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ABSTRACT

The influence of carbon dioxide on growth and protein

synthesis of etiolated Avena coleoptiles was investigated.

Evidence is presented that 0.03% carbon dioxide stimulated both

these processes; and that carbon dioxide stimulated growth depends

on carbon dioxide stimulated protein synthesis, In addition the

evidence indicates that carbon dioxide stimulated growth is mediated

by metabolism, and that carbon dioxide stimulates growth through a

dark fixation process. Growth studies also demonstrated that

IAA and carbon dioxide stimulated growth in a synergistic

manner.
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1. INTRODUCTION

The growth and development of plants depends ultimately on the

growth and development of plant cells. The process of plant growth and

morphogenesis is initiated by the enlargement of daughter cells following

cell division. It is common for the plant cell to expand predominantly

in one dimension resulting in elongation. Cell elongation, a major

component of plant growth, involves an extension of the cell wall and it

is important to recognize that growth of a plant is a function of cell

wall extension.

Cell wall extensibility, which is believed to be a controlling

factor in cell elongation, is increased by auxin (Cleland, 1968; Masuda,

1968; Coartney, Morre and Key, 1967), low pH (Nitsch and Nitsch, 1956;

Rayle and Cleland, 1970) or carbon dioxide (Reinhold and Glinka, 1966).

Thesefactors also i,nduce rapid cell elongatmon and are thoughtto do so

by increasing the extensibility of the cell wall so that turg~r pressure

on the cell wall will result in cell expansion. Two general theories have

been proposed to account for the increase in extensibility; either it may

be controlled by synthes~s of new cell wall materials (Ray, 1967) or it

may be due to degradation of cell wall materials already present (Heyn, 1970).'

Growth of etiolated Avena coleoptiles has been studied by different

investigators using different growth promoting substances, such as auxin

(Evans and Ray, 1969; Niss1 and Zenk, 1969), low pH (Rayle and Cleland, 1970)

or aarbon dioxide. There have been many reports of earbon dioxide stimu­

lated extension growth of non-photosynthetic plant tissue and Yamaki (1954),

Nitsch and Nitsch (1956) and Harison (1965a; 1965b) have reported that



2

carbon dioxide can stimulate the extension growth of etiolated Avena

coleoptiles. Increased carbon dioxide concentration can also stimulate

growth of Avena mesocotyl and etiolated co1eoptile tissues (Mer and

Richards, 1950; Mer, 1957). However, the mechanisms by which auxins, low

pH values and carbon diox~de stimulate growth is not yet understood.

Recently, Evans, Ray and Rienhold (1971) using excised etiolated

Avena co1eopti1e sections, have shown that carbon dioxide saturated water

rapidly produced a pronounced stimulation of coleoptile extension. They

showed that after a 1 minute lag peri.od carbon dioxide saturated water

produced an increase in the growth rate and that the growth rate was 15

times greater than that found in wqter alone. Auxin, on the other hand,

stimulated growth after a lag of 10 ~ 12 minutes and resulted in a growth

rate 8 times that in water alone. They also showed that a citrate buffer

and carbon dioxide saturated water, both at pH 3.8, stimulated elongation

after a similar short lag period but that the rate of elongation in the

buffer was less than that in carbon dioxide saturated water. Evans et a1

(1971) also demonstrated that carbon dioxide-induced elongation was not the

same as auxin-induced growth since the former phenomenon was insensitive

to a variety of metabolic inhibitors which suppressed auxin stimulated

growth. Furthermore, they showed that IAA did not further accelerate the

elongation rate when this had already been promoted by carbon dioxide.

However, carbon dioxide could promote the elongation rate of coleopti1es

which had been treated with IAA. They suggested that the carbon dioxide

effect was a physical phenomenon, independent of immediate biochemical

participation, and proposed that carbon dioxide acted by acidification.
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Rayle and Cleland (1970) have demonstrated that the mechanisms

of hydrogen ion and carbon dioxide stimulated growth are different. They

showed that saturating carbon dioxide concentrations would stimulate growth

even when the medium was buffered at a pH which did not stimulate growth.

Furthermore, they demonstrated that growth stimulation by low pH values

could be inhibited by a short exposure to pH 7.0, after which solutions

at pH 3.0 would no longer stimulate growth, although solutions saturated

with carbon dioxide could still do so. They also pointed out that the

maximal growth rate caused by carbon dioxide was greater than the maximal

growth rate produced using hydrogen ions. Rayle, Haughton and Cleland

(1970) proposed that the response to hydrogen ions more closely resembled

the auxin response than the carbon dioxide response because in vivo auxin

and low pH responses were similar in regard to the maximum rate of extension

and the temperature dependence of elongation.

SPlittstoesser (1966), using buffered solution with 0.03% carbon

dioxide and carbon dioxide free air, showed that carbon dioxide could

stimulate growth in a variety of non-photosynthetic tissues, such as

excised maize roots, carrots slices and tomato roots. He found growth of

excised tomato roots aerated with air was 50% more than growth of the tissue

aerated with carbon dioxide free air. He also found that malate and aspar-

14tate were the major labelled products when CO 2 was fed to the tissue.

Saltman, Kunitabe, Stitt and Spotter (1956) and Saltman, Lynch, Kunitabe

and Stitt (1957) also found that malate and aspartate were the initial

14
compounds labelled when young BryophyZZum leaves were exposed to CO 2 .

After relatively long period in the dark, there was a spread of label to

other carboxylic acids and amino acids. They concluded that the first

product of dark carbon dioxide fixation would be OAA and that malate and
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aspartate were secondary products.

Splittstoesser (1966) proposed that carbon dioxide stimulated

growth involves carbon dioxide fixation resulting in four carbon acids

which can replace Krebs aci,ds lost to the cycle during the biosynthesis

of amino acids and other metabolites. For each turn of the Krebs cycle

one molecule of oxaloacetate is regenerated to initiate the succeeding

turn of the cycle. However, for several intermediates of this cycle,

particularly oxaloacetate, a-ketoglutarate and succinyl CoA, there are

other metabol~c fates alternate to those of the Krebs cycle. Synthesis of

aspartate from oxaloacetate, and glutamate from a-ketoglutarate, would

inevitably decrease the rate at which the cycle could operate unless the

loss of these acids were offset by a replacement of Krebs acids.

In microorganisms Krebs acids are replenished by carbon dioxide

fixation with pyruvate or phosphoenolpyruvate (Wiame, 1957). The importance

of phosphopyruvate carboxylase (EC. 4.1.1.31) [reaction lJ in replacing

Krebs cycle intermediates was indicated by Ashworth, Kornberg and Ward

(1965) who showed that phosphopyruvate carboxylase mutants of E. COli could

not grow in the presence of glucose unless the medium was supplemented

with four, five, or six carbon acids. Also Lips and Beevers (1966) demon­

strated that in corn roots malate produced by fixation of carbon dioxide

was utilized much faster under conditions which would be expected to increase

the demand for acetyl group acceptors in the mitochondria. The carboxylation

of ~sphoeno1pyruvate to yield OAA by phosphoenolpyruvate carboxylase is

essentially irreversible and in vivo the oxaloacetate is presumably con­

verted to malate by malic de~ydrogenase. Phosphoenolpyruvate carboxylase

has a high affinity of CO 2 which allows it to fix carbon dioxide even in
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CO 2 tension less than 0.03% (Rausan and Thomas, 1960).

-------}) OAA + Pi (1)

Bown and Lampman (1971) have shown that the presence of the

enzyme phosphopyruvate carboxylase in etiolated co1eaptiles of Avena

sa~va. They also found that malate and aspartate were the first detec­

table products of 14C-bicarbonate fixation. Rauson (1953) also demonstra-

ted that carbon dioxide stimulated the levels of malate, aspartate,

glutamate and alanine in Avena coleopti1es.

Sp1ittstoesser (1966), using 14C-1eucine incorporation as an

indicator of rates of protein syRthesis in carrot slices and tomato roots,

showed that these tissueswhen aerated with air incorporated 33% more

14C 1 .." ". h h d .. h b d" "d f "-eUClne lnto proteln t an t ose aerate Wlt car on lOXl e ree alr.

Bown and Lampman (in press) have also found that protein synthesis and

radioactive leucine incorporated were reduced in carbon dioxide free air.

Thus, carbon dioxide promoted protein synthesis and growth may be related to

the role of carbon dioxide fixation in replacing Krebs acids lost to the

cycle during the biosynthesis of amino acids required for protein synthesis.

Many investigarors, while studying the growth of plant tissue, use

the classical growth promoting auxin indo1e-3-acetic acid (IAA). It was

found in Avena coleopti1es by Went (1935) who also showed that the addi-

tion of lAA increased the growth of the co1eopti1es. Yamaki (1954) found

that the elongation of Avena coleoptile cylinders was greater in the

presence of both lAA and carbon dioxide than in the presence of carbon

dioxide alone. He also found that the effect of carbon dioxide was most

pronounced when sucrose and lAA were included in the incubation mixture.

Noeden and Thimann (1963) showed that auxin stimulated the growth
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of artichoke tuber disks, oat coleoptiles and pea stem sections by

22% to 39%. They also demonstrated that auxin-induced cell enlargement

· d b 17% 59%· .. · f 14C 1 ·was accompanle y a 0 to 0 lncrease ln lncorporatlon 0- eUClne

into protein, which they considered to be a growth limiting factor.

Inhibition of auxin-induced growth by actinomycin D indicates a dependence

of continued growth on the synthesis of RNA and they proposed that the

action of auxin in cell enlargement is on a nucleic acid system controlling

the synthesis of proteins essential for growth.

Key and Shannon (1964) and Key (1964), using soybean hypocotyl

tissue, found that puromycin and 8-azaguanine, inhibitors of protein

synthesis, inhibited both cell elongation and incorporation of 14C-Ieucine

into protein. In addition, they found that actinomycin D inhibited incor-

poration of radioactive nucleotides into RNA, radioactive leucine into

protein and growth of the tissue. As a result, they concluded that RNA

and protein synthesis are essential for growth. Similarly Nooden and

Thimann (1966) using a variety of protein synthesis inhibitors, demon-

strated a parallel relationship between inhibition of auxin-induced growth

and inhibition of auxin-stimulated protein synthesis and proposed that

these two processes are closely related to each other and that protein

synthesis is a limiting factor in auxin-induced cell expansion.

