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ABSTRACT 

Molecular dynamics cal c ul a t ion s of the mean sq ua re 

displacement have been carried out for the alkali metals Na, K 

and Cs and for an fcc nearest neighbour Lennard-Jones model 

applicable to rare gas solids. The computations for the alkalis 

were done for several temperatures for 

temperature volume as well as for 

the 

the 

zero pressure zero 

zero pressure volume 

corresponding to each temperature. In the fcc case, results were 

obtained for a wide range of both the temperature and density. 

Lattice dynamics calculations of the harmonic and the lowe s t 

order anharmonic (c ubic and quartic) contributions to the mean 

square displacement were performed for the same potential models 

as in the molecular dynamics calculations. The Br i 110 uin zone 

sums arising in the harmonic and the quartic terms were computed 

for very large numbers of points in q-space, and were 

extrapolated to obtain results fully converged with respect to 

the number of points in the Brillouin zone. 
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ABSTRACT 

An excellent agreement between the molecular dynamics and 

lattice dynamics results was observed in the case of all the 

alkali metals, e~ept for the zero pressure case of Cs, where the 

difference is about 15 % near the melting temperature. It was 

concluded that for the alkalis, the lowest order perturbation 

theory works well even at 

temperature. 

temperatures close to the melting 

For the fcc nearest neighbour model it was found that the 

number of particles (256) used for the molecular dynamics 

calculations, produces a result which is somewhere between 10 and 

20 % smaller than the value converged with respect to the number 

of particles. However, the general temperature dependence of the 

mean square displacement is the same in molecular dynamics and 

lattice dynamics for all temperatures at the highest densities 

examined, while at higher volumes and high temperatures the 

results diverge. This indicates the importance of the 

order (eg. ~*) perturbation theory contributions in these 
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CHAPTER 1 

INTRODUCTION 

The goal of this thesis is to compute the mean square of the 

atomic displacement (MSD) in alkali metals and rare gas solids. 

The MSD is important for several reasons: It is closely 

related to the Debye Waller factor (DWF), which is related to the 

proportion of recoilless re-absorption of gamma rays in the 

M8ssbauer effect, as well as to the intensity of x-ray 

diffraction in crystals. Furthermore, the MSD determines the Van 

Hove perturbation expansion parameter A, which is defined in 

terms of the ratio of MSD and the nearest neighbour distance (Van 

Hove 1961). The knowledge of A is needed in determining the 

importance of the higher 

theory (PT) calculations 

order contributions in perturbation 

of the Helmholtz free energy or width 

and shift of phonons. Finally, MSD is one of the main factors in 

estimating the melting point of a crystal (Lindemann's melting 

criterion, Pines 1964). 
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INTRODUCTION 

Recently Shukla and Mountain (1982) have performed molecular 

dynamics (MD) and lattice dynamics (LD) computations of MSD in Li 

and Rb. It seems appropriate to complete this work by performing 

the MSD calculations for the remaining elements in the group, Na, 

K and Cs. 

A search of the existing literature reveals that so far no 

comprehensive study of MSD in rare gas solids has been reported. 

Hence this seems a worthwhile undertaking. 

Alkali metals and rare gas solids exhibit important 

differences. The latter crystallize in an fcc lattice which was 

shown by Born and Huang (1954) to form a stable structure under 

the nearest neighbour central force interaction. The alkalis on 

the other hand form a bcc lattice which does not form a stable 

structure under the nearest neighbour interaction (Shukla, 1981). 

The cores of alkali atoms are isoelectronic to rare gas atoms. 

The addition of one electron per ion core in the alkali system 

completely changes the nature of the interatomic interaction from 

weak and short ranged Van der Waals forces (rare gas solids) to 

strong and far reaching ion-ion and electron-ion interactions in 

alkali metals. This makes it interesting to compare the two 

cases. 
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INTRODUCTION 

There are two main techniques employed in computing average 

properties of macroscopic sys tems: simulation and lattice 

dynamics. Calculating MSD by simulation requires the explici t 

knowledge of the simulated trajectories of all particles. From 

these, MSD can be computed in a straightforward way. Within the 

limits of numerical precision, simulation provides an 'exact' 

result. Lattice dynamics on the other hand is based on 

perturbation theory, the exact result is the limit of an infinite 

series which is truncated after a few terms. 

Currently, two main simulation methods are in use: MD and 

Monte Carlo (MC). 

In MD, Newton's equations of motion are set up using the 

knowledge of the 

solved numerically. 

space trajectories 

interatomic forces. The equations are then 

This process naturally provides the phase 

of all particles, which can then be used to 

com pute MSD. In MC, random configurations are chosen and 

weighted according to their probability as given by the Boltzmann 

factor exp(-U!kaT), U denoting the total potential energy 

(Metropolis et aI, 1953). Since the displacements between two 

successive configurations are by definition totally random, 

successive configurations do not represent successive instances 

in time. There is no concept of time in thi s kind of MC 

simulation, no trajectories of particles are available. 
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INTRODUCTION 

A completely different procedure is the lattice dynamics (LD) 

method. Here each particle 

some equilibrium lattice site. 

is thought to be located close to 

The pair potential function is 

then expanded in powers of the displacement from the equilibrium 

position, and perturbation theory is applied to compute the 

harmonic as well as the anharmonic contributions to MSD. For the 

success of the LD method a rapid convergence of the 

series is essential. 

perturbation 

In this thesis, both the MD and LD methods were used to 

compute the MSD in alkali metals and rare gas solids for a wide 

range of temperatures and volumes. A comparison of the results 

obtained by the two methods will shed some light on the adequacy 

of the lowest order perturbation theory in LD. 
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CHAPTER 2 

MOLECULAR DYNAMICS 

2.1 History of MD 

The MD method was first employed by Alder and Wainwright 

(1959). They computed the equation of state as well as transport 

coefficients in systems of hard disks and spheres; their main 

interest was in phase transitions. The simple form of the 

potential function was essential given the computer 

available in those days. 

power 

Rahman (1964) was the first to use a more realistic model. 

He computed pair correlations, self diffusion and velocity 

autocorrelation in liquid Ar using a two neighbour Lennard-Jones 

potential. Verlet (1967) who worked on the same Lennard-Jones 

model of liquid Ar introduced a programming technique which he 

called "bookkeeping". This significantly reduced the computer 

time consumption for simulations with short ranged potentials. 
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MOLECULAR DYNAMICS 

2.2 General Description 

The main advantages of MD are as follows: Only very few 

a priori assumptions are made. This makes the method less 

dependent on theoretical models; MD is in fact a 'computer 

ex pe rimen t ' which allows to test different theoretical models. 

The advantage is that MD simulations can provide information not 

directly accessible by 'real' experiments, for example 

trajectories of individual particles. MD even allows to 

'experiment' with idealized or unphysical systems. Unlike Monte 

Carlo method s, MD also allows the computation of dynamic 

pro pe r tie s • The method's main disadvantage is the high 

requirement of computing time. Usually the simulated object is 

in a liquid or solid state, especially well suited to MD 

simulations are crystals due to their regular lattice structure. 

As mentioned earlier, MD numerically solves the cl as sical 

equations of motion of an N particle system. The equations of 

motion for an N particle system are given by 

(2.1) 

where M is the mass of the i-th particle located at 4> iJ (r) 

is the pair interaction potential between particles i and j, 

and the prime on the summation sign indicates 

omission of the term j=i. They are a system of N linear 
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MOLECULAR DYNAMICS 

differential equations, second order in the time derivatives, 

coupled by the pair potential. The numerical integration is done 

by fir st transforming Eq. (2.1 ) into difference eq ua ti ons 

involving a finite time step At. Given the coordinates 1; , the 

ve 1 0 cit i e s if1 the accelerations and possibly 

higher derivatives for some time t (and possibly earlier times), 

the coordinates and their derivatives can then be obtained for 

time t+c. to 

Since the amount of computer time required for the simulation 

increases at least linearly with the number of particles 

simulated, this number is usually limited to several hundred, or 

at most, a few thousand. In order to simulate a macroscopic 

system consisting of some particles, pe rio d i c b 0 un dar y 

conditions are impo sed. The system that is actually dealt with 

is there fore an infinite array of identical ce 11 s, each 

containing N particles. If in the course of the simulation a 

particle leaves its cell another particle is brought in, thus 

keeping the number of particles in the cell constant. 
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MOLECULAR DYNAMICS 

2.3 Basic Assumptions 

As mentioned earlier, one main advantage of MD is the small 

number of a priori assumptions made. 

discussion of these assumptions. 

- Classical system: 

The following is a 

It is assumed that the particles obey the classical 

equations of motion. This limits MD simulations to 

temperatures high enough to ignore quantum effects. 

- Pair potential: 

Only two body forces are considered. This is not an 

inherent restriction of MD. In principle three and more 

body force models could be used at the expense of a huge 

increase in computer time requirements. However in most 

cases two body forces give satisfactory results. 

- Finite range of the pair potential: 

Only the contributions of a finite number of particles can 

be examined to calculate the total force acting on a given 

particle. 

potentials 

in solids 

This is justified by the fact that realtstic pair 

usually die out quickly. It is well known that 

only a few shells of neighbours interact 

considerably with any particle. The contributions from 

particles further away cancel due to screening effects of 

other particles. The range of the potential can also be 

part of the 'experimental setting': It is possible to study 
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MOLECULAR DYNAMICS 

the effect of limiting the range of the interaction, which 

of course can't be done in real experiments. 

1~ 
- Small number of particles (much less than 10 ) with periodic 

boundary conditions simulate a macroscopic system: 

As explained above, this is dictated by the finite computing 

power available and implies the simulation of an infinite, 

but strictly periodic system. This means that the number of 

degrees of freedom of the simulated system is very small 

compared to a real macroscopic system. Therefore the MD 

simulation will not produce effects arising due to the 

collective motion of a large number of particles. It al so 

implies the absence of surface effects, unless the 

simulation is explicitly set up for the study of surfaces 

(semi-infinite system), in which case most of the bulk 

properties will be lost. The justification for using small 

numbers of particles lies in the fact that due to the finite 

range of the potential, particles far apart cannot interact 

directly. 

- Choice of the potential: 

The choice of the potential depends on the purpose of the 

simulation. For example, the potential may be obtained from 

a theoretical model and the simulation can be used to 

prod uce results which can be checked against experimental 

data. Alternatively, quantities which cannot be measured 

directly may be computed using first principles type 

potentials or potentials fitted to experimental data. 
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MOLECULAR DYNAMICS 

2.4 Fundamental Decisions Regarding the Simulation 

This section will investigate in a general way the main 

choices which have to be made before a MD simulation can be 

per formed. 

2.4.1 The Integration Algorithm 

The integration algorithm provides a way to compute the 

particles' coordinates and their time derivatives for time t+ t 

given their values at time t (and possibly earlier times). 

The most straightforward method might be to first obtain the 

accelerations a (t) as 

0-
Q-

next to determine the velocities as 

D­
o-

and finally the positions from 

t( t+~t) , 
0-
0-

- 22 -
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MOLECULAR DYNAMICS 

However, this very simple algorithm doesn't perform too well, 

the algorithm due to Beeman exhibits a better numerical behaviour 

(Sangster and Dixon 1976). Here the accelerations from times t 

and t-At are first used to determine the new coordinates as 

a-
D- (2.5) 

From these the new accelerations are computed according to (2.2). 

