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ABSTRACT 

AKITT, DAVID B. Meloidogyne incognita (nematode) parasitism of Lycopersicon 

esculentum (tomato) plants. Ethylene action in susceptible and resistant 

host responses. 

Involvement of ethylene in the etiology of tomato plants (Lycopersicon 

esculentum) infected with the root-knot nematode (Meloidogyne incognita) 

was investigated. Endogenous root concentrations of ethylene were not 

significantly different in uninfected resistant var. Anahu and susceptible 

var. Vendor plants. Exposure of resistant plants to high doses of infectious 

nematode larvae did not affect root ethylene concentrations during the 

subsequent 30 day period. The possibility that ethylene may be involved in 

the mechanism of resistance is therefore not supported by these experiments. 

In no experiments did ethylene concentrations in roots of susceptible plants 

increase significantly subsequent to ~ incognita infestation. This result 

is not consistent with the hypothesis in the literature which suggests that 

increased ethylene production accompanies gall formation. 

Growth of susceptible tomato plants was affected by ~ incognita 

infestation such that root weights increased (due to galling), stem heights 

decreased and top weights increased. The possibility that alterations in 

stem growth resulted from increased production of 'stress' ethylene is dis­

cussed. Growth of resistant plants was unaffected by exposure to high doses 

of ~ incognita and galls were never detected on the roots of these plants. 

Root ethane concentrations generally varied in parallel with root 

ethylene concentrations although ethane concentrations were without exception 

greater. In 4 of 6 experiments conducted ethane/ethylene ratios increased 

significantly with time. These results are discussed in the light of 

published data on the relationship between ethane and ethylene synthesis. 



The term infested is used throughout this thesis in reference to 

plants whose root systems had been exposed to nematodes and does not 

distinguish between the susceptible and resistant response. 
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1. INTRODUCTION 

The host-parasite interrelationship of root-knot nematodes on the roots 

of suitable host plants is a highly specialized and complex association. 

According to Mountain (1960a) the genera Heterodera and Heloidogyne are 

the most highly evolved plant parasitic nematodes as indicated by their 

advanced degree of morphological and physiological specialization. They 

are obligate parasites (Thorne 1961) with well defined physiologic and 

morphologic alterations in their hosts and may be considered pathogens 

(Mountain 1960b). Species of the genus Heloidogyne characteristically 

induce the formation of galls on host roots. These arise from intense 

mitotic activity of the parenchyma cells surrounding the parasite which 

usually lies in the vascular tissue. Also associated with Heloidogyne 

infestation is the formation of giant cells or syncytia which are large 

multinucleate cells of great metabolic activity about the head of the 

nematode and on which the parasite feeds. The morphologic and physiologic 

alterations are reviewed in detail in the next section. 

The highly specific nature of this host-parasite relationship has 

resulted in voluminous research aimed at explaining the etiology in 

biochemical terms. Considerable advances have been made in describing the 

changes in enzyme and hormone concentrations within the modified host cells. 

Investigations of the latter have centred around auxins, gibberellins and 

cytokinins. Recently, however, the hormone ethylene has been implicated 

in gall formation. Root-knot nematode infested plants often show signs of 

senescence including yellowing and abscission of leaves, stunting of stem 
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growth and epinasty (Christie, 1936, Orion and Minz 1969, Orion 1973). 

These symptoms can be induced in healthy tissue by exogenous ethylene 

application and are consequently believed to be due to ethylene production 

(Abeles 1973). Parenchyma cells of galls increase in width rather than 

length which is the reverse of normal development (Atkinson 1892 in 

Christie 1936, Dropkin and Nelson 1960, Owens and Specht 1964, Akitt 1975). 

Such lateral expansion of cells has been attributed to ethylene action 

(Burg and Burg 1966). Development of adventitious roots, a growth response 

attributed to ethylene action (Abeles 1973) has also been observed 

subsequent to Me~oidogyne infestations (Orion and Minz 1969). This evidence 

though circumstantial indicates that ethylene biosynthesis may be stimulated 

in root-knot nematode infested plants. 

Orion and Minz (1969) investigated the effect of 2-chloroethane 

phosphonic acid (ethrel) on the pathogenicity of Meloidogyne javanica 

infected tomato plants. This compound is readily hydrolyzed by plants to 

ethylene. Adventitious roots were formed and stem heights lessened in 

response to ethrel application to healthy plants or root-knot nematode 

infestation. After soil drench applications of ethrel to ~j§vanica 

infested plants, an increase in gall size to twice that of untreated 

infested plants was found. Histological examination revealed that the 

galls were not structurally altered and it was concluded that the increased 

size observed was a result of an increase in the proliferation of parenchyma 

cells. The authors hypothesized that ethylene influences the hyperplastic 

response and may be directly involved in the process of gall formation. 

Since this proposal was made, no information on ethylene contents of galled 

versus non-galled root tissues has been published. This study reports 
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directly the ethylene contents of infested and non-infested root systems. 

Resistemce of plants to certain bacterial and fungal pathogens has 

been linked to ethylene production (Sequira 1973). Stahmannet al. (1966) 

induced resistance in potato root tissue to black rot fungus (Ceratocystis 

fimbriata) by exposing the tissue to low concentrations (8 ppm) of 

ethylene. Clare and co-workers (1966) suspended normally susceptible 

potato root slices above root slices infested with C. fimbriata in a 

sealed container. After a 2-day incubation the uninfested susceptible 

slices were removed and subjected to the fungus but were found to be 

resistant. They concluded that the agent which conferred resistance must 

have been a volatile substance and further characterization identified 

the agent as ethylene. Thus evidence also exists that ethylene may be 

involved in resistant mechanisms of plants to certain pathogenic fungi. 

There is no information in the literature on the endogenous ethylene levels 

of root-knot nematode resistant and susceptible plants. Neither has there 

been published data on ethylene levels in resistent plants before and 

after exposure to root-knot nematode. It was therefore decided to 

investigate these proposals and establish whether ethylene is involved in 

plant resistance to root-knot nematodes. The host-parasite couple of 

Heloidogyne incognita and tomato plants was chosen. Detailed descriptions 

of the histopathology for this host-parasite pair are published and 

considerable biochemical information has been obtained with this particular 

combination of host and parasite. Orion and Hinz (1969) used Meloidogyne 

javanica and tomato plants in their investigations on the influence of 

ethrel on root-galling. 
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2. LITERATURE REVIEW 

LIFE HISTORY OF Meloidogyne 

More than 30 species of the genus Meloidogyne have been identified 

(Franklin 1971). The genus is placed in the family Heteroderidae, 

superfamily Tylenchoidea, order Tylenchida, class Secernentea of the phylum 

Nematoda. Eggs of Meloidogyne are elongate ovate bodies, twice as long as 

wide. They are laid in a gelatinous matrix, the egg sac, that protrudes 

from the posterior of the female usually at the surface of the root gall, 

but sometimes within it (Christie 1936). Numbers in the range of 200-500 

eggs per female are normally laid (Thorne 1971). Larvae develop within the 

egg assuming a long slender shape. The first larval moult occurs within the 

egg and infectious second stage larvae hatch. These make their way through 

the soil to a suitable location for penetration of a root. Penetration can 

occur at any point along the root but usually occurs just posterior to the 

apical meristem of a root tip (Christie 1936, Bird 1961). Penetration is 

effected by continual jabbing of the root cell wall with the nematode's 

stylet until a port for entry is opened. Meloidogyne larvae then make 

their way either to the provascular tissue of the elongation zone or 

vascular tissue in differentiated root tissues and become sessile. 

Infection counts in other tissues have been described for Meloidogyne, but 

are uncommon (Christie 1936). Shortly after assuming this position, cells 

begin to modify in response to the parasite and form characteristic giant 

cells (syncytia) around the head of the nematode. These are usually 4 to 7 

in number and provide a source of food for the nematode. Once they are 

established, the parasites grow rapidly, undergoing three moults while 

increasing in girth but not length. After the third moult, sexes are 

distinguishable. Males elongate, become coiled within their third cuticle 
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undergo a fourth moult, and then migrate out of the root to become free 

living in the soil. Females enlarge in girth, becoming dorso-ventrally 

flattened ovoid bodies embedded in a mass of gall tissue. The egg sac 

develops posteriorly and usually ruptures the plant cortex tissue to lie at 

the surface of the gall (Thorne 1961). 

Mechanism of Nematode Penetration and Infestation: 

Infectious Meloidogyne larvae locate host roots by a combination of 

random movement and host attraction via root exudates (Endo 1975). 

Nematodes are equipped with a neuro-sensory system and are thus influenced 

by their environment. Klinger (1965) concluded that root exudates can 

attract nematodes from distances of 1-2 cm identifying CO2 and certain 

amino acids as the attracting agents. Non-host plants (Endo 1975) and 

some resistant plants (Giebel 1974) lack attractive stimuli, their root 

exudates having no effect on the nematodes concerned. Most commonly 

nematodes are attracted to growing root tips where penetration is effected 

just posterior to the root cap (Thorne 1961, Bird 1961, Endo197l, Christie 

1936). Once an opening for penetration has been made, a number of larvae 

may enter through it (Thorne 1961. Bird 1961). Larvae migrate inter- or 

intracellularly, usually coming to rest with their heads in the central 

cylinder of vascular tissue (Christie 1936, Dropkin and Nelson 1960, Akitt 

1975). Cells on which the nematode first feeds by inserting its stylet 

and removing some of the contents soon modify to become syncytia (giant 

cells) (Endo 1975). Bird (1967) determined that pre-parasitic 

Meloidogyne javanica larvae had active sub-ventral salivary glands and 

an inactive dorsal gland while parasitic larvae activated the dorsal 

gland and the sub-ventral glands become inactive. 



Host Responses to Root-knot Nematodes 

Morphological Modification 

The host's morphological response to Meloidogyne infestation is 

complex. Major responses are twofold involving the production of giant 

cells or syncytia and the formation of galls. While the hyperplasia of 

tissues leading to gall formation is not essential for survival of the 

nematode, successful induction of syncytia are (Bird 1974). 