Patterson and Trewavas (1967), using subapical sections of etiolated

peas and the double labelling technique to demonstrate differential

-5protein synthesis, showed that 2 x 10 M lAA could change the type of

protein synthesized. They proposed that lAA not only increased the

incorporation of amino acids into proteins but also changed the pattern

of protein synthesis. The effect of lAA may not be general and the rate of

synthesis of many proteins may be unaltered by IAA.
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Because many reports show that the growth of plant tissue

depends on protein synthesis the term growth limiting protein (GLP)

has been coined. Cleland (1970, 1971) using Avena coleoptile segments,

studied the effect of cycloheximide and puromycin on the stability and

pool size of the GLP. Cleland found that inhibition of growth followed

inhibition of protein synthesis by 20 - 25 minutes regardless of the

growth rate, which indicated that the disappearence of the growth limiting

protein was due to its functional instability rather than its consumption

in the growth process. He also found that the size of this proposed GLP

pool was low in the absence of IAA but on the addition of IAA rapidly

expanded and reached a maximum within 20 - 25 minutes. Cleland suggested

that auxin-induced growth is determined by the size of this growth limiting

protein and proposed that auxin could cause either de-novo synthesis of

this protein or activate GLP which is synthesized independently of auxin.

These results indicate that continued cell elongation depends on continued

protein synthesis but which proteins are needed and how they contribute

to cell elongation is still far from clear.

Despite all the evidence demonstrating that auxins stimulate RNA

and protein synthesis, there is much evidence that these processes are

stimulated indirectly and that the primary action of auxin is on some other

process. Many possible sites of action for auxin have been proposed and

include an influence on transcriptio~ translation allosteric enzymes and

membranes.

Key (1966) showed that 5-fluoro-uracil selectively inhibited

ribosomal and soluble RNA without affecting D-RNA, which he believed to be

an "essential RNA" for auxin-induced growth. It is called D-RNA because

of DNA like properties and is very different from soluble and ribosomal RJ.~A.
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It was first called AMP-rich RNA, because of a high AMP and low GMP

ratio. Its composition, sedimentation (stability) are similar to those

of m-RNA in bacterial systems and therfore it is suspected that this

RNA functions as messenger RNA in auxin-induced growth of plant tissue.

Key and Ingle (1968) also found that actinomycin D would inhibit the

auxin-induced growth of tissue treated with 5-f1uorouraci1 and as a

result of these experiments, they suggested that the ability of auxin

to stimulate growth depended upon the synthesis of AMP-rich RNA which has

properties simi.1ar to those of messenger RNA (Ingle, Key and Holm, 1965).

This type of data has led to the advancement of the gene activation

hypothesis which proposes that the primary action of auxin occurs through

a specific stimulation of RNA synthesis on a DNA template. Specific RNA

synthesis could result in the synthesis of particular enzymes or proteins

essential for auxin-induced growth.

Another hypothesis is that auxins stimulate the protein synthesi-

zing mechanism of the cell and that this effect on the translational

process leads to the specific synthesis of essential protein(s) or

enzyme(s). Bendana and Ga1ston (1965) followed the metabolism of 14C_

IAA in excised green pea stem segments. Separation of extracted RNA

in a sucrose density gradient showed that 14C_1AA was concentrated in a

4S peak, which also showed greater stability to ribonuclease than a

similar fraction obtained from tissue not treated with lAA. Bendana,

Ga1ston, Kauer-Sawhney and Penny (1965) also found that the kinetics of

labelled lAA incorporation into RNA resembled the kinetics of growth induced

14They found that C from methy1ene--labelled IAA and carboxyl

and methylene--labelled 2,4-dich10rophenoxyacetic acid (2,4-D) were also

incorporated into RNA, but with lower efficiency than carboxyl-labelled lAA.
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Furthermore a "substantial fraction" of the bound label appeared to be

14
recoverable as lAA and they demonstrated that C-1abe1 was associated

with adeny1ate and cytidylate. In his review on auxins, Gordon (1954)

presented evidence for the existence of a protein-bound auxin fraction

which was recoverable following acid or enzymic hydrolysis. As a result

of this kind of evidence, Ar.mstrong (1966) proposed that auxin may stimu-

late the translation of mRNA by supplementing or replacing N-formy1meth-

ionine on transfer RNA as a signal for polypeptide chain initiation.

Nooden and Thimann (1966) showed a parallel relationship between inhibition

of growth and inhibition of protein synthesis by a variety of protein

synthesis inhi.bitors. They suggested that auxin may stabilize an unstable

messenger RNA leading to the synthesis of protein(s) or enzyme(s) necessary

for cell elongation.

On the other hand, many authors have obtained evidence that the

site of action of auxin in stimulating growth cannot be on the transcriptional

or translational processes. Nissl and Zenk (1969), using oat coleopti1es,

studied the time required for auxin induced cell elongation. They found

-5 0that using 10 M IAA at 21 C a lag phase of about 10 minutes was obtained

before growth was stimulated. By increasing the IAA concentration from

10-5 M to 10-3 M and temperature from 21° to 29°C, they eliminated this

lag phase completely without affecting the growth rate. They pointed out

that the induction of protein synthesis via transcription or translation

is a time-consuming process and is preceeded by a characteristic lag phase.

Si.nce they obtained stimulated growth with no lag phase, they concluded

that the primary site of auxin action was not on the transcriptional or

translational processes. They also opposed the proposal put forward by
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Bendana et a1 (1965) who stated that labelled IAA was incorporated into

RNA. They demonstrated that when radioactive auxins were added to tissue

less than 1% of the radioactivity in the 80% ethanol extract represented

metabolized auxin, and that no radioactivity was associated with the macro­

molecular components. As a result they concluded that auxin is active in

causing an elongation response only in the free state.

Ray (1969) and Evans and Ray (1969) studied the gene activation

hypothesis by examing the effect of inhibitors of RNA and protein synthesis

upon the timing of the growth response to auxin. They expected that if

elongation results from auxin-induced transcription or translation the lag

phase before auxin induced elongation would be lengthened by inhibitors of

these processes. They found, however, that doses of actionomycin D,

cycloheximide or puromycin caused no substantial increase in the lag period

before auxin stimulated growth. In fact cycloheximide actually shortened

the lag period. If auxin stimulates growth via gene activation the lag

period should be extended by these inhibitors. This was not the case,

however, and Ray proposed that auxin probably does not act by promoting the

synthesis of specific rnRNA molecules. Evans and Ray (1969), after studying

the growth response to auxin, proposed that the site of auxin action could

be on the activities of preformed enzymes. Ray, however, agrees that

for continued long term growth protein synthesis is necessary.

Pope and Black (1972), using etiolated wheat coleoptiles, studied

the influence of lAA and cycloheximide on growth and protein synthesis.

They found that cycloheximide (l~g/ml) inhibited growth and 14c-leucine

incorporation by 13% and 72% within 1 hour and also found that 10 ~g/ml of

cycloheximide inhibited 3H-1eucine incorporation into protein by at least
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90% within 10 minutes. Despite this virtual elimination of protein

synthesis, they demonstrated that lAA-induced growth could still occur in

the presence of cycloheximide (10 l1g/ml) if the tissue were pretreated

with the inhibitor up to 2 hours before the addition of lAA. They proposed

that lAA induces growth by increasing the activity of a growth limiting

factor.

These results, in their entirety, make it highly possible that

the primary site of auxin action is not upon transcription or translation.

The activity of a few enzymes has been shown to be increased by growth­

promoting concentrations of auxin, but whether these changes are due to

increases in enzyme synthesis, decreases in enzyme breakdown or auxin

stimulated activation of preformed enzymes has not been fully established.

For example, Cleland (1967), suggested that the site of auxin action could

be on an already synthesized allosteric enzyme.

Pope and Black (1972) showed that for 2 hours after the addition

of cycloheximide and almost complete inhibition of protein synthesis,

wheat coleoptiles could still exhibit increased growth in the presence of

auxin. They proposed that growth depends on the availability of protein

and that auxins act directly on pre-existing protein which apparently has

a life of about 2 hours. Sarkissian (1968) studied the effect of lAA on

citrate synthase extracted from corn scutella. He found that 1.25 x 10-10

M lAA increased the enzyme activity by 35% and that there was a sigmoidal

relationship between substrate concentration and reaction rate. This

suggests that citrate synthase is an allosterie enzyme and that lAA is a

positive effector. Trewavas (1968), using etiolated subapical section

of Pisum sativum, studied the effect of lAA on RNA and protein synthesis.

He found that lAA stimulated RNA synthesis, that the incorporation of
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radioacti.ve RNA precusors into RNA was first detected in the nuclear

fraction and th.at lAA could alter the GMP-AMP ratio of the newly synthesized

RNA. He used this indirect evidence to suggest that lAA activates a DNA

dependent RNA polymerase.

A direct effect of auxin on cell membranes was recently put forward

by a number of investigators as a possible site of auxin action. Rayle,

Ouitrakul and Hertel (1969), using corn coleoptiles and various auxins,

studied the influence of one auxin on the basipetal transport of another

auxin. They found that lAA enhanced the transport of 2,4-D, the transport

of LAA and a-naphthalene acetic acid (a-NAA) were also stimulated by auxins

within 20 minutes. Assuming that the controlling factor with regard to

transport was the rate of movement of auxins through the plasma membrane,

they suggested that the evidence was consistent with an auxin influence

directly on the membrane. Etherton (1970), using etiolated o.at coleoptiles,

made a preliminary study on the effect of lAA on membrane potentials.

The author found that by increasing lAA concentration from 10-9 to 10-7 M

the membrane potentials of coleoptile cells became more negative and also

that solutions with lAA concentration from 10-8 to 10-6 M made the cytoplasmic

and vacuolar potentials more negative than solutions with 10-9 M or lower

lAA concentrations. Etherton speculated that auxin-induced cell elongation

might be directly correlated with the effect of auxin on membrane

potentials.

The above discussion leads to the conclusion that long term auxin

stimulated growth depends on continued protein synthesis. However, despite

the work of many people over many years, the mechanism by which auxin sti­

mulates growth and protein synthesis is still far from clear.
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On the other hand, the carbon dioxide stimulated growth of

etiolated plant tissues has not been so extensively investigated and it

is possible that an understanding of this phenomena will yield insights

into the growth process. Questions that have not been vigorously inves­

tigated include the site of action of carbon dioxide in stimulating

growth, whether or not carbon dioxide stimulated protein synthesis is

necessary for carbon dioxide stimulated growth; the relationship between

carbon dioxi.de and lAA in stimulating growth and whether or not carbon

dioxide and lAA stimulate the synthesis of the same kinds of protein.

This investigation was undertaken to obtain evidence pertaining

to these questions and to explore the possibility that carbon dioxide

stimulated growth and protein synthesis are mediated by dark carbon

dioxide fixation.
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2 . MATERIALS

2.1 Biological Materials

Seeds of Avena sa~va (var. Victory) were purchased from

Wards Biological Supply House, Chicago, Illinois, U. S. A.

