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Abstract 

We have calculated the equation of state and the various 

thermodynamic properties of monatomic fcc crystals by minimizing the 

Helmholtz free energy derived in the high temperature limit for the 

quasiharmonic theory, QH, and the lowest-order (cubic and quartic), 'A2, 

anharmonic terms of the perturbation theory, PT. The total energy in each 

case is obtained by adding the static energy. The calculation of the thermal 

properties was carried out for a nearest-neighbour central-force model of 

the fcc lattice by means of the appropriate thermodynamic relations. We 

have calculated the lattice constant, the thermal expansion, the coefficient 

of volume expansion, the specific heat at constant volume and at constant 

pressure, the isothermal and adiabatic bulk moduli, and the Griineisen 

parameter, for the rare-gas solids Kr and Xe, and gold. Morse potential 

and modified Morse potential were each used to represent the atomic 

interaction for the three fcc materials. 

For most of the calculated thermodynamic properties from the 

QH theory, the results for Kr and Xe with the modified Morse potential 

show an improvement over the results for the Morse potential when 

compared with the experimental data. However, the results of the 'A 2 

equation of state with the modified Morse potential are in good agreement 

with experiment only in the case of the specific heat at constant volume and 

at constant pressure. For Au we have calculated the lattice contribution 

from the QH and 'A 2 PT and the electronic contribution to the thermal 

properties. The electronic contribution was taken into account by using the 



free electron model. The results of the thermodynamic properties 

calculated with the modified Morse potential were similar to those obtained 

with the Morse potential. 

U sing the minimized equation of state we also calculated the 

Mossbauer recoilless fraction for Kr and Xe and the Debye-Waller factor 

(DWF) for Pb, AI, eu, Ag, and Au. The Mossbauer recoilless fraction was 

obtained for the above two potentials and Lennard-Jones potential. The L-J 

potential gives the best agreement with experiment for Kr. No 

experimental data exists for Xe. At low temperature the calculated DWF 

results for Pb, AI, and eu show a good agreement with experimental 

values, but at high temperature the experimental DWF results increase very 

rapidly. For Ag the computed values were below the expected results at all 

temperatures. The DWF results of the modified Morse potential for Pb, 

AI, eu and Ag were slightly better than those of the Morse potential. In 

the case of Au the calculated values were in poor agreement with 

experimental results. 

We have calculated the quasiharmonic phonon dispersion 

curves for Kr, Xe, eu, Ag, and Au. The calculated and experimental 

results of the frequencies agree quite well for all the materials except for 

Au where the longitudinal modes show serious discrepancies with the 

experimental results. In addition, the two lowest-order anharmonic 

contributions to the phonon frequency were derived using the Green's 

function method. The A 2 phonon dispersion curves have been calculated 

only for eu, and the results were similar to those of the QH dispersion 

curves. 
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Finally, an expression for the Griineisen parameter "( has been 

derived from the anharmonic frequencies, and calculated for these 

materials. The "( results are comparable with those obtained from the 

thermodynamic definition. 
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1. Introduction 

At low temperatures crystal lattice vibrations are studied by 

means of the harmonic approximation where the displacement of atoms 

from equilibrium sites are smalL This approximation is introduced when 

the Taylor's expansion of the crystal potential energy is truncated after the 

quadratic term. At higher temperatures there are some important physical 

properties that can not be accounted for in a purely harmonic theory. 

However, if the neglected higher-order (anharmonic) terms in the Taylor's 

expansion of a crystal potential energy are taken into consideration in the 

theory, the above discrepancies can be accounted for. The harmonic 

approximation is inadequate in explaining thermal expansion, thermal 

conductivity, and the deviation of the specific heat from the classical 

Dulong-Petit law (3R limit) at higher temperature. The presence of 

anharmonic terms in the interaction energy in some cases provides a 

consistent explanation of some of these properties. 

The anharmonic contributions to these physical properties can 

be calculated by several methods such as perturbation theory (PT), where 

the anharmonic contributions are evaluated from the harmonic 

eigenfunctions and eigenvalues and the derivatives of the potential function. 

There are other methods, purely numerical in nature, such as the Monte 

Carlo (MC) and Molecular Dynamics (MD) which can be used for the 

calculation of the anharmonic contributions to physical properties without 

expanding the crystal potential energy. These methods give all harmonic 

and anharmonic contributions to the physical property. Because both of 

these methods are limited to classical systems, they are valid only in the 
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high temperature limit, I.e. temperatures greater than the Debye 

temperature eD. 

The perturbation theory approach to the evaluation of 

anharmonic contributions to quantities such as the Helmholtz free energy 

(F) or the atomic mean square displacement (MSD) leads to an infinite 

series of F or MSD in terms of the perturbing potential. However, this 

perturbing potential itself is an infinite series of terms in the Taylor's 

expansion of the potential function. Thus, some kind of scheme is required 

to group terms of the same order of magnitude arising in the Taylor's 

expansion of the potential function. One such scheme is given by the Van 

Hove (1961) ordering parameter A, where A is defined as the ratio of the 

root mean square displacement and the nearest neighbour distance. Terms 

of the same order in A have to be collected for the calculation of the 

physical properties of the crystal. 

The next terms beyond the harmonic approximation are the 

cubic and quartic terms. They contribute to the lowest-order of PT, which 

is of order A 2• The contribution to a physical property from the quartic 

term is as important as the contribution from the cubic term, because both 

terms have the same order of magnitude. We should also mention that 

these two terms have opposite signs. For example, the inclusion of these 

two terms in the calculation of the phonon frequency, co, will cause the 

harmonic frequency to be shifted from its mean value. These anharmonic 

frequency shifts are known as the cubic shift and the quartic shift. The 

characteristics of these two shifts are that they have the same order of 

magnitude, but they carry opposite signs. Therefore, the cubic and quartic 
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terms in the Taylor's expansion of the potential energy must be both 

retained in the calculation of any physical property to the ').,,2 order in PT. 

Anharmonic effects have been investigated in insulators, rare

gas solids, alkali halides, and metals for almost thirty years. The early 

period of the last thirty years contained mostly results for rare-gas solids 

only in terms of rough estimates or in order of magnitude estimates of 

anhannonic contributions to specific heat at constant volume. The first 

complete calculation of the thermodynamic properties of a face centred 

cubic (fcc) lattice was carried out by Klien et. al. (1969) employing the ').,,2 

anhannonic PT. They have obtained numerical results for the rare-gas 

solids Ar, Kr, and Xe by employing a nearest-neighbour central force 

(NNCF) model using the 6-12 Lennard-Jones (12-6 L-J) potential. For 

the case of alkali halides Cow ley (1971) has calculated the ').,,2 anharmonic 

contributions to the thennodynamic properties of sodium chloride. 

The calculation of all the thennodynamic properties for metals 

has been carried out by several authors. Cowley and Shukla (1974) have 

calculated the thennodynamic properties of an anharmonic crystal for a 

simple model of copper. They have carried out these calculations by 

several methods in the lowest order of PT. Shukla and MacDonald (1980) 

have presented a method for an exact calculation, to 0(').,,2) in PT, of the 

thennal expansion (E) of cubic crystals in the high temperature limit. This 

calculation was carried out for NNCF model of a monatomic fcc crystal by 

minimizing the sum of the static energy, U, and the vibrational parts of the 

Helmholtz free energy of the crystal as a function of temperature and 

volume. Numerical results for a number of materials (Pb, AI, Ag, Ni, Cu, 

Ca, and Sr) were obtained using the three parameter Morse potential. 
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MacDonald and MacDonald (1981) have modified this Morse potential by 

introducing a fourth parameter b. With this modified Morse potential 

they have carried out a consistent calculation of the thermodynamic 

properties of monatomic fcc crystals at high temperatures. These 

properties were obtained from the Helmholtz free energy of the crystal 

F(V,T) by means of the appropriate thermodynamic relations. 

In the case of body centred cubic (bcc) crystals the 

thermodynamic properties of monatomic crystal were carried out at high 

temperatures from F(V,T) for a second-neighbour central-force of the bcc 

lattice. MacDonald, Shukla, and Kahaner (1983) have calculated the 

thermodynamic properties for the alkali metals Li, Na, K, Rb, and Cs. 

MacDonald and Shukla (1985) have applied the second-neighbour central

force model of a bec crystal on the transition metals V, Nb, Ta, Mo, and 

W. 

The knowledge of the atomic mean-square displacement is 

important in determining the Debye-Waller factor (DWF) which enters in 

the calculation of the intensity of X-ray and neutron scattering and the 

Mossbauer fraction. It is also important in the theory of melting based on 

the Lindemann approach and in the determination of the ordering 

parameter A. The first lowest-order anharmonic calculation of DWF was 

carried out by Maradudin and Flinn (1963). Their calculation was done in 

the leading-term approximation for NNCF model of a fcc lattice. This 

approximation requires the retention of the highest ordered radial 

derivatives of the interatomic potential. However, it has since been shown 

by Shukla and Wilk (1974) that this approximation overestimates the cubic 

and the quartic contributions by 1 % and 40%, respectively. 
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The anharmonic contributions to MSD were calculated for all 

the bcc alkali metals by Shukla and Mountain (1982) and Shukla and Heiser 

(1986) for a long-range sixth neighbour interaction potential. Their 

calculation was performed without making the leading-term 

approximation. A comparison of the lowest-order (A. 2) perturbation theory 

and MD method results for the same potential function shows the adequacy 

of the A. 2 PT for the alkali metals. 

