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Abstract 

The (n, k)-star interconnection network was proposed in 1995 as an attractive alter­

native to the n-star topology in parallel computation. The (n, k )-star has significant 

advantages over the n-star which itself was proposed as an attractive alternative to 

the popular hypercube. The major advantage of the (n, k )-star network is its scala­

bility, which makes it more flexible than the n-star as an interconnection network. In 

this thesis, we will focus on finding graph theoretical properties of the (n, k )-star as 

well as developing parallel algorithms that run on this network. 

The basic topological properties of the (n, k )-star are first studied. These are 

useful since they can be used to develop efficient algorithms on this network. We then 

study the (n, k )-star network from algorithmic point of view. Specifically, we will 

investigate both fundamental and application algorithms for basic communication, 

prefix computation, and sorting, etc. 

A literature review of the state-of-the-art in relation to the (n, k )-star network as 

well as some open problems in this area are also provided. 
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Chapter 1 

Introduction 

There are several good reasons for us to study parallel computation. The primary 

one for using a parallel computer to solve a problem is saving much time from that 

required by a sequential computer; since there are many processors cooperating simul­

taneously on a parallel machine. So far, with the development of computer hardware, 

a number of commercial parallel machines have been designed and built. There are 

two important aspects of parallel computation, namely, the parallel computational 

models and the parallel algorithms. 

One cannot talk about the parallel computation without mentioning the associ­

ated computational model on which parallel algorithms are designed. There are 

a wide range of models that have been designed and used for parallel computation. 

They can be divided into two major classes: shared-memory machines and inter­

connection networks. The difference between these two models is in the way the 

processors communicate among themselves, whether through a shared memory or an 

interconnection network. Different interconnection topologies have been proposed, 

such as trees, meshes, hypercubes, etc. 

In this chapter, the shared-memory parallel machines are introduced first; followed 

by an introduction of the interconnection networks and some typical topologies. We 
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then present the topical network: the (n, k )-star. Next, we list the criteria to eval­

uate a parallel algorithm. The last section of this chapter gives an overview and 

organization of this thesis. 

1.1 Shared-Memory Parallel Machines 

Before talking about the shared-memory computers, we first introduce a basic clas­

sification of computer architectures, proposed by Michael J. Flynn [17]. The four 

classifications are based upon the number of concurrent instructions (or controls) and 

data streams available in the architecture: seen by the processor during program ex­

ecution. Depending on whether there is one or several of these streams, computers 

can be divided in four classes: 

• Single Instruction, Single Data Stream (SISD) 

A SISD computer is a general sequential machine. There is no parallelism in 

either the instruction or data streams in this class of computers. 

• Multiple Instruction, Single Data Stream (MISD) 

In computing, a MISD computer contains N processors, each has its own control 

unit and all processors share a common memory unit. In this kind of comput­

ers, parallelism is achieved by using many functional units to perform different 

operations on the same data. But in practice, there is no known implementation 

of this class of computers so far. 

• Single Instruction, Multiple Data Stream (SIMD) 

A SIMD computer consists of N identical processors, each with its own lo­

cal memory to store data. All processors work under the control of a single 

instruction stream issued by a central control unit. The processors operate 

synchronously: at each step, all processors execute the same instruction on a 
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different data element. SIMD computers are much more versatile than MISD 

computers . 

• Multiple Instruction, Multiple Data Stream (MIMD) 

In a MIMD computer, multiple autonomous processors simultaneously execut­

ing different instructions on different data, where each processor has its own 

control unit and local memory. Therefore, processors are potentially all exe­

cuting different programs on different data while solving different sub-problems 

of a single problem. This makes MIMD computers more powerful than other 

three classes of computers. 

To solve any non-trivial problems on a parallel computer, processors need to com­

municate with each other. This can be achieved by either through a shared memory 

or an interconnection network. 

The class of shared-memory parallel computers is also known as the Parallel Ran­

dom Access Machine (PRAM), as shown in Fig. 1.1. It consists of a number of 

identical processors H, P2 , ... , Pn and a common memory which is shared by these n 

processors. 

program 

Figure 1.1: PRAM 
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Theoretically, all processors take the same time to access the memory (read and 

write). The repertoire of instructions of a synchronous PRAM can result in simulta­

neous access by multiple processors to the same location in the shared memory. Based 

on whether multiple processors accessing the same memory location simultaneously 

is permitted or not, there are four different possibilities to classify PRAM computers. 

• Exclusive Read, Exclusive Write (EREW): 

In this form of parallel memory model, only one processor can read from any 

one memory location at a time and only one processor can write to anyone 

memory location at a time. In other words, when this instruction is executed, n 

processors can simultaneously read from or write to n distinct memory locations. 

• Exclusive Read, Concurrent Write (ERCW): 

This class of PRAM computers has the ability that only one processor can read 

from a memory cell but multiple processors can write to a memory cell at one 

time. But in practice, we do not consider this kind of memory access. 

• Concurrent Read, Exclusive Write (CREW): 

In this form of computers, multiple processors can read a memory cell but only 

one can write at a time. 

• Concurrent Read, Concurrent Write (CRCW): 

The CRCW PRAM computers allow multiple processors either to read from or 

write to the same memory location at the same time. When CW instruction 

occurs, one question is "what happens when several processors attempt to write 

different contents to the same memory cell? " There are several extensions 

ready to be used with CW in order to resolve this conflict. Some typical further 

divisions of CW list as follows [3]: 
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- Priority CW: only the processor with highest priority is allowed to write 

into the position. 

Common CW: only allowed if they are attempting to write the same 

value; otherwise, it is an illegal operation. 

Random CW: the processor that succeeds in writing is chosen by a ran­

dom process. 

In the next section, another communication mode among processors in parallel 

computing system which is through interconnection networks is reviewed. 

1.2 Interconnection Network 

In parallel computation, comparing with PRAM we mentioned earlier, another way 

to communicate among processors is through interconnection networks. In an inter­

connection network, there is no longer a shared memory; instead, each processor has 

its own local memory and connects with other processors via direct links between 

them. The links are two-way communication lines; in other words, two processors 

connected by a link can exchange data simultaneously. Therefore, mathematically, 

an undirected graph G = (V, E) can be used to describe an interconnection network, 

where each processor ~ is a vertex in V and if there is a link between two pro­

cessors Pi and Pj in the interconnection network, then an edge (Pi, Pj ) E E exists 

between the two responding vertices in the graph. In this thesis, we will use the terms 

"interconnection network" and "graph" interchangeably. 

Before introducing some existing interconnection networks, a number of criteria 

need to be described first. They are important in the sense that they can be used to 

determine the performance of a network. 

Two processors directly connected by a link are said to be neighbours. 
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Definition 1. The degree of a processor is the number of neighbours of this processor. 

The degree of network topology is the maximum of all processors' degrees in the 

network. 

Definition 2. The distance between two processors Pm and Pn is the number of links 

on the shortest path from Pm to Pn; then the diameter of network is the maximum 

distance among any two arbitrary processors. 

An efficient interconnection topology would usually require small diameter and 

low degree. 

Definition 3. The connectivity of a graph G is the smallest number of vertices we 

can delete in order to disconnect G. 

A regular graph means that all nodes in this graph have the same degree. 

Definition 4. A graph G is vertex symmetric if and only if for any arbitrary 

vertices v and w, there exists an automorphism of the graph that maps v to w. 

Definition 5. A graph G is f-fault tolerant whenever f or less than f nodes are 

deleted from G, the remaining graph is still connected. The fault tolerance of the 

graph G is said to be the largest value of f for which it is f -fault tolerant. 

The symmetric and fault tolerance properties of a graph are very important when 

talking about interconnection networks. They are the basic considerations when 

defining and building the commercial parallel interconnection network machines. 
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Another aspect we need to understand about interconnection networks is the port 

model. Each processor in the networks may be viewed as a RAM; additionally, each 

processor has a number of special registers (called ports) that allow it to communicate 

with its neighbours. In a single-port model, in each unit of time a processor is only 

allowed to send data to or receive data from one of its neighbours. In all-port model, 

the processor can communicate with one or more of its neighbours simultaneously. 

In the following subsections, we will introduce some typical networks. Suppose all 

the networks have n processors. 

1.2.1 Complete Network 

The most obvious and general network topology is a graph where each node in the 

graph is directly connected to all other n - 1 nodes in the graph. Such network is 

called complete network (clique), or Kn. This is the most powerful network; the degree 

of Kn is n - 1 and the diameter is 1. K6 is shown in Figure 1.2. 

Figure 1.2: Complete Network with 6 Processors (K6) 
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1.2.2 Linear Array 

The linear array is the simplest and most fundamental topology in the interconnection 

networks. In this network, all n processors form an one-dimensional array. Each 

processor Pi (1 < i < n) is connected with two neighbours which are Pi- I and 

PHI. Exceptions are the two end processors, namely, PI and Pn , which has only one 

neighbour. Obviously, the degree of the linear array is 2 and diameter is O(n). 

A special case of linear array is the ring network, which connect PI and Pn to 

each other. Hence, all processors in a ring network have two neighbours. 

1.2.3 Mesh 

Mesh is a two-dimensional network which is obtained by arranging the processors 

into an r x s array. The processor in row i and column j is denoted by ~,j, where 

1 ::;; i ::;; rand 1 ::;; j ::;; s. The neighbours of Pi,j will be Pi-l,j, Pi+1,j, Pi,j-l and 

Pi,HI if they exist. Processors on the boundary rows and columns have less than four 

neighbours. The degree of mesh is 4 and diameter is 0 (r + s), since the distance from 

PI,1 to Pr,s is r - 1 + s - 1 = r + s - 2. Figure 1.3 shows a 4 x 4 mesh. 

Figure l.3: A 4 x 4 Mesh 

In a mesh model, the dimension d of the array can also be higher than 2, such 



1.2. Interconnection Network 9 

network is called d-dimensional mesh. In a d-dimensional mesh, each processor is 

connected to two neighbours in each dimension, except the boundary processors which 

have fewer neighbours. Therefore, the degree of d-dimensional mesh will be 2 x d. 

1.2.4 Perfect Shuffle 

In this model, let n be a power of 2 and label n processors as Po, PI, ... , P n - l . In the 

perfect shuffle topology, a one-way direct link connects ~ to Pj where 

{ 
2i 

J= 
2i + 1- n 

Os i S n/2 - 1 

n/2 SiS n - 1 

Also, we can use binary representation to explain the structure in a perfect shuffle 

network. The binary representation of j is obtained by cyclically shifting original 

node i one position to the left; meaning that processor Pin-lin-2 ... io is connected to 

Pin-2in-3 ... ioin-l by a shuffle line. For example, when n = 8, there is an one-way link 

from processor POOl to POlO. A variation of perfect shuffle is shuffle-exchange network. 

In this model, we switch one-way links to two-way connections. In addition, we add 

exchange links to the network, which are two-way lines connecting all even-numbered 

processors to their successors. Figure 1.4 shows a shuffle-exchange network with 8 

processors; the shuffle edges are solid, and the exchange edges are dashed. 

Figure 1.4: A Shuffle-Exchange with 8 Nodes 

The degree of shuffle-exchange network is 3 and diameter is O(log n). 
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1.2.5 Hypercube 

Let n = 2d for some d 2: 0, and we label all n processors Pi where 0 SiS n - 1 

by using the binary representation of i. For each processor Pi, there exists exactly 

d neighbours. The neighbours of Pi are those processors Pj in which the binary 

representation of the indices i and j differ in exactly one bit. Here, d is also called the 

dimension of the network; thereby this network is called d-dimensional hypercube or 

d-cube as well. Clearly, the degree and diameter of d-cube is the dimension d. Figure 

1.5 shows the hypercube networks with dimensions 1,2 and 3. 

1 Dimensional Hypercube (2 nodes) 

2 Dimensional Hypercube (4 nodes) 

00 01 

10 11 

3 Dimensional Hypercube (8 nodes) 

Figure 1.5: Hypercube Networks with d = 1, d = 2, d = 3 
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The Cube-Connected Cycles network is a variation of the hypercube. A Cube­

Connected Cycles topology is similar to the d-cube, except that each of its 2d corners 

is replaced with a ring of d processors. Each processor in a ring is connected to only 

one processor in a neighbouring ring with the same dimension. More details can be 

found in [32]. 

1.2.6 The Star 

To obtain a star network, we begin with giving an integer n and the integer set 

{l, 2, ... , n}. Each processor corresponds to a distinct permutation of these n symbols. 

