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ABSTRACT 

Two groups of rainbow trout were acclimated to 20 , 10 0 , 

o and 18 C. Plasma sodium, potassium, and chloride levels were 

determined for both. One group was employed in the estimation 

of branchial and renal (Na+-K+)-stimulated, (HC0 3-)-stimulated, 

and CMg++)-dependent ATPase activities, while the other was 

used in the measurement of carbonic anhydrase activity in the 

blood, gill and kidney. Assays were conducted using two 

incubation temperature schemes. One provided for incubation 

of all preparations at a common temperature of 2S o C, a value 

equivalent to the upper incipient lethal level for this species. 

In the other procedure the preparations were incubated at the 

appropriate acclimation temperature of the sampled fish. 

Trout were able to maintain plasma sodium and chloride 

levels essentially constant over the temperature range employed. 

The different incubation temperature protocols produced differ-

ent levels of activity, and, in some cases, contrary trends 

with respect to acclimation temperature. This information was 

discussed in relation to previous work on gill and kidney. The 

standing-gradient flow hypothesis was discussed with reference 

to the structure of the chloride cell, known thermally-

induced changes in ion uptake, and the enzyme activities 

obtained in this study. Modifications of the model of gill lon 

uptake suggested by Maetz (1971) were proposed; high and low 

temperature models resulting. In short, ion transport at the 

gill at low temperatures appears to involve sodium and chloride 
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uptake by heteroionic exchange mechanisms working in association 

.. . ( + + ) wlth carbonlc anhydrase. Glll Na -K -ATPase and erythrocyte 



carbonic anhydrase seem to provide the supplemental uptake 

required at higher temperatures. It appears that the kidney 

is prominent in ion transport at low temperatures while the 

gill is more important at high temperatures. 

3 

Linear regression analyses involving weight, plasma ion 

levels, and enzyme activities indicated several trends, the 

most significant being the interrelationship observed between 

plasma sodium and chloride. This, and other data obtained 

in the study was considered in light of the theory that a 

link exists between plasma sodium and chloride regulatory 

mechanisms. 
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INTRODUCTION: 

As is the case with most living organisms, teleost fish 

are challenged with the problem of maintaining relatively 

precise control over the concentrations of a wide variety of 

materials within the body fluid system. Inorganic ions, as 

major extra- and intracellular components, fall in this 

category. Many essential processes, including membrane 

permeability, establishment of transmembrane electrical and/or 

chemical gradients, and enzyme activity and function, are 

highly sensitive to changes in water-electrolyte status. A 

potential problem is created by this requirement for "tight" 

control, for the mechanisms associated with the regulation of 

hydromineral balance are often subject to perturbation by 

environmental variations (creating alterations in organism­

environment relationships). 

In the case of freshwater or freshwater-adapted teleost 

fishes, two fundamental problems are discernable. Since the 

medium is hypo-osmotic, often with several orders of magnitude 

difference between body and environment levels, these animals 

are subject to the double dilemma of water-loading and electro­

lyte loss. The gill, in its' role as a respiratory organ, is 

the major site of external contact. It is also the location 

of considerable osmoregulatory stress potential because of 

the relatively high permeabilities required for efficient gas 

exchange. A positive correlation exists between respiratory 

activity and the extent of hydromineral regulatory demands as 

any factor altering the former inevitably imposes changes on 

the latter. 
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In company with all other aquatic poikilotherms, a 

major determinant of metabolic rate in fishes is environ­

mental temperature. Figure 1 shows variations in a common 

indicator of metabolic activity, oxygen consumption, as a 

function of temperature, for several species of freshwater 

fishes. The substantial increase in routine oxygen require­

ments, as a consequence of increased temperature, is 

immediately obvious, as is the inverse character of the 

relationship between oxygen solubility and water temperature. 

The rainbow trout, Salmo gairdneri (Florke et al., 1954, 

cited in Houston, 1973), for example, requires about 3.5 times 

as much oxygen at 18 0 e as it does at SoC, and it must satisfy 

this increase in oxygen demand in the face of a 30% reduction 

ln oxygen availability. A variety of responses are, in theory, 

available for resolution of this predicament. One obvious 

response, compensatory adjustments in blood parameters, does 

not appear to operate. Reported variations are generally too 

small to play other than an auxilIary role in resolution of 

the temperature-oxygen demand problem (Houston et aI., 1976). 

The primary means for augmenting oxygen uptake involves in­

creased branchial exchange activity. This is achieved by 

increasing cardiac output and ventilatory flow, while reducing 

the number of intralamellar blood and water "shunts". The 

latter action increases effective exchange area, and reduces 

mean diffusion path length. In so doing, however, the 

effective permeability of the gill surface is elevated, and 

sharply increases ion efflux and water influx. 

10 



Fig. 1 Upper section. Change in oxygen 
solubility with temperature el­
evation. 
Lower section. Changes in routine 
oxygen consumption estimates 
for several varieties of fish as 
a function of acclimation 
temperature. 
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FIGURE I OXYGEN AVAILAILITY AND DEMAND 
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Presently available information indicates that the 

potential water-electrolyte imbalance induced by thermal stress 

is alleviated in the following manner. The additional water 

influx is eliminated by means of increased glomerular filtration 

and urine flow. Although the ionic concentration of urine 1S 

generally reduced at higher temperatures by increased re­

absorption from the primary urine 5 the elevation of urine flow 

produces substantial increases in ion loss. The potential 

imbalance resulting from this response, together with that 

resulting from increases in ionic efflux from the gill, is 

corrected by increased branchial absorption of electrolytes 

from the surrounding medium. Some economy in metabolic 

energy expenditure maY,however, be achieved by reductions 1n 

branchial electrolyte permeability. 

Despite disturbances created by thermal stress, water­

electrolyte balance can be maintained over wide temperature 

ranges, even by relatively stenothermal species, such as the 

trout. Although this control is not absolute, deviations, 

when present, are generally minor. In short, elevated branchial 

absorption and renal recovery compensate for thermally-

induced changes in ion efflux, and thus maintain electrolyte 

balance. Since these processes have been associated with 

specific enzyme systems, the aim of this study lay in investig­

ation of the effect of thermoacclimation on the activity of 

enzymes implicated in ion transport. 

In conducting this investigation the following points have 

been considered: 
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1.) Although stabilization of major plasma electrolytes over 

wide temperature ranges is a commonly observed phenomenon, 

verification was, of course, necessary. Therefore, 

determinations of plasma sodium, potassium, and chloride 

were carried out. 

2.) In previous studies the actual body temperatures of 

poikilotherms have been ignored in establishment of 

enzyme assay protocol. Temperatures of 30 0 to 37 0 C., 

which are well in excess of those tolerated by salmonids, 

have been routinely used in determinations of, for 

+ + example, (Na -K )-ATPase. In the present study, therefore, 

all determinations were carried out at 2S o C, a temperature 

comparable to the upper incipient lethal level for this 

species, (Houston et al., 1976) and also at the actual 

acclimation temperature of the animals. It was hoped 

that this would give a more physiologically realistic 

indication of maximum activity, as well as the relation 

between this and activity at temperatures at which the 

enzyme systems actually function. 

3.) Three enzyme systems, CNa-K)-stimulated ATPase, an 

anion-stimulated ATPase, and carbonic anhydrase are 

presently considered to be involved in ion regulation. 

Accordingly, determinations of the activity of 

these three systems were carried out. 

4.) No evidence is presently available concernlng the relative 

activities of these enzyme systems in the two principal 

osmoregulatory organs, gill and kidney. This, of course, 

precludes any estimation of the functional significance 

of each enzyme within, and between these organs. 
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In addition, data concerning relative changes in activity 

during thermal acclimation do not exist. These aspects 

have also been examined, assuming that the measured 

activity represents some measure of involvement in 

transport. 

5.) Finally, correlation analysis was used in an attempt to 

link temperature-related variations in ionic status 

with a variety of parameters including, branchial and 

remal enzyme activities, other electrolyte levels, and 

the physical characteristics of the specimens employed. 



II REVIEW OF LITERATURE 

Literature pertinent to this study is reviewed under four 

main headings: (1) General aspects of Water-Electrolyte 

Regulation in Freshwater Fishes, (2) Structure and Function of 

Gill and Kidney in Relation to Hydromineral Maintenance, 

(3) Characterisation of Enzyme Systems Investigated and (4) 

Comments Upon the Physiological Relevance of In Vitro Enzyme 

Assays. 

1. General Aspects of Water-Electrolyte Regulation In 

Freshwater Fishes. 

The fact that freshwater-adapted teleosts, the 

rainbow trout, Salmo gairdneri, being a typical example, are 

able to regulate water-electrolyte status is well established 

(Houston, 1973). The classic model of Krogh (1939, cited 

in Maetz, 1971) defines the essential problems encountered. 

Water influx through the gill is compensated for by the 

production of abundant dilute urlne. Hickman and Trump 

(1969) provide data to illustrate this point. A typical 

freshwater-adapted, euryhaline teleost produces urine at a 

-1 -1 rate of about 3ml.hr .Kg with a concentration of 

-1 50mOsm.l . By contrast, when in the saltwater-adapted 

-1 -1 1 state, urine flow is only about 0.2ml.hr .Kg at 300 mOsm.l-

The bulk of electrolyte loss is through the gill, although 

the kidney contribution is not insignificant, being approx­

-1 -1 imately 25% of the total ion efflux of 20fEq.hr .100g in 

the case of the trout (Holmes and Stainer, 1966; Kerstetter 

et aI, 1970; Kerstetter and Keeler, 1976). This potential 

deficit is corrected by active electrolyte absorption at the 

gill balancing efflux losses CMotais et al., 1969; 

15 



Kerstetter et al., 1970; Maetz, 1971; Kerstetter and 

Kirschner, 1972). As the freshwater fish drinks little, or 
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as in the case of the trout, not at all (Shehadeh and Gordon, 

1969), and starvation has little immediate effect on 

hydromineral balance (Holmes and Stainer, 1966), the gutlS 

considered to playa minor role. This is, of course, a 

major contrast to the saltwater-adapted form where drinking 

rates have been measured at 13% of the body weight per day, 

with the gut serving as an important site for water uptake 

(Shehadeh and Gordon, 1969; Maetz, 1971). The remaining 

non-branchial components of the body surface are rendered 

essentially impermeable by skin, scales and mucus, and are 

not considered to be significantly involved in ion regulation 

(Black, 1957; Fromm, 1968). The "tightness" of concentration 

control varies from species to species. The rainbow trout 

may be considered, in view of presently available data, a 

relatively precise controller. Maximal differences of 6.7 

and 8.8% in plasma sodium and chloride levels, respectively, 

o 0 have been reported over a temperature range of 3 to 21 C. 

Elimination of a minor seasonal difference reduces the 

actual deviation to insignificance (about 1%) (Houston et al., 

1968). Although many factors, including photoperiod, season, 

exercise level, ontological state, salinity, and handling, 

are also known to affect hydromineral balance (Holmes and 

Donaldson, 1969; Houston, 1973; Murphy and Houston, 1977), the 

major environmental challenge to the aquatic poikilotherm is 

generated by variations in ambient temperature. Despite the 

fact that heat and cold stress produce similar results, with 



respect to loss of osmoregulatory capacity, the reasons for 

this appear to be quite different (Holmes and Donaldson, 1969; 

Houston, 1973; Hazel and Prosser, 1974). Nevertheless, 

in the present study it is apparent tpat the principal 

goal lay in definition of the responses of salmonid fish to 

increasing acclimation temperature. 

The fact that fish are able to maintain a constant 

hydromineral status when confronted by the multifaceted 

dilemma of thermal stress is well established,although the 

reasons for this are poorly understood. Therefore, the 

remainder of the literature survey has been directed to 

elucidating those processes and procedures which have been 

implicated in the creation of the observed responses. 

2. Structure and Function of Gill and Kidney in Relation 

to Hydromineral Maintenance. 

(a) Kidney 

In the rainbow trout this organ is fused for its' 

entire length with no clear distinction between the head and 

trunk portions being obvious; a typical type I kidney in the 

classification of Hickman and Trump (1969). It is located 

in the dorsal portion of the coelomic cavity along the back­

bone, and is tightly adherent to it. Nephrons are of the 

glomerular type with six tubular segments present (Hickman 

and Trump, 1969). Figure 2 shows a proposed structure­

function relationship for euryhaline fish. A common function 

attributed to the kidney of many other vertebrates, 

elimination of nitrogenous wastes, is of minor importance, 

as most of this material is lost as ammonia (NH 3 ) and 
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Fig. 2. A model of the fish nephron 
illustrating the component 
structures and the role of 
each in fresh and salt water. 
Transport into the kidney is 
represented by a solid arrow 
while transport into the 
urine is represented by an 
open arrow. Rate of flow and 
concentration of the plasma 
ultrafiltrate and urine under 
these conditions are indicated 
at the top and bottom, 
respectively. 
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FIGURE 2 A MODEL OF THE KIDNEY NEPHRON SHOWING 

STRUCTURE - FUNCTION RELATIONSHIPS 
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ammonium + (NH 4 ) through the gills (Walton and Cowey, 1977). 

Only a small amount, in the area of 3% of the body load, is 

excreted through the trout kidney (Fromm, 1963). 

The primary function of this organ in freshwater-

adapted animals is the elimination of excess water. This, 

in conjunction with conservation of filtered electrolytes, 

results in the production of an abundant dilute urine, as 

previously noted. The effectiveness of this function is 

illustrated by the fact that, while water is recovered from 

the primary urine at a rate of 50% or less of the presented 

load, ion reabsorption is usually 95% or better, for primary 

electrolytes (Holmes and McBean, 1963; Holmes and Stainer, 

1966). This is achieved by low tubular permeability to 

filtered water operating concurrently with a monovalent ion 

reabsorption system, which will be discussed later on. 

As water influx rates vary with temperature and other 

factors (Evans, 1969; Wood and Randall, 1973), some means 

must be available to provide "fine" control of glomerular 

filtration rate (G.F.R.). Selective perfusion of the nephrons 

appears to be the principal means employed in control of 

G.F.R., with two possible mechanisms having been proposed. 

Nephrons may be in either an "on" or "off" state - the inter-

mittent flow hypothesis - with increases in capacity being 

generated by bringing more nephrons to the "on" state. 

Alternatively, all nephrons may normally operate at less than 

full perfusion, with increases to full capacity occurring in 

response to greater demand - the graded activity hypothesis. 



The two, of course, are not mutually exclusive (Hickman, 

1965; Mackay and Beatty, 1968; Hickman and Trump, 1969). 

The involvement of other regulatory procedures is not well 

understood at present, although it appears that systemic 
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blood pressure change is not a normal regulatory mechanism 

(Hickman and Trump, 1969). It does appear that the hormone 

prolactin, secreted by the pituitary gland, may be directly 

involved in decreasing renal water permeability and/or 

increasing renal (Na-K)-ATPase activity. However, the involve­

ment of prolatin in osmoregulation, although its' means of 

action is not completely clear, is firmly established, as 

it is the only known vertebrate hormone that can restore 

osmoregulatory capacity to hypophysectomized fish. This 

suggests that, perhaps, it should be considered as a family 

of hormones, having different functions in different vertebrate 

groups (Ensor and Ball, 1972; Johnson, 1973). 

As temperature increases there is a concomitant lncrease 

In G.F.R. and urine flow. This is not regarded as a direct 

response to temperature, but rather a secondary response to 

the increased water influx generated by elevated respiratory 

activity at higher temperatures. This is supported by the 

fact that water influx and urine flow rate display similar 

thermal dependency, with QIO's of approximately 2.0 to 2.4 

(Mackay and Beatty, 1968; Evans, 1969; Lloyd and 0r:T, 1969; 

Isaia, 1972). On the other hand, reduced urine electrolyte 

concentrations at higher temperatures suggest that ion 

recovery is a variably-active process, since the concentration 

of the primary urine (considered an ultrafiltrate of the 

plasma) should be stable (Houston, 1973; Mackay, 1974). 