2.2 Chemicals

Except for those listed below, all common chemicals were

purchased either from BDH (Canada) Ltd. or Fisher Scientific Co.,

N. J., and were of analytical grade.

(a) Phenol Reagent

(Folin & Ciocalteu)

(b) Cyanogum 41

(Gelling Agent)

(c) Cyanogum 41 Catalyst

(b-dimethylaminopropionitrile)

DMAPN

(d) NCS - Solubilizer

(0.6 N Solution in toluene)

(e) Hydroxide of Hyamine 10 - x:

(f) POPOP

1,4-bis 2 - (4 - Methyl-

5 - Phenyloxazolyl) - Benzene

(Scintillation grade)

(g) PPO

2,5 - Diphenylox8zo1e

(Scintillation grade)

BDH (Canada) Ltd.,

Toronto.

Fisher Scientific Co., N. J.

Fisher Scientific Co., N. J.

Amersham / Searle Corporation,

u. S. A.

Packard Instrument Co. Inc.,

Illinois, U. S. A.

Packard Instrument Co. Inc.,

Illinois, U. S. A.

Packard Instrument Co. Inc.,

Illinois, U. S. A.



(h) Indole-3~Acetic Acid:

(lAA)

(i) Cycloheximide

(j) Brilliant Blue R

(Coomassie Brilliant Blue)

(k) L-Leucine

(1) Photoflo 200 Solution

Sigma Chemi.cal Company,

St. Louis, Mo, U. S. A.

Sigma Chemical Company,

St. Louis, Mo, U. S. A.

Sigma Chemical Company,

St. Louis, Mo, U. S. A.

General Biochemicals,

Chagrin Falls, Ohio, U. S. A.

Eastman Kodak Company,

Rochester, N. Y., U. S. A.
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(m) Indicarb 10-20 Mesh

(C02 absorber)

(n) L-Leucine-
14

C (U)

Specific Activity

331 m Ci/m mol

(0) Sodium Bicarbonate - 14c

Specific Activity

59 rn Ci/m mol

2.3 Reagents

1. Phosphate Buffer, pH 7.5

Fisher Scientific Co.,

N. J.

Amersham / Searle Corporation,

u. S. A.•

Amersham / Searle Corporation,

U. S. A.

(a) 0.1 M IZH
Z
P0

4
solution

13.61 g of potassium dihydrogen phosphate was dissolved in

and made up to one litre with distilled water.

(b) 0.1 M N1HP04 solution

14.20 g of disodium hydrogen phosphate was dissolved in and

made up to one litre with distilled water.

(i) 0.1 M Phosphate Buffer
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Solution (a) and solution (b) were mixed together with

constant stirring until the pH of the solution was 7.5.

(ii) 0.025 M Phosphate Buffer

Solution (a) and solution (b) were diluted 4 times and then

were mixed with constant stirring until the pH of the solution

~vas 7.5.

(iii) 0.001 M Phosphate Buffer

Solution (a) and solution (b) were diluted 100 times and then

were mixed with constant stirring until the pH of the solution

was 7.5.

2. (i.) lAA Stock Solution

0.438 g of indole-3-acetic acid was dissolved in a small volume

of ethanol and diluted to 250 ml with phosphate buffer (0.025 M, pH 7.5)

-2to give the final concentration of 10 M.

(ii) lAA working standard

1 ml of the above IAA solution was diluted 500 times with phos­

phate buffer (0.025 M, pH 7.5) to give a final concentration of 2 x 10-5 M.

50 g of ammonium su~phate crystal was dissolved in and made up to

100 ml with distilled water.

H
4. 2% (w/v)NaC0 3 in 0.1 N NaOR solution

2.0 g of sodium bicarbonate was dissolved in and made up to

100 rnl with 0.1 N sodium hydroxide solution.

5. 0.5% (w/v)CuS04 solution

0.5 g of copper sulphate crystals were dissolved in and made up to

100 ml with distilled water.
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6. 0.1% (w/v) Leucine in 25% (NH4)2S04 solution

0.1 g of L-leucine was dissolved in and made up to 100 ml with

25% ammonium sulphate solution, which was prepared by dissolving 25.0 g

ammonium sulphate up to 100 ml with distilled water.

7. 0.3% (w/v) Leucine in phosphate buffer

0.3 g of L-leucine was dissolved in and made up to 100 ml with

phosphate buffer (0.025 M, pH 7.5).

8. Tris/Hel Buffer

(a) 1 M Tris solution

121.1 g of Tris (hydroxymethylaminomethane) was dissolved

and diluted to 1 litre with distilled water.

(b) 1 M HCI

Standard 1 N hydrochloric acid.

(i) Tris/HCI buffer pH 7.5

Solution (a) was added to sbliltion (b) with constant stir­

ring until the pH of the solution was 7.5.

(ii) Tris/Hel buffer pH 9.5

Solution (a) was added to sblution (b) with constant

stirring until the pH of the solution was 9.5

9. Tris/Glycine Buffer (pH 8.3)

Tris

Glycine

= 4.0 g

=14.4 g

Tris and glycine were dissolved in and made up to 1 litre with

distilled water.

This stock solution was diluted 10 times just prior to use as the

coil chamber buffer for electrophoresis.
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10. 0.15% (w/v) (NH4)2SZ0S solution

0.15 g of ammonium persulphate crystals was dissolved in and made

up to 100 ml with distilled water. This solution was prepared daily.

11. 12.5% (w/v) TCA solution

12.5 g of trichloroacetic acid was dissolved in and made up to

100 ml with distilled water.

12. 10.0% (w/v) TCA solution

10.0 g of trichloroacetic acid was dissolved in and made up to

100 m1 with distilled water.

13. 1% (w/v) Aqueous Coomassie Blue (Stock)

1.0 g of coomassie brilliant blue was dissolved in and made up to

100 ml with distilled water.

For the staining solution, this stock solution was diluted 20

times with 12.5% (w/v) trichloroacetic acid solution and was prepared daily.

14. 0.005% Bromophenol Blue Indicator (pH 2.8-4)

1% stock aqueous bromopheno+ blue indicator solution was diluted

200 times with distilled water.

15. (i) CH3 COOK Stock Solution

0.2454 g of potassium acetate crystals were dissolved in and made

up to 250 ml with distilled water togive a final concentration of 10-2 M.

(ii) CH3 COOK working standard

2.5 ml of the above stock solution was diluted to 50 ml with phos­

phate buffer (0.025 M, pH 7.5) to give a final concentration of 5 x 10-4 M.

16. (i) Malate Stock Solution

0.335 g of L-malic acid crystal was dissolved in and made up to

250 ml with distilled water to give a final concentration of 10-2 M.



19

(ii) Malate Working Standard

2.5 ml of the above stock solution was diluted to 50 ml with

-4phosphate buffer (0.025 M, pH 7.5) to give a final concentration of 5 x 10 M.

17. 2% (v/v) Photoflo Solution

2 ml of photoflo solution was diluted to 100 ml with distilled

water.

18. Concentrated Ammonium Hydroxide Solution

19. (i) Scintillation Fluid I

5.0 g of 2,5-diphenylaxazole and 300 mg of 1,4-bis 2-(4-Methyl-

5-Phenyl-oxazolyl) - benzene were dissolved in and made up to 1 litre with

toluene.

(ii) Scintillation Fluid II

667 ml of scintillation fluid I was added to 333 ml of absolute

ethanol.
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3. METHODS

3.1 Growing.and Harvesting of Co1eopti1es

Seeds of Avena sativa (var. Victory) were husked and soaked for

two hours in deionized water. The seeds were placed on tissue covering a

mixture of vermiculite and water (1:1.5, v:v). The seeds were regularly

spaced, about 1 cm apart, with the coleoptile uppermost and were incubated

at 25°C under weak red light for about 72 hours.

Coleopti1es between 2 and 3 cm were selected and harvested under

weak green light. The apical 3 rom tips of the coleoptiles were removed and

the adjacent 2 cm sections used. The inner leaf from each coleoptile was

removed. Coleopti1es were put into preweighed light tight vials, con-

taining 5 ml of phosphate buffer (0.025 M, pH 7.5) with concentrations of

various test substances. The vials plus the contents were then weighed

again to establish the weight of the tissue.

3.2 Incubation of the Tissue

Weighed batches of tissue were transferred into light tight

incubation tubes, containing 10 ml of phosphate buffer (0.025 M, pH 7.5),

with concentrations of various test substances. Two basic types of tissue

incubation were used:

(i) A system in which the tissue was aerated with a gas stream.

Th · d f th d 14C 1 .. · ·1S was use or grow measurements an - eUC1ne 1ncorporat10n exper1ments

( · .) A 1· d d··· 1· 14C11 case system was use 1n exper1ments lnvo v1ng -

bicarbonate incorporation.

(i) Gas stream system (Figure 1)

Tissue was incubated in a water bath at 25°C with aeration by air

(0.03% CO 2) or CO2 free air at a rate of 0.4 cuft/h/tube. In studies
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Figure 1: Gas Stream System
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involving the incorporation of 14C-leucine (U) incubation proceeded for

30 minutes before the addition of radioactive leucine. Incorporation was

terminated at various times as indicated in different experiments. For

growth experiments, tissue was incubated for 2 hours.

(ii) Closed system

Tissue was incubated in a closed container containing 15 ml of

phosphate buffer (0.025 M, pH 7.5) with various concentrations of test

substances. 14C-bicarbonate was added after 30 minutes incubation and the

incubation was continued for various periods of time.

After the incubation with radioactive compounds the tissue was

immediately washed with deionized water (about 300 to 400 ml) and was frozen

in a freezer for 3 to 4 hours. In the growth experiment, the tissue was

immediately washed and the length of each coleoptile section was measured.

3.3 Measurement of Growth

Six batches of tissue were used for every growth experiment. Three

batches were exposed to one of IAA, malate, acetate or cycloheximide and

3 batches were not exposed to these substances. From each group of 3 batches,

one was used to determine the zero hour lengths and the other 2 batches were

used to determine the influence of air or CO2 free air on growth during a

2 hour incubation. All batches of tissue were then washed with deionized

water and the length of the sections measured, using dissecting microscope,

after placing the coleoptile in groove of a plastic block. A ruler, which

was graduated into one hundredths of an inch, was fastened along the side of

the groove. The coleoptile section was placed with one end touching the

sealed end of the groove while the other end was used to measure the length.

All these procedures were carried out under weak green light at room tempera-

ture. After measurement coleoptile lengths were converted from inches into
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millimeters.

3.4 Extraction of Soluble Proteins

The frozen tissue was thawed and then ground in a Potter-Elvehjen

tissue homogenizer for 5 minutes at 5000 rpm with 5 ml of phosphate buffer

(0.001 M, pH 7.5) at 4°C. It was then centrifuged at 13,000 g for 15 minutes

in a B-20 International Centrifuge at 4°C. The supernatant was collected

and the extraction procedure repeated 2 more times, first with 0.025 M

phosphate buffer (pH 7.5) and then with 0.1 M phosphate buffer (pH 7.5).

The three supernatant fluids were then combined.