Therefore, the total number of nodes in this star network is n!. A processor p is 

connected to n-l neighbours which can be obtained by interchanging the first symbol 

of p with the ith symbol, 2 ::; i ::; n. We call these n - 1 connections dimensions. We 

denote this network by Sn or n-star. For example, if n = 4, and processor P1234 is 

connected with P2134, P3214 and P4231 by two-way links. 

The following figure shows S3, S4. 

Figure 1.6: The 3-Star S3 and 4-Star S4. 
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The star interconnection network is an attractive alternative to the hypercube 

parallel model [1]. The most typical properties in the star can compare favorably with 

the hypercube, including symmetry properties, fault tolerance, etc. [2, 14, 31, 42]. 

For example, Sn is maximally fault-tolerant. Also, Sn is a regular graph with n! 

nodes, but its degree is n - 1 and the diameter is O(n), i.e., sub-logarithmic in the 

number of vertices, while a hypercube with O(n!) vertices has a degree and diameter 

of O(n log n), i.e., logarithmic in the number of vertices. 

There are also some other interconnection networks that have been proposed, like 

the Mesh of Trees [4], the Pyramid [29], the De Bruijin network [39], etc. Along 

with computer hardware improvement and continuing research, better networks are 

constantly being proposed and new parallel interconnection network computers being 

built. 

Currently, the most popular non-trivial network in use is the hypercube. The 

reason is that a hypercube network with dimension d has a large number of processors 

(n = 2d ) and a small degree (d = log n). Also, the hypercube network structure can 

be recursively decomposed into successive two lower dimension hypercube. Other 

features of hypercube include small diameter, vertex symmetric and regular graph 

property, simple and optimal routing algorithm and good fault tolerance. 

1.3 The (n, k)-Star Interconnection Networks 

In spite of all the advantages of an n-star over the hypercube, a major drawback is 

its lack of scalability. As we all know, an n-star network has n! number of processors, 

resulting in a large gap between n-star and (n + 1 )-star which has (n + I)! processors. 
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Therefore, we may face the choice of either too many or too few available processors 

when solving a particular problem by using the star network. For the very popular 

hypercube topology, a similar problem exists since an n-cube contains 2n nodes while 

an (n + 1 )-cube has 2n+1 nodes. The Incomplete hypercube was proposed by H.P. 

Katseff [23] in order to get over the above problem. To achieve scalability, incomplete 

star has also been designed [25, 38]. To overcome this restriction on n-star graph, 

Chiang and Chen [9] introduced another generalized version of the n-star by giving 

another parameter k to control the number of nodes in the topology. This new 

topology is called (n, kJ-star. 

N ow we can give the exact definition of (n, k )-star: 

Definition 6. An (n, k)-star graph, denoted by 8n,k, is specified by two integers n 

and k, where 1 ::; k < n. The node set of Sn,k is the set of all k-permutations of n, 

denoted by < V > = { PIP2",Pk I Pi E < 1,2, ... , n > and Pi =I- Pj for i =I- j}. The 

neighbours of a node P = PIP2",Pi .. ·Pk are defined as follows: 

1. PiP2 ... PI ... Pk through an edge of dimension i, where 2 ::; i ::; k (swap PI and Pi)' 

this kind of edges are referred to i-edges. 

2. Xp2 ... Pi.·.Pk through an edge of dimension 1, where x E < 1,2, ... , n > - { Pi I 

1 ::; i ::; k }, this kind of edges are referred to I-edges. 

The following Figure 1.7 shows the (4, 2)-star or 84,2, In this figure, the dashed 

lines indicate i-edges (there is only one choice which is i = 2 in 84,2) and all other 

solid lines indicate I-edges of the (4, 2)-star graph. 

The number of nodes in the (n, k }-star is n! / (n - k)!. In addition, when k = n - 1, 

such Sn,n-I is isomorphic to the n-star (8n) graph [9]. This implies that n-star 

is a special case of the (n, k )-star graph. Obviously, the (n, k )-star graph allows 
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Figure 1.7: A (4,2)-Star Graph 

more flexibility than n-star when designing the interconnection network in parallel 

computation. 

1.4 Evaluating Parallel Algorithms 

To analyze an existing parallel algorithm, which is running on a given parallel machine 

(shared memory or interconnection network), we could consider a number of criteria. 

The most important three criteria are: running time, the number of processors 

in the model and cost [3]. 

The running time of a parallel algorithm is defined as the time taken by this 

algorithm to solve a problem on a parallel computer. Specifically, we are interested in 

the worst time, which means the time required by solving the most difficult instance 

of the problem using this algorithm. Usually, we count how many elementary steps 

are performed by an algorithm when solving a problem (worst case) as a measure 

of running time. Talking about parallel algorithm, there are two different kinds of 

elementary steps, which are: 
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1. Computational steps: A computational step is an arithmetic or logic operation 

performed on a datum within a processor, like adding two numbers. 

2. Routing steps: A routing step takes place when a datum of constant size is 

transmitted from one processor to another processor via shared memory or 

interconnection network. 

Each step (computational or routing) takes a constant number of time units, and the 

running time of a parallel algorithm is a function of the size of input. For a problem 

of size N, we use t(N) to denote the worst case number of time units required by a 

parallel algorithm. 

The number of processors used by a parallel algorithm is another important cri­

terion to evaluate the performance of this algorithm. The major reason for us to 

focus on this factor is that fewer processors (less expensive) model is preferred when 

two different numbers of processors of parallel model can solve a problem with the 

same running time. Also, sometimes a minimum number of processors is required to 

guarantee the success of a parallel computation. We normally use p(N) to denote the 

number of processors used by a parallel algorithm to solve a problem of size N. A 

special case is when p(N) is constant, which is independent of N. 

Another evaluation criterion to be considered is the cost of parallel algorithm, 

which is defined as the product of its running time and the number of processors 

and denoted as c(N) = t(N) x p(N). The cost of a parallel algorithm is an upper 

bound on the total number of elementary steps executed. If a lower bound is known 

as O(f(N)) for a problem of size N, and the cost of parallel algorithm for the same 

problem matches the lower bound (c(N) = O(f(N))), then this parallel algorithm is 

said to be cost optimal. 
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The measurement of these three criteria shows us the basic ways to evaluate the 

goodness of a parallel algorithm. Hence, measuring them together is referred as 

algorithm analysis in parallel computation. 

1.5 Organization of the Thesis 

Many interconnection networks have been discussed previously and some new ones 

are continuously being proposed. Since the (n, k )-star is an alternative to the n-star 

graph which has received much attention and is widely studied, we will investigate 

the (n, k )-star network, from both the graph theoretical and the algorithmic points 

of view. 

We will discuss the following topics in future chapters: 

1. a literature review of Sn,k' 

2. decomposition of Sn,k into vertex-disjoint paths or cycles. 

3. presenting an optimal neighbourhood broadcasting algorithm for Sn,k, and using 

it to develop an optimal broadcasting algorithm in single-port model. 

4. discovering a minimum dominating set of Sn,k, and using it to find a simple 

broadcasting algorithm on all-port Sn,k. 

5. other basic algorithms for Sn,k: 

(a) prefix sums computation 

(b) sorting and merging 

The remainder of the thesis is divided into six chapters. In Chapter 2, we present 

a literature review that includes currently available results on the (n, k )-star network. 

Chapter 3 discusses the graph theoretical properties of the network. The optimal 
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algorithms of Sn,k for some of the most fundamental data communication problems are 

developed in Chapter 4. Next, in Chapter 5, we discuss some application algorithms 

that are designed to run on the (n, k )-star graph. The final chapter concludes the 

thesis and list future open problems and research directions in this network. 
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Chapter 2 

Literature Review of the (n, k)-Star 

2.1 Introduction 

The (n, k )-star network has received much attention after it was first proposed in 1995. 

In this chapter, we offer a literature review on (n, k )-star interconnection network. We 

will review from two areas: existing topological properties and the parallel algorithms. 

All necessary terms and notations will be defined accordingly. 

2.2 Properties 

Proposition 1. 5n ,k is regular of degree n - l!lO). 

Definition 7. Let 5n - 1,k-1 (i) be a subgraph of 5n ,k induced by all the vertices with 

the same last symbol i , for some 1 ~ i ~ n. 

From Definition 6, we can easily see that 5n - 1,k-1(i) is a (n - 1, k - I)-star 

graph which is defined on symbols {1,2, ... ,n} - {i}. In other words, each subgraph 

5n - 1,k-1 (i) is isomorphic to 5n - 1,k-1. From this property, 5n ,k can be decomposed 

into n 5n - 1,k-1'S: 5n - 1,k-l(i), 1 ~ i ~ n [9]. For example, 54,2 in Figure 2.1 contains 

four (3, I)-stars, namely 53,1(1),53,1(2),53,1(3) and 53,1(4), by fixing the last symbol 
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at 1, 2, 3 and 4, respectively. 

Figure 2.1: A Decomposition of (4, 2)-Star Graph into 4 (3, I)-Star 

This hierarchical structure of Sn,k is one of the most important properties of the 

(n, k )-star graph. We are going to exploit this property in our various algorithms, for 

example, in our broadcasting algorithms for both single-port and all-port Sn,k which 

will be presented later. Here, it should be noted that the dimension in which we fix 

the symbols to get Sn-l,k-l'S does not have to be the last in Definition 7, it could 

be any i, 2 :; i :; k. Thus, in general, we can define S~-l,k-l (j) to be a Sn-l,k-l 

such that all the vertices in it have the same symbol j at dimension i, 2 :; i :; k and 

1 :; j :; n. Formalizing above result, we have a new proposition which states: 

Proposition 2. There are k -1 different ways to decompose a Sn,k into n node-joint 

Sn-l,k-l 's: S~_l k-l (j), for 2 :; i :; k and 1 :; j :; n (10). , 

Unless otherwise specified, in this thesis we are going to decompose the (n, k )-star 

at the last dimension. 
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Let i be any symbol from set {I, 2, ... , n}. We use the notation i* to represent 

a permutation whose first symbol is i. Similarly, *i represents a permutation whose 

last symbol is i. 

Recall from Definition 4, a graph G is vertex symmetric if given any two arbitrary 

vertices v and w, there exists an automorphism of the graph G that maps v to w, 

which means the graph G viewed from any vertex looks the same. A vertex symmetric 

graph allows for all the processors to be identical. 

Proposition 3. The (n, k)-star graph is vertex symmetric !9j. 

Proof: We need to show that for any two given vertices a and b in (n, k )-star graph, 

there is an automorphism of the graph that maps a to b. Suppose a = ala2 ... ak and 

b = blh .. bk, then < A > = {aI, a2, ... , ak} and < B > = {bl , b2, ... , bd will be two 

subsets of < n >= {I, 2,· .. , n}. So we define an one-to-one onto mapping function 

Fin Sn,k: 

F(p) = !(PI)!(P2) ... !(Pk) for all P = PIP2",Pk in Sn,k, 

where! is the one-to-one onto mapping function for symbol x in < n >: 

• if x = ai E < A > for 1 ::; i ::; k, then ! ( x) = bi E < B >. 

• if x E < B > - < A >, then !(x) = y where one-to-one mapping for y E 

< A > - < B >. Since IAI = IBI, then IA - BI = IB - AI· 

• if x E < n > - < A > U < B >, then ! (x) = x. 

Clearly, this function F maps ato b. Furthermore, this transformation is an 

automorphism of the graph. This is due to the fact that if two vertices P and q 

are connected, then the images of P and q, F (p) and F ( q) are also connected by 

an edge. More precisely, P = PIP2",Pi ... Pk then q = PiP2",PI ... Pk (i-neighbour) or 

q = rp2".Pi .. ·Pk, where r E < n > - {Pi 11 ::; i ::; k} (I-neighbour). 
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So, 

and 

F(q) f(Pi)f(P2) .. .f(pd ... f(Pk) or 

f (r) f(P2) .. .f(Pi) .. .f (Pk) 

Then F(q) is a neighbour of F(p) .• 
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Similar to the definition of vertex symmetry, edge-symmetry means there is an 

automorphism of the graph that maps any two arbitrary edges. Since (n, k )-star 

graph has two different types of edges (I-edges and i-edges), this prevents it from 

being edge-symmetric. However, in Sn,k, same type of edges still have the edge­

symmetric property. The following proposition gives the exact statement [10]. 

Proposition 4. In Sn,k graph, 

1. every I-edge is edge-symmetric with any other I-edge. 