As G.F.R. and urine flow have been observed to increase up 

to 10 times with temperature elevation, it is obvious that 

much larger metabolic expenditures are required to enable 

the active reabsorption system to generate reduced urine 

electrolyte concentrations (Pora and Precup, 1960, cited in 

Houston, 1973). Despite reduced concentrations at elevated 

flow rates, net depletion increases. This is evident in 

studies which note that net renal electrolyte losses are 

sharply elevated . with rises in temperature (Houston, 19.73; 

Mackay, 1974). Control of this function by means other than 

the effects of prolactin, mentioned earlier, is poorly under­

stood. 

It is evident that the renal response to elevated 

temperatures involves increases in kidney perfusion in 

combination with higher transport-associated activity. While 

regulation of body water levels is accomplished through 

kidney action, it is apparent that, although conservation of 

filtered ions at the kidney is significant and controllable, 

the bulk of electrolyte recruitment demand generated by 

increasing temperature must be satisfied elsewhere - at the 

gill. 

(b) Gill 

The rainbow trout gill is of a typically teleostian 

type, consisting of five cartilagenous branchial arches per 

side, one of which is devoid of gill filaments. These are 

located in cavities positioned on either side of the pharynx~, 

and covered by the opercula. Each branchial arch bears, 

perpendicular to it, two hemibranchs; each consisting of a 

row of primary gill filaments. An interbranchial septum, 
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orignating at the arch and containing muscles capable·of 

controlling primary filament position, joins the hemibranchs 

for about 1/2 of their length. Secondary or respiratory 

lamellae, considered to be the major respiratory portion of 

the gill, are located transversely along the length of the 

primary filaments (Fry, 1957; Randall, 1970; Conte, 1971; 

Morgan and Tovell, 1973; Hughes and Morgan, 1973). The 

extensive folding created by this arrangement generates a 

total surface area (generally referred to as the anatomical 

gill area) substantially greater than the rest of the external 

body surface. Parry (1966), for example, estimates that 

anatomical gill area is from 10 to 60 times that of the rest 

of the body surface. Gill area per unit body weight also 

decreases with increasing weight, in all species so far 

examined (Randall, 1970; Hughes and Morgan, 1973). 
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The primary function of the gills, respiratory gas ex­

change, is a passive diffusion process optimized by the counter­

current arrangement of blood and water flows through and 

over the respiratory lamellae (Figure 3(a)). Blood: water flow 

ratios are in the order of 1:80, and are presumably related 

to the fact that, due to the relatively low solubility of 

oxygen ln water, large volumes must be passed over the gills 

to ensure extraction of sufficient amounts of oxygen. In 

addition, other important functions, such as nitrogenous 

waste clearance, acid-base control, and hydromineral regulation, 

are carried out by the gill (Maetz, 1971). The complications 

which result from this mUltipurpose function of the gill have 

been alluded to and will be discussed in more detail subsequently. 



Fig. 3 A. Diagram outlining the structure 
of a portion of a gill arch in 
a typical teleost gill. The 
countercurrent flow of blood 
(solid arrows) and water 
(broken arrows) is indicated. 

B. Illustration showing how the 
position of the primary gill 
filaments can control the 
anatomical deadspace thus 
regulating the proportion of 
inspired water that is shunted 
through the gills. 
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Since variability ln respiratory gas exchange demand is 

expected and observed, some means of adjustment must exist 

(Randall, 1970). The obvious response-increased blood and 

water flow rates - is seen, but it is also possible to 
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regulate oxygen uptake by other means. Specifically, regulation 

of the amount of gill area actually perfused, and therefore the 

effective gill area, has been reported (Taylor et aI" 1968). 

The resting trout, for example, utilizes only about 20% of 

the potential effective gill area, and amplifies this in 

response to increased oxygen demand (Stevens and Randall, 

1967). Several mechanisms which may permit this have been 

proposed. These are considered below. 

Although evidence is scanty, and the postulated involve­

ment somewhat speculative, it is possible that the diffusion 

distance between water and blood can be adjusted by regulation 

of the thickness of the gill mucous layer (Randall, 1970). 

The other procedures have more definite substantiation. 

Blood may be preferentially shunted through the gill in such 

a way as to preclude any significant participation in exchange. 

Steen and Kruysse (1964) and Randall (1970), for example, 

have suggested several possible pathways, which bypass the 

exchange area of the secondary lamellae. This is based on 

essentially anatomical grounds. Morgan and Tovell (1973) 

and Cameron (1974) found no evidence of functional shunt 

pathways and proposed instead that selective and progressive 

perfusion of distal secondary lamellae constituted the basic 

mechanism for increasing effective exchange area. It is, of 

course, possible that both operate. There is, in addition, 

evidence that the catecholamines (adrenaline and noradrenaline), 
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and acetycholine, which are known to affect gill resistance 

to blood flow and therefore lamellar blood flow rates, may be 

involved in blood flow control (Randall, 1970). In the case 

of ventilation, definite shunts are knGwn to operate. Gill 

flow is composed of three components; residual flow, 

respiratory flow and shunt flow. Anatomical dead space, a 

component of shunt flow, is the only portion of this flow 

subject to control, and is the means by which the inverse 

relationship between respiratory and shunt flows is generated. 

Adjustment of the position of the primary gill filaments is 

controlled by the interbranchial septum muscle sets, referred 

to earlier, so that only water passing through the pores in 

the "screen" formed by the secondary lamellae can be involved 

in exchange. As indicated in Figure 3(b), that channelled 

between the filaments is effectively "shunted" from the 

respiratory flow (Randall, 1970; Hughes and Morgan, 1973). 

As temperature increases, oxygen availability decreases 

while oxygen requirements rise. The additional requirement 

generated in this way is largely satisfied by enhancement 

of the effective exchange area by increased blood flow, 

greater branchial irrigation, and enlargement of the active 

or functional gill surface. It is this which induces the major 

problem with respect to hydromineral balance, for increasing 

the effective area induces substantial elevation of ion and 

water fluxes (Randall et al., 1972). As noted earlier, 

increases in G.F.R. and urine flow, resulting from increases 

in the body water load, are the means by which constant water 
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status is achieved. This process produces increased urlnary 

salt losses despite increased tubular electrolyte reabsorption. 

These, plus losses due to enhanced efflux of electrolytes 

from the gill, must be compensated for by recruitment from 

the medium. Absorption processes are located at the lamellar 

epithelium and will be discussed under the next heading. 

Control of this aspect of gill function is not well under­

stood, although again, prolactinis involved, perhaps by 

controling water permeability and sodium efflux (Ensor and 

Ball, 1972; Johnson, 1973). The presence of compensatory 

variations in branchial ion permeability is suggested by the 

fact that electrolyte efflux increases more slowly, as 

temperatures rise, than oxygen consumption branchial ventil­

ation and water influx. QIO values for the former range 

from 1.1 to 1.2 while in the latter cases the range is from 

1.5 to 2.0 (Evans, 1969; Houston, 1973; Cameron, 1976). As 

mentioned previously, changes in branchial water permeability 

apparently do not occur, as influx is reported to change in 

proportion to the aforementioned parameters. 

The site of transport activity seems to be one of the 

four cell types in the gill - the "Keys-Willmer" or 

"chloride" cell. In a variety of studies it has been 

implicated as a site high in ion transport activity and rich 

in transport enzymes (Dendy et al., 1973; Olson and Fromm, 

1973; Maetz, 1974; Karnaky et al., 1976). Although chloride 

cells are generally present in both fresh- and saltwater­

adapted euryhaline fish, the structure and function appear 

to differ (Shirai and Utida, 1970; Shirai, 1972). This, and 



the differences in transport enzyme activity between salt-

and freshwater-adapted forms, is probably a reflection of 

the substantially different requirements for transport ln 

the two different media. 

In the light of the foregoing considerations the ex-

pected response to temperature increases should be elevation 

in the branchial activity of ion transport-associated 

mechanisms, in accordance with the requirement for increased 

lon uptake. 

(c) Characteristics of the Absorption Process 

Reabsorption of electrolytes from the primary 

urine and absorption at the gill of the two major plasma 

electrolytes, sodium and chloride, is considered to be an 

"active" process. Transport of sodium and chloride lS 

characterized by the movement of these solutes against 

electrochemical gradients by means of an expenditure of 

metabolic energy which cannot be less than the product of the 

rate of net transport and the electrochemical potential 

across the membrane. Active uptake was hypothesized by 

Kro gh (1939, cited in Maetz, 1974) and has been verified for 

a wide variety of freshwater organisms (see Maetz, 1974, 

for a review). An illustration is provided by the fact that 

-1 fish, having body fluids at slightly less than 300 mOsm.l , 

-1 absorb ions from the surrounding water, at 1 to 20 mOsm.l , 

and also recover ions from the primary urine at a rate 

sufficient to produce urine at about 50 mOsm.l- l . Although 

the overall process shows characteristics of "active" 

transport, in a multi-step process not all of the steps must 

be active and this may be the case here (Hickman and Trump, 
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1969; Maetz, 1971). 

It is evident that sodium and chloride are regulated 

by separate mechanisms as fluxes of each may occur, 

simultaneously, in opposite directions and/or at different 

rates (Kerstetter et al.,1970; Kerstetter and Kirschner, 

1972; Motais and Garcia-Romeu, 1972), while inhibitors may 

selectively reduce or eliminate one flux without a major 

disturbance of the other (Maetz, 1974). Also supporting 

this contention 1S the fact that, although the maximal influx 

rates of sodium and chloride are similar, at about 

-1 -1 35)lEq.hr .100g ,the Km for each process is considerably 

'f -1 -1, d1 ferent, 450 jUEq.l versus 250 jiliq.l respect1vely 

(Kerstetter et al., 1970; Kerstetter and Kirschner, 1972, 

DeRenzis and Maetz, 1973). Despite the separate means of 

regulation, it is now felt that the two are controlled inter-

dependently, which would seem to require at least one common 

component. This requirement is suggested by the precise 

absolute, and relative control of the two ions which has 

been demonstrated, and by the observation that sodium and 

chloride uptake procedes optimally from sodium chloride 

solutions. Alternate anions or cations reduce the efficiency 

of sodium or chloride uptake, respectively (Maetz, 1974). 

In order to preserve electroneutrality in the body 

fluid system, the influx of a specific ion must be coupled 

with elimination of an ion of the same charge or uptake of 

an ion of the opposite charge. For sodium the endogenous 

counter-ion could be two, ammonium (NH4+) or hydronium (H+). 
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The relative merits and evidence pro and con for both 

have been extensively examined, the present consensus being 

that both are involved, although the exact relationship is 

not firm. It has been proposed that ammonium efflux provides 

for a relatively constant exchange uptake of sodium, which 

can be supplemented by hydronium: sodium exchange. Thus 

sodium uptake is proportional to the sum of ammonium and 

hydronium efflux. Under certain conditions where sodium 

uptake is less than ammonium excretion, ammonia (NH 3), the 

free base form, may diffuse out passively. The stoichiometry 

of this transfer, whether 1:1 or otherwise, has yet to be 

firmly established (Maetz, 1974; Kerstetter and Keeler, 1976). 

The fact that bicarbonate (HC0 3-) is exchanged for chloride 

has also been demonstrated, although the involvement of 

hydroxide (OH-) has not been entirely excluded (Kerstetter 

and Kirschner, 1972; DeRenzis and Maetz, 1973). Again the 

stoichiometry has not been confirmed. 

The chloride cell model of Maetz (1971), which is 

presented in Figure 4, outlines gill involvement in ion 

uptake and has been the basis of most recent experimental 

designs. Sodium and chloride are exchanged at the external 

boundary for their respective counterions, and are then 

. . ( + + ) . actlvely transported lnto the blood by Na -K -stlmulated 

ATPase and an anion-stimulated ATPase, respectively. 

Hydronium and bicarbonate are produced from carbon dioxide 

and water by carbonic anhydrase. Ammonia is produced in the 

liver and kidney, primarily through deamination by glutamate 

dehydrogenase (Walton and Cowey, 1977). 



Fig. 4 A conceptual model of chloride cell 
function by Maetz. The location 
and directio~ of the various processes 
is noted, Na transport in the 
upper portion and Cl- transport 
in the lower. The contribution 
of carbonic anhydrase is noted 
in the middle of the figure. 

-I 
1 
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FIGURE 4 A MODEL OF CHLORID E CE LL 

FUNCTION 
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The procedures involved in ion transport in the kidney 

are not as well understood as those at the gill, but the 

result, reabsorption of most of the filtered electrolytes, 

is certainly well established. Carbonic anhydrase and 

+ + (Na -K )-ATPase are known to be present and essential for 

ion reabsorption (Hickman and Trump, 1969; Johnson, 1973; 

McCartney, 1976; Trump and Jones, 1977). Carbonic anhydrase 

generates hydronium which appears to be excreted here, 

while (Na+-K+)-ATPase is considered to be involved in the 

absorption of sodium. Minor involvement of the kidney in 

nitrogenous waste excretion, as mentioned earlier, precludes 

any major involvement of ammonium in heteroionic exchange. 

Uptake of chloride is thought to be passive in nature, a 

consequence of active sodium transport. If this is the case, 

the differences in sodium and chloride levels in the urine 

and the different QIO values for urine depletion of the two 

ions could be attributed to membrane permeability differences 

(Houston, 1973). However, these differences could also be a 

result of the presence of an active chloride absorption 

system. This is a distinct possibility, as the enzyme 

purported to be involved, (HC0 3-)-ATPase, has been reported 

in the eel kidney CMorisawa and Utida, 1976). 

3. Characterization of the Enzyme Systems Investigated 

C ) c ++ ) . .. C a Na -K -stlmulated Adenoslne Trlphosphotase ATP 

Phosphohydrolase E.C. #3.6.1.3) 
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This enzyme appears to be the active transport system 

for sodium and potassium. The actual enzyme molecule, 

which is imbedded in the cell membrane, is thought to consist 

of two functional, 100,000 molecular weight protein subunits 



and a 55,000 molecular weight glycoprotein. Tight 

association with approximately 30 phospholipids (termed 

the phospholipid annulus), whose fluidity appears to have a 

significant effect on activity, is required for the system 

to function, as are ATP. magnesium, sodium and potassium. 

The cardiac glycoside, ouabain, is a specific inhibitor of 

this enzyme. This provides a basis for its' postulated 

role 1n ionoregulation, as sodium transport in the intact 

cell 1S also sensitive to ouabain (Skou, 1972, 1975; 

Grisham and Barnett, 1973; Warren et al., 1974; Warren 

et al., 1975; Hokin, 1976). Since the general description 

above is based on works using enzym~from a wide variety of 

tissues and animals, it may not be entirely representative 

+ + of trout (Na -K )-ATPase, although, on the basis of present 

evidence, it seems to be quite similar. 
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Since appreciable amounts of sodium are transported, 

+ + and the presence of a specific transport enzyme, (Na -K )ATPase, 

has been demonstrated in many tissues, including those of the 

gill and kidney, this enzyme is considered to be involved 

in sodium transport (Jampol and Epstein, 1970; Maetz, 1974; 

McCartney, 1976). As well as producing sodium-potassium 

exchange, it can provide sodium-sodium and potassium-

potassium exchange, and may be the cause of this type of 

exchange in fish (Maetz, 1974). Further evidence for its' 

involvement is the fact that differences in activity observed 

between the gills and kidneys of freshwater-adapted animals, 

as contrasted to those adapted to seawater, appears to 

reflect the appropriate loads borne by these organs under 

the respective conditions (Kamiya and Utida, 1968, 1969; 
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Epstein et. al., 1969; Jampol and Epstein, 1970; Pfeiler 

and Kirschner, 1972; Sargent et. al., 1975; McCartney, 1976). 

