
Bounds on Edit Metric Codes with Combinatorial DNA
Constraints

by Jing Sun

Department of Computer Science

Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

Faculty of Mathematics and Science, Brock University

St. Catharines, Ontario, Canada

©2009

Approved for the Committee:

Dr. S. Houghten

Dr. K. Qiu

Dr. D. McCarthy

Department of Computer Science

Supervisor Dr. S. Houghten

ii

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Sheridan Houghten, for her

support, patience and encouragement throughout my graduate studies. With her enthusi­

asm, guidance and great effort to explain things clearly, I am devoted to the research field

that I am interested in and overcame lots of difficulties that unavoidably crop up in the

processes of performing research. Her technical and editorial advice were essential to the

completion of this dissertation and have taught me innumerable lessons and insights on the

workings of academic research in general.

My thanks also go to the members of my committee, Dr. Ke Qiu and Dr. Dave Mc­

Carthy for reading my research proposal and previous draft of this dissertation and provid­

ing valuable comments and suggestions that help with the completion of this dissertation.

The friendship of my fellow students is much appreciated and has led to many interest­

ing and inspirited discussions relating to this research. My thanks go to Robert Flack and

Yi Feng Li for their helping with various ideas of coding implementation.

Most importantly, I wish to thank my parents, Zhigang Sun and Hong Yu. They bore

me, raised me, supported me, taught me, and loved me. To them I dedicate this thesis. I am

also grateful to my aunt Ping Patel Yu, my uncle Narsh Patel and my grandma Xingzhi Li

for their dedication, encouragement, love and support. And I would also like to thank my

husband, Xiang Yin, for his understanding and love during past few years. His support and

encouragement were in the end what made this dissertation possible.

Finally, I appreciate the financial support from our department, Computer Science De­

partment of Brock University for my graduate studies and the great working environment

it provided me.

iii

This document was prepared using TeXnicCenter.

iv

Abstract

The design of a large and reliable DNA codeword library is a key problem in DNA based

computing. DNA codes, namely sets of fixed length edit metric codewords over the alpha­

bet {A, C, G, T}, satisfy certain combinatorial constraints with respect to biological and

chemical restrictions of DNA strands. The primary constraints that we consider are the

reverse--complement constraint and the fixed GC--content constraint, as well as the basic

edit distance constraint between codewords.

We focus on exploring the theory underlying DNA codes and discuss several approaches to

searching for optimal DNA codes. We use Conway's lexicode algorithm and an exhaustive

search algorithm to produce provably optimal DNA codes for codes with small parameter

values. And a genetic algorithm is proposed to search for some sub--optimal DNA codes

with relatively large parameter values, where we can consider their sizes as reasonable

lower bounds of DNA codes. Furthermore, we provide tables of bounds on sizes of DNA

codes with length from 1 to 9 and minimum distance from 1 to 9.

v

Contents

List of Committee Members

Acknowledgements

Abstract

List of Tables

List of Figures

1 Introduction

1.1 Fundamentals of Coding Theory

1.2 Biological Background of DNA Molecules.

1.3 Applications of DNA Codes

1.3.1 DNA Computing . .

1.4 DNA Code Design Problem

1.5 Concept of DNA Codes . .

1.6 Organization of the Thesis

2 Previous Work

vi

ii

iii

v

ix

x

1

1

3

5

5

6

7

9

10

2.1 Previous Work on Error-Correcting Codes . .

2.2 Previous Work on Edit Metric Codes . .

2.3 Previous Work on Various DNA Codes .

3 DNA Code Space

3.1 DNA Word Space

3.1.1 Graph of DNA Word Space

3.1.2 Words of Length 1

3.1.3 Words of Length 2

3.1.4 Words of Length 3

3.1.5 Graph for Words of Different Lengths

3.2 Permutations that Preserve the Fixed GC--content .

3.3 Definition of Equivalent DNA Codes.

3.4 Properties of Equivalent DNA Codes .

4 Properties of DNA Codes

4.1 Theorems of Optimal DNA codes

4.1.1 Binary Reverse-Complement Codes .

4.2 Lower and Upper Bounds

5 Algorithms

5.1 Conway's Lexicode Algorithm

5.1.1 Outline of Conway's Lexicode . . .

5.1.2 Table of Bounds on DNA Codes by Conway's Lexicode

5.2 Exhaustive, Search Algorithm ..

vii

10

11

12

15

15

15

16

17

18

19

21

26

28

30

30

35

42

43

43

44

44

45

5.2.1 Outline of Exhaustive Search. . . . 46

5.2.2 Optimizations of Exhaustive Search 48

5.2.3 Table of Sizes of Optimal DNA Codes by Exhaustive Search 50

6 Genetic Algorithm 52

6.1 Background of Genetic Algorithm 52

6.2 The Operators of Genetic Algorithm 53

6.3 Parameters of Genetic Algorithm . . 54

6.4 Outline of General Genetic Algorithm 55

6.5 Genetic Algorithm for DNA Codes . 55

6.5.1 Parameter Sets 56

6.5.2 Representation 56

6.5.3 Fitness Function 57

6.5.4 Initialization .. 57

6.5.5 Selection operator 57

6.5.6 Repair Operator. . 58

6.5.7 Crossover Operator . 58

6.5.8 Mutation Operator . 60

6.5.9 Replacement Operator 60

6.6 Examples of Experiments . . . 60

6.7 Tables of Sizes of DNA Codes by Randomized Genetic Algorithm 63

7 Conclusion 66

Bibliography 69

viii

List of Tables

5.1 Bounds on DNA Codes by Conway's Lexicode Algorithm 45

5.2 Bounds on DNA Codes by Exhaustive Search Algorithm 50

6.1 Sizes of DNA Codes by RGA of Population Size 50 . 62

6.2 Sizes of DNA Codes by RGA of Population Size 100 62

6.3 Sizes of DNA Codes by RGA of Population Size 200 63

6.4 Bounds on DNA Codes by RGA under Rc = 1.0, Rm = 0.0 64

6.5 Bounds on DNA Codes by RGA under Rc = 0.0, Rm = 1.0 65

6.6 Bounds on DNA Codes by RGA with Elitism under Rc = 0.9, Rm = 0.1 65

7.1 Best-known Bounds on DNA Codes . 67

ix

List of Figures

1.1 Image of a DNA double helix. . 3

3.1 DNA code space for length of 1 16

3.2 DNA code space for length of 2 17

3.3 DNA code space for length of 3 19

3.4 DNA code space for length of 0 to 2 20

4.1 Template-Map construction for a (4,2,2)4 DNA code. o .. • a 0 5 C e ~ • • 39

5.1 Exhaustive Search procedure for (2, 1, 1)4 codes 47

5.2 Pruning method of Exhaustive Search for (2,1,1)4 codes 49

6.1 Repair of a (4,3) DNA code e 58

6.2 Crossover of two (4,3) DNA codes. 59

6.3 Randomized GA on (7,3,3)4 DNA codes 61

6.4 Different population sizes on (7,3,3)4 DNA codes 61

x

Chapter 1

Introduction

In this chapter, we first introduce the basic concepts of coding theory and biological back­

ground of DNA. Various applications using DNA are presented. We briefly define DNA

codes over edit distance, restricted with certain biological constraints. We consider the

problem of finding optimal DNA codes in this thesis.

1.1 Fundamentals of Coding Theory

Communication channels are used to transmit messages from a source to a receiver. How­

ever, errors can occur during the transmission due to noise, and distort the message so

that what is received is not always the same as what was sent. Error--correcting codes are

designed to correct certain possible errors that occur when the channel is noisy. An error­

correcting code is a set of strings over an alphabet set, in which each string is called a

codeword. The codewords are separated from each other by a distance, thus it is capable

of avoiding the errors that occur in a code when transmitting.

Let x, y be two codewords. The Hamming distance dH(x, y) between two words x and

1

CHAPTER 1. INTRODUCTION 2

y is defined to be the number of coordinates in which x and y differ. For example, if we have

two binary words x = 000111 and y = 101010, then dH (000111, 101010) = 4. Codes over

Hamming distance can be used to correct substitution errors, which have been extensively

studied, see more in books [18, 29]. Synchronization errors can cause part of the message

to be stripped off or cause additional symbols to be inserted into the message from the

sender. Codes over the edit metric are designed to correct both substitution errors and

synchronization errors. Edit distance, also known as Levenshtein distance, is the minimum

number of substitutions, deletions or insertions that are required to transform one word

into another. For example, the edit distance between two words 011100 and 001110 equals

dedit (011100,00111O) = 2, since we first delete the last symbol 0 in the word 011100 and

insert it in front of this word, obtaining word 001110.

A q-ary code with pre--determined minimum distance d and length n is denoted as an

(n, d)q code, where the minimum distance is the smallest distance between any two distinct

codewords, and the length is the number of symbols in a codeword. The notation (n, M, d)q

is an (n, d)q code with M codewords, where M is defined as the size of the (n, d)q code.

The maximum size of a q-ary Hamming distance code of length n and minimum dis­

tance d is denoted by Aq(n, d). An (n, M, d)q code is optimal if M = Aq(n, d) for Ham­

ming distance codes. Similarly, we denote Eq(n, d) as the maximum size of a q-ary edit

distance code of length n and minimum edit distance d. We define an (n, M, d)q edit metric

code to be optimal if M = Eq(n, d). Exact values and bounds for Aq(n, d) can be found

in [18, 22]. Tables of bounds for edit metric codes are investigated in [17], for quaternary

codes with the length n from 1 to 10 and minimum distance d from 1 to 10.

CHAPTER 1. INTRODUCTION 3

1.2 Biological Background of DNA Molecules

Figure 1.1: Image of a DNA double helix

DNA (deoxyribonucleic acid), shown in an Figure 1.1 in [33], consists of two strands

that form a spiral called a double helix. A single DNA strand is a sequence of nucleotides,

which has chemically distinct ends as the 3' and 5' ends. Each nucleotide contains one base,

one phosphate molecule and the sugar molecule deoxyribose. The 3' end has a terminal

hydroxyl group and the 5' end has a terminal phosphate group. The 3' end and 5' end

are called the asymmetric ends of DNA strands, which indicate the direction of two DNA

strands in the DNA double helix. These DNA strands are antiparallel; the direction of

nucleotides in one DNA strand is opposite to the direction of the nucleotides in the other

strand. The information in DNA is stored as a code made up of four bases: adenine (A),

guanine (G), cytosine (C). and thymine (T). Abiding by the Watson-Crick law in base

CHAPTER 1. INTRODUCTION 4

paring, A pairs up with T and C with G.

Hybridization, known as base pairing, occurs when a single strand bonds to another

single strand, to form a double strand. The Watson-Crick complementary strand of a DNA

strand is obtained by replacing every A with a T and every C with a G and vice versa,

while also switching the 3' and 5' ends. For instance, the Watson-Crick complementary

strand of 3' - ACTG AA - 5' is 5' - TG ACTT - 3'. In specific hybridization, a strand

bonds to its Watson-Crick complementary strand. Specific hybridization can be used to

identify and retrieve target DNA words from a set of DNA words: if we wish to obtain a

particular DNA word in the DNA words pool, we can use its Watson-Crick complementary

word to bond to it, forming a double helix by specific hybridization. Then, we split this

DNA double helix, thus obtaining the desirable word. Non-specific hybridization occurs

when hybridization between a DNA strand and its Watson-Crick complement does not

take place as intended; for example, a DNA strand may bond to the Watson-Crick com­

plement of some other DNA strand, or to the reverse--complement of some other strand.

For example, for a DNA strand ACTGAA, specific hybridization occurs when it bonds to

its Watson-Crick complementary strand TGACTT. However, non-specific hybridization

takes place if it bonds to some other strand like TCCCAT or to the Watson-Crick com­

plementary strand of TCCCAT, ATGGGA. Non-specific hybridizations can occur in a

self-assembly process, in a polymerase chain reaction or in an extraction operation in lab

experiments.

CHAPTER 1. INTRODUCTION 5

1.3 Applications of DNA Codes

The DNA molecule is widely used in lab applications such as probe selection for DNA

microarrays [27], or primer design for peR [5, 7]. It is also applied in nanotechnology as

three dimensional structural materials and as an information storage medium.

From a computer science point of view, one of the most significant application for

DNA molecules is DNA computing, which is based on innovative work by Adleman. In

Adleman's paper [1], he proposed using DNA molecules to solve a well-known mathe­

matical problem, called the 'Hamiltonian Path Problem'. The goal of this problem is to

find a path that starts from a given starting city and terminates at a given ending city by

going through the intermediary cities exactly once. His experiment was performed on a

seven cities and fourteen flights map. He encoded the seven cities and possible paths into

DNA sequences, synthesized the Watson-Crick complementary DNA sequences of each

city and mixed them in a test tube. Hence, all of the possible combinations of DNA se­

quences were created in the test tube during the chemical reaction. Then, he eliminated the

wrong molecules and took only those in which the paths connected all seven cities as the

final solution. The feasibility of using DNA molecules for computation is shown through

Adleman's experiments.