2. every i-edge is edge-symmetric with any other i-edge. 

As a result of the node symmetric property, any node in Sn,k can be mapped 

to the identity node ek = 12··· k; which implies that routing between two arbi­

trary nodes reduces to routing from an arbitrary node to identity node ek. Similar 

to the cyclic representation for a permutation of symbols 1,2"" ,n, we can repre­

sent a k-permutation (a node in Sn,k) by a product of cycles. To derive this cycle 

representation, we need to define external cycles for symbols E < n > - < k >. 

For each external symbol Pmi (1:. < k » in node P we construct an external cycle 
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Ci = (Pl,P2, ···,PmJ such that the desired position of Pj in P is held by Pj+l for 

1:S; j:S; mi-l, where all Pj, 1:S; j:S; mi-l, are internal symbols (E < k ». In addi­

tion, for each external cycle we define the desired symbol d whose desired position is 

held by the first element of the cycle. The rest of the cycles, called internal cycles, 

are defined the traditional way. Therefore, the routing from an arbitrary node P to 

the identity ek in the (n, k )-star graph can be achieved by moving internal symbols 

and exchanging the external symbols with desired symbols [9]. We can correct the 

cycles of node P one by one in Sn,k to demonstrate the routing scheme. 

We now give an example to get a path from arbitrary node P to the identity node 

ek. Suppose P = 6472583 in S9,7, due to above strategy, we construct the external 

cycle (6,8) with desired symbol d = 1 and internal cycles (2,4), (3,7), First we 

correct external cycle by using desired symbol 1: 

6472583 ----+6 8472563 ----+1 1472563 

Then to correct along two internal cycles: 

1472563 -+2 4172563 -+4 2174563 -+2 1274563 

-+3 7214563 -+7 3214567 -+3 1234567. 

It is easy to see that the diameter of Sn,k is O(k). More precisely, we have: 

Proposition 5. The diameter D(Sn,k) of (n, k)-star graph is [10): 

{ 
2k-1 

D(Sn,k) = 
k + l n~1 J 

if 1 :s; k :s; l ~ J 

if l ~ J + 1 :s; k < n 

Proof: From the cycle structure and routing scheme mentioned above, the distance 
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between any node P to identity node ek in Sn,k is [9]: 

{ 
c+m+x 

Dis(p) = 
c+m+x-2 

if PI = 1 
(2.1 ) 

where c is the number of cycles (including both external and internal) of length larger 

than or equal to two of node P, m is the total number of misplaced symbols of P with 

respect to the identity node ek, and x is the number of external symbols in p. 

Recall from Definition 2, the diameter D(Sn,k) = max{Dis(p) I P E Sn,k }. We 

verify this function by different cases as follows. 

1. if 1 :::; k :::; l ~ J ' then (1) PI = 1, c = 1, m = k - 1, x = k - 1 and (2) PI i= 1, c = 

1, m = k, x = k. So the Equation 2.1 becomes: 

{ 
1 + k - 1 + k - 1 = 2k - 1 

Dis(p) = 
1 + k + k - 2 = 2k - 1 

Therefore, D(Sn,k) = 2k - 1. 

2. if l ~ J + 1 :::; k :::; n - 1, we need to consider either n is odd or even. For n 

is odd number, the maximum value of Dis(p) occurs only when PI = 1, then 

c = 1 + (2k - n - 1)/2, m = k - 1 and x = n - k. So, 

n-1 
Dis(p) = 1 + (2k - n - 1)/2 + k - 1 + n - k = k + (-2-) 

For n is even number, the Equation 2.1 of Dis(p) will be calculated as follows: 

2k -n 
2 + ~ + 0 = k + ~ - 1 if PI = 1 
~ m x 

Dis(p) = c 
2k - n 

2 + 1 + ~ + 0 = k + ~ - 1 if PI i= 1 
~ m x 

c 
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Therefore, D(Sn,k) = k + l n;-l J . 

• 

This result also provides us with another easy way to find the diameter of the 

n-star graph, since Sn graph is a special case of Sn,k where k = n - 1. According to 

Proposition 5, when k = n - 1, the second case should apply, which is D(Sn,n-d = 

n - 1 + l n;-l J = l3(n2-1) J. 

A Hamiltonian cycle in a graph is a cycle that includes all the vertices of the graph 

exactly once. If a graph has a Hamiltonian cycle, we call such a graph Hamiltonian. 

Proposition 6. Sn,k with n 2:: 3 is Hamiltonian [20). 

Recently, more research results about the (n, k )-Star network have been discussed 

by some research people. For example, the fault tolerance and connectivity properties 

of Sn,k are discussed in [9, 10, 20, 21] and the ring embedding property is introduced 

in [7]. 

2.3 Algorithms 

2.3.1 Neighbourhood Broadcasting 

Recall that in an interconnection network, communications among processors are 

accomplished by sending data along the interconnection links. Two possible existing 

communication modes of nodes are single-port and all-port. In a single-port (weak) 

model, a processor can send (receive) at most one fixed length datum to (from) only 

one of its neighbours in one time unit; on the other hand, in one time unit, a processor 

can send (receive) one datum of fixed length to (from) all its neighbours in the all­

port (strong) model. The neighbourhood broadcasting problem, NBP for short, was 
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first introduced by Cosnard and Ferreira in [13] which only applies to the single-port 

model. More precisely, NBP is a problem in which a datum of fixed size is sent 

from the source node to all its neighbours in the single-port communication model. 

In other words, the NBP is the problem of simulating a single step of the all-port 

communication model. 

For some interconnection networks with constant node degrees, obviously the time 

required for neighbourhood broadcasting is constant. To minimize this constant in 

different networks is the main problem that we are interested within this area. The 

lower bound of this NBP on a network with degree dis O(1ogd), as shown below: 

Theorem 1. Any neighbourhood broadcasting algorithm on a network with degree d 

must require O(log d) time. 

Proof: At each time unit, one processor with the messages can only send to one of 

its neighbours, so after every step, the number of neighbours which have received the 

information can at most double. The maximum number of neighbours of a node is d, 

so the least time to solve NBP must be O(1og d). • 

For example, for Sn, the best running time we can obtain is log(n - 1). When 

talking about Sn,k, the above theorem tells us that the lower bound for NBP in Sn,k 

is also O(logn), since the degree of Sn,k is n - 1. We will discuss this later. 

Previously, this problem has been studied for topologies like linear array, trees, 

cycles, mesh and tori in [15, 16]. Moreover, the neighbourhood broadcasting problem 

for hypercube [6], the star and pancake graphs [18, 30, 33, 35, 36], and a special 

family of Cayley graphs [24], have been discussed recently. All these algorithms are 

asymptotically optimal for the corresponding interconnection networks. 
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2.3.2 Broadcasting 

Comparing with neighbourhood broadcasting, the broadcasting problem (BP) means 

one vertex wishes to send a message of constant size to all the vertices in the network. 

For a single-port model, the BP has a lower bound of O(log N), where N is the total 

number of vertices in the network. 

Theorem 2. Any broadcasting algorithm on a single-port graph with N nodes must 

require time O(logN) [i}. 

Proof: Note that after each time unit the number of processors that have received 

the information being broadcast can at most double. _ 

Since Sn has n! nodes in the graph, the optimal algorithm for the broadcasting 

problem on n-star needs O(log(n!)) = O(nlogn) time. In the last few years, some 

broadcasting algorithms for Sn have been found [1,19,27]. The idea of these schemes 

can be described as follows. Since Sn can be decomposed as n number of Sn-l'S, in 

O(logn) time, the source node will send information to one node in each of Sn-l(i), 

where 1 :::; i :::; n. Now every Sn-l (i) has a node with the information, it recursively 

carries out the algorithm on each Sn-l(i). 

Recently, the problem of broadcasting has been studied for (n, k )-star [8, 26] where 

O(nk) time algorithms are obtained. The lower bound for this broadcasting problem 

on single-port Sn,k graph is O(log(n!/(n - k)!)) = O(klogn). 

Talking about the broadcasting problem on interconnection networks of the all­

port model, in addition to the time (the number of communication steps) required, one 

of the considerations of the algorithm is the traffic, i.e., the total number of messages 

exchanged [41]. This means that it is desirable to minimize both the time and traffic 

[41]. To minimize the traffic is equivalent to minimizing the redundancy, i.e., the 
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number of times a node receives the same message. This broadcasting problem has 

been considered before and algorithms whose running times are proportional to the 

diameter of the (n, k)-star have been obtained using spanning trees [26]. 

2.3.3 Prefix Sums 

The prefix sums problem is a computation on a list in which each element in the result 

list is obtained from the sum of the elements in the original list up to its index. In 

parallel computation, we are given n elements ai, i = 1,2,· .. , n, each stored in one 

processors Pi, i = 1,2,· .. ,n in a network, and a closed associative1 binary operation 

EB, the prefix sums problem is to compute all the quantities 

(2.2) 

At the end of the computation we want Pi to contain Si. Since the binary operation 

is the usual addition operation, the word "sum" is used as a generic term for prefix 

computations. 

With the development of parallel computing, the prefix sums computation has 

gained considerable attention in the literature and it plays a central role in parallel 

algorithm design. Also, prefix sums problem is illustrated using a host of examples 

from a variety of application areas. For example, counting sorting [12] and broad­

casting could both be solved using the idea of prefix sums computation. 

We will develop an optimal algorithm for the prefix sums problems on Sn,k later. 

2.3.4 Sorting 

Given a sequence of elements stored in a set of ordered processors, with each processor 

holding one element, the sorting problem requires us to sort these numbers in non­

IThe operation 0 is associative if (a 0 b) 0 c = a 0 (b 0 c) = a 0 b 0 c 
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decreasing order. Therefore, to properly define the sorting problem in Sn,k graph, it 

is indispensable to define an ordering of the processors in the network. This way, we 

can say that the sorting algorithm will put the smallest element in the first processor, 

the second smallest element in the second processor and so on. 

One way to define the order of processors in (n, k )-star is so called reverse lexi­

cographic order. Since the lexicographic order2 of permutations can be easily built, 

if we list all permutations backward, then we have the reverse lexicographic order 

of processors in (n, k)-star. For example, in S4,2, the reverse lexicographic order of 

processors will be 

43 -< 42 -< 41 -< 34 -< 32 -< 31 -< 24 -< 23 -< 21 -< 14 -< 13 -< 12. 

When sorting a sequence of elements in an interconnection network, we define the 

F {Forward} direction if for any two elements x and y held by processors p and q, 

respectively, p -< q implies that x ::; y. The R {Reverse} direction is defined similarly. 

The Sorting problem for Sn has been studied in [5, 28]. In [5], an O(n2 ) time sorting 

algorithm is given based on the (n - 1 )-dimensional lattice. The algorithm in [28] 

is based on Shear Sort which was introduced in [40] for a mesh-connected parallel 

computer, since a n-star can be considered as n x (n-1)! array in a row-major order. 

We will use this idea to find a sorting algorithm on a (n, k )-star graph. 

2For example, the permutations of {I, 2, 3} in lexicographic order are 123,132,213,231,312, and 
321 
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Properties of the (n, k )-Star 

Network 

3.1 Introduction 
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In this chapter, we present some of the properties of the (n, k)-star graph, e.g., de­

composing the graph into vertex-disjoint paths and cycles, embedding the mesh into 

the (n, k )-star, and finding the minimum dominating set of the graph, etc. These 

properties are very useful in developing efficient parallel algorithms on (n, k )-star 

network in the next two chapters. For example, the cycle structure is used to develop 

the neighbourhood broadcasting and broadcasting algorithms in the single-port Sn,k, 

and the minimum dominating set provides us a way to broadcast messages for the 

all-port model. 
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3.2 Decomposing the (n, k )-Star Graph into Cycles 

by I-Edges 

Recall from the definition of the (n, k )-star graph, there are two different kinds of edges 

in Sn,k: i-edges and I-edges. Hence, we can define two different kinds of neighbours 

of a node in Sn,k' 

Definition 8. In Sn,b given a vertex p, then: 

1. a vertex connected with p through the I-edge is called a I-neighbour of p; 

2. a vertex connected with p through the i-edge is called an i-neighbour of p. 

