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Abstract 

A FMRFamide-like neuropeptide with the sequence "DRNFLRF-NH2" was recently 

isolated from pericardial organs of crayfish (Mercier et aI., Peptides, 14, 137-143, 1993). This 

neuropeptide, referred to as "DF2'" has already been shown to elicit cardioexcitation and to 

enhance synaptic transmission at neuromuscular junctions. 

Possible effects ofDF2 on muscle were investigated using superficial extensor muscles of 

the abdomen of the crayfish, Procambarus clar/ai. These muscles are of the tonic type and 

generate slow contractions that affect posture. DF2, at concentrations of 10-8 M or higher, 

increased muscle tonus and induced spontaneous, rhythmic contractions. These effects were 

antagonized by 5 rnM Mn2+ but not by lO-7M tetrodotoxin (TTX). Thus, they represent direct 

actions on muscle cells (rather than effects on motor neurons) and are likely to involve calcium 

influx. In contrast, deep abdominal extensor muscles, responsible for rapid swimming 

movements, and superficial flexor muscles do not generate contractions in response to the 

peptide. 
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Spontaneous contractions were also induced in the superficial extensor muscles by 

decreasing the temperature to II-13°C. Such contractions were also TTX-insensitive and they 

were antagonized by adding calcium channel blockers (Mn2+, Cd2+ or Ni2+) or by removing 

calcium from the bathing solution. This suggests that the spontaneous contractions depend on an 

influx of calcium from the extracellular solution. N-type and L-type voltage dependent calcium 

channel blockers did not reduce the effect of the peptide or the spontaneous contractions 

suggesting that calcium influx is not through N- or L-type calcium channels. 
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1. Literature Review 

The aim ohhis thesis is to provide a better understanding of how crustacean muscle 

contraction is modulated. In particular, it examines the effects of temperature and of a 

FMRFamide-related peptide on muscle contraction. But, first, some general characteristics of 

crustacean muscle morphology will be reviewed. 

1.1 Striated Muscle Fiber Morphology 

8 

Muscles can be grouped into two types according to their morphology and physiology: 

smooth muscle and striated muscle. Both types contain actin and myosin filaments. However, in 

smooth muscle the filaments are loosely arranged to form a contractile apparatus, and in striated 

muscle they are highly ordered (Alberts et at, 1994). Smooth muscle produces contractions that 

are slow and rhythmic and are often coordinated into peristaltic waves (Davey, 1964). Striated 

muscles usually produce fast or slow twitch type contractions. All crustacean muscles are 

striated, each containing multinucleated muscle cells (or fibers) made up of many myofibrils, 

which are bundles of contractile material surrounded by sarcoplasmic reticulum. The myofibrils 

are constructed oflongitudinally repeated units called sarcomeres (Fig. 1). Eachsarcomere is 

bounded by two Z lines and contains interdigitating thin and thick filaments made of actin and 

myosin, respectively. The myosin filaments make up the densest part of the sarcomere, the A 

(ansiotropic) band. Unlike vertebrate skeletal muscle, the A bands of crustaceans are not of 

constant lengths (Franzini-Armstrong, 1970). In the middle of the A band, where the actin 

filaments extending from the adjacent Z lines do not meet, is a light region called the H band. The 

portion of the sarcomere between two A bands is called an I (isotropic) band. 



Figure 1. The organization of a segment of a myofibril with three sarcomeres. The 
thick and thin myofilaments are arranged to form I, A, L and Z lines. 
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1.2 Muscle Contraction 

The most ,widely accepted theory of how contraction of skeletal muscle occurs is the 

sliding filament theory proposed by Huxley and Niedergerke (1954). They observed that the 

lengths of the actin and myosin filaments do not change as the sarcomeres shorten, but the extent 

of filament overlap does change. In other words, the actin and myosin filaments slide past one 

another to produce contraction. Tension is produced when cross bridges form between the actin 

and myosin filaments. This process requires an increase in internal Ca2+ to a concentration higher 

than 10-7 M. The possible sources ofCa2+ will be discussed later. 

Magnesium-dependent myosin ATPase splits the high energy phosphate bond of ATP and 

causes the attachment of the myosin head to the actin filament (Huxley, 1972). The attached head 

rotates through an angle of 450 and then separates from the actin. The addition of another ATP 

aids the separation of the actin and the myosin, and allows the head to rotate back to its original 

position before undergoing another round of sequential binding further along the actin filament. 

Several sites on the myosin bind sequentially with sites on the actin filament in an asyncronous 

manner so that at any instant some of them are attached to the actin while others are not. This 

allows for sustained contractions as the myosin heads attach and detach (Ruegg, 1992). 

1.3 Sources of Ca2+ 

As in all striated muscles, Ca2+ is required for contraction in all crustacean muscles 

(Atwood, 1982). Direct injection of Ca2+ into muscle fibers causes them to contract (Ashley, 

1967). The Ca2+ concentration must be in between to-7 and to-6 M for contraction to occur 

(Hagiwara and Najajima, 1966). 

Experiments by Ashley and Ridgeway (1970) show that the intracellular Ca2+ level rises as 
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the fiber contracts. They injected the fluorescent Ca2+ indicator aequorin into giant barnacle 

fibers and measured changes in the Ca2+ concentration, membrane potential and tension 

simultaneously. Weak electrical stimulation caused a small membrane depolarization, faint light 

emission, and no tension, whereas stronger stimulation caused a larger depolarization, larger light 

emission and considerable tension. This indicates that there is a threshold for mechanical 

activation. The increase in Ca2+ was transient, decayed exponentially and terminated by the time 

relaxation occurred. Barnacle fibers produce Ca2+ action potentials that supply enough Ca2+ for 

contraction. However, these spikes are not produced under normal conditions. This suggests 

that the Ca2+ needed for contraction must come from another source such as the sarcoplasmic 

reticulum. 

1.4 Voltage-Gated Ca2+ Channels 

Action potentials in crayfish muscle fibers are caused by Ca2+ (Fatt and Ginsborg, 1958). 

Voltage-gated Ca2+ channels are found in almost every excitable cell (Hille, 1991) and a variety of 

different Ca2+ channels are found in the same cells (Takahashi and Momiyama, 1993). They 

regulate a host of Ca2+ -dependent intracellular events including specialized functions such as 

excitability, exocytosis and contraction, and they mediate general functions like metabolism and 

gene expression. During contraction in crustacean muscle fibers, the initial entry of Ca2+ appears 

to be mediated by voltage-gated channels. These Ca2+ influxes are not sufficient to activate the 

contractile proteins, but they can induce Ca2+ release from internal stores which is required for 

mechanical activity (Mounier and Goblet, 1987). 

Voltage-gated Ca2+ channels have been classified according to their sensitivity to 

depolarization: whether they are low voltage activated (LV A) or high voltage activated (HV A). 
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L V A channels exhibit rapid inactivation following depolarization and, thus, do not remain 

activated during prolonged depolarizations. HV A channels lack the rapid inactivation. Four 

types of voltage-gated Ca2+ channels have been identified in vertebrates using the following 

criteria for classification: pharmacological properties, ionic selectivity, metabolic regulation and 

single-channel conductance. These channels are the L-type, N-type, P-type all three of which are 

HV A channels and T -type (which is an L VA channel). Ca2+ channels may be somewhat different 

in invertebrates since the agents that block the vertebrate voltage-gated Ca2+ channels only 

partially block Drosophila types (Gielow et aI., 1995) and crayfish types (Araque et aI., 1994). 

L-type channels are HV A channels that were first described in heart cells and peripheral 

neurons by patch clamping (Tsien et ai., 1987). Their name comes from their relatively large 

conductances and long lasting currents which can be elicited with a depolarizing test potential 

around + 10m V. They provide most of the voltage-gated Ca2+ entry involved in the activation of 

contraction in heart and many smooth muscles, and in the activation of secretion from endocrine 

cells, sensory neurons and lizard motor nerve terminals (Bean, 1989). L-type channels are 

sensitive to 1, 4-dihydropyridines and phenylalkylamines such as nifedipine, (+) Bay K 8644 and 

verapamil (Hille, 1992). Interestingly, the 1,4-dihydropyridines are more effective at blocking L­

type channels when they are in their inactive state, which occurs after the channel has been opened 

by depolarization and is closed again and unavailable for reopening (Bean, 1984; Schwart et ai., 

1985). The peptide ro-Aga-IIIA may be a better blocker ofL-type channels at normal resting 

potentials (Mintz et aI., 1991). 

N-type channels have only been found in neurons (Tsien et ai., 1988). These HV A 

channels are blocked by the antagonist ro-conotoxin GVIA. 

P-type channels were recently identified as HV A channels, and some are known to be 



present in crayfish neurons (Araque et aI., 1994). They are neither sensitive to 1,4~ 

dihydropyridines,nor to ro-conotoxin GVIA. They are blocked by "funnel toxin" FTX (Llinas et 

aI., 1989) and ro-Aga~IVA (Adams et aI., 1989; Mintz et aI., 1992) both of which are extracted 

from funnel web spider venom. 
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T -type channels were originally identified in guinea pig heart (Nilius et aI., 1985). These 

L V A channels have a "tiny" conductance and make a transient current. They can be activated 

with very small depolarizations from negative resting potentials. This suggests that they support 

Ca2+ entry at negative membrane potentials required during pacemaker activity. Ionic Ca2+ 

channel blockers, such as Ni2+ and Cd2+, will antagonize them, but these agents are nonselective. 

T -type channel blockage has been shown with amiloride (Tang et aI., 1988). Unfortunately, 

amiloride also inhibits a large number of membrane transport processes and enzymes including: 

Na+/Ca2+ exchange, Na+/lr antiporter, and the Na+ channel (Kleyman and Cragoe, 1988) at 

concentrations lower than is necessary to block the Ca2+ channels. 

There are many subtypes of Ca2+ channels which do not fit into one of the four known 

types of voltage-gated Ca2+ channels using the current criteria. Instead, information from 

molecular cloning will be required to distinguish them from one another (Snutch et al., 1990; 

Soong et aI., 1993) . 

1.5 Differences Between Smooth and Striated Muscles 

Vertebrate smooth muscle and striated muscle contraction is mediated by different Ca2+ 

binding proteins. Smooth muscle contraction primarily involves the multifunctional Ca2+ binding 

protein calmodulin (Kamm and Stull, 1985). Ca2+ combines with calmodulin (CaM) to form a 

Ca2+/CaM complex. When this complex joins the myosin light chain kinase, the enzyme is 
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activated. The enzyme then catalyzes the phosphorylation of one of the myosin II light chains 

which triggers cross bridge cycling between the myosin and actin. The phosphorylation requires 

ATP to be used up. Contraction is much slower in smooth muscle than in striated muscle. 

In contrast, skeletal muscle contraction is initiated by Ca2+ binding directly to a protein 

known as troponin C. The myosin light chains playa modulatory role rather than a primary 

regulatory role since the light chain has relatively low calcium affinity in skeletal muscle (Ruegg, 

1992). In striated muscles the actin helix contains filamentous molecules, called tropomyosin, in 

its grooves. Troponin is a Ca2+ binding protein that attaches to the tropomyosin and inhibits the 

formation of the crossbridges between the actin and myosin filaments. When calcium is present, it 

binds to the troponin, and the tropomyosin becomes available for cross bridge formation. 

Interestingly, insect visceral muscle, which is striated yet produces slow rhythmic 

contractions (Nykamp et al., 1994), and Limulus muscle (Sellers, 1981 cited in Ruegg, 1992) use 

calmodulin instead of troponin C to initiate contraction. 

1.6 Ca2+ Extrusion 

In order for Ca2+ to be an effective signalling molecule the resting cytosoHc Ca2+ 

concentration must be kept very low, less than 10-7 M (Carafoli, 1987). This allows minute 

changes in the Ca2+ influx to cause large changes in Ca2+ concentration. The Ca2+ sequestering 

mechanisms include: the Ca2+ ATPase pump, the Na+/Ca2+ exchange, sequestering organelles and 

binding proteins (Mills and Kater, 1990). The Ca2+ ATPases on the plasma membrane and 

sarcoplasmic reticulum pump Ca2+ out of the cytosol at the expense of ATP. The Na+/Ca2+ 

exchange at the plasma membrane removes one Ca2+ ion for three Na+ ions allowed in. This 

process works in conjunction with the Na+/K+ ATPase which pumps Na+ out and K+ in against 
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their concentration gradients. 