The thoroughness of the extraction procedure in removing Folin

positive substances from the insoluble debris was tested by five successive

extractions. Figure 2 indicates the amount of Falin positive materials

extracted at each step.

3.5 Preparation of Cell Wall Fraction

Five ml of phosphate buffer (0.025 M, pH 7.5) containing non­

radioactive leucine (0.3% w/v) was added to the residue of the above extrac­

tion procedure ( 3.4 ) and was shaken vigorously with a mechanical vibrator

for one minute. It was then centrifuged in a B-20 International Centrifuge

at 18,000 g for 20 minutes and the supernatant was discarded. The pellets

were used for the determination of radioactive material in the cell wall

fraction.

The thoroughness of the extraction procedure in removing extractable

radioactivity from the cell wall fraction is indicated in Figure 3.



Figure 2: Efficiency of soluble protein extraction technique.
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Figure 3: Distribution of radioactivity at different steps during
the preparation of the cell wall fraction of Avena
coleoptiles.
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3.6 Dete~mination of Soluble Proteins

An equal volume of ammonium sulphate (50% w/v) was added to the

combined extracts (3.4) and was left overnight at 4°C. It was then centri­

fuged at 25,000 g for 30 minutes in a B-20 Internation Centrifuge and the

supernatant was discarded. The pellets were washed with 5 ml of

a solution containing non-radioactive leucine (0.1% w/v) in 25% (w/v)

ammonium sulphate and was then centrifuged at 25,000 g for 30 minutes.

The supernatant was discarded and the pellets were redissolved in phosphate

buffer (0.025 M, pH 7.5). Aliquots of 0.2 ml of this solution were used

for the protein determination by the standard Falin and Ciocalteau method

(Lowery et al, 1950) and bovine serum albumin was used as the reference

standard.

3.7 Determination of Radioactivity

Radioactivity was determined using a llickard 3310 liquid scint­

illation counter. Settings for the instrument were 9.5% gain with 50-1000

window for the red channel and 9.5% gain with 50-1000 window for the green

channel. The blue channel which had setting of 2.0% gain and a 300-1000

window was used to determine counting efficiency by the automatic external

standard method. The samples were counted for 10 minutes or until 20,000

counts had accumulated. The efficiency of the counting process varied for

different scintillation systems.

(i) Soluble Proteins

A 0.2 ml aliquot of the sample solution was added to a

scintillation vial, containing 10 ml of scintillation fluid II and shaken

to form a one phase liquid. The efficiency of counting 14C in this system

fluctuated between 60 and 63%. Duplicate determinations were done for each

sample.
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(ii) Cell Wall Fraction

The insoluble residue (3.5), after washing with phosphate

buffer containing non-radioactive leucine (0.3% w/v) , was resuspended in

5 ml of distilled water. The suspension was transferred into a scintilla­

tion vial and treated at 50°C until dry. To the vial was added 2 ml of

hydroxide of hyamine and the vial was heated at 50°C for 24 hours. Ten ml

of scintillation fluid I was added and radioactivity measured. The effi­

ciency of counting 14C in this system varied between 50 and 54%.

(iii) Polyacrylamide gel slices

To a 2 rom section of an acrylamide gel slice in a scintillation

vial was added 1.5 ml of MCS solvent and 0.15 ml of concentrated ammonium

hydroxide solution (Ward, Wilson & Gilliam, 1970). The vials were heated

at 500 e for 24 hours and then 10 ml of scintillation fluid II was added.

The efficiency of counting 14C in this sytem varied between 59 and 62%.

3.8 Determination of Oxygen Consumption

Oxygen consumption was measured by the standard Warburg manomentric

technique using a Gilson Differential Respirometer. Batches of coleoptile

sections containing approximately 0.5 g of tissue were transferred into 2.5 ml

of phosphate buffer (0.025 M, pH 7.5) with or without cycloheximide (6 ~g/ml).

Measurements were taken at 2SoC for 3 hours.

3.9 Analytical Polyacrylamide Gel Electrophoresis

Electrophoresis was carried out using a Quiclttit electrophoresis

unit with a capacity of 8 tubes, each of which was 6.5 em long and 0.5 em

in diameter. The discontinuous buffer system was used according to the

method of Ornstein and Davis (1964) with following modifications.
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(i) Preparation of gel

Six per cent (w/v) separating gels were prepared as follows:

Cyanogum 41 1.2 g

Tris/HCl buffer (pH 9.5) 10 ml

Cyanogum 41 catalyst 0.1 ml

10 ml of 0.15 % (w/v) freshly prepared ammonium persulphate

solution was added just before the gelling solution was added to the glass

tubes, which were presoaked in 2% (w/v) phatoflo solution. The tubes were

filled up to the 4.5 cm marker level and the gel surface was carefully covered

with distilled water, without disturbing the flat gel surface. After 2 hours

of polymerization the distilled water was poured off and the surface of the

gel was washed with 1.5% Cyanogum 41 in Tris/HCl buffer (pH 7.5) solution.

Three per cent (w/v) stacking gel was prepared as follows:

Cyanogurn 41 0.6 g

Tris/HCl buffer (pH 7.5) 10 ml

Cyanogum 41 catalyst 0.1 m1

10 ml of 0.15% (w/v) freshly prepared ammonium persulphate solu­

tion was added just before the gelling solution was added on top of the

separating gel up to the 5.5 cm marker level of the tube. The gel surface

was then carefully covered with distilled water. After 2 hours of poly­

merization the distilled water was poured off and the surface of the gel

was washed with distilled water.

The gel tubes were transferred to the coil chamber unit. The tubes

were inserted carefully through rubber grommets and adjusted till the tubes

were all the same height.
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(ii) Electrophoresis

A 0.2 ml aliquot of protein solution (3.6) containing 40%

(w/v) sucrose was layered on top of the stacking gel and was carefully

covered with coil chamber buffer. The lower compartment was filled to a

depth of 5 em with coil chamber buffer, 10 times diluted Tris/Glycine

buffer (pH 8.3). The upper chamber was also filled with the same buffer

until the top of the electrophoresis tubes were immersed. About 1 ml of

0.005% (w/v) bromophenol blue indicator was added to the upper compartment

buffer. Electrophoresis was started by adjusting the applied voltage to

give a current of 4 - 5 rnA per tube. It was terminated when bromophenol

blue dye was approximately 4 rom from the bottom of the tube, usually after

45 - 50 minutes.

(iii) Staining the gel

The gels were removed from the tube by rotating a hypodermic

syringe needle around the bottom end of the gels and the loosened gel was

then pushed out by loosening the top end with a needle through which was

passed a fine stream of water. The gels were immediately soaked in 12.5%

(w/v) trichloroacetic acid solution for an hour with occassional shaking.

The gels were then transferred into a solution containing 0.05% coomassie

blue in 12.5% (w/v) trichloroacetic acid for 24 hours. Destaining was

accomplished by soaking the stained gel in 10% (w/v) TCA solution for another

24 hours. (Chramback, Reisfled, Wyckoff and Zaccari, 1967).

(iv) Scanning the protein distribution along the gels

Scanning of the gels was done using a Gilford Spectrophotometer

2440 at 600nm, distilled water being used as a blank. Full scale deflection

of the recording pen was calibrated to be equivalent to 2.0 optical density
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units, and the slit width of the incident light was 0.1 rom. The chart

speed was 2 inches per minute whilst the speed of the scanned gel was 0.5

cm per minute.

(v) Determination of Radioactivity along the gel

After electrophoresis the gel was removed from the tube and

without fixing or staining placed snugly in a groove of a plastic block.

The gel was sliced into 2 rom sections using another block which had inserted

into it razor blades arranged parallel and 2 mm apart. When slicing the gel

the razor blades fitted into spaces in the first block which are perpendi­

cular to the gel and 2 mm apart. Radioactive assays of gel slices were

performed as in section 3.7 (iii).
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4. RESULTS

The results of this investigation are described under the

following categories:

1. Gr'owth studies

2. Protein and cell wall metabolism

3. Changes in the pattern of protein synthesis

4. The influence of lAA on the incorporation of radioactive

bicarbonate

4.1 Growth Studies

In all growth study experiments, batches of 30 coleoptiles

were used for each physiological condition and the experiment was done twice.

The influence on growth by various substances was studied by determining

the significance of differences in mean lengths between batches of coleoptiles

incubated under different conditions. The null hypothesis was used in

conjunction with the "t U test to determine significance levels (p values)

of these differences.

By examining Table 1, it can be seen that in the absence of IAA

0.03% carbon dioxide stimulated growth by 88%, whereas in the absence of

carbon dioxide 1AA stimulated growth by 108%. In the presence of both factors

maximum growth was obtained and growth was stimulated by 388%. These figures

indicate that carbon dioxide and 1AA stimulate growth in a synergistic

manner and the absence of either factor drastically reduces growth. Table 2

indicates the significance of the differences in the growth values shown in

Table 1.

Table 3 shows the influence of malate and carbon dioxide on the

growth of the coleoptiles. It can be seen that malate and carbon dioxide
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Table 1: Influence of !AA and carbon dioxide on growth of Avena coleopti1es .

.,..

Initial Length Final Length Growth Rate
Treatment (mm) (mm) (mm/h/coleopti1e)

lAA + CO2 21.06±0.06 22.28±0.23 0.610

TAA + no CO2 21.06±0.06 21.62±O.17 0.260

no IAA + CO 2 20.71±0.05 21.18±0.O7 0.235

no r'AA + no CO2 20.71±0.O5 20.96±O.06 0.125

Note: Batches of 30 coleoptile sections, approximately 20 mm. long, were
placed in phosphate buffer (0.025 M, pH 7.5) in the presence or
absence of IAA (2 x 10-5 M) for approximately 1 h. before treatment
with or without carbon dioxide (0.03%) for 2 h. Measurements were
taken at 0 h. and after 2 h. incubation. Figures represent the
average of two experiments. Results are expressed as the mean ±
the standard deviation.



Table 2: Analysis of the growth promoting influence of

lAA and carbon dioxide by the "t" test.

Treatment +IAA - lAA

Effect of CO2 p < 0.001 p < 0.001

Treatment + CO2 - CO2

Effect of lAA p < 0.001 p < 0.001

Note: These figures are derived from the data in Table 1.

33



34

Table 3: Influence of malate and carbon dioxide on growth of Avena co1eopti1es.

Initial Length Final Length Growth Rate
Treatment (nun) (mm) (mm/h/co1eoptile)

Malate + CO2 20.78±0.203 21.21±0.203 0.215

Malate + no CO2 20.78±0.203 21.18±0.057 0.200

no Malate + CO2 20.73±0.173 21.15±0.228 0.210

no Malate + no CO2 20.73±0.173 20.99±0.156 0.130

Note: Batches of 30 coleopti1e sections, approximately 20 rum. long, were
placed in phosphate buffer (0.025 M, pH 7.5) in the presence or
absence of malate (5 x 10-4 M) for about 1 h. before treatment with
or without carbon dioxide (0.03%) for 2 h. Measurements were taken
at 0 h. and after 2 h. incubation. Figures represent the average of
two experiments. Results are expressed as the mean ± the standard
deviation.