1.3.1 DNA Computing

DNA computing is highly parallelized, selecting a large amount of special-purpose DNA

strands to hybridize and filtering the final solution. With a given setup and enough DNA

strands, DNA computing can potentially solve huge problems and perform calculations

much-faster than the most powerful human-built supercomputers. It accomplishes massive

CHAPTER 1. INTRODUCTION 6

parallelism by allowing multiple strands to hybridize simultaneously in a large pool of

DNA strands. DNA computing also has a powerful storage capability because biochips are

much smaller than traditional chips but hold enormous numbers of DNA molecules. For

these reasons, there is a growing interest in using DNA computing. The reliability of DNA

computing requires the availability of a large set of DNA strands which can achieve specific

hybridizations and avoid non-specific hybridizations.

1 .. 4 DNA Code Design Problem

The DNA sequence design problem is to construct a large set of single DNA strands that

are likely to hybridize to their target strands in the predetermined way, minimizing the

chances that errors occur in unintended hybridizations. Various metrics have been pro­

posed. There are simple measures such as comparing two DNA sequences coordinate by

coordinate, the GC-content restriction on DNA sequences in which the number of Gs and

Cs is determined, and more sophisticated and realistic models that focus on thermody­

namic factors like estimating free-energy [7] to produce DNA strands with similar melt­

ing temperatures[20]. The Gibbs energy and nearest neighbor thermodynamics scheme

considers both factors of avoiding secondary structure of DNA strands from non-specific

hybridization and thermodynamic factors of DNA strands. It provides a more accurate

measurement in most research work, stated in [6, 7]. However, it is computationally time

consuming. Simpler metrics like Hamming distance, as used in most conventional error­

correcting codes, have also been used, allowing the correction of substitution errors oc­

curring in DNA sequences. The authors of [30] argued about several types of metrics,

and proposed the use of a robust metric called edit distance, which is not only capable of

CHAPTER 1. INTRODUCTION 7

correcting combinations of substitution, insertion and deletion errors, but is also feasible

in tenns of computational complexity. In this thesis, we use edit distance to measure the

similarity of DNA strands.

1.5 Concept of DNA Codes

We define an (n, d, W)4 DNA code to be a set of codewords over a quaternary alphabet

{A, C, G, T}, that has fixed length n, minimum edit distance d and fixed GC-weight w

where w is the total number of Gs and Cs in a word. In addition, the DNA Code must

satisfy certain combinatorial biological constraints.

In this thesis, three major constraints on DNA codes are considered:

1. Edit Distance Constraint

The edit distance constraint for a DNA code C is that dedit(X, y) :::: d for all x, y E C,

with x =} y, for some prescribed minimum distance d. For example, if we have two

DNA words T ACCTG and ACCTGT, then dedit(T ACCTG, ACCTGT) = 2,

because we can simply remove the first T of word T ACCTG and append a T at the

end of this word to obtain the word ACCTGT.

The edit distance constraint can reduce non-specific hybridizations between distinct

codewords, as well as correct the insertion, deletion and substitution errors in code­

words. The computation of the edit distance can be simply solved by applying a

dynamic programming algorithm with time complexity of O(n2) for words length n,

see [34].

2. Reverse-Complement Constraint

CHAPTER 1. INTRODUCTION 8

The reverse-complement constraint is that dedit(xRC, y) ~ d for all x, y E C, includ­

ing x = y for some prescribed minimum distance d. The Watson-Crick complement

of each nucleotide is denoted by A = T, T = A, C = G and G = C. The reverse­

complement of x = (XI, X2, ... , xn) is denoted as x RC = (xn' Xn-I, ... , Xl)' For ex­

ample, the DNA word z = AACCGGTT does not satisfy the reverse-complement

constraint since it is self-complementary and thus dedit (ZRC, Z) = O. So, such words

can not be selected for constructing our DNA words set.

The reverse-complement constraint limits non-specific hybridizations between code­

words and the reverse-complements of codewords, including the reverse--complement

of itself.

3. Fixed GC-Content Constraint

The fixed GC--content constraint requires that each DNA strand contain the same

total number of Gs and Cs, denoted by w for a code Cor WGc(x) for some codeword

x.

It guarantees that all DNA words in the set have similar melting temperature, there­

fore hybridization of multiple words can take place simultaneously, see [7]. In this

thesis, we present results for a fixed GC weight of L ~ J for DNA codes of length

n since this has been demonstrated as the best value to retain each DNA word in a

proper temperature range in lab experiments.

It is noted that the constraints we consider may not concern about certain issues which

could be crucial in specific practical applications. One of the important constraints is the

forbidden subwords constraint, that a class of substrings must not occur in any codeword or

concatenation of codewords, mentioned in [31]. The consecutive-bases constraint forbids

CHAPTER 1. INTRODUCTION 9

long runs of the same base. The frame-shift constraint, also mentioned in [31], requires that

concatenation of two or more codewords should not properly contain another codeword.

Those constraints will not be discussed in this thesis, but may possibly be examined in

future research.

An (n, d, W)4 DNA code is optimal if it has the maximum possible number of code­

words for given parameters of n, d and w. In this thesis, we consider the problem of

finding DNA codes which contain a large number of codewords. Exhaustive search is used

to obtain optimal DNA codes with relatively small values of nand d. However, for those

with larger values of n and d, it is not computationally feasible. Thus, a genetic algorithm

is used to search for large codes within a reasonable period of time.

1.6 Organization of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 gives a literature overview of methodologies and algorithms that have been pre­

viously utilized to find good predefined DNA codes. Chapter 3 describes the DNA word

space according to the above constraints and gives a definition of equivalent codes. Chap­

ter 4 focuses on optimal DNA codes, and establishes the size of optimal codes for some

specific parameter values. Chapters 5 and 6 present several algorithms that we designed

for searching for good DNA codes and tables of lower bounds are given. In Chapter 7, we

analyze the approaches that we applied to design good DNA codes and consider further

future work.

Chapter 2

Previous Work

In this chapter, we first show some early work on edit metric codes. Then, we give a

overview of previous work which involves various approaches to finding bounds on types

of DNA codes, addressing different experimental issues.

2.1 Previous Work on Error-Correcting Codes

Research on error -correcting codes can be traced back to the early 1950s. Enormous work

has been done and different types of codes have been presented. The fundamentals of error­

correcting codes may be found in books [18,22,29], etc. Different types of upper bounds

and lower bounds of both linear and non-linear codes have been investigated. Tables of

bounds are given in [8] for binary Hamming codes, in [10] for ternary Hamming codes and

in [9] for quaternary Hamming codes.

The Lexicode algorithm is first used for binary linear codes. The earliest work using

genetic algorithms is presented in [24], employing a general genetic algorithm to search for

linear binary codes with given n and d. In [16], the authors transform the problem of finding

10

CHAPTER 2. PREVIOUS WORK 11

bounds on sizes of optimal error-correcting code over Hamming distance into the Maxi­

mum Clique Problem. Heuristics as Hill Climbing, Simulated Annealing, greedy methods

and Genetic Algorithms were applied and compared. The empirical results showed that the

Genetic Algorithm outperformed the other algorithms.

2.2 Previous Work on Edit Metric Codes

The theory of edit metric codes over small alphabet sets was explored and some theoretical

upper bounds were derived in [17]. The authors also indicated that the structure of the edit

space is heavily dependent on the block structure of the words, which partitions words into

maximal subwords of a single symbol. Therefore, the theory of edit metric codes is sig­

nificantly different from that of the conventional Hamming distance codes. An exhaustive

search method was employed to search for exact values and upper bounds on sizes of opti­

mal edit codes for small parameter values. A similar approach is also used in this project,

to find optimal DNA codes for small parameter sets.

Different strategies have been applied in constructing good edit codes for larger param­

eter values. Ashlock, Guo and Qiu [3] developed a program that used a genetic algorithm

to control a greedy algorithm, known as Conway's Lexicode Algorithm [18]. They de­

signed their chromosome to be a list of codewords of a given small size m, termed a 'seed'.

A seed consists of m codewords which are compatible with each other. Then they used

Conway's algorithm to finish this partial code and defined the fitness of a chromosome to

be the size of the code obtained after applying the greedy algorithm to the corresponding

seed. The GA operators such as crossover and mutation were employed only on seeds, and

those modifications had a huge effect on completing the partial codes. They demonstrated

r
I CHAPTER 2. PREVIOUS WORK 12

that this deflection of the greedy algorithm potentially exploits the search space and a large

number of good edit codes were found.

Optimal variable-length insertion-deletion codes and edit metric codes have been stud-

ied in [4]. The theory of such codes has been investigated and an exhaustive search has been

performed to obtain exact values of sizes of codes.

2.3 Previous Work on Various DNA Codes

King [20] provided theoretical upper bounds and lower bounds on sizes of DNA codes

with fixed GC--content over Hamming distance. Codes both with and without the addi-

tional reverse--complement constraint were discussed and tables of lower bounds on sizes

of codes are given respectively. Gaborit and King in [14] proposed a new construction for

Hamming DNA codes, that are derived from additive and linear codes over GF(4). Using

a combination of lexicographic techniques and stochastic search, they provided a table of

bounds up to length 20. Chee and Ling designed a stochastic local search in [11], using

an 'acceptance' probability function to determine a random neighborhood search. The 'ac-

ceptance' probability function is used to accept a move to a solution at least as large as

the best solution found so far, and reject a move to a solution that has a size three or more

smaller than the best known solution. Their algorithm improved one third of the values of

lower bounds for Hamming DNA codes with"constant GC--content constraint and reverse-

complement constraints in [14]. Tulpan and Hoos in [32] utilized different types of neigh-

borhood functions to improve a general stochastic local search. They start a code with a set

of randomly selected DNA sequences, then repeatedly replace a conflicting word x that vio-

lates more than one constraint with a 'neighborhood' word until a valid code is found. They

CHAPTER 2. PREVIOUS WORK 13

proposed three types of neighborhood mechanism: v-Mutation Neighborhood, Pure Ran­

dom Neighborhoods and Hybrid Randomized Neighborhoods. The neighborhood words

of a given word x in the first neighborhood method can be obtained by modifying up to v

bases from x, while satisfying the fixed GC--content constraint as well. The Pure Random

Neighborhood selects a fixed number of random words with the same GC--content as x

to be the neighborhood of x. The Hybrid Randomized Neighborhood combines the first

two methods, adding random words to the set of v-mutation neighborhoods, which allows

the search to escape from local optima. The impact of those three neighborhoods on the

performance of stochastic local search have been analyzed and compared.

In [25], a modified genetic algorithm with mutation-only heuristic was used to produce

some initial DNA codes, then exhaustive search was applied to extend codes across the

entire search space of possible words, thus yielding codes of maximum size. They also

implemented their hybrid architecture by using parallel genetic algorithms, incorporating

hardware accelerators to calculate edit distance and speed up the exhaustive search. They

significantly improved the computational time required to generate good DNA codes up to

length 16.

Several approaches to designing good DNA sequences for other experimental purposes

have been investigated. In [15], the authors proposed a new metric, called H-measure, as a

measurement for hybridization likelihood. They indicated that the H -measure allows the

development of encoding criteria and guarantees reliability for DNA computing. In [19],

a multi-objective genetic algorithm was used to generate sets of DNA sequences which

reflect more realistic characteristics of DNA for practical lab applications, considering var­

ious constraints including fixed GC content, H -measure and melting temperature, etc. The

fitness of a code is evaluated by Pareto optimization. Feldkamp, Rauhe and Banzhaf in [13]

CHAPTER 2. PREVIOUS WORK 14

implemented a software tool called the DNA Sequence Generator and the DNA Sequence

Compiler. The approach of measuring dissimilarity between DNA sequences is based on

the uniqueness of overlapping subsequences, see [26, 28] and a graph based algorithm was

applied for DNA sequence generation. Furthermore, constraints such as melting tempera­

ture and forbidden subsequences were also considered in their software.

Chapter 3

DNA Code Space

In this chapter, we describe the search space of DNA codes with small length n. We discuss

how constraints affect DNA words, and finally define the equivalence of DNA codes.