1.7 Excitation-Contraction Coupling and T-tubules 

The series of events following synaptic transmission and leading to contraction is called 

excitation-contraction coupling (Sandow, 1952). Synaptic transmission causes depolarization of 

the muscle membrane which in tum elicits contraction. In all vertebrate muscle, action potentials 

precede contraction since the threshold for all or nothing action potentials is lower than the 

threshold for contraction (Watanabe, 1958, cited in Orkand, 1962). In arthropods the 

depolarization can produce contraction below the threshold for action potentials. This is why 

graded potentials elicit contraction in crayfish muscles (Orkand, 1962). The direct influence of 

depolarization (ie. the increase in Ca2+ concentration) is capable of extending less than a 

micrometer from the inner surface of the plasma membrane within the 2 msec it takes for 

contraction to occur so that the potential changes across the membrane surface cannot influence 

most of the myofibrils in a muscle cell 50-100 Jim in diameter (Eckert et aI., 1988). Thus, the 

potential change must be conducted deep within the cell interior where it can cause the release of 

Ca2+ from internal stores. This is accomplished via the many clefts in the sarcolerruna bringing all 

portions of the fiber close to the extracellular space. Small invaginations of these clefts, which 

run along the myofibrils, make up two tubule systems: the transverse or T -tubules and the Z­

tubules (peachey and Huxley, 1964). The T -tubules, which are localized primarily at the A-line in 

arthropods, form tubule/sarcoplasmic reticulum connections called dyads (peachey and Huxley, 

1964). The Z-tubules which are only located at the Z-lines of tonic fibers of crustacean muscles 

(Franzini-Armstrong et aI., 1978) do not form dyadic contacts. Huxley and Peachey (1964) found 

that half sarcomere contractions could be induced when the surface membrane was depolarized 
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with a current-carrying pipette placed over the A-band but not over the Z-lines. This indicates 

that the tubules qpening to these two areas are different. Since the Z-tubules do not appear to be 

involved in excitation-contraction coupling, as shown by Huxley's and Peachey's experiment, their 

function is uncertain. It has been suggested the Z-tubules serve to exchange metabolites, provide 

mechanical support, or aid in supercontraction (Chapple, 1982). The T -tubules, on the other 

hand, are thought to conduct electrical signals into the fibers and cause Ca2+ to be released from 

the sarcoplasmic reticulum (Hille, 1992). Unfortunately, the mechanism which links sarcoplasmic 

reticulum Ca2+ release with depolarization is still unknown. However, several possible links are 

being explored, including: the dihydropyridine receptor, the ryanodine receptor, IP3 and G protein 

mediated phosphorylation. 

1.8 The Dihydropyridine Receptor 

The dihydropyridine receptor is also known as the L-type Ca2+ channel. It has been 

suggested (Scheider, 1994) that these channels are opened when the T-tubules are depolarized 

and cause enough Ca2+ influx to induce more Ca2+ to be released from the sarcoplasmic reticulum. 

It is unlikely that dihydropyridine receptors play this role in vertebrate skeletal muscle since their 

opening kinetics are too slow (Sanchez and Stefani, 1983). However, they may initiate Ca2+ 

release by generating charge movement, which is the proposed signal for the sarcoplasmic 

reticulum to release its Ca2+ stores (Rios and Brum, 1987). In vertebrate skeletal muscle and 

cardiac muscle, most of the Ca2+ needed for contraction comes from the sarcoplasmic reticulum. 

In cardiac myocytes, however, some Ca2+ from the external medium must enter the cell to trigger 

Ca2+ induced Ca2+ release (Nabauer et al., 1989; Niggli and Lederer, 1990). Mammalian skeletal 

muscle E-C coupling is independent of external Ca2+ (Franzini-Armstrong and Jorgensen, 1994). 
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Caffeine, ryanodine and thapsigargin are agents used to induce Ca2+ release from the 

sarcoplasmic reticulum. Thapsigargin and ryanodine both accelerate Ca2+ efflux from the 

sarcoplasmic reticulum, but thapsigargin also blocks the Ca2+ pump of the sarcoplasmic reticulum 

so that Ca2+ cannot be resequestered (Janczewski and Lakatta, 1993). 

1.9 The Ryanodine Receptor 

The ryanodine receptor is the putative intramembrane Ca2+ channel in the sarcoplasmic 

reticulum. This 450 kD receptor has a cytoplasmic domain that spans the cleft between the T­

tubules and the sarcoplamic reticulum (lnui et al., 1987; Ma et al., 1988). This cytoplamic 

domain was first observed by Franzini-Armstrong (1970) who called it the foot structure. It may 

form a direct mechanical link between these two structures so that a voltage change on the T­

tubule membrane could cause a conformational change of the Ca2+ channel on the sarcoplasmic 

reticulum to activate Ca2+ release. In mammalian skeletal muscle the ryanodine receptor can be 

opened by caffeine, Ca2+, and ryanodine. In lobster muscle the ryanodine receptor is opened by 

millimolar concentrations ofCa2+ and not by ATP, caffeine or Mg2+, suggesting that the 

crustacean isoform is only susceptible to Ca2+ induced Ca2+ release (Seok et al., 1992). 

1.10 Inositol Trisphosphate (IP3) 

Inositol trisphosphate (IP3) released from the T-tubule by voltage-dependent activation of 

phospholipase C may cause Ca2+ release from the sarcoplasmic reticulum by binding the IP 3 

receptor. The following pathway has been proposed to explain the source of Ca2+ required for 

contractions in smooth muscles (Walsh, 1991). A transmitter or hormone binds to a receptor on 

the plasma membrane, that is associated with a G-protein linked to phospholipase C. 
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Phospholipase C breaks PIP2 into membrane-bound diacylglycerol (DG) and IP3. DG is capable 

of activating protein kinase C, which can open Ca2+ channels on the T -tubule such as L-type 

channels. IP 3 is free to move through the cytosol where it can bind to the IP 3 receptor on the 

sarcoplasmic reticulum (Chadwick et aI., 1990). The mechanism responsible for raising the 

intracellular Ca2+ concentration may be similar in skeletal muscle and smooth muscle, but the 

primary release channel on the sarcoplasmic reticulum in skeletal muscle is the ryanodine receptor, 

whereas in smooth muscle it is the IP3 receptor (Hille, 1992). There is evidence for an IP3 

receptor mediating Ca2+ release in barnacle muscle (Rojas et aI., 1987; Lea et ai., 1986). 

1.11 Comparison of Crustacean Tonic and Phasic Fibers 

There are two main types of crustacean muscle: phasic and tonic. The former produce 

fast contractions that are short-lived, whereas the latter produce slower contractions which 

generate more force. There are many differences between tonic and phasic muscles, including 

properties of the cell membrane, the contractile machinery, the internal membrane systems and the 

innervation. Each of these aspects will be explained in further detail. 

Properties of the membrane such as the membrane potential and the input resistance are 

different in tonic and phasic fibers. In tonic fibers (such as these studied here) the membrane 

potential is just below the mechanical threshold, allowing small depolarizations to activate the 

contractile machinery (Atwood, 1973). The membrane potential in phasic muscles on the other 

hand, is much lower than mechanical threshold, so that the fibers require all-or-nothing Ca2+­

dependent action potentials to initiate contraction (Hoyle, 1968). According to Atwood (1973) 

phasic fibers have a lower input resistance and a much higher probability of generating spikes than 

do tonic fibers. 
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The contractile machinery (myosin ATPase and sarcomere length) is also different in the 

two muscle types. These features have been studied in the dimorphic lobster claws (Govind, 

1982). One claw develops all tonic fibers and is used to crush hard shells of food items, and the 

other claw develops mostly phasic muscles making it ideal for fast cutting actions. More myosin 

ATPase is present in the phasic closer muscle of the lobster cutter claw than the corresponding 

tonic muscle from the crusher claw (Govind, 1982). Also, the myosin ATPase has a lower 

activity in tonic muscles than in phasic ones (Maier et ai., 1984). This accounts for the slower 

formation of crossbridges between the actin and myosin filaments in the tonic muscles than in the 

phasic muscles. 

The most easily noticed difference between the tonic and phasic muscles is the sarcomere 

length. Tonic fibers have relatively long sarcomeres, generally 6-10 Jlm, while the phasic fibers 

have shorter sarcomeres, 2-3 Jlm long. Such differences have been reported for crayfish 

abdominal muscles (Jahromi and Atwood, 1967), lobster abdominal muscles (Jahromi and 

Atwood, 1969) and lobster claws (Jahromi and Atwood, 1971). Thus, a phasic muscle will 

contract faster than a tonic muscle of the same length because there are more sarcomeres 

contracting at the same time in series. However, in the long sarcomeres of tonic muscles more 

force is produced because there are more crossbridges pulling on one actin filament (Atwood, 

1973). Regardless of the sarcomere length, when the actin and myosin filaments overlap 

completely, tension is maximal. One exception is in the case of supercontraction observed in 

barnacle muscle in which the thick filaments pass through perforations in the Z lines between 

adjacent sarcomeres (Hoyle et aI., 1965). When the fiber is stretched until there is no overlap, 

stimulation produces no tension beyond the passive elastic tension of the resting state. 

Since phasic muscles have more sarcomeres, they also have more A-I band borders where 
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the diadic connections between the T -tubules and the sarcoplasmic reticulum are located. There 

are approximatelY,4 times as many diads in the lobster phasic extensor than the tonic extensor 

(Jahromi and Atwood, 1969). The diads are important for Ca2+ release, which is necessary for 

contraction. Thus, in phasic muscles Ca2+ may be released more quickly allowing them to 

contract faster. 

Unlike vertebrate fast- and slow-twitch muscles, the amount of sarcoplasmic reticulum in 

crustacean tonic and phasic muscles is similar (Jahromi and Atwood, 1967, 1969). Differences in 

speed of contraction in tonic and phasic muscles involve features other than the extent of the 

sarcoplasmic reticulum, such as the T -tubules which are more extensive in phasic than tonic 

muscles (Selverston, 1967; Franzini-Armstrong et aI., 1978) and ATPase activity. 

The arrangement of the actin and myosin filaments is also different. The ratio of thin:thick 

filaments is 3: 1 in phasic fibers of lobster and crayfish; whereas, this ratio is always greater in 

tonic fibers (approximately 6: 1) (Jahromi and Atwood, 1967, 1969). According to Atwood 

(1982) this feature is not causally related to contraction speed. However, it is thought to be 

linked to the maximum amount of force generated. Higher thin:thick filament ratios produce 

greater filament overlap per cross sectional area of muscle. 

In crayfish, the abdominal tonic and phasic fibers are grouped in separate muscles supplied 

with 2-5 motor axons (Kennedy and Takeda, 1965). Tonic muscles are innervated by axons that 

have higher levels of spontaneous activity and low output synapses that facilitate readily when 

stimulated repetitively. Conversely, phasic axons have high output synapses that are poorly 

facilitating, and the level of spontaneous activity in such axons is lower (Pamas and Atwood, 

1966; Govind et ai., 1981). It is unclear how the neurons and muscles are matched 

developmentally, yet there is some evidence for neurotrophic factors that suggest the timing of 
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innervation may be important (Govind and Lang, 1972; Lang et aI., 1980). 

1.12 Effects of Temperature on Excitation-Contraction Coupling 

Temperature has a considerable impact on neuromuscular junctions of crustaceans, 

influencing the passive electrical properties of the muscle fibers, the contractile apparatus and 

synaptic transmission (Fischer and Florey, 1981). These effects are coordinated in such a way as 

to allow crustaceans to function at a wide range of temperatures. 

The passive electrical properties of muscle fibers, including the resting potential, input 

resistance, time and length constants and the capacitance, influence muscle excitability and are 

altered by temperature (Adams, 1987). The excitation-contraction threshold is not significantly 

altered by changes in temperature (Dudel and Ruedel, 1968), but cooling can cause the resting 

potential to depolarize (Friedrich et aI., 1994), bringing the excitation-contraction threshold and 

the resting potential closer together. The membrane potential may even surpass the excitation­

contraction threshold, increasing muscle tonus as the temperature is decreased (Fischer and 

Florey, 1981). 

A "two-phase" relationship between temperature and membrane potential has been shown 

in muscles of crab (Stephens and Atwood, 1982) and crayfish (Harri and Florey, 1977). The 

relationship between membrane potential and temperature in crustacean muscle fibers is biphasic 

(Harri and Florey, 1977). The membrane potential hyperpolarizes as temperature increases; the 

increase in hyperpolarization with temperature is greater below the acclimation temperature than 

above the acclimation temperatures. 

Other muscle properties that are temperature-dependent are the input resistance, length 

constant and time constant which increase as the temperature is lowered, and the membrane 
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capacitance which decreases with decreasing temperature. Most of these factors contribute to the 

increased excitability of the muscle fibers at lower temperatures with the exception of the time 

constant. 

Lowering temperature causes a reduction in synaptic efficacy at neuromuscular junctions 

from phasic axons, but increases synaptic efficacy at neuromuscular junctions from tonic axons 

(Friedrich et al., 1994). In some neuromuscular junctions transmitter release is greater, albeit 

more susceptible to fatigue at lower temperatures, such as those in frogs (pawson and Grinnell, 

1989), and in crayfish (Lnenicka and Zhao, 1991). This appears to compensate for the decrease 

in excitation-contraction coupling at lower temperatures. Thus, the presynaptic effects oflow 

temperature are quite complicated - influencing quantal content, quantal size and the time course 

of transmitter release. 