Table 4: Analysis of the growth promoting influence of

malate and carbon dioxide by the "t" test.

Treatment + Malate - Malate

Effect of CO2 N.S. P < 0.001

Treatment + CO 2 - CO 2

Effect of Malate N.S. p < 0.001

Note: These figures are derived from the data in Table
3. N.S. = Not Significant
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stimulated growth to the same extent, i.e. approximately 60%. However,

neither malate nor carbon dioxide in the presence of the other factor increasec

significantly the growth of the coleoptiles. The relationship between

malate and carbon dioxide in stimulating growth is thus different from

the synergistic relationship between lAA and carbon dioxide (Table 1).

It appears from the data that malate and carbon dioxide are interchangeable

in their growth stimulating capacity. Table 4 shows that in the absence of

the other factor both malate and carbon dioxide significantly stimulated

growth; whereas in the presence of the other factor malate and carbon dioxide

did not significantly stimulate growth.

It is shown in Table 5 that whereas carbon dioxide stimulated growth

by 125%, acetate stimulated growth by 100%. However, in the presence of

both factors growth was stimulated 135%. Table 6 demonstrates that even

though the influence of acetate and carbon dioxide were highly significant

(p < 0.001), the significance level of the influence of carbon dioxide

in the presence of acetate was found to be p < 0.1 and acetate did not

significantly stimulate growth in the presence of carbon dioxide. Thus

whereas carbon dioxide did not stimulate growth in the presence of malate

it did stimulate growth in the presence of acetate.

Tables 7 and 8 indicate the influence of cycloheximide (CHI) on

carbon dioxide stimulated growth. CHI inhibited not only the carbon

dioxide stimulated growth but also the basal level of growth found in the

absence of carbon dioxide. Carbon dioxide did not stimulate growth in the

presence of CHI but it did in the absence of CHI. It stimulated growth by

116%.
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Table 5: Influence of acetate and carbon dioxide on growth of Avena

co1eopti1es.

Initial Length Final Length Growth Rate
Treatment (mm) (mm) (mm/h/co1eopti1e)

Acetate + CO2 20.70±0.152 21.17±O.224 .235

Acetate + no CO2 20.70±0.152 21.10±0.143 .200

no Acetate + CO 2 20.64±O.094 21.09±O.172 .225

no Acetate + no CO 2 20.64±0.O94 20.84±0.064 .100

Note: Batches of 30 coleoptile sections, approximately 20 mm. long, were
placed in phosphate buffer £0.025 M, pH 7.5) in the presence or
absence of acetate (5 x 10- M) for about 1 h. before treatment with
or without carbon dioxide (0.03%) for 2 h. Measurements were taken
at 0 h. and after 2 h. incubation. Figures represent the average
of two experiments. Results are expressed as the mean ± the standard
deviation.



Table 6: Analysis of the growth promoting influence

of acetate and carbon dioxide by the "t"

test.

Treatment + Acetate - Acetate

Effect of CO 2 p < 0.1 p < 0.001

Treatment + CO2 - CO 2

Effect of Acetate N.S. p < 0.001

Note: These figures are derived from the data in
Table 5.
N.S. = Not Significant
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Table 7: Influence of cycloheximide on carbon dioxide stimulated growth

of Avena coleoptiles.

Initial Length Final Length Growth Rate
Treatment (mm) (mm) (mm/h/coleoptile)

CHI + CO 2 20.63±O.238 20.70±0.236 0.035

CHr + no CO2 20.63±0.238 20.67±0.234 0.020

no CHr + CO2 20.74±0.064 21.15±0.127 0.205

no CHI + no CO 2 20.74±0.064 20.93±O.114 0.095

Note: Batches of 30 coleoptile sections, approximately 20 rom. long, were
placed in phosphate buffer (0.025 M, pH 7.5) in the presence or
absence of cycloheximide (6 ~g/ml) for about 1 h. before treatment
with or without carbon dioxide (0.03%) for 2 h. Measurements were
taken at 0 h. and after 2 h. incubation. Figures represent the
average of two experiments. Results are expressed as the mean ±
the standard deviation.

CHI = cycloheximide



Table 8: Analysis by the "t" test of the effect of

cycloheximide on carbon dioxide stimulated

growth.

Treatment + CHI - CHI

Effect of CO2 N.S. P < 0.001

Treatment + CO 2 - CO2

Effect of CHI p < 0.001 p < 0.001

Note: These figures are derived from the data in Table
7. N.S. Not Significant

39



40

4.2 Protein and Cell Wall Metabolism

In this type of experiment, apart from the cell wall fraction,

all samples were analysed by duplicate determination. Moreover every

experiment was repeated two or four times and the average figure from these

experiments is shown. Data is expressed as the mean value per gram of

fresh coleoptile tissue plus or minus the standard deviation.

It can be seen in Figure 4, that in the presence of IAA and carbon

dioxide the rate of 14C-leucine incorporation into the soluble protein

fraction was linear for up to 3 hours of incubation. The same type of

linear incorporation was also found in the absence of both these factors

(Figure not shown). Figure 5 demonstrates that in the presence of IAA and

carbon dioxide, the protein level rose linearly for nearly 2 hours and then

continued to rise more slowly. A similar relationship was also obtained

in the absence of both factors (Figure not shown). Figures 4 and 5 together

indicate that under the experimental conditions used, protein synthesis is

occurring; and that after 2 hours different levels of incorporation of

radioactive leucine into the soluble fraction would indicate relative

rates of protein synthesis.

Figure 6 shows a kinetic study of radioactive leucine incorporation

into the cell wall fraction of Avena coleoptiles, in the presence of both

lAA and carbon dioxide. It can be seen that a linear relationship was found

for up to 2 hours incubation. This linear relationship indicates that after

2 hours different levels of incorporation of radioactivity from labelled

leucine into the cell wall fraction would reflect different rates of synthesis

of a cell wall component.
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Figure 4: Kinetic study of the incorporation of radioactive leucine
into Avena coleoptile protein, maintained in the presence
of fAA and carbon dioxide.

180

160

140

120

100

4J
80~

.c
(I)
GJ...

'104

CD
60

i
CJ

>C

0 40
~

20

15 30 60 120 180

Incubation time in minutes

Note: Approximately 0.5 g of coleoptile tissue was treated with
carbon dioxide (0.03%) and lAA (2 x 10-5 M) in phosphate
buffer (0.025 M, pH 7.5). 8 x 105 dpm of 14C-leucine (D)
(specific activity = 331 m Ci/m mol) was added after 30
minutes incubation and the incubation was terminated at
the times specified. The experiment was done twice and
similar results were obtained.
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Figure 5: Kinetic study of changes in protein level of Avena co1eop­
tiles maintained in the presence of IAA and carbon dioxide.
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Note: Approximately 0.5 g of coleoptiles was treated with carbon
dioxide (0.03%) and IAA (2 x 10-5 M) in phosphate buffer
(0.025 M, pH 7.5). The incubation was terminated at the
times indicated and total soluble protein was determined.
The experiment was done twice and similar results were
obtained.
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Figure 6: Kinetic study of the incorporation of radioactive leucine
into the cell wall fraction of Avena coleopti1es.
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Note: Approximately 0.5 g of coleoptiles was treated with carbon
dioxide (0.03%) and rAA (2 x 10-5 M) in phosphate buffer
(0.025 M, pH 7.5). 8 x 105 dpm of 14C-leucine (u) [specific
activity = 331 m Ci/m mol] was added to the tissue after 30
minutes incubation and the incubation was terminated at the
times indicated. Radioactivity in the cell wall fraction
was determined. The experiment was done twice and similar
results were obtained.
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In Table 9 the stimulation of protein levels and rate of 14C_

leucine incorporation by lAA and carbon dioxide are shown. Carbon dioxide

stimulated the protein level by 23% and 14C incorporation by 17% whilst

IAA · 1 d h · lIb 37% d 14C 1 .. t· bstlmu ate t e proteln eve y 0 an - eUClne lncorpora lon y

28%. Maximum levels were obtained only when both factors were present and

f 14C • •• 1 bl · h ff f th f tor lncorporatl0n lnto so u e proteln tee ect 0 ese ac ors

seemed to be weakly synergistic. Table 10 indicates the influence of IAA and

carbon dioxide on the incorporation of radioactivity from labelled leucine

into soluble protein and the cell wall fraction. IAA and carbon dioxide

stimulated the incorporation of label into the cell wall in a synergistic

manner and radioactivity was increased by 50% in the soluble protein component

and approximately 130% in the cell wall fraction. This trend is also indj-

cated by the percentage distribution of r a dioactivi ty between the soluble

protein and the cell wall fraction. In the presence of IAA and carbon

dioxide the ratio is changed with increasing radioactivity in the cell

wall fraction. The data in Table 9 and 10 show an influence of carbon dioxide

and lAA on the incorporation of label into the soluble proteins and cell

wall fractions that is similar to the influence of these agents on growth

(Table 1). In all cases IAA and carbon dioxide exhibited a synergistic

relationship; and maximum rates were obtained only when both factors were

present.

The word "tips" refers to the 3 mm apical sections of Avena coleoptile;

I b · T bl 11 h h· f 14c · · dt can e seen ln a e t at t e maXlmum rate 0 lncorporatlon an

maximum level of protein were obtained with tips and carbon dioxide present.

Table 12 indicates that malate and carbon dioxide could stimulate

h · I I d 14C I·· · I ht e proteln eve an - eUClne lncorporatl0n, more or ess, to t e same
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Table 9: Influence of IAA and carbon dioxide on protein

metabolism of Avena coleoptiles.

Per g of fresh wt.
Treatment

mg Proteins dpm

1AA + CO2 4.038 ± 0.328 86,318 ± 1011

1AA + no CO2 3.605 ± 0.439 69,293 ± 888

no 1M. + CO2 3.225 ± 0.373 63,536 ± 821

no lAA + no CO 2 2.660 ± 0.104 54,312 ± 783

Note: Approximately 0.5 g of coleoptile tissues was treated with
or without CO 2 (0.03%) in the presence or absence of lAA
(2 x 10-5 Mi in phosphate buffer (0.025 M, pH 7.5). 8 x
106 dpm of 4C-leucine (U) [specific activity = 331 m Cil
m mol] was added after 30 minutes incubation and the incubation
was continued for another 90 minutes. Figures represent the
average of duplicate determination from four experiments.
Results are expressed as the mean ± the standard deviation.
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Table 10: Influence of lAA and carbon dioxide on the incorporation

of radioactive leucine into soluble protein and cell wall fraction

of Avena coleoptiles.

dpm/g fresh wt. % Distribution
Treatment

Soluble Cell Wall S. Proteins C.W.
Proteins Fraction Fraction

1AA + CO2 76,843±936 ll2,650±203.9 40.55 59.45

1M. + no CO2 64,375±832 85,746±197.1 42.88 57.12

no 1M. + CO 2 59,472±8l3 62,527±169.4 48.75 51.25

no 1AA + no CO,., 50,243±774 48,239±162.3 51.02 48.98
L

Note: Approximately 0.5 g of tissues was treated with or without carbon
dioxide (0.03%) in the presence or absence of lAA (2 x !~-5 M)
in phosphate buffer (0.025 M, pH 7.5). 8 x 106 dpm of C-leucine
~) (specific activity = 331 rn Ci/m mol) was added to the tissue
after 30 minutes incubation and the incubation was continued for
another 90 minutes. Figures represent the average of duplicate
determination from two experiments. Results are expressed as the
mean ± the standard deviation.