The calculation of MSD has been carried out by Heiser, 

Shukla, and Cowley (1986) (HSC) for short-range interaction, such as the 

12-6 L-J potential, for the NNCF model of the fcc crystal using the A.2 PT, 

MD, and the MC methods. To investigate the adequacy of the A.2 PT they 

have compared the numerical results of the A. 2 PT and those of the MD and 

MC methods. The agreement between the A. 2 PT and MC results was quite 

good at low temperatures, in fact up to 3/4 of the melting temperature 

(T m). Because the A. 2 PT contribution to MSD was inadequate at higher 

temperature, they concluded that to obtain good agreement of the results 

with MC the next order of PT of o (A. 4) would be required. 

Recently, Shukla and Hiibschle (1989) proposed a Green's 

function method to calculate the MSD of a crystal. This method sums a 

class of all anharmonic contributions to the MSD. It has been shown that 

the MC results for MSD can be sufficiently represented up to T::~T m for 

the 12-6 L-J NNCF model of the fcc crystal. Even though discrepancy 

exists for T::=T m between the Green's function method and the MC results, 

the total MSD calculation to O(A. 2) is more accurately given in their work 

than in HSC. 
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The most recent work done on MSD was carried out by Shukla 

and Plint (1989). They have developed an algebraic method for an exact 

calculation of the quasiharmonic and two lowest-order (cubic and quartic) 

anharmonic contributions to DWF of an anharmonic crystal in the high 

temperature limit. Although this method is applicable to any monatomic 

cubic crystal, Shukla and Plint (1989) have presented algebraic equations 

only for a NNCF model of a fcc crystal for any two-body potential <p(r). 

In particular, they have calculated DWF for AI from a Morse potential. 

In this thesis we want to calculate the various thermodynamic 

properties of the rare-gas solids Kr and Xe for a Morse potential and a 

modified Morse potential. Also, we fill the gap in the existing series of 

calculations on copper, silver, and gold by calculating the thermodynamic 

properties of gold. MacDonald and MacDonald (1981) have carried out 

calculations of the thermal properties of Pb, AI, Cu, Ag, Ni, Ca, and Sr at 

high temperatures for a modified Morse potential in the NNCF 

approximation. Calculation of the thermodynamic properties of Kr, Xe 

and Au requires determining the paramters of the modified Morse 

potential. 

Once the potential parameters are determined, and the free 

energy IS minimized, the crystal lattice-spacing is calculated at any 

temperature. With this lattice-spacing we will calculate the mean square 

displacement for the rare-gas solids Kr and Xe. From this calculated MSD 

the Mossbauer recoilless fraction of Kr and Xe can be determined for the 

Morse potential, the modified Morse potential, and the Lennard-Jones 

potential. In addition, we will carry out the calculation of the DWF for the 
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fcc metals Pb, AI, Cu, Ag, and Au. The method described by Shukla and 

Plint (1989) has been followed to calculate the MSD and the DWF. 

The two basic ingredients in all the thermodynamic 

calculations are: the phonon frequencies, and the derivatives of a potential 

function <!>(r). The measured phonon frequencies have in them both the 

harmonic and anhannonic effects. The first and second derivatives of <I>(r) 

enter in the calculation of the hannonic frequencies, co. On the other hand, 

the calculation of the anhannonic contributions to the phonon frequencies 

requires the knowledge of higher order derivatives of <I>(r). For example, 

the third derivative along with the other two derivatives are needed in the 

evaluation of the cubic shift, and the calculation of the quartic shift 

requires the knowledge of the first four derivatives. One way to test the 

effect of a potential function in the calculation of thermodynamic 

properties of a crystal is to determine the phonon dispersion curves using 

different potential functions and compare them with experimental results. 

Previous calculations did not show this type of testing of the potential 

function. 

In this thesis we want to calculate the quasiharmonic phonon 

dispersion curves for the three principal symmetry directions for the rare

gas solids, Xe and Kr, and for the fcc metals, Cu, Ag, and Au. The 

calculation is carried out for a NNCF model of a monatomic fcc crystal in 

the high temperature limit. The phonon frequencies are calculated with the 

Morse potential and modified Morse potential in order to investigate the 

effect of different potentials on the calculated results. We compare these 

curves with the experimental results which are measured by neutron 

scattering. In addition to the calculation of the quasihannonic frequencies, 
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we will determine the cubic and the quartic frequency shifts using the 

Green's function approach (Shukla and Muller (1971). These shifts are 

calculated only for Cu. In order to see the effect of these anharmonic 

shifts we compare the total of the quasiharmonic and anharmonic 

frequencies with the quasiharmonic frequencies. 

The Gruneisen parameter, 'Y, is a thermodynamic property 

which is usually obtained from the free energy of the crystal by means of 

the appropriate thermodynamic definition. The specific heat and bulk 

modulus enter directly in the calculation of 'Y through the thermodynamic 

definition. Also, the Gruneisen parameter can be calculated from the 

knowledge of the phonon frequency as a function of volume. In this thesis 

we will calculate the Gruneisen parameter from these two different 

approaches for the rare-gas solids, Kr and Xe ,and the fcc metals, Cu, Ag, 

and Au. This calculation is carried out in the high temperature limit to the 

lowest order in PT. In the case of the rare-gas solids we expect to get 

comparable results. However, in the case of metals we have to account for 

the electronic contribution to 'Y. This can be added in the thermodynamic 

definition through the specific heat and bulk modulus. Since the phonon 

frequency considered here does not account for the electron-electron 

interactions, we will not be able to estimate the electronic contribution to 'Y 

from the second approach. 

The outline of the thesis is as follows. In chapter 2. we 

present the high temperature limit expressions for the O(A. 2) Helmholtz 

free energy contributions and the Debye-Waller factor. The details of the 

calculation of the thermodynamic properties of the rare-gas solids Kr and 

Xe, and gold are presented in chapter 3, along with the results and 
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discussion. In chapter 4. we evaluate the Mossbuaer recoilless fraction 

for Kr and Xe. Also, the calculated DWF for Pb, AI, eu, Ag, and Au is 

presented in this chapter. In order to test the potentials used in our 

calculations we determine the phonon dispersion curves in chapter 5. for 

Kr and Xe, and Cu, Ag, and Au. In chapter 6. the Griineisen parameter is 

calculated, for the fcc materials studied here, using the renormalized 

phonon frequency, and compared with the values obtained from the 

thermodynamic definition. A summary of our results is presented in 

chapter 7. 
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2. High Temperature-Limit Expressions 

2.1. The Helmholtz Free Energy: 

In this section we present the formal expreSSIOn of the 

Helmholtz free energy needed in the calculation of the thermodynamic 

properties of a crystal. The free energy (F) of a weak anharmonic crystal 

has been derived by several authors in the past. Ludwig (1985) and 

Maradudin et al. (1961) have derived F from straight forward perturbation 

expansion; whereas, Cowley (1963) has used diagramatic method for the 

derivation of F. The Helmholtz free energy can also be obtained by 

integrating the interaction energy over a coupling parameter. Shukla and 

Muller (1971) have used a Green's function approach to derive an explicit 

expression for the interaction energy. 

Here, we present the full expression of the Helmholtz free 

energy at a finite temperature to the order A 2 in PT. The quasiharmonic 

contribution to F is denoted by Fo, and the two lowest-order (cubic and 

quartic) anharmonic contributions by F3 and F4, respectively. These are 

given by 

F = Fo + F3 + F4 

Fo = KB T L In (2 sinh ~f3liroqj) 
qj 

10 

(2.1) 

(2.2) 



{ (Nqdl + Nq2h) coth ~~li (COqdl + COq2h) + coth ~~liCOqJ.i3 
2 [ - COqlh + COq2h + COQ3h + 

(2.4) 

The various symbols in Eqs. (2.2)-(2.4) are defined as follows: KB is 

Boltzmann constant, li2 is Plank's constant divided by 21t, ~=l/(KB T), T is 

temperature, N represents the number of unit cells in the crystal, Nqj = 
coth(~~licoqj). The delta function L\(ql+q2+ ... +qn) is unity if (ql+q2+ ... +qn) 

is zero or vector of the reciprocal lattice ('t) and zero otherwise. The <P 

functions appearing in Eqs. (2.3) and (2.4) are the Fourier transforms of 

the third- and fourth-order atomic force constant. In general, the Fourier 

transfonns of the nth - order atomic force constant <l>(l~ ... Jl (1) is defined 

by the following: 
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( .) (.) (1 iq1.r1) ( 1 iqn.r1) (2.5) x ea qlh ... ell qnJn x - e . . . - e 

where the prime over the direct lattice vector (1) summation in the 

previous equation indicates the omission of the origin point, and oo(qj) and 

e(qj) are the eigenvalues and eigenvectors, respectively, for the wave vector 

q and branch index j. M is the atomic mass. 