The changes in membrane excitability counterbalance the accompanying decreased 

transmitter release under cool conditions. The increased input resistance at low temperatures 

changes the response of the muscle to synaptic currents such that less current is required to 

produce the same amount of depolarization. This is important, since low temperature reduces 

the amount of transmitter released from stimulated nerves (quantal content) at several 

neuromuscular junctions, as well as decreasing spontaneous transmitter release at some 

neuromuscular junctions (Fatt and Katz, 1952; White, 1983). Temperature can change other 

aspects of transmitter release in addition to quantal content. In frog sartorius muscle, only 6% of 

the fibers failed to produce spikes between 1O-30°C but at 5°C, 59% of the fibers did not spike. 

This effect was caused by a decrease in the temporal dispersion of transmitter release as well as 

the quantal size, and not by a decrease in the electrical excitability of the postsynaptic membrane 

(Adams, 1989). The reduced synaptic transmission at low temperature may be caused by the 
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alteration of the amount ofCa2+ entering the nerve terminal (Charlton and Atwood, 1979). 

Neurohorm,ones also appear to counteract the reduction in transmitter release at low 

temperatures. Lowering the temperature decreased EJP amplitudes in the deep extensor muscles 

of crayfish (Friedrich et al., 1994). The peptide DF2 , which increased EJP amplitudes, was more 

effective at lower temperatures. The increased effectiveness of the peptide at lower temperatures 

suggests that one physiological role of the hormone may be to compensate for reduced synaptic 

efficacy. 

1.13 Neurohormones 

Neurohormones are transported by the circulatory system to their sites of action. They 

generally bind to a receptor on the membrane surface and start an intracellular signaling cascade 

of intracellular messengers. Examples of crustacean neurohormones include the amines, 

serotonin, octopamine and dopamine, as well as the peptide proctolin (RYLPT). These agents act 

on a diverse range of tissues, including the heart, muscles, neuromuscular junctions and sensory 

neurons, as described below. 

1.13.1 Proctolin 

In insects, proctolin has modulatory effects on locust oviduct (Lange et al., 1984), coxal­

depressor motoneuron of cockroach (Adams and O'Shea, 1983), ventral opener muscle oflocust 

(Belanger and Orchard, 1993), and the extensor-tibialis motor neurons oflocust (Evans and 

Myers, 1986; Worden et al., 1985). 

Proctolin is thought to act as a neurohormone in crustaceans since it is in very high 

concentrations in the pericardial organs, which are known to release several neurohormones into 
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the circulation (Cooke and Sullivan, 1982). However, proctolin is also released as a cotransmitter 

from some motor ~eurons in insects and crustacea. Such motor neurons include those 

innervating the extensor-tibia muscle oflocust (O'Shea, 1985; Worden et al., 1985), superficial 

abdominal flexor muscles of the crayfish (Bishop et al., 1984), and coxal-depressor muscles of 

cockroach (Adams and O'Shea, 1983). 

As a cotransmitter, at crayfish abdominal flexors (Bishop et al., 1984) proctolin does not 

affect the resting potential or generate tension on its own. However, it does potentiate tension 

elicited by the depolarizing EJP's of the conventional transmitter (Bishop et al., 1987). Unlike the 

crayfish abdominal flexors there is no evidence of the localization of proctolin in nerve terminals 

of crab gill ventilatory muscle yet, proctolin has the same effect on basal tonus and contractions 

elicited by depolarization in this muscle too (Mercier and Wilkens, 1985). In lobster dactyl 

opener muscle (Schwarz et al., 1985) and in insect coxal depressor muscle (Adams and O'Shea, 

1983) proctolin does induce slow contraction. There is no change in resting potential or input 

resistance during the contractions in the presence of proctolin in most preparations (Kravitz et aI., 

1980; Lange et al., 1987; Belanger and Orchard, 1993). One exception is the phasic extensor 

muscle of Idotea, in which the proctolin did cause an increase in the input resistance in half of the 

fibers and induced action potentials in one quarter of the fibers (Erxleben et al., 1995). An 

increase in the input resistance would cause an increase in the amplitude of the synaptic junction 

potentials and their summation properties and, thus, would enhance neurally evoked contractions. 

In the dactyl opener oflobster proctolin induces Ca2+ -mediated action potentials in fibers that do 

not usually spike without a change in membrane potential (Kravitz et al., 1980). 

Proctolin enhances myogenic contractions in several insect muscles. For example, the 

extensor-tibiae muscle of the locust exhibits myogenic contractions (Voskresenskaya, 1959, cited 
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in Hoyle, 1978), which are initiated by a small bundle of pacemaker fibers. The contractions are 

spread electrotoni~lly to the other follower muscle fibers in the bundle (Bums and U sherwood, 

1978). This muscle's myogenic rhythm is accelerated or induced in quiescent preparations by 

proctolin (Evans and Myers, 1986). Proctolin also increases the amplitude and frequency of 

myogenic contractions in the locust oviduct (Lange et al., 1987). 

The modulatory effects of proctolin require extracellular Ca2+ in some preparations. The 

proctolin-induced contractions in the dactyl opener muscle of lobster are voltage-sensitive and are 

reversibly blocked by the Ca2+ channel antagonists Mn2+ and C02+ (Kravitz et al., 1980). An 

increased Ca2+ conductance occurs at 20 m V above the resting potential, yet the contractions do 

not require a change in the membrane potential. This suggests that proctolin may activate some 

voltage-sensitive Ca2+ entry at the resting potential (Kravitz et al., 1980). In the locust oviduct 

proctolin-induced contractions were not completely blocked by the Ca2+ -channel antagonists, 

nifedipine and verapamil, suggesting a role for receptor-activated Ca2+ -channels as well as 

voltage-gated Ca2+-channels (Lange et al., 1987). Conversely, in the extensor tibiae oflocust, 

changes in the myogenic rhythm caused by proctolin are not dependent on external Ca2+ (yV orden 

and O'Shea, 1986). However, the peptide does cause increases in inositol phosph~te metabolism 

which could lead to a release of Ca2+ from internal stores. 

The effects of proctolin are thought to be mediated by intracellular signaling pathways, 

such as phosphoinositides (Groome and Watson, 1989; Lange et al., 1989), and/or the cAMP 

cascade (Bishop et al., 1991; Evans, 1984). There is evidence that these pathways lead to the 

altering of ionic currents. In Idotea the mechanism behind the proctolin-induced increase in 

tension likely involves a cAMP signal pathway and protein kinase A causing the phosphorylation 

of a non-voltage dependent K+ channel (Erxleben et al., 1995). In the tonic abdominal flexor 
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muscle of the crayfish proctolin causes a cAMP mediated modulation of two types of voltage­

gated Ca2+ chann~ls (Bishop et al., 1991). Proctolin alone has no effect on the Ca2+ channels, but 

renders them capable of sustained activity following depolarization. The resulting influx of Ca2+ 

is likely responsible for the increase in tension elicited be proctolin following depolarization. 

1.14.2 Serotonin and Octopamine 

Serotonin and octopamine are found in the pericardial organs of crustaceans (Cooke and 

Sullivan, 1982). These two aminergic hormones affect many crustacean visceral and skeletal 

muscles, by both pre- and postsynaptic mechanisms. 

Octopamine excites hearts of Cancer, Panulirus, Homarus, Portunus (Cooke and 

Sullivan, 1982) Astacus, Eriphia (Florey and Rathmayer, 1977) and Limulus (Watson et al., 

1985). Serotonin also modulates the hearts (Battelle and Kravitz, 1978) and isolated cardiac 

ganglia (Cooke and Hartline, 1975) of crustaceans. Serotonin increases the basal tonus and 

myogenic contractions in cockroach oviducts, whereas octopamine decreases them at 

concentrations greater than 10.7 M (Bamji and Orchard, 1995). Octopamine also increases the 

spontaneous contractions of crayfish hindgut by acting directly on the muscle (Cooke and 

Sullivan, 1982); whereas, it reduces the amplitude of neurally-evoked contractions of the locust 

oviduct (Orchard and Lange, 1985). Both these amines seem to exert their effects on visceral 

muscle through cAMP mediated pathways (Sullivan and Barker, 1975; Battelle and Kravitz, 

1978; Lange and Orchard, 1986; Groome and Watson, 1989; Bamji and Orchard, 1995). 

Serotonin and octopamine both modulate neuromuscular transmission and muscle 

contraction in arthropod skeletal muscles. In lobster dactyl opener muscle both amines produce 

contractures (Florey and Florey, 1954). Octopamine reduces the amplitude of neurally-evoked 
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contractions of Schistocerca extensor tibiae muscle (O'Shea and Evans, 1979), but it increases 

twitch amplitude, .~ontractionrate and relaxation rate while decreasing basal tonus in several other 

insect preparations (O'Shea and Evans, 1979; Evans and Myers, 1986; O'Gara and Drewes, 

1990). Octopamine reduces the amplitude ofEJP's and hyperpolarizes the muscle membrane 

potential, mediating its effects using cAMP in locust oviduct. Octopamine causes relaxation of 

the basal tonus and inhibition of myogenic contractions in locust oviduct (Lange et al., 1984) and 

Schistocerca extensor tibia (O'Shea and Evans, 1979) unlike serotonin which enhances the 

myogenic rhythm of the locust extensor tibiae (Evans and Myers, 1986). Neurally-evoked 

contractions in the locust oviduct seem to be mediated by raising cAMP levels (Lange and 

Orchard, 1986), while myogenic contractions appear to use a different mechanism (Evans, 1984). 

As is apparent from the preceding paragraghs, that both serotonin and octopamine have a 

wide range of effects on visceral and skeletal muscles. One explanation would be different types 

of receptors for these amines. Octopamine is known to have three different types of receptors 

which mediate physiological changes in the locust extensor tibia which respond to various 

agonists and antagonists (see Orchard and Lange, 1987). Also, only two of the receptors activate 

adenylate cyclase. The distribution of these receptor types on the target tissues could account for 

the inconsistent patterns regarding octopamine's physiological effects. 

Both amines have been shown to act postsynaptically. In the walking leg opener muscle 

oflobster, serotonin and octopamine elicit sustained contractures that are dependent on 

extracellular Ca2+, through direct effects of the muscles (Kravitz et aI., 1980). Serotonin's effect 
\ 

is accompanied by a small depolarization and a slight change in input resistance in lobster dactyl 

opener muscle (Kravitz et aI., 1980). Serotonin also increases an inward Ca2+ current through 

voltage sensitive Ca2+ channels in lobster muscle, which leads to the appearance of Ca2+ action 
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potentials (Kravitz et al., 1980). 

Serotonin was demonstrated to have a presynaptic action at crustacean neuromuscular 

junctions by increasing quantal release (Dudel, 1965; Kravitz et al., 1980; Glusman and Kravitz, 

1982). In the lobster opener preparation there is evidence that serotonin alters the storage or 

buffering ofintemal Ca2+ (Glusman and Kravitz, 1982) in part through the cAMP pathway, since 

the cAMP level increases in this preparation (Battelle and Kravitz, 1978) and in part through a 

cAMP-independent component (Goy and Kravitz, 1989). In the crayfish opener muscle, the 

serotonin-induced increase in transmitter released is dependent on phospholipase C and 

phosphorylation presumably by protein kinase-C (Dixon and Atwood, 1989). It has been 

suggested that phosphorylation may act by modulating Ca2+ channels so that more Ca2+ enters the 

nerve terminals, by modulating the sequestering mechanisms so that the Ca2+ transient is 

prolonged, or by modulating the exocytotic apparatus so that more vesicles are available for 

release (Swain et aI., 1991). Unlike Aplysia, in which serotonin causes the cAMP/protein kinase 

A -mediated phosphorylation of a K+ channel which broadens the presynaptic action potential to 

cause increased transmitter release (Shuster et al., 1985; Brada et al., 1993), in crayfish the 

presynaptic action potentials are not broadened by serotonin as they are in Aplysiaruling out K+ 

channel inactivation (Dixon and Atwood, 1985). Also in crayfish serotonin requires extracellular 

Na+ but not extracellular Ca2+ to increase transmitter release (Dixon and Atwood, 1985). It is 

possible that serotonin's effect in crayfish involves an initial entry ofNa+ into the nerve terminal, 

with consequent increased availability of Ca2+. 

It should be apparent from this review that serotonin and octopamine affect many 

crustacean motor neurons and muscles. Serotonin, in particular, is known to modulate many 

different currents through a variety of intracellular signalling pathways. 
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1.13.3 Dopamine 

Dopamine is also found in neurosecretory endings of the pericardial organs and, thus, is 

thought to act as a neurohormone in crustaceans. It is cardioexcitatory in a number of crustacean 

hearts, including those of Lihinia, Panulirus, Homarus, Portunus, Cancer, Astacus, and Limulus 

(Florey and Rathmayer, 1977; Cooke and Sullivan, 1982; Watson et at, 1985). The thresholds 

for these responses are between 10-9 and 10-7 M. 