Finally the new velocities are obtained as 

(2.6) 

The Beeman algorithm requires storing all accelerations from 

three successive time steps. This disadvantage is balanced by a 

better energy conservation, which allows the use of a larger time 

increment 4t. 

Also popular are predictor-corrector algorithms. They first 

use the coordinates and their derivatives at time t to predict .. ' the coordinates r; (t+At). These are then used to determine 

predicted accelerations 
... 1 
aj (t+ At) , which are in turn used to 

correct the positions 
.... 
rj (t+At) • These are finally used to 

correct the accelerations obtaining t,(t+at). The correction can 

be repeated until a required precision ~s achieved. An example 

is the algorithm used by Rahman (1964). The equations are: 

0-
0-
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MOLECULAR DYNAMICS 

D­
C- (2.8) 

(2.9) 

Since the computation of the accelerations is by far the most 

time consuming operation, one time step of a predictor-corrector 

algorithm typically requires twice the computer time it takes for 

a single step algorithm. This means that the usage of a 

predictor-corrector algorithm is advisable only if the time step 

can at least be doubled, or if high demands are put on the 

absolute accuracy of the computed coordinates. 

2.4.2 The Potential 

The choice of the potential function was already discussed in 

Sect. 2 .3 • It remains to be pointed out that the range of the 

potential is somehow critical. This is due to the fact that the 

computer time required per time step is approximately 

proportional to the cube of the potential range. The range also 

sets a lower limit on the number of particles used (cf. Sect. 

2.4.3 and 2.5.2.2). 
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MOLECULAR DYNAMICS 

2.4.3 The Size of the Simulation 

As will be discussed in some detail later on (Sect. 2.5.2.2), 

the shortest translation vector which will map the simulated 

'box' on itself (due to periodic boundary conditions) should be 

longer than twice the range of the potential. This puts a lower 

limit on the size of the simulation. In most cases the box will 

be cubic, which means that its side length should be larger than 

twice the potential range. For example a simulation of a bc~ 

crystal lattice with a potential ranging out to six neighbour 

shells will require a box length of at least five times the 

lattice constant. This means 53 -II5 conventional unit cells or 

N-250 particles in the simulation. 

The results of the simulation will in general depend on the 

number of particles. In order to obtain results close to the 

macroscopic values (corresponding to N_I~3), a much larger N than 

the minimum determined by the potential range may be required. 
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MOLECULAR DYNAMICS 

2.4.4 Time Step and Simulated Time Interval 

The algorithms discussed above produce approximate solutions 

of the equations of motion. Nat urall y, t he q ua lit y 0 f the 

approximation is strongly dependent on the time step llt. 

Decreasing the time step increases both the accuracy and the 

amount of computer time required for the simulation, so that some 

compromise between accuracy and cost has to be found. The main 

indications for an appropriate choice of ~ t will be energy 

stability and stability of the calculated results with respect to 

changes in At. 

As a unit of time a typical time constant of the system might 

be chosen as 

(2.10) 

where r. is some typical distance (like nearest neighbour 

distance or lattice constant), E some typical energy (like the 

depth of the potential well) and M is the average mass of the 

simulated particles. In this time scale an appropriate value for 

~t will typically be in the range 0.001 to 0.01. 
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MOLECULAR DYNAMICS 

The length to of the simulated time interval depends strongly 

on the purpose of the simulation. It must be chosen large enough 

to allow the 'measured' quantity to converge to some stable 

value. For MSD calculations a to of the order of 10 will 

generally suffice, however other calculations (like specific heat 

or structure factors) may require a much larger number of time 

steps. 

2.5 Course of the Simulation 

2.5.1 Initialization 

2.5.1.1 Initial Coordinates 

In order to start the simulation, the particles must be given 

some initial positions and velocities. There are several 

possible ways to do this. An obvious choice, especially for 

simulation of 

lattice si t e s 

Alternatively 

solids is to start all particles on equilibrium 

and supply them with random velocities. 

the particles can be given some random 

displacements from the equilibrium positions and zero or random 

velocities. 

essential. 

Which one of these methods is chosen is not 
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MOLECULAR DYNAMICS 

A different initialization scheme is to start with randomized 

positions. This is not appropriate for solids but may be the 

easiest way to start simulations of a liquid. However some 

particles may obtain positions very close to each other, 

resulting in a high potential energy. 

avoid this situation. 

Care must be taken to 

Once the positions and velocities are defined, a potentially 

non-zero linear or angular momentum must be eliminated. This is 

done by adding an appropriate constant 

velocity component) to every particle. 

(linear or angular 

2.5.1.2 Reaching Thermal Equilibrium 

After the coordinates have been initialized, it is necessary 

to get rid of the influence of the arbitrary initial conditions 

and to get the system into thermal equilibrium at some desired 

temperature. The temperature of the simulated system is the 

average kinetic energy of the particles measured in units of the 

Boltzmann constant k~. 

temperature is T=2E/3NkA o 

Thus, if the kinetic energy is E, the 
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can be controlled via the velocities. The temperature 

Depending on the initialization scheme chosen, the temperature 

might drop or increase 

steps and will then 

dramatically during 

slowly converge 

the fir st few time 

towards the equilibrium 

val ue. This is due to a redistribution of potential and kinetic 

energy on the way to thermal equilibrium. Generally, the 

equilibrium temperature will not be the desired one. It is 

therefore necessary to 'heat' or 'cool' the system by scaling all 

particles' velocities by a constant factor. After such a scaling 

process, the system will again redistribute its kinetic and 

potential energy, moving its temperature closer to the value it 

,had before scaling the velocities. Therefore it will be 

necessary to repeat the scaling and subsequent running until the 

desired equilibrium temperature is reached. 

The scaling factor is limited to be greater than or equal to 

zero for cooling. In the case of solids, the scaling factor 

cannot be too large, because a value much larger than one might 

give some particles very 

destruction of the lattice 

high energies which may lead to the 

structure. After scaling with a 

factor much different from unity it will take a long time before 

the system reaches the equilibrium state again. This is 

especially the case for low temperatures, since the coupling 

between the motions of different particles 

temperat ures. 

- 29 -
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MOLECULAR DYNAMICS 

To speed up this process it is generally a good idea to use a 

relatively large time step in the beginning, until the system is 

in equilibrium. The time step can then be reduced and the system 

is run for some more time to prepare for the production runs. 

The estimate of the specific heat C as obtained from the 

temperature fluctuations can be used as an indication of reaching 

the equilibrium state. It is given as (Lebowitz et ale 1967) 

(2.11) 

where the angular brackets indicate averaging over a number of 

time steps. In equilibrium, this average should be reasonably 

stable and close to independent estimates like the classical 

val ue 0 f 3 kp, • However, it is difficult to obtain a reasonable 

value of Cv in this fashion, and not too much stability should be 

expected. 
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2.5.2 Integration Process 

2.5.2.1 Calculation of Forces 

During the MD simulation most of the computing time goes into 

the computation of the forces acting on the particles. 

force on particle i is given as 

where {.., denotes the force exerted by the 
Ij 

particle 

The total 

(2.12) 

j on the 

particle i. are subject to periodic boundary conditions 

(PBC). 
..... -+ 

Sin c e f·· = - f . . 0 n I y h a I f 0 f the sen e edt 0 b e c a I c ul ate d • lot J!' 

Determination of the forces can be simplified if <f;J'i;<r)/r is 

evaluated as a function of r~. This avoids explicit calculation 

of r which would require taking a square root. 

A further reduction of computational effort is possi ble due 

to Verlet's (1967) "bookkeeping" procedure: If t he po ten t i a lis 

cut off at a distance rc less than half of the maximum distance 

~ 

between two particles, most of the fij will be zero. To avoid 

computing these non-contributing terms, a list can be set up of 

all pairs of particles less than a distance r\( >rc: apart. For the 

next k time steps, only pairs from this list are considered when 

calculating the forces. ric. must be chosen so large that no pair 

of particles, which is not in the aforementioned list, can get 

closer than r(: during the next k time steps. If this condition 
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is always satisfied, no error will be made by ignoring all pairs 

not in the list. r k can be determined as 

(2.13) 

where the 'safety factor' b is of the order of unity and must be 

adjusted in a particular case to ensure the above condition to 

hold. 

2.5.2.2 Periodic Boundary Conditions 

The periodic boundary conditions enter in the determination 

of the distance vector tij as well as the new positions ~ (t+At). 

Provided that the potential is short ranged enough to allow 

any particle i to interact with at most one of particle j's 

mirror particles (including j itself), ?~ must be the vector 

pointing from i's position to the position of the nearest mirror 

particle of j. Mathematically this means that 

0- minOr, 
-:)0 

+ '·d} rij Q- r i -cee J 

(2.14) 

where e is the set of all translations leaving the simulated 

system invariant. If the simulated 'box' is rectangular with 

side lengths 111( , then 

min Clrj - r~ + slJ) 
5'" -10.1 

(2.15) 
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or 

where 

:J-_. 
c·_-

r 

l i"'" aij 
j'''' 1 (d "'<I \ aij -",sign ij) 

designates the Q( -th 

'" I "00., 1 I't a' ~-~ 
I ij. 2 

1..; , 
o LherWise 

cartesian component of 

(2.16) 

-'!> 
r· j 

and 

If the side length of the box is smaller than twice the 

potential range. particle i can interact with more than one of 

j's mirror particles. This is a very unphysical effect of the 

PBC, to ignore it seems hard to justify, especially in solids. 

The number of particles should therefore be chosen large enough 

to avoid this situation. 

PBC must be applied again when the new positions are 

calculated using the integration algorithm. If the new position 

.-" 
rj (t+At) happens to lie outside the 'box'. a suitable translation 

must be applied to move it back in. If the 'box' is rectangular 

and symmetrical around the origin, the new position is given as 

,r 1 

) !? tOCI if lr,v~1 < l.¢i 

r\i 2 ("" -c~-

(2.17) r i 
0--

l 
, 

(rr'''' ) othervvise r' ~ 100 - l"sign I 
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CHAPTER 3 

MEAN SQUARE DISPLACEMENT 

3.1 Discussion of the Models Used 

3.1.1 Alkali Metals 

The potential for the alkali metals was the same as used by 

Shukla and Mountain (1982), constructed according to Price et ale 

(1970). The potential is based on a self consistent screening 

theory of electron correlations (Vashishta and Singwi, 1972) and 

incorporates electron ion interactions by means of an Ashcroft 

pseudopotential (Ashcroft 1966). The potential parameters are 

listed in tables 3.1 and 3.2. In accordance with Shukla and 

Mountain it was truncated after the sixth neighbour distance. 