In our calculation we have used the high temperature 

approximation (T > aD) where Nqj is approximated to Nqj::::: 2/(Pliooqj). 

The harmonic and cubic and quartic anharmonic contributions to Fare 

then given as: 

1 
L L ct> (Qlh,q2i2,-qdl,-q2i2) 

F4 = 8p2N 00 .2 00 .2 + 
qlh . qOl qV2 qV2 

1i2 

L L ct> (q Ih ,q2i2' -q Ih ,-q2i2) 
(2.8) + --

48N 
qlh . ooqdl ooq2h qV2 

Next, we have to express Fo, F3, F4 in computational forms. 

The calculation of F3 and F4 has been carried out for the NNCF model of 

the fcc crystal by Shukla (1980) and Shukla and Wilk (1974). These forms 

are presented in chapter 3. 
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2.2. The Debye-Waller Factor: 

In this section the high temperature expressions for the 

harmonic and the two lowest-order (A, 2) anharmonic contributions to 

Debye-Waller factor (DWF) are presented. Maradudin and Flinn (1963) 

have derived the high temperature limit (T > eD) expressions for the 

anharmonic contributions to DWF in the lowest order (A, 2) perturbation 

theory by retaining the cubic and quartic terms in the Hamiltonian. They 

found four anharmonic contributions: two of these were isotropic and 

proportional to Iq 12 and the other two were nonisotropic and proportional 

to Iq14. Their calculation was done in the leading-term approximation. 

In our calculation we use the appropriate expressions for DWF 

for cubic crystals that are summarized by Shukla and Mountain (1982). 

The quasiharmonic contribution to DWF is represented by 2MQH( q), and 

cubic and quartic contributions to DWF by 2M2(q) and 2Ml(q), 

respectively. These are given by 

(2.10) 

(2.11) 

(2.12) 
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The calculation of F or DWF requires a method to evaluate a 

certain number of dimensionless sums. The evaluation of these sums as 

described by Shukla and Wilk (1974) requires the knowledge of tensor

type functions involving single whole Brillouin zone (BZ) sums. The 

calculation of F or DWF is applied for a NNCF model of a fcc crystal for 

any two-body potential. Here, we consider only the final forms of these 

two quantities. 

14 



3. Thermodynamic Properties of fcc Materials 

The total free energy equation of state for a crystal is 

expressed as the sum of the static lattice energy U, the harmonic Fo, and the 

o (A, 2) anharmonic contributions F(A, 2). This equation is written as 

E(QH) = U + Fo (3.1) 

E(A, 2) = E(QH) + F(A, 2) (3.2) 

The various contributions to the equation of state, obtained from Shukla 

and MacDonald (1980), are defined as follows: 

Fo = Fo(l) + FO(2) (3.3) 

where 

where 

1 il2 2C 4B 
F4( ) = 3 N 24MB [ D S2A(al) + r S2B(al) + ~ S2c(al) ] (3.7) 

2 (KBT)2 2C 4B 
Fi ) = 3 N 192B2 [D S4A(al) + r S4B(al) + ~ S4C(al) ] (3.8) 

15 



N 
U ="2 L <I>(fij) (3.10a) 

i :¢:j 

For the NNCF model, 

N . 
U = "2 12 <I>(r) = 6 N <I>(r) 

B, C, and D are combinations of derivatives of <I> (r) defmed as: 

1 
B(r) = <I>"(r) - - <I>'(r) r 

3 3 
C(r) = <l>1II(r) - -<I>"(r) + 2 <I>'(r) 

r r 
6 15 15 

D(r) = <I>'v (r) --<I>III(r) + 2 <I> "(r) - 3 <I>'(r) r r r 

(3. lOb) 

(3.11) 

(3.12) 

(3.13) 

These combinations are evaluated at the nearest-neighbour distance 

corresponding to the temperature T. The functions f(al), S2A(al), S2B(al), 

S2C(al); S3A(al), S3B(al), S3c(al); S4A(ad, S4B(al), and S4c(al) are the 

various BZ sums which are evaluated at the same temperature for the ratio 

<I>'(r)/r 
al = <I> Iter) - <I> '(r)/r (3.14) 

The details of the calculation of the threse sums can obtained from Shukla 

(1980). Shukla and MacDonald (1980) have fitted these BZ sums to the 

following functional form: 
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where 
6 

P(al) = L bn(al)n 
n::::() 

and the other functions S2A, etc., each fitted to the form y = exp [P(al)]. In 

Table 3.1 the least-squares coefficients from which all the BZ sums can be 

calculated for values of al in the range - 0.1 ~ al ~ 0.1 are presented. 

These fits reproduce the numerical values of the BZ sums to better than 1 

part in 103• 

3.1. Nearest-Neighbour Distance: 

The E(A, 2) equation of state was minimized with respect to r at 

constant temperature, and we obtain the nearest-neighbour separation rT, 

by applying The Newton-Raphson method: 

E'(A,2) 
ri+l = ri - E"(A,2) (3.15) 

Where E' and E" denote the first and the second derivatives of E(A,2) with 

respect to r. These derivatives were obtained analytically. The various 

components of E'(A,2) and E"(A,2) are given as follows: 

(3.16) 

(3.17) 

(3.18) 

(3.19) 
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Table 3.1: Coefficients of the least-squares fit of the functions 

fCa1), etc. 

Function bO b1 b2 b3 b4 b5 

f (a1) 0.0000 3.5892 -6.6768 16.8293 -48.9623 197.3788 

S2A (a1) 0.0000 -3.5929 8.5369 -27.6926 108.6641 -1219.9278 

S2B (a 1) 1.6667 -3.7867 9.2900 -30.4436 120.0002 -1390.1624 

S2C (a1) 1.5010 -4.1647 10.6480 -35.2060 138.9856 -1660.1682 

S4A (a1) 2.4849 -7.1856 17.0777 -55.4237 216.2252 -2437.4300 

S4B (a1) 4.2057 -7.5530 18.4681 -60.4178 237.8025 -2743.1526 

S4C (a1) 4.1707 -8.3623 21.4617 -17.0621 280.8543 -3373.1748 

S3A (a1) 5.1507 -10.9028 26.4829 -87.0026 343.6693 -3870.2265 

S3B (a1) 4.5251 -10.6448 25.5145 -83.9222 322.2881 -3553.1758 

S3C (a1) 6.6127 -10.8787 26.6242 -87.0519 343.0085 -4357.7099 

18 

b6 

-689.6764 

7250.4428 

8342.2428 

10058.5591 

14571.7692 

16445.6889 

20463.4373 

23007.1720 

20747.0075 

26894.3897 



D" S" S' S' + - + ~ a ,2 + ~ a " _ ( ~ a ' )2 } + 
D S2A I S2A I S2A I 

4B S {( A (1) )2 2 S2C" '2 S2C' " + 2 2C 3 + 2 + Sal + Sal -r r x x 

where in Eqs. (3.20) and (3.21): 

B' D' S' 
AI(1) - - + - + a' 2A --B D IS2A ' 

B' C' 1 S2B' 
A2(1)- -+- -+ a'---B C-r ISm' 

2 S' 
A3(1) = - - + aI' S2C . 

r x 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

[Fi2) h= 3N i~~~: [D S4A AI(2) + 2; S4B Az<2) + ~~ S4C A3(2)] (3.25) 

[ F4(2) h = 3N ~~i: [ D S4A { (AI(2)2 + 2 (BB' ) - 2 ~. - (~. ) 

D" S" S' S' + - + ~ a ,2 + 4A a " _ ( 4A a ' )2 } + 
D S4A 1 S4A 1 S4A 1 
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+ S4C" a ,2 + S4C' a " _ ( S4C' a ' )2 }] 
S4C I S4C I S4C I 

(3.26) 

where in Eqs. (3.25) and (3.26): 

B' D' S' 
Al (2) = _ 2 - + - + aI' 4A 

B D S4A' 
(3.27) 

B' C' 1 S' 
A2(2) = -2 - + - - - + a ' ...AIL 

B C r IS4B ' 
(3.28) 

(3.29) 

(3.30) 

[ F3 12 = - 3N ~f~! [ C2 S3A { (AP»)2 + 3 (BB' ) -3 ~' -

2 - +2-+~a '2+ ( C') CIt S " 
- C C S3A I 

+ S3A' a " _ ( S3A' a ' )2 } + 
S3A I S3A I 
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+ - + -+-+ ( C') C" 1 
C C r2 

S" S' S' + !lIL a ,2 + ~ a " _ ( ~ a ' )2 } + 
S3B 1 S3B 1 S3B 1 

S" S' S' + ~ a ,2 + ~ a " - ( ~ a ' )2 }] 
S3C 1 S3C 1 S3C 1 

(3.31) 

where in Eqs. (3.30) and (3.31): 

B' C' S' Al(3)=-3-+2-+a ,~ 
B C IS3A ' 

(3.32) 

B' C' 1 S3B' 
A2(3) = - 213+ C -r + ai' S3B ' (3.33) 

B' 2· S' A3(3) = - - - - + a ,~ . 
B r 1 S3C (3.34) 

The single and double primes in Eqs. (3.16)-(3.34) denoted differentiations 

with respect to r except in the f and S functions where the differentiations 

are with respect to a 1. 