For example, given a node p = 12 ... k in Sn,k, then its i-neighbours are 

and its I-neighbours are 

21345· .. k 

32145· .. k 

42315· .. k 

k2345· .. 1 

(k + 1)234 ... k 

(k + 2)234,. . k 

n234··· k 

Clearly, every node in Sn,k has k -1 i-neighbours and n - k I-neighbours; thereby, 

the degree of Sn,k graph is n - 1. 
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Given a node p in Sn,k, if we treat these two different types of neighbours of p with 

the node p separately, i.e., grouping p and all its I-neighbours, then we can easily 

find the following graphical observation of Sn,k. 

Observation 1. In Sn,k, given an arbitrary node p, then there exists a cycle between 

p and all p's I-neighbours. 

Due to the symmetry, without loss of generality, we only need to consider the 

node p = ek, so ek and its I-neighbours form a cycle as follows: 

12345··· k 

1 
(k + 1)2345 ... k 

1 
(k + 2)2345 ... k 

1 

1 
(n - 1)2345· .. k 

1 
n2345· .. k 

1 
12345· " k 

where "1" represents a two-way link in Sn,k' 

From the above, we can easily see that every node in this cycle must have the 

same symbols from the second to the last position; i.e. every node in the example 

cycle has permutation style like x2345 ... k. The number of nodes in these cycles are 

all the same, which is n - k + I, since there are n - k I-neighbours of any node in 
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Sn,k' Also, we can show that these cycles are disjoint from each other. 

Proposition 7. In Sn,k, given two nodes which are not connected by an I-edge, then 

cycles formed with these two nodes with their I-neighbours are disjoint from each 

other. 

Proof: Suppose u = UI U2 ... Uk and v = VI v2 ... vk are two different nodes in Sn,k, there 

is no I-edge between U and v, such that there exists at least one symbol i, Ui i= Vi, 

for 2 :; i :; k. Let U and its neighbours form a cycle Cu, v and its neighbours form a 

cycle CV ' Now we show Cu and Cv are disjoint from each other. 

Assume these two different cycles Cu and Cv share one or more node, then let w 

be a node in both cycles Cu and Cv, i.e., W E eu and W E CV ' Then, if W E Cu, 

that means W = XU2U3 ... Uk which is an I-neighbour of u. The same idea applies to 

W E Cv , so W is an I-neighbour of V, x = WV2V3 ... Vk. 

which leads to a contradiction, thus such w does not exist. 

Therefore, the cycles are disjoint from each other. _ 

Henceforth, using this I-neighbour cycle structure idea of Sn,b we can find a new 

way to decompose the (n, k )-star graph into different vertex-disjoint paths and cycles. 

Proposition 8. Sn,k can be decomposed into (n-~~I)! vertex-disjoint cycles of length 

n-k+1. 

Proof: First we need to prove the number of paths (cycles) is (n-~~I)!' Since we know 

every node p has n - k I-neighbours, the length of each path is n - k (length of each 
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cycle is n-k+ 1), and all these nodes (including p) have the same permutation symbols 

from position 2 to k. Therefore, to find the total number of paths (cycles) is the same 

as finding how many permutations of length (k-l) from the set < n > = {I, 2, ... , n}. 

Using combinatorial theory, the total number of choices N is 

n! 
N = ~ x (n - 1) x (n -:) x ... x (n - k + 2), = (n _ k + I)! (3.1) 

k-l 

Secondly, from Proposition 7 we know that all these paths (cycles) are disjoint to 

each other. _ 

So, whenever a path with start point Xla2a3 ... ak, where Xi E < 1,2, ... , n > - { aj 

I 2 :::; j :::; k }, for 1 :::; i :::; n - k, we will assume that Xl < X2 < ... < Xn-k, so Xl 

is the minimum of all Xi. These path will go this way: exchange first symbol Xi to 

Xi+l, and so on. For example, if n = 5 and k = 2, 8 5,2 can be decomposed into five 

(5!/(5 - 2 + I)! = 5) vertex-disjoint paths of length 4: 

path 1 : 21 *-+ 31 *-+ 41 *-+ 51 

path 2 : 12 *-+ 32 *-+ 42 *-+ 52 

path 3 : 13 *-+ 23 *-+ 43 *-+ 53 

path 4 : 14 *-+ 24 *-+ 34 *-+ 54 

path 5 : 15 *-+ 25 *-+ 35 *-+ 45 

Recall that the most powerful interconnection network is the complete graph Kn , 

which is also called a clique Kn. In fact, Observation 1 really implies that: 

Theorem 3. In 8 n ,k, for any node p, p and all its I-neighbours form a clique K n - k+l . 
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Proof: Given any node P = PIP2 ... Pk and its I-neighbours set, which is denoted 

by < PI-neighbours >, we need to prove that any two nodes in < PI-neighbours> are 

connected with each other by a two-way link. 

Suppose x and yare two nodes in < PI-neighbours >. Let x = iP2",Pk and y = 

jP2",Pkl X -=I y implies i -=I j. By the definition of the (n, k )-star graph, there is also 

a I-edge between x and y, which means every two nodes in < PI-neighbours > are 

connected to each other. 

Hence, P and its I-neighbours form a clique with n - k + 1 nodes. _ 

Lemma 1. There are (n-~~I)! cliques each with n - k + 1 nodes in Sn,k. 

Proof: The proof is trivial based on Proposition 8. _ 

Specifically, when k = 1, we have 

Lemma 2. When k = 1, Sn,I is a clique Kn [7). 

Proof: By the definition of (n, k )-star. _ 

3.3 Finding the Minimum Dominating Set of the 

(n, k)-Star Graph 

Definition 9. A dominating set of vertices in a graph G = (V, E) is a set V' ~ V such 

that every vertex of G either belongs to V' or has a neighbour in V'. The domination 

number is the number of vertices in V'. And the minimum dominating set is a 

dominating set with the smallest dominating number. 

The dominating set problem is to find a minimum dominating set Dc of a graph 

G with domination number IDcl. In parallel computation, interconnection networks 
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are modeled as graphs. When talking about finding a minimum dominating set of 

Sn,k, we first give a lower bound of domination number in the following proposition. 

Proposition 9. Let Dn,k be a minimum dominating set of Sn,kJ Dn,k contains at least 

(n-l)! . 
(n-k)! vertzces. 

Proof: Since Sn,k is a regular graph of degree n - 1, and each vertex in a minimum 

dominating set Dn,k dominates itself and n - 1 of its neighbours, then we have: 

ID I > n!j(n - k)! = (n - I)! 
n,k - n (n - k)! 

which implies Dn,k contains at least i~=~~: vertices. _ 

(3.2) 

Henceforth, when considering finding the minimum dominating set of the graph 

Sn,k, if we can prove a dominating set D has i~=~~: vertices, then this set D will be a 

minimum dominating set of Sn,k. 

In Sn,k, let D be a set of all the nodes whose first symbol is i, 1 ::; i ::; n, which is 

denoted by i*. Now we can get the following result: 

Theorem 4. Every vertex set D = {i*}, for 1 ::; i ::; n, is a minimum dominating 

set of Sn,k. 

Proof: To show correctness of this theorem, we need to prove two results: 

1. D is a dominating set of Sn,k. 

2 th (n-l)' t· . D . ere are (n-k)! ver Ices m . 

First, to show D = {i*} is a dominating set means any node in the graph Sn,k is 

adjacent to one node of this form i*. Given any node P = PIP2 ... Pk in Sn,k, we 

consider three cases: 
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• if PI = i, then p ED. 

• if Pj = i, 2 S j s k, we interchange Pj and PI to reach a new node pi = 

ip2 ... PI",Pk, which is a neighbour of vertex p. Since pi E D, then P is adjacent 

to a node in D. 

• if i E< n > -{Pj I 1 S j s k}, we can replace PI by i to get a neighbour of p, 

such as pi = iP2P3",Pk' Also, pi is a node in D, so pi E D, then P is adjacent to 

a node in D. 

Therefore, we can see that the set D = {i* } is a dominating set of Sn,k. 

Second, the number of nodes of this form {i*} is 

(n - 1)! 

((n-1)-(k-1))! 
(n - 1)! 

(n - k)! 

Hence, D is a minimum dominating set of Sn,k .• 

For example, in Figure 1.7, S4,2 has four different minimum dominating sets by 

choosing different i: 

i = 1: D4,2 = {12, 13, 14} 

i = 2: D4,2 = {21, 23, 24} 

i = 3: D4,2 = {31, 32, 34} 

i = 4: D4,2 = {41,42,43} 

The minimum dominating set problem of a graph is very useful, because it can be 

used in practical applications in data communication in networks. We will use this 

idea and hierarchical structure of Sn,k to develop a broadcasting algorithm for the 

all-port (n, k )-star interconnection network. 
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3.4 Embedding the Mesh into the (n, k )-Star Graph 

Definition 10. An embedding of graph G = (Va,Ea) into H = (VH,EH) is an 

one-to-one function f: Va =} VH. G is called a guest graph and H is called a host 

graph. 

Embedding a guest (source) graph into a host (target) graph has been long used to 

model the processor allocation in the parallel and distributed computing environments 

[7]. The guest graph sometimes represents an existing parallel algorithm and the host 

graph is an interconnection network where the algorithm executes. Also, it is used to 

simulate a parallel algorithm of one type of interconnection network on another one. 

In considering graph embedding problems, mapping of the edges of guest graph 

G is accomplished by a simple path of host graph H such that if e = (a, b) E Ea, 

then there exists a single path from node f(a) to f(b) in H. The edge dilation of an 

edge e is defined by the distance of the single path in H, which is dist(f(a) , f(b)). 

The dilation cost of function f is defined as max(a,b)EEa(dist(f(a), f(b)). Another 

important feature involved in graph embedding is the so called expansion cost, which 

is defined by the ratio of size H to size G, i.e., IVHI/lVal. 

The problem of embedding a mesh into the star graph has been discussed in 

[22, 37]. The results shown in [22, 37] mentioned an (n - I)-dimensional mesh or 2-

dimensional mesh both could embed into a n-star graph with expansion cost 1. The 

similar ideas also apply to (n, k )-star graph. We will study two mapping strategies 

in the following sections. 

3.4.1 Embedding a k-dimensional Mesh into Sn,k 

In this section, we describe a mapping of a k-dimensional mesh of size n x (n - 1) x 

... x (n - k + 1), denoted by Mn,k, on the (n, k)-star graph Sn,k. 
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Lemma 3. There is no embedding for Mn,k to Sn,k with edge dilation equal to 1 if 

k > l~J + 1. 

Proof: In any dilation 1 embedding the degree of a node in the guest graph G should 

be less than or equal to the degree of a node in the host graph H. Here, a node in 

Mn,k can have a degree 2k - 2 and the degree of Sn,k is n -1. When k > l~J + 1, we 

have (2k - 2) > n - 1, so there is no 1 dilation embedding of Mn,k on Sn,k' • 

Let m be a node in Mn,k, then node m can be represented as m = (mI, m2, ... , mi, ... , mk), 

1 :::; i :::; k, for 1 :::; mi :::; n - i + 1. Hence, the vertex set of Mn,k will be: 

k 
~ 

V(Mn,k) = { (1,1, ... , 1), (1, 1, ... ,2), ... , (1, 1, ... , n - k + 1), 

(1,2, ... , 1), (1,2, ... ,2), ... , (1,2, ... , n - k + 1), 

(n, n - 1, ... , 1), (n, n - 1, ... ,2), ... , (n, n - 1, ... , n - k + I)}. 

For example, consider n = 5, k = 3, then all vertices in this 5 x 4 x 3 3-dimensional 

mesh are listed in Table 3.1. 

Table 3.1: List all vertices in 3-dimensional mesh of size 5 x 4 x 3 

(1,1,1) (1,1,2) (1,1,3) (1,2,1) (1,2,2) (1,2,3) 
(1,3,1) (1,3,2) (1,3,3) (1,4,1) (1,4,2) (1,4,3) 
(2,1,1) (2,1,2) (2,1,3) (2,2,1) (2,2,2) (2,2,3) 
(2,3,1) (2,3,2) (2,3,3) (2,4,1) (2,4,2) (2,4,3) 
(3,1,1) (3,1,2) (3,1,3) (3,2,1) (3,2,2) (3,2,3) 
(3,3,1) (3,3,2) (3,3,3) (3,4,1) (3,4,2) (3,4,3) 
(4,1,1) ( 4,1,2) (4,1,3) (4,2,1) (4,2,2) (4,2,3) 
(4,3,1 ) (4,3,2) (4,3,3) (4,4,1) (4,4,2) (4,4,3) 
(5,1,1) (5,1,2) (5,1,3) (5,2,1) (5,2,2) (5,2,3) 
(5,3,1) (5,3,2) (5,3,3) (5,4,1) (5,4,2) (5,4,3) 
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Clearly, the total number of nodes in Mn,k is n x (n - 1) x (n - 2) x ... x (n - k + 1). 