During the calculations all quantities were expressed in 

dimensionless units. The basic units were as follows: for 

length the lattice constant a, for energy the minimum value E 'of 

the potential function and for mass the atomic mass M. These 

values and the time unit ~ derived from them according to (2.10) 

are also listed in tables 3.1 and 3.2. 
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Table 3.1: Volume independent potential parameters for alkali 
metals 

Element M [amu] 

Na 
K 
Cs 

Table 

22.990 
39 .098 

132.905 

3.2: Vol ume 

38.18 
64.92 

220.69 

dependent 
metals t 

.. 
rt la .. Element a [A] A 

1.0 
0.93 
0.86 

1.69 
2.226 
2.62 

potent ia 1 parameters 

B E [1 O-u J] 

for alkali 

1: [ 10-12• s] 
-----------------------------------------------------------------

4.225 3.931 0.995 0.263 5.939 1 .071 
4.234 3.940 0.994 0.263 5.978 1.070 

Na 4.251 3.955 0.995 0.262 6.019 1 .071 
4.262 3.966 0.995 0.262 6.045 1.071 
4.288 3.990 0.996 0.262 6.109 1 .072 
4.309 4.009 0.996 0.261 6.162 1. 07 3 

5.225 4.519 1.007 0.249 5.647 1 .772 
5.261 4.552 1 .007 0.248 5.662 1. 781 

K 5.277 4.566 1.007 0.247 5.681 1.784 
5.305 4.591 1. 008 0.247 5.712 1.789 
5.343 4.623 1.008 0.246 5.756 1 .794 

6.045 4.840 1 .011 0.242 5.235 3.925 
6.069 4.856 1.012 0.241 5.225 3.944 

Cs 6.092 4.875 1.012 0.240 5.240 3.954 
6.119 4.898 1.012 0.240 5.259 3.964 
6.163 4.932 1 .013 0.239 5.290 3.981 

aois the Bohr radius 

t The lattice constants for Na and K were taken from Shukla and 
Taylor (1974), those for Cs from Shukla and Plint (1982) 
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3.1.2 Rare Gas Solids 

A nearest neighbour Lennard-Jones potential 

(3.1) 

was chosen for the rare gases. € and ~ were used as units for 

energy and length respectively. Since e is scaled out in all 

calculations, the only free parameter is tr, the roo t of the 

potential function. The minimum of this potential function is at 

ro = ~~. The potential parameters are usually fitted for zero 

temperature and pressure. That means that at 0 K ro will be 

equal to the nearest neighbour distance At higher 

temperatures r~ will be larger than ro due to thermal expansion. 

It is convenient to characterize the volume dependence by a 

dimensionless parameter ai which incorporates the slope and 

curvature of the potential function at the nearest neighbour 

distance. This parameter can be defined as 

(3.2) 

(Shukla and MacDonald 1980, Shukla 1980). Substituting (3.1) 

into (3.2) yields 

(3.3) 

for the Lennard-Jo.rtes potential. A value of ai,=O corresponds to 
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the zero pressure zero temperature volume, while at higher 

temperatures the zero pressure volume will correspond to a 

positive value of a:1. Negative a~-values correspond to non-zero 

pressure and al so occ ur in all neighbour Lennard-Jones 

potentials sometimes used for fcc crystals. Our calculations 

were carried out for a~-values between -0.04 and +0.1 in steps of 

0.02. 

3.2 Molecular Dynamics Calculations 

3 .2.1 Procedure 

MSD is the ensemble average of the square of the displacement 

of particles from their equilibrium position. In MD this average 

is taken over both, ensemble and time: 

(3.4) 

This can be written as 

(3.5) 

where the averages on the RHS are sums over n=to fAt time steps: 

<t> n--
c- (3.6) 

! 
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'and 

The procedure is to accumulate during the simu1a t i on fo r 

every particle 
.., t. 

the sums 0 f the rh) and rjy. A t the end MSD can 

then be computed according to (3.5) and (3.6). 

3.2.2 Integration Algorithm and Parameters 

As in the work by Shukla and Mountain (1982) the Beeman 

algorithm discussed in Sect. 2.4.1 was chosen to integrate the 

equations of· motion. 

The simulations of the alkali metals were carried out for 

N=250 particles, corresponding to a cubic box with a side length 

1=5a, where a is the lattice constant. The time step was 

4t=0.002t and the averages were computed over a period of 3000 

time steps. With this choice the fluctuations of the total 

energy were of the order of 20 ppm (parts per million) and an 

average loss of energy of 2 ppm was recorded per time step. 

The fcc calculations were done for N=256 particles (1=4a), 

exce pt for one run using n=500 (1=5a). The time step was 

~t=O.OOI~ and the integrations were carried out for 6000 time 

steps. This produced energy fluctuations of the order of 10 ppm 

and an average loss of energy of 2 ppm per time step. 
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3.3 Lattice Dynamics Calculations 

The expressions for the various contributions to the DWF in 

the high temperature (HT) limit have been derived by Maradudin 

and Flinn (1963). Since the MSD expressions are closely related 

to DWF, the quasiharmonic and anharmonic O(~~) contribution are 

given by 

<C6r2»OH (3.7) 

(3.8) 

and 

(3.9) 

x 

where /4>(qj) is the phonon frequency of the wave vector ~ 
q and 

branch index j and the • functions represent the Fourier 

transforms of the third an fourth rank tensor derivatives of the 

potential function. 
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According to Shukla and Mountain (1982), the first of the 

anharmonic contributions (quartic term) can be written as 

(3.10) 

are the fourth partial derivatives of the 

potential function evaluated for the direct lattice vector f! and 

the tensors Sand T are defined as 

(3.11) 

T (1) 
o:(J 1 (3.12) 

where :(qj) is the eigenvector of the dynamical matrix whose 

eigenvalue is ,,/"Cqj). 

In order to calc ula te the q uasiharmonic and cubic 

contributions, the dynamical matrix is diagonalized for a grid of 

points in q-space in the irreducible 1/48-th sector of the 

Brillouin zone (BZ). The resulting eigenvectors and eigenvalues 

are then used to compute the BZ sums arising in (3.7), (3.11) and 

(3.12), after transforming the whole BZ sums to 1/48-th of the BZ 

by the procedure given in Shukla and Wilk (1974). 
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The values of the BZ sums depend on the number of wave 

vectors used. The convergence with increasing number of wave 

vectors is not very good. Since the largest contributions arise 

from the vicinity of the origin, using a shifted mesh of points 

rather than a simple cubic mesh improves the results. This is 

because a shifted mesh will produce points closer to the origin 

than does a simple mesh with the same density. For the 

calculations of the harmonic part, the results were improved 

further by using a non-uniform mesh with a higher density of 

points in the vicinity of the origin. 

The sums were computed for a steplength L as high as 100 

(85,850 vectors in the irreducible sector of the BZ). From this, 

an ext ra pola ted val ue for L= GO wa sob t ai ne d by 1 i nea r regres sion 

of the values of the sums as a function of l/L. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Reliability of the MD Results 

The reliability of the MD results depends on three 

parameters: the time increment, At, the number of integration 

steps, n. and the number of simulated particles, N. The 

influence of the first two of these parameters can be easily 

determined by comparing runs with different parameter settings. 

The N dependence is much harder to assess and will be dealt with 

later on. 

The effect of the parameters n and At was explored in several 

runs using the values 0.01, 0.005 and 0.002 for At and up to 6000 

integration steps (n). The results are summarized in Table 4.1. 

Table 4.1: Effects of n and At on the MD result for MSD 

time s te p At 

final MSD value 
n required for stable MSD 
stability of MSD value 
energy loss per 1000 time 
C" est imate 

0.002 

0.0234 
2000-3000 

1 % 
steps 0.6 % 

2.5 
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0.005 

0.0232 
1000-2000 

2 % 
2 % 

0.01 

0.0224 
1000-2000 

4 % 
2.5 % 

never stabilized 
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It can be seen that with the longer time steps the energy loss is 

drastically increased compared to the case dt=0.002. Moreover, 

the Cv estimate never stabilized near a value of 3 during the 

whole simulation. From these tests it was concluded that the 

choices &t=0.002 and n=3000 would produce results converged to 

about 1 % with respect to n and probably 1 to 2 % with respect to 

At. The former conclusion was confirmed when comparing results 

of subseq uent runs. where the final configuration of one 

simulation was taken as the initial configuration for the next 

run. The results generally differed by less than 1 %. 

The errors quoted in the tables summarizing the MD results 

are estimated from the fluctuations during the last 1000 time 

steps. They do not reflect the error introduced by the choices 

of At and N. In the case of the fcc simulations, 5000 to 6000 

time steps were required to stabilize the MSD results to less 

than 1 % for the chosen time increment At=0.002. The convergence 

with respect to ~t is estimated to be within 2 to 4 %. 

The dependence of the simulation results on N can be 

investigated in two ways: Simulations can be run using different 

numbers of particles, and the MD results can be compared with LD 

for lower temperatures, where the higher order PT contributions 

are exceedingly small. The fir st po s sib iIi t Y i s far more 

complicated and time consuming than the aforementioned 

comparisons between different at and n values. This is because a 

simulation using a different number of particles must always 

start from scratch, while dt and n can be changed d ur ing the 
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simulation. For this reason, only one such comparison was made: 

For the fcc nearest-neighbour Lennard-Jones model, the MSD 

calculation for a1.=O.OO, k.)T/e=0.48 was done for N=256 and for 

N=500. The results in reduced units were MSD/T = 0.07030 for 

N=256 and MSD/T = 0.07628 for N=500, the latter being about 8.5 % 

larger. This indicates that the converged result (with respect 

to N) would be at least 10 % higher than the value for N=256. 

This observation is confirmed by the comparisons with LD. At 

the lowest temperature (k,T/E = 0.12) the anharmonic contribution 

to MSD at a1 =0.0 is only 2.5 % of the harmonic value. It is safe 

to assume that any anharmonic contributions of O(A~) would be 

much less than 1 %. The LD value should therefore be within less 

than 1 % of the fully converged answer. However the MD result in 

this case differs from the LD value by 16 %. This discrepancy 

can be explained as the effect of the finite value of N and it 

can serve as an estimate of the total error of the MD 

calculations. At the highest ai-ratio this difference is only 

about 10 %, while at a~=-0.04 it is as large as 20 %. 

Although no runs were made to examine the N-dependence of the 

MSD results for alkali metals, some indication can be given here 

based on the rare gas results. Here the difference between MD 

and LD at the lowest temperatures used is between 4.5 and 9 %, 

indicating that running with a larger number of particles will 

not produce any substantially different results. 
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4.2 Reliability of the LD Results 

As explained earlier, fully converged BZ sums were used to 

determine the quasiharmonic and the quartic contributions to MSD. 

This means that the errors in the quasiharmonic and quartic terms 

will be 100 ppm or less. The cubic contribution to MSD was 

calculated using a mesh of 432 wave vectors in the whole BZ for 

the bcc case and 4000 vectors for the fcc runs. The errors were 

estimated to be approximately 10 % and 5 % respectively. 

As one check of the LD calculation, the q uasiharmonic and 

.. 
quartic contributions were computed for Rb, a = 5.739 A. The 

fully converged answers were SQW = 0.42370 m~/J and 

S1- = -2.0999x1.0''l ml. / Jl. , as compared to SQU = 0.41014 m1 / J and 

S1 = -1.9631x1o'Cf m1 /Jl. as obtained by Shukla and Mountain (1982). 

The difference is due to our usage of fully converged S~A and T~~ 

tensors. 