3.2. Thermodynamic Relations: 

The calculated rT value is the zero pressure result since 

P _ (aEO,,2» - - av T (3.35) 

and thus all the calculated thermodynamic properties will be at zero 

pressure. Once the zero pressure volume V(T) is known the other 
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thermodynamic properties can be calculated by taking the derivatives of 

E(A,2) with respect to V and T. Thus, we can calculate the following 

quantities: 

Thermal expansion E(T): 
r(T) - rc 

E(T) 

where r c is the reference length. 

For rare-gas solids, coefficient of volume expansion f3(T): 

(3.36) 

1 dV 1 a2E 
f3(T) = V(T) ( dT )p = BT (aVCJT)p (3.37) 

For gold the experimental coefficient of linear expansion a(T): 
1 dr 

a(T) = r(Tc) ( dT )p (3.38) 

where T c is the reference temperature. 

Specific heat at constant volume Cv: 
I a2E 

Cv = - T ( aT2 )v 

Isothermal bulk modulus BT: 
L a2E 

BT - V(T) ( av2 h 

Specific heat at constant pressure Cp: 

Cpl= Cvl+ 9 a 2(T) V(T) BTl T 

Adiabatic bulk modulus Bs: 
C I 

BsI= ~ BTl 
Cv 
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(3.40) 

(3.41) 

(3.42) 



The Griineisen parameter y: 

Y= 3 a V BTl 
Cvl 

In the above relations I stands for lattice contribution. 

In order to compare our calculated thermodynamic properties 

with the experimental values for gold, we must take into account the effect 

of the electrons. We will use the free electron theory (Slater (1939), and 

MacDonald and MacDonald (1981» to make a rough estimate of the 

electronic contribution to the specific heat and the bulk modulus. The 

electronic free energy is defined as 

1 3 5 1tKBT 2 
pe = 5 zNEoo [ 1 - 12 ( Eoo ) ] (3.43) 

where z is the number of free electrons per atom, Eoo is the fermi energy 

at T = OK and is written as 

E - _1_ ( 3h3N )2/3 ( ~ )2/3 
00 - 2m* 81t V' (3.44) 

m * is the effective mass of the electron. The electronic contributions to the 

isothermal bulk modulus and specific heat, respectively, are 

el 2 N 1t2 KB T 2 
BT = 3 z V Eoo [ 1 + 12 ( Eoo ) ], (3.45) 

since (~~~ ) «1 for the metals in this study, BTel can be approximated as 

(3.46) 

and 
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(3.47) 

where R is the gas constant, and ao is the low-temperature coefficient of 

soecific heat. 

Since the values of Eoo, m*, and ao are not consistent with the 

relations in Eqs. (3.44) and (3.47), we use the most reliable of these 

parameters, ao, to determine a particular combination of parameters. We 

have followed the procedure which was outlined by MacDonald and 

MacDonald (1981). The value of ao, 174.1 f.lcal/ K2 (g atom), for Au 

used in the calculations was taken from Martin (1964). We define 

, 1/3 2c 
M = (m*/mo) z = 1t2RKBr02N2/3 (3.48) 

where 

(3.49) 

and mo is the free electron mass. The BTel can now be rewritten as 

(3.50) 

Now the total of the electronic and lattice contributions for the 

specific heat, the bulk modului, and the Griineisen parameter can be 

written as 

Cv = Cvel + Cvl (3.51) 

(3.52) 
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Cp = Cv + 9a2(T) V(T) BT T 

~ Bs= Cv BT 

3 a V BT 
'Y = Cv 

3.3. Interatomic Potentials: 

(3.53) 

(3.54) 

(3.55) 

In order to calculate the total free energy equation of state for 

a crystal, a pair potential and its derivatives are required. The three 

parameter Morse potential was used in the calculation of the 

thermodynamic properties of the materials studied here. This potential is 

given by 

<!>M(r) = Do {exp[ -2a(r - ro)] - 2exp[ -a(r - ro)]} (3.56) 

The parameters Do, ro, and a denote the well depth, the 

nearest-neighbour distance, and the steepness of the potential function, 

respectively. For rare-gas solids, Kr and Xe, these parameters were 

determined by Shukla and Shanes (1984) from the zero pressure volume at 

T = OK. In their calculation they included the harmonic-zero point energy. 

The values of these parameters are listed in Table 3.2. Also, in this table 

the Debye temperatures for Kr and Xe (Drvrvas, Losee, and Simmons 

(1967» are presented. 

For the fcc metals we obtain these parameters with the neglect 

of the zero-point energy. Do and ro are determined from the 

expaerimental values of the sublimation energy, L, (Seitz (1940» and the 
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lattice constant (ao) at T = OK (Varshni and Bloor (1963)), respectively. 

The a parameter is determined from the following relation: 

(3.57) 

where eo is the Debye temperature. The value of eo for Au was obtained 

from Martin(1964), and for the other materials from Touloukian and 

Buyco (1970). Experimental data required in the calculation of the 

potential parameters are presented in Table 3.3. The potential parameters 

for the fcc metals: Pb, AI, Cu, Ag, and Au are listed in Table 3.4. 

The calculated parameters of the Morse potential, in this work, 

for AI, Cu, and Ag were in excellent agreement with the parameters 

reported in Shukla and MacDonald (1980). However, the a parameter, the 

steepness of the potential function, for lead was higher than the value 

reported in Shukla and MacDonald (1980). This disagreement is due to the 

difference in experimental value chosen for eo at 0 K. However, the 

calculated thermodynamic properties with this corrected value were not 

very much different from those obtained by MacDonald and MacDonald 

(1981). Therefore, we will not present these corrected thermodynamic 

properties of Pb. 

Shukla and MacDonald (1980) have noted that the slope of the 

calculated thermal expansion E(T) depends greatly on the second derivative 

of the potential and some adjustment of the potential function might give a 

better agreement between calculated and experimental E(T). Accordingly, 

MacDonald and MacDonald (1981) have modified the Morse potential 

function as follows: 
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<!>MM(r) = 1 ~o2b {exp[-2a(r - ro)v'b] - 2b exp[-a(r - ro)/v'b]} (3.38) 

where the values of the parameters Uo and ro are not affected by this 

modification of the potential. The parameter b is determined by matching 

the computed e(T) to experimental values in the neighbourhood of the 

Debye temperature. The usual form of the Morse potential is obtained 

when b is set equal to one. Values of b for the metals: AI, eu, and Ag 

were obtained from MacDonald and MacDonald (1981).We have 

determined the values of b for the metals: Pb and Au. 

The calculated values of the parameter b for Kr and Xe do not 

quite satisfy the condition required for the determination of b because with 

these values the computed and the experimental e(T) are not exactly equal 

near eD. The procedure to determine this parameter was to change b until 

the computed e(T) matches very closely the experimental value at a 

temperature near eD. This gave a value of b=0.501. The restriction on the 

value of b is that it can not be exactly equal to 0.5, because that is a 

singular point for the potential function. Also, b can not be less than 0.5, 

since that would change the sign of the potential function. Therefore, the 

value ofb must be greater than 0.5. The best agreement between computed 

and experimental e(T) was obtained with b in the neighbourhood of 0.5. 

However, this agreement is not very good. The values of b are presented 

in Tables 3.2 and 3.4. 
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Table 3.2; Potential parameters and the Debye temperatures for Kr and 

Xe. The units ofro, 0., and Uoare (A), (A-I), and (10-14 erg), 

respectively. 

ro Uo b 90 (K) 

Kr 3.969 1.556 3.254 0.501 71.7 

Xe 4.321 1.375 4.576 0.501 64.0 
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Table 3.3; Experimental Data Required in The Calculation of The 

Potential Parameters. 

Metals ro( A) 9D(K) -L (lOllerglmol) 

Pb 3.4779 102 19.87 

AI 2.8485 423 23.01 

Cu 2.5471 342 33.97 

Ag 2.8765 228 28.45 

Au 2.8742 162.4 38.49 

Table 3.4; Potential Parameters For The Metals Studied. 

Metals ro (A) a (A-I) Uo (lo-12erg) b 

Pb 3.4779 0.8350 0.5500 1.7 

AI 2.8485 1.1611 0.6369 2.5 

Cu 2.5471 1.1857 0.9403 2.265 

Ag 2.8765 1.1255 0.7874 2.3 

Au 2.8742 0.9313 1.0653 1.7 
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3.4. Results and Discussion: 

We present here the equation of state results of our 

calculations in two sections. The first section contains our calculated 

thermodynamic properties of the rare-gas solids Kr and Xe, for the Morse 

potential and the modified Morse potential. In the second section, we will 

present our calculated thermodynamic properties for Au. The properties 

were calculated for each interatomic potential, from two different equation 

of state; i.e. , quasiharmonic, and quasiharmonic plus O(A 2) PT. These 

will be denoted by the abbreviations E(QH) and E(A2), respectively. A 

comparison of our results obtained from the two different equations of 

state will be made with the experimental thermodynamic properties. 