However, the involvement of this enzyme should not be 

taken as firmly established, as some presently available data 

tend to suggest otherwise. One problem inherent to the salt­

water-freshwater loading argument is the fact that the 

directions of pumping are opposite, reflecting the substantially 

different osmoregulatory problems in each case. Also, the 

enzymes extracted from salt- and freshwater-adapted organisms 

appear to be substant~ally different in character (Motais, 

1970, Pfeiler and Kirschner, 1972). + + The (Na -K )-ATPase 

specific inhibitor, ouabain, shows no appreciable effect on 

sodium influx in the isolated gill of freshwater-adapted 

trout (Kerstetter and Keeler, 1976), or at least, a sub-

stantially smaller effect than acetazolamide (Payan et al., 

1975). This raises the question of whether or not the enzyme 

is actually involved in ion transport here. An alternative 

explanation can be found in work noting that the (Na+-K+)-

ATPase from freshwater-adapted trout gills is rather In-

. . .. ( + + ) P sensltlve to ouabaln, unllke other Na -K -AT ases 

(Davis and Wedemeyer, 1971; Pfeiler and Kirschner, 1972). 

Also, the enzyme demonstrates a very significant thermal 

dependence (high QIO)' showing very substantial activity 

reductions at low temperature. This is probably a function 

of its' intimate membrane association (Charnock et al., 

1975; Russell and Chambers, 1976), and may be the reason 

Pfeiler and Kirschner (1972) observed very low activity, 

from a trout gill preparation, when the assay temperature 

was 13 0 C, the acclimation temperature of the fish. This was 



in contrast to the substantial activity noted at 37 oC. 

Finally, a study of sodium transport and (Na+-K+)-ATF,ase 

activity 1n the intestine of goldfish has shown that the 

temperature adapt ion of the two parameters occurs in a 

significantly different manner (Smith and Ellory, 1971). 

(b) (HC0 3-)-stimulated Adenosive Triphosphotase 

(ATP Phosphohydrolase E.C.#3.6.1.3.) 

Maetz (1974) suggested the presence of an active 

chloride pump in the freshwater adapted gill, and also 

noted the presence of an obligatory chloride: bicarbonate 

exchange. The presence of a membrane-associated ATPase not 

requiring sodium or potassium, and not inhibited by ouabain, 

has been reported in the gills of trout and eels (Kerstetter 

and Kirschner, 1974; Solomon et al., 1975). Although 

direct evidence linking it to the chloride pump mechanism 

is not readily available, (HC0 3-)-ATPase has recently been 

reported in eel gill, kidney, and intestine, where an 

adaptive change, relative to chloride transport 1n fresh-

and saltwater was observed (Morisawa and Utida, 1976). The 

. ( + +) .. ObV10US analogy to the Na -K -ATPase system 1S attract1ve. 

The location of this carrier is a problem. It has been 

suggested that the active component of chloride transport is 

located at the mucosal border, contrary to the model of 
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Maetz (1971). This is supported by the fact that inhibition of 

transport occurs from the external surface (Kerstetter and 

Kirschner, 1972; De Renzis, 1975). However, a major problem, 

with respect to the involvement of this enzyme in active 

chloride transport, is the fact that thiocyanide (SCN-), a 

specific inhibitor of both the enzyme and active chloride 
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uptake, produces different responses in each case (Kerstetter 

and Kirschner, 1974). Also, the activity of (HC0 3-)-ATPase 

appears to show no dependence on the level of chloride 

present (Kerstetter and Kirschner, 1974; DeRenzis, 1975; 

Solomon 

(c) 

et al., 1975). 

++ 
(Mg )-dependent ATPase (E.C.#3.6.1.3.) 

++ 
The presence of a (Mg )-dependent ATPase, often 

termed basal or ouabain-insensitive ATPase, has been reported 

in association with membrane preparations of (Na+-K+)-ATPase, 

++ ++ 
(HC0 3-)-ATPase, and (Ca -Mg )-ATPase from fish (Pfeiler 

and Kirschner, 1972; Kerstetter and Kirschner, 1974; Price, 

1976), similar to its appearance in other organisms. Its' 

presence requires that the activity of these enzymes be 

++ 
estimated as the difference between total and (Mg )-ATPase 

activity. Although the significance of this concurrent 

distribution is unknown at present, it has been reported, 

ln one case, 
+ + + 

that (Na -K )-and (Mg +)-ATPase were separable 

by both kinetic and physical procedures. This suggests that 

they are, in fact, different enzymes (Hoffman, 1973). 

Little information is available on the structure and/or 

function of this enzyme. If the (Mg++)-ATPase isolated by 

White and Ralston (1976) is indeed the basal (Mg++)-ATPase, 

and this bears some relation to the enzyme measured herein~ 

then the structure is probably a hexamer of six similar 

100,000 molecular weight subunits. Unfortunately, a possible 

function was not reported. As the three enzymes found in 

++ 
association with (Mg )-ATPase are implicated in transport of 

various ions, speculation regarding a role for this enzyme 

in magnesium transport is attractive, especially in the light 



36 

of the fact that certain cell functions are sensitive to 

magnesium levels (Wacker and Vallee, 1964; Dunn, 1974). 

This possibility is interesting as, although magnesium levels 

in plasma and erythrocytes show no thermal dependence, increases 

ln cardiac muscle and decreases in skeletal muscle and liver 

levels, related to acclimation temperature, have been observed 

(Houston et al., 1968; Murphy and Houston, 1977; Smeda 

and Houston, unpublished data). Unfortunately, it is not 

known whether active magnesium transport occurs in the tissues 

mentioned. In the case of erythrocytes, where some information 

is available, there is no evidence of active magnesium 

transport (Dunn, 1974). 

One final point, significant due to its' ommlSSlon from 

++ 
other studies of fish ATP~ses, is that the (Mg )-ATPase 

activity measured may not be entirely basal in origin. 

Two enzymes, a calcium-dependent and a calcium-independent 

++ 
(Mg )-ATPase, are known to exist. The latter appears to 

be the source of basal activity, as it requires only 

magnesium and ATP for activation, while the former demonstrates 

an absolute requirement for calcium. However, the level of 

calcium needed for stimulation - lOpM or less - is sufficiently 

low enough to be considered as contamination in normally 

prepared solutions. A special buffer is required to maintain 

levels low enough for dependence studies. 
++ ++ 

The (Ca -Mg )-
++ 

ATPase has been reported to form up to 28% of the basal (Mg )-

ATPase activity under certain conditions (Hasselbach, 1975; 

Robinson, 1976). 

In the light of the previous discussion with regard to 

this enzyme, the results concerning it will be presented, but 



any further discussion will not be undertaken. 

(d) Carbonic Anhydrase (Carbonate hydro-lyase E.C.#4.2.1.1.) 

Mammalian carbonic anhydrase is composed of one zinc 

ion and a single polypeptide chain, of about 260 amino acid 

residues, having a molecular weight of about 30,000. Although 

only limited evidence is available, it appears that fish 

carbonic anhydrase is similar, even to the point of specific 

inhibition by the sulfonamide acetazolamide. The enzyme 

catalyses, reversibly, the hydration of carbon dioxide. It is 

thermally insensitive (QIO=1.2 to 1.3) and produces some of 

the highest turnover numbers known for any enzyme (Davis, 

1961; Maren, 1967; Lindskog et al., 1971). 

The presence of carbonic anhydrase ln the erythrocytes, 

gills, and kidneys of freshwater fishes is firmly established 

(Maren, 1967). Maetz (1971) incorporates it into his model 

of gill ion transport, where it fuels the salt exchange 

process by generating hydronium and bicarbonate. Support for 

this postulated role is provided by the fact that acetazolamide 

causes a significant reduction in sodium efflux (Kerstetter 

et al. ,1970; Kerstetter and Keeler, 1976). In trout, unlike 

goldfish, chloride influx is not greatly affected by ace­

tazolamide injections, suggesting that it may not be involved 

in this species. However, this apparent anomoly can be 

explained by having the blood as the primary bicarbonate 

source and/or locating the chloride/bicarbonate exchange on 

the serosal boundary and the chloride pump on the mucosal 

boundary, reversing the organization suggested by Maetz (1971) 

(Kerstetter and Kirschner, 1972). That the enzyme participates 

in ion transport in the kidney is supported by data showing 
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that acetazolamide inhibits recovery of salt from the urine 

(Maren , 1967). 

Unfortunately, although the involvement of carbonic 

anhydrase is firmly established, little data on activity and 

relative distribution are available. Without this, the 

relative importance and degree of involvement is difficult 

to assess. 

4. Comments Upon the Physiological Relevance of In Vitro 

Enzyme Assays 

The maintenance of hydromineral balance in the trout 

has been previously established. The possible mechanisms 

that are involved have been outlined in earlier discussion. 

It would seem to be a relatively simple process to predict 

the responses required in the implicated transport systems to 

maintain constancy when stress is induced by, for example, 

an increase in ambient temperature. If, after extraction and 

assay, the changes in enzyme activity reflect the appropriate 

response, then evidence for the validity of the model on which 

the experimentation was based would be provided. If no 

correlations were apparent, then either an explanation must 

be given or a new hypothesis and model developed. However, 

the very nature of results from in vitro enzyme assays creates 

difficulties when in vivo responses are to be explained. 

Many potential pitfalls exist and not all can be eliminated. 

Most in vitro assays are conducted with the enzyme 

saturated l.e., operating at V ,while this condition is max 

rarely found in vivo. Changes in temperature affect enzyme-

substrate affinity -K - so that activity could be regulated m 

in this manner, rather than changes in the absolute amount of 
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enzyme. In fact, K can be positively modulated by temperature m 

producing actual increases in rate at lower temperatures, 

under non-saturation conditions. As well, conformational changes, 

generated by binding and/or release of substrates or co-factors, 

whose availability mayor may not be correlated to temperature 

or other factors, can change activity. In fact, temperature 

can produce a major change in the kinetic properties of what 

appears to be the same protein. The extreme case of this, 

the production of different isozymes, has often been observed. 

In addition, the degree of fluidity of the membrane can have a 

very great influence on the activity of membrane-associated 

enzymes. This may be another important site for control. 

Finally, the consideration of enzyme activity alone ignores 

the possibility that special structural organization may be 

significantly involved in the process in question (Fry and 

Hochachka, 1970; Hochachka and Sumero, 1971; Hochachka, 1973; 

Hazel, 1973). In short, the presence or absence of in vitro -

in vivo correlations, although perhaps indicative of actual 

trends and producing valuable information, must be interpreted 

with great caution. 
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III MATERIALS AND METHODS 

1. Source and Maintenance of Test Organisms 

Rainbow trout used in this study were obtained from a local 

supplier, Goosen's Trout Farm, Otterville, Ontario. The animals 

were fed daily, ad libertum, with a commercially-prepared 

pelleted trout food (Purina: Trout Chow) and were judged, on 

the basis of appearance, feeding activity, and the lack of any 

overt disease symptoms, to have been in good health. Groups 

o were acclimated to 2, 10 and 18 C. on a twelve hour darkness 

photoperiod regime for at least three weeks prior to sampling. 

Illumination ranged from 11 to 18 foot-candles at the water 

surface. Dechlorinated St. Catharines tap water, typically 

-1 -1 140 mg.l total hardness, 94 mg.l total alkalinity, pH 7.6 

was used. Dissolved oxygen levels were 80% or better of the 

saturation capacity. Water analysis determinations were conduced 

in accordance with American Public Health Association - approved 

methods (A.P.H.A., 1971) 

2. Holding Conditions 

Three fibreglass Frigid Unit MT-700 tanks of 5001 capacity, 

served as acclimation chambers. Photoperiod control was achieved 

by means of plywood hoods equiped with light bulbs and automatic 

timers. Temperature control in each tank was effected by a 1/12 

horsepower "Minnow-Cool" circulator/cooler working concurrently 

with a 1000 watt stainless steel heating coil. The latter 

component was regulated by a heat control unit, constructed by 

the Brock University Technical Services Department, accurate to 

O.loC. All temperatures were verified by means of a Fisher 

certified thermometer. Water was continuously filtered through 
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polyurethane foam filter pads, which were cleaned, along with 

removal of excess food and feces, on a regular basis. In 

addition, a continuous supplementary flow of dechlorinated water, 

sufficient to provide a complete turnover one to three times 

daily, was provided for each tank. 

Although research was conducted In different years, the 

ATPase study in the fall (October to December) of 1975 and the 

carbonic anhydrase in the late summer-fall (September to 

October) of 1976, holding conditions were kept as constant as 

possible. 

3. Sampling and Electrolyte Determinations 

Animals were netted, stunned by a blow to the head, and 

blood samples quickly removed, by caudal puncture, into syrlnges 

previously rinsed with ammonium heparin (Sigma Chemical Co.: 

-1 
50,000 units.ml ). A Fisher Model 59 blood centrifuge was 

used to separate the plasma, which was then immediately decanted 

into plastic vials, capped and stored at -80 o C until analyzed. 

Gill and kidney tissue samples were used immediately, as noted In 

the enzyme assay procedures that follow. 

Plasma chloride levels were estimated by means of a Buchler-

Cot love chloridometer using Versatol (Warner-Lambert Co.) as a 

standard. Plasma sodium and potassium were estimated with a 

Unicam S.P.90 Atomic Absorption Spectrophotometer operating In 

the emission mode and using standards produced by British 

Drug House (B.D.H.). 

4. Enzyme Assay Procedures 

Deionized, glass distilled water and reagent grade chemicals 

were used throughout this study. Also, all enzyme preparation 

was conducted with equipment held on ice, in a cold room held 



o at 4 C. 
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+ +. -. ( ++) (a) (Na -K )-stlmulated, (HC0 3 )-stlmulated, and Mg -

dependent ATPase Assay Procedure. 

The technique that follows is based on those reported 

by Kamiya and Utida (1968), Kerstetter and Kirschner (1974), 

and Murphy and Houston (1974) 

Gill arches from the right side of the fish and 

the whole kidney were placed in an ice-cold, 250 mM sucrose, 

40 mM Tris-acetate, 5 mM E.D.T.A. (Ethylenediaminetetra-Acetic 

Acid), pH 7.5, solution until completion of sampling. Two 

fish per day were sampled. Gill filaments (1.2 to 3:5 g, estimated 

by volume displacement) were cleared, with forceps, of ass-

ociated mucus and blood, removed from the arches, and placed 

with 9 volumes (less 3 to 5 ml of solution for a rinse that 

was subsequently added) of fresh solution in a 30 ml glass 

homogenizing vessel. Kidney tissue (0.8 to 2.0g) was treated 

similarly. Each sample was homogenized using 7 strokes of a 

motor-driven teflon pestle. The homogenate was then centri­

fuged at about OOC for 30 minutes at 10,000 G. The super-

natant was decanted and recentrifuged 
o 

at about 0 C for 40 

minutes at 100,000G. The final pellet was respended in 2.5 ml 

of an ice-cold 40 mM Tris-acetate, 5 mM E.D.T.A.m 0.1% sodium 

deoxycholate, pH 7.5 solution using an all-glass hand homogenizer. 

Enzyme preparations were held on ice for the duration of the 

procedure. The protein content of these final enzyme preparations 

(0.5 to 1.5 mg) were determined by a modified Lowry technique 

(Albro, 1975, procedure D) using bovine serum albumin (fraction IV) 

as the reference standard. Table 1 indicates the final 
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concentrations of the components of the assay media present 

in the 2 ml final volume. 