The only other calculation of MSD in rare gas solids, which 

we can compare with our MD and LD results, is that of Goldman 

(1968), who used a highly approximate frequency shift analysis of 

MSD. His result for MSD in Xe using the zero pressure zero 

temperature volume at a temperature of 160 K (that is a reduced 

temperature of 0.483), is 0.0092 in our units. ( Th i s n um be r was 

obtained from the graph provided in his pa pe r) • Our harmoni c 

result for this case is 0.0107, with the anharmonic terms added 

this reduces to 0.0098. Since Goldman did not calculate the 

O(A~) contributions to MSD and the precision with which the 
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graphs in his paper can be read is very limited, a better 

agreement cannot be expected. 

Our MD results with 256 and 500 particles respectively are 

0.0085 and 0.0093 for this case. It can be seen that while the 

number for 256 particles differs from both, Goldman's result and 

our LD value, the usage of 500 particles improves the MD result 

considerably. 

4.3 Results for Alkali Metals 

The converged tensors used in the LD calculations of MSD are 

presented inA p pe n d i x I • They are made dimensionless by 

multiplying with 0(1 defined as 

(4 .1) 

0(;1 is also given in Appendix I. 

In Table 4.2 the quasiharmonic and anharmonic contributions 

are given in terms of SQM' S~ and S~, which are defined as 

(4.2) 

(4.3) 
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and 

(4.4) 

The values of the cubic contributions were provided by Shukla 

(1984) • 

In Table 4.3 the MD results are presented and compared wi t h 

LD. A graphical representation of the MD and LD results is given 

in Fig. 4.1. 

As can be seen from Table 4.3, the MD results at the lowe s t 

temperatures (T - $» where 

generally about 3 to 5 % 

contribution. At higher 

eli is 

lower 

the Debye- Temperature) are 

than the quasiharmonic 

temperat ures MD exceeds the 

quasiharmonic value by 5 to 25 %. The anharmonic contributions 

are all positive. At lower temperatures anharmonicity 

contributes some 2 % while at the highest temperatures (T - TM • 

where T~ is the melting temperature) they increase the 

quasiharmonic value by about 10 to 12 %. Adding the anharmonic 

terms generally increases the difference between MD and LD at the 

lower temperatures while improving the agreement at higher 

temperatures. As explained earlier, the 4.5 to 9 % difference at 

lower temperatures can be attributed to the finite value of N in 

the MD calculations. The agreement at higher temperatures is 

generally excellent (1 to 5 %) with the exception of the zero 

pressure MSD result for Cs. In this case the LD and MD results 

differ by 15 % at the highest temperature. However we note that 
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without taking into account 

difference is about 27 %. 

the anharmonic contributions, the 

It must be pointed out that, while the quasiharmonic and 

quartic contributions were computed to very high accuracy, the 

cubic terms are only converged to approximately 10 %. Since the 

quartic contributions are about 60 to 80 % of the cubic values 

but with opposite sign, the fully converged answer for the total 

of the O(T2 ) terms could be in some cases up to 50 % higher than 

calculated. This could make the agreement between molecular 

dynamics and lattice dynamics almost perfect for Na and reduce 

the difference greatly in the case of Cs. The remaining 

differences between MD and LD calculations especially in Cs 

indicate small but visible contributions from O(T3 ) terms. 
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Table 4.2: LD results for MSD in Na, K and Cs 

Element a S414 S1 S-:I. 
-----------------------------------------

Na 4.225 0.2190 -16.03 20.47 
4.234 0.2228 -16.37 21.34 
4.251 0.2302 -18.97 23.15 
4.262 0.2351 -18.66 24.41 
4.288 0.2474 -23.27 27.84 
4.309 0.2582 -25.61 31 .10 

K 5.225 0.3220 -14.33 22.64 
5.261 0.3381 -16.16 25.15 
5.277 0.3455 -17.50 26.39 
5.305 0.3592 -18.88 28.76 
5.343 0.3788 -21.95 32.46 

Cs 6.045 0.4664 -20.57 33.65 
6.069 0.4790 -22.27 35.65 
6.092 0.4919 -24.10 37.72 
6.119 0.5075 -26.46 40.36 
6.163 0.5347 -30.57 45.25 

Units are 
0 
A for a, m2. / J for SCI-' and 10 1' m2./ J .l. for S-1., and S1.. 
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Table 4.3: MD results for MSD in Na, K and Cs and comparison 
with LD 

Element 

Na 

K 

Cs 

a 

4.225 
4.234 

4.225 
4.251 

4.225 
4.262 

4.225 
4.288 

4.225 
4.309 

5.225 
5.261 

5.225 
5.277 

5.225 
5.305 

5.225 
5.343 

6.045 
6.069 

6.045 
6.092 

6.045 
6.119 

6.045 
6.163 

T 

93 (4) 
93 (3) 

163 (7) 
163 (7) 

227 (8) 
225 (9) 

282 (9) 
294(14) 

377(12) 
365(14) 

102 (4) 
101 (4) 

164 (6) 
163 (5) 

218 (8) 
215 (8) 

282(11) 
291(10) 

103 (4) 
103 (4) 

161 (7) 
160 (6) 

219 (9) 
218 (9) 

262(10) 
293(10) 

QH 

8.44 
8.58 

14.79 
15.54 

20.59 
21 .91 

25.58 
30.13 

34.20 
39.03 

13.60 
14.14 

21.87 
23.33 

29.07 
31.99 

37 .61 
4.5.66 

19.90 
20.43 

31 .10 
32.60 

42.31 
45.82 

50.61 
64.89 

AH 

0.22 
0.25 

0.67 
0.68 

1. 31 
1. 67 

2.02 
2.26 

3.61 
4.26 

0.49 
0.52 

1. 28 
1. 35 

2.26 
2. 61 

3.78 
5.09 

0.79 
0.81 

1. 94 
1. 99 

3.59 
3.78 

5.13 
7.21 

o -u 
a is given in A, T in K, MSD in 10_ m~. 

QH+AH 

8.66 
8.83 

15.46 
16.22 

21. 90 
23.57 

27.60 
32.38 

37.81 
43.29 

14.10 
14.67 

23.15 
24.68 

31.33 
34.60 

41. 39 
50.75 

20.69 
21. 25 

33.04 
34.59 

45.89 
49.60 

55.75 
72.10 

MD 

7098( 1) 
8.30( 5) 

14.68( 4) 
16.11( 8) 

21.69(10) 
21.31(10) 

26.98(20) 
32.82(10) 

40.07(30) 
45.42(10) 

12.90(10) 
13.22(10) 

22.47(20) 
22.94(10) 

29.39(10) 
31.29(30) 

39.85(10) 
*51.24( 4) 

19.7~(70) 
19.69( 5) 

30.93(70) 
31.70(15) 

46.10(30) 
46.08(30) 

*54.99(30) 
82.51(30) 

A value in parentheses gives the error of the preceding value in 
units of the last digit. QH and AH are the quasiharmonic and ~ 
anharmonic contributions to MSD. MD results marked with an 
asterisk are obtained using n=6000 time steps. 
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4.4 Results for Rare Gas Solids 

The converged tensors for the LD calculations for rare gas 

solids are given in Table 4.4. The scaling factor in this case 

is 2B(r.,) defined as 

(4 .5) 

The harmonic and anharmonic contributions to the LD value of MSD 

are presented in Table 4.5, where SQ~' S~ and S~ were defined in 

Eqs. (4.2), (4.3) and (4.4), the cubic contributions have again 

been provided by Shukla (1984). Table 4.6 finally contains the 

MD results and compares them with LD. The MSD a s a function of 

temperature is graphed in Fig. 4.2. For this graph the MD values 

were approximated by smooth curves using a polynomial fit. To 

aceo unt for the fact that the size of the error bars differ 

largely from point to point, the MD values were weighted with the 

size of their error bars when determining the fitting function, 

thus giving points with small errors more importance. The fits 

were then used to obtain the MSD for a fixed temperature as a 

function of the a1. -ratio. This function is graphed for several 

temperatures in Fig. 4.3. 
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As discussed already in Sect. 4.1, the differences between MD 

and LD at lower temperatures are much larger than in the case of 

the alkali metals. Neglecting the fact that the MD curves are 

generally too low due to the influence of the small number of 

particles and concentrating only on the shape of the curve s , it 

can be seen that the MD and LD curves look very similar for 

negative or zero a~-ratio. This can be interpreted as a success 

oft h e 0 ( /I." ) perturbation theory in these cases. For positive 

val ue s of a:1 the two curves start to exhibit an o ppo site 

behaviour. Starting with a1=0.02 at high temperatures and for 

the higher ratios at progressively lower temperatures, the curves 

bend in opposite directions. This manifests a breakdown of the 

O( /\!I.)-perturbation theory. 
l. 

The T-dependence of the A LD results 

:l. 
i s c~ T + C:l. T • This is insufficient to represent the MD results. 

Addition of a term cIT~ allows to adequately fit the point s 

obtained from MD, except for the highest ratio a 1 = 0.10, where a 

term c~T~ was required. 

The most striking feature of the graph of MSD as a function 

of the a~-ratio is that the MD curves are almost straight lines. 

This is quite a surprising relationship between the MSD and the 

potential parameter a~. 
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Table 4.4: Converged S- and T-tensors used 
calculations for the rare gas solids 

for 

ai, Su (0) xx xy zz 
-----------------------------------------------------

0.10 0.5882 

0.08 0.6247 

0.06 0.6665 

0.04 0.7150 

0.02 0.7719 

0.00 0.8400 

-0.02 0.9233 

-0.04 1. 0281 

-0.06 1.1655 

-0.08 1.3572 

-0.10 1. 6557 

0.416647 
0.2757 

0.441013 
0.3139 

0.468700 
0.3614 

0.500492 
0.4216 

0.537461 
0.4997 

0.581115 
0.6041 

0.633663 
0.7494 

0.698507 
0.9627 

0.781255 
1.3003 

0.892105 
1.903272 

1.052765 
3.2602 

-0.044647 
-0.0672 

-0.049501 
-0.0796 

-0.055258 
-0.0956 

-0.062175 
-0.1165 

-0.070617 
-0.1448 

-0.081115 
-0.1842 

-0.094480 
-0.2416 

-0.112019 
-0.3302 

-0.135992 
-0.4787 

-0.170749 
-0.7623 

-0.226220 
-1.4577 

0.446714 
0.3040 

0.474070 
0.3463 

0.505230 
0.3987 

0.541091 
0.4646 

0.582873 
0.5496 

0.632283 
0.6622 

0.691797 
0.8170 

0.765184 
1. 0401 

0.858552 
1.3846 

0.982733 
1.9770 

1.159924 
3.2301 

the LD 

The last three numbers in the first row of every ratio are the 
xx, xy and zz components of the tensor Soc..~ (O)-S~11 (1), the second 
row gives the same component of the tensor TOI~ (O)-T ... " (1). The 
yy, yx components are equal to the xx, xy components 
respectively, all other components are zero. 
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RESULTS AND DISCUSSION 

Table 4.5: LD results for MSD in rare gas solids 

a-s, S1. 

