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ABSTRACT

The Energy Dispersive X-ray Diffraction System at Brock

University has been used to measure the intensities of the diffraction lines

of aluminum powder sample as a function of temperature. At first,

intensity measurements at high temperature were not reproducible. After

some modifications have been made, we were able to measure the

intensities of the diffraction lines to 815K, with good accuracy and

reproducibility. Therefore the changes of the Debye-Waller factor from

room temperature up to 815K for aluminum were determined with

precision. Our results are in good agreement with those previously

published.
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CHAPTER 1

INTRODUCTION

Atoms are regularly arranged in crystals with an interatomic

distance of a few angstroms, thus they may scatter and diffract x-ray

radiation. Diffracted beams occur when the Bragg law is satisfied:

2dsin8 =nA,

where 8 is the glancing angle for the incident and diffracted x-ray

radiation, d is the interplanar spacing of the reflecting planes, n is an

integer, and Ais the wavelength of the x-ray radiation. The x-ray photon

energy IS:

hc
E=1: '

where h is a Planck's constant and c is the speed of light.

For powder samples, the diffraction can be observed in two ways:

use monochromatic x-ray radiation and measure the intensity of scattered

radiation as a function of scattering angle 28; use polychromatic x-ray

radiation and measure the intensity of scattered radiation as a function of

energy E, keeping 28 fixed.The former is called Angle Dispersive X-ray

Diffraction (ADXD) and the latter is called Energy Dispersive X-ray



Diffraction (EDXD).

Both methods can make precise intensity measurements of

diffraction lines. The ADXD method has an excellent d space resolution,

so it is the preferred method to determine the structure of complex

crystalline materials with closely spaced diffraction lines.The concept of

EDXD has "been known for a long time. However, it only became

practical after the development of the semiconductor photon spectrometer

with sufficient energy resolution. Giessen & Gordon [1] were the first to

report measurements of the intensity of x-ray diffraction by the EDXD

method. They used a white x-ray source from an Fe anode combined with

a lithium drifted silicon detector, Si(Li), to measure the scattered x-ray

photon energies and intensities. The measurements were performed on

sheet samples of polycrystalline eu, Ag ,Re, Pt, and Au. Because of the

limited d space resolution of EDXD when combined with a Si(Li) photon

spectrometer, there has been rather little application of EDXD to the

determination of the structure of crystalline materials. The EDXD method

has the simplest experimental arrangement since the scattering angle 28 is

constant. It is therefore particularly useful in high temperature or high

pressure measurements on simple structures, in which the sample

chamber may restrict the range of angular scan. It also has been used

effectively to study the Structural Relaxation and the Radial Distribution

Function of amorphous materials [2,3], since for these non-crystalline

materials, closely spaced, sharp diffraction lines are not present and the

limited d space resolution provided by EDXD with a Si(Li) photon

spectrometer is quite adequate. Also the EDXD method can measure

diffraction intensities for scattering vectors q with high magnitude

2



because its high energy radiation, and this is very useful for diffraction

studies on amorphous materials. The magnitude of q is given by:

41t E · eq =-- SIn
hc '

q =10.14 E sine ,

where E is in KeV and q is in nm- l
e

Elyaseery [4] has installed an EDXD system at Brock University.

To demonstrate its performance, he successfully measured intensities of

diffraction lines for aluminum powder at room temperature. However, his

measurements at higher temperatures were not consistently reproducible.

The principal objective in this thesis project was to measure the

intensities of the diffraction lines of aluminum powder as a function of

temperature and so determine the Debye-Waller factor of aluminum with

precision, by using the EDXD system at Brock University. The reason for

our choice of aluminum was that it has a low melting point so that only a

simple heating arrangement was required. Also the Debye-Waller factor

of aluminum has been studied theoretically [5,6] and has been measured

by several different techniques: the ADXD technique [7, 8, 9, 10,], the

neutron diffraction technique [11], the Mossbauer effect technique [12],

but not by the EDXD method. The measurement of the Debye-Waller

factor of aluminum would therefore further demonstrate the usefulness of

the EDXD system at Brock University.

The theory of x-ray diffraction shows that the intensity of a

diffracted beam is a function of temperature. The thermal energy

3



increases the vibration of atoms about their equilibrium positions in a

crystal lattice, this motion reduces the intensity of diffraction and

increases the intensity of the Thennal Diffuse Scattering (TDS). If IR, IT

are the intensities of a diffraction line at room temperature and at

temperature T respectively and MR, MT are corresponding Debye-Waller

factors, then we can write:

IR
IT =exp 2(MT - MR),

4

where

and BT is a function of the mean square vibration of the crystal atoms.

Theoretically, Killean & Lisher [5] have shown that the variation

of the Debye-Waller factor of aluminum can be described by means of

the nearest neighbor central force pair interaction given by Killean [14].

Shukla & Hubschle [6] have presented theoretical results for the quasi­

hannonic and anhannonic contributions to the Debye-Waller factor of

aluminum in the temperature range from 300K to 850K.

Experimentally, the Debye-Waller factor of aluminum was first

measured in 1947 by Owen & Williams [7], the measurements of the

intensities of the x-ray diffracted beams were not corrected for TDS .

Chipman [8] scattered x-rays from aluminum powder samples. Nicklow

& Young [9] measured x-ray intensities scattered from aluminum single

crystals in the low temperature range (lOOK - 300K). Dingle & Medlin

[10] obtained x-ray intensities of fifty-eight reflections from each of two

aluminum single crystals in the temperature range from 293K to 559K.



The Debye-Waller factor has also been detennined by techniques

other than x-ray diffraction. MacDonald [11] used the neutron diffraction

method to measure the intensities of a neutron beam scattered from an

aluminum single crystal. He was able to collect a complete set of

intensity data out to the (620) reflection in the temperature range from

300K to 860K, he used the Wilson plot [13] to determine the Debye­

Waller factor B(T). Martin & O'Connor [12] used the Mossbauer effect on

a large aluminum single crystal to measure the Debye-Waller factor up to

900K. The advantage of the Mossbauer technique is that it can separate

the TDS from diffraction, so TDS can be eliminated from the intensities

of Bragg peaks.

This thesis contains in Chapter 2 the theory: the Bragg law,

calculation of the intensity of x-rays diffracted from powder crystals, the

influence of temperature, and the TDS; in Chapter 3 a description of the

EDXD system: intensity of a diffraction line as a function of (E, 9, T), the

instrumental set up; in Chapter 4 the experimental development and

results: determination of the intensity of a diffraction peak, the stability of

the incident beam and the reproducibility of absolute intensities at room

temperature, the intensities of diffraction lines as a function of

temperature from unpressed samples, some modifications, determination

of the variation of the Debye-Waller factor of aluminum with

temperature; and in Chapter 5 the conclusion.
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CHAPTER 2

THEORY

The scattering of x-rays from an atom is due to the electromagnetic

interaction between the radiation and atomic electrons. Classically, the

oscillating electric field of an x-ray beam will set any electron which it

encounters into oscillatory motion about its mean position. An oscillating

electron which is continuously accelerating and decelerating during its

motion emits an eletromagnetic wave. In this sense, an electron is said to

scatter x-rays, the scattered beam is simply the beam radiated by an

electron under the action of the incident beam. We are only interested in

the coherent scattering, in which the scattered beam has the same

wavelength as the incident radiation, since only this is effective in

fonning interference maxima.

2.1 Diffraction conditions.

If a, b, and c are primitive vectors of the crystal lattice, then we

can define primitive vectors of the reciprocal lattice a*, b* and c* as:

6

bxc
a* =21t ,a.bxc

b* =21t cxa ,
a.bxc

axb
c* =21t ·a.bxc

For each set of (hkl) planes in the crystal lattice, there is a

reciprocal lattice vector:



G =ha* + kb* + lc*,

which is perpendicular to the planes, where h, k, I are the Miller indices

of the planes.

The set of reciprocal lattice vectors G detennines the possible x­

ray diffractions, and also enters the Fourier series expression for the

periodic electron density of the crystal lattice. The diffracted beam

directions may be detennined as follows. Following C. Kittel [15], Fig.

