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Abstract 

Methods for both partial and full optimization of wavefunction 

parameters are explored, and these are applied to the LiH molecule. A 

partial optimization can be easily performed with little difficulty. But to 

perform a full optimization we must avoid a wrong minimum, and deal with 

linear-dependency, time step-dependency and ensemble-dependency 

problems. Five basis sets are examined. The optimized wavefunction with a 

3-function set gives a variational energy of -7.998 + 0.005 a.u., which is 

comparable to that (-7.990 + 0.003) 1 of Reynold's unoptimized \fin ( a 

double-~ set of eight functions). The optimized wavefunction with a double­

~ plus 3dz2 set gives ari energy of -8.052 + 0.003 a.u., which is comparable 

with the fixed-node energy (-8.059 + 0.004)1 of the \fin. The optimized 

double-~ function itself gives an energy of -8.049 + 0.002 a.u. Each 

number above was obtained on a Bourrghs 7900 mainframe computer with 

14 -15 hrs CPU time. 
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I. Introduction 

It has been clearly shown l -6 theoretically and practically that the 

employment of the so-called importance sampling technique greatly reduces 

the statistical error in the calculations of Quantum Monte Carlo (QMC). For 

this purpose a trial wavefunction ('l'T), which is also called a ~iding 

function, is introduced. Although much work has been done on the 

construction of a suitable 'l'T 1,7-13 and the investigation of a basis set14-15 

used for it, how to optimize the parameters Of'l'T, and how to efficiently 

choose a basis set for a system still needs to be explored. These issues are 

related to that of a further improvemeI}t in the variational energy. 

The trial wavefunction is mathematically a function of a set of 

adjustable parameters, and the optimization of these parameters is based on 

the so-called Variational Theoreml 6-17 which states that, for any 

normalized, well-behaved trial wave function 'l'T obeying the boundary 

conditions of a system, the following integral equation is true, 

J 'I'T*H'I'T d't = Evar > EO (I -1) 

where Eo is the exact lowest eigenvalue of H and Evar is the variational 

energy. This theorem allows us to obtain an approximation to the ground­

state energy of a system by calculating an upper bound without solving the 

Schr·odinger equation. One could, using a numerical method, determine a 

trial wave function by optimizing its parameters to get the lowest variational 

energy. How small the variance of the local energy( Eu=H'I'T /'I'T ) is 
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depends on how close the trial function is to the exact one: a small variance 

usually implies a lower energy as well. Since a smaller variance indicates a 

more precise estimate, directly minimizing the variance rather than the 

variational energy is also an acceptable strategy. 

Research in our group has focused on Diffusion QMC (DQMC) (A 

description of DQMC appears in Appendix A). In the calculation of energy 

expectation values in DQMC, the trial wavefunction is chosen to locate the 

nodes of the simulated exact wavefunction (fixed-node approximation). This 

affects the variance of the energy and not so much the energy itselfl , whereas 

the expectation values of other properties strongly depend on the form of the 

trial wavefunctionl3,l8,l9. Thus, the closer the trial function is to the exact 

one, the more correct the nodes will be, and the greater the accuracy of the 

estimates of physical properties which are obtained from it. 

So far, only Wilson et al.20 have given a detailed investigation into the 

method of optimization (using Green's function Monte Carlo, not DQMC). 

By minimizing a weighted variational energy for several two-electron atoms 

and ions, and for the Be atom, they obtained both smaller statistical errors 

and better estimates of the ground-state energy than those obtained from 

commonly used methods ( configuration iteraction (CI». The formula20 

used is shown below, minimizing 
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Nopt 

L [H'I'(i)/'I'(i) - Eg]2W(i) 
~2 _ --,,-i=.-;l~ ________ _ 
v opt -- Nopt 

(I - 2) 

L w(i) 
i=l 

where w(i}= 1 ",(i)/",o(i) 12, Eg is a "guess-timate" value of the epergy, and 

the sum is taken over all the Nopt configurations in the ensemble generated 

using "'0 for importance sampling. ",(i) is the trial wavefunction being 

optimized, which keeps changing during the optimization procedure, and '110 

is believed to be the best trial wave function before an optimization. The 

objective is to obtain the smallest variance a2opt. 

The objective of this work is to obtain, using the Variational Quantum 

Monte Carlo (VQMC) method, the smallest possible individual iteration 

variance and the lowest possible variational energy, which is comparable 

with the fIXed-node energy obtained in DQMC (which uses a process called 

branching). Thus we can avoid the complications of having to do branching, 

and only one or a few timestep(s) may be required in a variational calculation 

rather than several. 

VQMC is an alternative form of Diffusion Quantum Monte Carlo, and 

the only difference is that in VQMC the simulated Green's function has no 

branching term, and this function is given by 

G( R~Rt, 't) = (21C't)-3N12.x exp {-[ R' - (R+'tF(R)) ]2/2't} ( I - 3 ) 
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where R, R', and F(R) represent the original and displaced three­

dimensional coordinates in small timestep 't, and the quantum velocity 

(V'PTI'¥T), respectively. F introduces "importance sampling" into the 

simulation: it is larger when the trial wavefunction is small. Eq.( I - 3 ) is 

actually a multivariate normal distribution function relative to R+'tF(R), 

with a mean equal to 0 and a variance equal to 'to A random number drawn 

from this distribution is noted as N(O;"'t). 

In DQMC, the simulated Green's function is interpreted as "a 

transition probability for moving the set of coordinates from R to R' in time 

't"),18 Thus the propagation of the set of coordinates (or configurations) in 

VQMC is determined by 

R' = R + 'tF(R) + N(O,",,'t) (1 - 4) 

where the step + 'tF(R) is called Drift(D) and + N(O,",,'t) Jump(J). Eq. (1-

4) is hence called the DJ algorithm, which is represented as follows: 

N(O,-V1:) 

R 

Fig. I. 1. DJ Algorithm. 
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If the guiding function is 'PT(R), when an equilibrium state is achieved 

( at an "infinite" time duration for the simulation) the density foo(R) is equal 

to I 'PT(R) 12, and the average of local energies sampled from this 

distribution is then equal to the variational energy_ 

( EL(R) ) = J EL(R) foo(R)d R/J foo(R)d R 

= J (H 'PT / 'PT)( I 'PT 12)d R/f ( I 'PT 12)d R 

= ('PT I H I 'PT) / ('PT I 'PT) 

= Evar (I - 5) 

Note that the more elaborate DQMe method has also been used in 

some preliminary investigations, where there is one more step, branching 

(B), in the propagation. The algorithm is called DJB, as shown below 

(where the point of branching is denoted by a circle) 

R~ 

'tF 

R 

Fig. I. 2. DIB Algorithm. 

When Wilson et al published their paper, my own work had been in 
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progress for one year. It was found that some conclusions basically agree 

with each other even though they were derived using different Monte Carlo 

methods. 

This thesis specifically points out the success of efficiently choosing a 

basis set with 3 AD'S in the trial wavefunction of the LiH molecule. The 

variational ground-state energy and its variance obtained from this simple set 

is comparable with that of Reynolds', which is obtained from a double-~ set.! 

U sing an optimized double-~ set in the trial function, the variational energy 

obtained here is comparable with the unoptimized fixed-node result. 

It is obvious that the smaller the basis set, the smaller the CPU time 

required. Thus, optimizing a simple basis set to obtain a comparably low 

variational energy and variance is a matter of considerable interest. The 

objective of this work is to do a general exploration of both partial and full 

optimization of the parameters of a trial wavefunction and the application of 

this to the LiH molecule. Examinations are performed on several basis sets. 

In this work the following problems were uncovered: a wrong 

minimum caused by minimizing the variance, a linear dependence of some 

optimized parameters, an ensemble dependence and a time-step dependence 

of the results. Mter the solution of these problems an optimization method 

is developed, with which five basis sets were examined by optimization and 

the best results are obtained. 

6 



II. Theory 

A. Trial Wavefundion and Basis Sets Used 

1. Trial Wavefunction 

The trial wavefunction '¥T(R) used here is a form frequently 

adopted, 1,14,15,21,22 

Lull 
'¥T(R) = Det I Dij(l I Det I Dij~ I e i>j ( II.A - 1 ) 

where the full Slater determinant has reduced to a product of a spin-up (a) 

determinant Det I Dij(l I , and a spin-down (~) determinant Det I Dij~ I as 

shown below for LiH: 

Det I Dij(l I = 
<l>1(r1) <l>l(r2) 

= <1>1 (r1) <l>2(r2) - <l>2(r1)<I> 1 (r2) 
<l>2(rl) <l>2(r2) 

Det I Dijf3 I = 
<l>1{r3) <l>1(r 4) 

= <1>1 (r3) <l>2(r4) - <l>2(r 3) <I> 1 (r4) 
<l>2(r3) <l>2(r 4) 

where rj represents the coordinates of the jth electron (here there are four 

electrons altogether), and <l>k is the kth molecular orbital formed from linear 

combinations of AO basis functions. These are centered at the nuclei (Li or 

H), and are given by 
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(II.A - 2) 

(II.A - 3 ) 

where NAO is the total number of the AO functions Xj's used in a basis set. 

The Cij'S are the linear MO coefficients to be optimized. The AO functions 

Xj'S are shown in Table II.l below. The exponents ~ in the functions will also 

be optimized. 

Table II. 1. The AO functions used. 

AO 

Is 
2s 
2pz 
3s 
3pz 
3dz2 

Functions X 

e -~r 
fe -~r 

z e -~ r 
( 3 - 6~ r+2~2 r2) e -~ r 

z ( 2- ~ r ) e -~ r 
(2z2 - x2 - y2) e -~ r 

The last factor in Eq.( II.A - 1 ) is a Jastrow factor l , where uij is 

defined by, 

8 



(IT.A - 4) 

where a and b are constants. When considering the a and b related to rij 

(the distance between two electrons ei and ej), one can divide them into 

antiparallel aa, ba (ei and ej are of opposite spins) and parallel ap, bp (ei 

and ej are of same spins). This factor is always positive, and any adjustments 

to the constants a and b or aa, ba and ap, bp don't change the nodes of 'PT. 

Thus, the effort to adjust the constants can decrease the variance only, but not 

lower the fixed-node energies),18 The variational energy will lower, 

however, as these constants are adjusted. In this work the a and b, or aa, ba 
and ap, bp are considered as adjustable parameters to be optimized. 

2. Basis Sets 

There are five AO (Table II.I) basis sets explored in this work. They 

are a 3 - function Set (see Table II. 2.), 5 - Function Set(Table II. 3.), Double 

- ~ Set (Table II. 4), Double - ~ plus 3dz2 Set (Table II. 5.), and a 9-

Function Set (Table II. 6.). 

Table II. 2. 3 - function Set 

Index (Xi) Nucleus AO Function Xi 

1 Li Is e -~1 ru 
~r tf 2S ru~· -~2 fIJ 
3 H Is e -~3 fH 
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Table II. 3. 5 - function Set 

Index ( Xi ) Nucleus AO Function Xi 

1 Li Is e -~l fU 
2 Li 2s fU e -~2 fLi 
3 Li 2pz Zu e -~3 fLi 
4 H Is e -~4 fH 
5 H 2pz ZHe -~5 fH 

Table II. 4. Double - ~ Set 

Index ( Xi ) Nucleus AO Function Xi 

1 Li Is e -~l fLi 
2 Li Is e -~2 fLi 
3 Li 2s fLi e -~3 fLi 
4 Li 2pz ZLi e -~4 fLi 
5 Li 2pz ZLi e -~5 fLi 
6 H Is e -~6 fH 
7 H Is e -~7 fH 
8 H 2pz ZHe -~8 fH 
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Table ll. 5. Double - ~ plus 3dz2 Set 

Index (Xi) Nucleus AO Function Xi 

1 Li Is e -~1 fLi 

2 Li Is e -~2 fLi 

3 Li 2s fLi e -~3 fLi 

4 Li 2pz ZLi e -~4 fLi 

5 Li 2pz ZLi e -~5 fLi 

6 H Is e -~6 fH 

7 H Is e -~7 fH 

8 H 2pz ZHe -~8 fH 

9 Li '3dz2 (2z2-x2_y2) e-~9 rLi 

Table ll. 6. 9 - function Set 

Index (Xi) Nucleus AO Function Xi 

1 Li Is e -~1 fLi 

2 Li 3s (3 - 6~2 rLi+2~2 2fU2) e-~2 rLi 

3 Li 2s fLi e -~3 fLi 

4 Li 2pz ZLi e -~4 I'u 

5 Li 3p ZLi (2-~5 fLi) e -~5 fLi 

6 H Is e -~6 fH 

7 H 2s ZH e -~7 fH 

8 H 2pz ZHe -~8 fH 

9 Li 3dz2 (2z2-x2_y2) e-~9 ru 

11 



B. VQMC estimate of the variational energy. 

Before beginning a VQMC simulation one must choose the trial 

wavefunction '1fT, time steps 't, and the size of an ensemble (several hundred 

configurations) Me- After first arbitrarily distributing the electrons 

f(R,t=O), each configuration Drifts, and then Jumps according to Eq. (I - 3) 

and Eq. (I - 4). Thus, for a single electron 

(n.B -1) 

where rjm is the set of 3 Cartesian coordinates of the jth electron in the mth 

configuration and r'jm is that after a time 'to When all Ne electrons (Ne = 4 in 

the LiH molecule) and all Me configurations have been taken once, a new 

ensemble (f(R' ,t='t» is created and one iteration is finished. One repeats 

the iterations until a target time value is reached ( a large number of 

iterations have been completed) and the approximate foo(R) of an 

equilibrium state is given. 