3.4.1. Thermodynamic Properties of Rare-Gas Solids: 

The calculated thermodynamics properties are presented in 

Figures (3.1) through (3.14) together with the experimental values, Losee 

and Simmon (1968) for Kr, and Trifny and Serin (1969) for Xe. The 

properties calculated from the E(QH) equation of state seem to give the 

general shape of the thermodynamic properties. The results obtained from 

the modified Morse potential show a better agreement with experiment at 

low temperature. However, at high temperature both potentials do not give 

the correct magnitudes. This suggests that a correction is needed to bring 

the theory into agreement with the experimental values. The correction 

that was added to the E(QH) equation of state was the O(A 2) anharmonic. 
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The thermal properties obtained from the E(A. 2) equation of state were 

calculated for the entire temperature range (9D through Tm). 

The computed lattice constant for Kr and Xe are presented in 

Figures 3.1 and 3.2. The results for both elements are well below the 

experimental values. However, the results of Morse potential seem to be 

better than those of modified Morse potential. Similarly, the above 

description also applies to the computed volume expansion coefficient 

shown in Figure 3.3 and 3.4 for Kr and Xe respectively. The results 

obtained from Morse potential are slightly higher than those obtained by 

modified Morse for temperatures up to 5/6 T m. At this temperature E(A, 2) 

results of Morse potential starts to break down; whereas the E(A. 2) results 

of modified Morse are still maintaining a positive slope. 

The calculated specific heat at constant volume for Kr is 

shown in Figure 3.5, and the results of modified Morse potential are in 

good agreement with experiment for the temperature range 9D<T<Tm; 

whereas the Cv results for Xe are in fair agreement with experiment for 

the range 9D<T<3/4Tm as shown in Figure 3.6. The Cp curves which 

are shown in Figure 3.7 and 3.8 for the temperature range 9D<T<Tm. 

The E(QH) curves, for both Kr and Xe, have shifted towards the 

experimental curve when the modified Morse potential was used. 

The calculated isothermal and adiabatic bulk moduli are 

presented in Figures 3.9 through 3.12. The results for both Kr and Xe are 

in poor agreement with experiment. 
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Figure 3.1 

Lattice Constant of Kr 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.2 

Lattice Constant of Xe 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.3 

Coefficient of Volume Expansion of Kr 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.4 

Coefficient of Volume Expansion of Xe 

With Morse (M) and Modified Morse (MM) Potentials. 

35 



II x 

o 
CD -

0 
N -

0 
0 -

o 
GO 

o 
CD 

x 

. 
~ 
~ 
J: a 

<I -~ -
lIJ 
a::: 

~:i 
lIJ Q.'k 
~ 

~<> 

. 
~ 
J: a 

+ 

o m GO ~ CD ~ ~ ~ N - 0 m GO ~ CD ~ ~ 
N - - - - - - - - - -

c 



Figure 3.5 

Specific Heat at Constant Volume of Kr 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.6 

Specific Heat at Constant Volume of Xe 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.7 

Specific Heat at Constant Pressure of Kr 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.8 

Specific Heat at Constant Pressure of Xe 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.9 

Isothermal Bulk Modulus of Kr 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.10 

Isothermal Bulk Modulus of Xe 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.11 

Adiabatic Bulk Modulus of Kr 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.12 

Adiabatic Bulk Modulus of Xe 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.13 

Grtineisen Parameter of Kr 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.14 

Griineisen Parameter of Xe 

With Morse (M) and Modified Morse (MM) Potentials. 
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The computed Gruneisen parameter for Kr which is shown in 

Figure 3.13, are in fair agreement with the experimental values; however, 

at higher temperatures this agreement between the calculated and the 

experimental values worsens. Whereas, for Xe, 'Y results for Xe are in fair 

agreement with the experimental values only at high temperature as shown 

in Figure 3.14. 

In general, the thermodynamic properties calculated from 

EO}) equation of state are in good agreement with the experimental results 

near the Debye temperature. At temperature greater than 2/3Tm , the 

thermal properties show a breakdown of the o (A. 2) perturbation theory. 

This breakdown of the modified Morse potential, is not quite as serious as 

in the results for the Morse potential. 

In comparison with the thermal properties calculated with the 

Lennard-Jones potential (Shukla and Shanes (1984)), we find that the 

results calculated with the Morse potential are qualitatively similar to those 

calculated with the Lennard-Jones potential. However, the results obtained 

with the two potentials are quantitatively different. For temperatures in 

the neighbourhood of en the results calculated with the Lennard-Jones 

potential show a good agreement with the experimental values. At high 

temperatures the calculated thermal properties show a breakdown of the 

O(A. 2) PT. This breakdown is more serious when the Lennard-Jones 

potential is used than when the Morse or the modified Morse potentials are 

used. 
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3.4.2. Thermodynamic Properties of Gold: 

For the rare-gas solids, the interaction between the atoms was 

presented by the Morse potential and the modified Morse potential. 

However, for metals, in addition to the ion-ion interaction the effect of the 

electron gas should also be taken into account. The ion-ion interaction is 

represented by the Morse potential or the modified Morse potential. The 

effect of the electron gas is taken into account through the use of the free 

electron model. The electronic contribution to the isothermal bulk 

modulus is dependent on the crystal volume, which is calculated from the 

equation of state, and thus Cp el, Bs el and 'fl will also be affected by the 

equation of state used, since these properties depend on BTel. 

The thermodynamic properties of the fcc metals: Pb, AI, Cu, 

Ag, Ni, Ca, and Sr were previously calculated for the modified Morse 

potential by MacDonald and MacDonald (1981). Following the same 

procedure we have calculated the thermodynamic properties of Au. These 

properties are presented in Figures 3.15 through 3.26. The lattice 

contribution and the lattice plus electronic contributions, which are 

obtained from the QH theory and the 'A,2 PT, are shown on each figure, 

together with the experimental values. 

The calculated thermal expansion for Au compared with 

experimental results (Touloukian et al. (1975)) is presented in Figure 3.15. 

The results of the modified Morse potential are in better agreement with 

experimental values than those of the Morse potential. This is so because 

the parameter b in the modified Morse potential was determined by 

matching the computed e(T) to the experimental value in the 
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neighbourhood of the Debye temperature. However, at higher 

temperatures, near T m, the experimental values increase more rapidly than 

the computed e(T). This could be due to the omission of the vacancy 

contribution to the lattice constant. 

The calculated linear expansion coefficient is shown in Figure 

3.16. The results of the modified Morse potential are in fair agreement 

with experiment (Touloukian et al. (1975» for temperatures up to 3/5Tm. 

This disagreement could be due exclusion of the electronic contribution to 

the volume expansion. 

The specific heat at constant volume is presented in Figures 

3.17 and 3.18. The results from both potentials are in poor agreement 

with experimental results, calculated from the experimental values of Cp, 

BT, and Bs. The specific heat at constant pressure is shown in Figure 3.19 

and 3.20. The results of the Morse potential are in good agreement with 

experiment (Hultgren et al. (1973» for temperatures up to 1!2Tm. 

Whereas the results of the modified Morse potential are in better 

agreement with experiment for temperatures up to 2/3T m. The total Cp 

and Cv for both potentials show an improvement over the lattice 

contributions of these two properties in comparison with experimenatal 

results. 

The isothermal and adiabatic bulk moduli are presented in 

Figures 3.21 through 3.24. The values of the parameter z, the effective 

number of free electrons per atom, is set equal to 1 for Au since it is 

known to be monovalent. The results obtained for both potentials are in 

poor agreement with experiment (Chang and Himmel (1966». The added 
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electronic contribution to the lattice contribution shifted the the total bulk 

modulus up towards the experimental results. 

The calculated Griineisen parameter is presented in Figures 

3.25 and 3.26. The lattice and the lattice plus electronic contributions are 

shown on the figures; however, the results are in poor agreement with the 

experimental values, calculated from experimental data. 
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Figure 3.15 

Thermal Expansion of Au 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.16 

Coefficient of Linear Expansion of Au 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 3.17 

Specific Heat at Constant Volume of Au With Morse Potential. 

L denotes lattice contribution. 

LE denotes lattice and electronic contributions. 
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Figure 3.18 

Specific Heat at Constant Volume of Au With Modified Morse Potentials. 

L denotes lattice contribution. 

LE denotes lattice and electronic contributions. 
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Figure 3.19 

Specific Heat at Constant Pressure of Au With Morse Potential. 

L denotes lattice contribution. 

LE denotes lattice and electronic contributions. 
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Figure 3.20 

Specific Heat at Constant Pressure of Au With Modified Morse Potential. 

L denotes lattice contribution. 

LE denotes lattice and electronic contributions. 
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Figure 3.21 

Isothermal Bulk Modulus of Au With Morse Potential. 