TABLE I - Media composition for ATPase Estimations 

Assay 
++ (Na+/K+) ++ 

(HC0 3 
- ) (Mg )-ATPase (Mg )-ATPase 

in relation to ATPase in relation to 
(Na+/K+) ATPase (HC0 3-) ATPase ATPase 

TRIS-acetate, 
roM 40 40 40 4Q 

pH 7.5 7.S 7.5 7.5 

MgC1 2 , roM 5 5 5 5 

ouabain, roM 0.5 0.5 0.5 

KSCN, mM 5 5 5 

NaCl, roM 120 100 

KCl, mM 20 

NaHC0 3 ,roM 5 

Although potassium and bicarbonate were removed from the 

++ ++ 
solutions used in estimation of (Mg Na-K) -and (Mg HCO') -ATPases , 

. + + 3 
respectively, which should have eliminated any (Na -K )-or 

(HC0 3-)+ATPase activity, ouabain and thiocyanate, specific 

inhibitors of the respective enzymes, were added as indicated 

in Table I, to ensure that no~urlous activity occured. These 

inhibitors were also added to the assay solutions for (HC0 3-)­

+ + and (Na -K )-ATPase, as shown in Table I, for the same reason. 

Also, it should be noted that the HC0 3- concentration employed 

is well below the optimum found by Kerstetter and Kirschner 

(1974). However, it is comparable to estimated cellular 

levels (Kerstetter and Kirschner, 1972), and preliminary 
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studies with the procedure used in this study indicated similar 

activities with either concentration, contrary to the earlier 

evidence. 

Aliquots of enzyme preparation (0.2 ml) were preincubated 

for 15 minutes before initiation of the reaction through addition 

of 0.2 m.l of 30 mM ATP (Adenosine 5' Triphosphate Disodium 

Dihydrogen Salt, B.D.H.). Assay incubations were conducted 

at the appropriate acclimation temperature and also at a common 

temperature, (25 0 C). The reaction was stopped after 15 minutes 

by the addition of 0.5 ml of ice-cold aqueous trichloroacetic 

acid. The test tubes were centrifuged, in a clinical centrifuge 

at 40 C for 10 minutes at about 500 G to remove the denatured 

protein, and aliquots were then removed for duplicate determin-

ations of inorganic phosphate by a modified Fiske and Subba 

Row (1925) procedure. (Na+-K+)ATPase activity was taken to 

. + + ++ be the dlfference between the (Na -K )-and (Mg )-ATPase 

activities. A similar procedure was employed in determinations 

of (HC0 3-)-ATPase activity. Activities are reported in 

pMoles Pi liberated.15 min-l.mg protein-I. 

(b) Carbonic Anhydrase Assay Procedure 

This assay technique is based on procedures reported 

by Armstrong et ale (1966), Duff and Coleman (1966), and 

Verpoorte et ale (1967) which take advantage of the fact that 

this enzyme can function as an esterase on certain artificial 

substrates. 

Since the red blood cells contain large amounts of 

carbonic anhydrase, and substantial quantitites of blood are 

found in the gill and kidney, it was necessary to compensate 

for contamination from this source in gill and kidney carbonic 
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anhydrase activity estimations. This is the reason for the 

various activity and protein estimates, and the complex specific 

activity calculations that appear in this procedure. 

Gill arches from the right side of the fish and the whole 

kidney were placed in an ice-cold 250 mM sucrose, 40 mM Tris­

H2S0 4 ,pH 7.5 solution until completion of sampling. Two to 

three fish were sampled per day. Gill filaments (0.9 to 2.0g) 

were cleared as in the ATPase determination, stripped from the 

arches, and placed with 19 volumes of fresh solution (less 6 ml 

for a rinse that was subsequently added) in a 30 ml glass 

homogenizing vessel. Kidney samples (1.0 to 2.0 g) were 

similarly treated. 1.0 ml of fresh whole blood was placed ln 

a wellheparanized homogenizing vessel, diluted 1:20 with 

homogenizing solution (with provision for a rinse), and vortexed 

to ensure adequate mixing. All samples were homogenized using 

7 strokes of a motor-driven teflon pestle, and then centrifuged, 

at about OOC for 30 minutes at 500 G, to remove debris. 

Preliminary investigation indicated that this centrifugation 

procedure provided a reasonable compromise between precision, 

activity, and reproducibility. The supernatants were held on 

ice for the rest of the procedure. Total protein (290 to 840pg) 

was estimated by the procedure previously noted. Hemoglobin 

content (28 to 488)lg) of blood and tissue preparations was 

determined by the alkaline hematin method (Anthony, 1961) 

using Hematrol (Clinton Laboratories) as a standard. 

The buffer for the assay reaction was a 125 mM Tris-H2S0 4 , 

pH 7.5 solution. 50 pM of the carbonic anhydrase specific 

inhibitor acetazolamide was also prepared in this buffer. 

Preliminary work indicated that, in the final reaction mixture, 
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inhibition appeared to be essentially constant at acetazolamide 

concentrations in excess of 0.2pM. The concentration noted 

The above, giving a final level of 20 ~M, was used throughout. 

substrate for the reaction, 3 roM para-nitrophenol-acetate 

(54.4 mg + 3 ml acetone to 100 ml with water), was prepared 

fresh daily and cooled to reduce spontaneous degradation. The 

substrate concentration was monitored, spectrophotometrically, 

throughout the day to check for any changes. Precipitation and 

subsequent reduction in concentration occasionally occured, 

necessitating the preparation of fresh solution. 

0.1 ml of enzyme preparation and 0.1 ml of homogenizing 

medium was added to a small test tube containing 0.8 ml of 

buffer. Preincubation, at the appropriate temperature, was 

carried out for 2 minutes in a temperature-controlled water 

bath. 1.0 ml of substrate solution was added to the tube, 

swirled to mix, and this was introduced into the thermoregulated, 

microflowthrough cell of a Baush and Lomb Spectronic 700 

spectrophotometer. The change in optical density at 348 mu, the 

isosbestic point for the products of the reaction, was recorded 

on a Fisher Omniscribe chart recorder for 2 to 3 minutes. This 

was then repeated, and the mean value obtained was considered 

to represent the total esterase activity. The assay was 

repeated, in duplicate, using the buffer containing acetazolamide 

to generate the non-carbonic anhydrase esterase activity. The 

difference was taken as the acetazolamide-inhibited or aceta-

zolamide-sensitive carbonic anhydrase activity and was recorded 

as ~Moles of p-nitrophenol + p-nitrophenolate produced per minute. 

This method of estimation was necessary as other esterases were 

present in the preparations. Specific activities were calculated 
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as follows: BLOOD 

( . -1) blood MMoles.mln . -1 . -1 
(g total blood profein)-(g blood hemoglobin)=pMoles.mln .g proteln 

GILL and KIDNEY 

(tissue uMoles.min-l)-(blood UMoles.min-l.~ tissue hemoglobin) 
/' 1- blood hemoglobin 

(g total tissue protein)-Cg tissue hemoglobin) 

. -1 . -1 = f Moles .mln . g proteln 

5. Statistical Analysis 

Descriptive and inferential statistical procedures were 

carried out using a Wang 2200 calculator with programs provided 

by the Wang Corporation. The descriptive statistical program 

was modified to produce 95% confidence intervals (Alder and 

Roesslar, 1968). The one-way analysis of variance program 

was modified to perform tests on logarithmically-transformed 

(log e) data. This procedure improves approximation to normal 

distribution in small samples (Alder and Roesslar, 1968). 

Linear regression analysis was conducted in an attempt to 

detect any potentially significant relationships between 

selected variables, with emphasis upon those between weight 

and electrolyte levels and weight and enzyme activities. 

Relations between different electrolytes, as well as those 

between electrolyte concentration and enzyme activity, were 

also considered. In the latter cases, where weight was not 

involved, only enzyme activities determined at in vivo temperatures, 

and ion level-enzyme relations having previous substantiation 

were considered. 



6. Effects of Temperature on Enzyme Activity 

In order to examine the effects of temperature on the 

enzyme activities that were measured, QIO values were cal­

culated, using the following formula and the appropriate mean 

activity estimates. 

Kl and K2 are enzyme rates 

Tl and T2 are temperatures 
. °c In 

QIO values calculated from within a group (ie. 20 fish 

assayed at 20 C amd 2S0C) are actual QIO values, while those 

generated from tests between groups (ie. 10°C fish at 100C and 

18°C fish at 18 0C) are more correctly described as thermal 

coefficients. The QIO values generated reflect the effect of 

temperature on enzyme activity while the thermal coefficients 
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indicate relative changes in activity between fish acclimated to 

different temperatures. To be more precise, these values 

reflect the amount of stimulation on the rate of a reaction that 

is induced by a lOCo rise in temperature. A QIO of 2 indicates 

that the reaction doubles with every 10 CO rlse, while a value 

of 3 indicates a tripling, and so on. Although a QIO value 

for a particular enzyme is directly related to the temperature 

range and substrate levels under which it was estimated, and, 

under similar conditions, different processes can demonstrate 

widely varying values , depending on the system in question, a 

value of 2 is often considered as typical of biological processes 

(Keeton, 1967; Hochachka, 1973; Hazel and Prosser, 1974). 
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IV. RESULTS 

In the figures presented in this section the mean is 

represented by a horizontal line, the 95% confidence interval 

of the mean by a rectangle about the mean, and the range by a 

vertical line. Significant difference, or the lack of it is 

generally obvious upon examination of the 95% confidence inter­

vals. The results of the extensive analysis of variance In­

vestigation are referred to only in the text. Raw data are 

tabulated in the appendix. 

1. Physical Characteristics and Plasma Ion Levels 

The specimens used in the ATPase and carbonic anhydrase 

sections of the study did not differ in terms of weight and 

length (Figure 5). This was also true with respect to 

electrolyte levels. Acclimation temperature had no 

significant effect upon the regulation of plasma sodium con­

centration, and in general, this was true of chloride as well. 

It should be noted, however, that chloride levels in fish 

used in the carbonic anhydrase study tended to decline, although 

not significantly, at higher acclimation temperatures. In 

both groups plasma potassium was significantly (P<O.05) 

elevated at higher temperatures. These findings are similar 

to earlier studies (Houston, 1973), and confirm that the 

rainbow trout has the ability to maintain the level of major 

plasma electrolytes constant, despite the thermal stresses 

upon ionic regulation previously considered. Elevation of 

plasma potassium at higher temperatures is also a common 

observation in studies upon salmonids, although the basis for 

this is not yet known. Analysis of variance comparing each 



Fig. 5 Length (upper) and weight (lower) for 
the two batches of fish, ATP (fish 
used in ATPase estimations) and CA 
(fish used in carbonic anhydrase 
estimations) acclimated to 2°, 100 

and laoC. Mean (horizontal dash), 
95% confidence interval of the mean 
(block about the mean) and range 
(vertical line) are indicated. 
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Fig. 6 Plasma Na+ (left), plasma K+ 
(center) and plasma Cl- (right) 
for the two batches of fish, 
ATP (fish used in ATPase estimations) 
and CA (fish used in carbonic 
anhydrase estimations) acclimated 
to 2°, 10°, and laoC. Concentrations 
are in mEq.l-l. 
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parameter from the ATPase group with its counterpart in the 

carbonic anhydrase group, at each acclimation temperature, 

indicated only one significant difference. At lOoC the mean 

plasma chloride level of the ATPase fish was significantly 

higher (P<O.Ol). The absolute difference (4.5 mEq.l-l) 

was, however, only 3.5% of the total chloride. 
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The plasma sodium/chloride ratio was examined for evidence, 

with regard to the hypothesized interrelationship between 

sodium and chloride regulatory mechanisms. Mean plasma sodium 

and chloride values were employed in the calculation of the 

ratios, which appear in Table 2. It is evident that, in 

both groups, the ratio was essentially constant. 

TABU 2 Plasma Sodium/Chloride Ratio 

ATPase Group Carbonic Anhydrase Group 

20 C 1.14 1.16 

lOoC 1.15 1.lS 

lSoC 1.14 1.18 

On the basis of these results it was concluded that the 

two groups of test organisms were sufficiently similar to 

justify subsequent comparisons. 

2. Enzyme Activities 

(a) 
++ 

(Mg )-dependent ATPase 

There appears to be little difference between 

(Mg++)-ATPase activities determined in association with 

( + +) - ( . ) • Na -K -ATPase and HC0 3 -ATPase Flgure 7 , desplte the 

differences in medium composition. At common temperature, 



Fig. 7 (Mg++)-ATPase activity of gill and 
kidnSY extracts for fish acclimated 
to 2 , 100 and l8°C. The enzyme 
assays were done at 250 C (open 
bars) and at the respective 
acclimation temperatures (closed 
bars) •.• The (ag,t+) -ATPase acti vi ty 
associated with the (Na+-K+)-ATPase 
estimation is on the left side 
while that associated with the 
(HC01)-ATPase estimation appears 
on the right. QlO's ( ) and. 
thermal coefficients [J are given 
for the changes in enzyme activity 
measured. 

, 

·1 
I 
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gill preparations were not significantly different, while 

kidney preparations were characterized by a significant 

(P < 0.05) decline in activity with acclimation temperature. 

Both gill and kidney preparation activities increased 

significantly (P<O.Ol) with acclimation temperature, when 

assays were conducted at in vivo temperatures. Gill QlO values 

were in the medium range (1.4 to 1.7), while those of kidney 

were relatively lower (1.2 to 1.5). 

() ( + +) . b Na -K -stlmulated ATPase 

The activities of both gill and kidney preparations 

decreased significantly (Gill, P<:0.05; Kidney, P<:O.Ol) 

with respect to acclimation temperature, when 

assayed at 25 0 C(Figure 8). At in vivo assay temperatures, 

however, both preparations showed significant activity 

increases (P < 0.01 ) with elevated acclimation temperatures. 

Gill QIO values were, for the most part, in the range of 

2.1 to 2.2. A particularly high value (5.3) was obtained In 

the case of the 20 C fish. Undoubtably, this resulted from 

the very low activity encountered in gill preparations from 20 C 

fish assayed at in vivo temperature. Kidney QIO values were also 

relatively high, ranging from 2.3 to 3.0. 

(c) (HC0 3-)-stimulated ATPase 

Gill and kidney preparations did not differ significantly 

In activity when incubated at the common temperature (Figure 9). 

The 10 0 and 18 0 C fish also showed no significant differences In 

activity from either gill and kidney at in vivo temperatures. A 

significant difference (P < 0.01) was observed, in both activities, 

o 
at 2 C. QIO values were low in gill (1.1 to 1.3) and kidney 

(1.1 to 1. 2) . 



Fig. 8 (Na+-K+)-ATPase activity of gill 
and kidney extracts for fish 
acclimated at 2°, 100 and 18°C. 
The enzyme assays were done at 
25°C. (open bars) and at the 
respective acclimation temperatures 
(closed bars). QlO's ( ) and 
thermal coefficients [J are 
given for the changes in enzyme 
activity measured. 
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Fig. 9 (HCO-J)-ATPase activity of gill 
and k~dney extracts for fish 
acclimated at 2°, 10° and l80 e. 
The enzyme assays were done at 
25°C. (open bars) and at the 
respective acclimation temperatures 
(closed bars). Ql' ( ) and 
thermal coefficien~ss [J are given 
for the changes in enzyme activity 
measured. 
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(d) Carbonic Anhydrase 

No significant differences In the carbonic anhydrase 

activity of blood were observed at 25 0 C (Figure 11). On the other 

hand, significant increases (P <0.01) were apparent when assays 

were conducted under in vivo temperature conditions. A significant 

decrease (P<O.OI) in activity of gill preparations from ISoC 

fish was noted both at 25 0 C and ambient temperature (Figure 10). 