In Limulus, dopamine modulates neuromuscular transmission (Watson et aI., 1985) and 

elicits sustained contractures and rhythmic contractions in deganglionated heart muscle. At the 

cardiac neuromuscular junction, dopamine acts directly on presynaptic terminals to increase 

spontaneous and evoked transmitter release. Dopamine's effect on contractility involves a direct 

effect on the muscle and occurs in the absence of changes in membrane potential or input 

resistance of muscle cells. The latter effect may be a result of changes in excitation-contraction 

coupling (Watson et aI., 1985) mediated by increases in cAMP (Groome and Watson, 1989). 

Dopamine increases nerve-evoked contractions, contractures and spontaneous 

contractions oflobster foregut (Lingle, 1981) and crayfish hindgut (Sullivan, 1980). The effects 

in the lobster are accompanied by increases in amplitude of excitatory junctional potentials, 

caused at least in part by increases in muscle fiber membrane resistance. In fibers where dopamine 

activates spontaneous contractions, the amine also causes spontaneous action potentials (Lingle, 

1981). 

Dopamine causes the opposite effect (ie. decreased muscle tonus) on Limulus midgut 

(Groome and Lent, 1992) and lobster opener muscle ( Kravitz et aI., 1980). In Limulus it inhibits 

spontaneous contractions, which counteracts the excitatory effects produced by proctolin and 

octopamine (Groome and Lent, 1992). Dopamine's effects on the midgut are also mediated by 
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responses in different systems, but appears to act through cAMP in all cases. 

1.14 FMRFamide Related Peptides 
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Another group of potential neurohorrnones that are localized in the pericardial organs 

crustaceans along with proctolin, serotonin, octopamine, and dopamine are the FMRFarnide­

related peptides (Trimmer et aI., 1987; Mercier et al., 1993). FMRFamide (named for the one­

letter symbols of its amino acid sequence) was originally isolated from the bivalve mollusc 

Macrocallista nimbosa (Price & Greenberg, 1977). Antisera raised against FMRFamide have 

been used to study FMRFamide-like peptides in many non-molluscan species (eg. Boer et ai., 

1980). It is now recognized that there is a large family ofFMRFamide-related peptides (FaRP's) 

widely distributed throughout the animal kingdom (Greenberg & Thorndyke, 1983; Price & 

Greenberg, 1989). 

The FaRPs can be characterized into two distinct groups: those isolated from the 

protostome phyla (Nematoda, Annelida, Mollusca and Arthropoda) and those isolated from the 

non-protostomes (Coelenterata and Chordata) (Elphick et aI., 1989). The protostome FaRP's 

have the same general C-terrninal sequence F(X)RFamide, where X is either methionine, leucine 

or isoleucine. The non-protostomes share only the C-terminal RFamide sequence. 

1.14.1 Arthropod FaRP Sequences 

Several FaRP's have been isolated from several types of arthropods, including fruitflies, 

locusts (Robb and Evans, 1990), cockroaches (Holman et ai., 1986), blowflies (Duve et aI., 

1992), tobacco hornworms (Kingan et aI., 1990) and crustaceans (Marder et aI., 1987; Trimmer 



32 

et al., 1987; Mercier et al., 1991). The arthropod FaRP's have been divided into three groups 

based on their 8.ll}ino acid sequences (Krajniak, 1991). Group 1, isolated from insects, has the 

sequence H-X-FLRF-amide, where X is either a serine or valine residue. Group 2, which has only 

been found in Drosophila, has the sequence DF-X-RF-amide, where X is either methionine or 

valine. Group 3 contains peptides found in both insects and crustaceans with the structure NF-X­

RF -amide, where X is either methionine, leucine or isoleucine. This classification scheme 

however, is inadequate to account for more recently identified FaRP's. For example, Krajniak 

(1991) has isolated a FaRP from the blue crab whose sequence, GYNRSFLRF-amide, is similar to 

the structural requirements of both Group 1 and Group 3 but does not fit into either one. Of 

thirteen FaRPs isolated from the blowfly only two fit into Group 3; however, most have the 

terminal sequence DFMRF-amide and one has the sequence NMIRF-amide (Duve et al., 1992). 

1.14.2 Effects of FaRP's 

Physiologically, FaRP's mediate a wide and diverse set of actions on multiple target tissues 

including: activation of rhythmic bursting in neural circuits (eg. Marder et al., 1987), modulation 

of neurally evoked contractions of skeletal muscles (eg. Evans and Myers, 1986; Skerrett et al., 

1995), modulation of synaptic efficacy at neuromuscular junctions (eg. Baux et al., 1992) and 

direct excitatory and inhibitory effects on muscle tension (eg. Trimmer et al., 1987; Worden et al., 

1995). Specific examples are described in the subsections below. 

1.14.2.1 Neural circuits 

FaRPs have been shown to modulate rhythmically active neural circuits such as the pyloric 

rhythm in the stomatogastric ganglia of the crab (Hooper and Marder, 1984; Marder et al., 1987) 
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and shrimp (Meyrand and Marder, 1991), by increasing the frequency of the pyloric cycle. The 

effects of the F~'s, Fl and F2, on the rhythm are dependent on the pre-application state of the 

system. Peptide effects were only seen in preparations where the pyloric rhythm was originally 

inactive or slowly active. The FMRFamide evoked contractions are accompanied by a sequence of 

rhythmic depolarizations, followed by a state in which the muscle does not spontaneously contract 

but is close to threshold for the generation of rhythmic activity in pyloric dilator muscle of shrimp 

(Meyrand and Marder, 1991). The induction of plateau and oscillatory properties in the DG 

neuron is an important step in the activation of the full gastric rhythm. Fl and F2 modify the 

intrinsic membrane properties of the DG neuron so that it expresses plateau properties and/or 

becomes a true oscillator (Kliehn and Harris-Warrick, 1992). 

1.14.2.2 Neuromuscular Transmission 

In contrast to vertebrate muscles, invertebrate muscle fibers do not routinely display 

regenerative membrane properties, but the amplitude of the muscle contraction is a function of the 

size of the post junctional response (Atwood, 1976). Under these conditions movement amplitude 

can be extremely sensitive to the pattern of activity in the motor neuron. FaRPs are likely to have 

multiple sites of actions, including presynaptic terminals as well as the muscles themselves (Evans 

and Myers, 1986; Skerrett et aI., 1995). 

F 1 and F2, which were isolated from the lobster pericardial organs (Trimmer et al., 1987), 

enhance both nerve-evoked and spontaneous transmitter release from neurons innnervating the 

dactyl opener muscle oflobster (Trimmer et aI., 1987; Worden et al., 1995). Both neuropeptides 

also enhance nerve-evoked contractions and EJP's of the crayfish phasic extensor muscles 

(Mercier et al., 1990). In the latter neuromuscular system, the peptides were shown to increase 
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the quantal content, indicating an increase in transmitter release from presynaptic terminals. 

In the ext~nsor-tibiae muscle oflocust, FaRP's modulate tension generated by stimulation 

of the slow excitatory motor neuron, but they have no effect on myogenic contractions (Evans 

and Myers, 1986). FMRFamide increases the frequency, but not the amplitude of spontaneous 

miniature end-plate potentials in muscle fibers innervated by the slow excitatory motor neuron, 

indicating a presynaptic action. These actions do not appear to be mediated by increases in cyclic 

nucleotide levels (Evans and Myers, 1986). 

Unlike some modulators such as serotonin and proctolin, F 1 showed no modulatory effect 

on stretch receptor neurons in the lobster (pasztor and MacMillan, 1990). So far, there has not 

been sufficient evidence to extend physiological targets ofFaRP's to crustacean sensory neurons. 

1.14.2.3 Neurons 

The subcellular mechanisms by which FaRP's alter synaptic transmission have been 

studied in Aplysia (Baux et al., 1992) and Helisoma (Man-Son-Hing et al., 1989). In a neuro­

neuronal synapse of the buccal ganglion ofAplysia quantal release is increased by FLRFamide 

because the voltage sensitivity of an N-type Ca2+ channel is increased (Baux et al., 1992). This 

differs from other reports where FLRFamide decreases neuronal Ca2+ currents as in Helisoma 

(Man-Son-Hing et al., 1989). 

When FMRFamide was applied to the somatic synapses of cultured Helisoma neurons, 

release of the transmitter, acetylcholine, was depressed (Man-Son-Hing et aI., 1989). Using 

voltage-clamp and calcium-clamp techniques the investigators found the modulation to be caused 

partly by a decrease in the voltage-dependent Ca2+ current and partly by a direct effect on the 

secretory apparatus. The latter effect was demonstrated when FMRFamide caused a decrease in 



35 

transmitter release even when the inside of the presynaptic cell was loaded with Ca2+ using a 

"caged-Ca2+11 chemical. This process was shown to require a G-protein when the peptide's effect 

was mimicked by the injection of the GTP analogue, GTPyS (Haydon et ai., 1991). 

FMRFamide decreases the duration of the Ca2+ current and a cAMP controlled K+ current 

in Helix neurons (Colombaioni et ai., 1985). This contrasts with the effect ofFMRFamide in 

Aplysia sensory neurons where the peptide increases the probability of opening of the K+ channels 

(Belardetti et ai., 1987). 

1.14.2.4 Cardiac and Other Visceral Muscles 

FaRP's increase both the rate and strength of cardiac contractions in lobster (Trimmer et 

al., 1987; Worden et aI., 1995), locust (Cuthbert and Evans, 1989; Robb and Evans, 1990; Robb 

and Evans, 1994), crab (Krajniak, 1991) and crayfish (Mercier and Russenes, 1992; Skerrett et 

ai., 1995). The peptides could act on the myocardium, on the nerve terminals innervating the 

myocardium, and on the rhythm generating neurons on the cardiac ganglion (Cuthbert and Evans, 

1989). However, investigations of the effect ofFaRP's on isolated cardiac ganglia and isolated 

myocardium from crustaceans have been lacking. Several FaRP's are cardioexcitatory in the 

Limulus heart (Groome et aI., 1994) acting on both the cardiac ganglia and the myocardium itself 

The ionic currents that mediate the effects ofFaRP's on arthropod hearts are unknown. 

There is evidence in leech heart that FMRFamide activates a sustained inward Na+ current and a 

K+ current and modifies Ca2+ currents (Thompson and Calabrese, 1991). In locust, FMRFamide's 

cardioexcitatory effects are not mediated by cyclic nucleotides (Cuthbert and Evans, 1989). The 

effects ofFMRFamide on the locust heart depend on the form of beating of the heart prior to 

peptide application, sometimes increasing the frequency and amplitude of heart contractions and 
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sometimes decreasing them (Cuthbert and Evans, 1989). This is also true in leech hearts where 

FMRFamide can ,even induce myogenic contractions in quiescent hearts (Li and Calabrese, 1992). 

Cardioexcitation in the locust likely involves second messengers since the effects last for several 

minutes after the peptide has been removed unlike the cardioinhibitory effects which cease rapidly 

following the removal of the peptide (Cuthbert and Evans, 1989). 

Some FaRPs are excitatory and some are inhibitory in cardiac and visceral muscles. 

FMRFamide initiates contractions by itself and potentiates proctolin induced contractions in the 

locust oviduct (Puiroux et al., 1993). However, SchistoFLRFamide (PDVDHVFLRFamide) and 

leucomyosuppressin (pQDVDHVFLRFamide) decrease the amplitude and frequency of 

myogenic contractions and reduce basal tonus in locust oviduct muscle (Lange et al., 1991; Peeff 

et al., 1993) and inhibit spontaneous contractions of the locust heart (Robb and Evans, 1990; 

Robb and Evans, 1994). SchistoFLRFamide appears to block Ca2+ influx from the cell exterior 

through voltage-gated or receptor operated Ca2+ channels (Wang et al., 1995). 

1.14.3 Direct Postsynaptic Effects 

There are several reports of direct effects ofFaRPs on skeletal muscle. Walther et al. 

(1991) tested 15 peptides (including several FaRP's and structural analogs) on the locust jumping 

muscle to determine if their modulatory actions were pre- or postsynaptic in origin. Some 

postsynaptic effects ofFaRP's were demonstrated using the voltage-clamp method. 

Leucomyosuppressin (pQDVDHVFLRFamide) and YGGFMRFamide decreased the membrane 

conductance of the muscle cells and shifted the reversal potential towards the equilibrium 

potential for K+ , suggesting that these peptides may modulate a voltage-independent K+ channel. 