0.10 0.018125 -0.0470450 0.0372167 

0.08 0.016317 -0.0368479 0.0290764 

0.06 0.014345 -0.0274503 0.0216367 

0.04 0.012194 -0.0190704 0.0150472 

0.02 0.009857 -0.0119575 0.0094761 

0.00 0.007350 -0.0063750 0.0051008 

-0.02 0.004736 -0.0025507 0.0024190 

-0.04 0.002215 -0.0005506 0.0004635 
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RESULTS AND DISCUSSION 

Table 4.6: MD results for MSD in rare gas solids and comparison 
with LD 

a1. QH AH QH+AH MD 
-----------------------------------------------------------------

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 

-0.02 

-0.04 

0.647(23) 
0.485(18) 
0.372(12) 
0.237( 7) 
0.125( 5) 
0.657(22) 
0.472(17) 
0.362(13) 
0.244( 8) 
0.121( 5) 
0.700(23) 
0.499(18) 
0.371(15) 
0.242( 9) 
0.119( 5) 
0.748(28) 
0.531(19) 
0.373(12) 
0.246( 8) 
0.122( 5) 
0.603(20) 
0.488(17) 
0.368(13) 
0.243( 9) 
0.122( 7) 
0.680(25) 
0.486(19) 
0.370(12) 
0.245( 9) 
0.120( 5) 
0.610(19) 
0.473(15) 
0.367(11) 
0.245( 7) 
0.118( 5) 
0.591(19) 
0.469( 14) 
0.366( 11) 
0.242( 9) 
0.121( 7) 

35.156 
26.383 
20.200 
12.858 
6.802 

32.150 
23.126 
17.719 
11.946 
5.944 

30.116 
21.482 
15.977 
10.419 

5.127 
27.356 
19.438 
13.660 

9.011 
4.437 

17.875 
14.416 
10.872 

7 .181 
3.605 

15.005 
10.720 
8.157 
5.397 
2.651 
8.665 
6.717 
5.208 
3.484 
1.677 
3.930 
2. 465 
1.957 
1.610 
0.805 

-12.325 
-6.941 
-4.069 
-1.649 
-0.461 

-10.057 
-5.203 
-3.055 
-1.389 
-0.344 
-8.542 
-4.346 
-2.404 
-1.022 
-0.248 
-6.750 
-3.408 
-1.683 
-0.732 
-0.178 
-2.720 
-1.769 
-1.006 
-0.439 
-0.111 
-1.770 
-0.903 
-0.523 
-0.229 
-0.055 
-0.147 
-0.088 
-0.053 
-0.024 
-0.006 
-0.091 
-0.057 
-0.035 
-0.015 
-0.004 

22.831 
19.442 
16.169 
11.209 
6.338 

22. 057 
17.922 
14.664 
10.558 
5.600 

21.574 
17.136 
13.573 

9.397 
4.879 

20.606 
16.030 
11.977 
8.279 
4.260 

15.155 
12.647 

9.866 
6.742 
3.494 

13.233 
9.816 
7.634 
5.168 
2.595 
8.518 
6.628 
5.155 
3.461 
1 .672 
3.839 
3.059 
2.396 
1 .594 
0.801 

34.15(50) 
23.58(38) 
16.40(28) 
10.46( 6) 
5.75( 2) 

31.81(34) 
19.05(25) 
14.62( 5) 
9.74( 4) 
5.08( 2) 

26.49(36) 
18.22(26) 
12.84( 5) 
8.58(12) 
4.30( 2) 

23.37(20) 
16 .15( 14) 
11.11( 5) 

7.40( 3) 
3.70( 2) 

14.50(10) 
11.73( 4) 
8.80( 3) 
5.73( 2) 
2.94( 1) 

11.84( 6) 
8.50( 4) 
6.68( 3) 
4.40( 2) 
2.24( 1) 
6.90( 5) 
5.10( 3) 
4.20( 2) 
2.77( 2) 
1.39( 1) 
3.14( 2) 
2.47( 2) 
1.96( 1) 
1.30( 1) 
0.67( 1) 

MSD values are multiplied by 1000, values in parentheses give the 
error of the preceding value in units of the last digit. 
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Fig. 4.2: MD and LD results for rare gas solids as a function of 
the reduced temperature. 
Red curves represent MD, green curves LD values. 
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CHAPTER 5 

CONCLUSIONS 

The objective of this thesis was to perform the calc ula ti on 

of the mean square displacement in alkali metals and rare gas 

solids by the molecular dynamics and lattice dynamics methods. 

As shown in the preceding chapter, this has been accomplished. 

In the case of the alkalis, the agreement between the results 

from the two methods was excellent for all temperatures in all 

cases except one (zero pressure results for Cs at T - Tm)' We 

conclude from this the adequacy of the O( i\:&') perturbation theoryi 

for t his g r 0 up 0 f me t a Is. 

From the 

concl ude that 

calculations done for the rare gas solids we 

the O(A~) perturbation theory works well for high 

densities, while at lowe r densities higher (eg. ').It ) order 

contributions become important. We also conclude from our data, 

that the simulations of rare gas solids using 256 particles are 

not converged with respect to the size of the ensemble. 

Multa tulit fecitque puer, sudavit et alsit 

Horatius 
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APPENDIX I 

TABLES OF S- AND T-TENSORS FOR NA, K AND CS 

This appendix contains the tables of the converged S.~-and 

T~~-tensors used in determining the quasiharmonic and quartic 

contributions to the MSD in Na, K and Cs. The tables are given 

in the order of increasing lattice constant. 
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TABLES OF S- AND T-TENSORS FOR NA, K AND CS 

Table 1.1: Converged S- and T-tensors for Na, a 
i) 

4.225 A 

alpha1 1.18770 N/m, Sxx(O) 0.26013 

S (0) - S (Shell) 

Shell 1 
( 0.175436 
(-0.035098 
(-0.035098 

Shell 2 
( 0.226073 
( 0.000000 
( 0.000000 

Shell 3 
( 0.214008 
(-0.019633 
( 0.000000 

Shell 4 
( 0.232493 
(-0.006231 
(-0.006231 

Shell 5 
( 0.207082 
(-0.023482 
(-0.023482 

Shell 6 
( 0.242552 
( 0.000000 
( 0.000000 

-0.035098 -0.035098) 
0.175436 -0.035098) 

-0.035098 0.175436) 

0.000000 
0.188707 
0.000000 

-0.019633 
0.214008 
0.000000 

0.000000) 
0.000000) 
0.188707) 

0.000000) 
0.000000) 
0.230016) 

-0.006231 -0.006231) 
0.219300 -0.011706) 

-0.011706 0.219300) 

-0.023482 -0.023482) 
0.207082 -0.023482) 

-0.023482 0.207082) 

0.000000 
0.220415 

.0.000000 

0.000000) 
0.000000) 
0.220415) 

- 63 -

T (0) - T (Shell) 

( 0.09121 -0.03460 -0.03460) 
(-0.03460 0.09121 -0.03460) 
(-0.03460 -0.03460 0.09121) 

( 0.15278 
( 0.00000 
( 0.00000 

0.00000 
0.09881 
0.00000 

( 0.16090 -0.05735 
(-0.05735 0.16090 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.09881) 

0.00000) 
0.00000) 
0.16267) 

( 0.21661 -0.03124 -0.03124) 
(-0.03124 0.17075 -0.02374) 
(-0.03124 -0.02374 0.17075) 

( 0.17265 -0.05784 -0.05784) 
(-0.05784 0.17265 -0.05784) 
(-0.05784 -0.05784 0.17265) 

( 0.27650 
( 0.00000 
( 0.00000 

0.00000 
0.19043 
0.00000 

0.00000) 
0.00000) 
0.19043) 



TABLES OF S- AND T-TENSORS FOR NA, K AND CS 

Table 1.2: Converged S- and T-tensors for Na, a <> = 4.234 A 

a I ph a 1 = 1. 1 6 994 N / m, S xx ( 0) = O. 2606 5 

S (0) - S (Shell) 

Shell 1 
( 0.175777 
(-0.035203 
(-0.035203 

Shell 2 
( 0.226888 
( 0.000000 
( 0.000000 

Shell 3 
( 0.214473 
(-0.019758 
( 0.000000 

Shell 4 
( 0.233128 
(-0.006217 
(-0.006217 

Shell 5 
( 0.207455 
(-0.023555 
(-0.023555 

Shell 6 
( 0.243145 
( 0.000000 
( 0.000000 

-0.035203 -0.035203) 
0.175777 -0.035203) 

-0.035203 0.175777) 

0.000000 
0.188993 
0.000000 

-0.019758 
0.214473 
0.000000 

0.000000) 
0.000000) 
0.188993) 

0.000000) 
0.000000) 
0.230499) 

-0.006217 -0.006217) 
0.219718 -0.011795) 

-0.011795 0.219718) 

-0.023555 -0.023555) 
0.207455 -0.023555) 

-0.023555 0.207455) 

0.000000 
0.220763 
0.000000 

0.000000) 
0.000000) 
0.220763) 
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T (0) - T (Shell) 

( 0.09184 -0.03489 -0.03489) 
(-0.03489 0.09184 -0.03489) 
(-0.03489 -0.03489 0.09184) 

( 0.15412 
( 0.00000 
( 0.00000 

0.00000 
0.09939 
0.00000 

( 0.16204 -0.05783 
(-0.05783 0.16204 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.09939) 

0.00000) 
0.00000) 
0.16375) 

( 0.21833 -0.03144 -0.03144) 
(-0.03144 0.17180 -0.02399) 
(-0.03144 -0.02399 0.17180) 

( 0.17372 -0.05829 -0.05829) 
(-0.05829 0.17372 -0.05829) 
(-0.05829 -0.05829 0.17372) 

( 0.27866 
( 0.00000 
( 0.00000 

0.00000 
0.19143 
0.00000 

0.00000) 
0.00000) 
0.19143) 



TABLES OF S- AND T-TENSORS FOR NA, K AND CS 

Table 1.3: Converged S- and T-tensors for Na, a 
o 

4.251 A 

alpha1 = 1.13698 N/m, Sxx(O) 0.26167 

S (0) - S (Shell) 

Shell 1 
( 0.176440 
(-0.035420 
(-0.035420 

Shell 2 
( 0.228458 
( 0.000000 
( 0.000000 

Shell 3 
( 0.215373 
(-0.020010 
( 0.000000 

Shell 4 
( 0.234359 
(-0.006190 
(-0.006190 

Shell 5 
( 0.208171 
(-0.023708 
(-0.023708 

Shell 6 
( 0.244297 
( 0.000000 
( 0.000000 

-0.035420 -0.035420) 
0.176440 -0.035420) 

-0.035420 0.176440) 

0.000000 
0.189561 
0.000000 

-0.020010 
0.215373 
0.000000 

0.000000) 
0.000000) 
0.189561) 

0.000000) 
0.000000) 
0.231459) 

-0.006190 -0.006190) 
0.220541 -0.011972) 

-0.011972 0.220541) 

-0.023708 -0.023708) 
0.208171 -0.023708) 

-0.023708 0.208171) 

0.000000 
0.221446 
0.000000 

0.000000) 
0.000000) 
0.221446) 
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T (0) - T (Shell) 

( 0.09310 -0.03548 -0.03548) 
(-0.03548 0.09310 -0.03548) 
(-0.03548 -0.03548 0.09310) 

( 0.15680 
( 0.00000 
( 0.00000 

0.00000 
0.10057 
0.00000 

( 0.16435 -0.05882 
(-0.05882 0.16435 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.10057) 