2.1 shows that the difference in phase factors between beams scattered

from volume elements dv, position vector r apart is:

exp[i(k - k').r] ,

where k and k' are the wave vectors of the incident beam and the

diffracted beam respectively.

7

k

Fig. 2.1 The scattering from volume elements, distance r apart.

The amplitude of the wave scattered from a volume element is

proportional to the local electron density n(r), so the total amplitude A of

the scattered waves in the direction k' is proportional to the integral over

the crystal of n(r)dv times the phase factor exp[i(k - k').r]:



A = jn(r)dv exp(-iq.r) , (2.1)

8

where q = k' - k is the scattering vector, nCr) is periodic in the crystal

lattice and by using the reciprocal lattice vector G, it can be expressed by

a Fourier series:

nCr) = LnG exp(iG.r) .
G

Thus: A =:L Jdv nG exp[i(G - q).r] ,

G

A =VnG when exp[i(G - q).r] =1 and A is very small otherwise.

So q=G (2.2)

is the condition for diffraction.

In elastic scattering, the photon energy, hroj21t , is conselVed. Thus

the magnitude ofk and k' are equal: Ikl= Ik'i =2rc!A.

If we take a dot product of both sides of Eq. (2.2) with a , b , c of

the crystal lattice respectively, we obtain the three Laue conditions for

diffraction:

a.q =21th, b.q =21tk, c.q =21t1. (2.3)

Because Ikl =Ik'l, and from Eq. (2.2), we may also rewrite the

condition for diffraction as follows:



or

(k + G)2= k2,

2k.G+G2=O.

Notice that -G is also a reciprocal lattice vector, thus we can write:

9

2k.G = G2. (2.2a)

The spacing between parallel lattice planes nonnal to the direction

ofG = ha* + kb* + lc* is:

21t
d(hkl) =1Gf '

thus Eq. (2.2a) may be rewritten as:

2(21t/A)sin8 =21t/d(hkl),

or 2dsin8 =A, (2.4)

where 8 is the angle between k and the reflecting plane (hkl).

This is Bragg's Law for diffraction.

Eqs. (2.2), (2.3) and (2.4) are various statements of the condition

for x-ray diffraction.

2.2 Calculation of the intensity of x-ray diffracted from powder

crystals.

We start with Eq. (2.52) from R. C. James [16]:

P = IoQdv, (2.5)



where P is the power of a diffracted beam, integrated through the

diffraction peak, at the angle 28 from the incident direction, from a small

crystal element of volume dv, in which absorption may be neglected. 10 is

the energy incident per unit area per unit time. Eq. (2.5) shows as is

expected, that P is proportional 10 and dv.To find the expression for Q,

we need the derivation of Eq. (2.5). The following is a summary of

detailed derivation given by R. C. James [16]:

Consider the wave reflected from a plane containing n unit cells

per unit area, in the direction of 28 with respect to the incident beam. All

unit cells in the plane scatter x-rays. By superimposing the waves

scattered from all the unit cells, the amplitude of the reflected wave, g,

including phase factor, relative to that of the incident wave is given by (a

complex number):

10

_ i nA F ( e2
)

g - sin8 mc2 (2.6)

where Ais the incident beam wavelength, e2/mc2 is the amplitude at unit

distance of the beam scattered by an electron from incident radiation

which is polarized with the electric vector perpendicular to the incident

plane, and i is the imaginary number.

The structure factor F is the amplitude of the wave scattered by a

unit cell relative to the wave scattered by an electron, F is given by:

F =ItJ exp(iq.rj) ,
j



where fj is the atomic scattering factor of the atom j located at rj in the

unit cell. The summation is over all atoms in the unit cell. The atomic

scattering factor f is the amplitude of the wave scattered from an atom

relative to that scattered by an electron. f is given by:

f =Jdv n(r) exp(iq.r) ,

where nCr) is the electron density for the atom.

We now consider the amplitude of the beam reflected by a number

of planes. Each plane scatters an amplitude g given by Eq. (2.6), but there

is a phase difference between the amplitudes contributed by successive

planes, separated by a distance a, equal to 41tasin8/A. Let 8B be the angle

corresponding to exact agreement in phase between the reflections from

successive planes, if the angle differs from 8B by a small angle t, the

phase difference becomes:

41taEo=--r- COS8Bo

IT the amplitude of the incident radiation is Ao, and that of the

resultant reflected wave from p planes is A, then:

A . . 1 - e-ipo
-A = g (l + e-10 + + e-1pO) = g '0

o 1 - e-1

Let 10 and IE be the corresponding intensities:

11



where
21ta

B= Tcos8B.

12

To calculate the reflected power of a diffraction peak, we integrate

R(e) over the range of appreciable reflection in the region of the intensity

maximum. This gives:

where dv is the volume of the small crystal,

N2A3
1

I e2

Ql = sin28 F 2(mc2)2

and N is the number of unit cells per unit volume, for the polarized

incident beam with the electric vector perpendicular to the incident plane.

If the electric vector is parallel to the incident plane, then:

where Q2 =Ql cos228 ·

If the incident beam is unpolarized, then:

P =IoQdv,

where

which is Eq. (2.5).

1 N2A3
1

I e2 1
Q = "2 (Ql + Q2) = sin28 F 2~c2)22 (1 + cos228 ). (2.7)

For a crystalline powder sample, containing M particles,the

number of particles having the correct orientation for diffraction at the



glancing angle 9 is ~ Mcos9d9. H <P(9» is the average reflecting power

of a particle, then the total energy reflected into a halo (Fig. 2.3) may be

obtained by:

1 f 1P =2: IoMcos9o <P(9» d9 = 2 IoMQcos9o <dv> ·

Put M<dv> =V, the volume of the powder sample to be seen by

the incident beam. We have also to take into account the possible number

of sets of planes with different Miller indices but having the same

spacing, and so reflecting into the same halo. Let the number of

equivalent planes be the multiplicity factor p, then:

13

1
P =2 IopQcos9oV. (2.8)

(2.9)

Only a portion of the reflected halo enters the detector with a slit of

the height t. To calculate the reflected power of that portion, we multiply

Eq. (2.10) with t/21trsin2e, (Fig. 2.2):

P-I ptQ V
- 0 81t r sine ·

Equation (2.9) refers to a powdered sample of total volume V

which is sufficiently small that no significant absorption occurs. We now

consider the powdered crystal tablet sufficiently thick that the incident

beam is partially absorbed. Let Jl be the linear absorption coefficient of

the sample, and S is the cross section of the incident beam. The result of

the integration shows the effective volume of the sample seen by the

beam is:
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detector sl itt

reflected
beam k l

incident beam k

powder
crystal s

cted

Fig. 2.2 X-ray diffraction from a crystal powder sample. The

detector has a slit t high located at a distance r from the crystal element.

We finally have the formula to calculate the reflected power of a

diffracted beam for a thick tablet, received by the detector of slit t:

ptQ
P = 10 S16 · e'1t r Jl SIn

or P _ I N2SA3 t IFI2 (e2)2 1 + eos229 1
- 0 321t r P me2 sin2geos9 2Jl (2.10)

for a static periodic lattice.

