 18.6953 545.8 32.3562 

Verification 1 535.267 26.2993 582.633 28.4744 
2 414.633 22.8496 523.633 34.8717 

12 Training 1 532.433 24.7173 577.767 28.3885 
2 444.2 17.0342 529.767 30.9133 

Verification 1 517.867 30.3642 568 33.4169 
2 401.967 23.4822 508.767 39.0143 

Table B.18: 12 States, Population 51, 75% Crossover - (12,55,7)4 
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Parameters Exact Fuzzy 
Crossover Mutation # Mutations Type Distance Average Std Dev Average Std Dev 

80 10 1 Training 1 531.067 24.5356 582.567 22.5613 
2 448.367 23.923 531.833 30.085 

Verification 1 518.067 28.9195 575.667 29.7858 
2 405.133 25.9532 514.733 32.4292 

2 Training 1 522.4 27.808 567.9 28.7226 
2 441.467 20.5925 516.767 32.4385 

Verification 1 505.767 33.307 557.533 31.4574 
2 400.133 24.7271 494.3 34.6392 

7 Training 1 511.6 29.5023 563.033 32.783 
2 429.7 20.5781 512.3 35.7647 

Verification 1 499.533 32.7453 555.933 35.0968 
2 390.3 26.4199 488.6 41.5946 

12 Training 1 507.533 30.7591 565.067 32.0742 
2 426.2 28.116 516.833 38.4278 

Verification 1 494.4 34.2854 558.033 31.9703 
2 384.667 28.4524 494.967 39.3407 

20 1 Training 1 539.133 18.1045 584.5 16.6293 
2 456.067 15.9955 536.233 20.3702 

Verification 1 523.5 19.3047 575.3 17.858 
2 412.867 20.2599 518.1 23.8578 

2 Training 1 535.933 23.6861 586.767 25.355 
2 452 20.1186 537.233 22.7 

Verification 1 523.133 26.5924 580.333 25.3545 
2 408.433 25.1117 518.7 26.3794 

7 ·!raining 1 536.567 25.6134 583.233 31.5252 
2 450.4 22.3832 535.267 35.3855 

Verification 1 520.433 31.213 576.933 35.5576 
2 408.1 26.0336 511.033 41.1293 

12 TraIning 1 529.5 19.6·{45 574.033 29.3886 
2 448.633 16.9654 524.6 30.93 

Verification 1 512.567 26.1978 564.6 34.2985 
2 407.133 18.8382 502.7 35.9867 

50 1 TraIning 1 549.9 28.6<i49 5!l3 30.7089 
2 464.8 22.3073 549.067 34.4553 

Verification 1 536.733 34.7513 588.733 32.2158 
2 418.967 22.842 527.533 41.7577 

2 Traming 1 552.367 16.9:.!88 594.533 16.7079 
2 469.267 15.8982 551.4 18.7958 

Verification 1 537.633 20.7256 587.467 18.7133 
2 423.733 19.4315 532.667 26.6618 

7 'Ii'aining 1 551.333 19.1263 593.733 14.3453 
2 462.933 14.5837 548.333 21.5508 

Verification 1 536 20.7198 585.6 16.9087 
2 414.2 21.6865 525.6 25.9703 

12 Training 1 535.4 25.6684 584.433 27.1492 
2 445.133 19.2044 533.733 31.4719 

Verification 1 520.567 27.9478 578.567 29.0501 
2 406.167 17.5521 515.933 32.548 

Table B.19: 12 States, Population 51, 80% Crossover - (12,55,7)4 
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APPENDIX B. RESULTS OF SCM DECODERS 112 

Parameters Exact Fuzzy 

Crossover Mutation # Mutations Type Distance Average Std Dev Average Std Dev 

90 10 1 Training 1 518.4 28.6749 565.3 31.2379 
2 435.7 28.8374 517.1 37.3468 

Verification 1 502.333 31.8697 556.133 35.5564 
2 390.7 29.7787 493.233 41.549 

2 Training 1 539.567 23.2745 592.2 24.0795 
2 447.067 17.3879 543.533 26.3802 

Verification 1 520.467 25.1008 584.2 23.9041 
2 402.733 22.2493 520.767 32.8536 

7 TrainIng 1 515.567 29.9375 568.267 25.7212 
2 435.9 24.4799 517.367 31.7039 

Verification 1 503.7 31.8164 560.633 28.5349 
2 396 26.3308 494.8 35.5764 

12 Training 1 511.4 19.655 567.233 29.562 
2 427.267 18.2491 517.567 31.9716 

Verification 1 495.633 21.5558 557.933 32.3387 
2 381.833 15.5632 488.567 39.5681 