0.00000) 
0.00000) 
0.16597) 

( 0.22178 -0.03184 -0.03184) 
(-0.03184 0.17395 -0.02449) 
(-0.03184 -0.02449 0.17395) 

( 0.17588 -0.05921 -0.05921) 
(-0.05921 0.17588 -0.05921) 
(-0.05921 -0.05921 0.17588) 

( 0.28300 
( 0.00000 
( 0.00000 

0.00000 
0.19349 
0.00000 

0.00000) 
0.00000) 
0.19349) 



TABLES OF S- AND T-TENSORS FOR NA, K AND CS 

(I 

Table 1.4: Converged S- and T-tensors for Na, a = 4.262 A 

alpha1 = 1.11604 N/m, Sxx(O) = 0.26238 

S (0) - S (Shell) 

Shell 1 
( 0.176896 
(-0.035569 
(-0.035569 

Shell 2 
( 0.229526 
( 0.000000 
( 0.000000 

Shell 3 
( 0.215993 
(-0.020181 
( 0.000000 

Shell 4 
( 0.235204 
(-0.006172 
(-0.006172 

Shell 5 
( 0.208666 
(-0.023814 
(-0.023814 

Shell 6 
( 0.245088 
( 0.000000 
( 0.000000 

-0.035569 -0.035569) 
0.176896 -0.035569) 

-0.035569 0.176896) 

0.000000 
0.189956 
0.000000 

-0.020181 
0.215993 
0.000000 

0.000000) 
0.000000) 
0.189956) 

0.000000) 
0.000000) 
0.232122) 

-0.006172 -0.006172) 
0.221110 -0.012092) 

-0.012092 0.221110) 

-0.023814 -0.023814) 
0.208666 -0.023814) 

-0.023814 0.208666) 

0.000000 
0.221920 
0.000000 

0.000000) 
0.000000) 
0.221920) 
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T (0) - T (Shell) 

( 0.09398 -0.03589 -0.03589) 
(-0.03589 0.09398 -0.03589) 
(-0.03589 -0.03589 0.09398) 

( 0.15866 
( 0.00000 
( 0.00000 

0.00000 
0.10140 
0.00000 

( 0.16596 -0.05950 
(-0.05950 0.16596 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.10140) 

0.00000) 
0.00000) 
0.16752) 

( 0.22418 -0.03213 -0.03213) 
(-0.03213 0.17544 -0.02484) 
(-0.03213 -0.02484 0.17544) 

( 0.17739 -0.05985 -0.05985) 
(-0.05985 0.17739 -0.05985) 
(-0.05985 -0.05985 0.17739) 

( 0.28601 
« 0 .00000 

0.00000 

0.00000 
0.19493 
0.00000 

0.00000) 
0.00000) 
0.19493) 



TABLES OF S- AND T-TENSORS FOR NA, K AND CS 

o 
Table 1.5: Converged S- and T-tensors for Na, a 4.288 A 

a I ph a 1 = 1. 067 7 5 N / m, S xx ( 0) = o. 26422 

S (0) - S (Shell) 

Shell 1 
( 0.178069 
(-0.035957 
(-0.035957 

Shell 2 
( 0.232231 
( 0.000000 
( 0.000000 

Shell 3 
( 0.217592 
(-0.020615 
( 0.000000 

Shell 4 
( 0.237369 
(-0.006131 
(-0.006131 

Shell 5 
( 0.209948 
(-0.024092 
(-0.024092 

Shell 6 
( 0.247119 
( 0.000000 
( 0.000000 

-0.035957 -0.035957) 
0.178069 -0.035957) 

-0.035957 0.178069) 

0.000000 
0.190985 
0.000000 

-0.020615 
0.217592 
0.000000 

0.000000) 
0.000000) 
0.190985) 

0.000000) 
0.000000) 
0.233841) 

-0.006131 -0.006131) 
0.222585 -0.012400) 

-0.012400 0.222585) 

-0.024092 -0.024092) 
0.209948 -0.024092) 

-0.024092 0.209948) 

0.000000 
0.223156 
0.000000 

0.000000) 
0.000000) 
0.223156) 
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T (0) - T (Shell) 

( 0.09627 -0.03695 -0.03695) 
(-0.03695 0.09627 -0.03695) 
(-0.03695 -0.03695 0.09627) 

( 0.16348 
( 0.00000 
( 0.00000 

0.00000 
0.10359 
0.00000 

( 0.17018 -0.06129 
(-0.06129 0.17018 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.10359) 

0.00000) 
0.00000) 
0.17158) 

( 0.23043 -0.03287 -0.03287) 
(-0.03287 0.17939 -0.02575) 
(-0.03287 -0.02575 0.17939) 

( 0.18136 -0.06153 -0.06153) 
(-0.06153 0.18136 -0.06153) 
(-0.06153 -0.06153 0.18136) 

( 0.29387 
( 0.00000 
( 0.00000 

0.00000 
0.19874 
0.00000 

0.00000) 
0.00000) 
0.19874) 



TABLES OF S- AND T-TENSORS FOR NA, K AND CS 

Table I.6: I) 

Converged S- and T-tensors for Na, a = 4.309 A 

alpha1 = 1.02996 N/m, Sxx(O) = 0.26588 

S (0) - S (Shell) 

Shell 1 
( 0.179121 
(-0.036307 
(-0.036307 

Shell 2 
( 0.234618 
( 0.000000 
( 0.000000 

Shell 3 
( 0.219032 
(-0.020999 
( 0.000000 

Shell 4 
( 0.239303 
(-0.006098 
(-0.006098 

Shell 5 
( 0.211104 
(-0.024346 
(-0.024346 

Shell 6 
( 0.248935 
( 0.000000 
( 0.000000 

-0.036307 -0.036307) 
0.179121 -0.036307) 

-0.036307 0.179121) 

0.000000 
0.191921 
0.000000 

-0.020999 
0.219032 
0.000000 

0.000.000) 
0.000000) 
0.191921) 

0.000000) 
0.000000) 
0.235393) 

-0.006098 -0.006098) 
0.223918 -0.012673) 

-0.012673 0.223918) 

-0.024346 -0.024346) 
0.211104 -0.024346) 

-0.024346 0.211104) 

0.000000 
0.224279 
0.000000 

0.000000) 
0.000000) 
0.224279) 
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T (0) - T (Shell) 

( 0.09838 -0.03792 -0.03792) 
(-0.03792 0.09838 -0.03792) 
(-0.03792 -0.03792 0.09838) 

( 0.16787 
( 0.00000 
( 0.00000 

0.00000 
0.10560 
0.00000 

( 0.17404 -0.06292 
(-0.06292 0.17404 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.10560) 

0.00000) 
0.00000) 
0.17533) 

( 0.23615 -0.03355 -0.03355) 
(-0.03355 0.18303 -0.02658) 
(-0.03355 -0.02658 0.18303) 

( 0.18501 -0.06306 -0.06306) 
(-0.06306 0.18501 -0.06306) 
(-0.06306 -0.06306 0.18501) 

( 0.30105 
( 0.00000 
( 0.00000 

0.00000 
0.20228 
0.00000 

0.00000) 
0.00000) 
0.20228) 
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D 
Table 1.7: Converged ·S- and T-tensors for K, a = 5.225 A 

alpha1 = 0.76797 N/m, Sxx(O) = 0.24730 

S (0) - S (Shell) 

Shell 1 
( 0.175436 
(-0.035098 
(-0.035098 

Shell 2 
( 0.226073 
( 0.000000 
( 0.000000 

Shell 3 
( 0.214008 
(-0.019633 
( 0.000000 

Shell 4 
( 0.232493 
(-0.006231 
(-0.006231 

Shell 5 
( 0.207082 
(-0.023482 
(-0.023482 

Shell 6 
( 0.242552 
( 0.000000 
( 0.000000 

-0.035098 -0.035098) 
0.175436 -0.035098) 

-0.035098 0.175436) 

0.000000 
0.188707 
0.000000 

-0.019633 
0.214008 
0.000000 

0.000000) 
0.000000) 
0.188707) 

0.000000) 
0.000000) 
0.230016) 

-0.006231 -0.006231) 
0.219300 -0.011706) 

-0.011706 0.219300) 

-0.023482 -0.023482) 
0.207082 -0.023482) 

-0.023482 0.207082) 

0.000000 
0.220415 
0.000000 

0.000000) 
0.000000) 
0.220415) 

- 69 -

T (0) - T (Shell) 

( 0.09121 -0.03460 -0.03460) 
(-0.03460 0.09121 -0.03460) 
(-0.03460 -0.03460 0.09121) 

( 0.15278 
( 0.00000 
( 0.00000 

0.00000 
0.09881 
0.00000 

( 0.16090 -0.05735 
(-0.05735 0.16090 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.09881) 

0.00000) 
0.00000) 
0.16267) 

( 0.21661 -0.03124 -0.03124) 
(-0.03124 0.17075 -0.02374) 
(-0.03124 -0.02374 0.17075) 

( 0.17265 -0.05784 -0.05784) 
(-0.05784 0.17265 -0.05784) 
(-0.05784 -0.05784 0.17265) 

( 0.27650 
( 0.00000 
( 0.00000 

0.00000 
0.19043 
0.00000 

0.00000) 
0.00000) 
0.19043) 
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Table 1.8: Converged S- and T-tensors for K, a = 5.261 A 

alpha1 = 0.73292 N/m, Sxx(O) = 0.24778 

S (0) - S (Shell) 

Shell 1 
( 0.168460 
(-0.032347 
(-0.032347 

Shell 2 
( 0.212132 
( 0.000000 
( 0.000000 

Shell 3 
( 0.204481 
(-0.016894 
( 0.000000 

Shell 4 
( 0.219797 
(-0.006151 
(-0.006151 

Shell 5 
( 0.198968 
(-0.021303 
(-0.021303 

Shell 6 
( 0.229728 
( 0.000000 
( 0.000000 

-0.032347 -0.032347) 
0.168460 -0.032347) 

-0.032347 0.168460) 

0.000000 
0.181534 
0.000000 

-0.016894 
0.204481 
0.000000 

0.000000) 
0.000000) 
0.181534) 

0.000000) 
0.000000) 
0.218683) 

-0.006151 -0.006151) 
0.209596 -0.010022) 

-0.010022 0.209596) 

-0.021303 -0.021303) 
0.198968 -0.021303) 

-0.021303 0.198968) 

0.000000 
0.211744 
0.000000 

0.000000) 
0.000000) 
0.211744) 

- 70 -

T (0) - T (Shell) 

( 0.07738 -0.02827 -0.02827) 
(-0.02827 0.07738 -0.02827) 
(-0.02827 -0.02827 0.07738) 

( 0.12563 
( 0.00000 
( 0.00000 

0.00000 
0.08470 
0.00000 

( 0.13484 -0.04577 
(-0.04577 0.13484 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.08470) 

0.00000) 
0.00000) 
0.13694) 

( 0.17847 -0.02565 -0.02565) 
(-0.02565 0.14457 -0.01852) 
(-0.02565 -0.01852 0.14457) 

( 0.14619 -0.04671 -0.04671) 
(-0.04671 0.14619 -0.04671) 
(-0.04671 -0.04671 0.14619) 