In the pyloric dilator muscle of shrimp, FMRFamide and Fl evoke short-lived rhythmic 
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depolarizatioris and contractions (Meyrand and Marder, 1991). The oscillations in the membrane 

potential were uIl.aifected by TTX and are suppressed by C02+, suggesting an inward Ca2+ current 

is necessary for the depolarization. In this preparation FMRFamide and YGGFMRFamide 

depolarize the membrane by 5-10 mVat 2.5xl0-7 M and cause a 20-30% increase in the input 

resistance. This is in contrast to the effect ofFaRP's on crayfish abdominal muscles where FI 

increased input resistance by only 15%, and F2 caused no change in input resistance (Mercier et 

aI., 1990). 

Other postsynaptic effects ofFaRPs include the production of myogenic contractions in 

Helix tentacle retractor muscle (Cottrell et aI. 1983) and a sustained increase in tonus in the 

lobster dactyl opener muscle (Worden et aI., 1995). 

1.15 Objectives of this Thesis 

Two FaRP's isolated from the crayfish pericardial organs (Mercier et aI., 1993), have the 

sequences: NRNFLRF-amide (NFl) and DRNFLRF-amide (DFJ. Both peptides increase the 

rate and amplitude of cardiac contractions in a dose-dependent manner. They also increase the 

size of the excitatory junctional potentials (EJP's) in the phasic extensor muscles of the crayfish 

abdomen (Mercier et aI., 1991). One of the peptides, DF2, has been shown to be more effective 

at low temperatures than at high temperatures (Friedrich et aI., 1994). This suggests that the 

peptide may provide a mechanism to compensate for reduced transmitter release at low 

temperatures. 

In general, increases in EJP amplitude can be caused by an increase in the amount of 

transmitter released, by a change in the sensitivity of the receptor channels to the transmitter, or 

through an increase in the input resistance. Both peptides increase the number of quanta of 
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transmitter released from the motor nerve terminals innervating the crayfish phasic extensors. 

Neither peptide aI~ers quantal size, suggesting no change in the sensitivity of postsynaptic 

receptors. One peptide, NFl, causes a slight increase in the muscle fiber input resistance while the 

other, DF2 does not (Skerrett et al., 1995). However, other postsynaptic effects such as 

modulation of evoked contraction or changes in tonus have not been ruled out. 

The objective of this study was to examine more closely the possibility that DF2 elicits 

direct effects on crayfish muscle. Experiments described here demonstrate such effects and 

investigate the influence of calcium and temperature on muscle tonus. 
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2. Methods 

2.1 Preparatioq 

Crayfish (Procambarus clarkii), 2-3 inches in length, were obtained from the Atchafalaya 

Biological Supply Co. and stored in freshwater tanks at 15°C. They were fed a diet of carrots and 

Tender Vittles cat food. Prior to dissection, the crayfish were anaesthetized by placing them on 

ice for 30 minutes. The crayfish were euthanised by quick maceration of the brain and the 

thoracic ganglia. The abdomen was then cut away from the thorax. After making two lateral cuts 

along the sides of abdominal shell and one connecting cut across the base of the sixth abdominal 

segment, the dorsal abdominal shell was peeled back exposing the deep extensor muscles. The 

superficial abdominal extensor muscles were isolated by carefully removing the deep extensors 

(see Fig. 2). Segments 3 and 4 were left intact, while all the extra segments were removed. The 

shell, with the superficial extensors, was pinned to the bottom of a recording chamber lined with 

sylgard. The volume of the recording chamber was 2.0 mL. 

2.2 Saline 

Preparations were bathed in crayfish physiological saline (Van Harraveld, 1936) with the 

following constituents: 205 mM NaCI, 5.3 mM KCI, 13.5 mM CaCI, 2.45 mM MgCI and 5 mM 

HEPES. The pH was adjusted to 7.4 using 10 N NaOH. 

The recording chamber was perfused with crayfish saline at a constant rate of2.5 mL/min 

using a peristaltic pump at one end of the chamber and suction at the other end. All chemicals 

were bath applied by changing the solutions delivered to the preparation by the pump. 



Figure 2. Cross-section of the abdomen of crayfis~ P. clarkii, showing all the 
muscle groups. Note that each herni-segment contains 3 pairs of superficial extensor 
muscle the lie right against the dorsal shell. They attach to the shell of one segment at 
one end and to a membrane lining the shell of the adjacent distal segment. 
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2.3 Temperature Control 

The temperature of the saline was carefully controlled with a Forma Scientific refrigerated 

circulator and monitored with a digital thermometer. Unless otherwise stated all experiments 

were performed between 7 and lOoe ± loe in each experiment. 

2.4 Tension Recordings 

Isometric contractions were recorded using a Grass Model 7B Polygraph. The muscle 

was held at a constant length while tension produced was measured with a Grass FT03 tension 

transducer. The transducer was calibrated by hanging weights of known mass (in mg), and the 

contractions were measured in units of milliNewtons (mN) using the relationship 102 mg= 1.0 

mN. Segments 3 and 4 were cut down the midline with scissors and separated into left and right 

hemisegments. The ligaments and connective tissue in each preparation were severed, leaving the 

superficial extensor muscles as the only attachments between the dorsal shells of hemisegments 3 

and 4. The shell ofhemisegment 3 was them securely pinned to the bottom of the recording 

chamber, and the shell ofhemisegment 4 was attached to the tension transducer using a fine pin, 

hooked at the end. 

2.5 Tension Analysis 

All changes in muscle tonus induced by peptide or blocking agents were measured relative 

to baseline levels that occurred prior to application of such agents. Mean changes in tonus were 

compared using the Wilcoxon Signed Rank test for matched pairs. 
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2.6 Intracellular Recordings 

Muscle fil?er input resistance was examined by passing measured amounts of current into 

individual fibers through one micro electrode, and measuring induced changes in the membrane 

potential through a second electrode placed < 50 ~m away in the same fiber. Both electrodes 

were filled with 3M KCl, and each typically had a resistance of 16 MO. Current was generated 

with a Grass S88 Stimulator and was passed through a WPI Cyto 721 electrometer to the cell 

with one electrode. The corresponding changes in voltage were measured with a Warner 

Instrument Oocyte clamp (Model OC-725B). Current and voltage measurements were made 

directly from a Hameg model HM 205-3 digital storage oscilloscope. 

Since the V II recordings revealed active responses which were of interest, the signals 

were split between the digital storage oscilloscope for viewing and an Axon Instruments TL-1 

DMA interface which, in turn, was connected to an IBM 386 compatible computer for 

computerized data acquisition. The active responses were analysed at a later date using a 

computer program, called ANACQ, provided by Dr. Milton Charleton (Dept. of Physiology, 

University of Toronto, Toronto, ON). The active response threshold, was determined by first 

estimating the start of the active response visually by the change in the slope of the membrane 

potential. The threshold was estimated as the voltage at the start of the active response relative to 

o mV (Fig. 3C). The amplitude was calculated by taking the difference between the peak of the 

active response and the threshold (Fig. 3B). An estimate of the duration of the active response 

was made by determining the time difference between the half-amplitudes on the rising and falling 

phases (Fig. 3D). The difference between means was determined using the Mann-Whitney U test 

for unmatched samples or the Wilcoxon signed rank test for matched pairs. 
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2.7 Concentrations of Toxins and Drugs 

All toxins. and drugs were made up in stock solutions and were frozen. Strophanthidin 

(0.1 %), and nifedipine (0.1 %) were dissolved in 95% EtOH. Both + and - enantiomers of Bay K 

8644 (0.1 %) and thapsigargin (0.001 %) were dissolved in dimethylsulfoxide (DMSO). 

Manganous chloride, cadmium chloride, nickel chloride, verapamil, tetrodotoxin, ryanodine, 00-

conotoxin, and DF2 were all dissolved in crayfish saline. 

2.8 Sources of Chemicals and Toxins 

NaCI, CaCI2, MgCI2, KCI, NaOH, NiCl2 and CdCl2 were purchased from BDH Chemical 

Inc. (Toronto, ON). For some experiments, MgCl2 came from the Fisher Scientific Company 

(Ottawa, ON). HEPES, DMSO, strophanthidin and tetrodotoxin came from Sigma Chemical Co. 

(St. Louis, MO). Ryanodine, nifedipine, oo-conotoxin GVIA were purchased from Calbiochem 

Chemical Co. (La Jolla, CA). Alomone Labs (Jerusalem, Israel) was the supplier ofthapsigargin, 

charybdotoxin, and apamin. Both the positive and negative forms of Bay K 8644, along with the 

ameliorate and verapamil were purchased from Research Biochemicals International (Natick, 

MA). DF2 was synthesized by T.S. Chen of the Biotechnology Service Centre, Banting and Best 

Institute, Toronto, Canada. 



Figure 3. Paramaters for analyzing the active responses. a. Peak voltage relative to 
zero (ground voltage). b. Active response amplitude is measured from the threshold 
(indicated by the arrow) to the top of the peak. c. Thresholds are measured relative 
to zero. d. Duration is measured as the time difference between rising and falling 
phases at the half the amplitude. e. Resting potential. 
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3. Results 

3.1 Muscle Contraction 

The first step in investigating postsynaptic effects of the neuropeptide was to identify an 

appropriate muscle that is sensitive to DF2. Three muscle groups from the crayfish abdomen were 

surveyed to determine whether or not the peptide would alter muscle tonus. Figure 4 shows the 

effects of the application of 10-7 M DF2 on the deep extensor muscles, the superficial flexor 

muscles and the superficial extensor muscles of the crayfish abdomen. The only muscle group 

affected by the peptide was the superficial extensors, which showed an increase in the tonus in 51 

out of 62 preparations. The deep extensors and superficial flexors (N=5 and N=9, respectively) 

never exhibited alterations in muscle tonus in response to 10-7 M DF2. All subsequent 

experiments were conducted on the superficial extensor muscles. 

Some muscle preparations produced small contractions that ranged in amplitude from 

0.02 mN to 0.30 mN. The spontaneous contractions were usually smaller than the nerve-evoked 

contractions produced when the nerve was stimulated for 2 seconds at 10Hz with 2 volts (Fig. 

6). The spontaneous contractions were not present in every preparation, but the contractions 

could usually be obtained if the temperature was brought below l3°C (Fig.5A). As the 

temperature was lowered the spontaneous contractions became more noticeable. Even though 

the amplitude of the contractions increased as the temperature was lowered (Fig.5C), the 

frequency of the contractions decreased (Fig.5B). A typical time course of the spontaneous 

contractions recorded at approximately 8°C consisted of a 200 msec rise time followed by an 800 

msec falling phase. These contractions were sometimes rhythmic and sometimes very irregular. 

10-7 M DF2 appeared to enhance the spontaneous contractions in some preparations as 

shown in Fig. 4. In 40 out of 47 preparations the peptide did not elicit such contractions and in 



Figure 4. Survey of the responsiveness of three abdominal muscles to 10-7 M DF2• 

Muscle contraction was monitored by recording isometric tension. The peptide was 
applied during times indicated by the solid black bars. 
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Figure 5. The superficial extensor muscles produce rhythmic contractions that are 
temperature-dependent. A. Sample tension recording from the superficial extensor 
muscle as the temperature is raised from 7°C to 15°C. B. The frequency of the 
contractions increases as the temperature increases. Above 9.8° C the contractions 
become indistinguishable and impossible to count. C. The amplitude of individual 
contractions decreases as the temperature increases. (n= 17). 
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27 out of 47 preparations the peptide did not increase the amplitude of such contractions. The 

effect on tonus w~s more consistently observed than the effect on the rhythmic and irregular 

contractions. 
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In two preliminary experiments where tension was evoked by stimulating the nerve, the 

peptide enhanced the amplitude of the contractions (Fig. 6 A and B (lower traces» suggesting it 

may enhance neuromuscular transmission as in the deep extensor muscle of the crayfish abdomen 

(Skerrett et al., 1995). 

It was not expected that the spontaneous muscle contractions would be caused by neural 

activity because the nerve containing all the motor axons had been cut. Nonetheless, experiments 

were performed to examine the unlikely possibility that the distal stumps of the severed axons 

might be spontaneously active. Recordings from the nerve through a suction electrode detected 

some activity associated with the sensory neurons of the muscle receptor organs (MROs), whose 

cell bodies are located next to the muscle (Alexandrowicz, 1951). This activity was abolished with 

the application of 10-7 M TTX (in 10 out of 10 preparations) as indicated in figure 8. However, 

the rhythmic contractions persisted. Thus, the spontaneous contractions are not caused by neural 

activity, but are myogenic in nature. The effect ofDF2 was also unaffected by TTX (Fig. 8). 

In an attempt to understand the temperature-dependent nature of the spontaneous 

contractions, the effects of the Na+/K+ pump inhibitor, strophanthidin, were examined. If the 

Na+/K+ exchange pump were inhibited at low temperatures, one would predict a corresponding 

increase in the intracellular Na+ concentration. This, in tum, could inhibit the Na+/Ca2+ exchange 

which would increase the concentration of intracellular Ca2+ (Ortiz and Orkand, 1979) and might 

increase muscle tonus. Figure 7 shows two tension recordings from the same preparation. At 

II°C the rhythmic contractions were present but at 180 C they were no longer visible. 