A significant increase (P<0.05) in kidney preparation activity, 

with respect to acclimation temperature, was noted under both 

incubation temperature regimes. The QIO values for blood 

(1.2 to 1.3), gill (1.2 to 1.3) and kidney (1.1 to 1.3) were 

consistently low, as is typical of values reported for this 

enzyme. 

Although the values reported here have been corrected, 

as previously outlined, it should be noted that from 5 to 45% 

of total branchial and 30 to 135% of total renal carbonic 

anhydrase activity appeared to be associated with blood. 

3. Gill/Kidney Enzyme Activity Ratios 

This data is presented in figure 12 and was obtained 

using the mean activity values of the various enzymes. 

(a) ++ (Mg )-dependent ATPase 

++ ++ 
The values obtained from (Mg -Na-K)- and (Mg HCO) 

3 
ATPase estimations showed similar trends. Both 2S o C and 

ambient assay temperature reglmes showed increases in the 

ratio with elevated acclimation temperature. However, the 

increase at the common temperature was caused primarily by 

a decrease in kidney activity, with temperature, while at 

in vivo temperatures the increase results mainly from an 

increase in gill activity. 



Fig. 10 Carbonic anhydrase activity of 
gill and kidney extracts for 
fish acclimated at 2°, 100 and 
18°C. The enzyme assays were 
done at 250C. (open bars) and 
at the respective acclimation 
temperatures (closed bars). 
Q10's ( ) and thermal 
coefficients [J are given for 
the changes in enzyme activity 
measured. 



58 

FIGURE 10 CARBONIC ANHYDRASE ACTIVITY I 
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Fig. 11 Carbonic anhydrase activity of 
blood extract for fish acclimated 
at 2°, 100 and 180C. The enzyme 
assays were done at 25°C. (open 
bars) and at the respective 
acclimation temperatures (closed 
bars). QIO's ( ) and thermal 
coefficients [J are given for the 
changes in enzyme activity 
measured. 
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Fig. 12 Gill/kidney activity ratios of the 
enzymes (Mg++)-ATPase, (Na+-~)­
ATPase, (HCO-3)-ATPase, and carbonic 
anhydrase for fish acclimated to 
2°, 10° and lSoC. Values presented 
were calculated from mean activity 
estimates. The results based on 
the common temperature assay 
procedure are represented by a 
cross (+) whereas those generated 
by the in vivo procedure are 
represented by a dash (-). For 
the case of (Mg++)-ATPase the 
symbols presented on the graph 
indicate w~ic~ results are based 
on the (Na -K )-associated 
estimation and which on the 
(HCO-3)-associated estimation. 
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FIGURE 12 GILL/KIDNEY ACTIVITY RATIOS 

(Mg++) ATPase (Na+-K+) ATPase 

~; 2:4 

~ 
1.2 

-t: • r 0.8 

" . 
. ~: 

? 7~-

0 

18° 10° 18° 

(HCO;) ATPase CARBONIC ANHYDRASE 

1.6 30 

1.2 20 

0.8 to 

0.4 o 

ACCLIMATION TEMPERATURE - °C. 



() ( + +). P b .Na -K -stlmulated AT ase 

The increase in the ratio noted here, with respect 

to temperature, is caused primarily by a decrease, under 

common temperature incubation conditions, of kidney activity. 

In the case of incubations at ambient temperatures~ the 

increase seems to be related to an elevation, with increasing 

acclimation temperature, in gill activity. 

(c) (HC0 3-)-stimulated ATPase 

The ratio is relatively constant, with respect to 

acclimation temperature, at the 2S oC incubations. In 

contrast to this, under in vivo conditions a steady increase, 

predominantly due to increased gill activity at higher temp-

eratures, is noted. 

(d) Carbonic Anhydrase 
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The decrease in the ratio, with respect to acclimation 

temperature, noted here, in data from both incubation temp-

erature regimes, is the result of increasing kidney activity 

coupled with a drop in gill activity at lSoC. 

4. (Na+-K+)-ATPase/Carbonic Anhydrase Ratio In Gill and Kidney 

Although it lS appreciated that the problems inherent 

In comparison of In vitro estimates of different enzymes 

assayed by different assay procedures are many, it is, 

nevertheless, of interest to examine, in the gill and kidney, 

variations, with acclimation temperature, in the activity 

+ + ratio of (Na -K )-ATPase to carbonic anhydrase. In doing 

+ + this the mean activities of (Na -K )-ATPase and carbonic 

anhydrase, in the gill and kidney, were first converted to a 

common expression of specific activity - ~M.g protein-l.IS min- l 

The ratios were subsequently calculated and appear in 



Table 3. With the in vivo incubation temperature regime, 

the gill shows a dramatic increase in this ratio, especially 

between 2 and 100C., while the kidney demonstrates a modest 

decline. At 2S oC the gill ratio appears relatively constant, 

while the kidney again shows a decline. 

TABLE 3 Ratio of (Na+-K+)ATPase/Carbonic Anhydrase 
Gill and Kidney 

In 

Ambient 2S oC 

Acclimation 
Temperature Gill Kidney Gill 

20 0.2 6 S. 3 6. S 

10 0 1.7 S 3.3 S . 3 

18 0 3.7 27 .7 6.4 

S. Correlation Analysis 

Kidney 

306.8 

119.2 

S8.9 
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The results of the correlation analysis referred to earlier 

appear in Table 4. Since a large number of tests (about ISO) 

were performed, it was recognized that, at the O.OS level, at 

least 8 spurious significant findings might occur by chance 

alone. Furthermore, with the relatively small sample size 

employed (N=14) significant correlations might well be missed. 

Therefore, in addition to significant correlations at the O.OS 

level, which were noted as such, correlations having significance 

between 0.1 and O.OS were also included. These values, in 

conjunction with their sign, positive or negative, which is 

indicative of a direct or inverse relationship, respectively, 

were considered as suggestive. In the table any correlations 

common to the two groups were placed opposite each other. 

It is of interest that, of the four correlations common 
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TABLE· 4 (a): Weight versus Ion Levels and Height versus 
Enzyme Activities~ Results of Correlation Analysis 

ATPase Group 

+ P.Na ~06.3+0.1S x* 
++ 

G.(Mg Na_K)-ATPase 3.1S - 0.0004 x 

K.(Mg++Na_K)-ATPase 0.04 + O.OOS x 

K.(HC0 3-)-ATPase -1.32 + 0.01 x 

K.(HCO~-)(2SoC)-ATPase -O.Sl + 0.01 x 
+of 0 

K.(Mg HC03)(2S C)-ATPase 0.26 + 0.0004 x 

100C P.K+ 

G.(Nai -K+)(250C)-ATPase 
- 0 

G.(HC~~ )(2S )-ATPase 

K.(Mg HC03)-ATPase 

+ P.Na 
P.K+ 

P.Cl-
- 0 K.(HC0 3 )(2S C)-ATPase 

B - Blood 

G - Gill 

K - Kidney 
® regression equation Y 

* - p<O.OS 

NOT MARKED O.l>p<O.OS 

2.91 - 0.005 x 

1.69 - 0.002 x 

5.83 - 0.01 x 

4.12 - O.OOS x 

* 126.S + 0.08 x 

* 7.41 - O.OlS x 

106.6 + 0.08x 

4.12 - 0.007 

= A+Bx 

* 

CarbonlC Anhydrase 

Grou 

144.4 + 0.1 x 

P.K+ 6.2 - 0.01 x 

it 
B.C.Aase -0.22+0.0Sx 

(2S 0 C) 

G.C.Aase 14.7 - 0.02x 



2°C 

lOoC 
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TABLE 4 (b) :Ion Levels versus Ion Levels and Ion Levels versus 
Selected Enzyme Activities: Results of Correlation 
Analysis 

ATPase Group 

+ -P.Na vs. P.Cl 79.0 + 0.35 x 

P.Na + P.K+ -3.0 0.03 vs. + x 

P.Na + P. Cl vs. - 11.1 - 0.06 x 

P.Cl - K. (HC0 3 -) VS. 

-ATPase -18.9 + 0.16 x 

+ P.Na vs. P.Cl-
i: 

30.5 + 0.6 x 

* 

* 

P.K. vs. P.Cl -139.0 - 2.67 x 

+ + + P.K VS. G.(Na -K ) 

B - Blood 

G - Gill 

K - Kidney 

-ATPase * 0.22 + 0.08 x 

® - regression equation Y = A+BX 

* - P..(0.05 

NOT MARKED 0.1> p< 0.05 

Carbonic Anhydrase 

+ 
P.Na VS. P.Cl 

P.K+ P.Cl -VS. 

+ P.Na VS. K.C.Aase 

+ P.Na vs. P.Cl-

Group 

26.1 + 0.69 x 

126.3 + 2.21 x 

0.16 - O.OOlx 

* -11.3 + 0.93 x 

+ * P.Na vs. K.C.Aase 24.8 - 0.15 x 

P.Cl- VS. K.C.Aase 16.6 -0.12 x 

,.~ 



to both groups, only one lS significant (P < 0.05) In both 

groups. However, in these cases the signs of correlation 

were identical and the slopes of the regression lines were 

generally similar. This supports the use of the above 

procedure in situations of this kind where suggestive trends 

are of interest. Several trends are discernible in the data. 

About twice as many correlations occur in the ATPase group 

of fish than in the carbonic anhydrase group. It also 

appears that more correlations occur at 20 and lSoC than at 

100C. These two are probably spurious trends resulting 

from the fact that relatively few correlations were detected 

in the data. However, the latter trend, where the least 

number of correlations occured at 100C, may result from the 

extremes of the temperature tolerance range, especially 

lSoC, producing more stress on the animal. 

Correlations between weight and ion concentrations, 

when present, show the following relationships, without 

exception. Sodium and chloride vary directly with weight, 

while potassium varies inversely. Four of the seven 

correlations were significant at the 0.05 level. On the 

other hand, of the eleven correlations occuring between 
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weight and enzyme levels, only one, blood carbonic anhydrase, 

was significant at the 0.05 level. These trends often 

demonstrated very minor slopes of regression, a relationship 

with an enzyme whose function is unknown (CMg++)-ATPase), and/or 

correlation with enzyme activities at 25 0C. It is apparent 

that little conclusive information lS available from this latter 

analysis. 
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The most useful information comes from the examination 

of the interrelationships between electrolyte concentrations. 

Chloride correlated with sodium significantly (P(O.05),three 

of the five times a relationship was observed. The only 

anomoly was that, while the relationship was positive in both 

000 
groups at 2 and 18 C, the one· occurrancenoted at 10 C was 

negative. Plasma sodium to potassium and plasma potassium 

to chloride correlations appeared but these trends were neither 

consistant nor significant. Although only a few correlations 

between plasma ion concentration and enzyme activities were 

present, those observed were interesting. o 0 At 2 and 18 C plasma 

sodium demonstrated a significant negative relationship with 

kidney carbonic anhydrase, while at 18 0 C plasma chloride also 

showed a negative relationship with this enzyme. In addition, 

plasma chloride and kidney (HC0 3-)-ATPase showed a significant 

positive relationship and plasma potassium demonstrated a 

significant positive relationship with gill CNa+-K+)-ATPase. 

6. Summary of Results 

1. Plasma sodium and chloride levels are stable with 

respect to acclimation temperature, in contrast to 

plasma potassium which rises with higher acclimation 

temperatures. 

2. For the most part, assays done at a common temperature 

yielded substantially different activities and apparent 

trends, with respect to acclimation temperature, than 

assays done at in vivo temperatures. In the latter 

case all of the enzymes examined, with the exception 

of gill carbonic anhydrase, showed elevation of activity 



67 

as acclimation temperature increased, although the 

amount and degree varied. 

3. When the results of the assays conducted at in vivo 

temperatures are considered, all of the enzymes, with 

the exception of carbonic anhydrase, demonstrated an 

increase in the gill/kidney activity ratio as acc-

limation temperature increased. 

( + +) /. . 4. The Na -K -ATPase carbonlc anhydrase ratlo, when the 

results of the assays conducted at ambient temperatures 

were considered, increased dramatically in the gill 

and decreased in the kidney, with respect to elevated 

acclimation temperature. 

5. Although the results of the correlation analysis were 

far from conclusive, some interesting trends appeared. 

They are as follows (a) The least number of correlations 

occured at IOoC. (b) It appears that plasma sodium and 

chloride vary directly and potassium inversely, with 

weight. (c) Plasma sodium and chloride showed a 

consistant, significant relationship, especially at 

20 and ISoC. (d) Correlations between plasma sodium 

and chloride and carbonic anhydrase, plasma chloride 

-) . + + and HC0 3 -ATPase and plasma potasslum and (Na -K )-

ATPase, appeared. 
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V. DISCUSSION 

Discussion of the results obtained in this study has been 

divided into three broad areas to facilitate interpretation. 

The first, Procedural Techniques, involves examination of 

the effects of the incubation temperature regimes employed, 

an interesting observation which has derived from the procedure 

ff f .. . ( ++) used, the e ect 0 assay medlum lonlC strength upon Mg -

ATPase activity, and some comments regarding the carbonic 

anhydrase assay protocol. The subsequent section on Ion 

Regulation is concerned with plasma electrolyte levels, and 

the results of the correlation analysis. Enzymes and Ion 

Transport, the third area, considers the relative abundance, 

importance, and distribution of the enzymes studied, in relation 

to generally-accepted models of ionic regulation in freshwater 

fishes. Some modifications, consistant with the results of 

this study, are suggested. As well, a model relating chloride 

cell structure, enzyme distribution and sodium uptake, is presented. 

1. Procedural Techniques 

(a) Effect of Incubation Temperature Scheme 

The high common and ambient temperature incubation 

procedures produced significantly different estimates of 

activity, in relation to increasing acclimation temperature. 

+ + ++ 
In the case of (Na -K )- and (Mg )-ATPases the activities 

actually indicate opposite trends with respect to acclimation 

temperature. (HC0 3-)-ATPase and carbonic anhydrase, on the 

other hand, showed similar trends, although differences in 

absolute activity were present. Recent studies upon membrane 

lipids may have some bearing upon this. 



It is generally conceded that most poikilotherms, 

including fish, change the fluidity of their membranes by 

manipulating the degree of unsaturation of component phospho­

lipids - greater unsaturation as temperature decreases -

in response to environmental temperature (see Hazel, 1973, 
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for a review). Since membrane lipid composition and conform­

ation have a definite and well-defined influence upon the 

activities of membrane-associated enzymes (Grisham and Barnett, 

1973; Hazel, 1973), such changes may account, in part, for 

the activity observed. For example, incubation of, preparations 

from 2oC-acclimated fish at 2S o C may generate spuriously high 

activity in membrane-associated enzymes due to the creation of 

an abnormally fluid membrane-lipid environment. Incubation 

at 20 C produces fluidity similar to that In vivo and presumably, 

more representative enzyme activity. 

It has been shown that many metabolic functions are 

stabilized, over wide temperature ranges by the adaptive 

effects of isozyme systems and/or temperature-dependent 

modulation of existing enzymes (Hochachka, 1973; Hazel and 

Prosser, 1974). These, in conjunction with changes in membrane­

lipid fluidity, may contribute to acclimation. This aspect 

of the study has clearly indicated that incubation temperature 

conditions for enzymes of poikilothermic origin must be care­

fully considered in the light of possible adaptive responses. 