2.3 The influence of temperature.

So far we only have considered a crystal that is a stationary

assemblage of atoms bound together in a periodic pattern. We now

consider how the situation is modified under the influence of thermal



energy in which all atoms are vibrating about their equilibrium positions

with amplitudes increasing as temperature goes up. These vibrations will

affect the relative coordinates of atoms and hence the intensity of a

diffracted beam. Only the vibration which is perpendicular to the

reflecting planes will affect the diffraction intensity. To describe. the

effect of temperature and atomic vibration, consider the structural factor

of a unit cell in a one dimensional lattice, lattice constant a, where the

atom jth has a mean fractional coordinate Xj and at some instant of time,

an absolute dispacement Uj from that position [17], we can write the

structural factor corresponding to index has:

N

~ u·
Fh =L.J fjexp{21tih(; + Xj)} ,

1

N

=L fj exp21tih-;- exp21tih Xj ·

1

The actual structure amplitude in a direction corresponding to h

will be a time and space average since Uj varies from one unit cell to the

next and, within one unit cell, varies with time. Thus at some temperature

T, the structural factor is:

15

N

~ u·
(Fh)T = L.J~< exp21tih-;- >exp21tih Xj ,

1

(2.11)

u·
where < exp21tm-; > is the average value of displacement term. It is

practical to assume that Uj is small:



Uj/a« 1,

2
<11:>U· <U·> J

< exp21tih3 > :::: 1 + 21tih~ - 21t2h2-2- ·a a a

For simple hannonic vibration, < Uj > =0:

2
u· <Uj>

< exp21tih3 >:::: 1 - 21t2h2 --2- ,a a

2
<Ul>U· .I

or < exp21tih~ >:::: exp(- 21t2h2~) ·

Substitute Eq. (2.12) into Eq. (2.11) with ~=2ste, we have:

(2.12)

16

It can be seen that the result of the thermal motion of atoms is

effectively to modify their scattering factors:

2 sin28
(fj)T =fj exp(-81t2<uj >~ )-

In the three dimensional case, the result has the same form except

that we replace <uj> by <uij> which is the mean square displacement of

an atom in the direction perpendicular to the reflecting planes.

If
2

Bj =81t2<ul-j>, then:



The quantity Bj is known as the temperature factor of the jth atom.

It is usually sufficient to assume that thennal vibrations are isotropic and

that values of B are the same for all atoms. In that case, we have:

17

Let
sin2e

M=B~ ,then:

(Fhkl)T =Fhkl exp(-M). (2.13)

The factor e-M by which the observed intensities are reduced by

thennal vibration, is known as the Debye-Waller factor. The dependence

of B on the absolute temperature T has been theoretically investigated by

Debye and corrected by Waller [18] for cubic structure crystalline

elements. If 8 is the Debye characteristic temperature of a material and

x =8 rr, then:

where:

m: the atomic mass,

h: Planck's constant,

k: Boltzman's constant,

x

and th() _1 ( S d~
'I' X -x Jexp~-l ~.

o



(2.14)

To summarize, for a polycrystalline sample, made up of randomly

oriented grains, in the fonn of a flat plate of sufficient thickness to absorb

the incident beam, making equal angles with the incident and diffracted

beams, the expression for the diffracted beam from this sample [from Eq.

(2.10)] is given by:

N2A,3 I I e2 1+cos22e e-2M
I - T_::-- pt F 2(-)2 ,

- -v"j21tr mc2 sin2ecose 2Jl

where now I, Io represent the intensities of the diffracted beam and the

incident beam repectively.

2.4 The experimental determination of the Debye-Waller factor.

The Debye-Waller factor B(T) is experimentally determined as

follows:

We can rewrite Eq. (2.14) for a (hkl) line as:

sin2e
Ihkl =K H(hkl, 8) exp(-2B(T)~) ,

18

where

and

N2A3 e2 t
K =Io 321tf (mc2)2 2J.L

H(hkl 8) = IFI 2 ~+cos
2
28 ·

, p sln2ecose

Rearrange the terms and take the natural logarithm of both sides:

Ihkl sin2e
In H(hkl, 8) = In K - 2B(T)~ ·

For a given temperature T, a plot of In (I/H) as a function of

(sin2e/A,2), called the Wilson plot [13], gives a straight line of slope -



19

2B(T) and an intercept of In K.

Alternatively we can experimentally determine the change of the

Debye-Waller factor from room temperature to a temperature T. We write

the formula for the intensity of a diffraction line (hkl) at room

temperature:

I I
l+cos228

Ihkl(R) =K P F 2sin28cos8 exp(-2MR} (2.15a)

and that at temperature T:

I I
l+cos228

Ihkl(T) = K P F 2sin28cos8 exp(-2MT)- (2.15b)

Divide Eq. (2.15a) by Eq. (2.15b) and take the natural logarithm of

both sides ( drop the subscripts hId):

IR
In IT = 2(MT - MR),

(2.16)then
IR sin28

In IT = 2L1B(T)~·

I · 28
For a given T, a plot of In I~ versus s~2 yields a straight line

through the origin of slope 2~B(T).



2.5 The Thermal Diffused Scattering (TDS).

The thermal motion of atoms in a crytal lattice causes a weakening

of the intensities of the Bragg lines and an increase in the total amount of

the TDS.TDS of x-rays scattered by a crystal has maxima at those angles

of scattering at which the Bragg diffraction maxima occur in the elastic

scattering. The TDS in this region involves the exchange of energy by the

x-ray with phonons present in the crystal [19]. For a typical case, the

energy exchange may be about 10-8 eV. Such small changes can not be

detected by x-ray spectrometric methods. But the Mossbauer effect with

the recoiless emission and absorption of low energy y-rays can detect

such changes because the Mossbauer effect has an energy resolution as

small as a few 10-8 eV [19,20, 21]. Fig. 2.3 shows the TDS of (440) lines

at room temperature from an aluminum crystal detected by the

Mossbauer effect.

For x-ray diffraction, the IDS correction cr is defined as:

AIDS
cr =ABragg ,

where AIDS represents the integrated intensity of the IDS and ABragg

represents that of the Bragg peak above the IDS.

The corrected intensity of elastic scattering of the Bragg peak is:

Ameas
ABragg = 1+ cr '

where Ameas is the intensity measured by a detector.

20
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Fig. 2.3 The IDS of (440)-reflection (open circles) from an

aluminum crystal at room temperature, measured by Albanese and

Ghezzi using the Mossbauer effect. Intensities when the absorber is in

and out relative to the source are open triangles and closed circles

respectively.

The fonnula to calculate the IDS correction () has been derived by

Willis [22] for single crystals. Paskin [23,24], Chipman & Paskin [25,26]

have derived the empirical fonnula to calculate (J for a face centered



cubic powder crystals:

(J = (1t/3)1/3MDa~ (cos8)/A, ,

where:

MD is the Debye-Waller factor,

a is the lattice constant,

(2.17)

22

8 is the Bragg angle,

A, is the X-ray wavelength,

~ is the angular range of integration through the

diffraction peak.



CHAPTER 3

THE ENERGY DISPERSIVE X-RAY DIFFRACTION SYSTEM

3.1 Energy Dispersive X-ray Diffraction (EDXD).

The Bragg condition for diffraction from a set of reflecting planes

is given in Eq.( 2.4 ):

2dsin8 = A ,

Acan be written in terms of energy as:

23

(3.1)

(3.2)

where E is the photon energy in KeV and A is in A, then for EDXD, in

which 8 is constant and intensity is measured as function of energy, E,

the Bragg law is rewritten in E by combining Eqs. (3.1) and (2.4) to give:

6.2
Ed =---;-8 =constant.

Stn

In Eq. (3.2), E is the energy of the diffraction peak corresponding

to the planes of spacing d.

In this work, diffraction from powdered crystalline samples is

used. The expression for the intensity of a diffracted beam from a

powdered sample is given in Eq. (2.14):



N2A,3 e2 I I 1+cos228 e-2M
1- -- --2p2· -- 10 321tf pt (me2) sin2eeose 2}l · (3.3)
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For the EDXD method, incident polychromatic radiation is used

while the scattering angle 28 of the system is fixed. Eq. (3.3) can be

rewritten to be suitable for EDXD by expressing 10 and A, in tenns of E. 10

can be replaced by I(E)L\E, the intensity of incident radiation in the

energy interval ~E. I(E) is the intensity of the incident polychromatic

radiation per unit energy in the energy interval L\E. ~E corresponds to the

effective angle of acceptance ~e which equals the range of diffraction

angles accepted by the detector. The relationship between ~E and ~8 may

be derived by taking the derivative of the energy E, with respect to the

angle of diffraction 8 of the EDXD Bragg relation, Eq. (3.2), this gives:

dE hc h.c 1
de =-2d sin2e eose =-2dsine tane'

So

Also

E
~E=--e ~e.tan

From Eq. (3.3) , the intensity of a diffraction line can be rewritten

in tenns of energy of incident x-ray radiation:

I - I(E)~E(hc)3 N2 (e
2

)2 t IFI2 1+eos
2
2e e-

2M
- E 32m me2 P sin2eeose 2}l(E) ,

~8 (hc)3 N2 e2 I I 1+cos228 e-2M
=I(E) taneE2 321tf <me2)2 pt F 2sin2eeose 2}l(E) ·



Put

_ I(E) ile N2(hc)3t ( e2 )2 IFI2 1+eos22e e-2M
- £2 32m me2 P sin3e 2Jl(E)

K =N2(hePte~ )2ile
321tr mc2 '

we can write Eq. (3.4) as:

--L I I 1+cos22e e-2M
I =K I(E)p E2 F 2 sin3e 2J.1(E)

(3.4)

(3.5)
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for calculating the intensity of a diffracted beam, energy E, measured by

the EDXD method.