Suppose this equilibrium state is reached for a selected time step 'to 

One may contulUally run NIT iterations to complete one block. The nth 

iteration mean of energy Enav( 't) is given by taking the average of the local 

energies EL(R) over all Me configurations in the nth iteration with a variance 

Var(Enav('t», i.e. 

Enav('t) = Lm=l,McEL(Rm)!Mc •. 

= Lm=l,Mc (H 'lfT(Rm) / 'VT(Rm»!Mc (H.B - 2) 
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Enav('t) has a 't-related bias23 according to 

(n.B - 3) 

Note that the dominant reason for the introduction of this timestep bias 

is due to the Green's function being correct only at 't = O. The Var(Enav('t)) 

(or just Var(Eav('t))) is called the individual iteration variance(or just 

iteration variance), defined by 

(n.B - 4) 

Of course, this variance is averaged over the iterations to obtain the grand 

mean of the iteration variance 

Vargm(Eav('t)) = < Var(Enav('t)) > 

= Ln=l,NIT Var(Enav('t))JNrr ( n.B - 5 ) 

Since the smaller the grand mean of the iteration variance is, the more 

accurate the trial wavefunction is, and since it is also 't-dependent, we will 

use its extrapolated fonn ('t = 0) as one of the two important criterions for 

determining an optimized trial wavefunction. 

Similarly, taking the average of Enav('t) over all the NIT iterations, we 
,."' .'" 

get the grand mean of the local energy, 

13 



(n.B - 6) 

The variance of Egm(1:) is still 1:-dependent22, given by 

(n.B-7) 

and 

(n.B - 8) 

To reduce the statistical errors of the estimates at any time step 1:, 

several more such grand means are usually required to obtain an average 

<Egm(1:» and <Vargm(Eav(1:»>, i.e. several more blocks are needed. 

Furthermore, there are at least 30 iterations "thrown away" between two 

blocks to avoid serial correlation. If Nb blocks are taken for timestep 1:, we 

have the block means Eb(1:) and Vafb(Eav(1:» as shown below, 

(n.B - 9) 

Vafb(Eav(1:» = < Vargm(Eav(1:» > 

= Lj:l,Nb Vargm(Eav(1:»/Nb (n.B - 10) 

Finally, to remove the 1:-related bias, the whole procedure described 

above is repeated for several distinct values of 1:, and then these Eb(1:) and 

V afb(~a,,( 1:) )ar~ extrapolated to t=O by means ofstatistical~, 

regression 1,18,23-25. Thus, we ultimately get the ground state variational 

energy Evar and the extrapolated individual iteration variance 

14 



Var(Eav( 'C~O» without the 'C-related bias, by which we can evaluate how 

good the trial wavefunctions are. 

C. Optimization 

\ 

In the optimization, the Levenberg-Marquardt algorithm26-29 was 

employed by calling the ZXSSQ routine from the IMSL Library26 on the 

Burroughs 7900 mainframe. 

Before doing the optimization, §everal sets of equilibrium 

configurations ( ensembles) must be created by simulation with the initial 

trial wavefunction 'PO. The ensembles created by a simulation with the DJ 

algorithm are called DJ ensembles, or DJB ensembles with the DJB 

algorithm. By sampling these equilibrium ensembles with a total size of Me 

configurations, we get Me nonlinear functions SQl, SQ2, ... , SQMc of a set of 

J parameters {Pj} to be estimated. In this work the functions SQ. are defmed 

either as, 

or, 

SQ. ( Pj, j=l,J ) = [H'I'T(Rm)/\IfT(Rm) - Eg]2 

= [EL(Rm) - Eg]2 

". " 

(ll.C - 1 ) 

(II.C - 2) 

where Eg may be taken as Evar or the best estimate obtained, The latter is the 

standard function approprate for the variance. The sum of these functions 
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SSQ (Pj,j=l,J) will be minimized over the space {Pj}, where 

(II.C - 3 ) 

or, 

'. (II.C - 4 ) 

It is worth noting that Eav('t) varies with the change of {Pj}, whereas Eg is a 

constant. To explore the significance of the choice is an objective of this 

thesis. 

If weighted optimization20 is being used, the SSQ is 

M 

L SQl Pj , j=l,J )w(i) 
SSQ ( P ) - re2 - i=l j, j=l,J - v opt - ......... ---M------ (H.C - 5) 

L w(i) 
i=l 

where wei) is the same as in Eq.(l- 2). 

This procedure, simulation with the \}IO, and then optimization starting 

with the '1'0, is called an optimization iteration, or abbreviated as Opt. 

IT. More than one such iteration is always needed to get a set of equilibrium 

parameters {Pj}. Here the optimization is repeated using the optimized \}I, 

from the previous~Opt.; IT as \}lOg The logic route of this procedure is . 

shown in the Fig. II. 1, where there are two such Opt. IT's. 
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Simulation a o . . . b Simulation ptumzauon Optimization 
'Po 'PI ~ ..... . 
at't 'PO -7 'PI at't 'PI -1> 'P2 

The 1st Opt. IT The 2nd Opt. IT 

aThe simulation at't with the trial wavefunction 'PO. 

bThe optimization uses ensemble generated from 'PO and yields the "best" function 'P 1. 

Fig. n. 1. The logic route of the optimization iterations. 
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III. Exploration of OptimizatioD 

A. Preliminary Investigations by Partial Optimizations. 

The preliminary investigations involve the optimizations of some (but 

not all) of the exponents, the split Jastrow constants, and the geometry in the 

trial wavefunction with the double-~ set, sampling from the DJB or DJ 

ensembles, for the ground state system of LiH. 

1. Optimization of the "dominant" parameters sampling from the DJB 

ensembles at three timesteps. 

Work began with the assumption that the "dominant" AO functions 

were comprised of one function of each type in the double-~ set, with the 

duplicated functions being "non-dominant", Also, the Jastrow constants a 

and b were considered "dominant" because these introduce electron 

correlation which lowers the variational energy and gives a smaller variance. 

So there are altogether 7 "dominant" parameters, ~1, ~3, ~4, ~6, ~8, Jast. a 

and b. (See Table IIA). The optimization of these parameters first started 

with Reynold's 'I'n (see Table 1 in App. B), and Eq.( II.C - 4 ) (optimization 

without weights) was used to directly minimize the individual iteration 

variance. Fig. III.A.I.I. shows the logic route of this optimization 

procedure. 

With Reynold's 'I'n and DJB algorithm, six equilibrium ensembles 

(each one has 600 configurations) were obtained by six simulation runs at 

each timestep, which were then used to do the optimizations independently. 
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Simulation Optimization Simulation Optimization 
( 6 runs~'I'n ) '1"11-+ 'Plal-l (6runs) ) 'I'lal-1-+'I'I81-1 

1:=0.03 (6runs 9 'I'lal-l (6runs) 
1:=0.03 

, 
'. 

Simulation Optimization 
Simulation 

Optimization 
( 6 runs, 'I'n ) 

'1"11-+ 'Plal-2 
(6 runs) 

~I'lal-2-+'I'I81-2 
1:=0.06 'I'lal-2 

(6 runs) 
1:=0.06 

(6runs) 

-
Simulation Optimization Simulation Optimization 

( 6 runs,'I'n) '" 'PII-+'Plal-3 (6 runs) 'I'lal-3-+ '1'181-3 
1:=0.09 (6 runs) 'I'lal-3 (6runs) 

1:=0.09 

The 1st Opt. IT The 2nd Opt. IT 

aEach run is a block of 300 iterations with 600 configurations in the ensemble, which are the same as in 
Fig. III.A.2.1-2 and Fig. ID.A.3.1-2. -
bEach run involves the optimization sampling the final equilibrium ensemble created by a block. 

Fig. IIIA.I.I. Logic route of th~ optimizations of all the "dominant" parameters. 
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In the simulation as well as in optimization the "truncation" technique24 was 

used, where the singularities of EL(R) and F(R) were truncated in a 1:-

neighborhood of each singularity. 

One finds from Table III.A.1.2.-3 that after the 1st Opt. IT, the 

individual iteration variances are more than twice as small as before, and the 

energies are more reliable with smaller standard error and closer values at 

the different timesteps. A more interesting thing is to compare their 

simulation results. See Table.ill.A.1.1 and 4, and Fig. ill.A.1.2-S. Though 

the variational energies are a little different, the Eb(1:) vs. 1: curve with the 

optimized trial wavefunctions '¥lal'S f'¥lal-I,2,3) is more flat. In any case, 

the great change is in the variances as expected, the result obtained by using 

\f:' 1a1 's being less than half that using the Reynold's 'I'll. 

Since in the calculation of the energy in DQMC, the trial wavefunction 

is chosen to locate the nodes of the exact wavefunction only, and it only 

affects the variance of the energy but not the energy itself, the optimized 

'¥lal has a much more accurate nodal surface than that of 

unoptimized '¥n, and the Levenberg - Marquardt routine used is 

very powerful for doing this optimization. 

Note that the extrapolated energies given by these two wavefunctions 

here are all lower than the exact one (-8.070 a. u.)30. That is because the 

calculations here are "rough": only three timesteps with six blocks at each of 

these tLmesteps, so that the extropolations are unreliable .. 

By examining the optimized parameters, we find some of them are 
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0.03 
0.06 
0.09 

Table m. A. 1. 1. DQMC estimates with Reynold's 'I'n. 

-8.060±0.OOI 
-8.018+0.002 
-7 .949±0.00 1 

Valb(Eav( 't» 

0.285+0.0020 
0.273+0.0010 
0.268+0.0004 

Extrapolatedb to 't=0: Eo = -8.075 + .0068, Var(Eav('t~O» = .304 + .0067 

aThe block mean at each timestep is taken from 6 blocks, and there are 40 iterations in a block, and 600 
configurations in an ensemble. -
b-rhe regression model is quadratic. See Fig.m.A.l.2 - 3. 

Table m. A. 1. 2. Iteration means in the optimization of the 1st Opt. IT. 

0.03 
0.06 
0.09 

-8.080 ± .020 -8.066 ± .006 
-8.257 ± .137 -8.056 ± .013 
-8.096 ± .006 -8.061 ± .007 

.308 ± .020 .109 ± .008 

.541 ± .225 .126 ± .019 

.301 ± .009 .103 ± .002 

a,cThe mean of the individual iteration means in the six runs before optimization, "initial". 
b,dThe mean of the individual iteration means in the six runs after optimization, "finial". 
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Table ITI. A. 1. 3. Changes of the iteration means in the optimization of the 1st Opt. IT. 

0.03 
0.06 
0.09 

0.014 ± 0.021 
0.201 ± 0.138 
0.035 ± 0.009 

-0.199 ± 0.022 
-0.415 ± 0.'226 
-0.198 ± 0.009 

a,lYrhe changes of the individual iteration means in the optimization of the 1st Opt. IT, which are 
obtained directly from Table m.A.1.2. 

Table m. A. 1. 4. DQMC estimates with 'PIal. 

0.03 
0.06 
0.09 

-8.065+0.001 
-8.047+0.001 
-8.022+0.001 

0.113±O.0010 
0.107±O.0010 
0.106±O.0003 

Extrapolatedb to 't=0: Eo = -8.076 + .0044, Var(Eav('t~O)) = .124 + .0043 

aThe block mean at each timestep is taken from 6 blocks, and there are 40 iterations in a block, 
and 600 configurations in an ensemble. 
bThe regression model is quadratic. See Fig.m.A.l.4-5. 
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Fig. III. A.I. 2. DQMC estimate(rough) of Var(Eav('t-70» with Reynold's \fin. 
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Fig. III. A.1. 3. DQMC estimate (rough) of EO with Reynold's \fin. 
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Fig. III. A.I. 4. DQMC estimate(rough) of Var(Eav('t~O)) with 'PIal. 
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Fig. III. A.I. 5. DQMC estimate(rough) of EO with 'PIal. 
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different at the different timesteps (see Table A.1.5. and Fig.m.A.1.6 -12, 

which show the curves of parameters vs. 1:). It was naturally assumed that 

the optimizations were timestep-dependent, and some of the 

parameters were very sensitive, while some were not. Since the SSQ to be 

minimized is a function of the whole set of all parameters {Pj}, it is not 

necessary to test which ones are more or less sensitive. The important task is 

to verify further if the optimization is indeed timestep-dependent just as is the 

case in the simulation. 

One more Opt. IT. was done starting with 'PIal, where the individual 

iteration average energies and their variances didn't change much, compared 

with that of the first Opt. IT (See Table llI.A.1.6-7 and 2-3). 

Table m.A.1.8 and Fig. m.A.1.13-19 show once again the time step 

behaviours of these parameters. But some of the behaviors are different 

from before. For example, ~3 increases as 1: here, but it doesn't in the 1st 

Opt. IT (See Fig. llI.A.1.14 and 7). Thus it was doubtful whether the 

time step behaviours of the parameters was just a fluctuation due to the . 

optimizations' sampling from different ensembles. More investigations are 

required. 
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Table m. A. 1. 5. "Best"" dominant" parameters a in theist Opt. IT . 