Failure to take such possibilities into account may well have 

lead to misinterpretation of findings in past studies. For 

example, salmonid gill ATPase activities have been reported to 

vary with season, salinity, photoperiod, and, most notably, 

during the parr-smolt transformation which precedes movement 
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of juvenile migratory salmon into seawater (Zaugg and McLean, 

1970; Zaugg and Wagner, 1973). Increases in rearing temperatures 

are known to reduce seawater tolerance. Several studies upon 

transport enzyme activities, in animals reared at different 

temperatures, have lead to inverse activity-acclimation temperature 

relationship. Zaugg and his co-workers have therefore con-

cluded that loss of seawater tolerance is related to decreased 

enzyme activity (Zaugg et 

Zaugg and McLean, 1976). 

al., 1972; Adams et al., 1975; 

+ + (Na -K )-ATPase has been reported to 

be highly sensitive to heavy metals and pesticides (Davis and 

Wedemeyer, 1971; Kuhnert and Kuhnert, 1976). In all of these 

cases however, high common temperature assays were employed. 

The conclusions of these studies, can be seriously questioned 

on the basis of the information obtained in this study for it 

seems highly unlikely that the results obtained are physiologically-

relevant. 

It is evident that the incubation temperature protocol 

employed in this study has some definite advantages. The high 

o common temperature employed (25 C) corresponds to the upper 

incipient lethal level for this species and provides an 

indication of enzyme activity at a realistic maximum temperature. 

Furthermore, activities obtained in this way can presumably be 

compared with earlier work. The ambient temperature incubation 

procedure provides an indication of activity at the actual 

in vivo temperature. Thermal effects on these systems can be 

easily derived from the two. 
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(b) Heat Death 

Although heat death is still a poorly understood 

phenomenon, it is thought to involve hydromineral regulation; 

at least in cases where protein denaturation is not a problem. 

Studies upon euryhaline fish species have, for example, 

demonstrated that survival under heat stress is substantially 

increased in solutions of salt approaching isotonicity. 

Presumably regulatory requirements are reduced (Garside and 

Jordan, 1968; Jordan and Garside, 1972). In addition, 

abnormal patterns of electrolyte distribution are sometimes 

observed at the extremes of temperature tolerance (Houston, 1973). 

The thermal characteristics of renal and branchial 

+ + ++ 
(Na -K )- and (Mg )-ATPase and also of blood and gill carbonic 

anhydrases may provide insights regarding the basis of heat 

death near the incipient lethal level. Activities at 25 0 C, 

and at each ambient temperature are assumed to be functions of 

maximum and actual transport capacities, respectively. Linear 

extrapolations of 25 0 C- and acclimation temperature- activity 

0+0 
relationships leads to intersections with a mean of 25 - 2 C. 

This is close to the upper incipient lethal level of rainbow 

trout. At temperatures above this, the requirements for ion 

transport may well exceed absorption capacity, and the resulting 

net loss of electrolytes may be a significant factor contributing 

to the death of the organism. (HC0 3-)-ATPase and renal 

carbonic anhydrase do not exhibit these characteristics. In the 

case of (HC0 3-)-ATPase, intersection occurs at about 20 0 C for 

both gill and kidney. Renal carbonic anhydrase activities are 

too low and too similar to provide a reasonable estimate of 

intersection temperature. 
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(c) Ionic Strength and (Mg++)-ATPase Activity 

(Na+-K+)-ATPase activity is normally estimated as 

the difference between the activity in an assay medium 

containing sodium, potassium, and magnesium, and that in a 

sodium and potassium-free medium. Large differences in ionic 

strength - 120 mM- are, therefore, involved. Dr. D. Stewart 

of the University of Toronto informed the author that ionic 

strength affects ATPase activity. This fact was taken into 

account in the development of the assay protocol (Table I). 

medium for (Mg++Na_K)-ATPase estimation included 120 roM 

sodium chloride, and this eliminated differences in ionic 

strength between it and the (Na+-K+)-ATPase assay medium. 

The 

Lack of potassium and the use of ouabain ensured no (Na+-K+) 

ATPase activity occured. The (Mg++HC03 )-ATPase medium is similar 

to that ordinarily employed in {Na+-K+)-ATPase estimations. Thus 

an examination of the effects of compensation for ionic strength 

was made possible. Although no significant differences in 

mean (Mg++)-ATPase activity occured (Figure 7), further 

examination is not without benefit. In kidney preparations 

mean (Mg++HC03 >-ATPase activities are higher in all six cases, 

while in gill preparations in one case only was (Mg++Na_K)­

ATPase higher. Despite the fact that these differences in 

activity were small, it is apparent that the (Mg++HCO )-ATPase 
3 

activity estimation is consistantly higher. However, the small 

differences observed could be a major source of error, as 

evidenced by the two examples that follow. In the case of gill 

tissue from lSoC-acclimated fish incubated at lSoC, (Mg++HCO )-
3 

ATPase is 0.33pM.15 min-l.mg- l higher than the (Mg++Na_K)-ATPase 

value. Substituting the former for the (Mg++Na_K)-ATPase 



estimation, thus simulating the activity estimate that would 

be obtained in a procedure where the assay medium is not 

compensated for ionic strength, produces an (Na+-K+)-ATPase 

activity estimate that is only 28% of the value obtained with 

the ionic strength-compensated protocol. Similarly, in the 

kidney, a decrease to 80% is noted. (Mg++)­It appears that 

ATPase is stimulated by decreased ionic strength. As this 

can have a significant effect on the outcome of the assay, 

it is certainly deserving of further consideration. 

(d) Comments Upon Carbonic Anhydrase Assays 

Haswell (1977) has recently questioned the validity 

of the type of assay used in this study. His objection is 

based on the fact that the p-nitrophenol acetate procedure, 
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as employed by Mashiter and Morgan (1975), did not consistantly 

demonstrate carbonic anhydrase activity in flounder erythrocytes, 

while two subsequent publications, employing carbon dioxide 

as the substrate, reported significant levels of activity 

(Carter et al., 1976; Haswell, 1977). It was implied that 

the p-nitrophenol acetate procedure was insufficiently 

sensitive. In the present study, substantial blood carbonic 

anhydrase activity was detected, and further studies (Smeda, 

unpublished observations) indicate that this is largely associated 

with the erythrocyte membrane. It appears that no blood 

carbonic anhydrase activity was detected by Mashiter and 

Morgan (1975) because cytosol rather than the membrane fraction 

of the blood preparation was assayed. Lack of sensitivity 

need not be involked as an explanation for their results. 

In fact, conversion of the trout blood carbonic anhydrase activities 

reported by Haswell (1977), on the basis of a manometric 
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technique, and data from this study to common activity units, 

gives values of the same order of magnitude. The fact that 

carbonic anhydrase has been reported to be 10-5 times less 

active with p-nitrophenol acetate as the substrate (Armstrong 

et al., 1966), suggests that Haswell's assay procedure was 

itself insensitive. 

2. Ion Regulation 

(a) Plasma Electrolyte Levels 

It is clear that the rainbow trout is capable of 

maintaining sodium and chloride levels virtually constant over a 

wide temperature range. This is in accordance with previously 

reported results (Houston et al., 1968; Murphy and Houston, 1977). 

The ratio of the two is constant despite some fluctuation in 

plasma chloride levels as noted earlier. These points provide 

additional support for the contention that some interrela.tionship 

exists between the apparently separate control mechanisms of 

these two ions. 

Plasma potassium, however, is not as tightly 

regulated, showing a significant increast in concentration at 

180 e. This response to increased acclimation temperature has 

been observed elsewhere (Houston et al., 1968; Murphy and 

Houston, 1977), although, as in those cases, the significance 

of this response is unknown. 

(b) Correlation Analysis 

That correlations between weight and certain 

parameters might exist was suggested by the observation that 

gill area per unit body weight decreases with increased weight in 

individuals of the same species (Randall, 1970; Hughes and Morgan, 

1973). This variation is the primary cause of reductions in water 
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flux with increasing weight (Evans, 1969). Since a similar 

response with respect to weight and branchial ion fluxes would 

not be unexpected, an examination, for possible relationships 

between weight and ion levels, and weight and transport enzyme 

activities, was conducted. Even though the weight range was 

relatively narrow, and no significant differences in mean 

weight was observed, some trends were apparent. 

Plasma sodium was directly related to specimen weight, 

while plasma potassium varied inversely. This is in agreement 

with a previous study (Murphy, unpublished observations) unlike 

the direct correlation between weight and plasma chloride, 

which is not. Although the functional significance of such 

relationships is not known~ it is interesting to hote that 

certain photoperiod-temperature schemes significantly reduce 

such correlations (Murphy, unpublished observations). Although 

some correlations between weight and enzyme activity occur, 

the character of these relations, as previously mentioned, 

precludes any rigorous interpretation. 

Plasma sodium and chloride levels are ordinarily well 

correlated (Maetz, 1974). Accordingly, this and other possible 

plasma ion relations were examined. Possible relationships 

between the plasma level of the various ions, and the activities 

of the enzymes associated with their transport were also 

tested. The correlation between plasma sodium and chloride 

was the most notable, with three of the five occurances being 

significant (P<O.05). Again, support for the hypothesized 

linkage between sodium and chloride regulatory mechanisms 1S 

indicated. Although significant correlations between ion and 

enzyme levels were not common, those between plasma sodium and 



chloride and kidney carbonic anhydrase, plasma potassium and 

gill (Na+-K+)-ATPase, and, plasma chloride and kidney 

(HC0 3-)-ATPase could be considered as further support for the 

involvement those enzymes in the regulation of the respective 

ions. 
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It lS apparent that the results of the correlation analysis 

are far from conclusive, yet some interesting trends are 

suggested. Further study employing a wider temperature and 

weight range might generate much useful information. 

3. Enzymes and Ion Transport 

(a) Gill 

Sodium uptake at the gill seems to be a biphasic 

process. It appears that a coupled exchange of sodium for 

ammonium and/or hydronium occurs at the mucosal border of the 

chloride cell (Maetz, 1971). The character of this heteroionic 

exchange is largely unknown. It is apparently obligatory ln 

nature as injections of ammonium and hydronium lons 

stimulate sodium uptake while increased ammonium in the 

external medium inhibits uptake (Cameron, 1976; Kerstetter and 

Keeler, 1976), suggesting that the process may be carrier-

mediated. Involvement of carbonic anhydrase in the exchange 

mechanism is suggested by the fact that acetazolamide reduces 

sodium influx (Kerstetter et al., 1970; Payan, et al., 1975; 

Kerstetter and Keeler, 1976). 

The next step, movement of sodium into the plasma, is 

+ + thought to result from an (Na -K )-ATPase - related transfer 

(Maetz, 1971). However, the low activity of the gill enzyme 

at reduced temperatures, which has been observed in the present 



study and by Pfeiler and Kirschner (1972) and the very large 

thermal coefficient obtained between 20 and lOoC (27.3), 

indicates that (Na+-K+)-ATPase may be of little functional 

importance in the cold-adapted trout. Sodium depletion, 
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however, still takes place,at reduced rates, In the cold. This, 

plus the limited inhibition of sodium uptake at the gill by 

ouabain (Payan et al., 1975; Kerstetter and Keeler, 1976), 

suggests that an alternate mechanism for sodium uptake may 

exist. Two possible explanations, which are not 

mutually exclusive, could account for the low activity of 

( + + ). .. . Na -K -ATPase In the cold and ltS lmpact on sodlum transport. 

Low activity may reflect low sodium demand, as net ionic 

losses are significantly reduced in the cold. The limited 

activity present may, in fact, provide all the transport 

needed. The sensitivity of the in vitro assay may also be a 

complicating factor here, as the measured activity of the 

isolated enzyme may represent only a portion of the true 

in vivo capacity. However, it may also be that heteroionic 

exchange mechanisms provide for minimal or baseline recruitment, 

+ + while the progressive involvement of (Na -K )-ATPase, as 

suggested by its substantial thermal activation, compensates 

for the increases in net sodium loss induced by increased 

acclimation temperature. + + 
The role of (Na -K )-ATPase, In this 

case, would be that of a high temperature amplifier of the 

+ + sodium uptake system. Changes in the gill (Na -K )-ATPasel 

carbonic anhydrase ratio, with temperature, provides support 

for the latter hypothesis. A further examination of this, In 

the light of other data, although largely speculative, is 

interesting. Solute transport is often considered to be a 
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function, not only of the enzymes present, but of the geo-

metrical relationship of the subcellular components of the 

cells involved (Diamond and Bossert, 1968; Diamond, 1971). 

The chloride cell of freshwater trout contains an amplified 

baso-lateral microtubular system and lateral intercellular 

spaces (Maetz, 1971; Morgan and Tovell, 1973; Olson and 

Fromm, 19 7 3 ) . ( + +) . . Na -K -ATPase appears prlmarlly along the 

membrane surface of these spaces (Karnaky et al., 1976). 

A possible explanation of known transport rate changes and 

CNa+-K+) activity changes, with temperature, could be provided 

by the forward-directed standing-gradient flow hypothesis of 

Diamond (1971). Heterionic exchange fueled by carbonic 

anhydrase, occurs at the mucosal border of the cell and may 

provide, at low temperatures, sodium uptake via the micro-

tubular system and/or the lateral intercellular spaces. 

Simulation studies by Diamond (1971) indicate that the trans-

port capacity of a mechanism of this type would be severely 

limited by the length of the channels and the distal location 

of the transport sites (Figure 13). + + 
However, as CNa -K )-ATPase, 

located along the length of the channels is thermally activated, 

the capacity of the system increases enormously, and could have 

the capability of satisfying the increased demand for ion 

recruitment. In addition, it is conceivable that chloride 

uptake may be facilitated in a similar manner. Obviously, 

further study of this model is warranted. 

In other cases where sodium transport has been demonstrated, 

notably amphibian skin, the transepithelial electrical 

potential (T.E.P.) is such that the body fluids are positive 

with respect to the exterior (Armstrong, 1971). Only in fish 



Fig. 13 A conceptual model illustrating 
how ch*oride cell structure. 
(Na+-K )-ATPase distribution, and 
changes in the activity of this 
enzyme could be used to+explain 
the known changes in Na uptake 
(indicated by arrows) at low 
(left) and high (right) temp­
eratures. 
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FIGURE 13. A PROPOSED MODEL RELATING 
CHLORIDE CELL STRUCTURE AND 

ENZYME ACTIVITIES 
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is the T.E.P. negative CMotais and Garcia-Romeu, 1972). 

It appears that the trout may be an exception, although this 

lS not certain, as changes in the measuring technique can 

generate in a negative T.E.P. value (Kerstetter and Kirschner, 

1974). Needless to say, this descrepancy must be eliminated 

before detailed models of transport mechanisms can be attempted. 

While chloride uptake at the gill is known to involve a 

bicarbonate/chloride exchange, other aspects of the uptake and 

the regulatory mechanism governing uptake, are poorly under­

stood (Maetz, 1971; Motais and Garcia-Romeu, 1972). The model 

suggested by Maetz (1971) locates bicarbonate/chloride exchange 

at the mucosal border with a linkage to a chloride "pump" 

at the serosal border; in short, a design analogous to that 

postulated for sodium transport. Unfortunately, the presently 

available evidence lS insufficient to firmly establish the 

presence of such a chloride "pump"u CHC0 3-)-ATPase has been 

found in the gill (Kerstetter and Kirschner, 1974), where it 

has shown some relation to chloride transport CMorisawa and 

Utida, 1976). That it may be the chloride "pump" is 

suggested by the fact that it is inhibited, like chloride 

uptake, by thiocyanate. Unfortunately, chloride uptake and 

(HC0 3-)-ATPase activity show substantial differences in the 

character of this inhibition (deRenzis, 1975; Solomon et al., 

1975). In addition, in vivo inhibition of chloride transport 

is largely confined to the mucosal border and this is in­

consistent with the postulates of Maetz (1971). Furthermore, 

(HC0 3-)-ATPase activity is not dependent on chloride; something 

that might be expected if this enzyme was actually involved in 

chloride transport. However, this objection would have less 
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force if both bicarbonate/chloride exchange and (HC0 3-)-ATPase 

activity were independently inhibited by thiocyanate. 