We measure intensity of a diffracted beam, I, as a function of

temperature, T. For EDXD, Ed is constant [Eq.(3.2)] and the energy E of

a diffraction peak is very slightly temperature dependent. So in Eq.(3.5),

I(E), E2, IFI2and J.1(E) are all slightly temperature dependent. The

dominant and only significant temperature dependent factor is e-2M,

where:

M is the Debye-Waller factor and B is a function of the mean square

displacement of the crystal atoms from their equilibrium positions.

From Eq. (3.5), the intensity of a given diffraction line (hkl) at

room temperature (R) is:

I(E)RI I e-2MR
I(hkl)R = K Ei p F 2 A 2J.1(E)R

and the intensity of (hkl) line at temperature (T) is:



where

I(E)T I I e-2MT
I(hkl)T = K Ei p F 2 A 2Jl(Eh '

A
_ 1+cos28
- sin38 ·
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Take the ratio of I(hkl)R and I(hkl)T, and drop the subscript (hkl) :

IR
IT = exp 2(MT - MR) ·

Take the natural logarithm of both sides and replace M by B 4~2 ,

then:

where dR and dT are spacings at room temperature and temperature T

respectively.

For a cubic crystal:

2 a2
dhkl =h4k2+12 where a is lattice constant.

Therefore:

Thus In (IRfIT) is linearly dependant on (1/4~), its slope is:

(3.6)



thus we can deduce the Debye-Waller factor BT at temperature T.

The Chipman & Paskin formula [26] for the correction of the IDS

from powdered crystals, Eq. (2.17):

~ cose() = (3)1/3 MD a tJ. ----r-

can be rewritten for the EDXD method as follows:

~ is the width of the window of a given Bragg peak on the angular

scale of 2e for the ADXD method, we transform it into an energy scale:

A • (6.2) . (6.2 )
il = arcsm d.Er . - arcsm d.El '

where Er , EI are in KeV and are equivalent to (X + 0) and (X-B) [26]

respectively and d is in A. X is the position of the Bragg peak on the 28

scale.

Therefore the TDS correction cr can be calculated from:

27

(It )1/3 e { · 6.2 · 6.2} E() = 3 MD a cos arcsmC:d.E) - arcsm(d.El hc ·

3.2 Instrumentation

(3.8)

The experimental set up consists of: an x-ray source, a specimen

chamber, a detector and a multichannel analyzer. The schematic diagram

showing the instrumental arrangement is in Fig. 3.1.



X-ray
multichannel.
analyzer

28

Fig 3.1 : The schematic diagram of the instrumental set up.

3.2.1 The x-ray source:

Continuous x-rays are produced when energetic electrons are

rapidly decelerated upon collision with atoms of the x-ray tube anode.

The kinetic energy of an electron on impact with the anode surface is:

1
K.E = eV = "2 mv2 ,

where e, m, v are its charge, its mass and its velocity respectively, and V

is the voltage of a x-ray tube.

When electrons strike the target, most of their kinetic energy

is dissipated into heat, only a fraction of one percent is transformed into

x-rays. Some electrons are stopped in one collision with the anode

surface atoms, give up all energy at once and emit x-rays with the

maximum possible energy Emax:

Emax =eVe
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Fig. 3.2: The spectrum of x-ray radiation from a Mo tube operated

at 30KeV and lmA.

We have used a molybdenum x-ray tube. The maximum

voltage is 60 KV and the maximum power is 2400W. We have operated

at 30KV and 15mA. Fig. 3.2 shows the spectrum of the x-ray radiation at

30KV and ImA. To record the spectrum of x-rays, we aimed the Si(Li)

detector directly at the incident beam. The detector window was protected

by a lead sheet so x-rays only reach the detector through a very small

opening Because of a very high counting rate at the center of the x-ray

beam which can over load the detector, we have set the opening slightly

off the center of the beam. Therefore we could only record the spectrum

near the edge of the x-ray beam. The radiation has been weakly

contaminated with characteristic lines of Fe (6.403KeV), eu (8.040KeV



and 8.970KeV) from the collimator and ofW (9.671KeV) from the

vaporization of the filament. There are two characteristic lines of MoKa

and MoKp(17.441KeVand 19.605KeV).

3.2.2 The specimen chamber [4]:

The diagram of the specimen chamber is shown in Fig. 3.3a.

A specimen is clamped down by two stainless steel clips on the surface of

a copper block furnace which is heated by three heater cartridges (700,

200W) inserted into the center of the copper block. They are electrically

connected in parallel. The copper block is attached to the L- shape

stainless steel shield which is mounted on a brass base by a ceramic rod,

it can be rotated about a vertical axis so it can be set at any angle with

respect to the incident x-ray beam. The brass base slides along the

translation direction in the incident plane (Fig. 3.3b) on a brass slab

which is mounted on the base of the vacuum chamber. The electric wires

for the furnace and thermocouples are fed through the base. There are

three thermocouples: one is connected to a heat supply- temperature

controller, one gives temperature readings on the surface of the copper

block, one reads the temperature on the surface of the specimen (we used

a Pt thermometer in our experiment), they are clamped down to surfaces

separately by stainless steel clips (Fig 3.3c). Thermocouples 1 and 2

should give the same reading. The chamber cover has three small

entrance windows and one large exit window for x-rays, they form three

angles of scattering: 26°,460 and 660. A vacuum pump is connected to

the chamber through the openning from the base, it provides an inside

pressure of about 25Jlm (to reduce air scattering and to prevent

oxidization at high temperature).
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(2)

Fig. 3.3 (a) The specimen chamber (b) the translation direction of the

sample, (c) the positions of three thermocouples.

3.2.3 The detector:

The depletion depth of a silicon diode detector is limited to

1-2mm. If a thicker depth is required, the process of lithium drifting can

be applied to create a larger region, 5-10mm thick, of "intrinsic" Si in

which the concentration of acceptors and donors are exactly balanced.

This region can be used as an active volume of a detector. Such a detector

is called a lithium-drifted silicon, Si(Li), detector. The detector is

characterized by the detection efficiency (e) and the energy resolution

(R). e is defined as:

number of full energy pulses recorded
£ =number of photons incident on the detector

and R is defined as the ratio of the full width at half maximum (FWHM)

of the full energy peak corresponding to a monoenergetic x-ray over the
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energy of the peak centroid. Our detector is Si(Li), model SPL-I0180 by

EG&G ORTEC. The beryllium window is lOmm in diameter and

.025mm thick. The depletion depth is 5mm. The detection efficiency is

100% for radiation between 5KeV and 20KeV, the Be window absorbs

lower energy radiation while Si becomes transparent to higher energy

radiation. The energy resolution is about 180eV at 5.9KeV. Fig. 3.4

shows the measurement of the detector resolution by using a radioactive

source of 55Pe. The detector has been operated at liquid nitrogen

temperature with a reverse bias voltage of 1200V.
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Fig. 3.4 The spectrum of the radioactive source of 55Pe was

used to measure the detector resolution.