Formation of Galls 

15 

Galls originate from hyperplasia of parenchyma cells of the cortex, 

pericycle and endodermis (Christie 1936, Dropkin and Nelson 1960, Bird 

1961, Owens and Specht 1964, Littrell 1966, Huang 1966, Paulson and Webster 

1970). Cells around the parasite apparently retain their juvenile nature 

when infection is in the provascular tissu~ or differentiated tissues are 

induced to a juvenile condition which enables mitosis and gall formation 

to proceed (Christie 1936, Seinho,rst 1961, Farooq 1973). 

The first indications of galling is a hypertrophy of surrounding cells 

and a mitotic flare leading to gall formation follows. The time lapse 

required for these responses is somewhat variable but hypertrophy of vascular 

and corticular cells has been recorded 24 hours post-infestation (Christie 

1936). It is believed that unique stimuli prompt the host responses of 

syncytia and gall formation. The former is thought to be a result of 

nematode feeding while the latter probably originates from physical pressure 

exerted on surrounding cells by the growing nematode or by excreted 

chemicals (Owens and Specht 1964, Bird 1967). Cortex parenchyma cells of 

galls remain mononucleate and resemble normal cells in all characteristics 

but their size and shape (Owens and Specht 1964, Seinhorst 1961). 
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Development of abnormal xylem vessels within galls has been reported 

(Krusberg and Nielson 1958, Paulson and Webster 1970, Farooq 1973, 

Jatala and Jenson 1976). 

Formation of Syncytia (Giant Cells) 

One of the earliest host responses to Meloidogyne infection is a 

hypertrophyof cells immediately surrounding the head of the parasite. This 

is generally observed in vascular cells but has been observed in cortical 

cells (Christie 1936, Bird 1974, Akitt 1975). Dedifferentiation of the 

cytoplasm, a condition termed anaplasia, occurs immediately after the 

nematode first feeds on a cell and this is followed by marked hypertrophy 

of the nucleus (Owens and Specht 1964). Prior to the adult moult, mature 

giant cells (syncytia) are well established (Owens and Specht 1964). These 

are characterized by their large size, many and highly labulated nuclei, 

. dense granular cy;toplasm, secondarY cell wall thiokenings and a proliferation 

of cytoplasmic organelles (Webster 1975, Endo 1975). Controversy.· exists 

as to the origin of the multinucleate condition and large size of syncytia. 

Early work had established cell wall breakdown of adjoining cells and a 

concomitant coalescing of their contents gave rise to the large multinucleate 

syncytia (Christie 1936, Dropkin and Nelson 1960, Bird 1961, Owens and 

Specht 1964, Littrell 1966). Huang and Maggenti (1969a) however, after a 

detailed electron microscope study reported no evidence of cell wall 

dissolution in M. javanica induced syncytia of Vicia faba. In contrast 

they reported structures generally associated with cell wall thickening 

which they termed boundary formations. In a further study, Huang and 

Maggenti (1969b) determined that syncytia underwent synchronous mitosis 

resulting in chromosome numbers of 4, 8, 16, 32 and 64 n. They concluded 



17 

that syncytia are formed from a single cell by repeated synchronous mitosis 

without cytokinesis. Support for this hypothesis came from the investigations 

made by Paulson and Webster (1970) and Jones and Northcote (1972) who found 

no evidence of cell wall dissolution while also observing boundary formations. 

Bird (1972) made quantitative measurements of chromosome numbers in giant 

cells of tomato and bean plants and found numbers not consistent with the 

ploidy suggested by Huang and Maggenti. However, synchronous mitosis was 

reconfirmed in this work. Further, Bird (1973) observing 2 jJffl serial sections 

of bean syncytia found evidence of both cell wall breakdown and coalescing of 

cytoplasm. Recently Jatala and Jensen (1976) detected cell wall dissolution 

in the formation of Heloidogyne induced syncytia of Beta vulgaris. It is 

currently suggested that a combination of cell wall dissolution and coalescing 

of cytoplasm and nuclei as well as synchronous mitosis with the occasional 

fusion of nuclei or incomplete separation of chromosomes during mitosis gives 

rise to the multi-nucleated syncytia (Webster 1975, Bird 1974). 

BIOCHE~lICAL MODIFICATIONS INDUCED BY NEMATODE PARASITISM 

DNA synthesis in developing syncytia reaches a peak just prior to egg 

laying (Bird 1972). ~~A synthesis has been observed to increase concomitantly 

(Bird 1961, Rubenstein and Owens 1964). 

High concentrations of protein and amino acids have been detected in a 

variety of host syncytia (Krusberg 1963, Setty and Wheeler 1968, Giebel and 

Strobeicka 1974). Intense enzymic activity has been found in syncytia especially 

in the early stages of their development and in the vicinity of the nematode's 

stylet (Endo and Veech 1969, Veech and Endo 1969a, b). Halate, succinate, 

isocitrate and glucose-6-phosphate oxidoreductases; 6-phospho gluconate 

dehydrogenase and NP~ and NADP diaphorase activities were increased. As 



Figure 1. Longitudinal section through a young gall. The nematode (Ne) is 

located in the vascular tissue where it is surrounded by syncytia 

(GC). Note the multinucleate condition and dense granular 

cytoplasm of these cells. Hypertrophied cortex cells (HC) are 

seen and proliferation of parenchyma cells leading to gall 

formation has begun. (from Paulson and Webster 1970) 



'., ": .. '" 

• 

• 

\ 
Q) 

18 



19 

well, oxido reductase activity was increased in cells around the anal region 

of the nematode and the authors postulated a connection between excreted 

oxido reductases and the hyperplastic galling response of the host. Increased 

activities of alkaline phosphatase, acid phosphatase, esterase, peroxidase, 

adenosine triphosphatase and cytochrome oxidase were detected in syncytia 

only. Orion and Bronner (1973) found increased levels of invertase and 

amylase in giant cells and ~alls of tomato roots infected with ~ javanica. 

They postulated these were involved in the breakdown of starch to small 

sugars to feed the nematode or be used by the syncytia. It is generally 

accepted that these enzymes originate from the host in response to the 

parasite. However, Hussey and Sasser (1973) isolated a peroxidase in 

buccal exudates of M. incognita. Peroxidases are thought to be involved 

in the formation of lignin by plants, can act as catalysts in oxidation of 

proteins and amino acids and may be involved in the aerobic oxidation of 

indole acetic acid (IAA). All of these reactions may be involved in the 

formation of syncytia. 

CellulQse has been found in homogenates of entire nematodes (Reidel and 

Mai 1971, Dropkin 1963), but it is not clear whether this enzyme is involved 

in syncytia cell wall breakdown since this usually occurs at the end cell 

walls distal to the parasite (Endo 1975). The bulk of eosophageal gland 

exudates are reported to be histone-like proteins (Bird 1969), an 

interesting result considering the role of his tones in gene regulation. 

Thus root-knot nematode induced syncytia are highly specialized cells 

induced to develop from unspecialized cells by the parasite. That the 

initial trigger for their development comes from feeding and subsequent 

deposition of saliva within these cells is probable. It has been established 
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that mature syncytia are essential for the development and survival of the 

parasite and removal of the parasite results in degeneration of these 

structures (Bird 1962). Thus a perpetual stimulus is needed for their 

continuation. Syncytia have been termed transfer cells specialized for 

selective transfer of metabolites over a short distance, in this case 

providing food for the parasite (Bird 1975). ~1any host cell modifications 

in the formation of syncytia may involve changes in gene expression, which 

may be regulated by nematode secreted his tones or plant hormones. 

ROLE OF PLANT GROWTH HORMONES IN HOST RESPONSES 

Normal plant growth is regulated by the action of plant hormones. The 

likelihood that modifications in normal patterns of growth as a result of 

root-knot nematode infection are mediated by hormones has received much 

attention. Many of the changes that occur in the development of syncytia 

and galls mimic hormone action in healthy plants. Hypertrophy of cells in 

the vicinity of the infection site and their subsequent elongation and 

growth suggests the involvement of growth promoting auxins and 

gibberellins. Intense mitotic activity of cortex parenchyma resulting in 

galls may well involve cytokinens which are known to stimulate plant cell 

division. Auxins and gibberellins are known to have stimulatory effects on 

the synthesis and activities of enzymes. It has long been speculated that 

nematode interactions with endogenous plant hormones may trigger these 

changes in growth. 

ROLE OF AUXINS IN THE SUSCEPTIBLE RESPONSE 

Auxins are found in highest concentrations in meristematic tissues. 

They are often conjugated with other compounds (sugars, polysaccharides, 



Figure 2. Essential steps in stimulation of gall formation by nematodes. 

Each arrow represents an essential process for a successful 

host-parasite relationship. (from Orion 1973). 
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proteins and amino acids) in a physiologically inactive form (Bidwell 1974). 

Yu and Viglierchio (1964) determined endogenous levels of auxins in galls of 

tomato roots infested with three species of root-knot nematode, Meloidogyne 

papla M. incognita and M. javanica. They also determined auxin distributions 

in homogenates of the parasites themselves. Generally the number and type 

of auxin found in the galls correlated with the number and type found in the 

nematodes responsible for the galls. ~ hapla homogenates and gall prepar­

ations both contained indole acetic acid (IAA) , indole acetic acid ethyl 

ester (IAE) and indoacetonitri1e (IAN). M. javanica homogenates and galls 

contained lAA and IAN while those of M. incognita contained only indole 

butyric acid (IBA). Since only one variety of host plant, :was used (Pearson) 

they concluded that the nematode was responsible for the number and type of 

auxins produced in the affected tissues. Extrapolating this line of reason­

ing it could be postulated that the nematodes secreted auxins much the same 

as the gall-inducing insects do (Miles and Lloyd 19671~' Miles 1968). 

However, the suggestion that they were ingested subsequent to infestation 

(1Mountain 1960a) cannot be discounted. Sandstedt and Schuster (1966) 

determined that ~ incognita did not secrete cytokinins or auxins in tissue 

culture preparations and M. hapla exudates were also found to be devoid 

of auxins, gibberellins or cytokinins (Bird 1966). It is now well established 

that greater auxin concentrations are found in galls than uninfected root 

tissues (Balasubramanian and Rangaswami 1962, Bird 1962, ,riglierchio and 

Yu 196\ Brueske and Bergeson 1972). 