~1 ~3 ~4 ~8 Jast a Jast b 

2.583 0.870 0.794 0.943 1.820 0.545 1.014 
0.03 ± ± ± ± ± ± 

0.014 0.007 0.025 0.070 0.030 0.133 

2.593 1.099 0.885 1.773 0.537 
0.06 ± 

1.103 
± 

0.236 
± ± ± ± 

0.006 0.068 0.041 0.051 0.017 

2.603 0.855 1.042 0.935 1.789 0.519 
0.09 ± ± ± ± ± ± 

0.005 0.019 0.076 0.008 0.065 0.007 

aThese values are the averages taken from the six runs. 

Table III. A. 1. 6. Iteration means in the 2nd Opt. IT. 

Eav,ini Eav,fm V ar(Eav)ini V ar(Eav )fin 

0.03 -8.060±.004 -8.069±.005 .117±.003 .111 ±.003 
0.06 -8.068 ± .005 -8.079 ± .004 .124 ± .005 .116 ± .004 
0.09 -8.076±.004 -8.077±.004 .111±.001 .107 ±.002 

± 
0.032 

0.944 
± 

0.028 

0.909 
± 

0.012 
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Fig. m. A. 1. 6. "Best" ~l vs. 't in the 1st Opt. IT. 
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Fig. m. A. 1. 7. "Best" ~3 vs. 't in the 1st Opt. IT. 
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Fig. m. A. 1. 8. "Best" ~4 vs. 't in the 1st Opt. IT. 
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Fig. In. A. 1. 9. liB est" ~6 vs. 't in the 1st Opt. IT. 
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Fig. m. A. 1. 10. "Best" ~8 vs. 1: in the 1st Opt. IT . 
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Fig. ITL A. 1. 12. "Best" Jastrow b vs. 't in the 1st Opt. IT. 
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Table III. A. 1.7. Changes of the iteration means in the optimization of the 2nd Opt. IT. 

0.03 
0.06 
0.09 

-0.009 ± 0.006 
-0.011 ± 0.006 
-0.001 ± 0.006 

LlVar(Eav)b 

-0.006 ± 0.004 
-0.008 ± 0.006 
-0.004 ± 0.002 

a,iYrhe changes of the individual iteration means in the optimization of the 1st Opt IT, 
which are obtained directly from Table TII.A.1.6. 

Table III. A. 1. 8. "Best"" dominant" parameters a in the 2nd Opt. IT. 

~1 ~8 Jast a Jast b 

2.579 0.783 0.992 0.923 1.732 0.536 1.000 
0.03 ± ± ± ± ± ± ± 

0.003 0.039 0.043 0.008 0.094 0.010 0.025 

2.577 0.823 0.952 0.916 1.803 0.521 0.978 
0.06 ± ± ± ± ± ± ± 

0.005 0.033 0.028 0.010 0.065 0.005 0.013 

2.612 0.869 1.033 0.903 1.712 0.522 0.937 
0.09 ± ± ± ± ± ± ± 

0.005 0.020 0.033 0.007 0.038 0.008 0.022 

': :.".' . '',.,'' ,;, ~ " .. , 
aThese values are the averages taken from the six runs. 
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2. Optimization of the "dominant" parameters samplin~ from the DJ 

ensembles at 't = 0.06. 

A direct optimization sampling from the distribution of 1 'PT 12 (the 

DJ ensemble) should be theoretically more efficient than that of 4>O'PT (the 

DJB ensemble). That is because we are minimizing the variance\(see Eq.II.C 

- 3 and 4 ), and the computations of EL(R) rely on the 'PT only. Thus a lot of 

singularities due to the differences between <1>0 and 'PT will be avoided if one 

samples 1 'PT 12 instead of <l>O'PT, and furthermore, there is no need to 

employ the truncation on EL(R), which will delay the convergence time. On 

the other hand, since a lot of singulariges have been avoided for DJ 

configurations, the DJ ensembles are in some sense "larger" than the 

DJB, being used more efficient. We will show later that, the larger the 

size of the ensemble used in optimization, the better the wavefunction which 

will be obtained. One other obvious fact is that, because of the lack of 

branching the DJ algorithm is much simpler than that of the DJB. So, the 

partial optimization by directly sampling the distribution of 1 'PT 12 is 
more acceptable. 

These points will be proved by comparing the results of the 

optimizations sampling from the two kinds of ensembles. For this purpose 

the procedure was repeated for 't = 0.06, as in the last section, but starting 

with the DJ ensembles of 'PII and no truncation on the local energies 

in the optimization. See the logic route on the top of Fig. ill.A.2.1. 

Table ill.A.2.3 ( also Table 3 and 4 in App. B) presents the "best" 

optimized parameters after the 1st, and the 2nd Opt. IT. The two optimized 
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Simulation 
(6 runs,\}'II) 

'&=0.06 

Opt.('fIn -7 'filM) Simulation Opt.('Plbl-7'Plb2) 
I ..... -~ ( 6 runs ) I---~ (6 runs,\}'lbl) I---~ ( 6 runs) 

All "domm' ant" p'sa "'-0 06 ,,- . All "dominant" P'S 

• The 1 st Opt. IT The 2nd Opt. IT 

Opt.('fIu -7 'fIlb3) 

( 6 runs) 

~1,~3,~4,~6.b 

aThe parameters inside the box are those being optimized, and similarly in the following figures, 

Fig. Ill. A. 2. 1. Logic routes of the optimizations of the "dominant" parameters. 

Simulation Opt.{'PlC -7 'fIlb4) 

( 1 run,\}'lc) ) ( 1 run) . . . . •. 20 Opt. IT's 

'&=0.06 ~1,~3,~4,~6,~8 

Fig. ill. A. 2. 2. Logic route of the optimizations of the five "dominant"parameters. " ... " 
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functions, '¥ 1 bland '¥ 1 b2, gave almost the same individual iteration energies 

and variances in optimization (Table m.A.2.1-2), and also the same block 

means in simulation ( Table m.A.2.4). That means one only needs to do one 

Opt. IT to get the "best" wavefunction by sampling the DJ ensembles, while at 

least two Opt. IT's are required when sampling the DJB ensembles (see Table 

III.A.1.6-7, where the ~Eav and ~Var(Eav) are still big), 

A strong argument for the previous statement is made by comparing 

the block means of two different wavefunctions obtained by optimizations 

using DJ and DJB ensembles, respectively. The first function is '¥lb (Table 

5), whose "dominant" parameters are !he means of that in '¥ 1 bland '¥ 1 b2. 

The second is '¥1a2 (Table 2), whose "dominant" parameters are obtained by 

extrapolating to 1: = 0 the values (in '¥1a2-1, '¥la2-2, and '¥la2-3, see Table 

IILA.I.8) obtained at the three timesteps in the 2nd Opt. IT. of last section. 

The results are tabulated in Table m.A.2A, from which we find that '¥ 1 b 

gives a much lower block energy and smaller variance than '¥ la2. 

Summarizing the discussion above, one may conclude that a partial 

optimization can be performed by sampling the DJ ensembles. 

Now, we are interested in improving further the efficiency of the 

optimization procedure. One possible way is to optimize fewer parameters 

and still get a wavefunction as good as those above, if some "dominant" 

parameters are related. 

An attempt was made to optimize two, three, four and five of the 
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Table III. A. 2. 1. Iteration meansa in the optimizations of ill.A.2. 

Optimization 

'Pn ~ 'PIbIb 

'PIbl ~ 'PIb2c 

'PIT ~ 'Plb3d 

Eav,ini Eav,fin v ar(Eav )ini V ar(Eav)fin 

-7.873 ± .030 -8.034 ± .010 .310 ± .012 
-8.015 ± .009 -8.012 ± .010 .127 ±.005 
-7.873 ± .030 -8.037 ± .009 .310 ± .012 

.120 ± .012 

.1~1 ± .004 

.123 ± .013 

aThese values are the averages taken from the six runs. 
b,cThe results of the optimization of all the seven "dominant" parameters. 
dThe results of the optimization of the five "dominant" parameters. 

Table III. A. 2. 2. Changes of the iteration means in the optimizations of ill.A.2. 

Optimization 

'Pn ~ 'PIbl 

'PIb! ~ 'Plb2 

'Pn ~ 'PIb3 

-0.161 ± 0.032 
0.003 ± 0.005 

-0.164 ± 0.031 

-0.298 ± 0.017 
-0.006 ± 0.006 
-0.187 ± 0.018 

a,hThe changes of the individual iteration means in the optimization, which are obtained directly from 
Table IILA.2.1. 
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Table ill. A. 2. 3. "Best" "dominant" parameters a in ill.A.2. 

~I ~4 Jast a Jast b 

2.610 .990 1.080 .951 1.791 .557 .965 
\fIbI ± ± ± ± ± ± ± 

0.016 .044 0.039 .014 0.231 .007"· .031 

2.620 .895 .990 .933 1.819 .567 .980 
\fIb2 ± ± ± ± ± ± ± 

0.008 .025 .036 .015 0.104 .002 .043 

2.611 1.003 1.068 - .952 0.852 
\fIb3 ± ± ± ± ± 

0.016 0.042 0.038 .012 0.023 

aThese values are the averages taken from the six runs. 
lYrhe trial wavefunctions whose "dominant" parameters have been fully or partially optimized. 

Table. ill. A. 2. 4. Block means of the five trial wavefunctions. 

Meana Reynld's '¥II \fIbl \fIb2 \fIb \fIa2 

Eb -7.888 +.020 -8.022 +.002 -8.023 +.003 -8.050 +.001 -8.037 +.001 

VaIb(Eav) .315 +.007 .126+.002 .124+.003 .110+.001 .113 +.001 

, . ~The block me~, at:t =.,0.06. are tak~l\ i'r9;D;l, 10 blqcks, and there are 300 iteration$ in a block, 
and 600 configurations in an ensemble. 
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"dominant" parameters with different groups. Most results were poor, 

except for those given by the wavefunction 'Plb3. 'Plb3 was obtained by 

optimizing only five parameters, ~l, ~3, ~4, ~6, and Jastrow b, and starting 

with 'Prr (see also Fig. llI.A.2.1). Table Ill.A.2.1 shows 'Plb3 is comparable 

to 'Plbl and 'PIb2, giving almost the same individual iteration average 

energy as well as variances. These five parameters are hence co~idered 

dominant. 

In the final part of this section, the exploration of how the iteration 

(after optimization) and block means (in simulation) behave as the Opt. IT 

number is increased, where five "domipant" parameters, ~J, ~3, ~4, ~6, ~8, 

were optimized (see the logic in Fig. llI.A.2.2). In the simulation procedure 

there are 600 configurations in an ensemble (DJ), but only 40 iterations in a 

block. The optimization started with 'PIe (Table 6) which was obtained in the 

optimization described in the next section. The data collected in Table 

llI.A.2.S-6 is that starting from the Sth Opt. IT where the optimized trial 

wavefunction has converged, so that the first Opt. IT which appears in the 

graphs and tables is actually the 5th. 

It is found from Table ID.A.2.S that the simulation results (the 

means of grand means of local energies and the iteration variances) agree 

with that of the optimization (the means of iteration means). This is an 

important conclusion, which suggests a way to solve the so-called "ensemble 

dependency problem", to be discussed later. 

. , ... ' ,~. 

Fig. ID.A.2.3 - 9 show how the energies, variances and the "dominant" 

parameters fluctuate with Opt. IT. As Opt. IT increases, the grand and 
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Table ill. A. 2. 5. Grand means and iteration means vs. Opt. IT. 

Opt. ITa 

1 -8.063 -8.064 0.115 0.114 
2 -8.025 -8.033 0.119 0.115 
3 -8.047 -8.044 0.112 0.114 '\ 

'-

4 -8.045 -8.047 0.110 0.112 
5" -8.059 -8.056 0.117 0.116 
6 -8.028 -8.039 0.104 0.105 
7 -8.032 -8.031 0.109 0.105 
8 -8.058 -8.062 0.120 0.109 
9 -8.034 -8.032 0.106 0.111 
10 -8.024 -8.026 0.112 0.112 
11 -8.031 -8.044 0.103 0.118 
12 -8.016 -8.030 0.089 0.118 
13 -8.010 -8.006 0.109 0.116 
14 -8.014 -8.032 0.114 0.115 
15 -8.023 -8.005 0.126 0.117 
16 -8.045 -8.019 0.101 0.115 

-8.035 -8.036 0.110 0.113 
Mean ± ± ± ± 

0.004 0.004 0.002 0.001 

aThe procedure started with the trial wavefunction 'PIc (see Table 6). In each Opt IT, 
there are only 40 iterations in a block and 600 configurations in an ensemble. 
hThe grand means of the local energies after simulation. 
cThe individual iteration means of the local energies after optimization. 
dThe grand means of the individual iteration variances after simulation. 
cThe individual iteration means of the local energy variances after optimization. 

r ._ •• i, •• ' 
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Table III. A. 2. 6. Five "dominant" ~IS vs. Opt. IT. 