3.1 DNA Word Space

3.1.1 Graph of DNA Word Space

We represent the DNA word space by a graph 9 in which words are represented by vertices

for our alphabet 1) = {A, C, G, T}, and the vertex set at 'level' n is 1)n, representing all

possible words of length n. The edge set E is {(x, y) : min (dedit (x, y), dedit (X, yRC)) =

1, x, Y E vn}. Two vertices x and y are connected by an edge if and only if x can be

transformed into y or yRC by a single operation of insertion, deletion or substitution.

In graph g, we classify all 4 n words of length n into 3 subsets,

1. The words in the set Co: {x E vn : dedit (X, XRC) 2:: 1 and WGc(x) = L~J} are valid

words in the space, that is, they can be chosen as codewords in a code of length n. In

15

CHAPTER 3. DNA CODE SPACE 16

the following graphs, they are denoted by black dots.

2. The words in the set Cl : {x E vn : dedit (X, XRC) = O} are words that are self-

complementary, and thus can never be chosen as codewords for a code. These are

denoted by squares in the following graphs. It is noted that self-complementary

words only exist for codes with even length.

3. The remaining words, in the set C2, are those that are not self-complementary and do

not satisfy W GC (x) = l ~ J. Since we wish to find codes with a GO-content of 50%,

these words can not be included in our codes. However, if an application requires a

different GO content or if this restriction is not required, then these words could be

valid. They are marked as empty dots in the following graphs.

In the graph g, we connect pairs of words x, y such that min (dedit (X, y), dedit(X, yRC)) =

1, as adjacent words in the space. A solid line connects any two adjacent valid words con-

tained in Co. while a dashed line indicates the adjacency of a valid word from Co with an

invalid word which lies in set Cl or C2, or between any two invalid words from Cl or C2.

3.1.2 Words of Length 1

AJT cia
__ -----------0

Figure 3.1: DNA code space for length of 1

Figure 3.1 shows the DNA code graph for words of length 1. Consider the words x = A

and y = T. Since they are reverse-complements of each other, we have dedit (X, yRC) = O.

CHAPTER 3. DNA CODE SPACE 17

Furthermore, the edge set connecting x to other vertices is exactly the same as the edge set

connecting y to other vertices in the graph. Therefore, A and T 'share' a vertex, denoted

by { AjT}. Similarly, C and G also share a vertex, denoted by { C j G}. In the graph, vertex

{AjT}, is marked black since it satisfies dedit(X, xRC) ~ 1 and Wac(x) = l~J = 0 where

x E {A, T}, while vertex {C j G} is marked by an empty dot. Vertices {AjT} and {C j G}

are connected by a dashed line since the minimum distance of both of {A, T} with both of

{ C, G} equals 1.

3.1.3 Words of Length 2

AAlTT CC/GG

AC/GT

AG/CT

TA

AT

Figure 3.2: DNA code space for length of 2

Figure 3.2 shows the DNA code graph for codewords of length 2. All the 42 words are

partitioned into three sets Co, Cl and C2 as described before. As is defined, every word is

grouped together with its reverse--complement word to form a single vertex. Thus, the set

CHAPTER 3. DNA CODE SPACE 18

Co consists of vertices {AG/CT}, {CA/TG}, {AC/GT}, {GA/TC} since these words

obey the constraints dedit (x, xRC) 2:: 1 and W Go(x) = l ~ J = 1. The set Cl consists of

vertices AT, TA, CG and GC, since for these words, the distance between a word and

its reverse-complement is O. The vertices {AA/TT}, {CC/GG} are contained in set C2

because they are neither self -complementary nor satisfy W GC (x) = l ~ J = 1. As indicated,

any two adjacent valid words are connected by a solid line, so that {AG / CT} is adjacent

to {AC/GT} and {CA/TG}, and GA/TC is adjacent to {AC/GT} and {CA/TG},

and vice versa. Then, the vertex {AA/TT} is connected with {AG/CT}, {CA/TG},

{GA/TC}, {AC/GT}, {AT/TA} by a dashed line since {AA/TT} does not belong to

the valid word set. The same applies to the edges for vertex {CC /GG}. The word AT is

self-complementary and thus does not share a vertex with any other words; it is connected

by a dashed line with vertices {AA/TT}, {AC/GT} and {AG/CT}. This also applies to

the edges for vertices TA, CG and GC.

3.1.4 Words of Length 3

Figure 3.3 shows the DNA code sub graph for valid words of length 3. Since there are 43

words on 'level' 3, we only present the graph that contains the valid words, in Co. These

words are connected by a solid line if they are adjacent to each other. For example, word

{AAC / GTT} is adjacent to {AAG / CTT}, {ATC / GAT} and {T AC / GT A}. The same

also applies to the remaining 11 vertices. Two vertices that are disconnected implies that

the edit distance between them is greater than one.

CHAPTER 3. DNA CODE SPACE 19

AAC/GTT AAG/CTT ACG/AGT

ACAlTGT

ATC/GAT ... --t------I.
ATG/CAT

TAC/GTA
11_-----/--. TAG/CTA

TTC/GAA TTG/CAA TCAITGA

Figure 3.3: DNA code space for length of 3

3.1.5 Graph for Words of Different Lengths

To describe the insertion and deletion space on DNA words, we define a graph (1 that has

vertex set V* which consists of all words vn at each level n, n ~ 0 and edge set E which

is {(x, y) : min (dedit (x, y), dedit(X, yRC)) = 1, x, Y E V*}. Thus, the adjacent words of a

given vertex either share the same length or differ in length by one. Figure 3.4 shows the

DNA word space for words of lengths 0 to 2, where A represents the empty word, which is

self-complementary, at level O. For example, the graph indicates that the distance between

word GC to word CG is 2. When we delete C from word GC, we obtain a word G on

levell. Then, we insert C at the start of G, and obtain a word CG which is on level 2. It

is observed from the graph that the size of DNA word space grows exponentially when the

length of words increases.

CHAPTER 3. DNA CODE SPACE 20

Figure 3.4: DNA code space for length of 0 to 2

CHAPTER 3. DNA CODE SPACE 21

3.2 Permutations that Preserve the Fixed GC-content

Given alphabet set V = {A, C, G, T} , let Sym(VO) be the set of all permutations on V

and Sym(V) be the set of all permutations on V that maintain the same GC weight for

every word in the DNA space. Since IVI = 4, then Sym(VO) has 4! permutations.

We represent a permutation in one line notation or cycle notation. For example, con­

sider [2,3,1,4], one of the permutations of [1, 2, 3,4] in one line notation. In this notation,

the symbol in the first position is changed into the symbol in the second position. Similarly,

the symbol in the second position is changed into the third position and the symbol in the

third position is changed into the symbol in the first position, while the last symbol remains

the same. In cycle notation, this permutation is represented as as (123)4. For example,

apply [T, G, C, Al, as a permutation of [A, C, G, T], on a word ACGGT A, and thus obtain

a new word TGCC AT.

Among the 24 permutations in Sym(VO), some permutations also preserve the same

total number of Gs and Cs in every word of DNA word space; only those permutations

are in Sym(V). The cases will be enumerated here and counterexamples will be given for

those cases that do not satisfy the fixed GC-content constraint.

1. The identity permutation is [A, C, G, T]. Clearly, this retains the same GC weight in

all DNA words, as all words are unchanged.

2. Now consider those permutations that only exchange Cs with Gs and/or As with Ts.

All of those maintain the same GC weight in every DNA word to which they are

applied. These permutations are [A, G, C, T], [T, C, G, A], [T, G, C, A].

First consider [A, G, C, T]. Exchanging Cs with Gs maintains the same total number

of Cs and Gs in every word in the space, so that the GC weight remains the same.

CHAPTER 3. DNA CODE SPACE 22

Therefore, it is an element of Sym(V). Similarly, permutation [T, 0, G, A] is an ele­

ment of Sym(V) since exchanging As with Ts also maintains the same total number

of Os and Gs in any word in the space.

Now consider [T, G, 0, A]. It is easy to identify that this permutation is the combina­

tion of [A, G, 0, T] and [T, G, 0, A). It is apparent that simultaneously exchanging

character A with character T and character 0 with character G can not change the

GO weight in a word.

3. Now consider those permutations that replaces As with either Gs or Os, and simul­

taneously replace Ts with the remaining symbol Os or Gs; furthermore, Os are re­

placed with either As or Ts and Gs are replaced with the remaining symbol Ts or

As. These are [0, A, T, G], [0, T, A, G], [G, A, T, OJ and [G, T, A, 0]. All of these

only preserve the same GO weight after they are applied to a word with even length

and GO weight of ~.

Among these permutations, we use [0, A, T, G] to illustrate how it affects the GO

weight in a word. For example, if we have a word 0 AAAGGGO that has GO weight

of 5, the permutation produces a new word AOOOTTTA that has a GO weight of

3.

It is obvious that all of these permutations convert the pair of G and 0 into the pair

of A and T, therefore exchange the weight of GO with the weight of AT in a word.

Thus, it is observed that when a word with even length has the GO weight of ~, this

permutation still meets the restriction of fixed GO weight.

4. An of the remaining permutations are not valid for the fixed GO-content constraint,

for any length and GO weight. There are 3 subcases to consider:

CHAPTER 3. DNA CODE SPACE 23

(a) First consider those permutations that maintain exactly one character unchanged.

Those are

i. [A, -, -, -): [A, G, T, C), [A, T, G, C);

ii. [-, C, -, -): [G, C, T, A), [T, C, A, GJ;

iii. [-, -, G, -): [C, T, G, A), [T, A, G, C);

iv. [-,~,-,T): [C,G,A,T), [G,A,C,T).

Consider [A, -, -, -) which consists of [A, G, T, C) and [A, T, G, C). In each

ofthese, A remains unchanged while T becomes Cor G. Let us take [A, G, T, C)

to illustrate how the GC weight is affected. For example, if we have a word

AACCCGTT, we obtain a new word AAGGGTCC after this permutation

has been applied. It is obvious that AAGGGTCC no longer keeps the GC

weight of ~·as AACCCGTT does. The same situation occurs for permutation

[A, T, G, C). Similarly, the remaining cases of [-, C, -, -), [-, -, G, -) and

[-, -, -, T) also allow the GC weight to change.

Thus, in all of these cases, there are some words for which the GC weight will

c~ange when the permutation is applied.

(b) Now consider those permutations for which exactly two characters are un­

changed, and that are not already covered in case 2 above. Those are

i. [A,C,-,-): [A,C,T,G)

ii. [A, -, G, -) : [A, T, C, G)

iii. [-, -, G, T) : [C, A, G, T)

iv. [-,C,-,T]: [G,C,A,T)

CHAPTER 3. DNA CODE SPACE 24

In all of the above cases, either T or A is unchanged and either C or G is un­

changed, while the remaining symbols are exchanged with each other. For in­

stance, if we apply [A, C, T, G] on a word AACCCGTT, we can obtain a new

word AACCCTGG which violates the fixed GC weight, since the total num­

ber of Gs and Cs of AACCCTGG does not remain the same as AACCCGTT.

Similarly, the remaining cases of [A, -, G, -], [-, -, G, T] and [-, C, -, T]

also allow the GC weight to change.

Thus, there are some words for which the GC weight will change when the

permutation is applied.

(c) Finally, consider those permutations for which all of the characters are changed,

and which are not covered by case 2 and case 3 above. These permutations are

[C, G, T, A], [G, T, C, Aj, [T, A, C, G] and [T, G, A, CJ. In each case, the GC

weight can not be fixed if the permutation is applied.

Let us take the permutation [C, G, T, AJ as an example. It changes character

A into character C, character C into character G, character G into character

T and character T into character A. If we apply it on a word AACCCGTT

of GC weight 4, then this yields a new word CCGGGT AA containing a GC

weight of 5. Similarly, the remaining permutations of [G, T, A, CJ, [T, A, C, G]

and [T, G, A, CJ also allow the GC weight to change.

Thus, there are some words for which the GC weight will change when the

permutation is applied.

From observing all of the above permutations in Sym(1JO), it is clear that the following

permutations, denoted as ()i where i = 1, 2, 3, preserve the GC weight of every DNA word:

CHAPTER 3. DNA CODE SPACE 25

1. ()1 : (CG);

2. ()2 : (AT);

3. ()3 : (CG)(AT).

In other words, ()i E Sym(V) where i = 1,2,3 for a general DNA word.

When a DNA word is of even length n, with a GC weight of ~, the following permuta­

tions ()i where i = 4,5,6,7 also preserve the GC weight in the new word obtained:

1. ()4 : (AC)(GT);

2. ()5 : (AG)(CT);

3. ()6 : (ACTG);

4. ()7: (AGTC).

So ()i E Sym(V) where i = 1,2, ... , 7 holds for even length DNA words with GC weight

~, which is the main problem considered in our thesis.