The question arises as to the source of these auxins. The first 

possibility is that nematodes secrete proteases and glycosidases (or in some 

way trigger their activity) and these release free auxins from conjugates 
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with amino acids or sugars. Further, the hydrolysis of proteins would 

supply the necessary tryptophan for subsequent increased synthesis of auxins 

(Giebel 1974). Conversely it has been suggested that auxins originate in 

the nematodes as detoxification products and that these are subsequently 

excreted into the host by the parasite (Viglierchio 1971). This would account 

for the correlation of number and types of auxins found in nematodes and 

their respective galls. However, auxin effects would be expected in cells 

around the anal region and syncytia are formed only around the nematodes head 

in cells on which it has fed. This would not however preclude a possible 

role of auxins in the hyperplastic galling response. Transfer of auxins 

from nematode to host has not been observed (Viglierchio 1971). 

Amino acids occur in greater concentrations in galls than healthy host 

root tissue (Owens and Specht 1966, Owens and Rubenstein 1966). These may 

be of nematode origin (Lee 1965) or may arise through the release and/or 

activation of proteolytic enzymes (Endo and Veech 1969). Favoured pathways 

of lAA synthesis in plants convert tryptophan via tryptamine, indole 

pyruvic acid or indole acetonitrile to lAA. Presumably auxin synthesis would 

increase as a response to the increase of available substrate as has been 

observed for microorganisms (Hatsuyama and Hisawi 1963). 

Orion (1973) found no influence on root-knot nematode development or 

host gall structure with exogenous application of alar B-9 an auxin inhibitor. 

Exogenous application of the auxin naphthalene acetic acid (NAA) did not aid 

nematode development in tissue cultures where they developed slowly or not 

at all. NAA applications to susceptible tomatoes infested with }1. ;ncognita 

had no effect on the degree of infestation or host response (Sahney and 

Webster 1975). Applications of NAA and cytokinins together to root-knot 

nematode infested plants or tissue cultures resulted in increased severity 
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of infection (Dropkin et al. 1969, Kochba and Samish 1971) or aided the 

development of nematodes to maturity through the necessary initiation of 

syncytia in tissue cultures (Sandstedt and Schuster 1966). Omission of 

one 0" the other hormone resulted in no syncytia formation and the 

nematodes failed to develop. 

Tobacco pith cells in tissue cultures were observed to undergo cell 

expansion and mitosis without cytokinesis, resulting in large multinucleated 

cells when IAA was supplied to the medium and kinetin withheld. Addition 

of kinetin prompted cytokinesis and normal cell divisions (Naylor et al. 

1954). In the natural condition plants apparently need both hormones for 

normal cell divisions. The response of cultured tobacco cells to IAA in 

the absence of kinetin is similar to that observed in the formation of 

nematode induced syncytia and it is tempting to speculate that a similar 

mechanism may be involved. 

BIOCHEHICAL AND HORMONAL HODIFICATIONS ASSOCIATED l-JITH RESISTANCE. 

A full understanding of hormonal and biochemical actions mediating the 

susceptible response can only be obtained by examining these relationships 

in the resistant response. Mechanisms of resistance to root-knot nematode 

infection can be grouped into four categories: 

(1) The plant produces toxic substances which kill the parasite (Uhlenbroek 

and Bij100 1959), 

(2) Root exudates do not attract the nematode species concerned (Jata1a 

and Russell 1972), 

(3) Substances essential to the development of the nematode within the host 

roots are absent or present in insufficient amounts O.;rebster 1969), 
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(4) Infested p1ant tissues undergo a hypersensitive response which isolates 

the parasitic larva in necrotic cells resulting in severely delayed nematode 

development or more commonly its death (Hung and Rohde 1973). 

It has been reported for some plants resistant to root-knot nematodes, 

that the larvae are unable to initiate essential host responses and migrate 

out of the tissue to seek a new host (Reynolds et al. 1970). In other cases 

nematode development is retarded and greater numbers of males develop 

which leave the roots to become free-living (Fossuliotus, !:..!:. al. 1970). 

Poor syncytia development has been correlated with this shift in the sex 

ratio (TriaritQphyllou 1973). Commonly the host undergoes a hypersensitive 

response (RR) to isolate the pathogen and usually kill it. Paulson and 

Webster (1972) examined changes in ultrastructure during the HR of 

resistant tomatoes (var. Nematex) to M. incognit~. Necrosis of the cells 

immediately surrounding the parasite occurred through the breakdown of 

cytoplasm and cell membranes. They suggested that only cells in which the 

nematode had fed and deposited saliv.ary secretions underwent the HR. It 

was proposed that plant lysosomes were released in response to nematode 

secretions 8-12 hours after penetration and these prevented the massive 

selective transport of solutes necessary for syncytia formation. In the 

absence of syncytia the nematodes starved. 

Hypersensitive responses to root-knot nematodes in various other 

resistant hosts involved initiation of syncytia formatio~ however 

by day 4 post-infestation these began to degenerate being characterized at 

day 7 with extensive cell wall thickenings (Riggs et al. 1973, Chang et al. 

1973, Hebster 1975). Riggs et al. (1973) proposed extensive cell wall 

thickening and lignification sealed off plasmodesmata and selective solute 

transport was inhibited. 
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PHENOLS AND RESISTANCE 

Singh and Choudhury (1973) found a direct correlation of phenol levels 

to ~1eloidogyne resistance in tomato plants where the most resistant plants 

had greatest amounts of total phenols and susceptible plants the least. 

Other researchers have substantiated these findings in a variety of plant­

nematode associations (Hung and Rohde 1973, Pitcher et al. 1960, Brueske and 

Dropkin 1973, Giebel 1970). Plant phenols occur naturally as physiologically 

inactive glycosides (Giebel 1970). Meloidogyne eosophagea1 secretions may 

contain S-glucosidases capable of hydrolyzing phenol glycosides to free 

phenols {Bird 1969). Pratylenchus penetrans, a nematode parasitic in this 

case on peach roots, secreted S-glucosidases which hydrolysed amygdaline 

to hydrocyanic acid and benzaldehyde. These products were toxic to the 

parasite resulting in its death and a browning of the host tissues about 

the infection count occurred (Mountain and Patrick 1959). 

Giebel ~ al. (1966) established that S-glucosidase introduced into 

potato roots with a micropipette caused necrosis in resistant plants and 

giant cells in susceptible plants. S-glucosidase and S-galactosidase 

activities were detected in Heterodera rostochiensis (same family as 

Meloidogyne) while only S-glucosidase activity was found in ~ pa1lida. 

The nematodes had different pathogenicities on the same host (potato) 

which was directly proportional to the S-glucosidase activity of their 

saliva (Wilski and Giebel 1966). lAA, kinetin, phenols and aglucones 

were determined to be produced as a result of S-glucosidase activity 

(Giebel et a1. 1971). These products were more abundant in necrotic cells 

than in syncytia. Aglucones are inhibitors or cofactors for per oxidase 

which can influence lAA-oxidase activity. Polyphenols have been found to 



27 

enhance the influence of IAA while monopheno1s are antagonistic 

(Tomaszewiski and Thimann 1966). Root extracts of Solanaceaewhich were 

susceptible to ~ rostochiensis had low ratios of monopheno1s to po1ypheno1s 

whereas resistant root extracts had high monopheno1 to po1ypheno1 ratios 

(Giebel 1970). Introduction of a phenol fraction from resistant plants to 

susceptible plants resulted in a shift to resistance of the formerly 

susceptible plants. The reverse process was also observed (Wi1ski and 

Giebel 1972). The authors propose that phenols affect the activity of 

IAA-oxidase so that a low ratio of monopheno1s to po1ypheno1s inhibited 

IAA-oxidase and a susceptible response occurred since IAA concentration 

could increase. Conversely it was proposed that a high monopheno1 to po1y­

phenol ratio established resistance by increasing IAA-oxidase activity and 

the subsequent breakdown of IAA. Wi1ski and Giebel (1971) determined IAA­

oxidase activity in resistant potato roots was 22% greater than in roots 

susceptible to ~ rostochiensis. The process of cell wall thickening and 

IAA-stimu1ated growth are mutually exclusive since only c~lls with 

primary walls can grow (Siegel 1953). It was postulated that high IAA­

oxidase activity associated with resistance enabled lignification to proceed 

(Giebel1974). 

Giebel (1973) found elevated activities of the deaminases, phenyl­

alanine ammonia-lyase and tyrosine ammonia-lyase in roots of res~ant 

compared to susceptible potatoes. The products of these enzymes are 

cinnamic acid and p-coumaric acid respectively, both of which are lignin 

precursors and IAA-oxidase cofactors. Introduction of these acids to 

susceptible potato roots resulted in resistance to H. rostochiensis. 
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Roots of susceptible and resistant Solanaceae varieties had proline 

to hydroxyproline ratios of 1.59-2.11 and 2.20-2.54 respectively (Giebel 

and Strobiecka 1974). Subsequent Heterodera rostochiensis infestation 

increased this ratio to 2.30-2.36 in susceptible varieties while it was 

reduced to 0.93-1.23 in resistant varieties. Hydroxyproline is known to 

inhibit IAA-stimulated Avena coleoptile elongation and this may be reversed 

by proline (Cleland 1967). It may be that the relative amounts of proline 

and hydroxyproline interact with auxin to affect the host pathogenicity. 

These suggestions are shown schematically in Figure 3. 

OTHER HORMONES IN THE SUSCEPTIBLE AND RESISTANT HOST RESPONSES 

It was noted previously in this review that exogenous application of 

cytokininsand auxins together increased root-knot nematode susceptibility 

while applications of either separately had no effect (Sawhney and Webster 

1975, Sandstedt and Schuster 1966, Dropkin et al. 1969) In contrast, 

resistance to ~ javanica in peach roots was lessened by NAA and kinetin 

either applied together or individually (Kochba and Samish 1971). Dropkin 

and co-workers (1969) observed a reversal of resistance in tomato plants 

(var. Nemared) to!h inco8nita infestation with exogenous applications of 

four different cytokinins. In resistant plants prior to 0.8 ~M kinetin 

application 40% of the nematode larvae in contact with the roots developed 

to maturity. Subsequent to hormone application, this increased to 57%. 