Figure 6. Nerve-evoked contractions from two preparations stimulated every minute 
for 2 seconds at 10 Hz (arrows). Black lines indicate the application of 10.7 M DF2. 

A. Upper and lower traces are from the same preparation. Note the spontaneous 
contraction (*) in the upper trace. B. (Upper trace) The ftrst two contractions were 
cut off by the chart recorder (**). Subsequent contractions were elicited by a lower 
voltage. 
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Figure 7. Tension recordings from a single preparation showing the rhythmic 
contractions at 110 C (top trace) and the effect of the N a + /K+ exchange inhibitor, 
strophanthidin, at 180 C (bottom trace). The preparation was superfused with saline 
containing 0.1% EtOH throughout all the recordings. The black line indicates the 
application of strophanthidin. 
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Figure 8. The rhythmic contractions are TTX-resistant. 10.7 M TTX was applied 
during the time indicated by the solid black bar, andIO·7 M DF2 was applied when 
indicated by the dotted line. Shortly after application ofTTX (arrow) nerve activity 
was abolished. (* Artifact caused by entry of air bubble into the recording chamber). 
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The application of 10-5 M strophanthidin did not induce any contractions at the higher 

temperature in 8 ,preparations (all of which displayed oscillatory contractions at low 

temperatures). This suggests that the Na+/K+ pump is not involved in the temperature-dependent 

induction of the rhythmic contractions. 

DF2 was applied to preparations in increasing concentrations, with wash periods of 

approximately 20 minutes between successive applications. The tonus of the muscle increased 

with each successive application of the peptide in a dose-dependent manner. The threshold for 

the effect on tonus was between 10-9 and 10-8 M DF2 (Fig.9). The dose-response curve generated 

from 5 preparations is shown in figure lO(A). Each hemi-segment of the crayfish abdomen 

consists of 3 superficial extensor muscles, referred to here as the medial, middle and lateral 

muscles. When isolated and treated with DF2, each muscle showed a similar dose-dependent 

increase in tonus (Fig. lOB). 

To test the dependence of the peptide's effect on external calcium, several divalent cations 

which are known to block Ca2+ channels were used. Tension recordings from two different 

preparations exposed to Mn2+ and Cd2+are shown in figure 11(A). Both of these blockers 

decreased the tonus and the amplitude of rhythmic contractions, in the presence and absence of 

DF2. In the top trace, DF2 increased the tonus and subsequent addition of 10 mM Mn2+ decreased 

both the tonus and the amplitude of the rhythmic contractions. In the second trace, the rhythmic 

contractions were present even in the absence ofDF2. The addition ofCd2+ reduced the tonus, 

suppressed the rhythmic contractions and minimized DF2'S effect. Nickel also inhibited the effect 

of the peptide, as shown in figure 11 (B). In each of these sets of experiments the blocker was 

applied before DF2 (Fig. lIB). In Ca2+free saline, in which Ca2+ is replaced by Mg2+ without 

EGTA, the effect of DF2 on muscle tonus is blocked (Fig. 12). In contrast, the sodium channel 



Figure 9. DF2 increases the basal tonus of the superficial extensors in a dose­
dependent manner. Sample tension recordings from a single preparation. Increasing 
concentrations ofDF2 were applied for approximately 10 minutes with a 20 minute 
wash period between each application. 



- - .• , .... ..,..,....-w\N, ~ ..... ~~ rtf\ ~~ ... '"',1 

'~~, ~~-~-----'~~-----------------------------
10-9 MDF2 

~ 
0 

~ 
5: 

2 min. 

10-8 M DF2 

10-7MDF2 



Figure 10. A. The dose-response curve for the effect of DF2 on tonus for all 3 
superficial extensor groups in the third herni-segment (n=5). B. The dose-response 
curves for each of the 3 muscles. 
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Figure 11. Muscle tonus and the rhythmic contractions are dependent on external 
Ca2+. A. Sample tension recordings showing the effects of the application of the ionic 
Ca2+ channel blockers Mn2+ and Cd2+ on two different preparations. DF2 was applied 
continuously starting at each of the arrows. The black lines denote the Ca2+ channel 
blockers were present in the bathing solution. B. Bar graph summarizing the effects 
of3 Ca2+ channel blockers and the Na+ channel blocker, TTX on muscle tonus. Data 
are shown as the mean ± SEM. The concentration of Mn2+, Cd2+ and NF+ was 10 
mM and the concentrations ofDF2 and TTX were 10-7 M. In each set of experiments 
the blocker was applied first, followed by DF2. 
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Figure 12. The effects ofDF2 on muscle tonus are blocked in Ca2+-free saline (Ca2+ 
was replaced by Mg2+). The effect ofDF2 in normal saline is shown for comparison. 
Data are shown as means ± SEM. 
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blocker, TTX, did not alter muscle tonus or the peptide's effect on tonus (Fig. lIB). This 

suggests that external calcium is required for both the rhythmic contractions and the peptide's 

effect but, sodium is not. 
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To examine which types ofCa2+ channels are involved in the peptide's effect, blockers 

specific to N-type and L-type voltage-gated Ca2+ channels were used. The N-type Ca2+ channel 

blocker ro-conotoxin (Takahashi and Momiyama, 1993) did not inhibit the peptide's effect (Fig. 

13). DF2 alone increased muscle tonus, and the tonus did not change with the subsequent 

application of 10-7 M ro-conotoxin. This was particularly obvious when compared to the effect 

of 5 mM Mn2+ (Fig. 13) which decreased the tonus following the application ofDF2 much the 

same as did 10 mM Mn2+ (Fig.IIB). 

Figure 14 shows the effects of the L-type Ca2+ channel antagonists, 10-5 M nifedipine 

(Rios and Brum, 1987),2.5 x 10-4 M (+)Bay K 8644 (Mintz et aI., 1991), and 10-4 M verapamil 

(Gielow and Singh, 1995), on muscle tonus following the application ofDF2. None ofthese 

putative antagonists inhibited the peptide's effect on tonus, nor did they inhibit the rhythmic 

contractions (Fig. 14). 2.5 x 10-4 M (-)Bay K 8644 , which is reported to be an L-type Ca2+ 

channel agonist (Mintz et ai., 1991), did not alter the tonus. This suggests that L-type Ca2+ 

channels are not involved in the peptide's effect. 10-4 M verapamil increased the muscle tonus in 

the presence ofDF2 in 6 out of6 preparations (Fig. 15). This was found to be significant using a 

Wilcoxon signed-rank test for matched pairs (p<0.005). 

Neither the N-type Ca2+ channel blocker, ro-conotoxin, nor the toxins specific to L-type 

calcium channels (nifedipine, (+)Bay K 8644, and (-)Bay K 8644) significantly changed the 

muscle tonus when they were applied alone (Fig. 16) . On the other hand, 10-4 M verapamil 

increased the tonus substantially when applied in normal saline (Fig. 16A). Verapamil induced 



Figure 13. Neither the tonus nor the rhythmic contractions are modulated by the N­
type Ca2+ channel blocker, co-conotoxin. A. Sample tension recording superficial 
extensor preparation. Dashed line indicates the presence of DF2 and the solid line 
indicates the presence of the co-conotoxin. B. Bar graph comparing the changes 
(means ± SEM) in tonus caused by Mn2+ and co-conotoxin following the application of 
DF2• 



70 

A 
2 min. 

~.----------, ------------------------.--~~-~~--------------------
----------------------------------
10-7MDF2 

B. 

0.75 
,-. 

~ 0.50 
'-" 

B 0.25 0 
f-; 

.£1 
~ 
] 

0.00 

u 
-0.25 * 

-0.50 
5mM 

Manganese 
(n=7) 

10-7 M conotoxin 

~DF2 

_ DF2 + Blocker 

10-7 M 
m-c onotoxin 

(n=6) 

*Relative to baseline prior to the application ofDF2. 



Figure 14. Sample tension recordings showing the effects of several L-type Ca2+ 

channel blockers in the presence ofDF2• The peptide was present throughout the 
times indicated by the dashed lines. The solid lines indicate the presence of each 
specified blocker. Note: nifedipine was applied in the presence of 0.1 % EtOH and 
(+) Bay K 8644 was applied in 0.1% DMSO. Neither EtOH nor DMSO altered the 
muscle tonus at these concentrations. 
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Figure 15. Bar graph summarizing the effects of several L-type Ca2+ channel blockers 
on tonus of the superficial extensor muscles in the presence ofDF2• The nifedipine 
experiments were run in the presence of 0.1% EtOH and both the (+) and 
(-) Bay K 8644 experiments were run in 0.1% DMSO. Neither EtOH nor DMSO 
altered the muscle tonus at these concentrations. Data are shown as means ± SEM. 
and the significant increase in tonus (p<0.005) in the presence ofverapamil is 
indicated by the double asterisks (**). 
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Figure 16. A. Tension recordings showing the effect of an N-type Ca2+ channel 
blocker, ro-conotoxin, and the L-type Ca2+ channel blockers, nifedipine and verapamil, 
on muscle contraction without DF2 present. Blocker application is indicated by the 
solid black bars. B. Bar graph summarizing the tonus changes (means ± SEM) 
caused by ro-conotoxin and several L-type Ca2+ channel blockers. 
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Figure 17. Bar gragh summarizing the effects of verapmil in Ca2+ -free saline buffered 
with EGTA on tonus of the superficial extensor muscles. The fIrst two bars indicate 
the changes in tonus after 10 and 15 minutes in Ca2+-free saline, respectively. The 
signifIcant increase in tonus (p<0.005) in the presence ofverapamil is indicated by the 
double asterisks (**). Data are shown as means ± SEM. 
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some spontaneous contractions (although not rhythmic ones) along with the increase in tonus. 

Even in Ca2+-free saline buffered with 5 mM EGTA, so that pCa2+ is greater than 9, verapamil 

significantly changed the tonus suggesting that verapamil's effect does not require the influx of 

external Ca2+ (Fig. 17; Wilcoxon signed-rank test for matched pairs, p<0.005). When the saline 

bathing the preparation was changed to Ca2+ -free saline buffered with EGT A, there was a large 

increase in tonus followed by a slow decrease which took longer than 15 minutes to return to 

baseline. Figure 17 shows the effect on tonus after 10 minutes and 15 minutes in Ca2+ -free saline. 

After 15 minutes in Ca2+-free saline the tonus was closer to the tonus level in normal saline. The 

initial increase in tonus may be caused by the release of Ca2+ from internal stores. 

3.2 Electrical Properties of Muscle Cells 

To determine if the increased tonus caused by DF2 was accompanied by a change in 

resting potential, the resting potential was monitored using standard intracellular recording 

techniques. There was no significant difference (Mann-Whitney U test) between the distributions 

of the resting potential of5 muscle fibers bathed in normal crayfish saline (-67.3 ± 5.7 mY) for 10 

minutes and 6 different muscle fibers bathed in 10-7 M DF2 (-66.1 ± 6.3 mY) for the same length 

of time (Table 1). There was also no significant difference (Wilcoxon signed-rank test for 

matched pairs) between the distributions of the resting potentials of 5 muscle fibers measured in 

saline (-65.7 ± 6.4 mY) and the same fibers after bathing in 10-7 M DF2 for 10 minutes (-66.1 ± 

6.3 mY). 

Initially the input resistance was measured by injecting a series of hyperpolarizing current 

pulses followed by a series of depolarizing current pulses into a single fiber and recording the 

corresponding change in voltage. However, the occurrence of active responses by the muscle 



Table 1. Comparison of means ± SEM of membrane properties of fibers bathed in 
saline and peptide. V m indicates the resting potential; ~ut indicates the input 
resistance; Amplitude refers to the amplitude of the active response; Threshold refers 
to the threshold of the active response. (* * indicates a significant difference at the 
p<O.OOllevel). 
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fibers when depolarized led to the exclusion of depolarizing currents in the input resistance 

calculations. The mean input resistance was determined from 11 preparations in saline (300 ± 222 

Q) and then after 10 minutes in 10-7 M DFz (304 ± 194 Q) from the voltage/current relationships 
> 

shown in Appendix 1. Application of 10-7 M DFz did not cause a significant change (Wilcoxon 

signed-rank test for matched pairs) in muscle cell input resistance (Table 1). 

The amplitudes and thresholds of active responses in the muscle cells were also estimated 

in saline and 10-7 M DFz (Table 1). There was no significant difference between the distributions 

of the amplitudes of the active responses recorded from 6 preparations in saline and 6 different 

preparations in 10-7 M DFz. However, in 6 muscle fibers that were first bathed in saline and 

subsequently bathed in 10-7 M DFz for 10 minutes, the distributions of the amplitudes of the 

active response did change significantly (p<0.0277, Wilcoxon signed-rank test for matched pairs). 