Table 11: Influence of tips and carbon dioxide on protein

metabolism of Avena coleoptiles.

Per g of fresh wt.
Treatment

mg Proteins dpm

Tips + CO 2 3.884 ± 0.148 57,762 ± 870

Tips + no CO2 3.376 ± 0.075 47,443 ± 841

no Tips + CO 2 3.245 ± 0.053 41,088 ± 745

no Tips + no CO 2 2.976 ± 0.120 28,783 ± 718

Note: Approximately 0.5 g of co1eoptiles, with or without 3 mm
tips, was treated with or without carbon dioxide (0.03%)
in phosphate buffer (0.025 M, pH 7.5). 5 x 106 dpm of
14C-leucine (U) [specific activity = 331 m Ci/m mol] was
added to the tissue after 30 minutes incubation and the
incubation was continued for another 90 minutes. Figures
represent the average of duplicate determination from
two experiments. Results are expressed as the mean ± the
standard deviation.

47
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Table 12: Influence of malate and carbon dioxide on the levels of proteins

and the incorporation of radioactive leucine into soluble protein

and the cell wall fraction of Avena coleoptiles.

Per g of fresh wt.

Treatment mg dpm

Soluble Proteins Soluble Proteins Cell Wall Fraction

Malate + CO 2 3.792±O.O9 47,520±648 50,284±128

Malate + no CO 2 3.590±O.08 41,874±636 43,685±111

no Malate + CO 2 3.526±O.07 38,756±604 41,580±IIO

no Malate + no CO2 3.033±O.11 25,888±552 24,674±lO4

Note: Approximately 0.5 g of tissue was treated with or without carbon dioxide
(0.03%) in the presence or absence of malate (5 x 10-4 M) in phosphate
buffer (0.025 M, pH 7.5). 2 x 106 dpm of 14C-leucine (u) [specific
activity = 331 m Ci/m mol] was added to the tissue after 30 minutes
incubation and the incubation was continued for another 90 minutes.
Figures represent the average of duplicate determination from two experi­
ments. The results are expressed as the mean ± the standard deviation.
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extent, i.e. about 20% for the protein level and 50% for the 14C

incorporation. However, maximum levels were obtained when both factors

were included in the incubation medium, and this pattern is slightly differ-

ent from the influence of these factors on growth where in the presence

of one factor the other did not stimulate growth. (Table 3). Table 13

demonstrates the influence of malate and carbon dioxide on the distribution

of radioactivity between the soluble protein and cell wall fractions. Either

factor increases to the same extent the percentage of radioactivity in

the cell wall fraction, but the presence of both factors has an effect

quantitatively similar to either factor alone. This pattern is different

from the pattern of distribution obtaining using IAA and carbon dioxide

(Table 10).

The influence of acetate and carbon dioxide on protein and cell

wall metabolism is shown in Table 14. It can be seen that acetate and

carbon dioxide together give the largest level of protein and incorporation

of radioactivity into soluble protein and cell wall fractions. Either

factor alone stimulated these processes to the same extent. The influence

of acetate and carbon dioxide on the total protein level and incorporated

radioactivity appear to be additive, but not synergistic. The percentage

distribution of radioactivity between protein and cell wall fractions was

not changed by the presence of both factors (Table 15.)

Tables 16 and 17 show the influence of cycloheximide and carbon

dioxide on protein and cell wall metabolism. It is quite clear that CHI

completely inhibited the carbon dioxide stimulated level of:

(i) soluble protein

( .. ) 14C · .. I bl ·11 lncorporatl0n lnta so u e proteln
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Table 13: Influence of malate and carb,on dioxide on the percentage

d · ·b· f d· .. f 14C 1 .. d~str~ utlon 0 ra loactlvlty rom euc~ne lncorporate

into the soluble protein and the cell wall fraction of Avena

coleoptiles.

Per cent Distribution
Treatment

Soluble Protein Cell Wall Fraction

Malate + CO 2 48.59 51.41

Malate + no CO 2 48.98 51.02

no Malate + CO2 48.24 51.76

no Malate + no CO2 51.20 48.80

Note: These figures were derived from the data in Table 12.
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Table 14: Influence of acetate and carbon dioxide on the levels of protein

and the incorporation of radioactive leucine into soluble protein

and the cell wall fraction of Avena coleoptiles.

f

Per g of fresh wt.

Treatment mg dpm

Soluble Proteins Soluble Proteins Cell Wall Fraction

Acetate + CO 2 2.875±O.11 28,656±694 28,7l0±lO6

Acetate + no CO 2 2.508±0.O5 24,469±662 24,972±lO4

no Acetate + CO2 2.489±O.O6 24,183±648 25,O12±109

no Acetate + no CO 2 2.219±0.OS 20,O44±618 18,7l8± 97

Note: Approximately 0.5 g of coleoptiles was treated with or without carbon
dioxide (0.03%) in the presence or absence

6
0f acetate (5 x 10-4 M) in

phosphate buffer (0.025 M, pH7. 5) . 2 x 10 dpm of 4C-leucine (U)
[specific activity = 331 m Ci/m mol] was added to the tissue after 30
minutes incubation and the incubation was continued for another 90
minutes. Figures represent the average of duplicate determination from
two experiments. The results are expressed as the mean ± the standard
deviation.



Table 15: Influence of acetate and carbon dioxide on the per-

d··b· f d··· f 14C 1 ·centage lstrl utl0n 0 ra 10actlvlty rom - eUClne

incorporated into the soluble protein and the cell

wall fraction of Avena coleoptiles.

Per Cent Distribution

Soluble Protein Cell Wall Fraction

Acetate + CO2 49.95 50.05

Acetate + no CO 2 49.49 50.51

no Acetate + CO 2 49.16 50.84

no Acetate + no CO 2 51.71 48.29

Note: These figures derived from the data in Table 14.
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Table 16: Influence of cycloheximide and carbon dioxide on the levels of

protein and the incorporation of radioactive leucine into soluble

protein and the cell wall fraction of Avena coleoptiles.

Per g of fresh wt.

Treatment mg dpm

.-

Soluble Proteins Soluble Proteins Cell Wall Fraction

CHI + CO 2 2.192±0.05 2,924±190 6,369±46

CHI + no CO 2 2.171±0.O7 2,834±188 6,027±44

no CHI + CO 2 2.669±0.12 20,827±486 22,819±84

no CI-II + no CO 2 2,280±0.O9 15,922±396 14,790±68

Note: Approximately 0.5 g of coleoptile tissues was treated with or without
carbon dioxide (0.03%) in the presence or absence of cycloheximide
(6 ~g/ml) in phosphate buffer (0.025 M, pH 7.5). 2 x 106 dpm of 14C_
leucine (u) [specific activity = 331 m Ci/m mol] was added after 30
minutes incubation and the incubation was continued for another 90
minutes. Figures represent the average of duplicate determination
from two experiments. The results are expressed as the mean ± the
standard deviation.
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Table 17: Influence of cycloheximide and carbon dioxide on

the percentage distribution of radioactivity from 14C_

leucine incorporated into the soluble protein and the

cell wall fraction of Avena coleoptiles.

Per Cent Distribution
Treatment

Soluble Protein Cell Wall Fraction

CHI + CO2 31.46 68.54

CHI + no CO2 31.98 68.02

no CHI + CO2 47.72 52.28

no CHI + no CO 2 51.82 48.18

Note: These figures derived from the data in Table 16.
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(iii) 14C incorporation into the cell wall fraction

The basal levels (i.e. without carbon dioxide) of these three

parameters were also inhibited by CHI. It can be seen in Table 16 that

CHI inhibition of the incorporation of radioactivity into the soluble

protein fraction was much higher than the inhibition of incorporation

into the cell wall fraction. The percentage distribution of radioactivity

between the soluble protein and cell wall fraction also indicate this

phenomenon (Table 17).

4.3 Changes in the Pattern of Protein Synthesis

In this section the influence of various treatments on protein

metabolism was studied by determining the distribution along polyacrylamide

gels of total protein and incorporated radioactivity. The data is recorded

in three ways:

(i) distribution of protein bands along the gel by scanning.

(ii) distribution of incorporated radioactivity by radioactive

assay.

(iii) photographic recording.

Figure 7 shows the results obtained after protein extraction from

tissue maintained in the presence of radioactive leucine and the absence of

both lAA and carbon dioxide. The continuous line represents the distribu­

tion of protein along the gel and the dotted line represents the amount of

radioactivity incorporated into these proteins. The bottom picture is a

photograph of the stained gel.