20 1 Training 1 545.867 21.8581 593.2 17.1774 
2 457.8 24.6778 540.7 26.6887 

Verification 1 529.167 29.6498 586 24.0302 
2 417.367 22.0509 522.367 26.2199 

2 Training 1 545.767 17.9361 592.067 20.3655 
2 462.267 16.3579 545.4 24.4563 

Verification 1 531.867 21.5946 586.433 22.7334 
2 414.767 19.9286 521.433 32.9971 

7 TraIning 1 535.533 22.5858 581.5 24.4142 
2 451.467 20.5707 533.3 27.92 

Verification 1 520.733 30.1078 573.467 27.614 
2 411.967 21.4757 513.5 31.6596 

12 Traimng 1 532.133 23.2167 584.667 25.4942 
2 449.667 17.2554 531.1 27.1894 

Verification 1 516.267 27.323 575.133 29.9237 
2 408.033 23.4366 510.167 33.4552 

50 1 Training 1 548.567 21.8611 590.833 25.8365 
2 462.067 19.9325 543.7 33.2702 

Verification 1 535.033 28.4853 583.567 33.4125 
2 415.267 24.096 520.833 39.0005 

2 Training 1 551.733 19.5729 594.967 19.5598 
2 459.2 19.63 549.267 26.3032 

Verification 1 536.4 23.6667 588.5 21.8234 
2 415 20.3148 529.5 28.1397 

7 Training 1 552.933 16.609 596.2 16.2319 
2 466.833 18.0174 554.967 23.5555 

Verification 1 543.333 24.2122 589.8 20.0455 
2 422.433 18.2939 539.067 29.118 

12 TrainIng 1 540.1 19.5648 589.4 22.5138 
2 453.833 14.1545 543 24.5638 

Verification 1 530.867 20.8438 584.433 22.5399 
2 413.867 17.1479 523.933 28.8108 

Table B.20: 12 States, Population 51, 90% Crossover - (12,55,7)4 
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Parameters Exact Fuzzy 

Crossover Mutation # Mutations Type Distance Average Std Dev Average Std Dev 
100 10 1 Training 1 536.833 20.5327 583.033 21.4452 

2 455.833 16.688 533.567 23.6857 
Verification 1 524.167 22.7461 577.033 24.6037 

2 411.4 17.5904 513 29.6996 
2 Training 1 534.233 19.2832 583.167 21.451 

2 452.933 18.5453 540.133 25.8213 
Verification 1 519.967 25.3887 576.067 23.2793 

2 408.633 21.8356 519.033 25.3887 
7 Training 1 520.533 26.0553 575.9 27.6248 

2 435.133 26.4285 524.167 36.0785 
Verification 1 506.567 33.3091 568.733 31.7696 

2 393.033 27.0153 502.167 38.6773 
12 Training 1 517.633 26.0854 571.9 33.706 

2 440.4 20.5604 524.567 31.1223 
Verification 1 506.367 26.449 566.467 32.1073 

2 398.5 23.5676 500.1 38.9786 
20 1 Training 1 545.433 18.4964 586.8 22.3057 

2 456.7 21.5201 536.1 32.7723 
Verification 1 530.8 26.3601 579.667 28.9772 

2 413.967 20.6573 516.8 32.4658 
2 Training 1 540 29.2787 581.4 30.7712 

2 457.233 24.1414 536.7 34.8367 
Verification 1 525.233 34.1666 574.2 34.3194 

2 413.133 23.1855 515.267 38.6834 
7 Training 1 539.467 19.5426 584.633 22.261 

2 452.367 19.3756 532.733 30.4596 
Verification 1 522.967 23.3112 577.167 24.7109 

2 405.467 18.7004 514.267 27.9999 
12 "Training 1 542.467 29.6342 586.733 29.6612 

2 456.7 24.2375 547.167 32.9096 
Verification 1 530.333 33.6076 580.567 31.765 

2 409.367 23.3201 524.067 42.4662 
50 1 TrainIng 1 548.4 21.9036 586.733 21.7302 

2 465.967 16.4369 545.633 24.2665 
Verification 1 534.1 25.613 581.767 23.6857 

2 419.367 16.5831 523.833 26.4576 
2 TraIning 1 546.4 27.3125 586.933 31.8779 

2 463.633 21.6771 542.067 34.964 
Verification 1 533.2 32.1466 581.167 35.2724 

2 417.267 23.7994 522.633 38.242 
7 Training 1 552.1 10.9964 595.5 15.328 

2 466.833 13.9434 555.567 21.5097 
Verification 1 544.367 16.9675 591.967 18.163 

2 418.167 13.5522 536.567 20.8916 
12 Training 1 540.433 14.885 586.867 17.1881 

2 447.533 14.9337 538.933 24.053 
Verification 1 530.533 17.1861 579.767 20.584 

2 408.767 15.6419 522.567 21.3714 

Table B.21: 12 States, Population 51, 100% Crossover - (12,55,7)4 
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"An intractable problem can only be resolved by stepping beyond 
conventional solutions." 

- Ozymandias, Watchmen. 