L denotes lattice contribution. 

LE denotes lattice and electronic contributions. 
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Figure 3.22 

Isothennal Bulk Modulus of Au With Modified Morse Potential. 

L denotes lattice contribution. 

LE denotes lattice and electronic contributions. 
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Figure 3.23 

Adiabatic Bulk Modulus of Au With Morse Potential. 

L denotes lattice contribution. 

LE denotes lattice and electronic contributions. 
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Figure 3.24 

Adiabatic Bulk Modulus of Au With Modified Morse Potential. 

L denotes lattice contribution. 

LE denotes lattice and electronic contributions. 
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Figure 3.25 

Griineisen Parameter of Au With Morse Potential. 

L denotes lattice contribution. 

LE denotes lattice and electronic contributions. 
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Figure 3.26 

Griineisen Parameter of Au With Modified Morse Potential. 

L denotes lattice contribution. 

LE denotes lattice and electronic contributions. 
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4. Calculation of Debye-Waller Factor 

The objective of this section is to present the expressions 

developed by Shukla and Plint (1989), and to obtain numerical results for 

DWF or < u2 > for some fcc materials. In order to make these numerical 

calculations for any <I>(r) and cubic crystal, we present the computational 

form of the harmonic and (A. 2) anharmonic contributions to DWF in the 

high temperature limit. These final results are expressed in terms of 

potential derivatives and a certain number of the BZ sums . The BZ sums 

are calculated by Shukla and Plint (1989) to a high degree of accuracy, and 

fitted to an exponential-type of form as a function of the parameter al. 

After some algebraic manipulations done by Shukla and Plint 

(1989), the equations for 2MQH(q), 2M2(q), and 2Ml(Q), can be reduced to 

the following forms for any application to any <I>(r): 

I 12 3KBT 
2MQH(q) = q 6B SQH(al) (4.1) 

1 1 (KB T)2 2BC B2 
2M2(q) = q 2 F4(r) [C2 S3A(al) + -r- S3B(al) + ~ S3c(al) ] (4.2) 

1 1 (KBT)2 C B 
2M1(q) = - q 2 3B3 [ D S4A(al) + r S4B(al) + r2 S4C(al) ] (4.3) 

where F(r) is a combination of the first and second derivatives of the 

potential function evaluated at the nearest-neighbour distance 

corresponding to temperature T, it is given by: 

1 
F(r) = <I> "(r) + - <I> '(r) r (4.4) 
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Table 4.1; Coefficients of The Least-Squares Fit of The Functions SQH, 

etc.: 

Function bo bl b2 b3 b4 b5 

SQH -0.174341 -4.45494 12.2157 -44.1948 126.459 -151.237 

S4A -1.15553 -12.4982 35.4259 -141.374 514.150 -1037.31 

S4B 1.33303 -13.0698 37.5063 -150.333 554.644 -1150.08 

S4C 2.13851 -14.2170 41.4864 -165.353 596.810 -1195.17 

S3A -3.00397 -8.12396 36.3668 -160.682 593.810 -1205.75 

S3B -1.78646 -7.76336 34.9417 -155.390 583.985 -1213.79 

S:iC -0.035106 -8.31511 37.9244 -170.970 636.612 -1283.05 
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The BZ sums SQH; S4A, S4B, S4C; S3A, S3B, and S3C are evaluated at the same 

temperature and fitted to the following form: 

where 
5 

P(al) = L bn (al)n. 
n:::() 

(4.5) 

(4.6) 

Coefficients of the least-squares fit of these functions are presented in 

Table 4.1. 

4.1. Mossbauer Recoilless Fraction for Kr and Xe: 

The Debye-Waller factor (DWF) is related to the Mossbauer 

recoilless fraction (f) by 

f = e-2W(n (4.7) 

where (4.8) 

Ey is the energy of the y-radiation scattered by the crystal, and c is the 

speed of light in vacuum. The theoretical values of f can be calculated 

using the MSD results obtained directly from the DWF calculation via the 

relation: 

3 
< u2 > = 81t2 B(T) (4.9) 

where B(T) is the experimental DWF, and it is defined as follows: 
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The MSD results, evaluated in the high temperature limit, 

were calculated for Morse potential, modified Morse potential, and 

Lennard-Jones potential using the volume obtained from the minimization 

of the quasiharmonic contribution, and the quasiharmonic and the 

anharmonic contributions of the total free energy. The graphs for the 

minimum volume at a given temperature for the Morse and modified 

Morse potentials have already been given in Figures 3.1 and 3.2 for Kr and 

Xe, respectively. Similar graphs for the L-J potential are not reproduced 

here because they can be found in Shukla and Shanes (1985). The L-J 

potential parameters for Kr and Xe are listed in Table 4.2. 

4.1.1. Results and Discussion: 

The calculated Mossbauer recoilless fraction is presented in 

Figures 4.1 through 4.4 for Kr and Xe. For Kr we compare our calculated 

values from three different potentials with experimental results obtained by 

Kolk (1971). The experimental results are available only at low 

temperatures. Since the DWF was calculated in the high temperature limit, 

we can only compare our results with those of Kolk in the neighborhood of 

Debye temperature. Morse potential and modified Morse potential have 

the same curvature, and they are higher the experimental values. The 

E(QH) L-J potential results agree excellently with the experimental results; 

whereas the E(A 2) results are in fair agreement over the range of 

temperatures near SD' For the case of Xe, experimental results were not 

available, therefore we can not conclude how good the calculated results 

are. 
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Table 4.2; Parameters of Lennard-Jones Potential For Kr and Xe. 

Kr 

Xe 

The units of ro, and Uo are (A), and (10- 14 erg), respectively. 

LJ 

Uo = 3.248 

ro = 3.965 

Uo = 4.577 

ro = 4.318 
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Figure 4.1 

Mossbauer Recoilless Fraction of Kr 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 4.2 

Mossbauer Recoilless Fraction of Kr 

With Morse (M) and Lennard-Jones (LJ) Potentials. 
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Figure 4.3 

Mossbauer Recoilless Fraction of Xe 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 4.4 

Mossbauer Recoilless Fraction of Xe 

With Morse (M) and Lennard-Jones (LJ) Potentials. 
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4.3. DWF Results for fcc Metals: 

The DWF was calculated for the following metals: Pb, AI,Cu, 

Ag, and Au with Morse potential and modified Morse potential from two 

different equations of state, E(QH) and E(A 2). The values of the nearest

neighbour distance are the same as determined in the previous section by 

minimizing the total free energy of the system for these potentials. The 

results of DWF for the metals are presented in Figures 4.5 through 4.9. 

For convenience, the results are given in terms of the experimental DWF, 

B. Whereas the quasiharmonic contribution of the Morse potential is less 

than that of the modified Morse, the anharmonic contributions are the 

other way around. In total the results obtained from the modified Morse 

potential are shifted up and closer to the experimental results, except in the 

case of Au. The calculated results for Pb, AI, and eu are in good 

agreement with experiment at low temperature. However, at high 

temperature the experimental results (Chipman (1960), MacDonald (1967), 

and Martin and O'Connor (1978)), respectively, increase very rapidly. 

The experimental B(T) values of Ag (Simerska (1961)) were in a bad 

agreement with our calculated results. The computed results for Au are 

higher than the experimental values (Synecek and et al. (1970)) at all 

temperature. 
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Figure 4.5 

Debye-Waller Factor of Pb 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 4.6 

Debye-Waller Factor of Al 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 4.7 

Debye-Waller Factor of eu 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 4.8 

Debye-Waller Factor of Ag 

With Morse (M) and Modified Morse (MM) Potentials. 
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Figure 4.9 

Debye-Waller Factor of Au 

With Morse (M) and Modified Morse (MM) Potentials. 
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5. Phonon Dispersion Curves 

5.1. Quasiharmonic Phonon Frequency: 

In this section we present the expression that is necessary to 

calculate the phonon dispersion curves for the wave vectors in the three 

symmetry principal directions. The quasiharmonic frequencies oo(qj) for 

the normal mode qj are given by the following eigenvalue equation: 

OOqj2 = L ea(qj) Daf3(q) ef3(qj) 
af3 

(5.1) 

Daf3(q) is the dynamical matrix for the wave vector q, and it is given by 

(5.2) 

5.2. Renormalized Phonon Frequency: 

In this section we outline the theory required for the 

calculation of the cubic and the quartic frequency shifts. This calculation 

of the phonon frequencies includes the quasiharmonic and the two lowest

order anharmonic contributions. The sum of these three contributions is 

defined as the renormalized phonon frequency. This renormalized 

frequency is obtained by means of the Green's function method at a finite 

temperature (Shukla and Muller (1971». Shukla and Hubschle (1989) have 
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employed the high temperature limit and used the static approximation by 

setting co = O. Here, we give some feedback for the Green's function 

method carried out by Shukla and Muller (1971). 