3.2.4 The multichannel analyzer:

The multichannel analyzer (MCA) converts analog signals to

equivalent digital numbers by an analog-to-digital converter (ADC) and

stores them in the memory. Because components of an MCA are

compatible with those of a standard personal computer (PC), plug-in­

cards that convert a PC into an MCA are available. Our MCA is a

personal computer analyzer (PCA) card, made by NUCLEUS, which can

be installed in a full length slot of an IBM personal computer. The PCA

card contains alOOHz Wilkinson ADC, a multichannel scaler and a dual

port memory.
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CHAPTER 4

EXPERIMENTAL DEVELOPMENT AND RESULTS

4.1 Determining intensity of a diffraction peak.

Fig. 4.1 shows an energy spectrum of x-rays scattered from a

powder sample. It consists of diffraction peaks and characteristic x-ray

peaks. To measure the intensity of a diffraction peak, the number of

counts in the peak above the background is determined with reference to

Fig. 4.2, which shows a diffraction peak in detail. The peak region is

defined by the left (lc) and right hand (rc) channels. The computer

calculates the average number of background counts per channel at lc and

rc as follows:

Lc =< Lc+Lc-I+Lc-2+Lc-3 >,

where Lc, LC-I ... are the number of counts in channels Ie, Ie-I ...etc.

Similarly for Rc:

Rc= < Rc+Rc+l+Rc+2+Rc+3 >.

The channel number of the centroid of the peak is calculated as

follows:
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Fig. 4.1 Spectrum of an aluminum powder sample diffracted at the

scattering angle of 46°,

YIXl+Y2X2+ + YnXnCTRD=--------
Yl+Y2+ +Yn '

where X is the channel number from the beginning of the diffraction peak

and Y is the net counts in the channel X.

We can define:

T= the GROSS intensity is the total number of counts in the

spectrum summed from channellc to channel rc ( the total area under the

peak).

B= the BACKGROUND intensity is the number of count summed

from channellc to channel rc with an average background count per
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channel equal to (Lc + Rc)/2

Lc+Rc
B = 2· (re - Ie + 1 ).

N= the NET intensity is the total number of counts in the

diffraction peak:

N=T-B.

The gross intensity, the background intensity and the net intensity

are shown in Table 4.1 .
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Fig. 4.2 The blow up of the spectrum in Fig. 4.1 for detennining

the intensity of the (220) peak. Ie is at channel 498, re is at channel 538.

The statistical error aN can be calculated as follows:



For the gross intensity:

For the background intensity:

O"L+R
O"B = -2- (rc -lc + 1 ),

where a~+R is the statistical error of each channel.
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But

with

SO O"N =

and

The following definitions are used:

(i) The absolute intensity IT(hkl) of a diffraction peak (hkl) at

temperature T equals the net intensity (N) recorded by the detector.

(ii) The relative intensity I:dt:~lo) equals the ratio of the absolute

intensity of a diffraction peak (hkl) to that of a peak (hokolo). IT(hkl) and

IT(hokolo) are recorded symultaneously at the same temperature T.

(0. 0) Th I· 0 0 IR(hkl) I h 0 f th b I
111 e re atlve mtenslty IT(hkl) equa s t e ratlO 0 e a so ute

intensity of a diffraction peak (hkl) at room temperature to that of the



same peak at temperature T. IR(hkl) and IT(hkl) are recorded sequentially

at room temperature and at temperature T.

Table 4.1 Gross, background, net intensites from an aluminum

spectrum for (220), (311+222) and (400) peaks. Unit of centroid in KeV.

PEAK CTRD GROSS BCKGRD NET

220 11.26 66846± 258 12956 ± 259 53890± 366

311+222 13.34 162833±408 32045 ± 510 130788+ 653

400 15.89 36748± 192 21774 + 321 14974+ 374

4.2 The stability of the incident beam and the reproducibility of

absolute intensities at room temperature.

Elyaseery [4] reported that the intensity of the incident x-ray beam

was not stable, therefore the intensities of the diffraction peaks were not

consistent from one measurement run to the other on the same sample in

the same geometrical condition.

We performed a series of measurements on a rotated unpressed

aluminum powder sample at room temperature to check the

reproducibility of intensity measurements. The system was carefully kept

at the same condition for each run, except the x-ray generator was

switched off and on between runs. The measurements were made over

two days. During each measurement, the voltage and the current were

carefully observed and adjusted if necessary to make sure that the x-ray

generator was operating at 30KV and 15mA. The absolute intensities and

the relative intensities, normalized to (220) lines of five diffraction peaks
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are given in Table 4.2. The intensities were reproducible throughout the

four measurements with a standard deviation of less than 3%. The result

of the test measurements has demonstrated that the incident x-ray beam

intensity was stable.

Table 4.2 Absolute and relative intensities of four measurements,

the first line is the absolute intensity and the second line is the relative

intensity with respect to line (220).

PEAK RUN -1 RUN-2 RUN-3 RUN-4

111 4897 ± 118 4780 ± 119 4704 ± 121 4873 + 119

52.0 ± 1.8 51.4 ±2.0 48.8 ± 2.0 50.6 + 2.0

200 3993 + 110 3994 ± 120 3985 + 119 3878 + 120

42.4 ± 2.2 42.9 ± 1.9 41.3 ± 1.9 40.2 + 1.8

220 9414 ± 141 9301 ± 139 9648 ± 145 9638 + 143

100 100 100 100

311+222 20615 ± 265 20768 ± 268 21411 ± 264 20978 + 264

219.0 + 6.1 223.3 + 6.2 221.9 + 6.0 217.7 + 5.9

400 2470 ± 150 2320 ± 139 2371 + 142 2465 + 149

26.2+2.0 24.9 ± 1.9 24.6 + 1.8 25.6 + 1.9

4.3 Intensities of diffraction lines as a function of temperature from

unpressed samples.

A x-ray beam of 30KV, 15mA was used on an unpressed

40



aluminum powder sample (S-l) mounted inside a sample chamber

[described in section 3.3.2], at an angle of 230 with respect to the

direction of the incident beam.
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Fig. 4.3 A cavity type aluminum powder sample.

Diffracted beams were received by the detector through a slit of

Imm x 10mm. Aluminum powder, supplied by Fisher Scientific was

hand sieved through a 400 mesh and was packed into a cavity type

sample holder of 20mm in diameter and of 3.5mm thick made of copper

(Fig. 4.3). The sample holder was mounted on the surface of a copper

block furnace. Two thennocouples (one was connected to a heat supply­

temperature controller, one was connected to a voltmeter to give a second

reading, both should give the same temperature) were attached to the

front edge of the sample holder by a small stainless steel clip.The density

of unpressed samples was about 40% to 50% of that of aluminum solid.

The reason for our choice of the power of the x-ray beam and the angle of

incidence was that we thought we would see the highest number of



diffraction lines of aluminum powder: six lines from (111) to (511) with

two lines (331+420) and (422) missing because they overlaped with

MoKa and MoK~ lines.We firstly measured the intensities of the

diffraction lines at room temperature and subsequently measured at four

higher temperatures of 382K, 490K, 586K and 689K. We calculated the

relative intensity i~::~ for each line. In (IR!lT) versus 1!(4di) is plotted

in Fig. 4.4 in accordance with Eq. (3.6). Values of In(IRlIT) for four

temperatures are given in Table 4.3.

We repeated the measurements on a different unpressed aluminum

sample (S-2) with a geometrical condition as close as before, at room

temperature and four others at 375K,498K,592K and 701K. We could not

select the previous temperatures exactly because temperature readings

fluctuated. A set of similar results are tabulated in Table 4.4 and plotted

in Fig.4.5.

The values of In (IR!lT) and (IR!lT) of each set of measurements

from Tables 4.3 and 4.4 show no significant increase with 1/(4~) from

(111) to (311+222). The overall results in Table 4.4 seem to be

systematically higher than those in Table 4.3. The lack of reproducibility

in the ratio (IR/IT) is evident in many cases.

We suspected that the problem of non-linearity of In (IR/IT) and the

lack of reproducibility of the two sets of measurement were related to the

large grain size and loose packing of the aluminum powder. Any change

in the mechanical condition of the sample (a change in the orientation of

the large grains) or any small change in the geometry of the system
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during the heating/cooling cycle could probably induce a significant

affect on the absolute intensities of the diffracted beams.