Since the number of nodes in Sn,k is (n~!k)!' which equals to the number of nodes in 

Mn,k. We may consider embedding a k-dimensional mesh of size n x (n - 1) x ... x 

(n - k + 1) into Sn,k has an expansion cost 1. 

Before we discuss embedding Mn,k into Sn,k graph, we give some definitions about 

ordering nodes in both Mn,k and Sn,k, so called lexicographic order, which will be the 

first step of developing a one-to-one mapping function between these two graphs. 

Definition 11. In a k-dimensional mesh of size nx (n-1) x ... x (n-k+ 1) or Mn,k, mx 

and my are two processors associated with the vertices mx = (mX1 , m X2 , ... , m Xk ) and 

my = (mYll m y2 , ... , m yk ). The lexicographic order in Mn,k is defined as: mx :::S my if 

and only if the first m Xi which is different from m Yi satisfied as m Xi < m yi , 1 :::; i :::; k. 

Using this definition, we could sort all vertices in Table 3.1 by the lexicographic 

order to get the following results: 

Table 3.2: Lexicographic order of vertices in 3-dimensional mesh of size 5 x 4 x 3 

(1,1,1) -< (1,1,2) -< (1,1,3) -< (1,2,1) -< (1,2,2) -< (1,2,3) 
-< (1,3,1) -< (1,3,2) -< (1,3,3) -< (1,4,1) -< (1,4,2) -< (1,4,3) 
-< (2,1,1) -< (2,1,2) -< (2,1,3) -< (2,2,1) -< (2,2,2) -< (2,2,3) 
-< (2,3,1) -< (2,3,2) -< (2,3,3) -< (2,4,1) -< (2,4,2) -< (2,4,3) 
-< (3,1,1) -< (3,1,2) -< (3,1,3) -< (3,2,1) -< (3,2,2) -< (3,2,3) 
-< (3,3,1) -< (3,3,2) -< (3,3,3) -< (3,4,1) -< (3,4,2) -< (3,4,3) 
-< (4,1,1) -< (4,1,2) -< (4,1,3) -< (4,2,1) -< (4,2,2) -< (4,2,3) 
-< (4,3,1) -< (4,3,2) -< (4,3,3) -< (4,4,1) -< (4,4,2) -< (4,4,3) 
-< (5,1,1) -< (5,1,2) -< (5,1,3) -< (5,2,1) -< (5,2,2) -< (5,2,3) 
-< (5,3,1) -< (5,3,2) -< (5,3,3) -< (5,4,1) -< (5,4,2) -< (5,4,3) 
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Recall the order of processors in the interconnection network, the rank of a vertex 

is defined as follows: 

Definition 12. Given an ordering of processors in an interconnection network, the 

rank of a processor p, r(p), equals the number of processors that precedes p. 

Now we can describe a method about embedding a k-dimensional mesh Mn,k into 

Sn,k graph. After giving the lexicographic order of nodes in both Mn,k and Sn,k graphs, 

the mapping function from vertex set V(Mn,k) to V(Sn,k) can be found as follows: if 

a node m = (mI, m2, ... , mk) E V(Mn,k) and a node p = PIP2···Pk E V(Sn,k) have the 

same rank (r( m) = r(p)), then m is mapped to p. Clearly, since the numbers of nodes 

in both graphs are equal, this mapping function is one-to-one. Table 3.3 describes 

the mapping between V(M5,3) to V(S5,3) (order from left to right). 

Table 3.3: Mapping of V(M5,3) to V(S5,3) 

M5,3 S53 , M5,3 S5,3 M5,3 S5,3 
(1,1,1) 123 (1,1,2) 124 (1,1,3) 125 
(1,2,1) 132 (1,2,2) 134 (1,2,3) 135 
(1,3,1) 142 (1,3,2) 143 (1,3,3) 145 
(1,4,1) 152 (1,4,2) 153 (1,4,3) 154 
(2,1,1) 213 (2,1,2) 214 (2,1,3) 215 
(2,2,1) 231 (2,2,2) 234 (2,2,3) 235 
(2,3,1) 241 (2,3,2) 243 (2,3,3) 245 
(2,4,1) 251 (2,4,2) 253 (2,4,3) 254 
(3,1,1) 312 (3,1,2) 314 (3,1,3) 315 
(3,2,1 ) 321 (3,2,2) 324 (3,2,3) 325 
(3,3,1) 341 (3,3,2) 342 (3,3,3) 345 
(3,4,1) 351 (3,4,2) 352 (3,4,3) 354 
(4,1,1) 412 (4,1,2) 413 (4,1,3) 415 
(4,2,1) 421 (4,2,2) 423 (4,2,3) 425 
(4,3,1) 431 (4,3,2) 432 (4,3,3) 435 
(4,4,1 ) 451 ( 4,4,2) 452 (4,4,3) 453 
(5,1,1) 512 (5,1,2) 513 (5,1,3) 514 
(5,2,1) 521 (5,2,2) 523 (5,2,3) 524 
(5,3,1) 531 (5,3,2) 532 (5,3,3) 534 
(5,4,1) 541 (5,4,2) 542 (5,4,3) 543 
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Next factor we need to consider about this embedding is the edge dilation cost. 

Assume in this embedding, a node m = (ml' m2, ... , mi, ... , mk) in the original mesh 

is mapped to a permutation p = PIP2 ... Pi ... Pk in an (n, k)-star graph. Obviously, 

we want to consider all neighbours of m in Mn,k, the nodes (ml' ... , mi + 1, ... , mk) 

and (ml' ... , mi - 1, ... , mk) (if they exist), for 1 :::; i :::; k. The only change to get 

a neighbour of node m is to add or subtract 1 from mi at dimension i and keep all 

other dimensions the same. To get all these neighbours' corresponding nodes in Sn,k, 

we can consider two cases: 

Plus( +) Case: if m+ = (ml' ... , mi + 1, ... , mk) which is a neighbour of m by adding 

1 from dimension i, then we need to find the smallest dimension j such as 

mj = mi for j > i. If j does not exist, the corresponding node of m+ is 

achieved by replacing Pi by x for x > Pi, such that pi = PIP2 ... X ... Pk. If j exists, 

the corresponding node pi in Sn,k is the one by interchanging the symbols Pi 

and Pj. In other words, if P = PIP2 ... Pi ... Pj"'Pk> then pi = PIP2",Pj ... Pi ... Pk. 

Minus( -) Case: similar to the plus( +) case above, if m- = (ml' ... , mi - 1, ... , mk) 

which is a neighbour of m by subtracting 1 from dimension i, then the cor­

responding mapped node pi of m- in Sn,k has two permutation forms: ei-

ther pi = PIP2 ... X ",Pk where x is a symbol at dimension i and x < Pi or 

pi = PIP2 ... Pi ... pj ... Pk where P = PIP2 ... Pj ... Pi ... Pk. 

From these two cases, we can easily find the key form of corresponding node pi in 

Sn,k. Given m and its one neighbour m' in Mn,k, the mapping nodes are P and pi in 

Sn,k' Then the permutations of P and pi differ at most 2 positions, which tells us the 

distance between P and pi is at most 3. The special case is when m' is the neighbour 

by changing the first dimension ml of m. Then in this case, the mapping node pi will 

also be a neighbour of P in Sn,k. Therefore, the lemma about the dilation cost lists 

as follows. 
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Lemma 4. The above embedding has a dilation cost 3. 

Proof: From the above description, 

1. Given m and m', the two original connected nodes in the mesh, let the corre­

sponding nodes in Sn,k be p = PIP2 ... Pi ... Pk and pi = PIP2 ... X ... Pk. If i = 1, these 

two nodes are connected by an edge in Sn,k; otherwise, an 3-length path can be 

built: P = PIP2···Pi···Pk -+ PiP2···Pl···Pk -+ XP2···Pl···Pk -+ PIP2··· X···Pk = p'. 

2. Given m and m', the two original connected nodes in the mesh, let the corre-

sponding nodes in Sn,k be P = PIP2 ... Pi ... Pj ... Pk and pi = PIP2 ... Pj ... Pi ... Pk. Then 

the length 3 path from P to pi will be: P = PIP2···Pi···Pj···Pk -+ PiP2 ... Pl ... Pj ... Pk -+ 

Hence, every edge in Mn,k can be mapped to a 3-length or less path in Sn,k. The 

dilation cost of this embedding is 3. • 

As an example, consider m = (2,2,2) in M 5,3 (corresponding to node 234 in Sn,k), 

the neighbours of mare (1,2,2), (3,2,2), (2, 1, 2), (2,3,2), (2,2,1), and (2,2,3) in the 

original mesh, and corresponding nodes in Sn,k are 134,324,214,243,231,235. And 

the edges to path mapping are: 

((2,2,2)(1,2,2)): 234 -+ 134 

((2,2,2) (3,2,2)): 234 -+ 324 

((2,2,2)(2,1,2)): 234 -+ 324 -+ 124 -+ 214 

((2,2,2)(2,3,2)): 234 -+ 324 -+ 423 -+ 243 

((2,2,2)(2,2,1)): 234 -+ 432 -+ 132 -+ 231 

((2,2,2) (2,2,3)): 234 -+ 432 -+ 532 -+ 235 

Combining all discussions above, we get a final theorem about embedding a k­

dimensional mesh into the (n, k )-star graph. 
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Theorem 5. A k-dimensional mesh of size n x (n - 1) x ... x (n - k + 1) can be 

embedded into Sn,k graph with dilation cost of 3 and expansion cost of 1. 

For this embedding, since expansion cost is 1, and edge dilation is larger than 

1, some nodes are used as intermediate nodes for many different pairs of adjacent 

nodes in the original mesh, resulting in congestions and delays of communications. 

A smaller dilation does not necessarily lead to smaller communication cost; actually, 

the communication cost is not reflected by the dilation cost. 

3.4.2 Embedding a 2-dimensional Mesh into Sn,k 

Recall the hierarchical structure Sn,k we discussed in Chapter 2, each Sn,k graph can 

be decomposed into n number of Sn-1,k-1(i) subgraphs, where 1 ::; i ::; n. We use 

this idea to embed a 2-dimensional mesh n x ~~=~~: into an (n, k )-star graph. 

If we arrange all the vertices in Sn,k into an n x ~~=~~: array in the row-major order 

(in terms of the processor ordering as reverse lexicographic order), the row i becomes 

Sn-1,k-1(i). The example of S4,2 is given in the following Table 3.4. 

Table 3.4: Vertices of S42 , 

41 31 
42 32 
43 23 
34 24 

21 
12 
13 
14 

S3,1(1) 
S3,1 (2) 
S3,1 (3) 
S3,1 (4) 

From this table we can easily see that all the vertices in the same column have 

the same rank in their respective Sn-1,k-1 's. For example, vertices 31,32,23 and 24 

are all ranked 2 in S3,1(1),S3,1(2),S3,1(3),S3,1(4), respectively. 

If we exchange the 1st symbol with kth symbol in each vertex, we can get another 

n x ~~=~~: array. In this way, each column of the new array is connected to form a 
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simple path, and vertices in each row form a dominating set of 5n ,k. Table 3.5 is the 

new 4 x 3 array after switching the first and last symbols of each vertex in Table 3.4. 

For example, look at column 1, the path 14 --+ 24 --+ 34 --+ 43 is shown; all vertices 

{41, 31, 21} in row 1 form a minimum dominating set of 54,2, Therefore, we may 

consider that the vertices in row-major order of 5n ,k (n x ~~::::~j: array), each column 

as "connected" in a path directly without this constant time transformation. 

Table 3.5: Vertices of 54,2 

14 13 12 
24 23 21 
34 32 31 
43 42 41 

These properties allow us to embed an n x t~::::~j: 2-dimensional mesh into 5n ,k 

arranged by this row-order structure. The expansion cost is still 1 since both graphs 

have the same number of vertices. Since every vertex in the same row belongs to 

one 5n - 1,k-l, the edge dilation in a row edge of the mesh depends on the diameter 

of 5n - 1,k-l. This embedding property of 5n ,k allows us to simulate the Shear Sort 

algorithm for a mesh-connected parallel computer in the (n, k )-star interconnection 

network, which will be presented in Chapter 5 later. 
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Chapter 4 

Communication Problems on the 

(n, k)-Star Network 

4.1 Introduction 

In this chapter, we consider the neighbourhood broadcasting and broadcasting prob­

lems in the (n, k )-star interconnection network. First, we present an optimal neigh­

bourhood broadcasting algorithm for the (n, k)-star under the single-port model. This 

algorithm will then be used to develop an optimal broadcasting algorithm for this in­

terconnection network. Our neighbourhood broadcasting is the first such algorithm. 