Opt. IT ~1 

1 2.604 0.851 0.987 0.948 1.558 
2 2.583 0.820 0.956 0.975 1.561 
3 2.596 0.818 0.780 0.964 ',1.418 
4 2.600 0.939 0.863 0.939 1.883 
5 2.602 0.819 0.740 0.927 1.824 
6 2.616 0.918 0.842 0.955 1.751 
7 2.591 0.769 0.731 0.952 1.860 
8 2.596 0.851 0.811 1.005 1.536 
9 2.608 0.845 0.790 0.962 1.915 

10 2.603 0.808 0.961 0.957 1.809 
11 2.614 0.826 -1.076 0.982 1.474 
12 2.643 0.848 0.898 0.931 1.383 
13 2.610 0.898 0.848 0.931 1.555 
14 2.622 1.025 1.012 0.952 1.867 
15 2.609 0.879 0.760 0.981 1.582 
16 2.599 0.870 0.830 0.968 1.671 

2.606 0.861 0.868 0.958 1.665 
Mean ± ± ± ± ± 

0.004 0.015 0.026 0.005 0.045 

43 



-8,01 

-8.02 

A -8.03 
~ 
~ -804 V . 

-8.05 

-8.06 

o The Iteration mean efter optimization 
C The grand mean after simulation 

-8.07 +-......--.---r---r-...---.....--.-.,.--.....-.---r---r-...---..----,r---r---..--+ 
o 2 4 6 8 10 12 14 16 18 

Fig. ill. A. 2. 3. Iteration mean after optimization and the grand mean in simulation of 
the local energy vs. Opt. IT 

.13 

.125 

.12 

.115 

-~ .11 

E5 .105 ... 
~ .1 

.095 

.09 

.085 
0 

o The iteration mean after optimization 

C The grand mean after simulation 

2 4 6 8 10 

Opt, IT 
12 14 16 18 

. Fig. ill. A. 2. 4. Iteration mean after optimization and grand mean in simulation of the 
iteration variance vs. Opt. IT 

44 



2.65 

2.64 

2.63 

2.62 
,.. 

1;....1' 

2.61 

2.6 

2.59 

2.58 
0 2 4 6 8 10 12 14 16 18 

Opt. IT 

Fig. m. A. 2.-5. ~1 vs. Opt. IT 

.95 
C') 

1;....1' 

.9 

.85 

.8 

.75 
0 2 4 6 8 10 12 14 16 18 

Fig. Ill.C. A. 2. 6. ~3 vs. Opt. IT 

45 



1.1 

1.05 

1 

.95 

""'" .9 3...JI 

.85 

.8 

.75 

.7 
0 2 4 6 8 10 12 14 16 18 

Fig. m. A. 2. 7.- ~4 vs. Opt. IT 

.99 

.98 

S .97 

.96 

.95 

.94 

.93 

.92 
0 2 4 6 8 10 12 14 16 18 

Fig. III. A. 2. 8. ~6 vs. Opt. IT 

46 



2 

1.9 

1.8 

0) 1.7 
;).JI 

1.6 

1.5 

1.4 

1.3 
0 2 4 6 8 10 12 14 16 18 

Opt. IT 

Fig. III. A. 2. 9. ~8 vs. Opt. IT 

47 



iteration means of the energy become higher and higher. This is because the 

algorithm used is: 

SSQ (Pj,j=l,J)= Lm=l,MC [EL(Rm) - Eav(r)]2 

and whose minimum, which is different from that of Lm [EL(Rm) - Eg]2, 

will change as {Pj} due to the change of Eav('t). In other words, there.' 

are many possible ways of producing the same value for Lm [EL(Rm) -

Eav(1:)]2, but having different values of Eav(1:). Thus, the more Opt. IT's are 

done, the further removed the Eav( 1:) is from that of Eg, even though the 

variance (SSQIMc) fluctuates around a constant (see Fig. ill.A.2.4). This is 

the so-called wrong minimum problem and will be encountered again 

later. 
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. '. ~ . ," .,,,-' 

3. Optimization of the split Jastrow constants. geometry and all the 

exponents. sampling from the DJ ensembles at l' = 0.06. 

Considering that there are two different kinds of correlations between 

two electrons in a system, i.e. a Fermi correlation, when the two correlated 

. electrons are in parallel-spin states and a Coulomb correlation, w~en they are 

in antiparallel-spin states, the Jastrow constants 8 are split into parallel 8p 

and antiparallel 8a, b into parallel bp and antiparallel ba. They are 

optimized in this section. On the other hand, the distance rLi-H between the 

two nuclei (Li and H) is an important factor influencing the nature of the 

wavefunction, and it is of interest to oPJ:jnrize it. When optimizing the 

geometry I'Li-H Eq.n.C - 3 was used instead of Eq. n.C-4 in order to force 

the optimization go along the "correct" path that leads to the smallest 

variance as well as the lowest energy. 

The split Jastrow constants were first optimized with the "non­

dominant" exponents, ~2, ~5, ~7, starting with 'Pll, to see if a better function 

than 'Plbl could be obtained. Next, starting with the optimized wavefunction 

'P 1 b, only the split constants and the geometry were independently optimized, 

in order to see the individual roles they play in the wavefunction, and then to 

see what kind of improvement in these parameters could be made. 

Fu~ermore, optimization was done on the geometry together with all the 

"dominant" parameters, and then the geometry and the split constants 

together with all the "dominant" exponents. Finally, beginning with an 

. '. altered version of the trial wavefunction 'PI b (the alteration .cons.isted Qf a ..... 

random fluctuation in several of the parameters), all the exponents were 

optimized, as well as the split J astrow constant and the geometry, to see if the 
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energies and variance would converge to a lower minimum. This whole 

procedure is summarized in Fig. ill.A.3.1 and 2, and the results are shown in 

Table. ill. A. 3.1 - 7, respectively. 

The first entries in Table ill. A.3.1 and 2 show that by optimizing the 

split Jastrow constants with the "non-dominant" exponents thereis very little 

change in Eav. Although the change in Var(Eav) is significant, the iteration 

variance given by 'PIc! obtained is much worse than that Of'Plbl(see Table 

ITl. A.2.1). Therefore one can assume that the "non-dominant" exponents do 

not playa significant role in the trial wavefunction. 

See Table lIT. A.3.1 and 2. The optimization of the split constants only 

did not result in a significant improvement. The same conclusion was 

obtained by optimizing the geometry only (these results are not tabulated). 

In any case, significant improvements were achieved by the optimization of 

fLi-H together with all the "dominant" parameters (the results for the change 

in iteration energy are not tabulated). Also, improvement from the 

optimization of the geometry and the split constants together with all the 

"dominant" exponents were achieved. 

One finds from Table IIT.A.3.3 - 4 and 6 - 7 that the standard errors 

for ap and bp are rather large, which means that they are unimportant 

because their great fluctuations don't significantly affect the results ( this is 

expected since the Fermi correlation is handled by the Slater determinant). 

, Therefore we can set them equal to zero, but since splitting the a 

and b does not bring about a significantly better wavefunction, 

we can use their single forms. 
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Simulation 
Opt.('¥ll-W leI) 

( 6 runs,'Pn) (6 runs) 

~2, ~5, ~7, aa,ba, 't=0.06 
ap,bp . 

Fig. m.A.3.1. Logic routes of the optimizations of the split Jastrow constants and the 
"non-dominant" parameters. 

Opt.('¥lb ~ 'IlleS) - . 

(6 runs) 

All P's except MO 
coefficients 

Opt,('¥lb ~ '¥lc3) Opt.('¥lb ~ '¥1C) Simulation 

(6runs) 
Simulation (6runs) 'PIc 

(6 runs,'Plb) 
~1, ~3, ~4, ~6, ~8, 

., 
't = .01, .03, 

All "dominant" P'S 't=0.06 aa,ba,ap,bp, ru-H .06, .09 
andru-H 

. 
J 

Opt.{'¥lb ~ '¥lc2) 

(6 runs) 

aa,ba, ap,bp 

Fig. m.A.3.2. Logic routes of the optimizations of the split Jastrow constants, geometry. 
and all exponents. 
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Table III. A. 3. 1. Individual means a in the optimizations of III.A.3. 

Optimization Eav,ini Eav,fin V ar(Eav )ini V ar(Eav km 

':PI! -7 ':PIel -7.873 ± .030 -7.938 ± .014 .310 ± .012 .163 ± .007 
':Plb -7 ':PIe2 -8.047 ± .008 -8.052 ± .008 .126 ±.009 .116 ± .009 
':PIb -7 ':PIe3 .138 ± .020 .108 ± .006 
':PIb -7 ':PIe(le4) -8.012 ± .009 -8.034 ± .008 .126 ±.O05 .107 ± .007 
':PIb -7 ':PIeS -7.976 ± .036 -8.101 ± .042 .628 ± .119 .096 ± .008 

aThese values are the averages taken from the six runs except that ':Plb -7 ':PIeS where only 
four runs have converged. 

Table III. A. 3. 2. Changesa of the iteration means in the optimizations of of III.A.2. 

Optimization 

':PI! -7 ':PIel 

':PIb-7 ':Ple2 

':PIb -7 ':Ple3 

':Plb -7 ':PIe(lc4) 

':PIb -7 ':PIeS 

tlEav 

-0.065 ± 0.033 
-0.005 ± 0.011 

-0.022 ± 0.012 
-0.125 ± 0.055 

tlVar(Eav) 

-0.147 ± 0.014 
-0.010 ± 0.016 
-0.030 ± 0.021 
-0.019 ± .0.009 
-0.532 ± 0.119 

aThe changes in the individual iteration means in the optimization, which were 
obtained directly from Table IIT.A.3.1. 
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Table ill. A. 3. 3. IIBest" split Jastrow constants and the "non-dominant" parameters. 

~2 

4.828 1.481 1.590 
\fIci ± ± ± 

0.029 0.292 0.037 

1.510 
± 

0.631 

4.051 
± 

0.584 

ba 

0.622 1.158 
± ± 

0.037 0.055 

aThese values are' the averages taken from the six runs, as in Table m.A.3.4 - 6. The values in Table 
III.A.3.7 are taken only from the four converged runs. 

Table ill. A. 3.4. "Besf' split Jastrow constants. 

ap ba 

\flc2 2.558 ± .865 3.799 ± .860 .519 ± .007 .818 ± .012 

Table ill. A. 3. 5. "Best"Jastrow constants,the "dominant" parameters and rLi-H. 

~I ~4 Jast a Jast b rLi-H 

2.595 0.730 1.041 0.913 1.728 0.551 0.996 1.498 
\flc3 ± ± ± ± ± ± ± ± 

0,004 . '0.038 < 0.046 '0',005 0.0420.'010 . 
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Table m. A. 3. 6. "Best" rLi-H, split Jastrow constants and "dominant" parameters. 

'PT aa ba rU-H 

2.644 .787 0.954 .937 1.764 2.149 4.843 .517 .782 1.536 
'PIc ± 

0.008 
± ± ± ± ± ± ± ± ± 

.062 0.074 .012 0.099 0.874 0.537 .013 .035 0.018 

Table. m. A. 3. 7. "Best" parameters excepting MO coefficients. 

~4 ~5 ~6 ~7 ~8 ap aa ba rU-H 

2.704 4.450 .865 1.190 8.518 1.103 0.937 2.006 3.491 4.846 .492 .645 1.448 
'II lc5 ± ± ± ± ± ± ± ± ± ± ± ± ± 

0.022 .030 .068 0.103 0.176 0.111 0.118 0.302 0.823 0.176 .009 .034 0.119 
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The 9ase for ILi-H is different. It was observed that during the 

optimization, although the charige of l'Li-H did not cause much change in the 

energies and variances, a small change in geometry caused a big 

change in the other parameters when they are all optimized 

together, resulting in lower energies and smaller variaD:ces; 

however, there is still no apparent way at this point to force the estimated 

geometry to fluctuate about the "correct" one (the experimental value is 

3.014 a.u.)1, and the optimization causes it to go further away from that 

value (See Table. ID. A.3.5 - 7). 

Finally, the 13 parameters (8 exponents, 4 split Jastrow constant and 

the geometry) were optimized, along with all parameters except the linear 

MO coefficients. We began with an alternate fonn Of'¥1b, where the only 

changes in parameters are in the Jastrow constant: ap=bp=0.562, 

aa=ba=0.972. Although only two parameter values (bp and aa) have actually 

been changed, and among them aa is unimportant, the optimizations were 

carried out with some difficulty. These took much more CPU time than 

before, with only four out of six runs converging, and with not only ap and 

bp fluctuating greatly but also rLi-H and other parameters. These difficulties 

were even greater and caused some runs to render nonsensical values when 

more initial parameters were "fluctuated". This is the so-called linear 

dependency problem and will be discussed in the next section. The last lines 

of Table ill.A.3.1-2 and Table ill.A.3.7. show the results of the averages 

taken from. the four converged runs .. ,,, .. ; .... :".~<.;; .'~ . .,.. . :. '"., "- ..... -.. 

In my experience, if one optimizes no more than ten parameters ( 5 
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"dominant" parameters, plus aa, ba, ap, bp, and Ii...i-H, in terms of the double -

~ set) at once, one can usually obtain a reasonable set of results and the 

optimizations can proceed very smoothly no matter how one fluctuates the 

initial parameters. More than ten such runs were performed and comparably 

good wavefunctions were obtained. If one intends to optimize more 

parameters, including the MO coefficients, one must solve the linear 

dependency problem, which is one of the topics of the next section. 