Table 4.3 Values of In (IRfIT) (first line) and (IRfIT) (second line)

of the sample (S-l) at four different tempeartures (K).

PEAK 382 490 586 689 1/4~

111 .02± .02 .05 ± .02 .18 ± .02 .32 + .03 .046

1.02 ± .02 1.06 ± .02 1.19 ± .02 1.37 + .04

200 .07 ± .02 .11 ± .02 .27 ± .02 .39 + .02 .061

1.07 ± .02 1.12 ± .02 1.31 ± .03 1.47 + .03

220 .05 + .02 .16 ± .02 .13 ± .02 .37 + .02 .122

1.05 ± .02 1.18 ± .02 1.14 ± .03 1.44 + .03

311+222 .04 ± .01 .16 ± .01 .28 ± .01 .43 + .02 .175

1.04 ± .01 1.18 + .01 1.32 ± .01 1.52 + .03

400 .09 + .08 .35 ± .08 .54 ± .11 .68 + .12 .244

1.10 ± .09 1.42±.11 1.72 ± .19 1.98 + .24

511 .22 ± .09 .53 ± .11 .79 ± .13 1.13 + .17 .412

1.24 ± .11 1.71 ± .19 2.20± .29 3.89 + .66

43



44

2.0 r------~--___.__--___..---...___--_...

• 382 K

o 490 K

1.6 • 586 K

c 689 K

1.2

..........
c:

0.8

0.5

I
I

0.4

o

•

•

c

i
I

0.1

0.4

IO. 0 a.--~_--'-__--""'-:=------lL...-__-'--__---I

0.0 0.2 0.3
1/4d~ar2)

Fig 4.4 The Wilson plot of In (IR!IT) versus 1/(4d~) for the

sample (S-l).



Table 4.4 Values of In (IR/IT) (first line) and (IR/IT) (second line)

of the sample (S-2) at four different tempeartures (K).

PEAK 375 498 592 701 1/di

111 .08 + .02 .25 + .03 .43 ± .03 .50 + .03 .046

1.09 + .02 1.29 ± .04 1.54 + .05 1.65 ± .05

200 .10 + .02 .25 ± .03 .38 ± .03 .44 ± .03 .061

1.10 ± .02 1.28 ± .04 1.46 ± .04 1.56 ± .05

220 .07 ± .02 .20± .02 .34± .02 .42 + .02 .122

1.07 ± .02 1.23 ± .02 1.41 ± .03 1.53 ± .03

311+222 .09 ± .02 .27 ± .02 .41 ± .02 .53 + .02 .175

1.09 + .02 1.30± .03 1.50 ± .03 1.71 + .03

400 .14 ± .10 .32± .12 .53 ± .12 .64 + .13 .244

1.15±.11 1.37 ± .16 1.69 ± .20 1.89 + .24

511 .17 ± .09 .57 ± .11 1.05 ± .16 1.33 + .20 .412

1.19+.11 1.77 ± .19 2.86± .46 3.80 + .76
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To illustrate the sensitivity of the absolute intensity measurements

to small geometry (or sample) changes. We performed two intensity

measurements on an unpressed aluminum powder sample with identical

conditions except the position of the detector slit was changed by 2mm.

The distance between the sample to the detector is about 12Omm, so the

difference of 2mm corresponds to about 10 change in the scattering angle.

Table 4.5 gives the absolute intensities of the two measurements and the

intensity ratios. The relative intensity of (111) and (220) shows a 35%

difference between the two measurements.

From Table 4.5, we conclude that the condition for the

reproducibility of the intensity measurements was that there should be no

change in geometry or powder sample grain structure during heating and

cooling.

Table 4.5 Comparison of absolute intensities of two measurements

with different slit positions.

PEAK EXPRMT-1 EXPRMT-2 RATIO

111 4232± 94 3625 + 97 1.17 + .06

200 6728+ 118 6467 ± 119 1.04+ .04

220 17529 + 228 20308 ± 206 .86 + .02

311+222 41768 + 377 44295 ±402 .94+ .02
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4.4 Some modifications to the powder sample, temperature

measurements and the detection geometry.

The reproducibility of the intensities of the diffraction lines

required that the geometry of the experimental set up and the mechanical

condition of the sample should not be disturbed. In an unpressed sample,

aluminum powder was loose packed into a sample holder cavity. Its

density was only about 40% to 50% of that of aluminum solid. At high

temperature, crytals could possibly move about because there was a large

volume of empty space around them. When a sample was brought back to

room temperature, crystals did not necessarily orient to the same

directions as before, thus it was possible that a new intensity

measurement could not reproduce the same result. We thought that this

effect may be reduced if we pressed aluminum powder into a tablet

because the grains could not so easily move at high temperature, so the

orientation of the grains may be the same after a temperature cycle.

Moreover, using a pressed powder tablet, the temperature on the surface

of the sample could be measured.This could not be easily done with an

unpressed sample. We decided to make a new sample by pressing

aluminum powder into a tablet of 13.6mm in diameter and 3.5mm thick.

We clamped the sample on the surface of the copper block by two

stainless steel clips. We separated interfaces of the tablet and the block by

a thin sheet of mica to prevent a phase change at the interface during

intensity measurements at high temperature because aluminum and

copper interact around 800K [see Fig. 3.3.c].

We had been using an Imm slit in front of the detector. A wider
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slit would increase the number of diffracting grains seen by the detector,

so effectively it would reduce the intensity changes due to the grain size

effect. It also increased the intensity of diffraction lines, effectively it

decreased the statistical error and the running time. To check if the

intensity to background ratio would be effected by a wider slit, we did a

test by measuring the intensities of (220) and (400) diffraction lines with

a 3mm slit and compared it to that of a measurement made with a Imm

slit. The comparison of two runs showed that the signal to noise ratio did

not change significantly. The result was given in Table 4.6.

Table4.6 Comparison of the signal to noise ratio of 1mm slit and

3mm slit.
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PEAK 3mmSLIT 1mmSLIT

NETCNT BCKGND SGNL/NSE NETCNT BCKGND SGNL/NSE

220 ~5146+233 4992± 156 5.04±.20 13056±164 2618 ± 105 4.99 +.26

400 5233 +228 8132 + 196 .64 ±.04 2656+140 3780 + 115 .70 ± .06

For temperature readings, we used two thennocouples and a

platinum thermometer. Two thermocouples were attached separately on

the surface of the copper block by two small stainless steel clips as shown

in Fig. 3.3c: thermocouple (1) was connected to a heat supply ­

temperature controller, thermocouple (2) gave temperature readings at the

surface of the copper block. A Pt thermometer was mobile. We did three

temperature measurements for a testing purpose:

(i) test 1: Pt thermometer was directly attached on the surface of

the copper block to check the variation of its temperature readings with



that of thermocouple (2) (Table 4.7.a).

(ii) test 2: same as test 1 but Pt thermometer was separated from

the surface of the copper block by a thin sheet of mica, so temperature

readings were the same as that of the bottom of the sample (Table 4.7.b).

(iii) test 3: Pt thermometer was attached to the surface of the

sample (Table 4.7.c) to give temperature readings of the surface of the

sample.

Table 4.7.a Test 1: comparison of temperature readings of Pt

thermometer and thermocouple (2), in (OC).

THERMCPL(2) PtTHERMMTR DIFFERENCE

22.0 ± .1 22.0 ± .1 0.0±.2

132.0 ± .7 131.0 ± .8 1.0 ± 1.4

253.0 ± 1.3 252.0 ± 1.5 1.0 + 2.8

371.0 ± 1.8 369.0 + 2.2 2.0 + 4.1

499.0+2.5 496.0 ± 3.0 3.0+ 5.5

628.0 ±3.1 622.0 + 3.7 6.0+6.7

Table 4.7.a shows that the variation of temperature readings from a

thermocouple and from a platinum thennometer was 10C at 1320C and

increased to 60C at 6280C, it might due to the way we clamped the Pt

thermometer onto the surface of the copper block so it did not have a very

good contact. Table 4.7.b shows that a thin sheet of mica could

significantly reduce the temperature of the sample at high temperature

(reduced by 370C at 5920C). Table 4.7.c shows the temperature gradient
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from the bottom to the top of the sample was only 90C at 5920C, which

was insignificant in the measurement of the Debye-Waller factor of

aluminum at that temperature.