As is known, the set of permutations that preserve a set system is a permutation group

called the automorphism group of the set system. If (u, v) is an edge of the graph 9 =

(V, E), and a is a permutation of V, then define a ((u, v)) = (a (u), a (v)). A permutation

a of V is an automorphism of 9 = (V, E) if a((u, v)) E E whenever (u, v) E E. In other

words, the automorphism preserves the vertex set and the adjacency of vertices. The auto­

morphism group of 9 = (V, E) is the set of all permutations on V that are automorphisms

of9.

In the next section, it is proven that Sym(V) is an automorphism group under the

operation of composition.

CHAPTER 3. DNA CODE SPACE 26

Therefore, we rewrite the definition of Sym(V) as follows:

1. 0"1 : (CG);

2. 0"2 : (AT);

and their composition meet the fixed GC-content constraint for DNA words. Moreover,

1. 0"1 : (CG);

2. 0"2 : (AT);

3. 0"3 : (AC)(GT);

4. (14 : (ACTG);

and their composition meet the fixed GC-content constraint when DNA words are of even

length and GC weight ~.

3 .. 3 Definition of Equivalent DNA Codes

If we apply any 0" E Sym(V) simultaneously to every character of every word in vn, then

we can obtain a permutation of vn, denoted as 0"*.

In the next few paragraphs, we show that the set of all 0"* on 9 is contained in the

automorphism group of g, denoted by Aut(Q), since an automorphism of a graph preserves

the adjacency of words and the distance between words in this graph.

Let x, y E 1)n be any two valid adjacent words, x = XIX2 ... Xk'''Xn and y = YlY2 ... Yk'''Yn

with Xi = Yi for 0::::; i ::::; n except Xk #- Yk for some k.

CHAPTER 3. DNA CODE SPACE 27

First of all, from Lemma 2 in [17], it is proved that if we apply any permutation in

Sym(1JO), the permutation of the graph is an automorphism which preserves the dis­

tance between words and the adjacency of words. In our graph, we have the edge set

Ex,y = {(x, y) : min (dedit (x, y), dedit (X, yRC)) = I}. Since the distance between words is

measured by edit distance, both dedit (X, y) and dedit (X, yRC) are unchanged after we apply

any permutation in Sym(1J). Thus, Ex,y is the same as it was before permutation. So, for

any a* on graph Q, the minimum distance of any two vertices is preserved.

Secondly, it is obvious that if we apply a E Sym(1J) where Sym(1J) is the subset of

Sym(1JO) to all characters in x and y, then these two words are still adjacent. Thus, anya*

on graph Q preserves the adjacency of words.

In all, we conclude that the set of (5* are elements of Aut(Q). Furthermore, the combi­

nation of any at, (5~ E Aut(Q) is also an element of Aut(Q).

In [17], it is proved that reversing all the words in an edit code simultaneously, denoted

by "I, is also an automorphism, since the minimum distance between any two words is not

changed and the adjacency of words remains exactly the same. It follows that "I E Aut(G).

Definition 1 In general, we can define two DNA codes C1 and C2 over the alphabet set

{A, 0, G, T} to be equivalent if one can be obtained from the other by any combination of

thefollowing:

1. a1 : (GO);

2. a2: (AT);

3. (53: reverse all words simultaneously.

Definition 2 Furthermore, for two DNA codes C1 and C2 over the alphabet set { A, C, G, T},

CHAPTER 3. DNA CODE SPACE 28

with even length and GC weight w = ~, C1 and C2 are equivalent if one can be obtained

from the other by any combination of the following:

1. 0"1 : (GC);

2. 0"2 : (AT);

3. 0"3 : (AC)(GT);

4. 0"4: (ACTG);

5. 0"5: reverse all words simultaneously.

3.4 Properties of Equivalent DNA Codes

Let C be a DNA code with length n and minimum distance d, which also contains the total

number of Gs and Cs given by w. This is denoted as a (n, d, W)4 code. Define Ci to be the

(n - 1, d, w) 4 subcode obtained by selecting all codewords of C containing the symbol i at

the first column, where i = {A, C, G, T}.

Theorem 1 Every DNA code C with length of n, minimum distance of d and GC weight of

w where 0::; w ::; n, is equivalent to some code C" with IC~I ~ IC;I and IC~I ~ IC~I.

Proof: In C, if CA < CT , then apply 0"2 in Definition 1 to obtain an equivalent code C'

with C~ > C~, otherwise let C' = C. Next, if C~ < C~, then apply 0"1 in Definition 1 to

obtain an equivalent code C" with C~ > C~, or else let C" = C'. 0

Theorem 2 Every DNA code C with even length n and a fixed GC weight w

equivalent to some code C" with IC~I ~ IC~I ~ IC~I and IC~I ~ IC;I.

n .
2' lS

CHAPTER 3. DNA CODE SPACE 29

Proof: For the particular case when n is even and w = L ~ J '

1. If ICAI in C is the largest Ci , we check whether ICcl 2:: ICal in C. If not, we apply

0"1 = (GC) in Definition 2 that changes all Gs with Cs in C. Therefore, we obtain a

code C' with IC~I 2:: IC~I 2:: IC~I.

2. If ICcl in C is the largest Ci , then apply 0"3 = (AC)(GT) in Definition 2 that ex­

changes all Cs with As and Gs with Ts in C, thus we obtain a new code C' such

that IC~I is the largest of all. Next, if IC~I > IC~I in C', then apply 0"1 = (GC) that

changes all Gs with Cs in C'. Thus, we obtain a code C" with IC~ I 2:: IC~ I 2:: IC~ I.

3. If ICal in C is the largest Ci , then apply the permutation 0"4 = (ACTG) in Definition

2, and thus we obtain a new code C' such that IC~ I is the largest of all. Next, if

IC~I > IC~I in C', then apply 0"1 = (GC) that changes all Gs with Cs in C'. Then,

we obtain a code C" with IC~I 2:: IC~I 2:: IC~I.

4. If ICTI in C is the largest Ci , then apply the permutation 0"2 = (AT) in Definition 2

that exchanges all As with Ts, and thus we can obtain a DNA code C' such that IC~ I

is the largest of all. Next, if IC~I > IC~I in C', then apply 0"1 = (GC) that changes

all Gs with Cs in C'. Thus, we obtain a code C" with IC~ I 2:: IC~ I 2:: IC~ I.

Combined with Theorem 1, we obtain the relationship that C is equivalent to some code C"

with IC~I 2:: IC~I 2:: IC~I and IC~I 2:: IC;I. 0

Chapter 4

Properties of DNA Codes

In this chapter, we explore the properties of DNA codes. We focus on analyzing DNA

codes for some special parameter values.

Define E4 (n, d) to be the maximum size of quaternary codes with length n and min­

imum edit distance d. An (n, M, d)4 edit code is said to be optimal if the number of

codewords M is equal to E4 (n, d). First define EfC(n, d, w) to be the maximum size

of DNA codes with length n, minimum edit distance d and fixed GO weight w. Define

E;;C,GC (n, d, w) to be the maximum size of DNA codes with length n, minimum edit dis­

tance d and fixed GO weight w, that satisfy the reverse-complement constraint.

4 .. 1 Theorems of Optimal DNA codes

Several observations are investigated and we discuss the details in the following paragraphs.

First, we examine the relationship between E;;C,GC (n, d, w) and Efc (n, d, w). A sim­

ilar proof of the relationship of AfC,GC (n, d, w) with Afc (n, d, w) for DNA codes over

Hamming distance can be found in [20].

30

CHAPTER 4. PROPERTIES OF DNA CODES 31

Theorem 3 For 1 ::; d ::; n and 0 ::; w ::; n, E;;G,GG (n, d, w) ::; ~ . ErG (n, d, w).

Proof: Let C be an optimal code of length n, minimum edit distance d and fixed GC

weight w, that satisfies the reverse-complement constraint. Assume that the size of C is

ICI. Let CRG = {xRGlx E C}. It is obvious that CRG is also an optimal code of size ICI,

since the edit distance between every two words in CRG remains the same when reverse­

complement is applied, and the GC weight remains the same as well. Let C' = C U CRG,

then we have C' is a (n, d, W)4 code of length n, minimum edit distance d and fixed GC

weight w. Clearly, C n C RG = <P. Thus, we have IC'I = 21C I. In addition, we always have

IC'I ::; ErG (n, d, w). It follows E;;G,GG (n, d, w) = ICI = ~ IC' I ::; ~ . ErG (n, d, w). D

Theorem 4 (Codes with n < d)

If d > nand 0::; w ::; n, then E;;G,GG (n, d, w) = 1.

Proof: Codes with n < d are trivial in that such a code always contains exactly one word.

By the definition of the edit metric, the maximum distance between any two words of length

n is at most n. Thus for any w, there exists no more than one word in a (n, d, W)4 DNA

code if d > n. D

A similar proof for DNA codes over Hamming distance with n < d can be found in

[17].

Theorem 5 (Codes with n = d)

E GG,RG() {2
4 n,n,w = 1

if w = n/2 and n even

if w = Ln/2Jand n odd

CHAPTER 4. PROPERTIES OF DNA CODES 32

Proof: Let EfG (n, n, w) be the maximum size of (n, n, W)4 codes that meet the fixed

GC-content constraint. Since the distance between every two codewords must be at least

n, it implies that no two codewords agree in any coordinate. Therefore, there can be at

most four codewords for (n, n, W)4 codes by the pigeonhole principle. Hence, we have

EfG (n, n, w) ::; 4 for any n and 0 ::; w ::; n. Combined with Theorem 3, we obtain

E GG,RG() 4 n, n, W ::; 2.

First consider the case when n is even and w = ~. We can always construct a code

{AWCW, CWAw, GWTw, TWGW} to be an (n, n, W)4 code that satisfies the GC-contentcon-

straint. It is clear that AW CW and GWTw, and CW AW and TW GW, are reverse-complements

of each other. Furthermore, it is clear that the distance between any two codewords is

{CW AW GWTW} as (n, n, W)4 codes that satisfy both the fixed GC-content constraint and

the reverse-complement constraint. Therefore, for n even, EfG (n, n, w) = 2.

Now consider the case when n is odd and w = l n/2 J. When n = 2w+ 1, we construct a

GC-contentrestricted (n, n, W)4 code as {X, Y, X RG, y RG }, where X = {XIX2 ... Xw ... xn}

and Y = {YIY2 ... Yw ... Yn}' We assume that Xw is either A or T, so that Xw is the remaining

T or A, and Yw can be either C or G, so that Yw is the remaining G or C. By the pigeonhole

principle, the total number of Gs and Cs in those 4 words is equal to ~ x (4n) = 2n. This

contradicts the given w = l n/2 J. Then, combining EfG (n, n, w) < 4 with Theorem 3,

we have EfG,RG (n, n, w) < 2. However, we can always have codes that contain a single

codeword which has w = l n/2 J. Thus, EfG,RG (n, n, w) = 1. D

A similar proof for DNA codes over Hamming distance with n = d can be found in

[20].

CHAPTER 4. PROPERTIES OF DNA CODES

Theorem 6 (Codes with d = 1)

EGC,RC(1) = 4 n, ,W

(n/2) 2n/2)if n is even and W is even

w/2

if n is odd or w is odd

33

Proof: For n > 0, with 0 ::; d ::; n and 0 ::; w ::; n, we partition {A, C, G, T} into

Po = {G, C} and PI = {A, T}. Denote a codeword x as {Xl, X2, ... , xn } and its reverse-

complement word x RC as {xn' Xn-l, ... , Xl}.

First of all, we apply the fixed GC weight w on all codewords of length n. There are

in total (:) 2" codewords that have GC weight w because w of n positions are chosen

for Po and for each position, there are two symbols to be chosen from.

Then, we apply the reverse-complement constraint on those codewords. It is noted that

applying reverse-complement on a word x does not change the GC weight of X, since we

just flip x end to end, and replace all the Gs with Cs and As with Ts in x. There are three

cases to be considered:

1. For n even and w even, there are 2n / 2 codewords that are unchanged, (
n/2)

w/2

called self-complementary words. If X = x RC, then Xi = X n -i+1. Thus, if the first

half of x is determined, then the last half of x is also determined. It is inferred that

the first half and the last half of X must both contain ¥f Gs and Cs. So, there are in

total (n/2) 2n/ 2 possibilities for the first half with length ~. Then, we remove

w/2

CHAPTER 4. PROPERTIES OF DNA CODES 34

these (~:) 2"/2 self-complementary codewords from the sel of (:) 2n total

codewords, thus obtaining a set that contains no self-complementary codewords.