The distributions of the threshold voltages from 4 muscle fibers was significantly more negative 

(Mann Whitney U, p<0.1429) in the presence of 10-7 M DFz than from 5 different muscle fibers 

bathed in saline. These data suggest that the peptide increases the excitability of the muscle 

fibers, even though there was no significant difference (Chi squared test) in the percentage of the 

11 preparations that produced active responses when bathed in saline (54.5%) compared with DFz 

(72.7%) (Table 1). 

The active responses appeared to be TTX-resistant but depended at least in part on 

extracellular Caz+. Figure 18 shows active responses recorded from a single muscle fiber. The 

addition of 10 mM MnClz completely abolished the active response (Fig. 18B) in lout of 10 trials. 

In 6 out of the 10 trials the active response were reduced by 10 mM MnClz. In one trial 50 mM 

MnCl2 was applied, and it completely blocked the active response that had remained in the 

presence of 10 mM MnClz. The blocking effect ofMnz+, when it occurred, was reversible 



Figure 18. Voltage recordings from a single muscle fiber injected with depolarizing 
current. A. Preparation bathed in 10.7 M TTX for 10 minutes. B. Recording 
following 10 minute exposure to 10 mM Mn2+. C. Washout in normal saline. 
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(Fig. 18C). In the last two trials there was no change in the active response even in the presence 

of Mn2+. This suggests that the active responses require external Ca2+ and another cation 

(possibly Na+). 
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The active responses appeared to become larger in amplitude over long recording periods. 

Individual fibers were penetrated, and the initial responses were compared with responses 

obtained after the electrodes had been in the cell for 45 minutes. The distribution of the 

amplitudes increased from time 0 (22.6 ± 17.3 mV) to time 45 (38.7 ± 18.6 mV). This was found 

to be a significant difference using a Wilcoxon signed-rank test for matched pairs p<0.005. To 

determine whether the increases in amplitude were due to an effect of temperature (rather than 

other factors, such as cell damage), active responses recorded at 7°C were compared with active 

responses obtained at 15°C. The distributions of the amplitudes of the active responses was 

significantly higher at 7°C (-28.3 ± 5.0 mV) than at 15°C (5.1 ± 1.3 mY; Mann-Whitney U, p 

<0.01) (Table 2). The active responses also appeared to be of shorter duration (Fig. 19) at 7°C 

(12.4 ± 7.3 msec) than at 15°C (35.0 ± 28.6 msec) but, there was no significant difference 

between the distributions of the durations taken at half-amplitude. There were also no significant 

differences in the distributions of the resting membrane potentials, input resistances or the active 

response thresholds at 7°C and 15°C, respectively (Table 2). 

Of 11 preparations studied at 7°C, 90.9% produced active responses. This is significantly 

greater than the 37.5% of8 preparations that produced active responses at 15°C (Chi squared, 

p<O.OI; Table 2). This indicates that the membrane is more excitable at the lower temperature, 

even though the membrane potential, input resistances and threshold voltage of the active 

responses are not significantly different at the two temperatures. 



Table 2. Properties of muscle fibers at 7" C and 150 C. Values are means ± SEM. 
The double asterisks indicate the properties that are significantly different (p<O.OI) at 
the 2 temperatures. 



R,nput 

(0) 

7°C -69.4 289 
±7.4 ±225 

(n=12) (n=11) 

15°C -72.6 282 
±7.0 ±127 
(n=8) (n=8) 

Active 
Amplitude 

(mV) 

28.3 
±5.0 

(n=lO) 

xx 

5.1 
±1.3 
(n=3) 

Responses 
Threshold 

(mV) 

-38.8 
±4.6 
(n=8) 

-39.5 
±6.5 
(n=3) 

Preparations 
with Active 

Responses (%) 

90.9 

(n=11) 

xx 

37.5 

(n=8) 
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Figure 19. Voltage recordings from muscle fibers injected with depolarizing current 
at two different temperatures, as indicated by the arrows. 
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4. Discussion 

4.1 DFl as a Modulator of Muscle Contraction 

DF2, which was isolated from crayfish pericardial organs, has been shown to increase 
J 

transmitter release from neurons innervating the deep extensor muscles (Skerrett et al., 1995). In 

order to examine possible postsynaptic effects ofDF2, an appropriate preparation was required 

that could be tested without any neural stimulation and that would not contract vigorously when 

the fibers are stimulated. Three groups of muscles from the crayfish abdomen were tested to 

determine whether or not DF2 would increase muscle tonus without any neural stimulation: the 

superficial flexors, deep extensors and superficial extensors. Of these, the superficial extensors 

were the only muscle group to respond to the peptide by showing an increase in tonus. This 

increase was dose-dependent, and all three of the superficial extensor muscles in each hemi-

segment responded similarly. All showed an increase in tonus at the same threshold and over the 

same concentration range. The amount by which tonus increased was also similar in all three 

muscles. This indicates that at least some of the fibers from all three superficial extensor muscles 

possess receptors for the peptide. The absence of such tonus changes in the deep extensors and 

superficial flexors does not mean that such muscles lack FaRP receptors. Modulatory effects 

other than tonus changes are possible. For example, lobster peptides F} and F2 are reported to 

enhance nerve-evoked contractions of crayfish deep extensor muscles (Mercier et aI., 1990), but it 

is not clear whether this effect reflects modulation ofEJP amplitude or of excitation-contraction 

coupling. 

If an increase in spontaneous transmitter release had occurred when the peptide was 

applied, a depolarization and a decrease in input resistance would have been expected. Since 

there was no change in either the membrane potential or the input resistance, the effects on 
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contraction cannot be attributed to an increase in spontaneous transmitter release. The peptide's 

effect is not blocked by TTX. Therefore it is not associated with any spontaneous electrical 

activity in the severed axons. Instead, the peptide's effects are postsynaptic. 
~ 

FaRPs have been shown to modulate synaptic transmission and contraction in 

neuromuscular systems oflocpsts (Evans and Myers, 1986), leech (Li and Calabrese, 1992), 

crayfish (Mercier et at, 1990; Skerrett et al., 1995), and lobster (Worden et aI., 1995). In several 

cases, postsynaptic effects ofFaRPs have been clearly demonstrated, and the present experiments 

with the superficial extensor muscles from the crayfish abdomen are another example of this. 

FaRPs produce a slow contracture in other invertebrate muscles including the locust extensor 

tibiae (Evans and Myers, 1986), Helix tentacle retractor muscle (Cottrell et al., 1983), leech 

hearts (Li and Calabrese, 1992), lobster dactyl opener muscle (Worden et aI., 1995) and the 

anterior byssus retractor muscle bivalve mollusc Mytilus edulis (Muneoka and Matsuura, 1985). 

Some neuromodulators have been reported to cause a change in membrane potential or 

input resistance while inducing tonus. These include serotonin in lobster opener muscle (Kravitz 

et aI., 1980), and Fi in shrimp pyloric dilator muscle (Meyrand and Marder, 1991). In other 

cases, neuromodulators induce contracture in invertebrate muscles with little or no change in 

membrane potential or input resistance. Examples include the effects of octopamine and proctolin 

on lobster opener muscle (Kravitz et aI., 1980) and crayfish opener muscle (Fischer and Florey, 

1983), the effect ofproctolin on the superficial flexor muscles of the crayfish abdomen and the 

effect of dopamine on Limulus cardiac muscle (Watson et aI., 1985). The mechanisms for such 

effects on contraction are unknown, but others have suggested the direct modulation of the 

excitation-contraction coupling process (Fischer and Florey, 1983), or inhibition of the Na+/Ca2+ 

exchanger (Khananshvili et aI., 1993). 
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In the crayfish opener muscle, serotonin and octopamine do not induce contracture but, 

both amines do increase the amplitude ofEJP's evoked by nerve stimulation and nerve-evoked 

contractions (Fischer and Florey, 1983). Contractions induced by direct stimulation of muscle 

fibers with depolarizing current could be modulated by serotonin and octopamine. The amines 

increased the amount of contraction induced by a given depolarization, indicating a direct effect 

on excitation-contraction coupling (Fischer and Florey, 1983). The cotransmitter proctolin also 

potentiates tension induced by direct depolarization in crayfish superficial flexor muscle without 

affecting tension or membrane potential on its own (Bishop et at, 1987). Instead proctolin affects 

excitation-contraction coupling by sustaining the activity of two voltage-dependent Ca2+ channels 

following depolarization generated by the conventional transmitter (Bishop et al., 1991). 

A DF2-induced shift in the excitation-contraction coupling threshold towards the resting 

potential might account for the increases in tonus observed in the present study. The excitation­

contraction coupling threshold in crayfish opener muscle did not change in serotonin or 

octopamine (Fischer and Florey, 1983). 

4.2 Dependence on External Calcium 

To examine the mechanisms underlying the peptide's ability to increase muscle tonus, 

several Ca2+ -channel blockers were employed. The response to DF2 is very similar to responses 

elicited by other neurohormones, where the peptide-induced tonus increase was inhibited by 5 

mM Mn2+ or C02+ (Kravitz et aI., 1980). Octopamine, serotonin and proctolin induce sustained 

contracture in fibers of the lobster opener muscle (Kravitz et aI., 1980) and proctolin has the same 

effect on locust oviduct (Lange et aI., 1987). Since the effects of these neuromodulators are 

antagonized by Ca2+ -channel blockers it has been suggested that they require the influx of 



93 

extracellular Ca2+ (Kravitz et al., 1980; Lange et aI., 1987). The involvement of calcium influx in 

the present work is also suggested by the observation that the effect ofDF2 on tonus is 

antagonized by reducing the extracellular calcium concentration (ie. by using "calcium free" saline 

with or without EGTA). 

The role played by extracellular Ca2+ is not clear. One possibility is that the influx of Ca2+ 

is sufficient to induce contractions. Alternatively, Ca2+ influx may trigger Ca2+ -induced-Ca2+­

release from internal stores, similar to the Ca2+ waves produced after fertilization of sea urchin 

eggs (Galione et al., 1993). 

4.3 Voltage-Gated Ca2+ Channels 

It has been suggested that serotonin, octopamine and proctolin activate voltage-sensitive 

Ca2+ entry at the resting level of membrane potential and thereby induce contracture with little or 

no change in membrane potential (Kravitz et al., 1980). The contractures observed might be 

accounted for by a very small entry of Ca2+ through a hormone-induced change in a population of 

voltage-sensitive channels that are ordinarily closed at rest. 

In an attempt to further characterize the type of Ca2+ channels required for the peptide's 

effect, several voltage-gated Ca2+ channel blockers were used. It was thought that DF2 may 

increase tonus by increasing the influx of Ca2+ through certain voltage-gated channels. There is 

evidence that FLRFamide shifts the voltage-dependence ofN-type Ca2+ channels in neurons 

towards lower voltages, thereby making it easier for such channels to open (Baux et al., 1992). 

L-type Ca2+ channels are known to be present in crayfish muscles and can be inhibited by 10-6 M 

nifedipine (Araque et al., 1994). Neither the N-type blocker (ro-conotoxin) nor L-type Ca2+ 

channel blockers (nifedipine, (+) Bay K 8644, and verapamil) reduced the peptide's effect on 
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tonus. These results suggest that these voltage-gated Ca2+ channels are not employed by DF2 to 

increase muscle tonus. However, it is possible that the N-type blocker, co-conotoxin, which has 

been shown to work in other organisms, is less effective in arthropods due to differences in the 

Ca2+ channels (Gielow et al., 1995; Hille, 1992). In addition, the 1,4-dibydropyridines block 

channels in their inactive state, after they have been opened by depolarization (Hille, 1992). Since 

DF2 does not cause depolarization, these blockers may be ineffective at inhibiting such channels. 

One particularly interesting yet unexpected result occurred with the L-type Ca2+ channel 

blocker, verapamil. This blocker caused a large increase in tonus when applied alone or in the 

presence of the peptide. Even though 10-4 M verapamil has been shown to block Ca2+ channels in 

Drosophila (Gielow et al., 1995) and proctolin-induced contractions in locust oviduct (Lange et 

al., 1987), it may have other non-specific effects in crustacean muscle fibers. The increase in 

tonus in the superficial extensors bathed in 10-4 M verapamil with Ca2+ -free saline buffered with 

EGT A indicate that verapamil is not causing an influx of external Ca2+, but it may release Ca2+ 

from internal stores. 

The mechanism through which DF2 increases tonus does not depend on depolarization. If 

Ca2+ influx does occur, as suggested by the dependence on external Ca2+, it is likely that the influx 

would involve a non-voltage activated channel such as a receptor operated channel. IfDF2 

increases tonus by opening Ca2+ channels at the plasma membrane, one might expect the peptide 

to increase membrane conductance and, thus, decrease input resistance. No such change in input 

resistance was observed. It is possible that Ca2+ channels were being opened by DF2 but the effect 

was masked by the opening of other channels (ie. K+ channels) at the same time, or that the 

increase in Ca2+ conductance is small compared to the resting conductance. 