5.2.1. The Green's Function Method: 

For an anharmonic crystal the quasiharmonic and interaction 

parts of the Hamiltonian are given by: 

H=Ho+H' 

where 

H' = ALL L Y\qlh,q2h,q3h) Aq1h AqV2 Aq3h + 
qlh qV2 q3.i3 

(5.3) 

(5.4) 

+ A 2 L L L L y 4(Qlh,QV2,Q3.i3,q4.i4) AQlh AQV2 AQ3h AQ4.i4 (5.5) 
Qlh QV2 Q3.i3 Q4.i4 

= A y3 + A 2 y4 = H3 + H4 (5.6) 

The various symbols arising in the above equations are: at qj and aqj are the 

phonon creation and annihilation operators for the mode qj, co(qj) is the 

angular frequency for the normal mode qj, A is an order parameter which 

should be set equal to unity at the end of the calculation. The coefficients 

y3 and y4 are completely symmetric in their indices (qj) and are related to 

the atomic force constants by: 
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(5.7) 

The operator Aqj introduced in Eq. (5.5) is defined here as: 

(5.8) 

Following Zubarev (1960) the one-phonon double-time 

temperature-dependent Green's function is defined as 

Gqjq'j'(t - t') = « Aqj(t) ; Atqj(t') » 

= - i 9(t - t') < [ Aqj(t) , At qj(t') ] >, (5.9) 

where the square bracket is the commutator: 

[ A , B ] = AB - BA, (5.10) 

and 9(t) is the Heaviside unit step function. 

The Fourier transform Gqjq'j'(ro) of the one particle Green's 

function is give by 

+00 

Gqjq'j'(t - t') = J Gqjq'j'(ro) exp{ - iro(t - t')} dro (5.11) 
-00 

The Green's function Gqjq'j'(ro) can be generated by employing the equation 

of motion as described by Zubarev (1960). Thus, the Fourier transform of 

the Green's function, derived by Shukla and Muller (1971), has the 

following form 
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ro . 0 '0'" G . "'(CO) - 9J qq JJ 
9Jq J - 1t [CO 2 - roqP - 2roqjII qj( ro)] 

where IIqj(co) is the phonon self-energy term, defined by 

IIqj(co) = IIqj3(ro) + IIqj4 

I8)} 
IIqj3(co) = fi.2 ~ ~ 1 V3(-qj,qdl,qV2) 12 x 

qlJl q2J2 

(5.12) 

(5.13) 

(5.15) 

In the above equations coi and Ni are abbreviations for CO(qJi) and N(qJi) = 

coth(~PIiCOi)' respectively (i=1,2). 

Since II4, the quartic part, is independent of CO, it is assumed 

that the dependence of II3(ro) on CO is also weak (Shukla and Hiibschle 

(1989)), therefore co is set equal to zero in II3(co) (static approximation). 

With this approximation and taking the high temperature limit, G( co) 

simplifies significantly: 

COqj Oqq'ojj' 
(5.16) 

where 
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(5.17) 

nqj is the renormalized frequency of the phonon (qj) and .6.3 and ~ are the 

cubic and quartic frequency shifts, respectively. The quasiharmonic 

contribution is represented by COqj. 

The cubic shift contains a .6. function which can be represented 

by plane waves 

.6.(q) = ~ L exp[i(q.rl)] 
1 

(5.18) 

Substituting for <I>(Qlh,-Q2h,-qj) from Eq. (2.5) and using the representation 

(5.18) for .6. we obtain the following expression for the cubic shift: 

where 

g(q;I,11,12) = cos(q.rl) - cos[q.(rl - rl1)] - cos[q.(rl + r12)] + 

+ cos[q.(rl - rl1 + r12)] 

Fa~(l,lbI2) is a combination of tensors, i.e., 
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(5.20) 



and the tensors Sa~(l) are defined as (Shukla and Wilk (1974)): 

S (1) _ ~ ea(qj) e~(qj) ( ) 
a~ - L .2 cos q.rl 

• OOQJ 
QJ 

(5.22) 

The quartic shift is obtained by substituting for <I>(Qlh,QJ,-Qlh,

QJ) from Eq. (2.5): 

(5.23) 

The expressions for the tensors, <l>ap(l), <l>apy(l), and <l>apy5(l), 

introduced in Eqs. (5.2), (5.19), and (5.23) are given by, for any <I>(r), 

al~l 1 , 
<l>aR(l) = -2 B(rl) + Oap - <I> (rl) 

P rl rl 
(5.24) 

(5.25) 

(5.26) 

where a, ~, ,,(, 0 are each assigned the values of x, y, z, respectively, and 

aI, ~l ,"{I' 01 are the corresponding components of the direct lattice vector 

rl. B, C, D are combinations of derivatives of <I>(r) evaluated at rl=lrll. 
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5.3. Results and Discussion: 

Since the basic ingredient In all the thermodynamic 

calculations is the phonon frequency, we have calculated the phonon 

dispersion curves for the three principal symmetry directions, by using 

Morse potential and modified Morse potential. The quasiharmonic 

frequencies were calculated for the lattice spacing at 10K, and the results 

are presented in Figures 5.1 through 5.8 for Kr and Xe. The dispersion 

curves calculated from both potentials seem to have the correct shape as 

compared to the experimental curves (Skalyo jr and et al. (1974) and Lurie 

and et al. (1974)). This indicates that the first and the second derivatives of 

the potentials, which enter in the calculation of the quasiharmonic 

frequencies, are of the correct order of magnitude The dispersion curves 

calculated from both potential for Kr and Xe did not show any 

disagreement. 

Similarly, the phonon dispersion curves for the fcc metals: eu, 

Ag, and Au were calculated and presented in Figures 5.9 through 5.20. 

The quasiharmonic frequencies were calculated with the lattice spacing at 

673K, 293K, and 298K for eu, Ag, and Au, respectively. The 

experimental results for eu, Ag, and Au are obtained from Miller and 

Brockhouse (1971), Kamitakahara and Brockhouse (1969), and Lynn and 

et al. (1973), respectively. To investigate the effect of the anharmonic 

(cubic and quartic shifs) contributions to the phonon frequency, we have 

calculated these shifts for eu and added them up to the quasiharmonic 

frequencies as shown in Figures 5.9 through 5.12. The anharmonic shifts 

did not affect the longitudinal mode because the cancellation of the cubic 
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and quartic shifts is almost complete. However, in the case of the 

transverse mode the cubic shift being negative is greater in magnitude than 

the quartic shift, and this resulted in lowering the total for the transverse 

mode from its quasiharmonic value. In general the results of the 

transverse mode for all elements were in good agreement with experiment. 

However, the longitudinal mode results were less than the experimental 

values, especially for Au. 
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Figure 5.1 

QH Phonon Dispersion Curves for Kr Along the [1 00] Direction 

With Morse (M) and Modified Morse (MM) Potentials. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.2 

QH Phonon Dispersion Curves for Kr Along the [1 1 0] Direction 

With Morse (M) Potential. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.3 

QH Phonon Dispersion Curves for Kr Along the [1 1 0] Direction 

With Modified Morse (MM) Potential. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.4 

QH Phonon Dispersion Curves for Kr Along the [1 1 1] Direction 

With Morse (M) and Modified Morse (MM) Potentials. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.5 

QH Phonon Dispersion Curves for Xe Along the [1 0 0] Direction 

With Morse (M) and Modified Morse (MM) Potentials. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.6 

QH Phonon Dispersion Curves for Xe Along the [11 0] Direction 

With Morse (M) Potential. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.7 

QH Phonon Dispersion Curves for Xe Along the [11 0] Direction 

With Modified Morse (MM) Potential. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.8 

QH Phonon Dispersion Curves for Xe Along the [11 1] Direction 

With Morse (M) and Modified Morse (MM) Potentials. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.9 

QH and ,.,.2 Phonon Dispersion Curves for Cu Along the [1 0 0] Direction 

With Morse (M) Potential. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.10 

QH Phonon Dispersion Curves for Cu Along the [1 1 0] Direction 

With Morse (M) Potential. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.11 

A 2 Phonon Dispersion Curves for Cu Along the [1 1 0] Direction 

With Morse (M) Potential. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.12 

QH and ')..,,2 Phonon Dispersion Curves for Cu Along the [111] Direction 

With Morse (M) Potential. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.13 

QH Phonon Dispersion Curves for Ag Along the [1 00] Direction 

With Morse (M) and Modified Morse (MM) Potentials. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.14 

QH Phonon Dispersion Curves for Ag Along the [1 1 0] Direction 

With Morse (M) Potential. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.15 

QH Phonon Dispersion Curves for Ag Along the [1 1 0] Direction 

With Modified Morse (MM) Potential. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.16 

QH Phonon Dispersion Curves for Ag Along the [1 11] Direction 

With Morse (M) and Modified Morse (MM) Potentials. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.17 

QH Phonon Dispersion Curves for Au Along the [1 00] Direction 

With Morse (M) and Modified Morse (MM) Potentials. 

T denotes Transverse mode. 

L denotes Longitudinal mode. 
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Figure 5.18 

QH Phonon Dispersion Curves for Au Along the [1 1 0] Direction 

With Morse (M) Potential. 