Necrosis of roots which coincided with death of the nematode was reduced 

from 88% to 31% and gall formation increased from 29% to 65% of total 

root weight:. Exogenous application of IAA, gibberellic acid, adenine, 

guanine, thymine, cytidine and 6-methylamino purine had no effect. 



Figure 3. Schematic representation of the hypothetical central role of 

auxins in plant response to root-knot nematodes (from Giebel 

1974). 
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However, Sawhney and Webster (1975) repeated this experiment (Le., 

~ incognita on Nemared ~ tomato) and found that only NAA and kinetin 

when applied together reduced resistance, and that individual applications 

had no effect. Further they concluded that resistance was only partially 

broken by this treatment and assumed other factors must also be involved 

in the resistant mechanism. It may be that slightly different types of 

resistance are involved in peach and tomato since pea'ch resistance has been 

shown to involve incomplete syncytia development while Nemared ~ 

tomato undergo a HR. Kinetin lessens the browning response of resistant 

tissue while not affecting the HR of necrotic cells about the parasite 

(l\febster 1974) and thus may be able to reverse resistance alone where the 

HR is not part of the resistant mechanism. 

Peach roots resistant to H. jav;!inica had lower levels of cytokintns 

and auxins than susceptible roots (Kochha and Samish 1972). Orion (1973) 

found exogenous applications of theanticytokinin agent, chlorfluorenal, 

inhibited syncytia formation and consequently drastically reduced nematode 

development. It appears from these results that auxins and cytokinins play 

an important role in determining a successful host-parasite association. 

Brueske and Bergeson (1972) extracted gibberellin and cytokinin activities 

from nematode induced gall tissues and xylem exudates. Bioassays indicated 

that gibberellin activ~.es of gall tissues were decreased in three out of 

four different fractions. This result is inconsistent with that of Orion. 

Cytokinin activity of gall tissue was also decreased relative to healthy 

root tissues. Xylem exudates increased in gibberellic acid activities of 

acidic fractions while gibberellic acid activity of neutral fractions 

decreased subsequent to nematode infestation. Cytokinin activities of 
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xylem exudates of infested plants also decreased. The authors postulated 

that Meloidogyne incognita infestation altered the translocation process of 

gibberellic acids and depressed the synthesis of these and cytokinins in 

gall tissue. 

A decrease in photosynthesis has been observed in root-knot nematode 

infested plants (Loveys and Bird 1973, Bird 1974). Pruning of control and 

infested plants to remove leaves resulted in increased photosynthetic rates 

of remaining leaves while little or no change was observed in leaves of 

infested plants (Loveys and Bird 1973). The response observed in control 

plants has been well documented and is believed to arise from increases of 

growth factors translocated from the roots (Bird 1964). Inhibition of 

photosynthesis in response to nematode infestation may constitute further 

evidence for interference of the root translocation process by the parasite. 

Orion and Minz (1968) reported that (2-chloroethyl)trimethylammonium 

chloride (eee) , an antigibberellin agent doubled the size of galls when 

applied exogenously over a two month period. However, similar applications 

of gibberellic acid had no effect on gall size, a result found in other 

laboratories also (Peacock 1960). Later, Orion (1973) reported that 

another antigibberellin agent, phosphon D, severely inhibited development 

of H. ~nica on tomato roots. 

It should be stressed that simply applying growth promoting or 

inhibiting agents to plants can have a multitude of effects on overall 

plant metabolism. One must use caution in interpreting the results 

obtained by those methods. Applications of antigibberellin agents, for 

example, should affect plant growth by blocking all metabolic processes 

under gibberellic acid control. The effects on host plant metabolism would 
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be far reaching. An isolated aspect of plant metabolism altered by such 

methods cannot be attributed to blockage of gibberellic acid. The observed 

effect may actually be a secondary or lower order response. In addition, 

direct measurements of the influence of these agents on hormone levels 

should be made before any interpretation of results. 

ETHYLENE 1. REGULATION OF PLANT GROvITH BY ETHYLENE 

Ethylene has varied and sometimes opposing effects on plant development 

when applied to a variety of tissues. The classical 'triple response' of 

etiolated pea seedlings was long used as an ethylene bioassay. Seedlings 

when grown in dark for 7 days are long, straight and slender with a 

recurved apical hook. Exogenous applications of ethylene results in an 

inhibition of longitudinal extension while lateral expansion is observed 

most especially immediately posterior to the apical bud. Seedlings are also 

marked by a loss of their normal response to gravity (Galston and Davies 

1970). The extent of these responses is directly proportional to the 

amount of ethylene to which the seedlings are exposed, enabling this system 

to be used as a bioassay. The limitations of this are many however, not the 

least of which is the time needed for growing the seedlings (7 days). 

Root growth is inhibited, root hairs proliferate and the roots become 

ageotropic when ethylene is applied exogenously (Chadwick and Burg 1967, 

Appelbaum and Burg 1972a,b). Induction of roots from leaves and stems as 

well as from preexisting roots has been attributed to ethylene action 

(Abeles 1973). Ethylene is involved in breaking the dormancy of seeds 

(Toole et al. 1964), tubef$, bulbs and buds (Abeles 1973). Etiolation, the 

growth response of seedlings grown in the dark, is apparently regulated by 

ethylene. Epinasty, a downward bending of the leaves caused by expansion 
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of cells on the upper surface of the petiole, is an ethylene mediated 

plant growth response. Other plant growth responses involving ethylene 

action include fruit ripening and the climacteric, inhibition of flowering, 

hypertrophy of the cortex and other tissues, leaf s,enescence and abscission. 

As well, ethylene production increases in plants subsequent to stress (i.e., 

mechanical damage) and has been implicated in promoting disease resistance 

of some plants to certain pathogens (see introduction, Sequira 1973, Abeles 

1973) . 

Inhibition of growth by ethylene has been attributed to a retardation 

of mitosis in meristematic tissue of roots, shoots and buds (Apelbaum and 

Burg 1972a,b). Auxin applied exogenously also retards growth in a similar 

fashion and it is now established that this is at least partly due to auxin 

induced ethylene productivities (Vlebster and Davidson 1967). The inhibitory 

effects of ethylene and auxin (probably through auxin stimulated ethylene 

synthesis) on the mitotic process of meristematic tissues can be reversed 

by the application of cy~~kinin (Burg and Burg 1967, 1968, Wickson and 

Thimann 1958). It is enticing to predict that higher plants control apical 

dominance through the correlative amounts of these three hormones in the 

buds but this has not been unequivocally proven. The issue is confused in 

that ethylene while known to inhibit mitosis in meristematic tissue was 

also observed to break dormancy and apical dominance (Kang and Burg 1972). 

Increased ethylene production in non-dormant versus dormant seeds and an 

increase in ethylene evolved just prior to germination have been observed 

(Esashi~Ad Leopold 1970). 

Although stem elongation of dicotyledons is inhibited by ethylene, 

monocotyledons, have shown ethylene stimulated growth (Abeles 1973). 
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Imaseki and Pjon (1970) determined that ethylene did not affect growth 

of rice coleoptiles alone but had an enhancing effect on auxin stimulated 

growth. Such effects of ethylene on auxin action have been reported in the 

induction of adventitious roots as well (Krishnamoorthy 1970). 

Lateral swelling of cells to ethylene is well documented (Abeles 1973). 

Associated with this swelling in etiolated pea seedlings is a retardation 

of differentiation (Apelbaum and Burg 1972a). In addition, lignification 

processes are concurrently inhibited (Apelbaum!:! al. 1972). These actions 

produce hypertrophied cells and it is tempting to associate this action of 

ethylene to the hypertrophy of cells encountered shortly after root-knot 

nematode penetration of host tissues. However, there is no experimental 

confirmation of this suggestion. 

Cellulose micro fibrils are normally deposited transversely in the cell 

wall, an orientation which limits lateral expansion and favours longitudinal 

extension. Ethylene disrupts this condition so that the cellulose micro­

fibrils are laid down longitudinally and lateral expansion is preferred 

while extension is limited (Eisinger and Burg 1972). Excess auxin concen­

trations result in the same phenomenon as a result of auxin induced ethylene 

synthesis (Chadwick and Burg 1970). 

Epinasty is thought to be a result of auxin-induced cell overgrowth 

of the upper basal cells of the petiole causing the leaf to bend downward 

(Palmer 1972). Lyon (1970) determined that ethylene inhibited gravity 

dependent lateral transport of auxin in petioles. Clinostat studies 

determined that in the presence of ethylene excess auxin was delivered to 

the upper side of leaves. It was proposed that ethylene blocked gravity 

dependent transport of auxin to the lower side of the leaf. Similarly 

ethylene inhibited geotropic curving. of roots (Chadwick and Burg 1966) 
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and phototropism of stems of mustard, radish and pea seedlings (Burg and 

Burg 1966). Burg and Burg (1966) investigated ethylene effects on the 

transport of [ 14C]indo1eacetic acid in pea seedlings and corn co1eopti1es. 

It was established that the lateral auxin transport system was essential 

for the normal geotropic responses of pea seedlings laid on their sides 

(i.e., stems curve upwards and roots down) and that ethylene inhibited these 

responses. The evidence strongly supports the theory that ethylene interferes 

with the lateral auxin transport system resulting in a loss of tropic 

sensitivity to gravity and light. 

2. 11ECHANISH OF ETHYLENE ACTION 

Analogue studies have revealed that molecules with ethylene action have 

a terminal carbon adjacent to a double bond (Burg and Burg 1967). 

Biological activity is directly proportional to the ability of analogues 

to bind metals and it was suggested that ethylene binds to a receptor 

molecule at a metal containing active site with a ~ = 6 x 10-10 M (Burg 

and Burg 1967). The bond is non-covalent since no exchange of deuterium 

takes place when deuterated ethylene is used (Beyer 1972). This result was 

substantiated by the observation that most ethylene induced responses are 

readily reversible (Gals ton and Davies 1970). Carbon dioxide is a competitive 

inhibitor of ethylene action (Chadwick and Burg 1967). 