Before fmishing this preliminary investigation, a test was performed 

to determine how much improvement had been achieved at this point. The 

best trial wavefunction \ftc obtained il!. t;his section was chosen to do the 

VQMC calculation. The results are shown in Table llI.A.3.8 and the 

statistical regression curves are plotted in Fig.lll.A.3 - 4. A similar 

calculation with Reynold's \fn was done for comparison (See Table ll.A.3.9. 

and Fig.ill.A.5-6). An outstanding result was obtained for the variational 

energy, and this result is: -8.048 + .006 a.u and the individual iteration 

variance is: .126 + .005, which are not only much better than that of 

Reynold's, but it is also the best value for the variational calculation reported 

so far in any currently available literature. Further efforts are being made 

to improve on even this result. 

':".: 
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.01 

.03 

.06 

.09 

Table m. A. 3. 8. VQMC estimates with 'PIc. 

-8.040 
-8.030 
-8.023 
-8.017 

+ .0025 
+ .0018 
+ .0017 
+ .0028 

.128 

.127 

.122 

.130 

+ .002 
+ .002 
+ .002 
+ .002 

Extrapolatedb to 't=0: Eav = -8.048 + .0058, Var(Eav(-r=O)) = .126 + .0052 

aThere are 10 blocks at each -r, 300 iterations in a block, and 600 configurations in the ensemble. 
bThe regression model is cubic. See Fig.m.A.3.3-4.- -

.01 

.03 

.06 

.09 

j/ 

Table m. A. 3. 9. VQMC estimates with 'Pn . 

-7.965 
-7.912 
-7.847 
-7.787 

+ .0018 
+ .0015 
+ .0011 
+ .0015 

. 287 + .0010 

.278 + .0008 

.271 + .0004 

.267 + .0008 

Extrapolatedd to -r=0: Eav = -7.991 + .0025, Var(Eav(-r=O)) = .293 + .0013 

, "'CThereare 10 blOcks at each'';, 300 iterations iii a block, imd600 oonfiguriitions iiftheensemble,' 
dThe regression model for the energy is quadratic and cubic for the variance. See Fig.llI.A.3.5-6. 
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Fig. III. A. 3. 5. VQMC estimate ofVar(Eav('t~O) with 'PI!. 
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Fig. m. A. 3. 6. VQMC estimate of Evar with 'PI!. 
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B. Investigation by Full Optimization 

During an optimization, making full use of the flexibility of the trial 

wavefunction is strongly recommended from a mathematical viewpoint. The 

optimization of all parameters, exponents, linear MO coefficients and 

Jastrow constants for a wavefunction was perfonned. Because of the large 

change in the wavefunction during the optimization process, this was a task of 

great difficulty. The problems encountered become progressively more 

serious as the optimization was carried forward with progressively more 

complicated trial wavefunctions. These problems were resolved, and an 

available method was developed, which is summarized at the end of this 

section. 

To perfonn a full optimization, one must first solve the linear 

dependency difficulties inherent in optimizing: (1) the parameters in the 

functions with the same mathematical fonns (e.g. the double-~ set), and; (2) 

the linear dependency of the MO coefficients. 

In a double-~ set, the ~'s and the coefficients appear in a duplicated 

fashion in the functions ISLi, 2PLi and ISH. Each pair of these parameters has 

the potential to "exchange" their values while being optimized. Hence they 

do not always converge within a reasonable amount of CPU time. In order to 

keep this from happening, all the parameters were divided into five groups so 

that the pairs were separated and put in different groups for optimization. 

Then logical loops were traversed as shown below, where the parameters in 

the box are those being optimized(notethattheg~Q1;lletry. rLi-H is always 

fixed, for reasons mentioned in the previous section), i.e. 
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fLi-H 

JJ 
~1, ~3, ~4. ~6, a,b 

J, 

~2,~5.~7,~8 
\ . 

. 11 

C14,C16,C21, 
C23,C24,C27 

] 
C12,C13,C15,C18, 

C22,C25,C28 

Fig. m.B. Logic route of the loops in the full optimization of a double-' set. 

The difficulty in optimizing the linear MO coefficients arises out of the 

nonnonnalized trial wavefunction '¥T. The multiplication of the whole set of 

coefficients by any constant k does not change the value of the local energy. 

Thus, there should be an infinite number of sets of coefficients {kCij} 's 

which satisfy the minimum of SSQ, if it can be reached. The fluctuations in 

these coefficients actually make the optimization very difficult to converge, 

and even though a convergence is obtained, the coefficients may be 

nonsensical! The only way to get over this problem is by fixing some of the 

coefficients. What was done for a double-~ set was the fixing of C 11, C 17 and 

C26, the biggest and smallest absolute numbers; or C11, C21, C16 and C26, 

the coeff~cients of the most important A9functions. In praptice, there is not 

much difference between these two operations. 
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After these problems had been solved, the optimizations were 

successful when sampling the DJ ensemble with 600 configurations. The 

optimized wavefunctions using this fixed ensemble gave a very small 

iteration variance (around 0.07 to 0.08) as well as a very low iteration energy 

(-8.06 to -8.07). But, unfortunately in the simulations (ensembles now 

change in time) with these optimized wavefunctions the block means of the 

variances were 0.15 to 0.18 and that of the energies were -8.00 to -8.02. I 

attribute this to ali"ensemble dependency" problem, described in the next 

paragraph. 

Suppose the 600 configurations §ampled were to be generated with 

'PO, and the "best" wavefunction yielded was 'PT, and further suppose that the 

individual iteration average energies and their variances after the 

optimization were to disagree with that of the block means after the 

simulation. The most important reason for this disagreement is that the two 

sets of results (optimization and simulation) are obtained by sampling 

two different ensembles, I 'PO 12 and I 'PT 12. If 'PO is close to 'PT, the 

results should also be close (Recall Table m.A.2.5, which shows a 'PO which 

is approximately equal to 'PT, and the means of the grand means after 

simulation is the same as that of the iteration means after optimization). If 

'PO differs from 'PT by only a small amount, then if one wishes to use a large 

ensemble size for optimization, then more of these configurations are likely 

to reappear in the new ensemble of the optimized wavefunction, and thus the 

closer the resemblance of these two ensembles; however, if 'PO is 

quite different from 'PT,fewer configurations resemble each other, and 

more serious problems will result. Other techniques are then required to 

deal with this, something which will be discussed at a later point. 
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One other reason for the difference in optimization and simulation 

results is that the SSQ is not only a function of the ensemble but also of {Pj}. 

When the minimum SSQ was reached, the best set of parameters, {Pj hesb 
was obtained. Any change in these parameters, or their regrouping by taking 

averages over several runs ( six runs were done for each full optimization), 

win unfortunately raise the value of SSQ. In the case of partial optimization 

this seems to matter little because only a few parameters were being 

optimized, and also the fluctuations in these paranleters were small in the 

various runs. But now, all parameters except the few which were fixed were 

optimized and the fluctuations were gteat. Therefore, averaging the 

parameters from several runs led to worse results in the simulations. 

1. Optimization starting with the 'PlI. 

After understanding the influential factors above, a further 

exploration was done for a double-~ set with sampling more configurations, 

and with some linearly dependent parameters fixed; this procedure is 

outlined in Fig. nI.B.I.I. Starting with Reynold's 'Pn and 6000 

configurations, with C17, Cu, and C26 fixed, Eq.(II.C - 4) was employed 

for the optimizations from the 1st Opt. IT to the 3rd Opt. IT, and Eq.(II.C -

3) for the 3rd Opt. IT, where Eg = -8.070. The ensembles used in 

optimization were generated at 't=O.06. Since taking the average from 

several runs will lead to a larger SSQ, here only one run was perfonned in 

the optimization. 

6) 



The 1st Opt IT The 2nd Opt. IT 

Simulation Opt.('I'I1 ~ 'P2al) Simulation Opt.('P2al~'P2a2) 
(10 runs,'PII) 1---.1 lrun by fixing 1---.. (10 runs,'P2al)t---...f lrun by fixing 

't=O.06 Cll,CI7, and C26 't=O.06 Cll,CI7, and C26 

"\ 
\ 

.. '11 

Opt.('P2a2~'P2a3) Simulation 
Simulation 

('P2a3 ) 

't = .01, .03, 

.06, .09 

Iron by flXing 'F---t (10 runs,'P2a2)I+----. 
Cll,C17, and C26 't=0.06 

I The 3rd Opt. IT 

J ::j 

Simulation 
('P2a4 ) 

't = .02, .04, 

.06, .08 

Opt('P2a2~'P2a4) 

Iron by fixing 
Cll, C21, C26, r 

Fig. m.B.l.l. Logic route of the optimizations starting with 'P1I. 
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The changes in the individual iteration energies and their variances are 

shown in Table m.B.I.I. Basically consistent with the conclusion derived 

from the partial optimization, the trial wavefunction converged in the 2nd 

Opt. IT, where the ~Eav and ~Var(Eav) are small. An additional Opt. IT. 

with Eq.(ll.C - 4) didn't result in a significant improvement, but it did with 

Eq.(ll.C - 3) . 

Table m.B.I.2 is a tabulation of the block means computed with 

different wavefunctions optimized in the 4 Opt. IT's. Comparing this with 

Table m.B.I.I, one finds that the ensemble dependency problem still exists; 

the block means of the energy from th~ simulation are higher than those of 

the iteration means from the optimization, and the variance is larger when 

simulating than when optimizing, even when 6000 configurations were used 

for the optimization. 

When plotting these results vs. Opt. IT in Fig. llI.B.1.2-3, it is seen 

that the energy rises as the number of Opt. IT's increases, even though the 

variance changes little. This situation agrees with that in Fig. llI.A.2.3-4 

(here there are only 40 iterations in each simulation procedure). This means 

the optimization with Eq.(ll.C - 4) leads to a wrong minimum, and that with 

Eq.(ll.C - 3) forces it back to a correct path. More strong evidence of this 

fact is shown by comparing the two sets of Evar's and Var(Eav(-r=O» (See 

Table III.B.1.3-4 and Fig.B.1.4-7). The results of \{I2a4 are much better than 

that of \{I2a3. This suggests that Eq.(II.C - 3) should be used in the full 

optimization to avoid approaching a wrong minimum; however, 

\{I2a4 is still not better than \{Ile, even if at -r=0.06 \{I2a4 gives a lower 

energy(-8.045 + .001) and smaller variance(.088 ± .0009) than that of \{Ile 
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Table ill. B. 1. 1. Changes of the iteration means in the optimizations a of m.B.1. 

Optimization 

'PII ~ 'P2al b 

'P2al ~ 'P2a2b 

'P2a2~ 'P2a3b 

'P2a2 -7 'P2a4c 

Eav.ini 

-7.873 
-8.065 
-8.045 
-8.040 

-8.086 
-8.073 
-8.036 
-8.068 

0.310 
0.110 
0.100 
0.111 

0.086 
0.103 
0.097 
0.089 

-0.213 
-0.008., 
0.009 . 

-0.028 

aThere is only one optimization run at each Opt. IT, but the ensemble used at each run 
is made up of 6000 configurations. 
hThe optimizations with the algorithm Eq.(II.C - 4). 
cThe optimization with the algorithm Eq.(II.C - 3), where Eg = -8.070. 

Table. m. B. 1. 2. Block means a in simulation vs. the Opt. IT. 

Opt. IT \}IT 

-0.224 
-0.007 
-0.003 
-0.022 

0 \}III -7.888 ± 0.020 0.315 ± 0.007 
1st \}I2al -8.057 ± 0.002 0.115 ± 0.003 
2nd \}I2a2 -8.044 ± 0.003 0.102 ± 0.001 
3rd \}I2a3 -8.024 ± 0.003 0.105 ± 0.001 
3'rd \}I2a4 -8.045 ± 0.001 0.088 ± 0.001 

aEach block mean is taken from ten blocks and there are 300 iterations in a block. and 
600 configurations in the ensemble. The block means are computed at 't =.06 with the 

trial wavefunction listed in the same line. See also Fig. ill.B.l.2-3. 
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Fig. m.B.l.2. Block mean ofth~jteration variances vs. Opt. ITa, 

-7.85 

-7.875 

-7.9 

--. -7.925 
~ 

~ -7.95 

~ -7.975 

-8 

-8.025 

-8.05 

-8.075 
.5 1 1.5 2 2.5 3 3.5 4 4.5 

Opt. IT 

Fig. m.B.1.3. Block mean of the iteration energies vs. Opt. ITb. 

a,bNote that, to see the changes of the energy and the variance upon optimization, the 'I'n results are also 
plotted in the figures. So the Opt. IT numbers there are added by 1. 
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.01 

.03 

.06 

.09 

Table ill.B.1.3. VQMC estimates with 'P2a3 . 

-8.037 
-8.036 
-8.024 
-8.031 

+ .002 
+ .002 
+ .003 
+ .002 

.104 + 

.102 + 

.105 + 

.106 + 

. 0019 

.0016., 

.0014 . 

.0015 

Extrapolatedb to 't==0: Eav == -8.031 + .0054, Var(Eav) == .107 + .0033 

aThere are 10 blocks at each 't, 300 iterations in a blQck. and 600 configurations in an ensemble. 
Similarly for the next table. 
bThe extrapolation regression model is cubic. See Fig. III.B.I.4-5. 

.01 

.03 

.06 

.09 

Table ill.B.IA. VQMC estimates with 'P2a4. 