For the all-port model, we develop an optimal algorithm using the minimum domi­

nating set we found in previous chapter. The time complexity matches the results of 

previous work but our algorithm is much simpler. 

4.2 Broadcasting on the Single-Port Model 

As we mentioned in the first chapter, in a single-port (weak) model network, a node 

can communicate with one and only one of its neighbours in one time unit. This tells 

us that the broadcasting problem (BP) in such a model has a lower bound O(1og N), 
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where N is the number of nodes in the network, and neighbourhood broadcasting 

problem (NBP) has a lower bound D(1og d), where d is the degree of the network. For 

Sn,k, the lower bound will be D(1og(n!/(n - k)!)) = D(klogn) for BP and D(1ogn) 

for NBP. 

4.2.1 Neighbourhood Broadcasting on Sn,k 

Since the (n, k)-star graph is vertex symmetric, without loss of generality, we assume 

that the source node, which wishes to broadcast a piece of information to all of its 

neighbours, is the identity node ek = 12· .. k. For this node, its k - 1 i-neighbours 

are: 

21345· .. k, 32145· .. k, ... , (k - 1)2345· .. lk, k2345· .. 1, 

and its n - k I-neighbours are: 

(k + 1)234 ... k, (k + 2)234 ... k, ... , (n - 1)234· .. k, n234· .. k. 

From Theorem 3 and Lemma 2 in previous chapter, we know that in Sn,k a node 

p with all its I-neighbours form a clique; in other words, all I-neighbours of pare 

connected with each other. Also, Sn,l is a clique Kn. Our neighbourhood broadcasting 

algorithm is based on these topological properties and the following observations on 

the (n, k )-star graph: 

Observation 2. For any two i-edge neighbours of p: i * k = i23· .. (i - 1) 1 (i + 1) ... k 

and j * k = j23 .. . (j -1) 1 (j + 1) ... k (we assume that i < j without loss of generality), 

they are on the same cycle of length 6 as follows, where {:} represents a two-way link 
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(edge) between two nodes. 

123 ... i ... j ... k ¢:} 

i23 ... 1 ... j ... k ¢:} 

j23 ... 1 ... i ... k ¢:} 

123 ... j ... i ... k ¢:} 

i23 ... j ... 1 ... k ¢:} 

j23 ... i ... 1 ... k ¢:} 

Note that, this 6-cycle contains the source node as well as two of its i-neighbours 

i23··· (i -1)l(i + 1)· .. k and j23··· (j -1)1(j + 1)·· . k; and only involves i-edges. 

For example, in 56,4, for i = 2 and j = 4, we have a 6-cyde: 

1234 ¢:} 2134 ¢:} 4132 ¢:} 1432 ¢:} 2431 ¢:} 4231 ¢:} 

In fact, above observation also holds true when k + 1 ~ j ~ n. 

Observation 3. For any i-neighbour i * k = i23· .. (i - 1) 1 (i + 1) ... k and I-neighbour 

j * k = j23· .. k, where k + 1 ~ j ~ n, they are on the same cycle of length 6 as well 

as the source node ek = 123· .. k, 

123· .. (i - l)i(i + 1) ... k ¢:} 

i23· .. (i - l)l(i + 1) ... k ¢:} 

j23· .. (i - l)l(i + 1) ... k ¢:} 

123· .. (i - l)j(i + 1) ... k ¢:} 

i23 ... (i - l)j (i + 1) ... k ¢:} 

j23· .. (i - l)i(i + 1) ... k ¢:} 
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This cycle involves both i-neighbour and I-neighbour. For example, in S6,4, for 

i = 2 and j = 5, we have a 6-cycle: 

1234 {:} 2134 {:} 5134 {:} 1534 {:} 2534 {:} 5234 {:} 

Observation 4. Any two 6-cycles formed as in the above two observations with dis­

tinct 2 :::; iI, j1, i2, j2 :::; n are disjoint except that they share the source node 123 ... k. 

This observation is true because the first symbols of the first cycle are 1, iI, j1, 1, i1 

and j1 and those of the second cycle are 1, i 2 , j2, 1, i2 and j2' 

Note that Observations 2, 3, and 4 allow us to view the source node together with 

its n - 1 neighbours as a de facto complete graph in the sense that any two nodes are 

connected by a path of constant length. 

Based on the above observations and the technique of recursive doubling where 

at each step, we double the number of neighbours with the message by using a set of 

disjoint cycles of constant size in Sn,k, a simple neighbourhood broadcasting algorithm 

for Sn,k can be designed. 

Initially, the source node is the only one with the message. In one step, it sends 

the message through the direct link to one of its neighbours. N ow two nodes have 

the message and they in turn send the message to two other neighbours of the source 

node in such a way that the source sends its message to a neighbour in one step and 

the neighbour who just received the message in previous step sends the message to 

another neighbour of the source node via a length-4 path that is part of a 6-cycle. 

The number of nodes with the message is now 4 (the source node and three of its 

neighbours) and these four nodes send the message to another four neighbours of 
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the source node in the same fashion. That is, three neighbours of the source node 

with the message send the message to another three neighbours of the source node by 

disjoint paths of length four that are parts of three disjoint 6-cycles and the source 

node sends its message to a neighbour directly. The algorithm continues until all 

neighbours of the source node receive the message. 

One possible implementation is given as follows (assuming that the neighbours of 

node 12· .. k are ordered such that 213· .. k is the first, 321· .. k as second, etc.). 

Algorithm 1 Neighborhood Broadcasting on Sn,k 

N +- 1 / / the number of nodes currently with the message 
for i = 0 to ,log ~ 1 do 

if 1 :s; n - N :s; 3 then 
source node 12· .. k sends the message to the remaining nodes (neighbours) 
that have not received the message yet by direct links 
/ / nodes 2i + j, 1 :s; j :s; (n - N) 
stop 

else in parallel 
each node u that has the message sends its message to node u + 2i , if node 
u + 2i exists (source node does this through the direct link while others 
through paths of the form u* -t (u + 2i )* -t h -t u* -t (u + 2i )* (a 
neighbourbour of the source) of length 4 on disjoint cycles) 
N+-2xN 

end if 
end for 

Essentially, after each step, the number of nodes with the message is doubled 

(with the possible exception of the last step). For example, n = 8, k = 4 and source 

node p = 1234, the neighbourhood broadcasting is done in the following fashion: 
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• Step 1: 

1234 -7 2134 (direct link) 

• Step 2: 

1234 -7 3214 (direct link) 

2134 -7 4132 -7 1432 -7 2431 -74231 (4-length path) 

• Step 3: 

1234 -7 5234 (direct link) 

2134 -7 6123 -7 1634 -7 2634 -7 6234 (4-length path) 

3214 -77214 -7 1274 -7 3274 -7 7234 (4-length path) 

4231 -78231 -7 1238 -7 4238 -7 8234 (4-length path) 
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Another possible implementation is to first do a neighbourhood broadcasting in 

the (n - k )-clique formed by all the I-edge neighbours of the source node, then start 

the recursive doubling. Many other implementations are also possible since the source 

and its neighbours form a de facto complete graph from a practical point of view. 

This algorithm works correctly since all the paths are disjoint from Observation 4. 

Now we need to analyze the running time of this algorithm, we first consider the 

case where n mod 2LlognJ > 3. In this case, pog n 1 steps are needed where each 

step requires routing of length 4 except the very first step where the source sends its 

message directly to node 2. Thus, 

t(n) = 4 pognl- 3 

4 pog n 1 - 4log 2 + 1 

4Il0g(~)l+1 

The analysis for the other case is similar. 
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Therefore, the running time for the algorithm is 

{ 
4llog(~)J + 1 + x if 1 :::; x = 

t(n) = 
4 pog( ~ ) l + 1 otherwise 

51 

n mod 2LlognJ :::; 3 

which is O(log n). In view of the O(log n) lower bound, we can say that our algorithm 

is optimal. 

Note that when n is relatively small, it is better for the source node to simply 

send its message to each of its n - 1 neighbours one at a time, requiring n - 1 steps. 

4.2.2 Broadcasting on Sn,k 

Using the neighbourhood broadcasting procedure just developed from the previous 

section, a broadcasting algorithm on (n, k )-star can be done easily. 

Once again, without loss of generality, we assume that node ek = 123··· k wants to 

broadcast a message to all the other processors in Sn,k' In the first step, the message 

will be sent to all its neighbours through neighbourhood broadcasting algorithm in 

O(1ogn) time so that nodes 2 * k, 3 * k, ... , (k - 1) * k and k * 1 (all i-neighbours of 

source node ek), and (i + 1) * k, (i + 2) * k, ... , (n -1) * k and n * k (alII-neighbours of 

source node ek) all have the message. Then in one more time unit, we can send the 

message to another n - 1 nodes through these neighbours' k-dimension (switch 1st 

and kth symbols of these neighbours who have message). Now we have n - 1 nodes 

*2, *3, ... , *n with the message. Now, every Sn-l,k-l(i), 1 :::; i :::; n, has at least one 

node with the message. So we can recursively broadcast in each Sn-l,k-l in parallel. 
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Algorithm 2 Broadcasting (Sn,k) 
if k = 1 then 

simply perform a standard broadcasting algorithm. / / Sn,l is a clique of size 
n 

else 
the source node 12· .. k performs a neighbourhood broadcasting. / /2 * k, 3 * 
k, ... ,k*I (alli-neighbours) and (i+I)*k,(i+2)*k, ... ,n*k (alII-neighbours) 
have the message. 

all (except node k * 1) send their message to their k-dimension neighbours. 
/ / at least one node of form *2, *3, ... , *n with the message. 
in parallel for all 1 :::; i :::; n do 

Broadcasting (Sn-1,k-1 (i) ) 
end for 

end if 

Let t( n, k) be the running time for broadcasting on the (n, k )-star graph, we know 

the neighbourhood broadcasting requires O(log n) time, then t( n, k) is easily seen to 

be: 

t( n, k) Clog n + t( n - 1, k - 1) 

Clogn + Clog(n -1) + t(n - 2, k - 2) 

Clogn + Clog(n -1) + ... + Clog(n - k + 2) + t(n - k + 1,1) 

Clogn + Clog(n - 1) + ... + Clog(n - k + 2) + C1 log(n - k + 1) 

o (log en :!k)!)) 
O(k logn) 

where C and C1 are two constant numbers. Hence this broadcasting algorithm is 

optimal in view of the D( k log n) lower bound. 
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The key to the broadcasting algorithm is the neighbourhood broadcasting algo­

rithm that first sends the message to n - 1 neighbours of the source node that are of 

the forms 2 * k, 3 * k, ... , (k - 1) * k, k * 1, (k + 1) * k, (k + 2) * k, ... , n * k. a similar idea 

has been used before in deriving a broadcasting algorithm for the n-star, for example, 

in [27]. The main difference is that instead of being neighbours of the source node, 

these n - 1 nodes are in a binary tree rooted at the source node. It is also worth 

pointing out that there is a binomial tree rooted at the source node (thus any node 

due to the vertex symmetry of the star graph) containing nodes of these forms. 

While our neighbourhood broadcasting is the first such algorithm designed for 

the (n, k)-star network, our optimal O(1og(n!j(n - k)!))-time broadcasting algorithm 

improves previous algorithms with O(nk) running time [26]. 

4.3 Broadcasting on the All-Port Model Sn,k 

Broadcasting on the all-port (n, k)-star network has been considered before and opti­

mal algorithms whose running times are proportional to the diameter of the network 

have been obtained using spanning trees [26]. In this section, we present another ap­

proach to the problem using a minimum dominating set of Sn,k to relay the message 

such that no node receives the same message more than once. Its running time is 

O(k), thus optimal, and is arguably simpler. 