In Figures 8, 9 and 10 data is presented to illustrate changes in

this pattern of protein metabolism (Figure 7) brought about by respectively
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Figure 7: Distribution of protein and radioactivity after gel
electrophoresis of soluble proteins extracted from
Avena coleoptiles maintained in the absence of both
lAA and carbon dioxide.
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Note: Coleoptile tissue was treated with carbon dioxide free air
in the absence of lAA in phosphate buffer (0.025 M, pH 7.5)
before soluble proteins were extracted. Two aliquots of
protein solution containing approximately 0.2 mg of protein were
subjected to analytical polyacrylamide gel electrophoresis. One
was fixed with TCA (12.5%) and stained in coomassie blue (0.05%)
before scanning for the distribution of protein. The other gel
was sliced into 2 mm sections and each section assayed for radio­
activity. The experiment was done twice and similar results
were obtained.

scanned protein
----------- radioactivity
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Figure 8: Distribution of protein and radioacitivity after gel
electrophoresis of soluble proteins extracted from Avena
coleoptiles maintained in the presence of carbon dioxide
only.
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Note: Coleoptile ti.ssue was treated with carbon dioxide (0.03%)
in phosphate buffer (0.025 M, pH 7.5) before soluble proteins
were extracted. The procedures for electrophoresis, scanning
the distribution of protein and determination of radioactivity
along the gel were the same as in Figure 7.

scanned protein
----------- radioactivity
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Figure 9: Distribution of protein and radioactivity after gel
electrophoresis of soluble proteins extracted from Avena
coleoptiles maintained in the presence of IAA only.
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Note: Co1eoptile tissue was treated with fAA (2 x 10-5 M) and
carbon dioxide free air in phosphate buffer (0.025 M, pH 7.5)
before soluble proteins were extracted. The procedures for
electrophoresis, scanning the distribution of protein and
determination of radioactivity along the gel were the same
as in Figure 7.

scanned proteins
---------- radioactivity
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Figure 10: Distribution of protein and radioactivity after gel
electrophoresis of soluble proteins extracted from Avena
coleoptiles maintained in the presence of lAA and carbon
dioxide.
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Note: Coleoptile tissue was treated with lAA (2 x 10-5 M) and carbon
dioxide (0.03%) in phosphate buffer (0.025 M, pH 7.5) before
soluble proteins were extracted. The procedures for electro­
phoresis, scanning the distribution of protein and determination
of radioactiVity along the gel were the same as in Figure 7.

scanned protein
----------- radioactivity
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carbon dioxide, IAA and both factors together. It can be seen from a

comparison of Figures 7 and 8 that, although the distribution pattern of

proteins are similar, a difference in radioactive distribution along the

gel is found in gel slices 5, 6 and 7. There is a small peak in Figure 8

whereas Figure 7 shows no such peak. A similar influence of carbon dioxide

can be seen in Figure 10 (i.e. IAA plus CO 2 condition) when it is compared

with Figure 9 (i.e. IAA plus no CO 2 condition).

On the other hand, a comparison of Figures 7 and 8 (i.e. no IAA)

with Figures 9 and 10 (i.e. with IAA) indicates that IAA stimulated the

synthesis of a protein fraction which appears in gel slices 16, 17 and 18.

Figure 11 shows a photographic recording of gels after the separation of

protein extracted from tissue exposed to the above four conditions.

The influence of CHI on protein metabolism is indicated by comparing

Figure 12 (i.e. CHI plus no CO2) with Figure 7 (i.e. no CHI plus no CO2);

or by comparing Figure 13 (CHI plus CO 2) with Figure 8 (no CHI plus CO2).

It is apparent from these comparisons that CHI drastically reduced the

incorporation of radioactivity into all protein fractions irrespective of

the presence or absence of carbon dioxide. Figure 14 shows the distribu­

tion of protein bands after electrophoresis of soluble protein extracted from

tissue exposed to the four permutations possible of the two factors, CHI

and carbon dioxide. Gels 3 and 4 of Figure 14 are derived from tissue

exposed to the presence or absence of carbon dioxide and are similar to gels

3 and 4 of Figure 11 which were derived from different batches of tissue

maintained under identical conditions to those of Figure 14.
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Figure 11: Polyacrylamide gel electrophoresis of soluble proteins
extracted from Avena coleoptiles maintained under different
conditions.

1 2 3 4

Note: Approximately 0.5 g of coleoptile tissue was treated with or
without carbon dioxide (0.03%) in the presence or absence of
lAA (2 x 10-5 M), in phosphate buffer (0.025 M, pH 7.5), before
extracting soluble proteins. Aliquots of protein solution
containing approximately 0.2 mg of protein were subjected to
analytical polyacrylamide gel electrophoresis. Gels were fixed
in TCA (12.5%) and stained in coomassie blue (0.05%).

1 lAA + CO2
2 lAA + no C02
3 no lAA + CO 2
4 no lAA + no CO2



Figure 12: Distribution of protein and radioactivity after gel
electrophoresis of soluble proteins extracted from
Avena coleoptiles maintained in the presence of
cycloheximide only.
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Note: Coleoptile tissue was treated with cycloheximide (6 ~g/ml)

and carbon dioxide free air in phosphate buffer (2 x 10-5 M,
pH 7.5) before soluble proteins were extracted. The proce­
dures for electrophoresis, scanning the distribution of protein
and determination of radioactivity along the gel were the same
as in Figure 7.

----~------ scanned proteins
----------- radioactivity
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Figure 13: Distribution of protein and radioactivity after gel
electrophoresis of soluble proteins extracted from Avena
coleoptile maintained in the presence of cycloheximide
and carbon dioxide.
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Note: Coleoptile tissue was treated with cycloheximide (6 ~g/ml)

and carbon dioxide (0.03%) in phosphate buffer (0.025 M,
pH 7.5) before soluble proteins were extracted. The procedures
for electrophoresis, scanning the distribution of protein and
determination of radioactivity along the gel were the same as
in Figure 7.

scanned proteins
----------- radioactivity
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Figure 14: Polyacrylamide gel electrophoresis of soluble proteins
extracted from Avena coleoptiles maintained under different
conditions.

1 2 3 4

Note: Approximately 0.5 g of coleoptile tissue was treated with or
without carbon dioxide (0.03%) in the presence or absence of
cycloheximide (6 ~g/ml), in phosphate buffer (0.025 M, pH 7.5)
before extracting soluble proteins. Aliquots of protein solu­
tion containing approximately 0.2 mg of protein were subjected
to analytical polyacrylamide gel electrophoresis. Gels were
fixed in TCA (12.5%) and stained in coomassie blue (0.05%).

1 CHI + C02
2 CHI + no CO2
3 no CHI + CO2
4 no CHI + no CO 2
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4.4 The Influence of IAA on the Incorporation of Radioactive Bicarbonate

The influence of lAA on radioactive bicarbonate incorporation into

soluble protein is shown in Figure 15 and Table 18. Figure 15 indicates

that the kinetics of incorporation were linear up to 1 hour; and that there

is a stimulation of incorporation by lAA. To determine the significance level

of this apparent stimulation by IAA batches of coleoptile tissue, with or

without IAA, were exposed to 14C-bicarbonate for 30 minutes in closed

containers. The results in Table 18 show that IAA significantly stimulated

the incorporation of radioactive bicarbonate into the soluble protein and

cell wall fraction.
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Figure 15: Kinetic study of the incorporation of radioactive
bicarbonate into Avena coleoptile protein.
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o 0
x -_·x

with IAA
without IAA



67

Table 18: Influence of lAA on the incorporation of radioactive

bicarbonate into the soluble protein and the cell wall

fraction of Avena coleoptiles.

Per g of fresh weight

mg dpm

Soluble Protein Cell Wall Fraction

+IAA -IAA +IAA -'IAA +lAA -IAA

1 3.048 2.390 5844±257 3767±240 5488±55 3945±47

2 2.982 2.535 6326±259 3245±238 5768±61 3583±45

3 3.082 2.484 5877±265 4395±243 5474±54 4507±51

4 3.184 2.407 5993±26l 39l3±241 6692±61 4069±48

5 3.234 2.443 7421±271 4819±250 7562±64 5755±57

6 3.180 2.432 6539±264 4968±251 6l82±59 5424±55

Mean 3.118 2.448
±S.D. ±O.lO ±O.OS 6333±263 4l80±244 6194±59 4547±51

itt"
p < 0.001 p < 0.001 p < 0.001Test
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Note: Twelve batches of approximately 0.5 g of co1eopti1es from the
same lawn were harvested and were treated with or without lAA
(2 x 10-5 M) in phogphate buffer (0.025 M, pH 7.5) in closed
containers. 8 x lOb dpm of 14C-bicarbonate (specific activity
59 m Ci/m mol) was added to the samples after 30 minutes incu­
bation and the incubation was continued for another 30 minutes.
Total soluble proteins, radioactivity incorporated into soluble
proteins and radioactivity in the cell wall fraction were then
determined.
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5. DISCUSSION

There is substantial evidence that carbon dioxide can stimulate

growth (Harrison, 1965a; Rayle and Cleland, 1970; Evans et a1., 1971) and

protein synthesis (Splittostoesser, 1966; Bown and Lampman, in press) in

non-photosynthetic plant tissue. The present investigation also indicates

that the level of carbon dioxide normally found in air (0.03% CO2) stimu­

lated growth (Tables 1, 3, 5 and 7) and protein synthesis (Tables 9, 11, 12,

14 and 16) in etiolated Avena coleoptiles. Despite all this work, the

question s to whether carbon dioxide stimulated growth depends on carbon

dioxide stimulated protein synthesis has not been vigorously investigated.

Splittstoesser (1966) showed that in carbon dioxide free air non-photosynthetic

plant tissue exhibited lower growth rates and lower rates of radioactive

leucine accumulation into soluble proteins. However, higher levels of

accumulated label in proteins can be interpreted as either inhibition of

breakdown or stimulation of protein synthesis; in addition Splittstoesser

did not demonstrate whether or not protein synthesis was required for carbon

dioxide stimulated growth.

Figure 4 inconjunction with Table 9 indicates that carbon dioxide

stimulated protein synthesis, resulting in both an increase in total protein

and an increased incorporation of radioactive leucine. An explanation of

the different levels of radioactivity in the soluble protein based on different

rates of breakdown would imply an extremely rapid turnover rate of the

soluble protei.n in the 2 hour period of the experiment. This kind of expla­

nation is not likely in the light of half lives for plant proteins between

3 hours and several days (Glasziou, Waldron and Bull, 1966; Glasziou, 1969
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Hock and Beevers, 1966). Evidence that carbon dioxide stimulated protein

synthesis is required for carbon dioxide stimulated growth is presented in

Tables 7 and 16. A 6 ~g/ml concentration of cycloheximide completely inhi­

bited carbon dioxide stimulated growth and protein synthesis. Respiration

of Avena coleoptiles, on the other hand, was inhibited by only 20% (Data

not shown). Because of the complete inhibition of carbon dioxide stimulated

growth and protein synthesis by cycloheximide and only partial inhibition of

respiration the data support the hypothesis that carbon dioxide stimulated

growth depends on carbon dioxide stimulated protein synthesis.

This interpretation which indicates that carbon dioxide stimulated

growth is mediated by a biochemical process differs from .the interpretation

of Evans et ale (1971). Using carbon dioxide saturated water, they showed

that the carbon dioxide stimulated growth rate was higher than the auxin

stimulated growth and insensitive to a variety of metabolic inhibitors which

suppressed auxin action; they also demonstrated an almost instantaneous growth

response to carbon dioxide. Evans et ale suggested that carbon dioxide

stimulated growth results from a lowering of pH in the carbon dioxide satur­

ated water, and that growth stimulation, is not mediated by metabolism, but

results from a physical process. Rayle and Cleland (1970), have shown that

the stimulation of growth by carbon dioxide saturated water was not due to

a lowering of pH and that the carbon dioxide response was different to response

to auxin and low pH values.

In the present study the tissue was maintained in buffered solutions

and exposed to 0.03% carbon dioxide which did not change the pH of the buffer

(Data not shown). This demonstrates that with this system the carbon dioxide

response was not due to an acidifying action of carhon dioxide. Furthermore
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it has been shown in Figure 15 and Table 18, that radioactive bicarbonate

was incorporated into soluble protein. This evidence plus the data which

suggest that carbon dioxide stimulated growth depends on carbon dioixde

stimulated protein synthesis indicates that the carbon dioxide response is

mediated by a biochemical process.