-8.043±.0010 
-8.045+.0004 
-8.045+.0010 
-8.043±.0004 

Varb(Eav('t» 

.094+.0010 

.089+.0007 

.088±.0009 

.086±.0008 

Extrapolateda to 't==0: Eav:::: -8.042 ± .0015, Var(Eav) == .099 + .0023 

aThe regression model is cubic for the variance and quadratic for the energy. See Fig. llI.B.I.6-7. 
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Fig. Ill.B.1.4. VQMC estimate ofVar(Eav('t-70) with 'P2a3. 
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Fig. III.B.1.6. VQMC estimate ofVar(Eav('t~O) with \}I2a4. 
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,Fig. III.B.l.7. VQMCestimate.ofEvar;with \}I2a4. 
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(-8.023 + .0017 and .122 + .002). The former has an extrapolated energy of 

-8.042 + .002, and the latter of -8.048 + .006 ( See also Table III.A.3.8). The 

main reason for this is that the optimization was done at a certain time step , 

't=0.06, so that the result at that point was favoured and the curve of Eb('t) vs. 

't became lower at the center and higher on both sides. Thus the extrapolated 

energy cannot be lowered by much (see Fig. m.B.l.4-7 and also\~~·ig. 

III.A.3.3-4, where the variance is minimized instead of the energy). This is 

the so-called timestep dependency problem. 

To solve this problem, we can use a mixture of ensembles 

generated from several timesteps,_ or we can use for the 

optimization the ensembles generated at a small timestep, say 

't=0.01, since this will favour the extrapolated energy. This would improve 

the double-~ set further. 

'.", .,. '" ' 
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2. Optimization starting with a "guessed" ~T.:. 

All of the optimizations discussed above started with Reynold's 

unoptimized "Pn, considered to be a reasonable wavefunction. A more 

challenging and general question is: can we start with a "guessed" "PT? The 

investigation of this problem began with a guessed wavefunction r3fg 

(Table11 in App. B) with a minimum basis set, the 3-function set. Also, the 

search for other sets began at the same time. Fig. m.B.2.1 is a diagram of 

the whole procedure, where all optimizations were done by one run with the 

algorithm of Eq.(ll.C - 3), and sampling of the DJ ensembles was done 

with 6000 configurations generated atJ.= 0.01. The results are shown in 

Table lIT. B.2.1 - 5 and Fig. m.B. 2.2 -7. 

A great deal of improvement seems to have been achieved after the 

optimizations from the 3-function set to 5-function and double - ~ sets, the 

variances being at about 7 times lower and the energies being lowered by 

about 0.2 atomic units (see Table m. B.2.1). But the simulations with these 

optimized functions gave unsatisfactory results, listed in Table m. B.2.2. 

Although the variances have been reduced, there is almost no change in the 

block energy for "P2bl, the optimized function with the 5-function set, and 

that of "P2b2, the optimized function with a double - ~ set, is even worse than 

before. Also note that "P2bl gave lower iteration variance than "P2b2. 

A further verification of the fact that optimizations for wavefunctions 

,;"",' with more adjustable parameters gave worse results was provided by,;,: .. ','",," ' 

computing the variational energy and the extrapolated iteration variance (See 

Table m. B.2.3-5 and Fig. lIT. B.2.2-7). (The optimization of wavefunctions 
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3-function set 5-function set Simulation 9-function set 
Simulation Opt.(qt3fg~qt2bl) ('P2bl) 

1 OPT. IT 1: = .01 Iron by fixing 1:= .01, .03, 
JUNK! (\}13fg) Cn,C14, C21,C24, 

.06, .09 andr 

. 

" .J 

Double - ~ set 
9-function set 

Opt.('¥3fg~qt2b2) 

Iron by fixing 1 OPT. IT 

Cll,C16, C21,C26, JUNK! 
andr 

-- ." 

Simulation 
('P2b2) 

t= .01, .03, 

.06, .09 

Fig. m.B.2.1. Logic route of the optimizations starting with a guessed 'PT. 

73 



Table ill. B. 2. 1. Changes of the iteration means in the optimizations of ill.B.2. 

Optimization Eav,ini Bav,fin V ar(Eav)ini Var(Eav)fin aEav A V ar(Eav) 

'P3fg ~ 'P2bla 

'¥3fg ~ 'P2b2b 
-7.942 
-7.947 

'P3fg ~ 9-function setc 

'¥2bl ~ 9-function setd 

-8.037 
-8.046 

0.785 
0.785 

JUNK! 

JUNK! 

0.095 
0.099 

a,bThe optimizations with the algorithm Eq.(II.C - 3), where Eg = -8.070. 
c,dThe optimizations with the algorithm Eq.(II.C - 5),_where Eg = -8.070. 

-0.213 -0.603 
-0.21~ -0.224 

Table. ill. B. 2. 2. Block meansa of three wavefunctions in ill.B.2. 

'PT 

-7.968 ± 0.003 
-7.975 ± 0.003 
-7.838 ± 0.005 

Valb(Eav) 

0.925 ± 0.011 
0.250 ± 0.004 
0.519 ± 0.011 

aEach block mean is taken from ten blocks and there are 300 iterations in a block, and 600 

configurations in the ensemble. The block means are computed at't =.01 with the trial 

wavefunction listed in the same line. 
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.01 

.03 

.06 

.09 

Table ill.B.2.3. VQMC estimates with 'P3fg . 

-7.968 
-8.004 
-8.056 
-8.107 

+ .003 
+ .001 
+ .002 
+ .001 

. 929 + 

.787 + 

.643 + 

.544 + 

.011 

.005 \ 

.003 

.002 

Extrapolatedb to 't=0: Eav = -7.950 + .0040, Var(Eav) = .890 + .0059 

aThere are 10 blocks at each 't, 300 iterations in a block, and 600 configurations in an ensemble. 
Similarly for the tables below. -- .. 
b-rhe extrapolation regression model is quadratic for the variance and linear for the energy. 
See Fig. IILB.2.2-3. 

Table llI.B.2.4. VQMC estimates with 'P2bl . 

.01 

.03 

.06 

.09 

-7.975 
-7.969 
-7.958 
-7.954 

+ .003 
+ .001 
+ .002 
+ .003 

. 250 + 

.248 + 

.269 + 

.293 + 

.004 

.003 

.003 

.003 

Extrapolateda to 't=0: Eav = -7.976 ± .0060, Var(Eav) = .259 + .0090 

aThe extrapolation regression model is cubic. See Fig. IILB.2.4-5. 
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Fig. m. B. 2. 2. VQMC estimate of Var(Eav('t~O) with 'l'3fg. 
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Fig. III. B. 2. 4. VQMC estimate of Var(Eav(-r~O) with \{I2bl. 
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Fig.' m. B. 2. 5. VQMC estimat~ ~f Evar ~itb.'"q;~bl~ 
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Table rn.B.2.5. VQMC estimates with '¥2b2 . 

. 01 

.03 

.06 

.09 

-7.838+.005 
-7.793+.005 
-7.746+.005 
-7.787+.006 

.519+.011 

.605+.012 

.689+.011 

.776+.019 

Extrapolateda to 't=0: Eav = -7.857 + .013, Var(Eav} = .460 ± .029 

aThe regression models are cubic. See Fig. m.B.2.6-7. 
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Fig. m. B. 2. 6. VQMC estimate of V ar(Eav('t~O) with 'P2b2. 
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Fig. m.B. 2. 7. VQMC estimate of Evar with 'P2b2. 
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with more adjustable parameters should result in a better wavefunction, 

rather than a worse one) Similar contradictory results were also obtained 

from a group of other runs with these two sets (5-function and double-~) as 

well as the 9 -function set. The reason for this problem is still the ensemble 

dependency, described as follows: 

The trial wavefunction keeps changing because of the change in its 

parameters during optimization, but the ensemble used is kept fixed. Here 

the ensemble is sampled from I '¥3fg 12, which is very different from 

I '¥2blI 2, generated by the optimized '¥2bl in the simulation. This 

difference in the ensembles is even gre~t;er than before because of the drastic 

change in the basis set ( 3 - function set ~ 5 - function set). Thus the 

optimization iteration means (obtained by sampling 1 '¥3fg 12) greatly 

differed from the simulation block means (obtained by sampling I '¥2bl I2). 

Therefore, the case of the change of basis set from 3 - function set ~ double -

~ set provides even worse results, as previously mentioned. An 

optimization performed by fixing the ensemble with the 

algorithm of Eq.(lI.C - 3) or Eq.(II.C - 4) cannot lead to a better 

wavefunction if the initial wavefunction is very different from 

the final one. 

To solve this problem the so-called "SO" algorithm (simulation ~ 

optimization ~ simulation ~ optimization ~ ... ) is suggested, where the 

ensembles change while the wavefunctions change. This involves inserting a 

simulation procedure between every two groups of parameters to be 

optimized in a loop such as that shown in Fig. m.B. For example, for a 

double-~ set the logic route is shown in Fig. III.B.2. 8. 
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Table ill.A.2.6 was actually obtained from such a SO algorithm but 

only one group (the five "dominant" parameters) in the loop shown in the 

Fig. ill.B.2.8. From this table, one can determine that with this algorithm 

the optimization results will agree with that of the simulation when the 

wavefunction has converged. In any case, if the change of the wavefunction 

is great compared with the full optimization within a same set, but not too 

great, the ensemble-fixing method can still be used, but one must use 

Wilson's weighted algorithm, Eq.(I .. 2) or Eq.(II.C - 5). 

rU-H 

Simulation 
with 40 iterations JJ 

~1, ~3, ~4, ~6, a,b 
. 

Simulation " I 

with 40 iterations ..j.o 

~2,~5,~7,~8 

Simulation .1 
with 40 iterations 

C14,C16,C21, 
C23,C24,C27 

Simulation 
with 40 iterations JJ 

C12,C13,C15,C18, 
C22,C25,C28 

Fig. III.B.2. 8. Logic route of the loops in the full optimization of a double-~ 

set with the SO algorithm. 

The optimizations just mentioned were repeated with the algorithm of 
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Eq.(ll.C - 5), and they were successful. The fmal results will be discussed in 

Chapter IV. Here it is shown that two other runs with this algorithm for the 

9-function set did not work well, giving almost zero variances and exact 

energies (-8.070) after the optimizations, but nonsensical simulation results, 

denoted by the word "JUNK"1 in Table III.B.2.1, and Fig. m.B.2.1. The 

only obvious reason for this is that too great a change in the wavefunction has 

occurred in going from the 3- and 5-function sets to the 9-function set. In 

this case we must employ the SO algorithm to perform a full optimization. 

Otherwise, all that can be done is a partial optimization. By fixing the 

best 5-function set parameters the oth~r~ were optimized for the 

wavefunction with a 9-function set, and by fixing the best double-~ set 

parameters the procedure was repeated for the wavefunction with a double-~ 

plus 3dz2 set. All of these results appear in Chapter N. 
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IV. Results and Discussion 

Following the logical route in Fig.N.1, the wavefunctions with the 

five different basis sets were fmally optimized partially or fully, and then the 

variational energies and the individual iteration variances were estimated 

with the best wavefunction from each set. The results are listed in Table 

N.1, where the results of Reynold's '¥n, '¥3fg, and '¥le are also listed for 

the convenience of comparision. Each ensemble used in the optimizations 

had 6000 configurations, which were generated at 't = 0.01( for '¥3.l, '¥3.2, 

'¥3.5, and '¥3.6) or they were a mixture( for '¥3.3 and '¥3.4) of ten small 

ensembles generated at the four different timesteps (three from each of't = 

0.01, and 0.03, and two from each of't = 0.06 and 0.09, which has 600 

configurations). The algorithms used in the optimization are based on Eq.(I-

2), the weighted sum of squares. 

It can be seen from Table N.I that the optimized '¥3.1 (a 3-function 

basis set) when used in a simulation produced a result even better than that of 

Reynold's 8-function set. When the basis set was expanded from the 3-

function set to the 5-function set '¥3.2, an even greater improvement is 

obtained. 

Continuing to expand the 3-function set to the double-~ set, the 

function '¥3.3 is obtained. It gave smaller iteration variance but not a lower 

energy, compared with '¥ Ie. One of the reasons for this is because the 

ensemble used to perform the optimization is a mixing one instead of that' 

generated at 't = 0.01, and thus the time step-dependency problem cannot be 

dealt with thoroughly, resulting in a higher energy for small timesteps (See 
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('¥3fg) I-- Cn,C14, C21,C24. 

andr andr 

I 

Simulation 
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t= .01, .03, 
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Opt.('P3.3~'P3.5) 

lrun by fixing all 
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Simulation 
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t= .01, .03, 

.06, .09 

.-
Double - ~ set ~ 

Opt.('¥3fg~'P3.3) .9 ... 
Irun by fixing ~ 
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Fig. IV .1. Logic route of the final calculation. 
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Table IV .1. Final results of different basis sets 

'¥r (basis set) 

'I'll (Double - , )d -7.990± •• 0025 .291± •• 0013 
'I'3fg (3-function)f -7.950±.OO40 .S90±.OO59 
'I' 3.1 (3-function )g -7.998±.0045 .226±.0044 
'1'3.2 (5-function)g -S.027±.OO20 .113±.OO12 
'PIe (Double - , )d -S.04S±.OO5S . 126±.0052 
'1'3.3 (Double - , )g -S.047±.OO26 .lO6±.OO51 
'1'3.4 (Double - , )g -S.049±.OO24 .106±.OO25 
'I'3.s(Double-,+3dz2)g·8.052± 0.0026 .094±.0026 
'1'3.6 (9-function)g -S.049±.OOO9 .O94±.OOlO 

a Extrapolated variational energy. 
b Extrapolated individual iteration variance. 
C The polynonnial models extrapolating t ~ O. 
d The values listed in the same line were obtained in Section ill.A.3. 
e The wavefunction listed in the same line is unoptimized one. 
f The values listed in the same line were obtained in Section ill.B.2. 
g The values listed in the same line were obtained in this section. 
h The wavefunction listed in the same line is optimized one. 