Since no codeword can be in a code with its reverse-complement, we can have only

half of the remaining (:) 2" - (:~:) 2"/2 codewords in a (n, 1, w) DNA

code.

2. For n even and w odd, there does not exist any codeword that is unchanged by

reverse-complement. Because if x = x RC, then Xi = Xn-i+ 1 for 0 :s; i :s; n. This

contradicts the condition that w is odd. Again, no codeword can be in a code with its

reverse-complemenl, so we have only half of (:) 2" words in an (n, 1, w) DNA

code.

3. For n odd, there does not exist any codeword that is unchanged by reverse-complement.

Since if n = 2k+ 1, Xk+1 # Xk+l. So, lhere are ~ (:) 2" codewords in a (n, 1, w)

DNA code. D

Theo:rem 7 (codes with d = n = 1)

For all codes with n = 1, E:c,GC (1,1) = 1.

Proof: If n = 1, then L~J = O. From Figure 3.1, it is shown that the vertex {AfT} has

weight w = 0 for code length 1, and that these are valid words, while G and C are both

invalid codewords. So, a single codeword either A or T can be contained in a (1,1,0)4

DNA code. D

CHAPTER 4. PROPERTIES OF DNA CODES 35

4.1.1 Binary Reverse-Complement Codes

In this section, we introduce a new code, the binary reverse--complement code. The study

of this type of code is motivated by constructing DNA codes from certain specific binary

codes. The study of constructing DNA codes over Hamming distance from Hamming

binary codes has been discussed in [23]. We apply a similar approach to generate DNA

codes over edit distance with distance of 2.

A binary reverse--complement code Cfc (n, d) is a binary edit code over alphabet set

{O, 1}, that satisfies the reverse--complement constraint. If we have x = {Xl, X2, ... , Xn},

the reverse--complement of x, denoted by x RC, is defined to be x RC = {xn, Xn-b ... , Xl}

where ORC = 1 and 1 RC = O. A word X for which X = x RC is called self-complementary.

The maximum size of Cfc (n, d) is denoted by Efc (n, 2).

Proposition 1 For n even, a1l2n binary words of length n can be partitioned into 2 subsets

such that each contains 2n - 1 words, with the following properties:

1. Any two words x,y in the same subset satisfy dedit (X, y) ~ 2.

2. Any word X must be in the same subset as its reverse-complement xRC.

3. All words for which X = x RC are in the same subset.

Proof: The proof is by induction. When the length is 2, the words are partitioned into

Si = {Ol, 1O} and S~ = {OO, 11}, with Si containing all self complementary words.

When the length n is even, assume that the words are partitioned into Sf and S'2,

each with 2n - 1 words, satisfying the above three properties and with Sf containing all

self complementary words.

CHAPTER 4. PROPERTIES OF DNA CODES

For length n + 2, we define the construction of subsets as

Sn+2 sn S2 U sn S2 2 =1·22·1

36

where A . B = {pwqlw E A,pq E B,lpl = Iql = 1}. We can verify that the partition

S~+2 and S;+2 also has all of the three properties, with S~+2 and S;+2 each containing

2n+1 words and S~+2 containing all self complementary words. 0

Observation 1 For length n, the words in 82 are either all odd weight or all even weight.

Proof: This is proved by induction. When the length is 2, we have Sf = {Ol, 1O} and

S~ = {DO, 11}, such that S~ contains all odd weight words and S~ contains all even weight

words.

When the length n is even, suppose that S~ contains all odd weight words and S;

contains all even weight words.

As defined above, the construction of subsets is

S~+2 = Sr . Sf U 8'2 . S~ and

Sn+2 - sn S2 U sn S2 2 - 1· 2 2· 1

Clearly, we have that S~+2 contains all even weight words and S;+2 contains all odd

weight words. Because for S;+2, words generated by Sr . S~ are of odd weight since words

in Sr are all odd weight and words in S~ are all even weight; words created by S2 . Sf are

of odd weight since words in S2 are all even weight and words in Sf are all odd weight.

Similarly, we can verify that words in S~+2 are all even weight words.

Similarly, for length n, if S~ contains all even weight words and S; contains all odd

weight words, then S;+2 are all even weight words and S~+2 are all odd weight words. 0

Theorem 8 For 1 ::; d ::; nand 0 ::; w ::; n, E!}C (n, d) ::; ~ . E2 (n, d).

CHAPTER 4. PROPERTIES OF DNA CODES 37

Proof: Let C be an optimal binary code of length n and minimum edit distance d

that satisfies the reverse-complement constraint. Assume that the size of C is IC I. Let

CRC = {xRClx E C}. Clearly, CRC is also an optimal code binary with size of ICI, since the

edit distance between every two words in C RC remains the same when reverse-complement

is applied. Let C' = C U CRc, so that C' is a binary code of length n and minimum edit

distance d. Clearly, CnCRC = <1>. In addition, IC'I = ICUCRcl = 12C1 :s; E2(n,d). It

follows that Ef.c(n, d) = ICI :s; ~ . E2 (n, d). D

Theorem 9 For n even, Ef.c (n, 2) = 2n-2.

Proof: The proof is based on proposition 1.

For a partition of the binary words of length n, we choose the subset that does not

contain any self complementary words, and drop either x or xRC for each word x repeat-

edly, thus obtaining a set of words of size 2n - 2 meeting the edit distance and reverse-

complement constraint for d = 2. Thus, we have Ef.c(n, 2) 2': 2n-2.

Theorem 3 in [17] states that Eq (n, q) = qn-l when d = 2 and combined with Theorem

8, we have Ef'C(n, 2) :s; ~ . 2n-l. It follows that Ef'C(n, 2) = 2n - 2 for n even. D

Theorem 10 For 0 :<: w :<: n and n even, E?C,RO (n, 2, w) = (:) 2"-2,

Proof: Theorem 17 in [20] shows that for DNA codes over Hamming distance and 0 :s;

w :<: n, we have Afc,RO (n, 2, w) :<: (:) 2n-2. Furthermore, it is proved in Theorem

1 in [17] that Eq(n, d) :s; Aq(n, d). Thus we have E;;C,RC(n, 2, w) :s; A~C,RC(n, 2, w) :s;

(:) 2n- 2• Therefore, EtC,RC (n, 2, w) :<: (:) 2n- 2.

CHAPTER 4. PROPERTIES OF DNA CODES 38

Now we shall show E:C,RC (n, 2, w) 2: (:) 2n -'.

By using the template-map strategy in [2], we can construct a DNA code from two

binary codes. Two binary codes are assigned respectively for the constraints on the DNA

code. One specifies the GC weight of the DNA code, and is called the template. The other

one, called the map, specifies the distance between any two words in the DNA code.

Define a template Ct to be an (n, 2, W)2 code over the alphabet {A, C} such that for

all x E Ct, we have WGc(x) = W for ° ~ W ~ n. Define a map Cm to be an (n,2h

edit metric code over the alphabet {O, I} that meets the reverse--complement constraint,

discussed in Theorem 8. The product of these two codes produces a quaternary code,

denoted by 8 = {x . Ylx E Ct, Y E em}. The mapping is defined as follows:

2. Xi = A and Yi = 0, Xi' Yi = T.

3. Xi = C and Yi = 1, Xi . Yi = C.

4. Xi = C and Yi = 0, Xi' Yi = G.

where Xi is the ith character in X and Yi is the ith character in y.

For example, in Figure 4.1, we present the construction of 24 words of length of 4 with

minimum distance of 2 and GC weight of 2, satisfying the reverse--complement constraint.

The upper hOlmd of C, is A, (n, 2, w) = (:) since each word chooses w characters

to be A among n characters. The upper bound of Cm is EfD(n, 2) = 2n - 2 from Theorem

8. Thus, we obtain a quaternary code 8 satisfying WGC(Si) = W, dedit(Si, Sj) ~ 2 and

dedit(Si, Sf C) ~ 2 where Si, Sj E 8 and ° ~ i, j ~ 181. The size ofthe code 8, 181, is equal

CHAPTER 4. PROPERTIES OF DNA CODES 39

Template Map

AACC 0001 AACC

CAAC 0010 > x 0001

CCAA 0100 TTGC

ACAC 1000

ACCA

CACA

Figure 4.1: Template-Map construction for a (4,2,2)4 DNA code

to (:) 2n-2.

It is obvious that every codeword in S has GC weight w since there are w Cs in every x in

Ct and the mapping does not change the total number of Gs and Cs in any codeword. More-

We now show that for any two codewords Si, Sj in S, we have dedit(Si, Sj) ~ 2 and

Assume that the size of the template code Ct is P and the size of the map code Cm

is Q. We denote an element of S as Sij = Xi . Yj' Xi E Ct and Yj E Cm. For any two

codewords Xi, Xi' in Ct, we have dH(Xil Xi') ~ 2. For any two codewords Yi, Yi' in Cm, we

First we shall show that dedit (Sij , Si'j') ~ 2 for any two distinct words Sij, Si'j' in S.

1. If Xi = Xi' and Yj =J Yj" which implies that the same template is applied to different

maps, then the distance between resulting words Sij and Sij' is always greater than or

equal to 2 since the coordinates that differ in Yj and Yj' are still different in Sij and

CHAPTER 4. PROPERTIES OF DNA CODES 40

2. If Xi =I- Xi' and Yj = Yj" which implies that the same map is applied to different

templates, then dedit (Sij, Si' j) ~ 2 since there are at least two coordinates that differ

between Xi and Xi' because all words in Ct have the same weight.

3. If Xi =I- Xi' and Yj =I- Yj" which implies that different maps Xi and xi' are applied

to different templates Yj and Yj' respectively, then we shall show that we also have

dedit (Sij, Si' j') ~ 2.

Assume that for some Sij and Si' j' such that dedit (Sij, si' j') < 2 where i =I- i' and

j =I- j'. It is always true that the distance between any two words can not be negative.

Thus, there are 2 cases to consider.

(a) dedit (Sij , Si'j') = 0, which implies that Sij = si'j'. So, we must have Xi = Xi'

and Yj = Yj" which contradicts with i =I- i' and j =I- j'.

(b) dedit (Sij , Si'j') = 1, which implies that there exists a position k in Sij and Si'j'

that is different where 0::; k < n. So, we must have either Xi and Xi' that only

differ in position k or Yj and Yj' that only differ in position k, or both. This

contradicts with dedit(Xi, Xi') ~ 2 and dH(Yj, Yj') ~ 2.

From the above, we conclude that dedit (Sij, Si' j') ~ 2 for Xi =I- Xi' and Yj =I- Yj'.

We now shall show that dedit(Si, Sf C) ~ 2 for any two words Si, Sj in S.

When choosing the words from S~, we can choose one of y, yRC to be an element of

Cm. Without loss of generality, we can choose the one with lower weight to be y.

We construct c~ = {z : z E Cm U c;,;,C} where c;,;,c = {yRC : Y E em}. Since

Cm is a binary reverse-complement code, the distance between any two distinct words ih

CHAPTER 4. PROPERTIES OF DNA CODES 41

C'-m is at least 2. Thus, the distance of any two distinct words in S' is at least 2, where

s' = {x . z : x E Ct, z E c'-m}. The proof is similar to that above.

1. Let Sij = Xi . Zj' Xi E Ct and Zj E cm ' we can construct s~c by product xf with zfc

(a) If Xi' = xfc where i' = i and zj' = zfc where j' = IQ+ jl, which implies that

the same template is applied to different maps, then we have dedit(Sij, s~C) ;:::: 2

since dedit (Zj, zfC) ;:::: 2.

(b) If Xi' =1= xfc where i' = i and zj' = zfc where j' = IQ+ jl, which implies that

different templates are applied to different maps, then we have dedit (Sij, s~C) ;::::

2. This proof is similar to the above case 3.

2. There are 2 cases to consider when we compare the distance between a word and the

reverse-complement of a distinct word.

(a) If Xi' = xfc where i' = i and zj' =1= zfc where j' =1= IQI + j, which implies that

the same template is applied to different maps, then we have dedit (Sij, s~f) ;:::: 2

since dedit (Zj, ziC) ;:::: 2.

(b) If Xi' =1= xfc where i' = i and zj' =1= zfc where j' =1= IQ+ jl, which implies that

different templates are applied to different maps, then we have dedit (Sij, st'~n ;::::
2. This proof is similar to the above case 3.

From the above, we conclude that dedit(Sij, st'i) ;:::: 2 for any two words in S.