3. BIOSYNTHESIS OF ETHYLENE 

It is generally accepted that methionine is the in vivo precursor of 

ethylene (Abeles 1973). Burg and Clagett (1967) followed the conversion of 

14C-methionine to ethylene. They determined carbons 3 and 4 were released 

as ethylene, carbon 1 as C02, carbon 2 as formate and the S-methy1 was 
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widely distributed and metabolized 

The process is aerobic with a wide range of p02 reported, however, 

these discrepancies have been expl,ained as due to liquid phase shifts 

encountered when tissues are incubated in liquid medium. Dry apple discs 

flushed with N2 immediately stopped ethylene production while those floated 

on buffer solutions produced ethylene for an hour after N2 had been bubbled 

through the solution (Imaseki and Burg 1972). The ~ was 20% 02 for tissue 

treated this way but by omitting the liquid phase (i.e., apple discs in 

air), a Km of 0.2% 02 for ethylene production was found. This high affinity 

for 02 indicates that cytochrome oxidase and the respiratory electron 

transport system was involved and not an oxidase specific for ethylene 

synthesis. The decarboxylation is an oxidative process closely related to 

the evolution of ethylene as determined by inhibitor studies (Baur et al. 

1971). That respiratory poisons inhibit in vivo ethylene production lead 

Burg (1973) to propose the existence of a high energy intermediate. Further 

it was proposed that this might be S-adenosyl methionine as large quantities 

of it were obtained from 14C- methionine fed apple discs as were the known 

products of ethylene synthesis from methionine (Burg and Clagett 1967). 

The site for ethylene synthesis in the cell appears to be either the 

mitochondria (Heheriuk and Spencer 1964, 1967a,b) or the chloroplast 
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(Elstner et al. 1976). In vitro model systems producing ethylene from 

methionine and especially its derivative methional in the presence of Cu+ 

and peroxide have been reported (Lieberman et al. 1966). The methionine 

analogue 2-keto-4-methylthiobutyrate (KHBA) can be degraded in vitro by 

peroxidase in the presence of Mn2+ or peroxide, pyridoxal-phosphate and a 

monophenol. Ethylene is formed from carbons 1 and 2 and the S-methyl 

portion is turned into dimethyl mercaptan (Ku ~ al. 1969). A transaminase 

which converts methionine to its 2-keto derivative K}fBA has been observed 

(Durham ~ al. 1972). A problem arises in that the in vitro system 

produced ethylene from carbons 1 and 2 while the reported in vivo production 

of ethylene is from carbons 3 and 4 of methionine (Burg and Clagett 1967). 

However, if peroxidase is the enzyme involved in ethylene biosynthesis the 

autocatalytic activity of ethylene synthesis may be explained in that 

peroxidase enzyme production is induced by ethylene action (Imaseki 1970). 

The production of phenols in response to ethylene is well documented 

(Sequira 1973) and these are involved in the mechanisms of disease 

resistance, fruit ripening and senescence (Abeles 1973). Some isozymes of 

peroxidase produce ethylene more readily than others and since auxin 

stimulates production of some of these isoperoxidases it has been suggested 

that this may be the mechanism by which auxin stimulates ethylene production 

(Galston and Davies 1970). 

A model system has been developed by Elstner ~ al. (1976) whereby 

chlorophyll free extracts from sugar beet leaves were stimulated to produce 

superoxide free radical ion from 3-hydroxytyxosine in illuminated chloro­

plast lamellae. The superoxide free radical ion was determined to be a 



prerequisite for ethylene formation from methional and was dependent 

upon a lamellar phenol oxidase and a photosynthetic electron transport 

1 electron donor. It was suggested that this system may be the in vivo 

ethylene synthetic mechanism induced by wounding of plant tissues. 

38 
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3. MATERIALS 

3-1. Biological Materials 

Seeds of tomato, Lycopersicon esculentum variety Vendor, Tiny Tim, 

and Glamour, were purchased from Stokes Seeds Limited, St. Catharines, 

Ontario. Tomato seeds of variety Anahu were supplied by the Horticulture 

Experiment Station of the Ontario Ministry of Agriculture and Food, Simcoe, 

Ontario. Root-knot nematodes, Meloidogyne incognita were obtained from the 

Canada Department of Agriculture Research Station, Vineland Station, Ontario. 

3-2. Chemicals 

All commercial chemicals were purchased from BDH (Canada) Ltd. or 

Fisher Scientific Company, New Jersey, U.S.A. and were of analytical grade. 

The following are notable exceptions and specialty products: 

Union Carbide Canada Limited, Toronto 

(b) ethylene (C2H4) C.P. Grade Union Carbide Canada Limited, Toronto 

(c) hydrogen (H2) prepurified Union Carbide Canada Limited, Toronto 

(d) nitrogen (N2 ) prepurified Union Carbide Canada Limited, Toronto 

(e) Indicarb 10-20 mesh (C02 absorber) 

Fisher Scientific Co., New Jersey, U.S.A. 

o 
(f) Holecular Sieves Type 4A (1. 6 mm pellets) 

Fisher Scientific Co., New Jersey, U.S.A. 

(g) Silica Gel (100 mesh) Fisher Scientific Co., New Jersey, U.S.A. 

(h) Polyoxyethylene sorbitan monolaurate (Tween 20) 

Sigma Chemical Co., St. Louis, Mo., U.S.A. 

(i) Rubber '0' rings (0.64 cm diameter) 

Chromatographic Specialities Ltd., Brockville, 

Ontario. 
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(j) Rubber septa (0.64 em diameter) 

Chromatographic Specialities Ltd., 

Brockvi11e, Ontario. 

(k) Stopcock grease-silicone lubricant 

Dow-Corning Company Limited, 

·Mid1and, Michigan, U. S. A. 

(1) Vermiculite (industrial number 4 grade--fine) 

Ball Superior Ltd., Mississauga, Ontario 

(m) No-Damp Fungicide (oxine benzoate 2.5%) 

Plant Products Co. Ltd., Brama1ea, Ontario 

(n) Greenhouse Dibrom Insecticide (na1id 36%) 

Chevron Chemical Canada Ltd., 

Ortho Division, Burlington, Ontario 

(0) Lindane 25 W.P. Insecticide Chevron Chemical Canada Ltd., 

Ortho Division, Burlington, Ontario 

(p) Ma1athione 50 Insecticide Chevron Chemical Canada Ltd., 

Ortho Division, Burlington, Ontario 

(q) Meta-Systox R (oxydeneton-methy1 25%) 

Chevron Chemical Canada Ltd. , 

Ortho Division, Burlington, Ontario 

3-3. Reagents 

Mercuric perchlorate solution 

40 m1 distilled water and 210 m1 60% perch10ric acid were added to a 

large glass mortar. 54.2 grams of red mercuric oxide were added slowly 

while grinding with the pestle to prevent caking. The solution was 

filtered through a sintered glass funnel, diluted to 1 liter with distilled 

water and stored in a glass reagent bottle. ~1ercuric perchlorate has a 
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shelf life (at room temperature) of about one year. All surfaces on which 

some of this solution may have been spilled were flushed thoroughly with 

water due to the explosive properties of mercuric perchlorate. 

4N Lithium chloride 

42.4 grams of lithium chloride were dissolved in about 200 ml of 

distilled water and diluted to 250 ml in a volumetric flask. 

Ammonium sulphate solution 

71 grams of ammonium sulphate (NH4)2S04 were dissolved in every 

100 ml of distilled water. After this had dissolved, an additional 10 

grams per 100 ml of solution were added to maintain a slight excess of salt 

and keep the solution saturated. 

0.01% Polyoxyethylene sorbitan monolaurate (Tween 20) 

1.0 ml Tween 20 was diluted up to 100 ml with distilled water to 

prepare a stock solution of 1.0% Tween 20. 10 ml of stock solution were 

diluted to 1 liter with distilled water to provide 0.01% Tween 20 working 

solution. 

Lactophenol solution l 

Solid phenol (acid carbolic) was melted on a water bath to provide 

500 ml of liquid. To this were added 500 ml lactic acid, 500 ml distilled 

water and 1000 ml of glycerol. The solution was allowed to stand at room 

temperature. 

1 Extreme caution should be observed in the preparation and use of this 
solution due to the presence of phenol and phenol fumes. 



Cotton Blue-Lactophenol 

To obtain a 0.1% solution of stain, 1.0 gram aniline blue, water 

soluble, was added to 1000 ml lactophenol solution. 
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Stock Cotton Blue-Lactophenol was also purchased in 100 ml quantities 

from British Drug Houses at a concentration of 0.125%. Appropriate 

dilutions of this stock solution were also used to prepare the desired 

working concentration of stain. 

Destain Solution 

1 gram of zinc chloride was dissolved in every 1.7 ml of 12 N HCl used 

up to the desired volume. 



Table 1. Hydroponics Solution: Schedule for 21 litres of 7x Strength Stock Solution 

Salt Molecular Concentration grams/litre ml/litre 
Height of of Salt for of Stock for 

Stock Solution Stock Solution Horking Solution 

Potassium Nitrate, KN03 101.10 1 M 101 6 

Calcium Nitrate, Cu(N03)2 236.16 1 M 236 4 

Ammonium Phosphate, NH4H2P04 115.08 1 M 115 2 

Magnesium Sulphate, MgS04 246.49 1 M 246 1 

Micronutrients 1 

Potassium Chloride, KCl 74.55 50 mM 3,728 1 

Boric Acid, H3B03 61.84 25 roM 1.546 1 

Manganese Sulphate, MnS04 169.01 5 mM 0.845 1 

Zinc Sulphate, ZnS04 287.55 2 roM 0.575 1 

Copper Sulphate, CuS04'5H2O 249.71 0.5 mM 0.125 1 

Molybdic Acid, H2Mo04 161. 97 0.1 llM 0.017 1 

Iron2 

Ferrous Sulphate, FeS04 278.03 2 llM 0.556 2 

1 Micronutrient salts are combined to make one stock solution 

2 Iron stock solution was adjusted to pH 3.5 with sulphuric acid 

from Rickels (1973) 

ml/21 litres 
of Stock for 
7x Concentrate 

882 

588 

294 

147 

147 

147 

147 

147 

147 

147 

294 

.j::-. 
w 
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4. METHODS 

4-1. Experimental.Design and Logistics 

This section is intended to describe the overall experimental protocol 

and approach, details of individual procedures follow in later sections. 