( 0.22700 
( 0.00000 
( 0.00000 

0.00000 
0.16297 
0.00000 

0.00000) 
0.00000) 
0.16297) 
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Table 1.9: Converged S- and T-tensors for K, a 5.277 A 

alpha1 0.71777 N/m, Sxx(O) 0.24800 

S (0) - S (Shell) 

Shell 1 
( 0.168651 
(-0.032399 
(-0.032399 

Shell 2 
( 0.212770 
( 0.000000 
( 0.000000 

Shell 3 
( 0.204727 
(-0.016993 
( 0.000000 

Shell 4 
( 0.220192 
(-0.006122 
(-0.006122 

Shell 5 
( 0.199140 
(-0.021327 
(-0.021327 

Shell 6 
( 0.230068 
( 0.000000 
( 0.000000 

-0.032399 -0.032399) 
0.168651 -0.032399) 

-0.032399 0.168651) 

0.000000 
0.181641 
0.000000 

-0.016993 
0.204727 
0.000000 

0.000000) 
0.000000) 
0.181641) 

0.000000) 
0.000000) 
0.218916) 

-0.006122 -0.006122) 
0.209786 -0.010088) 

-0.010088 0.209786) 

-0.021327 -0.021327) 
0.199140 -0.021327) 

-0.021327 0.199140) 

0.000000 
0.211867 
0.000000 

0.000000) 
0.000000) 
0.211867) 

- 71 -

T (0) - T (Shell) 

( 0.07767 -0.02842 -0.02842) 
(-0.02842 0.07767 -0.02842) 
(-0.02842 -0.02842 0.07767) 

(0.12639 0.00000 
(0.00000 0.08492 
(0.00000 0.00000 

( 0.13535 -0.04600 
(-0.04600 0.13535 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.08492) 

0.00000) 
0.00000) 
0.13738) 

( 0.17931 -0.02572 -0.02572) 
(-0.02572 0.14496 -0.01866) 
(-0.02572 -0.01866 0.14496) 

( 0.14659 -0.04690 -0.04690) 
(-0.04690 0.14659 -0.04690) 
(-0.04690 -0.04690 0.14659) 

( 0.22802 
( 0.00000 
( 0.00000 

0.00000 
0.16324 
0.00000 

0.00000) 
0.00000) 
0.16324) 
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Table 1.10: Converged S- and T-tensors for K, a = 5.305 A 

alpha1 = 0.69184 N/m, Sxx(O) = 0.24846 

S (0) - S (Shell) 

Shell 1 
( 0.169028 
(-0.032504 
(-0.032504 

Shell 2 
( 0.213967 
( 0.000000 
( 0.000000 

Shell 3 
( 0.205218 
(-0.017178 
( 0.000000 

Shell 4 
( 0.220957 
(-0.006073 
(-0.006073 

Shell 5 
( 0.199494 
(-0.021379 
(-0.021379 

Shell 6 
( 0.230734 
( 0.000000 
( 0.000000 

-0.032504 -0.032504) 
0.169028 -0.032504) 

-0.032504 0.169028) 

0.000000 
0.181871 
0.000000 

-0.017178 
0.205218 
0.000000 

0.000000) 
0.000000) 
0.181871) 

0.000000) 
0.000000) 
0.219388) 

-0.006073 -0.006073) 
0.210178 -0.010211) 

-0.010211 0.210178) 

-0.021379 -0.021379) 
0.199494 -0.021379) 

-0.021379 0.199494) 

0.000000 
0.212136 
0.000000 

0.000000) 
0.000000) 
0.212136) 

- 72 -

T (0) - T (Shell) 

( 0.07825 -0.02871 -0.02871) 
(-0.02871 0.07825 -0.02871) 
(-0.02871 -0.02871 0.07825) 

( 0.12785 
( 0.00000 
( 0.00000 

0.00000 
0.08538 
0.00000 

( 0.13639 -0.04647 
(-0.04647 0.13639 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.08538) 

0.00000) 
0.00000) 
0.13829) 

( 0.18097 -0.02585 -0.02585) 
(-0.02585 0.14576 -0.01892) 
(-0.02585 -0.01892 0.14576) 

( 0.14742 -0.04729 -0.04729) 
(-0.04729 0.14742 -0.04729) 
(-0.04729 -0.04729 0.14742) 

( 0.23004 
( 0.00000 
( 0.00000 

0.00000 
0.16384 
0.00000 

0.00000) 
0.00000) 
0.16384) 
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Table 1.11: ConvergedS- and T-tensors for K, a o 
5.343 A 

alphal = 0.65786 N/m, Sxx(O) = 0.24922 

S (0) - S (Shell) 

Shell 1 
( 0.169623 
(-0.032673 
(-0.032673 

Shell 2 
( 0.215746 
( 0.000000 
( 0.000000 

Shell 3 
( 0.205999 
(-0.017450 
( 0.000000 

Shell 4 
( 0.222135 
(-0.006007 
(-0.006007 

Shell 5 
( 0.200074 
(-0.021472 
(-0.021472 

Shell 6 
( 0.231770 
( 0.000000 
( 0.000000 

-0.032673 -0.032673) 
0.169623 -0.032673) 

-0.032673 0.169623) 

0.000000 
0.182267 
0.000000 

-0.017450 
0.205999 
0.000000 

0.000000) 
0.000000) 
0.182267) 

0.000000) 
0.000000) 
0.220152) 

-0.006007 -0.006007) 
0.210822 -0.010394) 

-0.010394 0.210822) 

-0.021472 -0.021472) 
0.200074 -0.021472) 

-0.021472 0.200074) 

0.000000 
0.212604 
0.000000 

0.000000) 
0.000000) 
0.212604) 

- 73 -

T (0) - T (Shell) 

( 0.07919 -0.02917 -0.02917) 
(-0.02917 0.07919 -0.02917) 
(-0.02917 -0.02917 0.07919) 

( 0.13011 
( 0.00000 
( 0.00000 

0.00000 
0.08615 
0.00000 

( 0.13805 -0.04719 
(-0.04719 0.13805 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.08615) 

0.00000) 
0.00000) 
0.13977) 

( 0.18359 -0.02608 -0.02608) 
(-0.02608 0.14710 -0.01932) 
(-0.02608 -0.01932 0.14710) 

( 0.14879 -0.04792 -0.04792) 
(-0.04792 0.14879 -0.04792) 
(-0.04792 -0.04792 0.14879) 

( 0.23324 
( 0.00000 
( 0.00000 

0.00000 
0.16492 
0.00000 

0.00000) 
0.00000) 
0.16492) 
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Table 1.12: Converged S- and T-tensors for Cs, a = 6.045 A 

alpha1 = 0.52402 N/m, Sxx(O) = 0.24442 

S (0) - S (Shell) 

Shell 1 
( 0.166459 
(-0.031577 
(-0.031577 

Shell 2 
( 0.207617 
( 0.000000 
( 0.000000 

Shell 3 
( 0.201792 
(-0.016014 
( 0.000000 

Shell 4 
( 0.216024 
(-0.006179 
(-0.006179 

Shell 5 
( 0.196714 
(-0.020727 
(-0.020727 

Shell 6 
( 0.225977 
( 0.000000 
( 0.000000 

-0.031577 -0.031577) 
0.166459 -0.031577) 

-0.031577 0.166459) 

0.000000 
0.179616 
0.000000 

-0.016014 
0.201792 
0.000000 

0.000000) 
0.000000) 
0.179616) 

0.000000) 
0.000000) 
0.215541) 

-0.006179 -0.006179) 
0.206924 -0.009507) 

-0.009507 0.206924) 

-0.020727 -0.020727) 
0.196714 -0.020727) 

-0.020727 0.196714) 

0.000000 
0.209429 
0.000000 

0.000000) 
0.000000) 
0.209429) 

- 74 -

T (0) - T (Shell) 

( 0.07378 -0.02659 -0.02659) 
(-0.02659 0.07378 -0.02659) 
(-0.02659 -0.02659 0.07378) 

( 0.11822 
( 0.00000 
( 0.00000 

0.00000 
0.08115 
0.00000 

( 0.12809 -0.04271 
(-0.04271 0.12809 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.08115) 

0.00000) 
0.00000) 
0.13042) 

( 0.16840 -0.02425 -0.02425) 
(-0.02425 0.13801 -0.01713) 
(-0.02425 -0.01713 0.13801) 

( 0.13951 -0.04385 -0.04385) 
(-0.04385 0.13951 -0.04385) 
(-0.04385 -0.04385 0.13951) 

( 0.21396 
( 0.00000 
( 0.00000 

0.00000 
0.15627 
0.00000 

0.00000) 
0.00000) 
0.15627) 
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Table 1.13: Converged S- and T-tensors for Cs, a = 6.069 A 

alpha1 0.51015 N/m, Sxx(O) = 0.24441 

S (0) - S (Shell) 

Shell 1 
( 0.166544 
(-0.031601 
(-0.031601 

Shell 2 
( 0.208187 
( 0.000000 
( 0.000000 

Shell 3 
( 0.201881 
(-0.016113 
( 0.000000 

Shell 4 
( 0.216272 
(-0.006134 
(-0.006134 

Shell 5 
( 0.196730 
(-0.020721 
(-0.020721 

Shell 6 
( 0.226155 
( 0.000000 
( 0.000000 

-0.031601 -0.031601) 
0.166544 -0.031601) 

-0.031601 0.166544) 

0.000000 
0.179588 
0.000000 

-0.016113 
0.201881 
0.000000 

0.000000) 
0.000000) 
0.179588) 

0.000000) 
0.000000) 
0.215609) 

-0.006134 -0.006134) 
0.206950 -0.009568) 

-0.009568 0.206950) 

-0.020721 -0.020721) 
0.196730 -0.020721) 

-0.020721 0.196730) 

0.000000 
0.209373 
0.000000 

0.000000) 
0.000000) 
0.209373) 

- 75 -

T (0) - T (Shell) 

( 0.07392 -0.02668 -0.02668) 
(-0.02668 0.07392 -0.02668) 
(-0.02668 -0.02668 0.07392) 

( 0.11877 
( 0.00000 
( 0.00000 

0.00000 
0.08120 
0.00000 

( 0.12831 -0.04285 
(-0.04285 0.12831 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.08120) 

0.00000) 
0.00000) 
0.13056) 

( 0.16886 -0.02424 -0.02424) 
(-0.02424 0.13806 -0.01723) 
(-0.02424 -0.01723 0.13806) 

( 0.13955 -0.04393 -0.04393) 
(-0.04393 0.13955 -0.04393) 
(-0.04393 -0.04393 0.13955) 

( 0.21448 
( 0.00000 
( 0.00000 

0.00000 
0.15612 
0.00000 

0.00000) 
0.00000) 
0.15612) 
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Table 1.14: Converged S- and T-tensors for Cs, a o 
6.092 A 

alpha1 = 0.49714 N/m, Sxx(O) = 0.24453 

S (0) - S (Shell) 

Shell 1 
( 0.166697 
(-0.031637 
(-0.031637 

Shell 2 
( 0.208840 
( 0.000000 
( 0.000000 

Shell 3 
( 0.202069 
(-0.016215 
( 0.000000 

Shell 4 
( 0.216622 
(-0.006095 
(-0.006095 

Shell 5 
( 0.196842 
(-0.020727 
(-0.020727 

Shell 6 
( 0.226438 
( 0.000000 
( 0.000000 

-0.031637 -0.031637) 
0.166697 -0.031637) 