From the above construction, we have E:[C,RC(n,2,w) ;:::: A2(n,2,w) . EfD(n,2)

(:) 2n- 2 • Therefore, Efc,RC (n, 2, w) ~ (:) 2n-2. 0

CHAPTER 4. PROPERTIES OF DNA CODES 42

4 .. 2 Lower and Upper Bounds

The lower bound for E;;C,RC (n, d, w) may be established by constructing (n, d, W)4 DNA

codes and keeping track of those of largest size. As discussed in Chapter 2, mathematical

constructions, as well as various heuristics have been developed to obtain lower bound

for conventional error-correcting codes and edit metric codes. In the following chapters,

algorithms are designed for generating DNA codes that are as large as possible, to obtain

good lower bounds for E;;C,RC (n, d, w).

We consider establishing upper bounds for (n, d, W)4 DNA codes. One way to establish

an upper bound of E;;C,RC (n, d, w) is by using Theorem 3. However, the construction of

(n, d, W)4 codes with fixed GC-content itself is very difficult.

For both (n, d) Hamming distance codes and (n, d) edit codes with no restriction, we

have E4(n, d) ::; 4 . E4(n - 1, d) [17], since for any of those codes, we can obtain an

equivalent code C' with le~1 ~ IC~I ~ IC~I ~ le~l. However, this method of obtaining

upper bounds can not be used for DNA codes with the reverse-complement constraint and

the fixed GC-content constraint. For every DNA code C of given n, d and w in general,

it is equivalent to some code C' such that le~1 ~ IC~I and IC~I ~ IC~I. Thereby, whether

IC~I ~ Icd is not known. For every DNA code e with even nand w = ~,we have some

codeC" with IC~I ~ IC;I ~ le;1 and le~1 ~ IC;I, as its equivalent code. Then, we consider

those words that start with A to be the largest subcode of the (n, d, W)4 code. However, it

is not guaranteed that we can obtain an {n - 1, d, W)4 code by removing the first column

from this subcode, since the reverse-complement constraint might be violated.

Chapter 5

Algorithms

In this chapter, we introduce two deterministic algorithms that are designed for solving

the problem of finding a large set of DNA codewords. We include Conway's Lexicode

algorithm, as well as exhaustive search and some optimizations. We also present tables of

bounds on DNA codes.

5.1 Conway's Lexicode Algorithm

Conway's Lexicode algorithm, proposed by Conway and Sloane in 1986 [12], used the

greedy construction to generate a class of error--correcting codes, called lexicodes. Authors

in [3] used this algorithm to construct edit codes with given minimum distance d and length

n. We implemented this algorithm in the thesis, and report the lower bounds on the value

of E:;c,GC (n, d, w) it provided.

43

CHAPTER 5. ALGORITHMS 44

5.1.1 Outline of Conway's Lexicode

We used the Conway's Lexicode algorithm mentioned above to generate DNA codes with

given parameter values, that satisfy both the reverse-complement constraint and the fixed

GC-content constraint.

Conway's Lexicode Algorithm:

1. Given n, d, w, find all words oflength n that satisfy dedit (X, XRC) ~ d and WGC(X) =

wand place them into a candidate list L(C) in lexicographical order.

2. Initialize an empty set C of words for storing the target code.

3. Scan L(C) in lexicographic order, selecting a word z E L(C) and placing it in C if

and only if dedit(X, z) ~ d and dedit (X, ZRC) ~ d for all words x E C.

4. Apply Step 3 repeatedly until the end of L(C) is reached.

5.1.2 Table of Bounds on DNA Codes by Conway's Lexicode

Obviously, the order in which the words are chosen is determined ahead of time in this

algorithm. Each time a word is selected, the words that are 'incompatible' with it, vio­

lating either the edit distance constraint or the reverse-complement constraint, have to be

excluded from the candidate words set. Consequently, the words chosen later are strongly

dependent on the earlier chosen words in this code. Thus, in most cases, we can not expect

the codes to be optimal. But it allows the construction of DNA codes in an immediate way

and obtains reasonable lower bounds.

Table 5.1.2 represents the table of lower bounds on DNA codes obtained by Conway's

lexicode algorithm, with 2 ~ n ~ 9, and 1 ~ d ~ 9.

CHAPTER 5. ALGORITHMS 45

Table 5.1: Bounds on DNA Codes by Conway's Lexicode Algorithm

I~ 1 2 3 4 5 6 7 8 9

2 4 2 - - - - - - -

3 12 5 1 - - - - - -

4 44 20 4 2 - - - - -

5 160 68 9 3 1 - - - -

6 640 320 31 7 2 2 - - -

7 2240 954 91 18 5 2 1 - -

8 8912 4432 294 54 12 5 2 2 -

9 32256 13672 912 150 29 9 3 2 1

5 .. 2 Exhaustive Search Algorithm

We wish to obtain values of E;;C,GC (n, d, w) for small length n, minimum distance d. In

addition, we consider fixed GC weight w = l i J so that the DNA strings can be maintained

stable in a proper temperature range in most practical applications, as mentioned in Chapter

1.

From Chapter 4, we already know the exact values for E4 (n, d) when d = nor d = 1,

as well as for the trivial cases when n = d = 1 and n < d from Chapter 3. We also derived

the exact bounds of codes when d = 2 and length is even. The values of E4 (n, d) for the

above cases will be included in the following tables.

CHAPTER 5. ALGORITHMS 46

5.2.1 Outline of Exhaustive Search

In [17], the exhaustive search method has been utilized to create optimal edit codes with

small parameter values. A similar approach is applied to solve our problem in which we

consider the additional biological constraints, the reverse-complement constraint and the

fixed GC-content constraint. The exact values for E:c,GC (n, d, w) with small values of

parameters can be found. The exhaustive search algorithm uses backtracking and is out­

lined below.

Exl,laustive Search Algorithm:

1. Select all words of length n that satisfy both dedit (x, xRC) ~ d and W GC (x) = w

where w = L ~ J and put them into a candidate list L(C) in lexicographic order.

2. For each x in L(C), create a base code C containing x and a lexicographically ordered

candidate list L' (C) that consists of all remaining words y E L(C) that are compatible

with x, i.e. dedit (X, y) ~ d and dedit (X, yRC) ~ d.

3. For each word Z E L' (C), if z is compatible with all codewords in C, we add z to C,

otherwise trim z from L' (C). In other words, we can create an (n, ICI + 1, d) DNA

code by appending one compatible word to base code C, thereby producing L' (C)

base codes for each level of backtracking.

4. If no word remains in L' (C) of a code, we return to the previous level, removing

the most recently-chosen word Ccurrent and adding those words that are incompati­

ble with Ccurrent but compatible with the remaining words in C back to L' (C). Then,

select the word in L' (C) that appears later than the most recently-chosen word lexi­

cographically.

CHAPTER 5. ALGORITHMS 47

5. We apply Steps 3 and 4 recursively until we return to level O.

level 0
C L(C)= { AC, AG, CA, CT, GA, GT, TC, TG }

<I> / ~ ••••••
level 1 c L'(C)

AC { AG, CA ,CT , GA, TC, TG } -tff'

/ ----
level 2 C V(C)

AC { CA, GA, TC, TG } -e'f" AG/ ~
level 3 C L'(C)

AC {GA, TC}

AG

c/ ~
level4 C V(C) C V(C)

AC <I> 'f€- AC <I> ~

AG AG

CA CA

GA TC

Figure 5.1: Exhaustive Search procedure for (2, 1, 1)4 codes

Figure 5.1 shows how the exhaustive search performs to obtain (2,1,1)4 codes. Firstly,

we obtain the candidate list of all valid words of length 2 lexicographically (see Figure 3.1),

as L(C) = {AC, AG, CA, CT, GA, GT, TC, TG}. If we select word AC as the starting

point of a base code, we have the candidate list at level 1 as L' (C) = {AG, C A, CT, G A, TC, TG},

dropping GT which is incompatible with AC. For current code C = {AC}, we select

word AG in L' (C), then obtain C = {AC, AG} and L' (C) = {C A, G A, TC, TG} at

level 2. Then, we repeated this process until L' (C) = cp, producing a new (2,1,1)4 code

CHAPTER 5. ALGORITHMS 48

C = {AC, AG, C A, G A}. Then, it returns to the previous level and tries the next word in

L' (C), obtaining C = {AC, AG, CA, TC}. At each level, all words are eventually consid­

ered, thus it generates all the (2, 1, 1)4 codes.

5.2.2 Optimizations of Exhaustive Search

We notice that in the process of the backtrack search, we often need to calculate the dis­

tance between pairs of words, which costs a large amount of running time. It is beneficial

that we precompute the information about distances between all possible pairs of words to

save computation time. Hence we generate all possible words of length n, and store the

information in a compatibility matrix, in which entry (i, j) = 1 if word i and word j are

compatible with each other, and entry (i, j) = 0 otherwise. However, using a compatibility

matrix of all pairs of possible words demands a large amount of memory, so that it can be

only applied for codes with relatively small parameter values.

For step 4, we only consider words in L' (C) that appear later than the most recently­

chosen word in lexicographical order. Otherwise, we might create duplicate codes which

choose the same set of words but in a different order.

During the search, we save I, the current size of the largest code found so far. Suppose

that C is our current code at level k of the search. If ICI + the remainder of L' (C) is less

than l, then we can prune this branch. This will prevent the generation of codes smaller

than the optimal code and reduce the running time. For example, we showed that we obtain

a (2,1,1)4 code of size of 4 in the early search in Figure 5.1. In a later search as shown

in Figure 5.2, we select word GT as the starting point of a base code, but only two words

remain in the candidate set L' (C). Thus, this branch of backtracking can never generate a

CHAPTER 5. ALGORITHMS

code that has a size of at least of 4.

level 0

level 1

level 2

level 3

C

<l>

C

L(C) ={ AC, AG, CA, CT, GA, GT, TC, TG }

/
L'(C)

GT {TC, TG}

L'(C)

GT {TG}

TC /

C L'(C)

GT <l>

TC

TG

Figure 5.2: Pruning method of Exhaustive Search for (2, 1, 1)4 codes

49

From Theorem 1 in Chapter 3, for any DNA code e, there always exists an equivalent

code e" with le~\ ~ le;\ and le~1 ~ le~l. Once e is found, we want to prune those

branches of the search tree that lead to a code that is equivalent to e. This will prevent the

generation of equivalent codes and speed up the search. Clearly, we have le~1 + le~1 ~

le~ I + Ie; I for e" . For a level k, if le~ I + le~ I < le~ I + Ie; I, then we can prune this branch.

Combined with the discussion of above paragraphs, it is indicated that the total number

of le~ I and le~ I must be greater than half of the size of the largest code found so far, as l,

so it follows that le~1 + le~1 ~ 4. For a level k, if le~1 + le~1 < 4, then prune this branch.

The above pruning methods are used to optimize the search in our program, avoiding

unnecessary searches for those codes that will be less than optimal and for equivalent codes,

CHAPTER 5. ALGORITHMS 50

which will indeed save a lot of computational time.

5.2.3 Table of Sizes of Optimal DNA Codes by Exhaustive Search

Here we present the table of bounds on optimal DNA codes obtained by the exhaustive

search methods from above sections and Chapter 4, for length 2 ::::; n ::::; 9, and minimum

distance 1 ::::; d::::; 9.

Table 5.2: Bounds on DNA Codes by Exhaustive Search Algorithm

I~ 1 2 3 4 5 6 7 8 9

2 4 2 - - - - - - -

3 12 5 1 - - - - - -

4 44 24 6 2 - - - - -

5 160 70 13 3 1 - - - -

6 640 320 34* 10 3 2 - - -

7 2240 954* 94* 22* 7 2 1 - -

8 8912 4480 297* 57* 16* 7 2 2 -

9 32256 13672* 914* 150* 34* 11 5 2 1

Table 5.2 shows the results for DNA codes for n ::::; 9 and d ::::; 9. Entries denoted

by an asterisk are cases for which the exhaustive search did not finish within two weeks.

Thus these values provide lower bounds for E;;C,GC (n, d, w) with corresponding length n,

minimum distance d and GC weight w. The remaining values in this table are exact values

CHAPTER 5. ALGORITHMS 51

for E;;C,GC (n, d, w), respectively for length n, minimum distance d and GC weight w.

Chapter 6

Genetic Algorithm

In this chapter, we first introduce the genetic algorithms in general. Then, a genetic al­

gorithm, named Randomized GA, is designed to solve our problem and tables of lower

bounds on DNA codes found by this algorithm are given.

6 .. 1 Background of Genetic Algorithm

Genetic Algorithms (GAs) were invented by John Holland in the 1960s and developed by

Holland and his students. GAs are developed so that the mechanisms of natural adaption

are imported to computer systems. Based on simulating natural systems necessary for

evolution, GAs use a kind of 'natural selection' together with genetic-inspired operators of

crossover, mutation and reproduction to solve optimization problems.