One technical difficulty in these experiments was movement of muscle fibers during 
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intracellular recording. Worden et al. (1995) reported the same problem when recording from the 

lobster opener muscle in the presence of lobster peptide Fl' If muscle fibers were damaged by 

such movement, such damage would be expected to produce depolarization and a drop in input 

resistance. The inability of the peptide to depolarize the cells or to lower input resistance, 

therefore, cannot be attributed to muscle damage. 

As an alternative to ca2+ channel opening, it is also possible that the peptide may act by 

inhibiting the Na+/Ca2+ exchange at the sarcolemma. FaRPs (including FLRFamide, FIRFamide 

and FNRFamide) have been shown to inhibit Na+/Ca2+ exchange in sarcolemmal vesicles from 

vertebrate cardiac muscle (Khananshvili et al., 1993). Should this pump be inhibited in the 

crayfish skeletal muscles, an intracellular build up of Ca2+ would occur which would lead to an 

increase in contraction without changing the membrane potential. 

4.4 Intracellular Signalling 

The long latency ofDF2's effect on the superficial extensors (usually several minutes) and 

the persistence of the effect suggest the involvement ofa second messenger system. It is not 

known yet which second messengers system function in this case. The proctolin-enhanced 

myogenic rhythm in the locust extensor tibiae and dopamine's effect on Limulus cardiac muscle 

are mediated by cAMP (Evans, 1984; Groome and Watson, 1989), as is proctolin's modulation of 

Ca2+ channels in the crayfish superficial flexor muscle which leads to an increase in tension 

(Bishop et al., 1991). 

According to Baux et al. (1992), in most preparations neurotransmitter-induced 

modulation of Ca2+ currents involves the transducing role of G-proteins. Their studies have led to 

a model for modulation of transmitter release in molluscan neurons by FMRFamide. In that case, 
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a receptor to FMRFamide is thought to be associated with a G-protein, which stimulates the 

hydrolysis of membrane phospholipids via phospholipase C to produce diacylglycerol and IP 3' IP 3 

liberates Ca2+ from internal stores and, along with diacylglycerol, activates protein kinase C 

which, in tum, increases influx through Ca2+ channels (Baux et aI., 1992). 

4.5 Spontaneous Contractions 

The superficial extensors exhibited spontaneous contractions similar to those observed in 

locust extensor-tibia muscle and locust oviduct (Hoyle, 1978; Lange et aI., 1984). Sometimes 

these contractions were rhythmic and at other times they were irregular. The TTX-insensitivity of 

the contractions indicates that they do not depend on presynaptic action potentials and that they 

do not require a TTX-sensitive Na+ current. Hoyle (1978) surveyed several tonic skeletal 

muscles from the locusts, Schistocerca and Locusta, and found that only the extensor tibia 

produced such contractions. In the present study the superficial flexor muscles ofthe crayfish 

abdomen, which are tonic muscles, did not exhibit spontaneous contractions. Since only three 

muscles were examined in the present study, it is not known whether other tonic muscles exhibit 

similar contractions. There is no obvious function for such spontaneous contractions in tonic 

muscles. It has been suggested that they may increase the flow ofhaemolymph (Usherwood cited 

in Hoyle, 1978). 

A variety of experimental conditions have been reported to stimulate myogenic 

contractions in arthropod skeletal muscle. Spontaneous contractions in the locust extensor tibiae 

muscle could be reliably obtained by adding acetylcholine and eserine to insect physiological 

saline, by bathing the muscle in haemolymph or by chronic denervation (Hoyle, 1978). 

'Fibrillations' in tension were induced in Hawaiian ghost crab closer muscles when the muscle was 
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rapidly cooled below 18°C (Florey and Hoyle, 1976). The myogenic contractions in the crayfish 

superficial extensors were reliably obtained at temperatures below l3°C. Thus, temperature is 

only one of several factors that can promote the appearance of myogenic contractions. 

In the extensor tibiae of locusts, depolarizations corresponding to the oscillations in 

tension were not found in every fiber of the muscles (Hoyle, 1978). Only a relatively small 

number of fibers located near the end of the muscle were involved in generating the tension and 

showed depolarizing waves varying in amplitude from the barely detectable to 24 mY. The large 

waves were presumably recorded from pacemaker fibers, and the smaller waves were from fibers 

weakly electrically coupled to them. It is possible that tonic muscles produce spontaneous, 

rhythmic, myogenic contractions that are partially synchronized by electrical coupling between 

some of the fibers. This is an unlikely explanation for the contractions in the superficial extensors 

since they are not electrically coupled (parnas and Atwood, 1966). Since recordings were not 

made systematically from all regions of the superficial extensor muscle, it is possible that fibers 

showing oscillations in membrane potential could have been missed. It is also possible that 

rhythmic contractions might have been restricted to a subset of fibers, but this was not examined. 

The present study examined the possibility that low temperature induces myogenic 

contractions by inhibition of the Na+/I(+ pump. If this pump's activity is reduced, a build up of 

intracellular Na+ would be predicted. This, in tum, would inhibit the Na+/Ca2+ exchange (Atwood 

et aI., 1983; Pannabecker and Orchard, 1988) and might increase intracellular Ca2+ to a level 

which could cause oscillatory release of Ca2+ from internal stores and rhythmic contractions. 

However, addition of the Na+/I(+ pump inhibitor strophanthidin did not induce rhythmic 

contractions at high temperatures in preparations which had exhibited such contractions at lower 

temperatures. This indicates that the rhythmic contractions are not caused by the temperature-
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dependent inhibition of the Na+ pump. 

4.6 Effects ofDFl on Myogenic Contractions 

Some muscles display conditional regenerative properties because modulatory substances 

such as amines and peptides can elicit myogenic activity (Lingle, 1981; Meyrand and Marder, 

1991). FaRP's can induce myogenic activity in Helix tentacle retractor muscle (Cottrell et al" 

1983) and leech hearts (Li and Calabrese, 1992), but have not been shown to do so in locust 

skeletal muscle (Evans and Myers, 1986). In shrimp pyloric dilator muscle FaRP's evoke 

rhythmic depolarizations and contractions, followed by a state in which the muscle does not 

spontaneously contract but is close to threshold for the generation of rhythmic activity (Meyrand 

and Marder, 1991). DF2 only occasionally induced contractions in the crayfish superficial 

extensor muscles (7/47 preparations). This might reflect the fact that the superficial extensor 

muscles are tonically active and do not normally display rhythmic contractions. 

4.7 Effects of Temperature on Membrane Properties 

In other crustacean muscles (Hawaiian ghost crab and crayfish closer muscles), the input 

resistance increases and the membrane potential depolarizes with decreasing temperature (Florey 

and Hoyle, 1976; Harri and Florey, 1977; Adams, 1987). Based on such reports, one would 

expect that in the present study input resistance would be higher at the lower temperature. Since 

the muscles were contracting at low temperature, it is possible that fiber damage could have 

reduced input resistance. The muscle cells typically appeared white and damaged by the end of 

the experiments. Thus, the input resistance may be underestimated. 
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4.8 Active Responses 

Tonic m\lscle fibers of crustaceans generate graded electrical responses but rarely 

produce active responses (Wiersma, 1961). Active responses have been found in some fibers of 

the extensor muscles of the crayfish carpopodite (Ozeki, 1969), crab stretcher muscle fibers 

(Atwood et aI., 1965), and tonic flexor fibers of the crayfish abdomen (Lehouelleur et aI., 1983). 

In the present study, active responses were elicited in the superficial extensor muscle of the 

crayfish abdomen when the fibers were injected with depolarizing current. These active responses 

are largely Ca2+-dependent but may also have a minor contribution from Na+ channels. 

Different forms of electrical responsiveness to direct stimulation are found in different 

fibers of the crab stretcher muscle fibers recorded at 12°C including: all-or-nothing responses, 

graded responses and passive responses (Atwood et aI., 1965). All-or-nothing responses are 

distinguished by a sharp threshold for the production of large spikes. Graded responses, which 

occur most frequently, can be anything from small oscillatory responses to large, variable spike­

like responses. Passive responses show a rapid, brief depolarization followed by marked delayed 

rectification. All these response types were observed in the crayfish superficial extensor muscles, 

but most of the active responses analysed were all-or-nothing responses. 

The appearance of Ca2+ -dependent active responses so reliably in the superficial extensor 

muscles contrasts with early work by Pamas and Atwood (1966), who reported only graded 

responses in these muscles in Procambarus and Panulirus. Small responses resembling graded 

responses were observed in the present study in muscles held at 15°C. The ability to induce large 

Ca2+ action potentials appears to be a direct result of decreasing the temperature to 7°C. Thus, 

Ca2+ action potentials, thought to be rare in crustacean tonic muscles can be induced reliably by 

lowering temperature. The effect of decreasing temperature is to increase the size of the voltage 
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response, rather than to decrease the threshold. 

Lehouelleur et al. (1983) reported the presence of Ca2+ spikes in tonic flexor fibers from 

the crayfish P. clarkii. After chronic axonotomy (several weeks) half the fibers produced action 

potentials caused by Na+ channels, suggesting that these channels were somehow activated by the 

procedure. The muscles used in this experiment did not undergo chronic axonotomy yet produced 

responses that could not be completely blocked by Mn2+. The appearance ofNa+ active 

responses might depend on the location of the muscle fibers or on the part of the fiber from which 

recordings were made. These factors were not kept constant in the present experiments. 

In other crustacean muscle the input resistance increases and the membrane potential 

depolarizes with decreasing temperature (Adams, 1987). This makes the muscle more excitable 

as the temperature is decreased so that it requires smaller depolarizations to reach threshold for an 

active response. As the input resistance increases, the depolarization in response to a stimulus 

will increase as well (Adams, 1987). Normally, at neuromuscular junctions the increased 

electrical excitability of the muscle compensates for the reduced amount of transmitter released at 

lower temperatures (Florey and Hoyle, 1976; Harri and Florey, 1977; Stephens, 1990). As 

temperature decreases, the time constant ('1:) increases (Hagiwara et aI., 1968). Since't is equal to 

the product of resistance and capacitance, the lengthening of't with decreasing temperature must 

be entirely due to the increase in resistance, because capacitance is either constant or decreases 

with decreasing temperature; decreasing capacitance would decrease, not increase 't (Adams, 

1987). 

In the present experiments a greater percentage of the fibers produced active responses at 

lower temperatures indicating that the membrane excitability has increased. Strangely, there was 

no change in membrane potential, input resistance or threshold of the active responses. The 
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amplitude of the active responses is also greater at low temperature. It has been suggested that 

the range of ele<ttrical responses encountered in crustaceans can be accounted for by the variable 

activity of a voltage-dependent K+ conductance which shunts to different degrees the inward Ca2+ 

current (Moody, 1978). It is possible that a voltage-dependent K+ channel is inhibited at low 

temperature increasing the amplitude of the active response. Alternatively, more Ca2+ channels 

could be opening in response to depolarization at the low temperature. 

Octopamine, serotonin and proctolin have been reported to induce voltage-dependent 

active responses in lobster opener muscle (Kravitz et al., 1980) and proctolin has a similar effect 

in ldotea abdominal extensor muscle (Erxleben et aI., 1995). DF2 caused the threshold for the 

active response to be lowered, indicating that the peptide increases the muscle fiber excitability. 

The size of the response was unaltered. The changes in excitability are not accompanied by any 

change in fiber resting potential or input resistance. 

The lowered threshold for active response suggests that DF2 lowers the threshold for 

activating voltage-gated Ca2+ channels. It is unlikely that the active responses contribute to the 

effects ofDF2 on tonus or spontaneous contractions since the active responses were only seen 

when the fibers were depolarized by approximately 13 mY. Also DF2 did not affect the passive 

electrical properties of the muscle fibers; neither membrane potential nor input resistance was 

significantly altered by DF2. 



5. Conclusions 

1. The superficial extensors exhibit myogenic contractions which are temperature-dependent. 

2. Neuropeptide DF2 increases tonus in the superficial extensor muscles but not in the deep 

extensors or the superficial flexors. 
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3. The spontaneous contractions, tonus and the effect ofDF2 are blocked by Ca2+-channel 

blockers. These effects might depend on Ca2+ influx through Ca2+ channels located in the plasma 

membrane. However, the type ofCa2+ channel has yet to be determined. 

4. Decreasing temperature causes the appearance of large voltage-activated Ca2+ -dependent active 

responses in 90.9% of muscle fibers. This effect involves both an increase in percentage of cells 

which generate membrane responses and an increase in amplitude of the membrane responses. 

5. At 7°C, DF2 10wers the threshold for active responses. 
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