Unfortunately, data on this point is not available. 

Carbonic anhydrase has been shown to be involved with chloride 

uptake, as inhibition of this system causes decreases in chloride 

influx (Maetz, 1971). Although Kerstetter and Kirschner (1972) 

did not find chloride uptake inhibition by acetazolamide in the 

trout, contrary to findings with goldfish, they provide a possible 

explanation. Their proposal is that chloride uptake is achieved 

by a bicarbonate/chloride exchange which is driven by transepithelial 

diffusion of bicarbonate generated In the blood. Support for this 

hypothesis is provided in the present study by the occurance of sub­

stantially increased blood carbonic anhydrase levels at higher 

acclimation temperatures. In addition, it would not be unreasonable 

to expect that, if bicarbonate/chloride exchange produces chloride 

uptake, the substantial demands created by elevated temperatures 

would be linked with some reduction in plasma bicarbonate levels, 

and possibly increased hydronium (H+) concentrations and hence 

lowered pH. This, in fact, has been observed CRandall and Cameron, 

1973). 

(b) Kidney 

Absorption from the urine lS apparently a substantially 

more complex process than that occuring at the gill. Although 

intracellular organization is certainly prominent, the structure 

and conformation of the basic functional subunit of the kidney, 

the nephron, is of prime importance. This, in conjunction with 

areas of specialized transport and differential permeability in 

the nephron confer the ability to eliminate water and recover 

electrolytes (Hickman and Trump, 1969; Selkurt, 1971; 



82 

Stephenson et al., 1976). Since a detailed model of the 

fish kidney 1S not available,discussion will procede under 

the assumption that the gross changes in enzyme activities 

observed reflect the roles and relative importance of the 

enzymes measured. 

Kidney (Na+-K+)-ATPase does not exhibit the cold sensitivity 

characteristic of the gill enzyme, although a significant 

decline is apparent. This is probably a reflection of the 

fact that renal recovery at low temperatures is sUbstantial. 

Carbonic anhydrase production of the primary kidney counterion, 

hydronium, is relatively unimpeded by reduced temperature. 

The decline in kidney (Na+-K+)-ATPase/carbonic anhydrase 

ratios, which results from carbonic anhydrase activity increasing 

faster than (Na+-K+)-ATPase activity, is minor, but perhaps 

indicative of increasing importance of carbonic anhydrase, 

with elevated temperature, in electrolyte recovery. 

If chloride is not independently transported, and there-

fore co-transported with sodium, as is usually postulated 1n 

other vertebrate kidneys (Selkurt, 1971), the changes 1n 

( + + ) .. . Na -K -ATPase and poss1bly carbon1c anhydrase, w1th respect 

to sodium, should reflect chloride transport changes. If, 

however, chloride is actively transported, as it now appears 

that it may be (Selkurt, 1971; Morisawa and Utida, 1976), 

(HC0 3-)-ATPase may be involved. The thermal response of this 

system observed in the present study would not be inappropriate 

under the latter circumstances. 

It is obvious that, as pointed out by Cameron (1976), 

a more complete picture of renal activity, with regard to 

ion regulation and acid-base balance, is required before the 



exact involvement of the kidney in these functions can be 

confirmed. 

(c) Relative Importance of the Gill and Kidney 
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The data obtained in this study, especially that on 

gill/kidney enzyme activity ratios, support the contention that 

at low temperatures renal recovery is of major importance, 

with only minor gill involvement being required. However, 

despite temperature-related increases in kidney enzyme activity, 

and presumably increases in ion recovery rates, the large 

lncreases in urine flow still produce increased net ion losses. 

This, and a rise in gill ion loss, requires compensation. 

The response appears to be largely a gill function as evidenced 

by substantially increased branchial enzyme activity. There­

fore, at high temperatures the gill becomes the prime site for 

electrolyte recruitment and regulation. 

(d) A Model of Ion Exchange 

As extensive work has not been performed on the fish 

kidney, and certain differences in structure and function, 

compared to higher animals, are present (Hickman and Trump, 

1969; Cameron, 1976).a kidney model will not be presented. 

Although information in this study provides an indication of 

the relative involvement and function of the enzymes measured, 

any improvements on the model of Hickman and Trump (1969) -

(Figure 2) must await more detailed structural and functional 

analysis. 

However, at the gill some improvements can be made. These 

are basically changes in emphasis in the original model of 

Maetz (1971) presented in Figure 4. The model is outlined 

in Figure 14. 



Fig. 14 A conceptual model of chloride 
cell function at high (lower 
illustration) .and low (upper 
illustration) temperatures. 
The location of the various 
processes is indicated on the 
figure. Substantial involvement 
is indicated by solid lines and 
circles whereas limited involve­
ment or uncertainty of involve­
ment is indicated by broken 
lines and open circles. 
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The model for ion transport at low temperatures takes into 

account the apparent importance of gill and blood carbonic 

anhydrase, and of heterionic exchange mechanisms, ln lon 

uptake. 
+ + 

Although (Na -K )-ATPase activity occurs, its' very 

low activity and presumably minor involvement in ion transport 

is alluded to by its' presence in broken lines. A chloride 

pump, which may be (HC0 3-)-ATPase, is not entirely discounted, 

although, due to the ambiguity concerning its location and the 

uncertainty of its involvement, it is presented in broken 

lines. 

The high temperature model is similar to the original 

Maetz model, but places additional emphasis upon the role of 

+ + blood carbonic anhydrase. (Na -K )-ATPase is now significantly 

involved, as suggested by its' presence ln solid lines. The 

problems with respect to (HC0 3-)-ATPase remain as above. 

In short, in its' simplest form, sodium and chloride 

uptake at the gill is provided, at low temperatures, by carbonic 

anhydrase working in association with the heteroionic exchange 

mechanisms. + + Gill (Na -K )-ATPase and erythrocytic carbonic 

anhydrase provide the supplemental uptake required at higher 

temperatures. The intimate interrelationship postulated between 

plasma sodium and chloride has been observed in several aspects 

of this study. Although the reason for this is not yet clear, 

a component common to the two regulatory systems could be 

involved. Since both sodium and chloride recruitment depend 

on the products of carbonic anhydrase catalysis, it may be 

involved in this process. 

Finally, the importance of these regulatory systems is not 

limited to ion regulation, as Cameron (1976) notes that the 
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sOdium/ammonium-hydronium and bicarbonate/chloride exchange 

systems seem to function to compensate for induced acid-base 

balance disturbances. Although Kerstetter and Mize (1976) report 

contrary data, the technique of Cameron appears to be more 

rigorous. As regulation of the acid-base balance, whether by 

control of pH, or more probably relative alkalinity - H+/OH­

ratio-, of the body fluids, is of major importance in acclimatory 

responses, linking ionoregulatory processes with it would further 

increase the significance of the ion transport systems and 

regulatory mechanisms (Albers, 1970; Houston, 1971; Rahn and 

Baumgartner, 1972; Randall and Cameron, 1973). 



VI CONCLUSIONS 

1. Over the wide range of acclimation temperatures used in 

this study, the relatively stenothermal rainbow trout 
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was able to maintain plasma sodium and chloride con­

centrations essentially constant. Plasma potassium, 

however, is not so tightly controlled and its con­

centration increased significantly at higher temperatures, 

Several aspects of the study, including the constant plasma 

sodium/chloride ratio and the significant correlation 

between plasma sodium and chloride concentrations, 

provided support for the theory that, by some means, 

sodium and chloride regulatory mechanisms are linked. 

Carbonic anhydrase, as the products of its catalysis are 

involved in the uptake of both ions, could be involved 

in this process. 

2. Incubation at in VlVO temperatures produced different 

levels of activity and, in some cases, contrary trends 

with respect to acclimation temperature when compared 

to estimates of enzyme activity obtained with incubation 

at a high common temperature. It is apparent that, 

especially in studies where thermal influence is suspected, 

the acclimation temperature of poikilothermic animals 

must be included in the assay protocol if physiologically­

realistic data are to be obtained. The data from this 

aspect of the study also suggest that limitations ln lon 

transport capacity may be involved in heat death. 
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The presence, ln the gill and kidney, of three enzymes 

implicated in + + -ion transport, (Na -K )-ATPase, (HC0 3 )-

ATPase, and carbonic anhydrase, was confirmed. In 

addition, substantial carbonic anhydrase activity in the 

blood was detected. The changes, with acclimation temp­

erature, in renal (Na+-K+)-ATPase, carbonic anhydrase, 

and (HC0 3-)-ATPase that were observed are not inconsistant 

with involvement in kidney function. However, due to the 

lack of detailed information concerning the piscine 

kidney, a rigorous analysis of these parameters was pre-

cluded. 

Information about the gill was sufficient to enable a 

model, of ion uptake here to be outlined. It appears 

that ion transport at low temperatures involves sodium 

and chloride uptake by heteroionic exchange mechanisms 

operating in conjunction with carbonic anhydrase. Gill 

( + +) • Na -K -ATPase and erythrocyte carbonlC anhydrase seem 

to provide the additional salt uptake required at higher 

temperatures. In addition, the standing-gradient 

flow hypothesis may be used to link chloride cell structure 

and thermally~induced changes in enzyme activity to 

observed variations in sodium influx. 

4. A determination of the relative importance of the gill 

and kidney in electrolyte regulation at various temperatures 

was made possible by the simultaneous measurement, in these 

organs, of the activities of the enzymes implicated in 

ion transport. Recovery of ions at the kidney appears 

to be significant at low temperatures. As temperature 

increases, gill recruitment becomes increasingly more 



important, despite a small rlse ln kidney uptake. 

S. Although weight, plasma ion levels, and enzyme activities 

demonstrated some relationships in the linear regression 

analysis, the results of this aspect of the study were 

not conclusive. 
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APPENDIX: TABLE I RAW DATA ATPases 2°C U · oM?' 15 . -1 prot.-l n~ts}J ~. _ nun • mg em 

No. Length Weight Plci.sma Plasma Plasma 

GILL 
(Na+-K+) 

KIDNEY 
(Na+-K+) 

GILL 
(Mg++) 

KIDNEY 
(Mg++' 

GILL 
(HC0 3 -) 

KIDNEY 

(HC0 3-' 

GILL 
(Mg++' 

KIDNEY 
(Mg++' 

(em) (g) Na+ K+ C1- 2° 25° 2° 25° 2° 25° 2° 25° 2° 25° 2° 25° 2° 25° 2° 25° 

1 30.5 

2 29.0 

3 30.0 

4 29.5 

5 28.5 

6 29.0 

7 30.0 

8 28.0 

9 30.0 

10 29.0 

1128.0 

12 28.5 

13 27.5 

14 26.0 

*x 28.8 

** High .11. 29.5 

Low 

** M2 28.1 

-1 -1 -1 mEq.l mEq.l mEq.l 

318.5 148.0 1.74 129.5 0.01 0.91 0.78 2.41 2.45 

284.5 152.9 1.66 133.8 0.06 0.89 0.32 4.18 1.37 

321.0 153.7 1.05 126.3 0.01 1.38 0.21 2.01 1.88 

308.5 151.2 1.18 131.7 0.01 0.72 0.45 3.64 1.79 

288.5 146.7 0.61 134.8 0.06 1.63 0.60 4.21 1.45 

313.0 148.3 0.78 130.1 0.01 1.10 0.50 2.06 1.56 

327.5 162.1 2.31 134.7 0.05 0.80 0.23 3.01 1.72 

257.0 163.1 1.90 140.3 0.01 1.21 0.20 2.60 1.93 

328.0 164.6 2.85 131.1 0.03 1.07 0.47 2.34 1.55 

301.5 154.3 1.70 136.4 0.01 1.24 0.47 2.10 2.14 

250.5 132.4 1.99 126.6 0.01 0.75 0.38 2.06 2.38 

311.5 146.4 1.87 135.7 0.09 1.2·8 0.20 3.12 1.92 

249.0 IS5.5 0.94 138.7 0.01 1.09 0.24 2.47 2.08 . 
196.0 129~8 0.71 120.7 0.01 0.90 0.44 2.45 . 2.41 

289.5 150.6 1.52 132.2 0.03 1.00 0.39 2.76 1.90 

312.0 156.5 1.70 133.9 0.04 1.20 0.49 3.20 2.11 

267.0 144.8 1.34 130.4 0.01 0.78 0.29 2.32 1.70 

* MEAN ** 95% Confidence Interval 

.6.36 1.77 3.70 3.00 

5.06 0.91 2.27 2.26 

6.12 1.25 2.78 2.04 

5.71 1.23 3.50 2.26 

4.82 1.81 2.71 1.86 

5.39 1.67 3.50 1.36 

7.26 1.48 2.87 1.40 

6.14 1.53 2.86 1.26 

6.31 1.40 3.08 1.26 

6.05 1.81 3.15 1.34 

7.69 0.75 2.19 0.94 

6.86 1.49 3.61 1.10 

5.58 1.43 2.67 0.B4 

7.71 0.88 2.65 1.32 

6.22 1.39 2.97 1.59 

6.74 1.59 3.24 1.94 

5.70 1.19 2.69 1.24 

3.63 2.26 2.59 2.45 6.6~ 2.04 

2.86 1.81 3.09 1.49 5.06 1.05 

2.39 2.30 2.37 2.04 6.82 1.30 

3.39 2.13 2.19 1.79 6.13 1.32 

3.61 2.71 3.74 1.45 4.82 1.51 

3.58 2.50 2.89 1.56 5.19 1.67 

2.31 1.17 1.85 1.77 6.72 1.53 

2.83 0.62 1.94 1.99 6.33, 1.73 

2.33 0.70 2.34 1.80 6.31 1.40 

2.86 1.12 1.89 2.14 6.19 1.74 

1.74 0.75 1.19 2.19 7.56 1.13 

2.90 0.87 2.31 1.92 6.98 1.68 

2.50 0.58 1.14 2.08 5.42 1.52 

2.47 0.74 1.42 2.41 7.29 0.88 

2.81 1.45 2.21 1.93 6.25 1.46 

3.14 1.89 2.63 2.12 6.74 1.64 

2.48 1.01 1. 79 1.75 5.76 1.29 

4.33 

2.59 

3.36 

3.95 

2.71 

3.50 

3.47 

3.52 

3.22 

3.62 

2.69 

4.81 

3.24 

2.99 

3.43 

3.79 

3.07 

I-' 
a 
a 



APPENDIX: TABLE II RAW DATA ATPases 10°C 

No. Length Weight Plasma Plasma Plasma 
+ + -

GILL 
(Na+-K+) 

KIDNEY 
(Na+-K+) 

Units 

GILL 
(Mg ++) 

. . -1 . . -1 
jJMP~ • 15 IIlJ.l1 • mg protem 

KIDNEY 
(Mg++) 

GILL 
(HC0 3-) 

KIDNEY 
(HC0 3-) 

GILL 
++ 

(Mg ) 

KIDNEY 
(Mg++) 

(em) (g) Na -1 K_1 C1_1 ° 
mEq.1 mEq.1 mEq.l 10 25° 10° 25° 10° 25° 10° 25° 10° 25° 10° 25° 10° 25° 10° 25° 