The role of dark carbon dioxide fixation in carbon dioxide stimula­

ted growth of non-photosynthetic plant tissue was proposed by Sp1ittstoesser

in 1966. He suggested that carbon dioxide stimulated growth is related to

the biosynthetic role of the Krebs cycle. The continued operation of this

cycle depends on the presence of oxaloacetate, the four carbon molecule which

accepts the two carbon acetyl unit. If, however, Krebs acids are used tor

biosynthesis (eg. a-ketoglutarate to glutamate and then to protein), the

level of oxaloacetate will fall. This would inevitably decrease the rate

at which the cycle operates unless Krebs acids were replaced. One mechanism

for doing this is by carbon dioxide fixation which can generate four carbon

acids from three carbon intermediates. Bown and Lampman (1971) have shown

that phosphopyruvate carboxylase (EC. 4.1.1.31) is present in etiolated

Avena coleoptiles and aspartate and malate are the first detectable labelled

products after feeding 14C-bicarbonate. The importance of phosphopyruvate

carboxylase in replacing Krebs cycle intermediates is well established in

E. coZi (Ashworth et a1., 1965; Canovas and Kornberg, 1965; Smith 1970).

Lips and Beevers (1966), using corn roots, have demonstrated that the major

product of bicarbonate fixation is malate, and that this labelled malate is

utilized faster in the presence of malonate which inhibits succinic dehydro­

genase and therefore the generation of oxaloacetate. This type of evidence

indicates that dark carbon dioxide fixation could play an important role in

carbon dioxide stimulated growth and protein synthesis.
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Thus it appears that the site of action of carbon dioxide in _

stimulating growth could be through carbon dioxide fixation resulting in

the production of four carbon acids which are necessary to maintain the

biosynthetic role of the Krebs cycle. If this hypothesis is correct it means

that malate should be interchangeable with carbon dioxide in stimulating

growth. Tables 3, 4 and 12 show that malate, like carbon dioxide, stimulated

growth and protein synthesis. In addition these tables illustrate that

malate could replace carbon dioxide in stimulating these processes, and

malate or carbon dioxide could not stimulate growth in the presence of the

other factor. This data indicates, therefore, that malate and carbon

dioxide have the same site of action in stimulating growth. On the other

hand, carbon dioxide stimulated growth (Tables 5 and 6) and protein synthesis

(Table 14) in the presence of acetate, a two carbon molecule.

A further consequence of this hypothesis is that labelled bicarbonate

should be fixed into Krebs acids and related amino acids and eventually turn

up in protein. Bown and Lampman (1971) have already shown that the first

detectable labelled products of radioactive bicarbonate fixation in etiolated

Avena coleoptile were malate and aspartate and the present study showed the

incorporation of radioactive bicarbonate into soluble protein (Figure 15).

Moreover, because IAA stimulates protein synthesis, it should stimulate the

· · f 14C b· b·· d h· h dlncorporatl0n 0 - lcar onate lnto proteln an t 18 P enomenon was emon-

strated (Table 18).

The role of auxin in stimulating growth and protein synthesis has

been well documented (Key, 1964; Courtney et al., 1967). Some data has also

accumulated on the relationship between IAA and carbon dioxide in stimulating

the growth of non-photosynthetic plant tissues. Yamaki (1954) showed that
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atmospheric concentration of carbon dioxide from 0 to 0.5%, in the presence

of IAA, promoted growth of Avena coleoptiles linearly with respect to increa­

sing carbon dioxide concentrations. Nitsch and Nitsch (1956) also presented

evidence which suggested that carbon dioxide could promote the growth response

to auxin of Avena coleoptiles. However, Cockshull and Heath (1964) have

shown that 0 to 20% concentration of carbon dioxide in air would promote

extension growth in the absence of externally added auxin, but at the

higher concentration of carbon dioxide (20%) the period of growth stimulation

was shortened and might be followed by inhibition.

The present study shows that the maximum stimulation of growth and

protein synthesis was obtained only when both lAA and carbon dioxide were

present (Tables 1, 9 and 10). Although the exact relationship between lAA

and carbon dioxide in stimulating growth and protein synthesis is not clearly

understood, both factors stimulated growth (Table 1) and incorporation of

radioactive leucine into soluble protein and the cell wall fraction (Table 10)

synergistically. Since lAA stimulated growth depends on protein synthesis,

and the absence of carbon dioxide apparently reduces the rate of protein

synthesis, it might be expected that in the absence of carbon dioxide the

tissue would exhibit a much reduced response to lAA. Labelled bicarbonate

fixation into soluble protein and the cell wall fraction was stimulated in

the presence of lAA. This stimulation is consistent with the hypothesis that

with a greater rate of protein synthesis due to IAA, the Krebs cycle would

have an increased biosynthetic role and therefore an increased demand for

acetyl acceptors which are generated by bicarbonate fixation. An alternative

hypothesis to explain this stimulated fixation could involve an auxin stimu­

lated increase in the permeability of cell membranes to bicarbonate or some
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labelled product of bicarbonate fixation. For instance available evidence

indicates (Lips and Beevers, 1966) that dark carbon dioxide fixation, gene-

rating malate, occurs outside the mitochondria; and increased utilization

of this malate by the Krebs cycle could be brought about by a change in the

permeability of the mi.tochondria1 membrane to malate.

Rayle and Cleland (1970), however, have shown that the stimulation

of growth by carbon dioxide saturated water and auxin are different and the

latter phenomenon more closely resembles that of H+ ions stimulations. The

present study does not indicate whether the stimulation of growth of Avena

coleoptiles by auxin and carbon dioxide are by similar or different mechanisms.

Figures 8 and 9 shows that carbon dioxide and auxin stimulated the incorpor­

ation of 14C-leucine into apparently different proteins. The influence of

carbon dioxide on the incorporation of radioactivity into soluble protein in

the absence of lAA is shown in Figures 7 and 8. The corresponding influence

in the presenc e of lAA is shown in Figures 9 and 10. Although apparently

different protein are synthesized in response to the presence of IAA and carbon

dioxide there is no indication as to whether or not these stimulated protein

fractions play an essentail role in the growth process. It is quite possible

that both lAA and carbon dioxide could stimulate the synthesis of a small

amount of a growth essential protein which would be undetectable by the

techniques used in this study.

-5Patterson and Trewavas (1967) have shown that 2 x 10 M IAA changed

the pattern of incorporation of 14C-labelled amino acids into protein, and

that changes were greatest in the proteins of the nuclear fractions. It has

been suggested that rapid cell elongation is limited by the unidentified

growth-limiting-protein (GLP) [Key and Shannon, 1964; Nooden, 1968; Cleland,
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1971J whose synthesis or activation is stimulated by auxin. Fan and

Maclachlan (1967) and Masuda and Yamamoto (1970) have demonstrated that

IAA stimulated the activity of certain enzymes in plant tissue. In a

similar manner carbon dioxide can stimulate the synthesis of a certain type

of protein which mayor may not be necessary for cell elongation.

The pattern of stimulated protein synthesis obtained with IAA in the

presence of carbon dioxide (Table 9) could also be obtained using undecapi­

tated coleoptiles in the presence of carbon dioxide (Table 11). Thimann

and Grochowska (1968) have shown that the tips of Avena coleoptiles contain

maximum biosynthetic capacity for synthesizing auxin and therefore, it can

be suggested that applied IAA in the present investigation influenced meta-

bolism of Avena coleoptiles in a manner similar to auxins in the intact

tissue.

Growth rates obtained with IAA and carbon dioxide (Table 1) were

closely parallel to the rates of labelled leucine incorporation into the

cell wall fraction of Avena coleoptiles (Table 10). In other words maximum

synthesis of cell wall component(s) was obtained when maximum growth of the

coleoptiles occurred. IAA not only increased the incorporation of labelled

bicarbonate into the soluble protein, it also increased the 14C-bicarbonate

incorporation into the cell wall fraction (Table 18). Cycloheximide, which

inhibits growth and protein synthesis, inhibited 14C-1eucine incorporation

drastically both into the soluble protein and cell wall fractions (Table 16).

Even though IAA and carbon dioxide stimulated a greater percentage increase in

incorporation of radioactivity into the cell wall fraction as opposed to the

soluble protein (Table 10), cycloheximide resulted in a larger percentage

inhibiton of 14C-1eucine incorporation into the soluble protein (Table 17).
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Thus although there appears some evidence for a relationship between growth

rates and incorporation of radioactive leucine and bicarbonate into the

cell wall fraction, incorporation of radioactivity into soluble protein

appears to be more sensitive to cycloheximide than incorporation of label

into the cell wall fraction.

b
Cleland (1968) showed that, in Avena coleoptiles, the incorporation

of labelled proline into the hydroxyproline-rich protein of the cell wall

was increased in the presence of IAA and sucrose. However because of a lack

of correlation between the amount of hydroxyproline synthesis and the growth

rate (Cleland and Karlsnes, 1967) he suggested that hydroxyproline formation

is not directly involved in auxin-induced cell wall loosening, but that it

might be necessary for the cell wall to retain its capacity for elongation.

Cleland also showed that actinomycin D (an inhibitor of RNA synthesis) inhi-

bited auxin-induced growth, but it only slightly inhibited the incorporation

of label from proline into the cell wall and he suggested that hydroxy-proline-

rich protein could not be a growth limiting protein.

Lamport (1970) has suggested that hydroxyproline-rich protein, which

he called "extensin" , is involved in auxin-induced cell elongation. He

believes that extensibility of the cell wall is governed by a number of

hydroxyproline-arabinose cross links within the cell wall and that auxins

stimulated the activity of an enzyme that can break these linkages. In

addition he has proposed that these bonds are relatively acid labile and that

low pH values stimulate extension by cleaving these linkages.

Thus there is evidence that incorporation of amino acids into cell

walls is important in plant growth, and a hypothesis exists which implicates

cell wall proteins in the growth process. In this study it was found that
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IAA and carbon dioxide which stimulate growth also stimulated the incorpor­

ation of labelled leucine into the cell wall (Table 10) and IAA also stimu­

lated the incorporation of labelled bicarbonate into the cell wall fraction

(Table 18).

From the results of this inve stigation it can be concluded that

both IAA and carbon dioxide elevate the rates of growth and protein synthesis

in etiolated Avena coleoptiles. In addition the data indicates that lAA

and carbon dioxide stimulate growth in a synergistic manner. Evidence is

presented that carbon dioxide stimulated growth depends on carbon dioxide

stimulated protein synthesis, that stimulation of growth by carbon dioxide

is mediated by a biochemical process and that stimulated growth depends on

carbon dioxide fixation.
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