We did two test runs with the same pressed sample, one before and

one after a temperature cycle. The angle of diffraction was 460, a 3mm

slit was placed in front of the detector. We measured the intensities of

(220), (311+222) and (400) lines. It has been clearly demonstrated that

the reproducibility could be achieved if a pressed sample of aluminum

powder was used to scatter a stable x-ray radiation with a 3mm slit placed

in front of the detector. The results is shown in Table 4.8.

Table 4.7.b Test 2:temperature readings at the bottom of the

sample (OC).

THERMCPL(2) PtTHERMMTR DIFFERENCE

22.0 ±.1 22.0 +.1 0.0 ± .2

142.0 ±.7 137.0 ± .8 5.0 ± 1.5

264.0 ± 1.3 252.0 ± 1.5 12.0 ± 2.8

373.0 ± 1.9 352.0 ±.2.1 21.0 + 4.0

491.0 ± 2.4 463.0 + 2.8 28.0 ± 5.2

592.0± 3.0 555.0 + 3.3 37.0 ±6.3
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Table4.7.c Test 3: temperature reading at the surface of the

sample(OC).

THERMCPL(2) PtTHERMMTR VARIATION

22.0 + .1 22.0 ±.1 0.0 +.2

142.0 + .7 137..0 ±.8 5.0+ 1.5

264.0 + 1.3 253.0 ± 1.5 11.0 + 2.8

373.0 ± 1.9 355.0 ± 2.1 18.0 + 4.0

491.0 + 2.4 458.0 ±2.7 33.0 ± 5.2

592.0± 3.0 546.0 ±3.3 46.0 ± 6.2

Table 4.8 The result of two test runs for the reproducibility of the

intensity measurements on a pressed sample, before and after a

temperature cycle, with a 3mm slit.

PEAK ABSL.INT.(R-l) ASBL.INT (R-2) RATIO

220 44681 ± 313 42131 + 337 1.06 + .02

311+222 92495 ± 555 94320 + 566 .98 + .01

400 11105 ± 344 10541 + 337 1.05 + .07

4.5 Determination of the variation of the Debye-Waller factor of

aluminum with temperature.

An incident x-ray beam of 30KV, 15mA has been diffracted from a

pressed aluminum powder sample. Diffracted beams were received by a

detector through a 3mm slit. Three different angles of diffraction of 260,
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460 and 660 were used to cover eight diffraction lines from (111) to

(511), because only a portion of incident beam from 10.5KeV to

16.5KeV has been used in these measurements. There were two reasons

for using this portion: with reference to Fig. 3.2 page 29, (a) the incident

beam in this region was free from characteristic lines; (b) the intensity

decreased slowly with energy so the intensity per unit energy, I(E), in a

given diffraction peak varied only slightly with temperature,thus when

we calculated the relative intensity (IR/IT) of the same diffraction line at

different temperatures,.I(E) cancels out. Fig. 4.6 shows spectra taken at

the three angles:

(a) angle of 260 shows two lines of (111) and (200),

(b) angle of 460 shows three lines of (220), (311+222) and (400),

(c) angle of 660 shows four lines of (400), (331+420), (422) and

(511).
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Fig. 4.6 Spectra of three angles of diffraction: (a) 260, (b) 460,

and (c) 660.



Table4.9 Absolute values of the intensities of eight diffraction lines

at room temperature before (RUN-1) and after a temperature cycle

(RUN-2) for three angles of diffraction.

PEAK 28(0) RUN-1 RUN-2 RATIO

111 26 181741 ± 545 183210 ± 550 .99 + .01

200 114002 ± 456 115153 ± 461 .99 + .01

220 46 53239 ± 373 51904 ± 363 1.03 + .01

311+222 127194 ± 636 127199 ± 636 1.00 ± .01

400 14640 ± 366 15245 ± 351 .96 + .04

400 66 9098 ± 246 9426± 245 .97 ± .05

331+420 49892 ± 499 50447 + 504 .99 ± .02

422 16871 ± 371 16577 + 381 1.02 + .04

511 17596 ± 369 17721 ± 372 .99 ± .04

Intensities of eight diffraction lines have been measured at room

temperature and subsequently at 410K,525K, 625K, 725K, and 815K.

The running time depended on the intensity of the diffracted beam which

was in tum dependant on the angle of diffraction: a smaller angle, a

stronger diffracted beam, a shorter running time. Depending on the

running time, each set of measurements at six different temperatures

could be completed in one or two days. If two days were needed, we

started a measurement at room temperature then at 410K,52K, 625K in

the first day. We let the sample cool down overnight, on the second day
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we started again at room temperature then at 725K, 815K.

Table 4.10.a Values of (IR/IT) for the first run.

TEMPERATURE(K)

PEAK ~e(O) 410 525 625 725 815

111 26 1.07 + .01 1.12 + .01 1.19 ± .01 1.28 + .01 1.35 + .01

200 1.08 + .01 1.15 ± .01 1.20 + .01 1.32 + .01 1.45 + .01

220 46 1.09 + .02 1.22 ± .02 1.35 ± .03 1.50 + .03 1.79 + .04

311+222 1.15 + .01 1.30 ± .01 1.51 + .02 1.74 + .03 2.05 + .04

400 1.27 + .07 1.53 ± .09 1.78 + .12 2.27 + .18 2.72 + .25

400 66 1.27 + .08 1.55 ± .11 1.87 + .17 2.88 + .33 3.32 + .38

331+420 1.23 ± .03 1.60 + .04 1.98 ± .05 2.85 + .10 3.86 + .17

422 1.33 ± .07 1.80 ± .11 rl.57 + .19 3.63 + .36 4.40 + .54

511 1.36 + .07 1.97 + .12 ~.90 + .22 ~.20+ .42 6.07 + .87

We repeated each set of measurements to see if it could be

reproduced, it showed that this was the case for all temperatures. Table

4.9 shows the reproducibility of the intensity measurements of the

diffraction lines at room temperature after a heating/cooling cycle for all

three angles of diffraction. Table 4.10 shows the values of (IR/IT) for the

run-1 (a), for the run-2 (b), and the average values of two runs (c).
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Table 4.10.b Values of (IRfIT) for the second run.

TEMPERATURE(K)

PEAK 28(0) 410 525 625 725 815

111 26 1.06 + .01 1.13 ± .01 1.18 + .01 1.26 + .01 1.32 + .01

200 1.06 ± .01 1.14 + .01 1.20 + .01 1.31+.01 1.40 + .01

220 46 1.11 + .02 1.24 ± .02 1.38 + .02 1.57 + .03 1.83 ± .04

311+222 1.14 ± .01 1.34 ± .02 1.53 + .02 1.82+ .03 2.12 + .04

400 1.24 ± .07 1.53 ± .09 1.74 + .12 2.57 + .23 3.12 ± .30

400 66 1.28 + .07 1.62+.11 1.98 + .16 2.66+ .27 3.44 + .44

331+420 1.26 + .03 1.64 ± .03 2.03 ± .04 2.74 ± .09 3.93 + .12

422 1.29 + .06 1.84 ± .11 2.50 + .18 3.68 ± .39 4.51 ± .54

511 1.39 + .06 2.05 + 12 3.05 + .16 4.36 ± .30 5.83 + .77

We correcred the absolute intensities for IDS, which varied from

less than 1% for the (111) line at room temperature to 15% for the line

(511) at 815K. The calculation for IDS corrections have been done by

using Eq. (3.8):

0' = ~ )1/3 MD a cos9 {arcSin~h - arCSin(~~I) }::c .

The lattice constant , a, was calculated by using the thermal expansion

coefficient for aluminum [27]. A theoretical value was used for the

Debye-Waller factor, MD [5]. The remaining parameters were measured
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experimentally. We took the average values of the relative intensities

IR(hkl)/IT(hkl) for all eight diffraction lines. We calculated In (IR/IT) and

used the Wilson plot, showed in Fig. 4.7, to determine the change in the

Debye-Waller factor M3 as a function of temperature. Table 4.11 shows:

(a)The values of In (IR/IT) for five temperatures above room

temperature and values of (1/4d~ of each diffraction line, and

(b) The corresponding values of slopes, intercepts and ~Bs.