Genetic Algorithms are said to be an adaptive heuristic, since they employ an 'intel­

ligent' exploration within the search space, by using historical information and genetic

mechanisms to search for better solutions. A more precise definition of Genetic Algorithm

is given by John R. Koza [21],

52

CHAPTER 6. GENETIC ALGORITHM

" GA is a probabilistic search algorithm that iteratively transforms a set (called

a population) of mathematical objects (typically fixed-length binary charac­

ter strings), each with an associated fitness value, into a new population of

offspring objects using the Darwinian principle of natural selection and using

operations that are patterned after naturally occurring genetic operations, such

as crossover and mutation."

6.2 The Operators of Genetic Algorithm

In this section, we introduce the basic concepts of GA operators.

53

Representation: A chromosome, is encoded to represent a solution to the problem. The

chromosome uniquely identifies an individual, which is a point in the search space.

Fitness Function: The fitness function is used to evaluate how 'good' a solution is. The

fitness values are then used in a process of natural selection to choose the potential solu­

tions to be continued to the next generation.

Selection Operator: Selection determines which individuals survive and possibly mate

and mutate in the next generation. It is noted that selection does not eliminate all 'unfit'

chromosomes, since they might mutate to something useful after recessing for several gen­

erations. There are various types of selection mechanisms, such as fitness-proportionate

selection, rank selection, tournament selection and roulette wheel selection.

Crossover Operator: Crossover combines two parent chromosomes from a generation to

produce new chromosomes for the next generation by swapping certain genetic material

between two parent chromosomes.

Mutation Operator: Mutation introduces a certain mount of randomness to the process,

CHAPTER 6. GENETIC ALGORITHM 54

which allows offspring chromosomes to evolve in new directions.

Replacement Operator: There are two replacement schemes: simple replacement and

steady-state replacement. Simple replacement replaces the entire population with the new

population at each generation, while the steady-state replacement preserves a fixed number

of 'good' individuals from the old population to the new population at each generation.

6.3 Parameters of Genetic Algorithm

In this section, we introduce several GA parameters such as crossover rate, mutation rate

and population size. We also analyze how those parameters affect the search.

Crossover Rate: The crossover probability determines how often crossover performs.

Crossover is designed for the purpose that the new chromosomes will inherit good parts

of old chromosomes and thus possibly create more 'fit' offspring. If there is no crossover,

the offspring are exact copies of their parents. If crossover probability is high, then most of

the offspring in new generation will be made by crossover. If it is low, then most of the off­

spring in new generation will be the exact copies of chromosomes from the old population.

Mutation Rate: The mutation probability determines how often a chromosome will be

mutated. Mutation is designed to prevent GA from falling into local extrema. Mutation

should not occur very often, since otherwise the GA will change to random search. If mu­

tation probability is 100%, then a chromosome is always changed. If it is 0%, then nothing

is changed.

Population size: The population size indicates how many chromosomes are in a popula­

tion. If there are too few chromosomes, the GA has a few possibilities to perform crossover

and only a small part of the search space is explored. On the other hand, if there are too

CHAPTER 6. GENETIC ALGORITHM

many chromosomes, the computation time increases.

6.4 Outline of General Genetic Algorithm

We present the scheme of a standard genetic algorithm as follows:

i = 0

Initialize population Po

Evaluate the fitness of Po

55

while (Not done) Test for termination criterion (time, fitness, etc)

Begin

End

Selection(Pd

Crossover (Pi)

Mutation (~)

Replacement (Pi)

i = i + 1

select a population for reproduction

recombine the selected parents

perturb the mated population stochastically

replace new population with old population

The GA finishes when a solution is found, or it meets certain criteria such as reaching

a set time limit, or reaching a predetermined number of generations, etc.

6.5 Genetic Algorithm for DNA Codes

In this section, we present a genetic algorithm to solve the problem of finding good DNA

codes, called Randomized Genetic Algorithm, RGA for short. The algorithm incorporates

a heuristic method named the repair operator with the standard genetic algorithm. It is

CHAPTER 6. GENETIC ALGORITHM 56

accomplished by experimenting with different GA parameters (crossover rate, mutation

rate and population size), as well as some specified GA operators (crossover, mutation,

selection, etc.). We analyze the impact of these parameters on the GA behavior while

running the GA system and try to find suitable parameters for our GA.

6.5.1 Parameter Sets

The Randomized GA is performed using the following parameter sets:

1. Number of generation: (100,200,300, ...)

2. Population size: (50, 100,200)

3. Crossover rate: 0% - 100%(0%,10%,50%,80%,100%)

4. Mutation rate: 0% - 100%(100%,80%,50%,10%,0%)

5. Number of elitism(if elitism is applied): (0,5,10)

It is noted that the GA always converges after a number of generations, thus it should be

set to an appropriate value for runs. Meanwhile, a proper value of population size should

also be found. If the population size is too small, it limits the diversity of individuals in a

population, however it costs too much time for computation at each generation if it is too

large.

6.5.2 Representation

Given length n, distance d and GC weight w, find all words of length n that satisfy

dedit (X, XRC) ~ d and WGC(x) = W and place them into a candidate set Coon in lexico­

graphical order. The representation of a chromosome, a solution, is a string of integers

CHAPTER 6. GENETIC ALGORITHM 57

such that each integer is the index of a codeword in the set Ccan • In other words, a chromo­

some consists of a set of codewords represented by their indices into Ccan . In addition, all

codewords in this set are compatible with each other. Recall that two words x, y are com­

patiblewitheachotherifWGc(x) = WGc(y) = wandmin(dedit(x,y),dedit(x,yRC)) 2: d.

Thus the chromosome is a valid code, as it consists of a set of compatible codewords.

6.5.3 Fitness Function

Since we wish to find codes that are as large as possible, the fitness of a chromosome

calculates the number of codewords in a chromosome, which is also called the size of the

code.

6.5.4 Initialization

Given the fixed size of the population Spop, the initialization process creates Spap chromo­

somes. Each code (chromosome) Ci where 0 :s; i < Spop, is initialized as an empty set. For

a given code Ci, we select one word x from set Ccan randomly, adding x to Ci if it is compat­

ible with all the words in Ci, otherwise removing it from Ccan • We perform this repeatedly

until there are no words remaining in Ccan • The indices of the corresponding codewords

form one chromosome. Thus, we can obtain Spap randomized chromosomes as the starting

points.

6.5.5 Selection operator

In selection, we apply k-tournament selection since it is demonstrated as a good selection

mechanism for most GA problems. The idea of tournament selection is that at any given

CHAPTER 6. GENETIC ALGORITHM 58

generation, we choose k chromosomes from that generation, then select the one with the

best fitness among those k chromosomes for reproduction. In our program, we employ

2-tournament selection as our selection operator.

6.5.6 Repair Operator

The repair operator simply adds all remaining words from the current candidate set Ccan ,

which are compatible with words in current code, to the code in random order. This extends

the code as to be as large as possible. Figure 6.1 shows a repair process for an incomplete

(4,3) DNA code.

C

2233

3132

Repair

CR

0322

1331

2233

2310

3132

Figure 6.1: Repair of a (4,3) DNA code

6.5.7 Crossover Operator

The crossover we used in Randomized GA is union crossover. Union crossover 'merges'

two indices of chosen chromosomes, called parents, into one set of indices. This set of

indices maps to a set of words in Coon, denoted by Cmerge. When a merge occurs, we add

the indices of one code into Cmerge, then append any index from the other code if it is not

replicated in Cmerge. It is noted that the new set of indices could possibly map to an invalid

CHAPTER 6. GENETIC ALGORITHM 59

code since we might use a code in which its words are incompatible with some of the

words of the other code. Then, we consider Cmerge as a candidate set and construct a new

code Ccross by selecting words from Cmerge in random order. It is not guaranteed that the

crossover operator can generate a new code which has a larger size than its parent codes.

Figure 6.2 shows how two random (4,3,2)4 codes 'cross over' to build a new (4,3,2)4

code, with a size of 2.

PI

2203

3132 x

P2

1023

1200

2233

3101

1200

2203

2233

Crossover

C

2233

3132

Figure 6.2: Crossover of two (4,3) DNA codes

Afterwards, the repair operator is applied on Ccross, which extends Ccross by appending

the remaining compatible words from the set Ccan - Ccross randomly. We 'repair' this code

to extend it to as large a valid code as possible, finally obtaining a new (4,3,2) DNA code

that has a larger size than both its parent codes, as shown in Figure 6.1.

We should also note that we might obtain a new code smaller than the parent codes

even after this repair operator. However, this 'downhill' move would potentially allow us

to further explore the search space.

CHAPTER 6. GENETIC ALGORITHM 60

6.5.8 Mutation Operator

The mutation mechanism we apply is random mutation. We randomly select a word in the

parent code, and remove it from the codeword set. Then we apply the repair operator to

extend the partial code to be as large as possible.

6.5.9 Replacement Operator

There are two replacement operators we adopted for different tests. One is simply passing

an the chromosomes as the new population to the next generation. Another one is called

elitism, which preserves the best m chromosomes from the last generation, while replacing

the remaining worst chromosomes.

6.6 Examples of Experiments

Experiments are performed to search for good GA parameters of (7,3, 3)dna codes, using

the setup parameter sets.

Figure 6.3 shows the performance of the Randomized GA with and without elitism. As

illustrated, both GAs start to converge after about 20 generations during the runs. Hence,

we set up the number of generations to 100 for the remaining runs on (7,3,3)4 DNA codes.

The following tables show the empirical results of the Randomized GA by examining

GA paramet~r sets of crossover rate (0.0, 0.1, 0.5, 0.8,1.0), mutation rate (0.0,0.1,0.5,0.8,1.0)

and population size (50, 100,200).

Figure 6.4 shows how different population sizes impact on the Randomized GA. Our

algorithm performs better for a population size of 200. It is noted that we can not guarantee

CHAPTER 6. GENETIC ALGORITHM

(7,3,3) DNAcode

120

100 V--------------------------------·-
80 --Randorrized GA

III .. 60 iii - - - - - - . Randorrized GA w tth

40 8ttism

20

0
1 11 21 31 41 51 61 71 81 91

Gen

Figure 6.3: Randomized GA on (7,3,3)4 DNA codes

98~--~--·-~~··--~~-~--~---······-1

97+-~~-----------------

96+----------------------

95+----------------------

~ 94+---------------------­

-: 93+---------------------­

" 8 92

91

90

89

88

population size

Figure 6.4: Different population sizes on (7,3,3)4 DNA codes

61

CHAPTER 6. GENETIC ALGORITHM 62

Table 6.1: Sizes of DNA Codes by RGA of Population Size 50

Crossover Rate Mutation Rate Best size

1 0.0 1.0 96

2 0.1 0.8 93

3 0.5 0.5 92

4 0.8 0.1 92

5 1.0 0.0 89

Table 6.2: Sizes of DNA Codes by RGA of Population Size 100

Crossover Rate Mutation Rate Best size

1 0.0 1.0 91

2 0.1 0.8 90

3 0.5 0.5 95

4 0.8 0.1 91

5 1.0 0.0 100

that this population size is suitable for codes with different n and d. For a small code, runs

with large population size slow down the GA, while the population lacks diversity if the

population size is too small.

From the above tables, the parameter set of population size = 200, crossover rate = 1.0

and mutation rate = 0.0 performs best for (7,3,3)4 DNA codes.

CHAPTER 6. GENETIC ALGORITHM 63

Table 6.3: Sizes of DNA Codes by RGA of Population Size 200

Crossover Rate Mutation Rate Best size

1 0.0 1.0 97

2 0.1 0.8 95

3 0.5 0.5 92

4 0.8 0.1 97

5 1.0 0.0 101

6.7 Tables of Sizes of DNA Codes by Randomized Genetic

Algorithm

For a better observation of the convergence of the best codes through generations, we set

the maximum number of generations as 300 and population size as 200 in later experi­

ments. We present tables of the size of the best codes found with different parameter sets

of (0.0, 1.0), (1.0,0.0) and (0.9,0.1), for pairs of crossover rate and mutation rate respec­

tively. In following three tables, the sizes of codes with d = 1 are obtained by using

Theorem 6 in Chapter 4.

Table 6.4 shows the bounds on DNA codes for n ~ 9 and d ~ 9 by Randomized GA

under the crossover rate of 100% and mutation rate of 0%.

Table 6.5 shows the bounds on DNA codes for n ~ 9 and d ~ 9 by Randomized GA

under the crossover rate of 0% and mutation rate of 100%.