ModelC 

Quadratic 
Lin~r 

Cubic 
Quadratic 
Cubic 
Cubic 
Cubic 
Cubic 
Cubic 

Comment 

Unopt.e 

Unopt. 
Opt.h 
Opt. 
Opt. 
Opt. 
Opt. 
Opt. 
Opt. 
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Table IV.2 and Fig. IV.2-3). One more Opt. IT. was also run for the set, but 

the results were the same, implying the function had converged. 

There is also quite a large improvement in expanding the 5-function 

set to the 9-function set. But the latter \{J3.6 did not provide better results than 

that of \{J3.4. This result was expected, because only a partial optixpization 

(with all parameters in the 5-function set fixed) was carried out in going 

from the 5-function set to the 9-function set. The results would be much 

better if a full optimization with the SO algorithm were to be performed. 

The best results here are that of!J1.e double-~ plus dz2 set function \{J3.5, 

which was obtained by a partial optimization of \{J3.3 (with all parameters in 

the double-~ set Of\{J3.3 fIXed). The energy, -8.052± .0026, was comparable 

with the fixed-node energy (-S.059±O.OO4) 1 of Reynold's unoptimized \{In, 

and the variance was 0.094+.0026. It is obvious that \{J3.5 can also be much 

improved if one does a full optimization with the SO algorithm by starting 

with \{J3.3. 

Summarizing the above discussion and also that of the previous 

sections, one fmds that a partial optimization can be easily performed with 

little difficulty because there are only a few parameters to be optimized; 

when performing a full optimization, one must avoid falling into a wrong 

minimum, and one must deal with the linear - dependent, timestep -

dependent and ensemble - dependent problems. 

To avoid a wrong minimum, the algorithm of Eq.(II.C - 3) should be 

used. As shown in section ill.B.1 the optimization can be forced to go along 
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.03 

.06 
.. 09 

Table IV.2. VQMC estimates with 'P3.3. 

-8.048+.001 
-8.051+.001 
-8.056+.001 
-8.060±.001 

.105+.001 

.103+.002 

.101+.002 

.099+.002 

Extrapolateda to 't=0: Eav = -8.047 + .0026, Var(Eav) = .106 + .0051 

aThe regression models are cubic. See Fig. N.2-3 ... 
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Fig. IV.2. VQMC estimate of Var(Eav('t~O) with '1'3.3. 
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Fig. IV.3. VQMC estimate of Evar with '1'3.3. 
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a correct path. But relative to using Eq.(II.C - 4), this algorithm is more 

sensitive to the time step at which the ensemble is generated (recall Fig. 

III.B.1.4.-7). This time step dependency problem can be solved by sampling 

a mixture of ensembles generated at several timesteps, or with ensembles 

generated only at a single small time step only, say 't=O.01. We have found 

that the limiting case for the mixing ensemble, i.e., all ten 600-configuration 

ensembles generated at 't=0.01, is the best that we have found for removing 

this dependency (recall Fig. III.B.2.4.-7). As discussed in the front part of 

section III.B, dividing all the parameters to be estimated into several groups 

so that the linearly-related ones can be separated is the only way we have 

found to deal with the linear - dependency problem. 

The difficulties in dealing with the ensemble dependency problem 

become greater with more complicated wavefunctions. Depending on how 

complicated the wavefunction to be optimized is, one can just use Eq.(II.C -

3) or Eq.(II.C - 4) and more configurations (600-10000) which are all fixed. 

In more complicated case, one also can include the use of Eq.(II.C - 5). In the 

extreme case, use of the SO algorithm may also be included. 

The wavefunctions described above were obtained by optimization 

using the DJ ensembles. These ensembles are adequate for partial 

optimization because the wavefunction being optimized is changed little. 

However, I believe the DJB ensembles are preferred for the more 

complicated full optimization. This should solve the ensemble dependency 

problem. That is because in the full optimization the final wavefunction 'P fin 

can more closely approach the exact one <Po, and thus the ensemble sampling 

from <Po 'Pini is much closer to I 'P fin 12 than that sampling from the initial 
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distribution I 'Pini 12. But for this, the truncation of both F and EL should be 

used in optimization as well as in simulation. 

Therefore, to efficiently perform an optimization one should 

1) use Eq.(I - 2) to minimize the weighted energy; 

2) divide all the parameters to be optimized into several groups, and also 

fix some dominant coefficients (usually a pair for each MO); 

3) use a DJ ensemble in partial optimization or a DJB ensemble in full 

optimization (yet to be verified), which is generated at as small a 

timestep as possible (say 't = 0..91 for LiH); 

4) use a large ensemble size (6000-10000 or more configurations); 

5) use a more complicated straightforward Opt. IT approach, the SO 

algorithm, for the case where the change in the wavefunction from 

'Pini to 'Pfin is very large. 

Proposals 1) and 4) were also suggested by Wilson et al.20 
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Appendix A. Principles of Diffusion Quantum Monte Carlo1,18,21 

Diffusion Quantum Monte Carlo is a statistical simulation method for 

solving the time-independent Schrodinger equation, where one simulates a 

so-called Green's function by letting the electrons in a system, under the 

influence of a certain "guiding" function, walk randomly or dif{use through 

configuration space. When a stationary state, or a dynamic equilibrium of 

the system is reached, values of the ground-state energy and other properties 

nlay be estimated. 

1. Theory 

Consider the Schrodinger equation in atomic units, 

[-l/2V2 + V(R)] <p(R) = E cp(R) (A-l ) 

where VCR) is the potential energy, and R represents the 3N Cartesian 

coordinates of N electrons. Assume that the trial solutions to this equation, 

cj>i(R) (i = 1,2, ...... ,) could infinitely closely approach the exact 

wavefunction CP(R) during the course of a calculation. These functions thus 

become operationally "time"- dependent, becoming more and more accurate 

as time progresses. The same thing occurs in Diffusion QMC. Introducing 

such a time t (called imaginary time) to Eq. (A - 1 ), and after some 

algebraic manipulation we obtain, 

- aCP(R,t)/at = -1/2V2cp(R,t) + (V(R) - Eo)cp(R,t) (A - 2) 

91 



where Eo is the ground-state energy of the system considered. As mentioned 

above, <I>(R,t) is an approximate solution to Eq. (A - 1 ) at time t, and 

I <I>(R,t) 12 is the corresponding probability density for the electrons in the 

system. 

Eq. ( A - 2 ) is the Fick's diffusion equation if the second tenn on the 

right-hand side, called the "branching" tenn, is omitted. If the second tenn 

on the right-hand side was present alone, the equation would be a rate 

equation, describing the change in the population of particles. Here this 

population is almost proportional to the potential V(R)( when it is large 

enough), which is unbounded and can diverge to infinity. If one simulates 

this equation, large fluctuations in the population could possibly be caused, 

which is difficult to control, and this results in large statistical errors. Also, 

it will slow the convergence of the averages < VCR) - EO >, from which one 

expects to valuate the estimate of Eo. Therefore we do not directly simulate 

this equation, but rather use its elegant alternative, where the importance 

sampling is employed. Introducing a new density function f(R,t) by 

multiplying a known trial wavefunction \}IT(R) by the original one 

f(R,t) == ¢(R,t)'Vf(R) (A - 3) 

and substituting this into Eq.( A - 2 ), we obtain 

- df(R,t)ldt = -l/2V2f(R,t)+ (EL(R) - EO)f(R,t) +V(f(R,t)F(R» (A - 4 ) 

where EL(R) is called the local energy given by 
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(A-5 ) 

Now, the branching term is proportional to < EL(R)-EO >, which is 

much better-behaved than the original one, since the local energy EL(R) is 

much smoother than VCR), given a sensible choice Of'¥T(R). Moreover, the 

closer the EL(R) is to EO, the smoother the branching term will be. 

The term V(fF(R» is called the "drift" term because it acts to impose 

a directed drift velocity F(R) on the diffusion, where the velocity is 

F(R) = V '¥T(R) I '¥T(R) (A - 6) 

According to Eq.( A - 6), F(R) is larger where '¥T(R) is smaller, and 

hence any diffusers reaching such a region are driven away faster, leaving 

density f(R,t) smaller. Thus, the trial function '¥T(R) also plays the role of a 

"guide", guiding the electrons diffusing within the volumes bounded by the 

nodes of '¥T(R). 

By expanding f(R,t) in a complete set of eigenfunctions <1>i(R) of the 

Hamiltonian H, we have 

f(R,t) = 4 Ni <PiCR) (A-7 ) 

substituting it into Eq.( ILl - 4 ) and solving the equation, we get 
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f(R,t) = L Ni exp( -(& - Eo) t ) ~(R) (A-8 ) 

where Ei is the eigenvalue of the corresponding eigenfunction 4>i(R) and the 

Ni are the coefficients. It is apparent that, when t ~ 00, 

exp( -(& - Eo) t ) ~ 0, if i ;t.: 0 "\ (A-9) 

exp( -(& - Eo) t) ~ 1, ifi=O (A -10) 

Thus, all terms except the one with a lowest energy EO in Eq.( A - 8) are 

cancelled out and Eq.( A - 8) becomes,- -

f(R,t~ 00) = foo(R) = No<llQ(R)\{IrtR) (A-II) 

where 4>0(R) is the exact ground state wavefunction. The solution obtained 

here is called a steady-state solution, since the density foo(R) is the time­

independent, and thus a steady state has been reached. Taking the average of 

EL(R) over foo(R), 

( EL(R) = f EL(R) foo(R)d R/ f foo(R)d R 

= f (H \{IT / \{IT )(NO 4>0 \{IT )d R/ f (NO 4>0 \{IT )d R 

= f Eo 4>O(R) \{IT(R)d R/ f 4>0(R) \{IT(R) d R 

= Eo (A-12) 

Therefore, as soon as the density foo(R) is obtained the ground state 
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energy Eo is given from the above integral. In fact, since the density is stable 

at a steady state, then the population of the electrons should remain 

unchanged. Thus the branching term or the rate term should be equal to zero 

on the average, i.e. 

< EL(R) - Eo> = < EL(R) > - Eo = 0 
\ 

and therefore, 

<EL(R»=Eo (A -13) 

We cannot solve Eq.( A - 4 ) e~act1y, but by using a small timestep 't, 

we can solve the equation to within an error which is of O( 't) or higher. This 

solution is called the DQMC Green's function, given by 

G( R~R', 't) = (21t't)-3N/2 

x exp [-'t{[ EL(R) + EL(R')]/2 - EO}] 

x exp {-[ R' - (R+'tF(R» ]2/2't} (A -14) 

where R' represents the 3N coordinates of the N electrons in time 'to The 

Green's function satisfies the boundary condition, 

G( R~R', 1:=0) = 0 (R~R') (A - 15) 
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then get directly, 

f(R') - J S (R-7R') feR) d R 

- J G( R-7R', t = 0) feR) d R (A - 16 ) 

or within the t-related error, \ 

G( R-7R', tsmall) = S ( R-7R') + OCt) (A - 17 ) 

f(R',t) ~ J G ( R-7R' ,t) feR) dR + OCt) ( A - 18 ) 

So, the Green's function is actually "a transition probability for 

moving the set of coordinates from R -7 R' in time til within the O( t) error. 

Similarly, 

f(R',t(l+l» ~ f G( R-7R',t) f(R,t) dR + OCt) 

f(R",t(l+2» ~ J G( R'-7R",t) f(R',(1+1)t) dR + OCt) 

f(Rn,t(l+n» ~ J G( Rn-I-7Rn,t) f(Rn-l,nt) dR + OCt) (A - 19) 

When n -7 00, we indeed get foo(R) with an error of OCt). The above 

iterations are done by simulating the Green's function. 



2. Simulation 

Suppose there are N electrons in the molecule. Choose M replicates 

(configurations) of the molecule, and have the NxM electrons,:walk 

randomly in a 3N-dimensional configuration space R. If at time t we take a 

"snapshot" of them, and repeat for an infinite duration of time, an infinite 

number of such snapshots could be obtained. An electron "cloud" could be 

fonned by overlaping all of these snapshots. This "cloud" is called an 

ensemble, distributed as the density f(~,t). 

In the Green's function (Eq. (A -14 », there are mainly two parts in 

exponential fonns. If the origin point in the space is shifted to R + 'tF, the 

second part is a nonnal distribution with a mean equal to ° and a variance 

equal to 't, denoted by N(O, ~'t). Thus, the moving of the electrons in the mth 

configuration in small time 't gives, 

RIm = Rffi+ 'tF + N(O, ~'t) (A - 20) 

The drift caused by 'tF is called Drift ( D ) and the move caused by 

N(O, ~'t) is called Jump( J ). 