1 29.0 

2 31.5 

3 30.5 

4 31.0 

5 29.0 

6 30.0 

7 29.5 

8 31.0 

9 30.0 

10 28.0 

11 31. 5 

12 27.5 

13 27.5 

14 27.5 

* X 29.5 

** ·High 
M1 30.4 

Low 

318.0 161.0 1.17 131.5 0.30 0.78 1.04 3.82 2.94 

420.0 152.9 0.66 129.1 0.56 1.01 0.50 2.57 4.23 

262.5 146.4 2.93 138.6 0.07 0.92 0.86 1.92 4.63 

388.5 150.4 0.60 137.8 0.08 0.77 0.40 1.48 4.15 

356.0 156.6 0.97 133.5 0.12 0.42 0.21 0.87 1.53 

335.0 153.9 1.20 132.1 0.12 0.61 0.19 0.79 1.42 

303.5 159.3 0.74 132.7 0.42 0.79 0.23 1.81 3.23 

392.0 147.8 1.20 131.1 0.31 0.69 0.32 2.09 2.63 

362.0 153.7 0.87 130.3 0.35 1.05 0.88 1.81 3.17 

238.0 163.9 1.08 136.4 0.38 1.42 0.94 2.27 4.34 

355.0 151.0 2.06 135.2 0.43 1.21 1.63 3.59 4.03 

253.0 153.0 1.87 138.0 0.42 1.19 0.64 2.69 3.66 

232.0 154.8 1.23 136.7 0.34 1.45 0.71 2.57 4.09 

237.5 147.5 1.86 126.9 0.34 0.90 0.41 1.75 3.77 

318.0 153.7 1.32 133.6 0.30 Q.93 0.64 2.15 3.42 

355.0 157.3 1.69 135.7 0.38 1.12 0.87 2.65 4.00 

** Ml 28.7 281.0 150.1 0.98 131.5 0.22 0.77 0.41 1.64 2.94 

,~ - MEAN ** - 95% Confidence Interval 

6.81 2.43 3.61 2.45 

8.61 2.14 2.78 2.38 

6.92 2.17 2.88 2.60 

9.61 1.95 3.11 3.61 

2.82 1.17 1.63 1.59 

2.47 1.06 1.48 1.85 

6.10 1.81 2.42 2.57 

5.94 1.99 3.47 2.50 

8.10 2.09 3.19 3.52 

8.01 1.33 2.13 3.59 

7.66 1.90 2.66 5.24 

5.99 2.31 2.31 3.03 

7.95 2.24 2.75 4.78 

7.66 2.71 3.53 3.67 

6.75 1.95 2.71 3.10 

7.92 2.22 3.10 3.70 

5.58 1.68 2.33 2.50 

3.62 1.53 2.78 2.94 6.18 3.47 

2.92 1.07 1.42 4.54 8.61 2.39 

3.40 2.38 2.22 4.81 6.79 2.82 

3.62 3.30 3.20 3;69 8.85 2.15 

1.59 1.08 1.05 1.94 2.82 1.42 

1.85 1.29 1.41 1.48 2.47 1.25 

3.66 1.92 2.00 3.65 5.49 2.23 

2.50 2.45 2.55 2.81 5;94 2.18 

3.73 1.97 2.03 3.17 7.89 2.41 

4.33 3.66 2.80 4.43 7.55 3.66 

4.64 4.35 4.18 4.03 6.65 1.90 

3.87 3.01 3.59 3.80 5.99 2.31 

4.77 3.14 4.39 3.86 7.38 2.37 

3.89 2.29 2.93 3.89 7.22 3.21 

3.43 2.39 2.59 3.50 6.42 2.41 

3.98 2.97 3.19 4.05 7.50 2.81 

2.89 1.81 1.99 2.95 5.33 2.01 

3.82 

3.50 

3.54 

3.40 

1.83 

1.89 

2.62 

3.47 

3.75 

2.80 

2.61 

3.14 

2.76 

3.81 

3.07 

3.46 

2.68 f-I 
o 
I-' 



No. 1.ength 

(em) 

1 29.5 

2 30.0 

3 28.0 

4 30.0 

5 29.0 

6 30.0 

7 29.0 

8 27.0 

9 26.5 

10 29.5 

11 27.0 

12 24.5 

13 29.5 

14 29.5 

i< X 28.5 
High 

M< M 29.5 . 1 
Low 

1.1< M 27.6 
1 

1. -MEAN 

APPENDIX: TABLE III FAW DATA ATPases lsoe Units MP • • -1 . • -1 
}A ~. 15 ~ . mg protem 

GILL 
Weight Plasma Plasma Plasma (Na + -K +) 

KIDNEY 
(Na+-K+) 

GILL 
(Mg++) 

KIDNEY 
(Mg++) 

GILL' 
(HC03-) 

KIDNEY 
(RC03 -) 

GILL 
(l-A,g++) 

KIDNEY 
(Mg++) 

( ) + + -
g Na -1 K -1 Cl -1 

mEq.l mEq.l mEq.l 18° 25° 18° 25° 18° 25° 18° 25° lSo 25° ISo 25° 18° 25° 18° 25° 

324.5 150.5 1.11 130.0 0.37 0.74 0.66 1.7S 7.09 

359.0 156.9 1.00 138.5 0.37 1.24 0.70 1.43 6.62 

235.5 145.8 4.52 133.5 0.19 0.67 0.25 0.66 2.79 

363.0 154.4 2.67 132.4 0.33 0.50 0.52 1.04 3.00 

312.0 153.9 2.97 134.8 0.33 0.50 1.09 2.13 3.33 

342.5 153.9 2.35 136.9 0.37 0.57 0.94 1.46 8.21 

208.3 155.5 3.62 128.7 0.40 0.78 0.88 2.27 4~44 

295.5 153.7 1.63 141.5 0.33 0.56 0.37 1.72 5.50 

280.5 152.0 2.19 123.8 0.45 1.14 1.48 2.29 3.94 

344.0147.32.97127.2 0.440.961.182.503.95 

257.0 148.4 6.25 125.9 1.00 1.05 0.39 1.41 4.44 

160.0' 127.6 4.40 111.4 0.66 0.76 0.70 1.48 5.94 

309.5 ~42.7 2.06 137.1 0.59 0.78 0.87 1.63 3.33 

304.0 159.0 3.40 134.7 0.64 1.D3 0.77 1.70 5.87 

292.5 150.1 2.94 131.2 0.46 0.81 0.77 1.68 4.89 

327.0 154.7 3.77 135.6 0.52 0.90 0.97 1.97 5.86 

260.0 145.6 2.11. 126.8 0.41 0.72 0.58 1.39 3.92 

** -95% Confidence Interval 

8.96 4.06 4.46 2.83 2.10 2.72 2.08 7.34 9.47 4.11 4.90 

8.32 2.91 3.48 3.08 3.02 1.74 2.39 6.99 8.97 3.26 3.91 

3.65 1.28 1.48 1.64 1.07 1.68 1.07 2.98 4.32 1.38 1.79 

4.08 1.19 1.29 1.84 1.50 1.66 1.24 3.58 4.58 1.29 1.86 

4.58 1.53 1.73 2.33 3.34 2.23 2.23 3.58 4.58 1.73 2.13 

8.49 2.34 2.55 2.93 2.83 2.13 1.94 9.62 9.43 2.66 2.96 

5.89 2.03 2.03 3.14 3.47 2.15 2.15 4.52 6.29 2.38 2.44 

7.19 3.01 3.56 1.88 2.50 2.78 2.41 7.06 7.81 3.10 3.15 

6.14 2.43 3.34 3.50 3.51 1.82 1.81 4.39 6.14 2.56 3.34 

5.79 2.36 2.36 3.51 3.15 2.60 2.83 3.77 5.53 2.12 2.97 

6.11 1.73 1.73 3.78 4.00 2.44 2.37 4.44 5.44 1.73 1.73 

7.92 1.41 1.55 2.83 3.96 2.61 4.57 5.66 7.36 1.76 1.76 

4.51 1.74 1.92 2.55 2.74 0.93 1.40 3.33 4.12 1.74 2.61 

8.49 1.46 2.15 3.80 3.97 2.38 2.62 5.71 7.54 1.85 1.92 

6.44 2.11 

7.48 2.58 

5.39 1.64 

2.40 2.83 2.94 2.13 2.22 5.22 6.54 2.26 2.68 

2.95 3~24 3.46 2.43 2.71 6.34 7.64 2.73 3.22 

1.85 2.42 2.42 1.83 1.73 4.10 5.44 1.80 2.14 

I-' 
<::) 

~ 
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APPENDIX: TABLE IV RAW DATA CARBONIC ANHYDRASE 2°C 

Units - J1M p-nitrophenol + p nitrophenolate 
• -1 . -1 •. JIIlJl • g protem 

No. Length Weight Plasma Pla~ Plasma BLOOD GIlJ.. KIDNEY 
(ern) (g) Na+_l K -1 Cl-_1 

2° 25° 2° 25° 2° 25° mEq.l mEq.l mEq.l 

1 29.5 259.0 147.6 1.9 121.5 7.4 9.0 9.9 12.1 1.2 3.0 

2 31.0 380.0 155.0 2.2 137.8 8.5 10.6 7.0 12.6 -.1 .4 

3 29.0 298.0 148.9 2.2 133.2 7.8 13.9 12.6 22.7 1.7 1.0 

-4 29.0 302.0 150.4 1.6 128.1 8.7 12.1 8.8 14.5 -.5 -.5 

5 28.0 368.0 149.2 2.6 131.3 7.6 15.2 10.6 19.9 .1 -1.5 

6 30.0 258.0 155.4 4.8 136.9 8.8 11.7 9.8 19.3 .5 .3 

7 32.0 4ll.0 154.6 1.6 130.6 7.0 12.2 13.2 21.8 1.2 .7 

8 29.5 344.0 148.4 1.0 125.0 ll.7 15.6 12.8 23.2 .7 1.2 

9 29.5 283.0 153.6 1.1 130.6 8.7 12.5 9.5 18.8 -.3 -.6 

10 28.5 275.0 152.7 .7 133.6 8.1 14.8 10.1 15.4 .1 :7 

II 28.0 240.0 150.8 2.0 130.6 11.4 17.9 9.4 16.5 .4 2.1 

12 32.0 400.0 156.5 ~9 127.2 9.1 15.1 ll.8 20.2 .7 2.0 

13 28.0 26.5 149.8 1.2 127.4 5.5 8.8 9.0' 14.7 .3 .2 

14 28.5 228.0 147.9 2.1 131.8 6.6 12.1 9.6 15.9 -.2 -1.3 

*x 29.5 308.0 151.5 1.85 130.4 8.4 13.0 10.3 17.7 .4 .6 

High 
** M 1 30.3 343.0 153.3 2.4 132;9 9.3 14.5 ll.3 19.7 .8 1.3 

l£M 

** Mz 28.7 273.0 149.7 1.3 127.9 7.4 ll.5 9.3 15.6 .05 - .2 

* - MFAN 

** - 95% Confidence Interval 



lOlJ. 

APPENDlX: TABLE V RAW DATA CARBONIC ANHYDRASE 10°C 

units - pMp-nitrophenol + p nitrophenolate 
• -1 . -1 

• JJIlJ1 • g protem 

No. Length Weight Plaswa Plasma Plasma BLOOD GIlL KIDNEY 
(em) (g) Na -1 ~ -1 Cl- -1 ° 

25° 10° 25° 10° 25° mEq.l mEq.l mEq.l 10 

1 32.0 392 152.7 1.8 125.6 9.4 14.1 li.O 15.0 .2 .3 

2 29.0 284 148.0 2.3 128.9 12.6 23.7 9.4 17.0 3.4 5.9 

3 30.5 333 .. 153.1 2.7 128.4 8.3 li.O 10.5 13.1 1.3 2.7 

4 31.0 340 153.6 1.6 129.4 16.4 19.6 li.6 17.9 1.1 3.0 

5 30.0 3li 151.7 2.3 127.7 4.6 12.1 9.2 10.4 .5 .-1.4 

6 31.0 334 155.0 1.5 127.5 7.4 8.3 7.6 13.7 .1 .5 

7 32.0 342 153.6 1.3 132.2 10.9 16.4 9.0 14.2 1.0 3.7 

8 28.5 270 159.9 1.0 120.2 13.8 18.5. 12.4 15.7 0.0 1.4 

9 29.0 298 156.0 2.1 127.4 8.8 13.8 12.5 15.8 .4 1.5 

10 30.0 312 157.9 1.2 131.3 10.0 15.0 14.3 20.3 1.8 .3 

li 26.5 248 155.4 1.1 133.9 9.1 12.6 12.0 15.2 -1.1 -1.7 

12 31.0 322 152.6 1.3 135.6 10.3 16.0 15.8 21.0 .7 .5 

13 31.5 314 144.2 1.4 130.8 13.0 22.3 16.8 23.8 .4 - .5 

14 29.5 304 145.2 1.9 129.6 10.7 16.1 14.1 23.1 1.0 .9 

*x 30.1 307 152.8 1.7 129.2 10.4 15.7 li.9 16.9 .8 1.2 

** High 
~ 31.0 323 155.3 2.0 131. 3 12.1 18.2 13.5 19.1 1.4 2.4 

** low 
~ 29.2 292 150.2 1.4 127.0 8.7 13.2 10.3 14.6 .2 .04 

* - MEAN 

** - 95% Confidence Interval 
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APPENDIX: TABLE VI RAW DATA CARBONIC ANHYDRASE lSoe 

Units - pM p-nitrophenol + p-nitrophenolate 
. -1 . -1 • nun • g-protem 

No. Length Weight Pla~ Pla~ma Plasrra BLOOD GILL KIDNEY 
(em) (g) Na -1 K -1 cr -1 

25° ISO 25° 18° 25° mEq. 1 mEq. 1 mEq. 1 18° 

1 32.0 390 141.1 2.2 120.9 15.1 21.3 4.9 9.2 2.2 2.4 

2 27.5 267 147.6 5.7 122.6 12.3 11.3 7.1 6.0 3.5 3.8 

3 31.0 301 141.6 2.2 121.9 11.7 15.2 8.S 8.5 3.1 2.6 

If 28.5 275 148.0 2.4 122.4 16.2 14.4 5.9 8.5 4.3 4.6 

5 28.5 270 143.4 5.0 122.2 10.3 14.1 7.8 7.0 4.7 3.5 

6 32.0 350 154.6 2.0 133.9 5.9 8.2 6.6 6.2 2.8 2.1 

7 32.0 338 150.3 1.7 133.2 24.0 28.1+ 5 '::> .v 6.2 .7 1.3 

8 31.0 352 153.6 1.0 127.5 14.2 17.3 7.9 10.0 .7 1.0 

9 32.0 412 148.4 2.0 121.4 17.5 23.8 9.9 13.2' .7 - .2 

10 29.5 294 154.1 1.9 138.7 14.2 13.1 10.5 13.1 1.0 1.3 

11 27.5 237 155.0 2.5 133.2 11.0 16.2 9.1 9.8 1.4 . 1.1 

12 29.5 261 159.6 3.0 130.5 9.1 11.4 7.6 7.2 - .5 - .3 

13 28.0 236 149.9 4.2 129.8 12.2 12.2 13.0 15.0 -1.1 .7 

14 27.0 214 138.8 2.7 113.6 13.7 12.4 13.2 13.4 2.4 2.8 

* X 29.7 300 148.8 2.8 126.6 13.4 15.7 8.4 9.5 1.85 1.9 

High 
** l1. 30.8 334 152.5 3.5 130.5 15.9 ·18.8 9.9 11.3 2.8 2.8 

Low 

** ~ 28.6 265 145.5 2.0 122.6 10.9 l2.5 6.9 7.8 .9 1.1 

* - MEAN 

** - 95% Confidence Interval 