Table 6.6 shows the bounds on DNA codes for n ~ 9 and d ~ 9 by Randomized GA

under the crossover rate of 100% and mutation rate of 0%, while Elitism is also applied at

CHAPTER 6. GENETIC ALGORITHM 64

Table 6.4: Bounds on DNA Codes by RGA under Rc = 1.0, Rm = 0.0

~ 1 2 3 4 5 6 7 8 9

2 4 2 - - - - - - -

3 12 5 1 - - - - - -

4 44 20 4 2 - - - - -

5 160 74 13 3 1 - - - -

6 640 320 34 9 3 2 - - -

7 2240 1090 101 22 7 2 1 - -

8 8912 4480 324 61 14 5 2 2 -

9 32256 15558 939 161 33 10 4 2 1

each generation.

The above three tables present the lower bounds on sizes of DNA codes for n :::; 9 and

d :::; 9 under different crossover rates and mutation rates. For most cases, Randomized

GA with crossover rate 1.00 and mutation rate 0.00 outperformed the others, except for the

(8,6,4)4 code. We also found that for codes for which d is close to n, e.g. (6,5,3)4 and

(7,5,3)4, it is difficult for the GA to find the optimal values through many generations,

while the exhaustive search can produce the exact values for the bounds within a few min-

utes. Even so, the GA still hits more than 95% of the sizes of codes obtained by exhaustive

search in those cases.

The best known sizes of the codes from the above three tables are chosen to establish a

table of lower bounds of DNA codes for the Randomized GA.

CHAPTER 6. GENETIC ALGORITHM 65

Table 6.5: Bounds on DNA Codes by RGA under Rc = 0.0, Rm = 1.0

I~ 1 2 3 4 5 6 7 8 9

2 4 2 - - - - - - -

3 12 5 1 - - - - - -

4 44 20 4 2 - - - - -

5 160 74 13 3 1 - - - -

6 640 298 34 9 3 2 - - -

7 2240 985 99 21 6 2 1 - -

8 8912 4419 306 58 15 6 2 2 -

9 32256 8378 869 154 32 10 5 2 1

Table 6.6: Bounds on DNA Codes by RGA with Elitism under Rc = 0.9, Rm = 0.1

~ 1 2 3 4 5 6 7 8 9

2 4 2 - - - - - - -

3 12 5 1 - - - - - -

4 44 20 4 2 - - - - -

5 160 74 12 3 1 - - - -

6 640 320 32 9 3 2 - - -

7 2240 1074 93 21 6 2 1 - -

8 8912 4260 302 54 13 5 2 2 -

9 32256 14821 855 142 31 10 4 2 1

Chapter 7

Conclusion

In this thesis, we discussed several approaches to solving the problem of finding good

DNA codes for given parameters n, d and w = l ~ J. We observed the DNA word space

with certain biological constraints and explored the theory underlying DNA codes for some

specific parameter values.

Three algorithms were used to obtain lower bounds for DNA codes. Exact values of

bounds on codes for relatively small parameter values were obtained by using exhaustive

search. However, exhaustive search, the slowest of the three algorithms, is not feasible

for a large range of parameter values since it is computationally expensive. Conway's

lexicode algorithm is the fastest algorithm, simply scanning codes in lexicographic order.

However, the lower bound obtained by Conway's lexicode is weaker than the other two

algorithms. The Randomized Genetic Algorithm proposed in Chapter 6, utilizing a random

greedy algorithm as a local search during crossover and mutation, outperformed the other

two within a reasonable computation time. For (7,3,3)4 DNA codes, it took about half an

hour to complete on a 2.2GHz CPU Linux XC 3.1 machine by using Randomized Genetic

66

CHAPTER 7. CONCLUSION 67

Algorithm while the exhaustive search did not finish in more than two weeks. It is important

to remember that we precomputed the compatibility of all possible candidate words to avoid

repetitive comparison of distance between pairs of words, which requires a large amount

of memory. This limits our search to a relatively small range of parameter values. Thus, a

tradeoff must be made for both computation time and memory capacity.

Table 7.1: Best-known Bounds on DNA Codes

~ 1 2 3 4 5 6 7 8 9

2 4 2 1 1 1 1 1 1 1

3 12 5 1 1 1 1 1 1 1

4 44 24 6 2 1 1 1 1 1

5 160 74g 13 3 1 1 1 1 1

6 640 320 34e,g 10 3 2 1 1 1

7 2240 1090g 101g 22e,g 7 2 1 1 1

8 8912 4480 324g 61 g 16e 7 2 2 1

9 32256 15558g 939g 161g 34e lle 5e,g 2 1

Table 7 presents the best-known values for DNA codes for 1 ::; n ::; 9 and 1 ::; d ::; 9.

The entries marked in bond, are the exact values for the DNA codes of specified n, d and w

by theorems in Chapter 4. For cases for which the exact value is unknown, we provide their

lower bounds. Entries denoted by the superscript 9 are the cases for which the best known

bound was found by Randomized GA. Entries denoted by the superscript e are the cases

for which the best known bound was generated by exhaustive search, however there was

CHAPTER 7. CONCLUSION 68

not sufficient time to complete the runs. The remaining values are exact values of bounds

on DNA codes by exhaustive search. It is noted that all the bounds found by Conway's

lexicode algorithm are always smaller than or equal to those obtained by exhaustive search

or Randomized GA.

It is of interest to compare our algorithms with those discussed in previous research of

other people. The greedy closure genetic algorithm in [17] is demonstrated as an efficient

algorithm for finding good edit codes. Our future work involves applying this strategy to

search for good DNA codes.

As shown in Table 7, for most codes, we do not have exact values of the maximum

size but rather lower bounds. So, an obvious future work is to improve the tables of bounds

where possible. Furthermore, we will work on codes for a larger range of parameter values.

One way is to try to compress the compatibility matrix so that larger parameter values

maybe considered.

Another interesting task is to further examine the structure of the DNA word space

and explore the theory underlying DNA codes for other specific parameter values. It is

possible to consider constructing codes with even length and codes with odd length in

different manners, since codes with even length contain self-complementary words while

those with odd length do not.

In addition to the constraints considered in this thesis, we would concern about other

issues which might be important in practical applications, such as forbidden subwords con­

straint, consecutive-bases constraint, frame-shift constraint and the secondary structure

constraint, see Chapter 1. We might focus on a more accurate model of melting tempera­

ture, mentioned in [23]. In applications, it is also of interest to consider codes which have

variable lengths.

Bibliography

[1] L. M. Adleman. Molecular computation of solutions to combinatorial problems. Sci­

ence, 266(5187):1021-1024, November 1994.

[2] M. Arita. Writing information into dna. Aspects of Molecular Computing, 2950:211

- 222,2004.

[3] D. Ashlock, L. Guo, and F. Qiu. Greedy closure evolutionary algorithms. In CEC

02: Proceedings of the Evolutionary Computation on 2002. CEC 02. Proceedings of

the 2002 Congress, pages 1296-1301, Washington, DC, USA, 2002. IEEE Computer

Society.

[4] S. Baker, R. Flack, and S. Houghten. Optimal variable-length insertion-deletion

correcting codes and edit metric codes. Congressus Numerantium, 186:65-80,2007.

[5] A. Ben-Dor, R. Karp, B. Schwikowski, and Z. Yakhini. Universal dna tag systems: A

combinatorial design scheme. In Journal of Computational Biology, volume 7, pages

503-519. ACM Special Interest Group on Algorithms and Computation Theory, 2000.

[6] A. Brenneman and A. E. Condon. Strand design for biomolecular computation. The­

oretical Computer Science, 287:39-58, 2002.

69

BIBLIOGRAPHY 70

[7] K. J. Breslauer, R. Frank, H. Blocker, and LA. Marky. Predicting dna duplex stability

from the base sequence. In Proc Natl Acad Sci, volume 83, pages 3746-3750, USA,

1986.

[8] A. T. Brouwer. Small binary codes: Table of general binary codes. website at:

http://www.win.tue.n1/aeb/codeslbinary-l.htm1.

[9] A. T. Brouwer. Small quaternary codes: Table of general quaternary codes. website

at: http://www.win.tue.nllaeblcodes/quaternary-l.htm1.

[10] A. T. Brouwer. Small ternary codes: Table of general ternary codes. website at:

http://www.win.tue.nllaeb/codes/ternary-1.htm1.

[11] Y. M. Chee and L San. Improved lower bounds for constant gc-content dna codes.

IEEE Transactions on Infromation Theory, 54(1):391-394, 2008.

[12] J. H. Conway and N. J. A. Sloane. Lexicographic codes: error-correcting codes from

game theory. In IEEE Trans. Inform. Theory, volume 32, page 337C348, 1986.

[13] u. Feldkamp, H. Rauhe, and W. Banzhaf. Software tools for dna sequence design.

Genetic Programming and Evolvable Machines, 4(2):153-171, June 2003.

[14] P. Gaborit and O. D. King. Linear constructions for dna codes. Theoretical Computer

Science, 334(1-3):99-113, 2005.

[15] M. Garzon, R. Deaton, P. Neathery, D. R . Franceschetti, and R. C. Murphy. A

new metric for dna computing. In Proceedings of the Second Genetic Programming

Conference, 1997.

BIBLIOGRAPHY 71

[16] W. Haas and S. Houghten. A comparison of evolutionary algorithms for finding op­

timal error-correcting codes. In Proceedings of the 3rd lASTED Conference on Com­

putational Intelligence, pages 64-70, CI 2007.

[17] S. Houghten, D. Ashlock, and 1. Lenarz. Construction of optimal edit metric codes.

In Proceedings of the 2006 IEEE Workshop on Information Theory, pages 259-263,

2006.

[18] W. C. Huffman and V. Pless. Fundamentals of Error Correcting Codes. Cambridge

University Press, USA, 2003.

[19] D. Kim, I. Lee S. Shin, and B. Zhang. Nacstlseq: A sequence design system with

multiobjective optimization. In DNA8 Lecture Notes in Computer Science, pages

242-251. SpringerVerlag, 2003.

[20] O. D. King. Bounds for dna codes with constant gc-content. Journal of Combina­

tories, 10: 13, 2003.

[21] John R. Koza. Genetic algorithm and genetic programming. website at:

http://www.smi.stanford.edu/people/kozal.

[22] F. J. MacWilliams and N. J. A. Sloane. Theory of Error Correcting Codes. Elsevier

Science Ltd, 1977.

[23] A. Marathe, A. E. Condon, and R. M. Com. On combinatorial dna word design.

Journal of Computational Biology: a journal of computational molecular cell biol­

ogy, 8(3):201-219, 2001.

BIBLIOGRAPHY 72

[24] K. M. McGuire and R. E. Sabin. Using a genetic algorithm to find good linear error­

correcting codes. In Symposium on Applied Computing Proceedings of the 1998 ACM

symposium on Applied Computing, pages 332 - 337. ACM New York, NY, USA,

1998.

[25] Q. Qiu, D. Bums, Q. Wu, and P. Mukre. Hybrid architecture for accelerating dna

codeword library searching. In IEEE Symposium on Computational Intelligence and

Bioinformatics and Computational Biology, pages 323-330, 2007.

[26] J. SantaLucia, H. T. Allawi, and P. A. Seneviratne. Improved nearest-neighbor pa­

rameters for predicting dna duplex stability. Biochemistry, 35(11):3555-3562, March

1996.

[27] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative monitoring of gene

expression patterns with a complementary dna micro array. Science, 270(5235):467-

470, October 1995.

[28] N. C. Seeman and N. R. Kallenbach. Design of immobile nucleic acid junctions.

Biophysical Journal, 44:201-209, 1983.

[29] C. E. Shannon. A Mathematical Theory of Communication. CSLI Publications, 1948.

[30] S. Shen, K. Wang, G. Hu, and S. Xia. On the alignment space and its applications.

Information Theory Workshop, (9485065):165 - 169,2006.

[31] D. D. Shoemaker, D. A. Lashkari, D. Morris, M. Mittman, and R. W. Davis. Quanti­

tative phenotypic analysis of yeast deletion mutants using a highly parallel molecular

bar-coring strategy. Nature Genetics, 16:45'0-456, December 1996.

BIBLIOGRAPHY 73

[32] D. C. Tulpan and H. H. Hoos. Hybrid randornised neighbourhoods improve stochastic

local search for dna code design. Adavances in Aritificial Intelligence: 16th Corif. of

the Canadian Society for Comuptaional Studies of Intelligence, 2671, 2003.

[33] Wikipedia. Double helix. website at: http://en.wikipedia.orglwikilDouble~elix.

[34] Wikipedia. Edit distance. website at: http://en.wikipedia.orglwikilLevenshtein_distance.