-0.031637 0.166697) 

0.000000 
0.179631 
0.000000 

-0.016215 
0.202069 
0.000000 

0.000000) 
0.000000) 
0.179631) 

0.000000) 
0.000000) 
0.215768 ) 

-0.006095 -0.006095) 
0.207070 -0.009634) 

-0.009634 0.207070) 

-0.020727 -0.020727) 
0.196842 -0.020727) 

-0.020727 0.196842) 

0.000000 
0.209416 
0.000000 

0.000000) 
0.000000) 
0.209416) 

- 76 -

T (0) - T (Shell) 

( 0.07414 -0.02681 -0.02681) 
(-0.02681 0.07414 -0.02681) 
(-0.02681 -0.02681 0.07414) 

( 0.11944 
( 0.00000 
( 0.00000 

0.00000 
0.08132 
0.00000 

( 0.12868 -0.04303 
(-0.04303 0.12868 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.08132) 

0.00000) 
0.00000) 
0.13084) 

( 0.16952 -0.02427 -0.02427) 
(-0.02427 0.13826 -0.01735) 
(-0.02427 -0.01735 0.13826) 

( 0.13977 -0.04406 -0.04406) 
(-0.04406 0.13977 -0.04406) 
(-0.04406 -0.04406 0.13977) 

( 0.21526 
( 0.00000 
( 0.00000 

0.00000 
0.15616 
0.00000 

0.00000) 
0.00000) 
0.15616) 
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Table 1.15: Converged S- and T-tensors for Cs, a = 6.119 A 

alphal 0.48221 N/m, Sxx(O) 0.24472 

S (0) - S (Shell) 

Shell 1 
( 0.166901 
(-0.031688 
(-0.031688 

Shell 2 
( 0.209652 
( 0.000000 
( 0.000000 

Shell 3 
( 0.202325 
(-0.016340 
( 0.000000 

Shell 4 
( 0.217074 
(-0.006051 
(-0.006051 

Shell 5 
( 0.197002 
(-0.020741 
(-0.020741 

Shell 6 
( 0.226808 
( 0.000000 
( 0.000000 

-0.031688 -0.031688) 
0.166901 -0.031688) 

-0.031688 0.166901) 

0.000000 
0.179707 
0.000000 

-0.016340 
0.202325 
0.000000 

0.000000) 
0.000000) 
0.179707) 

0.000000) 
0.000000) 
0.215990) 

-0.006051 -0.006051) 
0.207244 -0.009716) 

-0.009716 0.207244) 

-0.020741 -0.020741) 
0.197002 -0.020741) 

-0.020741 0.197002) 

0.000000 
0.209497 
0.000000 

0.000000) 
0.000000) 
0.209497) 

- 77 -

T (0) - T (Shell) 

( 0.07443 -0.02697 -0.02697) 
(-0.02697 0.07443 -0.02697) 
(-0.02697 -0.02697 0.07443) 

( 0.12030 
( 0.00000 
( 0.00000 

0.00000 
0.08150 
0.00000 

( 0.12918 -0.04327 
(-0.04327 0.12918 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.08150) 

0.00000) 
0.00000) 
0.13124) 

( 0.17039 -0.02431 -0.02431) 
(-0.02431 0.13856 -0.01750) 
(-0.02431 -0.01750 0.13856) 

( 0.14009 -0.04424 -0.04424) 
(-0.04424 0.14009 -0.04424) 
(-0.04424 -0.04424 0.14009) 

( 0.21630 
( 0.00000 
( 0.00000 

0.00000 
0.15627 
0.00000 

0.00000) 
0.00000) 
0.15627) 
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Table 1.16: Converged S- and T-tensors for Cs, a = 6.163 A 

alphal = 0.45863 N/m, Sxx(O) = 0.24517 

S (0) - S (Shell) 

Shell 1 
( 0.167320 
(-0.031797 
(-0.031797 

Shell 2 
( 0.211132 
( 0.000000 
( 0.000000 

Shell 3 
( 0.202860 
(-0.016568 
( 0.000000 

Shell 4 
( 0.217957 
(-0.005980 
(-0.005980 

Shell 5 
( 0.197369 
(-0.020786 
(-0.020786 

Shell 6 
( 0.227553 
( 0.000000 
( 0.000000 

-0.031797 -0.031797) 
0.167320 -0.031797) 

-0.031797 0.167320) 

0.000000 
0.179920 
0.000000 

-0.016568 
0.202860 
0.000000 

0.000000) 
0.000000) 
0.179920) 

0.000000) 
0.000000) 
0.216483) 

-0.005980 -0.005980) 
0.207645 -0.009866) 

-0.009866 0.207645) 

-0.020786 -0.020786) 
0.197369 -0.020786) 

-0.020786 0.197369) 

0.000000 
0.209740 
0.000000 

0.000000) 
0.000000) 
0.209740) 

- 78 -

T (0) - T (Shell) 

( 0.07504 -0.02729 -0.02729) 
(-0.02729 0.07504 -0.02729) 
(-0.02729 -0.02729 0.07504) 

( 0.12195 
( 0.00000 
( 0.00000 

0.00000 
0.08194 
0.00000 

( 0.13026 -0.04376 
(-0.04376 0.13026 
(0.00000 0.00000 

0.00000) 
0.00000) 
0.08194) 

0.00000) 
0.00000) 
0.13214) 

( 0.17217 -0.02443 -0.02443) 
(-0.02443 0.13931 -0.01779) 
(-0.02443 -0.01779 0.13931) 

( 0.14087 -0.04463 -0.04463) 
(-0.04463 0.14087 -0.04463) 
(-0.04463 -0.04463 0.14087) 

( 0.21844 
( 0.00000 
( 0.00000 

0.00000 
0.15674 
0.00000 

0.00000) 
0.00000) 
0.15674) 



APPENDIX II 

SOME DETAILS OF THE MD PROGRAM 

This appendix describes some details of the MD program which 

are not essential for the understanding of the MD method or the 

computations done for this thesis, but are of interest for a 

potential user of MD. It also includes some details on 

verification of the program. 

11.1 Program Features 

The program was for the main part written in FORTRAN IV. 

However it was found that cpu usage can be reduced by 40 % on the 

B6700 if the procedure for computing the accelerations, which is 

the most time consuming part of the program, is coded in ALGOL. 
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SOME DETAILS OF THE MD PROGRAM 

11.1.1 Initialization Procedures 

The program can initialize a cubic box of particles forming 

an fcc or bcc lattice and supply them with normally distributed 

random velocities corresponding to some predefined temperature. 

After this initialization the total linear and angular momentum 

is eliminated. 

A table of the potential function can be generated (for 

Lennard-Jones potential) or read from a disk file. 

11.1.2 CHECKPOINT/RESTART Procedures 

An essential feature of the program is the ability to save 

its current status. This is done by writing all the program's 

data to a disk file (CHECKPOINT). In a later run of the program, 

this CHECKPOINT file can be read in to continue (RESTART) a 

simulation from the point at which the CHECKPOINT was done. This 

facility is important for several reasons: 

during the initial phase of reaching thermal equilibrium 

at a certain temperature, the simulation must be run for 

a while until the temperature is sufficiently stable. 

Then the velocities must be scaled to get closer to the 

desired temperature. This can generally not be done 

interactively because of the high time consumption. 

Storing all the relevant information on a disk file is 
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the only reasonable method to hand over the program's 

state from one batch job to the next. 

Even after equilibrium has been reached at the right 

temperature, the whole simulation cannot be done in a 

single batch job due to the limit of two hours cpu time 

per batch job on Brock's B6700. The simulation must 

therefore be broken up into several jobs, which is only 

possible with a CHECKPOINT/RESTART facility. 

The effort required to reach thermal equilibrium can be 

reduced dramatically if a new simulation does not have 

to start from scratch. The CHECKPOINT/RESTART feature 

together with internally representing all quantities in 

dimensionless units allowed for example to turn a 

simulation of Rb into one for K by just reading in a new 

potential table. The resulting K system was almost in 

equilibrium right from the beginning. 

An additional benefit of the CHECKPOINT/RESTART facility 

is that it allows to minimize losses of time due to 

computer system failures. To this end a CHECKPOINT is 

performed regularly during the simulation. If the 

system crashes, the simulation can be restarted from the 

last CHECKPOINT rather than from the begin of the job. 
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The program was set up as to perform a CHECKPOINT at regular 

intervals (approximately every 20 minutes of cpu time) and again 

before it terminates. It also inquires the maximum amount of cpu 

time it is allowed to use and compares this regularly with the 

time actually used. If the allotted time is about to be 

exhausted, the program terminates. 

The job control (WFL) was set up as to recognize this case 

and start a new job to continue the interrupted simulation. The 

WFL is also able to recover from most system crashes. This 

allowed to r~ simulations for days or even weeks without any 

human interference. 

11.1.3 Counting and Plotting Procedures 

Two procedures were introduced to give the user of the 

program some feeling of whether or not the simulation was on the 

right way. The first of these ('counting procedure') simply 

counts the number of particles in each conventional unit cell and 

prints the counts. The second procedure ('plotting procedure') 

transforms all particles' positions into one unit cell and 

produces a printer plot of the projections of these positions 

onto the three principal lattice planes (100), (110) and (111). 

This allows an optical check on how close the particles remain to 

their equilibrium positions and if the system still resembles a 

solid. 
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11.2 Computing Forces and Potential 

Since the potential function and its derivatives are given in 

form of a table, computing forces and potential requires to 

interpolate in this table. A second order Lagrange interpolation 

was chosen for this. 

11.3 Program Verification 

11.3.1 Harmonic Potential Tests 

One test of the MD program was to simulate a two particle 

system with a harmonic pair potential. The influence of the PBC 

was eliminated in this case by making the box much larger than 

the separation of the particles and the range of the potential. 

This reduced the system to a true two particle problem, which can 

easily be solved analytically for a harmonic potential. The 

simulated trajectories could then be compared directly with the 

analytical solutions. 

The harmonic potential allows a rigorous check of the 

interpolation. Since for a second order polynomial interpolation 

the interpolating function must be identical with the tabulated 

harmonical potential function, the results must be independent of 

the steplength of the table. This was verified. 
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11.3.2 Comparing with Results Reported for Rb 

As a further test one of the computation of MSD in Rb, 

• 
a = 5.739 A, reported by Shukla and Mountaint was repeated. For 

a temperature of 279 K their result can be written as 

«Ar)'-)/(a'l. T) ::: 5.832X.l0~5 /K. Our program produced for the same 

potential and almost the same temperature (271 K) the result 

«ar)l. )/(a" T) = 5.952xI0-s /K, which is about 2 % higher than 

Shukla and Mountain's. However we used a smaller time increment 

and integrated over a larger number of time steps. The resulting 

MSD tends to increase with decreasing time increment and 

increasing number of simulated time steps. This explains the 

small difference and our result is probably closer to the , true' 

val ue. 

t R. C. Shukla and R. D. Mountain, Phys. Rev. B, 25 (1982) 
3649 
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