T denotes Transverse mode. 

L denotes longitudinal mode. 
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Figure 5.19 

QH Phonon Dispersion Curves for Au Along the [11 0] Direction 

With Modified Morse (MM) Potential. 

T denotes Transverse mode. 

L denotes longitudinal mode. 
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Figure 5.20 

QH Phonon Dispersion Curves for Au Along the [1 1 1] Direction 

With Morse (M) and Modified Morse (MM) Potentials. 

T denotes Transverse mode. 

L denotes longitudinal mode. 
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6. Griineisen Parameter 

6.1. Theory: 

In this section we outline the theory which is required for the 

calculation of the Griineisen parameter, y, to the A, 2 order in PT. The 

parameter y can be calculated directly from the phonon frequencies 00, 

where 00 is volume dependent. Since anharmonicity can determined for the 

phonon frequencies, . then we should be able to calculate the anharmonic 

contribution to the Griineisen parameter. For a mode of qj the Griineisen 

parameter is defined by 

... If ") _ aln( oo(qj)) 
J\QJ - - av 

V aoo(qj) 
= - oo(qj) av (6.1) 

Since y has an anharmonic effect, we shall use in Eq. (6.1) the 

phonon frequencies that contain both the quasiharmonic and the 

anharmonic contributions. The expression for this frequency to O(A,2) is 

presented in Eq. (5.17). To account for anharmonicity, y (qj) is redefined 

as: 

V anqj 
y( qj) = - nqj av 

where nqj is the renormalized phonon frequency, and it is given by 
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(6.2) 



(6.3) 

ro(qj) are the quasihannonic frequncies, and ~3(qj) and ~(qj) are the cubic 

and quartic frequency shifts, respectively. Eq. (6.3) can be differentiated 

with respect to volume and written in the following form: 

(6.4) 

Expanding l/nqp in powers of 'A and retaining only terms of O('A 2), we 

obtain: 

"i(qj) = "iQH(qj) + "ic(qj) + "iQ(qj) 

V dro' 
"iQH( qj) = - roqj W 

(6.5) 

(6.6) 

(6.8) 

where the quasiharmonic contribution is denoted by "iQH(qj), and the cubic 

and quartic anharmonic contributions by "ic(qj) and "iQ(qj), respectively. 

Thus, the average of the Gruneisen parameter is given by 
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1 
'YRE= 3N ~ 'Y(qj) = 'YQH + 'Yc + 'YQ 

qJ 

(6.9) 

where 'YRE represents the value of 'Y calculated from the renormalized 

phonon frequency nqj. 

The quasiharmonic contribution 'YQH can be calculated from the 

harmonic eigenvalue equation which was introduced in Eqs.(5.1)-(5.2). 

'YQH is then given by 

(6.10) 

The cubic and quartic terms are given by 

(6.12) 

Since the arguments between the parentheses in the above equations are 

similar to the expressions of F3 and F4 given in Eqs. (2.7) and (2.8), we 

can rewrite 'Yc and 'YQ in terms of the first derivatives of F3 and F4 with 

respect to r as follows: 

rl~ aF3 
'Yc = -3N ar 

2rl~ aF4 
'YQ = - 9N ar 

(6.13) 

(6.14) 
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The computational forms of these two derivatives are obtained from Eqs. 

(3.25) and (3.30) 

6.2. Results and Discussion: 

The Griineisen parameter has been calculated for the rare-gas 

solids: Kr and Xe, and the fcc metals: eu, Ag, and Au. Tables 6.1 through 

6.4 show the results we obtained along with the experimental results. The 

calculation was carried out for both potentials in the high temperature 

limit. To investigate the reliability of these results, we compare them with 

the results obtained from the thermodynamic definition. We should note 

that 'Y derived from the renormalized phonon frequency, nqj, has been 

expanded to 0(A2); whereas the thermodynamic expression contains the 

specific heat in the denominator which is of O(A 2). For comparison we 

have expanded the thermodynamic definition to 0(A2), and presented the 

results, 'Yexpanded, in Tables 6.1 through 6.4 along with those of the full 

definition. It should be noted that comparison should be made between the 

results of the full thermodynamic definition 'Yfull and those of the 

coresponding expression for 'Y obtained from nqj. The latter results can be 

calculated from Eq. (6.4); however, time did not permit us to carry out 

these calculation. 

The Gruneisen parameter results for Kr and Xe are presented 

in Tables 6.1 and 6.2. The values of 'YRE are higher than the those of the 

thermodynamic definition. In fact they are closer to the experimental 

results. However, the experimental value of y for Xe at 160K drops to 

1.94, which is very low comparing to YRE at that temperature. In general 
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at low temperature the three calculated results are in fair agreement. As 

the temperature increases the discrepancy between them worsens. 

The results of the Griineisen parameter for the eu, Ag, and 

Au are shown in Tables 6.3 and 6.4. Here we compare 'YRE only with the 

lattice contribution of the thermodynamic definition, because the calculated 

'YRE does not account for the electronic contribution. In order to account 

for the electronic contribution, one has to derive a Green's function that 

contains, along with the phonon-phonon interaction, the phonon-electron 

and electron-electron interactions. The results that we present here are 

only those of the phonon-phonon interaction. 
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Table 6.1; Griineisen Parameter For Rare-Gas Solids With Morse 

Potential. 

Kr 

Xe 

T(K) 

70 

90 

110 

60 

100 

160 

'YRE 

2.694 

2.685 

2.661 

2.571 

2.577 

2.546 

'Yfull 

2.599 

2.524 

2.381 

2.532 

2.492 

2.259 

'Yexpanded 

2.570 

2.505 

2.328 

2.508 

2.463 

2.284 

)'EXP 

2.82 

2.67 

2.76 

2.76 

2.7 

1.94 

Table 6.2; Griineisen Parameter For Rare-Gas Solids With Modified 

Morse Potential. 

Kr 

Xe 

T(K) 

70 

90 

110 

60 

100 

160 

"iRE 

2.584 

2.610 

2.636 

2.431 

2.470 

2.528 

110 

'Yfull 

2.486 

2.448 

2.378 

2.387 

2.377 

2.263 

'Yexpanded 

2.452 

2.421 

2.365 

2.363 

2.3478 

2.2559 

)'EXP 

2.82 

2.67 

2.76 

2.76 

2.70 

1.94 



Table 6.3; Griineisen Parameter For fcc Metals With Morse 

Potential. 

Cu 

Ag 

Au 

T(K) 

100 

700 

1300 

200 

700 

1200 

400 

600 

800 

'YRE 

1.082 

1.093 

1.105 

1.193 

1.207 

1.220 

0.912 

0.914 

0.917 

111 

'Yfull 

.982 

1.073 

1.065 

1.178 

1.182 

1.173 

0.901 

0.900 

0.896 

'Yexpanded 

.984 

1.070 

1.063 

1.180 

1.179 

1.170 

0.901 

0.899 

0.897 



Table 6.4; Griineisen Parameter For fcc Metals With Modified 

Morse Potential. 

Cu 

Ag 

Au 

T(K) 

100 

700 

1300 

200 

700 

1200 

400 

600 

800 

'YRE 

1.418 

1.401 

1.372 

1.556 

1.534 

1.494 

1.075 

1.074 

1.074 

112 

'Yfull 

1.314 

1.386 

1.338 

1.541 

1.519 

1.439 

1.064 

1.061 

1.055 

'Yexpanded 

1.319 

1.383 

1.341 

1.544 

1.514 

1.462 

1.064 

1.059 

1.054 



7. Summary 

We have calculated the thermodynamic properties of the rare

gas solids, Kr and Xe, and gold by using the static energy and Helmholtz 

free energy. The free energy contribution included the quasiharmomic and 

the two lowest order (cubic and quartic) anharmonic terms. The 

calculation was carried out in the high temperature limit for a nearest

neighbour centeral-force. The atomic interaction for these materials were 

represented by Morse potential and modified Morse potential. For Kr and 

Xe, The A. 2 results of Cv and Cp obtained from the modified Morse 

potential are quite good. The A. 2 results of the other properties show a 

breakdown at high temperatures. For gold the A. 2 results calculated with 

both potentials were similar to those obtained from E(QH) equation of 

state. 

The Mossbauer recoilless fraction was calculated for Kr and 

Xe, and the result for Kr was in fair agreement with experiment. We 

have also calculated the Debye-Waller factor for Pb, AI, Cu, Ag, and Au, 

and compared with experimental results. The results for Pb, AI, and Cu 

and Ag show a fair agreement for temperatures up to 4nT m. The DWF 

values for Au were not satisfactory. 

In order to test the potentials used in our calculations, we 

calculated the phonon dispersion curves for the rare-gas solids Kr and Xe, 

and the metals Cu, Ag, and Au. The calculated curves seem to have the 

correct shape as compared with the experimental curves, thus indicating 
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that the first and second derivatives of the potentials are of the correct 

order of magnitude. 

Finally, we determined the Griineisen parameter from the 

phonon frequency definition for these materials. Comparing to the 

thermodynamic calculations, these results are quite good. 
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