Six complete experiments were conducted during the course of this research, 

four involving susceptible plants and two involving resistant plants. 

Experiments were begun by infecting tomato root systems with nematodes 

(Heloidogyne incognita) and data were gathered over the subsequent thirty 

day periods. Under most conditions this species of nematode has a life 

cycle of less than 30 days. Experimental data was normally collected every 

other c day with a series of procedures which are termed an experimental run. 

Most experiments then consisted of fourteen to sixteen experimental runs 

over a thirty day period. Each run utilized four plant samples; two control 

and two infested. Each sample consisted of one plant except in Experiment 1 

(four plants per sample) and Experiment 2 (two plants per sample). Thus, 

Experiment 1 consumed 256 plants, Experiment 2, 128 plants and the rest of 

the experiments sixty plants. For each sample the stem height, top weight 

and root weight were measured. In addition the root gases were extracted 

and analyzed. 

4-2. Germination and Growth of Tomato Plants 

Seeds of tomato variety Vendor (susceptible) and Anahu (resistant) 

were soaked in distilled water with gentle stirring for twenty-four hours. 

The seeds were arranged on tissue laid of top of vermiculite-water 1-1.5 

(v-v), the container covered with a glass plate to maintain high humidity. 

After four days of incubation in the dark at room temperature, seedlings 
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were removed to the greenhouse and uncovered. After a further seven to 

ten days when approximately 5 cm high, the plants were transplanted into 

sterile sand in 10 cm x 10 cm square pots (Experiment 1 in 5 cm x 5 cm 

square pots). These w"ere arranged on benches under a bank of fluorescent 

lights (General Electric Reflector cool white FR96T12. CW-1500) and exposed 

to a sixteen hour photoperiod. 

Seedlings were treated with oxine benzoate, a fungicide, to prevent 

Damping Off disease. Growing plants were watered with a balanced nutrient 

hydroponics solution (Rickels, 1973) diluted to half-strength. White fly 

(Trialeurodes vaporariorum) populations, a pest of the growing plants, were 

kept in ch.eck with various spray insecticides. Plants of Experiment 1 were 

infected with nematodes when forty-six days old. All other experimental 

plants were infected after ninety to 125 days after germination depending 

on their rate of growth. At this point, the plants had an extensive root 

system and had started to flower. Plants were maintained in the greenhouse 

until they were used in the experimental runs. 

4-3. Propagation and Harvesting of Nematodes 

Stock populations of Heloidogyne incognita were propagated on tomato 

varieties Tiny Tim and Glamour in greenhouses at the Canadian Department of 

Agriculture Research Station, Vineland Station, Ontario. Chopped up 

severely infected roots were thoroughly mixed with a quantity of potting 

soil (top soil/peat/sand, 1/1/1 by volume). This mixture was placed in 

12.5 cm clay pots and a single seedling planted in each pot. These stock 

plants were grown for at least six months, to allow for multiple reinfest­

ations to occur during the course of several life cycles. After twelve 

months, stock plants were replaced by young seedlings using the soil and 



Figure 4. (A) Arrangement of experimental plants in the greenhouse. There 

were five benches centred under a bank of fluorescent lights. 

(B) Arrangement of plants of experiments 3 (susceptible) and'4 

(resistant). Theis run of experiment 3 consumed 60 plants, 30 

controls and 30 infested. Experiment 4 had 14 runs which 

consumed 56 plants, 28 control and 28 infested. All the 

plants on benches 2 and 3 were used for the first 12 runs of 

both experiments while the last few experimental runs were 

obtained from plants grown on benches 1, 4 and 5. There was 

an excess of plants left after completion of these experiments. 

Experiments 1 and 2 were performed independently with 250 

plants consumed in experiment 1 and 128 plants consumed in 

experiment 2 (see experimental design). The susceptible plants 

of these experiments were arranged so that half of each bench 

contained infested and half control plants. 

(C) Arrangement of plants of experiments 5 (susceptible) and 6 

(resistant). Note that individual benches were not divided 

into an infested and control half as in other experiments. 

Squares on bench 3 of figures Band C represent potted plants 

and indicate their spacing according to the numbers indicated 

per bench. 
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roots of the old plants as described above. This was necessary since the 

old stock plants were moribund. 

Stock plants were denied water for twenty-four hours prior to harvest 

in order to facilitate the separation of roots from soil. Plants were 

removed from their pots and the roots freed from the bulk of the soil by 

gentle manual agitation and manipulation, conserving the soil for new stock 

cultures. Roots were transferred to a large bucket of water, allowed to 

soak for a few minutes and then gently agitated to remove most of the 

remaining soil. The washing procedure was completed with running tap water. 

Cleaned roots were chopped up thoroughly with scissors and placed on 10 cm 

diameter flat circular screens. These were fitted onto the top ends of 

funnels and placed on a rack in a mistifier so that the bottom end of the 

funnel drained into a 680 ml Mason jar. The mistifier provided 

a fine spray of water every five minutes which settled over the roots, 

collected and drained down the funnels to the Mason jars. Under these 

conditions, egg masses at the surface of the roots hatched and the emerging 

second stage larvae were swept into the collecting jars. Being more dense 

than water, they settled to the bottom whilst excess water ran out of the 

open tops. Harvesting proceded for two weeks after which time the jars 

were left to sett~e for twenty-four hours. 

The collected nematodes were concentrated by drawing off the supernatant 

fluid using a piece of glass tubing bent fish-hook fashion and attached in 

series to a large erlenmeyer flask and vacuum line. The glass hook was 

manipulated so as to draw from just below the surface of the supernatant 

fluid to prevent perturbation of the nematodes on the bottom of the Mason 

jars. The concentrated nematode preparation was pooled, stirred thoroughly 

and assayed for nematodes. Nematode counts were made by removing five, 
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Dne ml aliquDts via a wide-mDuthed 5 ml pipette to. five cDunting chambers 

each with a 10 rom x 10 rom cDunting grid. Each cDunting chamber had been 

pretreated with a drDp Df surfactant (Tween 20) to. reduce surface tensiDn. 

The number Df nematDdes in each Dne ml aliquDt was estimated by cDunting 

numbers within the ten, 1 rom x 1 mm squares Dn each diagDnal. The average 

Df these five, Dne ml CDunts was used to. calculate the tDtal number Df 

nematDdes cDllected. 

4-4. InfestatiDn Df Plants with NematDdes 

Plants were infected in the labDratDry and then returned to. the 

greenhDuse. The methDd Df infectiDn was that suggested by J. W. Pp.tter 

(Canada Department Df Agriculture, Vineland StatiDn, OntariD). CDncentrated 

nematDde extract was diluted so. that the tDtal nematDdes cDllected cDuld 

be distributed equally to. plants in 10 ml aliquDtS. Plants in Experiment 1 

received 2,000, Experiment 2 10,000, Experiments 3 and 418,000, and 

Experiments 5 and 6 17,000 MelDidDgyne incDgnita secDnd stage larvae per 

plant. The inculum CDncentrate was cDntinually stirred with a magnetic 

stirrer (PC35l, CDrning) to. ensure even distributiDn Df the nematDdes. The 

ino.culum was drawn into. a 10 ml plastic syringe (Plastipak, BectDn­

DickinsDn and CDmpany, Mississauga, Ontario.) fitted with a 3.8 cm 18 gauge 

hypDdermic needle. The needle was thrust deep into. the s.and in each 

CDrner Df the pDt and 1 ml Df inDculum injected at each lDcatiDn. The 

remaining six ml were evenly distributed Dn, Dr just under the surface Df 

the sand. 

Water was withheld from the plants twelve to' twenty-fDur hDurs priDr 

to. infestatiDn. NematDdes can travel thrDugh the sand and penetrate the 

rDDts best under damp but nDt wet cDnditiDns. (J. W. PDtte~, persDnal 
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communication). Care was taken to water plants individually for the three 

days following infestation to maintain these favourable conditions and 

"water in" the larvae. Both susceptible and resistant varieties were 

treated in this manner. Control plants received a 10 ml aliquot of 

distilled water applied as described. 

4-5. Gas Determinations 

A. Extraction of root gases 

The method of Beyer and Morgan (1970) for extracting gases of vegeta­

tive tissue was employed with certain modifications. The technique 

involved collecting internal root gases by exposing the roots to a vacuum. 

The apparatus used for these extractions is shown in Figure 5. It 

consists of an evacuation chamber (25 cm glass dessicator), a gas collec­

tion vessel, a mercury manometer and an aspirator. The evacuation 

chamber is connected via rubber vacuum hosing to a 25 cm mercury 

manometer (Technical Services, Brock University) and the aspirator. The 

chamber is filled with a saturated solution of ammonium sulphate. The 

collection vessel resembles an inverted beaker (1 liter), the bottom of 

which is drawn out funnel-like to terminate in a small opening. Over this 

opening is secured a sleeve type neoprene rubber septum (Chromatographic 

Specialities Limited, Brockville). This ,vessel was submerged under the 

liquid so that it was entirely filled, any air bubbles that had collected 

under the septum were withdrawn using a ten ml gas-tight syringe (Hamilton 

#1001). Saturated ammonium sulphate was used in place of water since the 

solubility of ethylene in this solution is negligible (Beyer and Horgan, 

1970). 

The following gas extraction procedure was used. Plants were taken 
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to the gas chromatography laboratory, and the stem cut off at the level 6f 

the sand. The potted root was inverted and the side of the pot struck 

against the side of the sink to free the entire root system. This was 

immersed in a plastic container filled with tap water and gently rotated, 

the sand falling easily from the roots. Running tap water was used to 

remove any remaining sand. The cleaned roots were submerged in a solution 

of surfactant (0.01% Tween 20), rotated gently and transported in this 

solution to the collection apparatus. Roots were then transferred to the 

ammonium sulphate solution, submerged, gentiy rotated to free adhering air 

bubbles and slipped under the open bottom of the collection vessel. Since 

the liberated gases exp,and considerably under reduced pressure, about 

two-t~irds of the liquid around the collection vessel was siphoned off to 

prevent the collection vessel from tipping over during evacuation. The 

dessicator top was replaced and with the valve to the manometer closed the 

line was connected to the aspirator and evacuation begun. After five 

minutes, the stopcock to the manometer was opened and development of the 

reduced pressure observed. 