On the other hand, the first exponential part of the Green's function 

could be taken as a parameter of the N(O, ~'t). One simulates it at point R' by 

eliminating or copying the configuration according to 

97 



M=int(Mm~) (A - 21) 

where, is a random number which may be chosen between ° and 1, and Mm 

is the first exponent of the Green's function(see Eq.( A - 14 », 

Mm = exp(- 't«EL(R)+EL(R')!2 - Eo» (A - 22) 

If M = 0, the mth configuration is "killed"; if M =1, it is kept and 

unchanged; if M> 1, M -1 additional copies are made. This step is called 

Branching (B) (This step is eliminate.djn the Variational Quantum Monte 

Carlo). 

When all configurations in the ensemble are taken through these steps 

once, one iteration is finished, and a new ensemble is created. So, one 

iteration consists of three steps: Drift, Jump and Branching. The 

algorithm to simulate these three steps is called the DJB algorithm, shown in 

Fig. I. 2. 

One repeats the iterations until a target time value is reached (after a 

large number of iterations have been completed); at this point, the steady 

state is reached and the approximate density foo(R) is given. By taking the 

average of EL(R) sampled from the distribution foo(R) = NO<I>O(R)'PT(R), 

the ground state energy EO('t) with an O('t) error is then obtained according 

to Eq.( A - 12). Several EO('t)'s are obtained by repeating the procedure at 

several distinct values of't, and one eventually obtains an exact ground-state 

energy EO by extrapolating those EO('t)'s to 't~O. 
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Note that the electron density f(R, t) must be non-negative, or 

f(R,t) == Cll(R,t)'PT<R) ~ 0 (A-23) 

Therefore, it is required that «l>(R,t) and 'PT(R) have the same sign 

everywhere. One simulates that by "killing" the configurations when they 

diffuse to a boundary of the nodally-bounded volume of 'PT(R) and Eq.( A -

4 ) is solved in each such volume separately. It means the wave function of 

the system concerned is forced to satisfy the boundary condition, «l>(R,t) = 0 

at and only at the nodal surface of the trial wave function 'PT(R), i. e., the 

nodes of «l>(R,t) are fixed by that of 'PT(R). Unless this constraint is relaxed, 

applying DQMC is also denoted as fixed-node DQMC. 
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Appendix B: Reynold's 'PII and the Optimized Trial Wavefunctions 

Table 1.a Reynold's trial wavefunction 'Pub. 

STO 

lsI, Li 2.521 0.894 -0.128 
ls2, Li 4.699 0.103 -0.004 
2SLi 0.797 -0.003 0.346 
2pZl, Li 0.737 _ .. -0.001 0.176 
2pZ2, Li 1.200 -0.004 0.046 
lSI, H 0.888 0.007 0.601 
1S2, H 1.566 0.000 0.100 
2pz, H 1.376 0.002 0.017 

Geometry: rLi-H = 3.015 a.u; Jastrow Constants: a = 0.5, b = 0.5 

aNote that the parameters in Table 1- 9 are matched with the old "Jan" subroutine, where 
the STO functions appear with coefficients, and those in Table 10-19 with the new 
subroutine, where the STO functions appear without coefficients (see Pig. II. 1 ). 
bProm Reynold et. at. in Ref. 1. 
cThe linear MO coefficients of <PI-
dThe linear MO coefficients of <P2. 
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Table. 2. Trial wavefunction 'I'1a2. 

STO Clj C2· 
, ~ 

lsI, Li 2.61sa 0.894 ·0.128 
Is2, Li 4.699 0.103 -0.004 
2sLi 0.749 -0.003 0.346 '\ 

2pzt.Li 1.153 -0.001 0.176 
\ 

.2pz2.Li 1.200 -0.004 0.046 
Isl.H 0.924 0.007 0.601 
Is2,H 1.566 0.000 0.100 
2pzH 1.499 0.002 0.017 

l'Li-H = 3.015 a.u.; a = 0 .. 567 b = 1.003 

aThe bold numbers are what optimized. Same as in Table 3-6. 

Table 3. Trial wavefunction 'I'lbl. 

STO Clj C2j 

lSI, Li 2.610 0.894 -0.128 
IS2, Li 4.699 0.103 -0.004 
2SLi 0.990 -0.003 0.346 
2pZI,Li 1.0S0 -0.001 0.176 
2pz2.Li 1.200 -0.004 0.046 
lsl,H 0.951 0.007 0.601 
IS2,H 1.566 0.000 0.100 
2pzH 1.791 0.002 0.017 

It.i-H = 3.015 a.u.; a = 0.557 b = 0.965 
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Table 4. Trial wavefunction 'Plb2. 

STO Clj C2j 

lSI, Li 2.620 0.894 -0.128 
ls2. Li 4.699 0.103 -0.004 
2SLi 0.895 -0.003 0.346 \ 
2pZI.Li 0.990 -0.001 0.176' 
2pZ2.Li 1.200 -0.004 0.046 
lS1.H 0.933 0.007 0.601 
ls2.H 1.566 0.000 0.100 
2pzH 1.819 0.002 0.017 

l'Li-H = 3.015 a.u.; a =_0.567 b = 0.980 

Table 5. Trial wavefunction 'PIb. 

STO CIj C2j 

lSI. Li 2.615 0.894 -0.128 
1S2. Li 4.699 0.103 -0.004 
2sLi 0.943 -0.003 0.346 
2pZl,Li 1.036 -0.001 0.176 
2pz2,Li 1.200 -0.004 0.046 
lsl.H 0.942 0.007 0.601 
1S2.H 1.566 0.000 0.100 
2pzH 1.805 0.002 0.017 

l'Li-H = 3.015 a.u.; a = 0.562 b = 0.972 
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Table 6. Trial wavefunction 'P Ie. 

STO Clj C2j 

lSI. Li 2.644 0.894 -0.128 
1s2, Li 4.699 0.103 -0.004 
2SLi 0.787 -0.003 0.346 
2pZl,Li 0.954 -0.001 0.176 

.2pZ2.Li 1.200 -0.004 0.046 
IS1.H 0.937 0.007 0.601 
IS2,H 1.566 0.000 0.100 
2pzH 1.764 0.002 0.017 

Jastrow constants: ap = 2.149, bp =i-4.843, aa = 0.517, ba = 0.782 
Geometry: l'Li-H = 3.072 a.u. 
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Table 7. Trial wavefunction 'P2al. 

STO Clj C2j 

lSI, Li 2.6682 0.894a -0.0544 
182, Li 4.4067 0.1119 -0.0146 
2sU 0.9194 -0.0036 0.1719" 
2pZl, Li 1.2334 -0.0008 0.0691 

. 2pZ2, Li 1.0092 -0.0048 0.0409 
lSI, H 0.9684 0.0284 0.601 
1s2, H 1.4567 0.000 0.0455 
2pz, H 1.2130 0.0009 0.0622 

fLi-H = 3.044 a.u; aa = ba = O,·~·· ap = 0.4963. bp = 0.7132 

aThe bold numbers are what fixed in the optimization. Same as in Table 8.- 19. 

Table 8. Trial wavefunction 'P2a2. 

STO Clj C2j 

lsI, Li 2.6658 0.894 -0.1715 
1S2,Li 4.3453 0.1190 -0.0006 
2su 0.8870 -0.0035 0.3221 
2pZl, Li 1.0999 -0.0026 0.0264 
2pZ2, Li 1.3650 -0.0049 0.0578 
lSI, H 0.9322 0.0095 0.601 
IS2, H 1.6219 0.000 0.0505 
2pz, H 1.1178 0.0007 0.0592 

fLi-H = 3.1118 a.u; aa = ba = 0, ap = 0.4952, bp = 0.7154 
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Table 9. Trial wavefunction \f2a3. 

STO CIj C2j 

lsI. Li 2.6686 0.894 -0.1762 
1s2,Li 4.3101 0.1229 -0.0001 
2su 0.8322 -0.0050 0.2913 
2pZl, Li 1.0570 0.0001 0.0187 

·2pZ2, Li 1.3198 -0.0023 0.0601 
lSI, H 0.9513 -0.0361 0.601 
IS2, H 1.6434 0.000 0.0471 
2pz, H 1.4110 0.0003 0.0541 

rU-H = 3.0956 a.u; aa = ba = 0, - - ap = 0.4978. bp = 0.7016 

Table 10. Trial wavefunction \f2a4. 

STO CIj C2j 

1sI, Li 2.6309 3.8912 -0.7465 
1S2,Li 3.9572 1.5782 -0.0165 
2su 1.0258 0.0047 0.1423 
2pZl, Li 2.8027 -0.2655 0.0954 
2pZ2, Li 1.4672 0.0127 -0.2092 
1sI, H 1.0729 -0.0086 0.5409 
1s2, H 0.4533 -0.0049 0.0340 
2pz, H 1.1836 0.0008 0.0873 

Geometry: rU-H = 3.015 a.u; Jastrow constants: a = 0.5044. b = 0.7260 
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STO 

lsI, Li 
2SLi 
lSI, H 

STO 

IsLi 
2SLi 
2PzLi 
ISH 
2pzH 
0.0914 

Table 11. Trial wavefunction '¥3fg. 

3.0 
1.0 
1.0 

fLi-H = 3.015 a.u; 

Clj 

1.0 
0.0 
0.0 

a = 1.0, b = 1.0 

Table 12. Trial wavefunction '¥2bl. 

Clj 

2.9896 1.0000 
1.3511 0.0467 
1.2176 -0.0165 
0.9169 0.0000 
0.9071 -0.0039 

0.0 
0.3333 
0.6667 

C2j 

0.0000 
0.1359 
0.1064 
0.6667 

fLi-H = 3.015 a.u; a = 0.4934, b = 0.7254 

r 
! 
I 

f 
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Table 13. Trial wavefunction \fI2b2. 

STO Clj C2j 

1st, Li 3.0949 1.0000 0.0000 
1s2.Li 0.8316 0.0702 -0.1007'-
2sLi 0.7185 -0.0394 0.2284 
2pZl, Li 0.9672 -0.0069 -0.1814 
2pZ2, Li 0.6027 0.0111 0.0269 
1s1, H 1.0037 0.000 0.6667 
1S2, H 1.1509 -0.0944 0.4982 
2pz, H 1.4151 -0.0278 0.1472 

fLi-H = 3.015 a.u; a = 0.5170. b = 0.8500 

Table 14. Trial wavefunction \fI3.1. 

STO 

lsI, Li 
2sLi 
lSI, H 

2.9254 
0.7837 
1.0383 

fLi-H = 3.015 a.u; 

1.0 
0.0015 
0.0 

0.0 
0.1292 
0.6667 

a = 0.5077, b = 0.7055 

107 



Table 15. Trial wavefunction 'P3.2. 

STO Clj C2j 

Isu 3.1503 1.0000 O.OO(}O 
2su 2.3372 0.1566 -0.0970 
2pzLi 2.8418 -0.0650 -0.2360 
ISH 0.9131 0.0000 0.6667 

2PZH 1.0062 -0.0006 0.1156 

rU-H = 3.015 a.u; a = 0.4859, b = 0.6952 

Table 16. Trial wavefunction '£13.3. 

STO Clj C2j 

lSI, Li 3.0673 1.0000 0.0000 
IS2, Li 0.9825 0.0541 -0.1501 
2SLi 1.0091 -0.0201 0.2265 
2pZl, Li 2.9886 -0.0700 -0.1306 
2pZ2, Li 0.9361 0.0020 -0.1922 
lsI, H 0.9890 0.0000 0.6667 
lS2, H 1.7579 -0.0050 0.0838 
2pz. H 1.3532 -0.0033 0.1246 

rLi-H = 3.015 a.u; a = 0.4945. b = 0.6780 
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Table 17. Trial wavefunction \{J3.4. 

STO Clj 

lsI, Li 3.0714 1.0000 0.0000 
182, Li 0.9697 0.0581 -0.1570 
2sU 1.0731 -0.0242 0.2323 
2pZl, Li 3.0817 -0.0706 -0.1183 
2pZ2, Li 0.9809 0.0008 -0.2395 
lSI, H 0.9628 0.0000 0.6667 
lS2. H 1.8832 0.0005 0.0987 
2pz, H 1.3216 -0.0002 0.1333 

fLi-H = 3.015 a.u; a:;;: 0.4972. b = 0.6973 

Table 18. Trial wavefunction \{J3.5. 

STO Clj C2j 

lsI, Li 3.1809 1.0000 0.0000 
IS2,Li 0.8873 0.1332 -0.2162 
2su 1.1408 -0.0949 0.3163 
2pZl, Li 3.2089 -0.0765 -0.0540 
2pZ2, Li 1.1805 0.0002 -0.3174 
lSI H , 0.8306 0.0000 0.6667 
lS2, H 1.6294 -0.0002 0.2549 
2pz, H 1.1645 -0.0003 0.1332 
3dzLi 0.3121 0.0000 -0.0001 

rLi-H = 3.015 a.u; a = 0.4988. b = 0.7271 
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Table 19. Trial wavefunction 'P3.6. 

STO Clj C2j 

IsLi 3.1503 1.0000 0.0000 
3SLi 1.5392 -0.0026 0.0907 
2SLi 2.3372 0.1566 -0.0970 
2PzLi 2.8418 -0.0650 -0.2360 
3PzLi 1.6877 0.0026 -0.2889 
ISH 0.9131 0.0000 0.6667 
2SH 1.6008 -0.0008 -0.1005 
2PH 1.0062 -0.0006 0.1156 
3dzLi 3.0918 0.0375 0.3296 

rLi-H:::: 3.015 a.u; a :::: 0.4859, b :::: 0.6592 
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