Recall from the previous chapter, the vertex set D containing all the nodes of the 

form i* is a minimum dominating set of Sn,k' A simple broadcasting algorithm on 

the all-port Sn,k can now be found based on D as follows: 
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Algorithm 3 Broadcasting (Sn,k) 
if n = 2 then 

Source node sends the message along dimension 2. 
else if k = 1 then 

Source node sends the message to all its neighbours (all I-edge neighbours) 
else 

Broadcasting (Sn-l,k-l (k)); 
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Each node *k (in Sn-l,k-l(k)) sends its message to neighbour k* along dimen­
sion k / /the set of the nodes of the form b is a minimum dominating set 

Each node in the dominating set sends its message along all dimensions except 
k. 

end if 

It is easy to see from the algorithm that each node receives the message exactly 

once, thus there is no message redundancy. As to the analysis, let t( n, k) be the time 

required to broadcast in all-port Sn,k, then we have 

{
I 

t(n, k) = 
t(n - 1, k - 1) + 2 

if n = 2 or k = 1 

otherwise 

Solving this gives us t(n, k) = 2k = O(k). 

In this chapter, we developed three algorithms to solve the neighbourhood broad­

casting and broadcasting problems on the (n, k )-star network. First two algorithms 

are applied to single-port model; the last one is for all-port model. All those algo-

rithms' time complexities are optimal in view of the lower bound derived. Besides 

this, they are simpler to understand and easier to implement. 
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Chapter 5 

Algorithms 

5.1 Introduction 

In this chapter, we present two basic algorithms that are fundamental for designing 

parallel algorithms on Sn.k. The algorithms presented here are prefix sums com­

putation and sorting. To deal with prefix sums computation we will introduce the 

Group Copy procedure on the (n, k)-star topology. The sorting algorithm is based 

on the "mesh" embedding property of Sn,k and the idea of Shear Sort. To the best 

of our knowledge, all the algorithms are the first to be proposed for the (n, k)-star 

interconnection network. 

5.2 Prefix Sums Computation 

Before we consider the prefix sums computation in Sn,k, we will first introduce the 

Group Copy procedure [34J in Sn,k' 
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5.2.1 Group Copy on Sn,k 

Consider the following problem: given Sn-l,k-l(i) and Sn-l,k-l(j), where i !- j, it is 

required to exchange the information of the processors in Sn-l,k-l (i) with the proces­

sors in Sn-l,k-l(j). Here, the word "exchange" means a bijective function. In other 

words, the information in each processor of Sn-l,k-l(i) (Sn-l,k-l(j)) is transferred to 

a processor in Sn-l,k-l (j) (Sn-l,k-l (i)), and no two processors send their contents to 

the same processor in the other graph. We can name this problem as copying the 

contents of Sn-l,k-l (i) and Sn-l,k-l (j) to each other in arbitrary order. The idea of 

solving this problem in the (n, k)-star graph is sending contents to each processor's 

neighbour along dimension k, so contents are now saved in all processors of the forms 

i* and j*. Now we can find that given any node a E i*, there exists an edge (a, b), 

where b E j*, which connects a with one processor of the form j*. This is true 

because for each processor a = ia2a3 ... ak E i*, 

• if j = ax, for 2 :::; x :::; k, meaning a = ia2a3' .. ax-dax+l ... ak, then an i-edge 

(ia2a3 ... ax-ljax+l ... ak, ja2a3'" ax- 1iax+1 ... ak) exists, where 

ja2a3 ... ax-1iax+l ... ak = b E j* . 

• if j !- ax, for all 2 :::; x :::; k, then we have a W2a3' .. ak E i* and b 

ja2a3' .. ak E j*, so there is I-edge (a, b) connecting a and b. 

Hence, the problem of copy between Sn-l,k-l (i) and Sn-l,k-l (j) can be accom­

plished in constant time as shown in procedure Copy. 

Procedure Copy (Sn-l,k-l(i), Sn-l,k-l(j)) 

1: do in parallel for all vertices *i and *j 

send contents to neighbors along dimension k. 
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2: do in parallel 

for all edges (i*, j*) exchange contents between i* and j*; 

for all edges (i * j *, j * i *) exchange contents between i * j * and j * i *. 

3: do in parallel for all vertices i* and j* 

send back contends to neighbors along dimension k. 
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Assume that sending a message of constant size from one processor to another 

along an edge in Sn,k takes one unit time and each processor can send or receive 

one constant size message along one and only one neighbour at a time. From these 

assumptions, we have: 

Lemma 5. The contents of Sn-I,k-I(i) and Sn-I,k-I(j), i =f=. j, can be exchanged in 

a bijective way in 0(1) time. 

Now we extend this problem between two groups of Sn-I,k-I'S. Let group I = 

{iI, i2, ... ,it} and group J = {jl, j2, ... ,jt} be two sequences from {1, 2, ... , n} such 

that no two elements from each group are equal, and In J = 0. We want to ex­

change the contents in Sn-I,k-I(id, Sn-l,k-l(i2), ... , Sn-I,k-I(it ) with contents in 

Sn-I,k-I (jl), Sn-I,k-I (j2), ... , Sn-I,k-I (jt)· In other words, the contents of Sn-I,k-I (ir) 

are exchanged with Sn-I,k-I(jr), where 1 ::; r ::; t. This problem is so called Group 

Copy of Sn,k, and can be solved by using procedure Copy given above. 

Procedure Group-Copy (1, J) 

1: do in parallel for 1 ::; r ::; t 

Copy (Sn-I,k-I (i r ),Sn-I,k-I (jr)); 

Since ir =f=. jro 1 ::; r ::; t, by the given condition, we can easily show that no 

conflict will occur during exchanging process. This tells us the procedure Group-
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Copy is correct and the time cost is the same as procedure Copy, which is 0(1). 

This procedure enables us to develop some basic algorithms for the (n, k )-star 

network. In the next section, we will use it to design a prefix sums computation 

algorithm on the (n, k )-star topology. 

5.2.2 Computing Prefix Sums 

Using the Group Copy procedure from the last section, we can easily develop an 

algorithm to compute the prefix sums for two groups of sub-structure Sn-1,k-1 'so 

Suppose that we have already computed prefix sums for Groups 1 and 2, like: 

Group 1: Sn-1,k-1(i)··· Sn-l,k-1(i + t) 

Group 2: Sn-1,k-1(i + t + 1)··· Sn-1,k-1(i + 2t + 1) 

Note that each processor has its own memory to save two variables pSum and tSum, 

the partial prefix sums computed so far and the total sum of values in the group it 

is in, respectively. Since prefix sums are already computed in each group, let tSum1 

be the total sum for group 1 and tSum2 for group 2. First, we use the Group Copy 

procedure to send tSum1 to each processor in group 2 and tSum2 to each processor 

in group 1. Then make no change to pSum values in each processor of group 1, while 

the partial sum pSum of a processor in group 2 becomes pSum EEl tSum1 1. The total 

sum for all processors is changed to tSum1 EEl tSum2. After these steps, the prefix 

sums computation is done for all processors in groups 1 and 2. The running time is 

0(1), since Group Copy requires only constant time. 

Now it is straightforward to state the algorithm formally for computing prefix 

sums on Sn,k. For each Sn-1,k-1, the algorithm can be called recursively; until k = 1, 

lEfJ is an associative binary operation in this problem 
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where Sn-k+l,l is a clique and the prefix computation can be done in O(log(n-k+1)) 

time. 

Let t(n, k) be the time required for computing prefix sums on Sn,k, and t(n - k + 

1,1) = O(log(n - k + 1)). So, 

t( n, k) t(n - 1, k - 1) + Clog n 

t(n - 2, k - 2) + Clog(n - 1) + Clogn 

t(n - k + 1, 1) + C(k - 1) logn 

O(1og(n - k + 1)) + C(k - 1) logn 

O(k log n) 

where C is a constant. Then the above algorithm of computing prefix sums needs 

O(klogn) time. 

Now, we can reduce the problem of broadcasting to the problem of computing 

prefix sums as follows. Let the first processor have the value x and all the other 

processors have a value "0", and the binary operation EEl is the usual bit-wise OR 

(i.e., x EEl 0 = x, for any x). Hence, after computing prefix sums on the network, each 

processor has the value x; the same as broadcasting x in this network. It is easy 

to see that the problem of computing all prefix sums has a lower bound of D(1og N) 

on an interconnection network with N nodes, where each nodes has only one value. 

Thus, the lower bound for this problem on Sn,k is D(log((n~!k)!)) = D(klogn). Thus, 

our algorithm is optimal in view of the lower bound. 
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5.3 Sorting 

In Chapter 3, we showed a way embedding a 2-dimensional n x ~~::::~i: mesh into 

an (n, k )-star graph. That is, consider an (n, k )-star graph, we can always think 

of it as arranged in an n x ~~::::~i: array of the row-major order (ordering as reverse 

lexicographic order). Table 3.4 is an example for 34,2. So the algorithm which is 

based on Shear Sort in [40] for a mesh-connected parallel computer can be used to 

sort values in (n, k )-star network. 

The idea of this sorting algorithm is outlined below. Suppose the final sorting 

direction of a sequence is denoted as D, where D is either F or R direction defined 

in Chapter 2. And let D denote the opposite direction of D. 

Procedure (n, k)-star Sorting (D) 

1: in parallel 

(a) sort all the odd numbered rows in the direction F 

(b) sort all the even numbered rows in the direction R. 

2: for j = 1 to Ilog n l do 

3: Start with row 1, arrange all rows into groups of 2) consecutively numbered 

rows (except the last group) 

4: in parallel 

sort the columns within each group of row in direction D. 

5: in parallel 

(a) sort the rows in odd-numbered groups by calling Fill-The-Gap(D); 

(b) sort the rows in even-numbered groups by calling Fill-The-Gap(D). 

6: end for 
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And the sub-routine Fill-The-Gap is defined as follows: 

Procedure Fill-The-Gap (D) 

1: if k i- 1 then 

2: in parallel sort all column in direction D. 

3: in parallel sort all rows with Fill-The-Gap(D). 

4: else 

5: return 

6: end if 
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In the procedure of (n, k )-star Sorting, each iteration from Step 2 to 5 is the 

merging process. It merges two adjacent groups of sorted Sn-l,k-l'S. So the above 

sorting algorithm for an (n, k )-star becomes sorting on the columns of 2-dimensional 

array. We know that each column is connected as single path if we exchange the 

1 st symbol with the kth symbol in each processor. So the sorting algorithm for a 

linear array is applied to each column. This means that we first view all Sn-l,k-l'S 

as an n x ~~=~~; array. In the first step, each column of length n is sorted. Then 

procedure Fill-The-Gap is applied to each row i, 1 ~ i ~ n, which means sorting 

on each Sn-l,k-l(i). Then we consider an (n - 1) x ~~=~\; array, each row is an 

Sn-2,k-2 and each column of length (n - 1) is sorted. Now, the procedure Fill-The­

Gap is applied to each row (Sn-2,k-2). This process is repeated until k = 1 where 

a clique is reached. Hence, the merging is done by sorting on linear array of length 

n, n-1, n-2, ... , n-k+1, giving us the total time n+(n-1)+(n-2)+ . -+(n-k+1) = 

O(nk). Also, based on Richard Cole's ideas in [11], the time used to sort a clique 

K n- k+1 is O(log(n - k + 1)). Therefore, the above sorting algorithm for Sn,k needs 

t(n, k) = t(n - I, k - 1) + rlogn 1 x O(nk) with t(n - k + 1,1) = O(log(n - k + 1)), 

which is O(k2nlogn) time. 
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However, this sorting algorithm for Sn,k is not time optimal, but it is easy to 

understand and simple to implement. 
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Chapter 6 

Conclusion 

In this thesis, we have studied the (n, k)-star interconnection network which is an 

attractive alternative to the n-star topology. We found some useful topological prop­

erties of the (n, k )-star and designed several parallel algorithms that could run on this 

network. 

Specifically, we have discussed: 

• decomposing the (n, k)-star into disjoint paths and cycles through I-neighbours. 

In particular, Sn,k can be decomposed into (n-~~l)! vertex-disjoint paths and 

each path has length n - k + 1. 

• decomposing this network into (n-~~l)! complete networks, each has n - k + 1 

nodes. 

• finding the minimum dominating set of the graph (n, k)-star. 

• embedding properties of the (n, k )-star graph. We embeded a k-dimensional 

mesh of size n x (n -1) x (n - 2) x ... x (n - k + 1) into Sn,k; we then showed 

that a 2-dimensional mesh of size n x i~=~~; c,an also be embedded into the 

(n, k )-star graph. Both of these two embeddings have the expansion cost 1. 