Table 4.10.c Average values of (IR/IT) of two runs.

TEMPERATURE (K)

PEAK 410 525 625 725 815

111 1.06 + .01 1.12 + .01 1.18 ± .01 1.27 ± .01 1.34 + .01

200 1.07 + .01 1.14 ± .01 1.20 ± .01 1.31 ± .01 1.42 ± .01

220 1.10 + .01 1.23 ± .01 1.36 + .02 1.53 ± .02 1.81 ± .03

311+222 1.14 + .01 1.32 ± .01 1.52 ± .01 1.78 + .02 2.08 ± .03

400* 1.26 + .03 1.56 ± .05 1.84 + .07 2.74 ± .13 3.14 ± .17

331+420 1.24 ± .02 1.66 ± .04 2.00± .04 2.80 ± .07 3.89 ± .12

422 1.31 ± .05 1.82 + .08 2.53 + .13 3.65 ± .26 4.45 + .38

511 1.37 ± .05 2.01 ± .08 2.98 ± .14 4.28 ± .26 5.95 + .58

* Values of (400) line is the average of four values instead of two as

the others.
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Table 4.11.a Values of In (IRfIT) and values of 1/4~ (A-2) for five

temperatures above room temperature.

TEMPERATURE (K)

PEAK 410 525 625 725 815 1/4di

111 .06 + .01 .11 + .01 .17 ± .01 .24 + .01 .29 + .01 .046

200 .07 ± .01 .13 + .01 .19 ± .01 .27 + .01 .35 + .01 .061

220 .10 ± .01 .21 ± .01 .31 ± .01 .42 + .01 .58 + .02 .122

311+222 .13 + .01 .28 ± .01 .42 + .01 .58 + .01 .73 + .01 .175

400 .23 + .02 .44± .03 .61 + .04 .95 + .05 1.15 + .05 .244

331+420 .22 + .02 .48 ± .02 .69 + .02 1.03 + .02 1.36 + .03 .297

422 .27 + .04 .60± .04 .93 ± .05 1.30 + .07 1.49 + .08 .366

511 .32 + .04 .70+ .04 1.09 + .05 1.45 + .06 1.78 + .10 .412

Table 4.11b Values of slopes, intercepts and ~Bs for five

temperatures above room temperature.

TEMP(K) 410 525 625 725 815

SLOPE .70+ .05 1.59 ± .05 2.46 ± .11 3.39 + .13 .4.04 + 17

INTRCPT .02+ .01 .02 ± .01 .02 ± .03 .05 + .03 .10+ .04

~B(T)(A2) .36 + .03 .81 ± .03 1.27 ± .06 1.76 + .07 2.11+.09
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We conclude this chapter by comparing our result with two

theoretical calculations from Killean & Lisher [5] and from Shukla [6],

two experimental data from MacDonald [11] using the neutron diffraction

method and from Martin & 0' Connor [12] using the Mossbauer effect on

single crytals. The comparison is given in Table 4.12, an asterisk (*)

indicates theoretical calculation, our result is indicated by 'Nguyen'. The

plots are given in Fig.4.8.

Table 4.12 The comparison of our result with that of Killean &

Lisher (K&L), of Shukla, of MacDonald (M.D) and of Martin & 0'

Connor (M&O). Values in A2.

TEMP(K) 410 525 625 725 815

K&L* .38 .84 1.30 1.82 2.36

SHUKLA* .53 .93 1.36 1.80 2.20

M.D .40 .86 1.29 1.83 2.35

M&O .40 .83 1.25 1.72 2.19

NGUYEN .36 ± .03 .81 + .03 1.27 + .06 1.76 + .07 2.11 + .09
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CHAPTER 5

CONCLUSION

We have measured the change of the Debye-Waller factor from

room temperature up to 815K for aluminum by using the EDXD system

at Brock University. Our results were in good agreement with those

previously measured by MacDonald [11] using neutron diffraction and by

Martin & O'Connor [12] using Mossbauer spectroscopy on single

crystals. Referring to Table 4.12, our values of the change of the Debye­

Waller factor from room temperature were very close to that of Martin &

O'Connor. The differences were about 2% at 525K, 62K, 725K and about

4% at 815K. The results from MacDonald were slightly higher in the

temperature range from 525Kto 725K, but our results only differred by

2% to 6%. Since our experimental errors were from 4% to 5% in this

temperature range, we could see that our results were well matched with

his. At 815K, MacDonald's value was 11 % higher than ours and 7%

higher than that of Martin & O'Connor. At 410K, our result was 10% less

than theirs but our error was 8%, so our result was still good. When we

compared our results with that of Dingle & Medlin [10] from x-ray

diffraction on a single crystal we got the same value of L1B(T) at 4100K,

and about 1% different at 525K. We did not put their results [10] in Table

4.12 because their temperature range was only up to 559K. We have tried
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to determine the Debye-Waller factor at room temperature by measuring

the relative intensities I(hkl)/I(hokolo). We did not succeed because our

aluminum powder sample consisted of relatively large grains, so the

orientation of crystals was not completely random, therefore the relative

intensities showed significant variation from the random powder value.

To detennine the change of the Debye-Waller factor from room

temperature, we need to know its value at room temperature. Since we

could not evaluate it, we used B(T=295K) =.89 from MacDonald [11]. We

found that our results did not change significantly if we chose B(T=295K)

= .90 from Martin & O'Connor [12] or B(T=295K) = .85 from Dingle &

Medlin [10].

This work has clearly shown that the simple EDXD system at

Brock University may be usefully applied to certain diffraction studies on

simple crystalline materials, which have normally been done by using

more sophisticated instruments.

Elyaseery [4] reported that he could not reproduce the

measurements of the diffracted beam intensities at high temperature due

to the inconsistency of the incident beam. We have found that our

molybdenum x-ray tube produced a stable intensity radiation source. The

variations in the voltage and the current of our x-ray generator was

observed to be about 1KV and 1mA respectively; by making adjustments

when required, these variations did not significantly effect the intensity of

difffracted beam.

To make reproducible measurements of diffracted beam intensities

from unpressed aluminum powder samples with grain sizes from
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approximately 10J.! to 40J.! at room temperature, we found that it was

necessary to reposition the detector scattering angle very accurately.

We were not able to obtain reproducible high temperature intensity

data using unpressed samples.The unpressed sample density was 40% to

50% of that of aluminum solid. The powder was not a stable structure, so

that changes in grain orientation was possible during heating/cooling and

we speculated that the lack of reproducibility was caused by this.

The fluctuation of temperature readings at the beginning of our

experiment was caused by bad contacts between thermocouples and the

surface of the copper block.

Reproducible high temperature intensity data was obtained by

using aluminum powder pressed into tablets with a density of about 80%

of that of aluminum solid. Great care was also taken to maintain the

thermocouples securely clamped to the tablet surface and heater

assembly; this ensured sufficiently accurate and reproducible temperature

measurements. To reduce effects due to any remaining changes in grain

orientation in the high density tablets, the diffraction angle range

accepted by the detector was increased.

Elyaseery's work [4] and our work have demonstrated that the

EDXD system at Brock University is a workable system for materials

with low melting point. To do measurements for materials of higher

melting point or for amorphous materials at higher temperatures, it would

be desirable to make some modifications:

(i) Increase the energy of the x-ray beam to 50KeV so we could
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measure diffraction intensities of scattering vector q with high magnitude

which is suitable for works on amorphous materials.

(ii) Replace the copper block heater by a stainless steel block so it

could stand at higher temperature.

(iii) Replace existing heater cartridges with tungsten wires so they

would not be damaged at higher temperature.

(iv) Insert thermocouples made from platinum-rhodium into the

heater block for good contacts.

(v) Interfaces of the sample and the surface of the heater block

could be separate by a layer of a thermal conducting compound to

increase the thermal contact between them.
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