The entire procedure, from cutting the stem to commencement of 

evacuation required two and a half minutes: 45 seconds root wash, 15 

seconds in surfactant, 45 seconds in loading the collection vessel and 

45 seconds to seal the chamber and connect the lines. 

Gases were extracted in Experiment 1 for a 45 minute period using a 

single gas extraction apparatus. A second apparatus was introduced for 

later experiments which enabled two samples to be extracted simultaneously. 

The mercury manometers were introduced by run 15 of Experiment 2. Gases 

were extracted from the roots of Experiment 2 plants for fifteen minutes 

up to run 15, after which time gases were extracted until a partial pressure 



Figure 5. Apparatus used in the extraction of tomato root gases. A 25 cm 

glass dessicator (1) was filled with saturated ammonium sulphate 

solution (3). The gas collection vessel (2) had an open bottom 

with a funnel-like top terminating in a small opening over which 

was secured a neoprene septum (4). Roots (5) from which gases were 

to be extracted were placed inside this vessel. Once sealed the 

glass dessicator was connected via rubber vacuum hosing (solid 

lines) to an aspirator (6) and mercury manometer (7). Arrows 

indicate the direction of air flow during evacuation. 
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of 2.0 to 3.0 cm Hg was reached. This generally required fifteen minutes. 

The latter procedure was employed for Experiments 3, 4, 5 and 6. At the 

end of each extraction the stopcock to the evacuation chamber was closed 

and the partial pressure and time of evacuation recorded. Air at atmos­

pheric pressure was then carefully readmitted to the evacuation chamber. 

By means of a 1.0 m1 gas-tight syringe, an aliquot of the collected 

gas sample was withdrawn and immediately injected into the gas chromatograph. 

The volume of the aliquot removed was 1 m1 or that volume of gas which 

could be readily taken without drawing up any liquid. The total volume of 

gas was obtained by withdrawing the remaining gas and some liquid, reading 

the gas volume and summing this portion with the previous aliquot withdrawn. 

It was necessary to establish at which point in the extraction process 

further collection of root gases became redundant. Collection of root 

gases in Experiment 1 pro ceded for forty-five minutes per sample. Observ­

ations were made over the course of this experiment on the emergence of 

gas bubbles from the roots during evacuation. At the termination of 

Experiment 1, experiments were performed to establish a time course for 

the collection of root gases. 

Susceptible (var. Vendor) and resistant (var. Anahu) tomato plants 

(116 days old) were used in a total of seven experiments (four with 

susceptible plants, three with resistant plants). For each experiment, 

two root systems were used. Extraction of gases proceded for a ten 

minute interval at which point the aspirato~ .. was shut down and the volume 

of gas collected measured. Extraction was reinitiated for an additional 

ten minute interval and the procedure repeated six times to cover a total 

of sixty minutes of gas collection time. The sum of gas volumes collected 

at each time interval was recorded. 



53 

The drop in partial pressure of the collection chamber during the 

course of gas collection was measured with a 30 cm mercury manometer 

(Technical Services, Brock University) placed in series with the evacuation 

chamber and aspirator of each gas collection apparatus. This enabled 

direct measurement of the partial pressure of the chamber at any point in 

the course of evacuation. For each of the four plant samples of run 15, 

the partial pressure in the gas collection chamber was recorded at regular 

intervals. Gas collection was terminated when a partial pressure of 2.0 

to 3.0 cm Hg was reached. 

4-5. B. Preparation of Gas Standards 

(i) Collection of a pure gas sample 

All ethane and ethylene analyses conducted on the gas chromatograph 

were under the same operating conditions, those of maximum sensitivity 

(range 1, attenuation 1). Appropriate standards were selected so that the 

highest concentration gave close to full scale pen deflection on the 25 cm 

strip chart redorder. Once this was established, a range of standards 

was prepared by a volumetric dilution technique. A triple neck flask was 

alternately evacuated to about 10 rom Hg and filled with CP grade ethylene 

or ethane five times (G. R. Finlay, Brock University). One neck of the 

flask was connected via rubber hosing and glass tubing to a motorized 

vacuum pump (Edwards liigh Vacuum Limited, Crawley, England). The middle neck 

of the flask was sealed with a sleeve type neoprene septum and the third 

attached to the cylinder of ethylene via a modified regulator which indicated 

both positive and negative pressures (Union Carbide Canada Limited, Toronto). 

This allowed the partial pressure of the flask and lines to be read during 
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the course of evacuation and when bleeding gas back into the flask. 

Evacuation of the flask proceded as follows: Stopcock G was closed 

and kept closed throughout all operations. Switch F to the vacuum pump 

was switched on and Stopcocks A, B, C and D opened to evacuate the lines 

and collection flask. With valve E closed, valve H was then opened to 

evacuate the regulator, enabling the partial pressure in the flask and 

lines to be read. The pumping procedure continued for two minutes which 

was adequate to ensure a partial pressure in the range of 10 mm mercury. 

Gas was bled into the system as follows. Stopcock B and valve H were 

closed and switch F turned off. Valve E was then opened briefly to flood 

the regulator with gas and then closed down again. Slowly opening valve 

H allowed gas back into the lines and flask at a controlled rate until a 

positive pressure of two to three em mercury on the pressure indicator was 

obtained. At this point the pump was turned on (Switch F) Stopcock B 

opened and another repetition of evacuation begun. The procedure was 

repeated five times to obtain a sample of pure gas. 

Replacing the vacuum in the flask with ethylene resulted in 750 parts 

ethylene to 10 parts residual air. Numerically 10/760 x 100% = 1.4% of 

the gas sample after a single run was residual air. A r~petition of the 

procedure would reduce the residual air by a similar factor and after two 

repetitions the percentage of air in the flask would be 0.03%. Five such 

repetitions would result in this fraction becoming vanishingly small. The 

purity of gas collected in the triple neck flask was limited by the purity 

of the gas purchased from the supplier (i.e., CP grade ethylene 99.5% 

guaranteed purity, ethane 99.0% guaranteed purity). After the fifth 

repetition was completed, the internal gas pressure was allowed to equili­

brate to atmospheric pressure by rapidly opening Stopcock B or C. Pure 



Figure 6. Apparatus used in obtaining a high purity sample of ethane or 

ethylene at atmospheric pressure. 

A cylinder of gas (4) was connected to a triple neck flask (2) in 

which the gas was collected. The system was alternately evacuated 

with a mechanical pump (1) and flushed with gas to ensure a sample 

of high purity gas was obtained. G, A, B, D--stopcocks; C--needle 

valve; E--gas cylinder valve; F--pump 'on-off' switch; J--rubber 

vacuum hosing; 3--regulator and pressure indicator; a--middle neck 

of triple neck flask sealed with a neoprene septum; H-- regulator 

valve. 
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gas samples of ethane were obtained as described here for ethylene. 

Barometric pressure and temperature for each set of standards were 

recorded. 

(ii) Volumetric Dilutions to Obtain Final Standard Concentrations 

Standards were prepared immediately using volumetric dilutions of 

the pure gas sample into flasks of various volumes of air sealed with 

neoprene septa. A gas tight syringe was used to inject aliquots across 
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the septa. Determinations of the volume of the flasks were made by 

measuring the weight of water each held assuming a density of water within 

the temperature range encountered of 1.00 g/ml (Weast, 1972). Ethylene 

standards of concentrations 0.044, 0.13, 0.26, 0.45, 0.63, 1.11, 2.25 and 

4.43 ul/liter were prepared with concentrations of 9.57 and 15.2 VI/I 

replacing the lowest two concentrations for Experiments 5 and 6 (Figure 7 ). 

For a final concentration of 0.26 ).11/1 the following dilutions were 

made. Two ml of pure gas taken from the triple-neck ~lask were injected 

into vessel A of 1042.7 ml volume to give a concentration of 1920 ~l/l. Two 

ml of this preparation were then injected into Flask B of volume 58.7 ml 

yielding a concentration of 65.4 ).11/1. Finally, 1 ml of gas from Flask B 

was injected into Flask G of volume 250.9 m1 to yield 0.26 ).11/1. 

A total of 7.2 ml of gas was withdrawn from Flask B in the process of 

serial dilutions (Figure 7). Since withdrawing this amount of gas from 

a container of 58.7 ml volume would result in inaccuracy due to slightly 

negative partial pressure, the contents of Flask B were prepared again 

after half the standards had been prepared from it. 

Gas samples were injected into the gas chromatograph using the 

following procedure. Gas standards were shaken vigorously to ensure 



Figure 7. Dilution sequence used in preparation of gas standards. Solid lines 

represent dilutions made for standards used in all experiments while 

the broken lines (--) represent standard dilutions used in 

experiments 1-4 only and the dashed(---) line, experiments 5 and 6 

only. Concentrations are given in parts per million which is 

equivalent to microlitres per litre. 
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mixing. The syringe was flushed out with air and then flushed with about 

0.5 ml of the standard to be run. One ml of the lowest concentration was 

removed from its flask and injected into the column; the needle was then 

replaced into the standard being analysed. This procedure eliminated any 

errors due to diffusion of air into the needle tip. Analyzing standards of 

lowest concentration first ensured that no gas at a higher concentration was 

transferred in the needle tip to a more dilute standard. Standards were 

analyzed immediately after preparation. Each gas standard was analyzed at 

least three times (more if peak size was unusually variable) for every set 

of standards. Over the course of an experiment, a set of standards was 

prepared and analysed two or three times, recording the barometric pressure 

and air temperature with each set. 

4-5. C. Analysis of Gas Samples 

Gases were analyzed on a Hewlett-Packard 5700A Gas Chromatograph 

equipped with a flame ionization detector. Eluent gases were monitored by 

a Fisher Recordall Series 5000 electronic recorder and integrator. Operating 

conditions for maximum sensitivity were selected (range 1, attenuation 1). 