• developing a neighbourhood broadcasting algorithm for the (n, k)-star network. 
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Such algorithm only applies to the single-port model. At the same time, us­

ing the result from this neighbourhood broadcasting algorithm, we designed a 

broadcasting algorithm for this network. As we know, both algorithms have 

optimal time complexity. 

• designing a new simple broadcasting algorithm for all-port model (n, k)-star 

network. This algorithm is based on a minimum dominating set of an (n, k)­

star graph. 

• prefix sums algorithm for the (n, k)-star; in particular, we developed a prefix 

sums algorithm which computes the prefix sums with respect to the processor 

ordering in Sn,k. 

• sorting and merging algorithm for the (n, k )-star. The idea is based on the 

embedding properties of the network and Shear Sort for a mesh structure. 

The I-neighbours path and cycle structure of the (n, k)-star graph are very simple 

and useful. They provide the basic ideas to developing routing and broadcasting 

(neighbourhood broadcasting) schemes. 

When designing the prefix sums computation algorithm, we also introduced a 

procedure called Group-Copy which is another very important scheme for the (n, k)­

star network. It enables us to develop not only the prefix sums computation, but also 

several other basic algorithms, such as routing. 

Throughout this thesis, we have assumed that in one unit time, a processor can 

send or receive a datum to or from one and only one of its neighbours in a single-port 

model. On the other hand, a processor can send or receive a datum to or from all 
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of its neighbours in an all-port model. Furthermore, we can classify the (n, k )-star 

network into two families according to different cost assumptions, such as : 

1. in one time unit, a processor in this network can only transmit at most one 

message of fixed length. 

2. in one time unit, a processor in this network can transmit a message of arbi-

trary length to (from) one or all its neighbours. 

In Chapter 4, we studied broadcasting algorithms for both single-port and all­

port models of the (n, k )-star. With the exception of the broadcasting algorithm 

using minimum dominating set, all the others designed for Sn,k are running on the 

single-port(weak) model. 

In this thesis, we have only studies some of problems of the (n, k )-star network, 

many problems related to this topology remain open. Some of these problems are 

described below: 

• Besides mesh embedding properties introduced in this thesis, more needs to be 

done to investigate embeddings of other well-known structures into the (n, k)­

star graph, such as complete binary trees, hypercubes, and so on. 

• A trivial lower bound for the problem of sorting on Sn,k with (n~!k)! nodes is 

f2(log((n~!k)!)) = f2(klogn). And the algorithm we designed in Chapter 5 has 

a time complexity O( k 2n log n). As we can see, there is a big gap between the 

trivial lower bound and our sorting algorithm. Thus one open problem is to 

improve sorting algorithm on Sn,k. 

• Algorithms need to be designed for solving other problems on the (n, k )-star 

network. 
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As shown in this thesis, as well as other research work about the (n, k )-star inter­

connection network, we know that the (n, k )-star is indeed an attractive alternative 

to the n-star network. The (n, k )-star graph provides us better flexibility than the 

n-star in controlling the number of nodes in the network. However, there still ex­

ist some important algorithms on the (n, k )-star whose performances do not match 

those of algorithms developed for n-star. For example, sorting algorithm on n-star 

[5] achieved better time complexity than those on (n, k )-star so far. In despite of 

recent research studying on the (n, k )-star network, much work still needs to be done 

to make this network a serious competitor to the n-star. 



Bibliography 67 

Bibliography 

[1] S. B. Akers, D. Harel and B. Krishnamurthy, "The Star Graph: An Attractive 

Alternative to the n-cube," Proc. International Conference on Parallel Process­

ing, St. Charles, Illinous, August 1987, pp. 393-400. 

[2] S. B. Akers and B. Krishnamurthy, "The Fault Tolerance of Star Graphs," 2nd 

International Conference on Supercomputing, Vol. III, San Francisco, May1987, 

pp. 270-276. 

[3] S. G. Akl, Parallel Computation: Models And Methods, Prentice Hall, Upper 

Saddle River, NJ, USA, 1997. 

[4] S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice Hall, En­

glewood Cliffs, New Jersey, 1989. 

[5] S. G. Akl and T. Wolff, "Efficient Sorting on the Star Graph Interconnection 

Network", Telecommunication Systems 10, 1998, pp. 3-20. 

[6] J. C. Bermond, A. Ferreira and J. G. Peters, "Partial Broadcasting in Hyper­

cubes," International Workshop on Interconnectional Networks, Luminy, France, 

1991. 

[7] J. H. Chang and J. Kim "Ring Embedding in Faulty the (n, k)-star Graphs", 

The 8th International Conference on Parallel and Distributed Systems, 2001, pp. 

0099. 



Bibliography 68 

[8] Y. S. Chen and K. S. Tai, "A Near-Optimal Broadcasting in (n, k)-Star Graphs", 

ACIS International Conference on Software Engineering Applied to Networking 

and Parallel/Distributed Computing, 2000, pp. 217-224. 

[9] W. K. Chiang and R. J. Chen, "The (n, k)-Star Graph: A Generalized Star 

Graph," Information Processing Letters, 56, 1995, pp. 259-264. 

[10] W. K. Chiang and R. J. Chen, "Topological Properties of the (n,k)-Star Graph," 

International Journal of Foundations of Computer Science, Vol. 9, No.2, 1998, 

pp. 235-248. 

[11] R. Cole "Parallel Merge Sort," SIAM Journal on Computing, Vol. 17, 1988, pp. 

770 - 785. 

[12] T. H. Carmen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algo­

rithms, MIT Press, Cambridge, Massachusetts, 1990. 

[13] M. Cosnard and A. Ferreira, "On the Real Power of Loosely Coupled Parallel 

Architectures", Parallel Processing Letters, 1, 1991, pp. 103-111. 

[14] M. Dietzfelbinger, S. Madhavapeddy, and I. H. Sudborough, "Three Disjoint 

Path Paradigms in Star Networks," Proc. 3rd IEEE Symp. on Parallel and Dis­

tributed Processing, Dallas, December 1991, pp. 400-406. 

[15] G. Fertin and A. Raspaud, "Neighbourhood Communications in Networks", 

Proc. Euro. Conference on Combinatorics, Graph Theory and Applications, Elec­

tronics Notes on Discrete Mathematics, VoLlO, 2001. 

[16] G. Fertin and A. Raspaud, "k-Neighbourhood Broadcasting", 8th International 

Colloquium on Structural Information and Communication Complexity, 2001, 

pp. 133-146. 



Bibliography 69 

[17] M. Flynn, "Some Computer Organizations and Their Effectives", IEEE Trans. 

Comput., Vol. C-21, 1972, pp. 948-960. 

[18] S. Fujita, "Neighbourhood Information Dissemination in the Star Graph", Proc. 

of the International Colloquium on Structural Information and Communication 

Complexity, 1998, also in IEEE Transaction on Computers, 49(12), 2000, pp. 

1366-1370. 

[19] C. GowriSankaran, "Broadcasting on Recursively Decomposable Cayley 

Graphs", Discrete Applied Math., Vol. 53, 1994, pp. 171-182. 

[20] H. C. Hsu, Y. L. Hsieh, J. M. Tan and L. H. Hsu, "Fault Hamiltonicity and Fault 

Hamiltonian Connectivity of the (n, k)-Star Graphs", Networks, Vol. 42-4, 2003, 

pp. 189-201. 

[21] H. C. Hsu, C. K. Lin, H. M. Hung and L. H. Hsu, "The Spanning Connectivity of 

The (n, k)-Star Graphs", Inter. Journal of Foundations of Compo Science, Vol. 

17, No.2, 2006, pp. 415-434. 

[22] J. S. Jwo, S. Lakshmivarahan and S. K. Dhall, "Embedding of Cycles and Grids 

in Star Graphs," Proc. 2nd IEEE Symp. Parallel and Distributed Processing, 

Dallas, Texas, December 1990, pp. 540-547. 

[23] H. P. Katseff, "Incomplete Hypercube," IEEE Trans. Comput., C-37 (5), pp. 

604-608, 1988. 

[24] D. D. Kouvatsos and 1. M. Mkwawa, "Neighbourhood Broadcasting 

Schemes for Cayley Graphs with Background Traffic", manuscript, online at 

http://www.cms.livjm.ac. uk/pgnet2003/submissions/Paper52.pdf, 2003. 

[25] S. Latifi and N. Bagherzadeh, "Incomplete Star: An Incrementally Scalable Net-



Bibliography 70 

work Based on the Star Graph," IEEE Trans. on Parallel and Distributed System, 

Vol. 5, No.1, Jan. 1994, pp. 97-102. 

[26] J. L. Li, M. L. Chen, Y. H. Xiang and S. W. Yao, "Optimum Broadcasting 

Algorithms in (n, k)-Star Graphs Using Spanning Trees", IFIP International 

Conference on Network and Parallel Computing (NPC 2007), LNCS 4672, 2007, 

pp. 220-230. 

[27] V. E. Mendia and D. Sarkar, "Optimal Broadcasting on the Star Graph", IEEE 

Trans. on Parallel and Distributed System, Vol. 3, No.4, 1992, pp. 389-396. 

[28] A. Menn and A.K. Somani, "An Efficient Sorting Algorithm for the Star Graph 

Interconnection Network", Proc. International Conference on Parallel Process­

ing, 1990, vol. 3, pp. 1-8. 

[29] R. Miller and Q. F. Stout, "Simulating Essential Pyramids," IEEE Trans. on 

Compu., Vol. 37, No. 12, 1988, pp. 1642-1648. 

[30] I. M. Mkwawa and D. D. Kouvatsos, "An Optimal Neighbourhood Broadcast­

ing Scheme for Star Interconnection Networks," Journal of Interconnection Net­

works, 4(1), 2003, pp.103-112. 

[31] W. Najjar and P. K. Srimani, Conditional Disconnection Probability in Star 

Graphs, Technical Report CS-90-105, Department of Computer Science, Col­

orado State University, 1990. 

[32] F. P. Preparata and J. Vuillemin, The Cube-Connected-Cycle: A versatile Net­

work for Parallel Computation, Comm. ACM, Vol.24, No.5, 1981, pp.300-309 

[33] K. Qiu and S. K. Das, "A Novel Neighbourhood Broadcasting Algorithm on 

Star Graphs", IEEE 9th International Conference on Parallel and Distributed 

Systems, Taiwan, Dec.2002, pp.37-41. 



Bibliography 71 

[34] K. Qiu, S. G. Akl and H. Meijer, "On Some Properties and Algorithms for the 

Star and Pancake Interconnection Networks", Journal of Parallel and Distributed 

Computing, 22, 1994, pp. 16-25. 

[35] K. Qiu "A Unified Neighbourhood Broadcasting Scheme for Multiple Messages 

on Interconnection Networks", ACST'06: Proceedings of the 2nd lASTED In­

ternational Conference on Advances in Computer Science and Technology, 2006, 

Puerto Vallarta, Mexico, pp.234-238. 

[36] K. Qiu, H. Meijer and S. Akl "Decomposing a Star Graph into Disjoint Cycles" , 

Information Processing Letters, 39, 1991, pp. 125-129. 

[37] S. Ranka, J. Wang and N. Yeh "Embedding Meshes on the Star Graph", Su­

percomputing '90: Proceedings of the 1990 conference on Supercomputing, New 

York, United States, 1990. 

[38] C. P. Ravikumar, A. Kuchlous and G. Manimaran, "Incomplete Star Graph: 

An Economical Fault-Tolerant Interconnection Network," Proc. International 

Conference on Parallel Processing, Vol. 1, 1993, pp. 83-90. 

[39] M. R. Samatham and D. K. Pradhan, "The de Bruijn Multiprocessor Network: 

A Versatile Parallel Processing and Sorting Network for VLSI," IEEE Trans. on 

Compu., Vol. 38, No.4, April 1989, pp. 567-581. 

[40] 1. D. Scherson and S. Sen, "Parallel Sorting in Two-Dimensional VLSI Models 

of Computation," IEEE Trans. on Compu., Vol. 38, No.2, 1989, pp. 238-249. 

[41] J. P. Sheu, C. T. Wu and T. S. Chen, "An Optimal Broadcasting Algorithm 

without Message Redundancy in Star Graphs", IEEE Transactions on Parallel 

and Distributed Systems, Vol. 6, No.6, June, 1995, pp. 653-658. 



Bibliography 72 

[42J P. K. Srimani, "Generalized Fault Tolerance Properties of Star Graphs", Tech­

nical Report C8-90-104, Department of Computer Science, Colorado State Uni­

versity, 1990. 