The oven was operated isothermally at 55°C, the injector port at 100°C and 

the detector at 150°C. A 183 cm x 0.64 cm teflon (or glass) column packed 

with Parapak Q mesh range 80/100 (Waters Associates, Milford, Massachusetts, 

U. S. A.) was used. New columns were conditioned by heating to 250°C for 

three hours with a slow flow of nitrogen carrier gas. Carrier gas flows 

of 60 ml per minute and 30 ml per minute were used for Experiments 1, 2, 3 

and 4, and Experiments 5 and 6, respectively. Hydrogen was supplied to 

the detector at rates of 60 ml per minute (Experiments 1, 2, 3 and 4) and 

35 ml per minute (Experiments 5 and 6). Air flow to the detector was 
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constant for all experiments at 240 ml per minute. Improved reproducibility 

in peak size of lower concentrations was realized with the lowered flow 

rates. 

Tests were conducted to determine whether a direct proportionality 

between recorder response and volmne of gas sample injected existed. A 

standard dilution of 2.34 ~l/l ethylene was prepared and volumes of 100, 

200, 300, 400, 500, 700 and 1000 ~l were injected into the gas chromatograph. 

The recorded peaks were integrated to determine their areas and compared 

to the corresponding volumes of gas sample. 

4-5. D. Identification of Gases Extracted from Roots 

Identification of the peaks obtained on analysis of an aliquot of 

samp.le gas was undertaken. 

1. The mean retention time of each sample peak was computed. Lecture 

bottles of known gas types were used to prepare authentic gas species 

diluted in air. One ml aliquots of these samples were then injected into 

the gas chromatograph. Mean retention times for ethane, ethylene and 

methane were determined and compared to the retention times of gases 

extracted from roots. 

2. Sample gases were exposed to mercuric perchlorate, a reagent that 

specifically complexes ethylene and other olefins. Twenty-five ml of this 

reagent was placed in a Vlarburg flask with its sidearm stoppered. The 

top of the flask was fitted with a neoprene sleeve-type septmn and an 

aliquot of sample gas injected. The vessel was shaken well to ensure that 

any olefins in the s.ample complexed with the mercuric perchlorate. The 

side arm stopper was then removed and the uncomplexed gases displaced by 

air. An equal voltnne of 4 H lithium chloride was added to the side arm 
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chamber, the sidearm restoppered and the vessel tilted to mix the two 

reagents. Reaction with the salt solution results in the release of the 

olefins. A one ml aliquot of the gases in the vessel was removed with 

a gas-tight syringe and immediately injected into the gas chromatograph. 

3. Standard preparations of pure ethylene and samples of root gases were 

injected into a gas chromatograph (Q4EI04)-mass spectrograph (Associated 

Electric Industries, HS30) connected via a lvatson-Biemann glass frit or 

silica membrane separator for further identification of sample gases. 

4-6. Growth Measurements 

Heasurements of growth were made by recording stem heights, top weights 

and root weights. Plants to be analyzed for root gases were first measured 

for stem height using a straight rule and then cut off at the level of the 

potting soil. Hhile the roots were being prepared for gas extraction, the 

upper portions (stem and leaves) were put aside until the gas extraction 

was underway. Top weights were then measured using a top-loading }1ettler 

P1200 balance (Fisher Scientific Company). After gas collection was 

completed, roots were removed from the evacuation chamber and washed 

briefly under running tap water to remove the salt solution. 

4-7. Preservation and Staining of Root Material 

R.oots were preserved and stained at the end of each run by immersing 

the root material in 0.1% boiling lactophenol-Cotton Blue for two minutes 

(Goodey, 1951). After cooling, roots were placed in open containers, 

labelled and stored in ambient air until the conclusion of all experiments. 
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4-8. Measurements of Galling 

A modification of the procedure of Townshend and Baenziger (1976) was 

used to measure the extent of galling. Stained and preserved roots were 

examined by eye and under a dissecting microscope (A.U.S. Jena). An 

estimate of the precent of the total root mass composed of galls was 

recorded and the mean percentage value determined for each run. Galling 

was classified on a scale of 1 to 4 according to the mean calculated 

percentage where 1 represents 0%, 2 less than 25%, 3 25% to 49~~, 4 greater 

than 49%. 

4-9. Heasurements of the Rate of Ethylene Production 

An apparatus was designed to measure the rates of ethylene production 

by the plants. In principle, the apparatus consisted of a container which 

enclosed the plants and through which air passed to an ethylene trap. A 

chamber -was designed and built of plexiglass with dimensions 

45 em deep x 45 cm wide x 61 cm high. The joints were sealed with air-tight 

glue and the container reinforced around the vessel at mid height. The 

movable top was 5.0 mm plate glass with a rubber strip around the perimeter 

of the lower surface 2.0 cm from the edge. The top was placed over the 

chamber and the rubber stripping sealed the system when tightened down 

with eight G-clamps. Air was supplied to the chamber via a compressor 

(The Jas. Morrison Brass Mfg. Co. Ltd., Toronto) and a Hoke Gyrolok 3812 

G 4B needle valve. An air flow of 3,300 ml per minute was measured with 

a Hatheson (Whitby, Ontario) model 7254 flow meter. Effluent air from the 

vessel was passed through a dry ice-acetone water trap and indicarb 

(10-20 mesh) to remove C02. Ethylene was then collected in a copper U-tube 

6.4 mm in internal diameter with arms about 10 cm long. On the open ends 
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of these were 6.4 ml Swagelock fittings (Chromatographic Specialities Ltd., 

Brockville, Ontario). The U-tubes were packed with various ethylene 

trapping agents: 1. they were loosely packed with glass angel hair and 

immersed in liquid nitrogen (Abeles, 1973), 2. packed with 80 mesh silica 

gel and immersed in dry. ice-acetone (Phan, 1976), 3. ° packed with 4 A 

molecular sieve and left at room temperature (Frieser and Frieser, 1967). 

The U-tubes were attached to the gas chromatography apparatus while 

still immersed in their appropriate baths and then heated to release the 

bound gas into the sealed trap. The liquid nitrogen technique required 

warming the U-tubes to room temperature, the silica gel trap required 

heating to 60°C in a water bath and the molecular sieve trap required 

heating to 350°C in molten solder (60 0 lead, 400 tin, lfustercraft Ltd., 

Toronto). 

After release of the trapped ethylene, needle valves were manipulated 

so as to direct the flow of carrier gas through the U-tube and sweep the 

ethylene into the column. 

Various operating conditions of the gas chromatograph were employed to 

establish the optimal settings for sensitivity and resolution of ethylene 

peaks. Standard preparations of ethylene or ethane were used with these 

traps to establish the retention times of the gases released from the 

U-tubes. 
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4-10. Statistical analysis 

A. Confidence Intervals for Means 

Confidence limits about the mean were calculated from the formula: 

z , t [ ~] ,where: z = mean of sample 

t critical t for 95% significance at 

n - 1 degrees of freedom 

s = standard deviation of sample 

n = sample size 

(from Campbell, 1967) 

EXAl1PLE 1. Ethylene Standard Curve for Experiments 1, 2, 3, 4 

Standards of concentration 2.25 vIII analyzed eleven times at various 

dates yielded the following data: 

z = mean peak size = 35.5 integrator counts 

x standard deviation = 3.59 

degrees of freedom = 10 

t critical at 95% significance = 2.228 

confidence interval = t[ ~] '2.4 

confidence limits of mean: 

upper limit = 37.9 integrator counts 

lower limi t 33.1 integrator counts 
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4-l0B Linear Regression Analysis 

(i) Growth Data 

The relationship between the independent variate x and the dependent 

variate y was tested for significant correlation with a linear regression 

analysis. The method of least squares as defined by Mendenhall (1975) 

was used. 

where 

and, 

Sl = slope = 
SSxy 
SSx 

So y intercept = y SIX 

SSxy sum of squares for xy 

SSx = sum of squares for x 

n 

= L xiYi-
i = 1 n 

n 

I 
i n 

Linear regressions were computed for growth data by first calculating 

the differences of the dependent variate y, control minus infested and 

correlating these differences to the independent variate x (time). 

EXAMPLE 2. Experiment 3. Root t\Teight versus Time 

Differences in root weights, control minus infested are listed under 

column y, the dependent variate. X, the independent variate represents the 

time of each experimental run from time zero (commencement of experiment). 



65 

Run x Y x 2 xy 
(Time in days) (Root weights 

C - I in g) 

1 0.25 1.5 0.0625 2.25 0.375 

2 1 -0.6 1 0.36 -0.6 

3 2 -0.4 4 0.16 -0.8 

4 4 -0.8 16 0.64 -3.2 

5 6 -2.7 26 7.29 -16.2 

6 9 -2.4 81 5.76 -21.6 

7 11 1.4 121 1.96 15.4 

8 13 -1.3 169 1.69 -16.9 

9 15 -2.3 224 5.29 -34.5 

10 19 -7.0 361 49.00 -133 

11 21 -4.5 441 20.25 -94.5 

12 23 -6.9 529 47.61 -158.7 

13 25 -7.3 625 53.29 -182.5 

14 27 -14.5 729 210.25 -391. 5 

15 30 -11.0 900 121.00 -330.0 

N = 15 

n 
L x = 206.3 
i = 1 

n 
L y = -58.8 
i = 1 

n 
I x2 = 4,238.06 
i = 1 

n 
I y2 = 526.8 
i = 1 

n 
I xy = -1368.2 
i = 1 



(a) Calculate Sl, the slope 

(b) 

SSxy 
SSx = -0.40 

SSxy = -559.53 

SSx = 1,400.75 

Calculate So, the y-intercept 

So = y SIx 

n 
L y. 
i = 1 1 

Y = -3.92 
n 

n 
L x. 
i 1 1 

X = = 13.75 n 

Therefore, So = 1.57 

Thus, the equation of line of best fit is 

y 1.57 - 0.40x 

(ii) Gas Concentration Data 
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A similar Linear Regression analysis of gas data was computed. The 

dependent variate y, gas concentration, was correlated to x, time, using a 

percentage difference basis. The largest concentration of an experimental 

run whether control or infested was designated the numerator, with the smaller 

the denominator and the percentage of one to the other calculated. Percentages 
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so calculated with control concentrations larger were designated positive and 

the inverse (i.e., infested greater than control) designated negative. If 

control and infested gas concentration for a particular run were identical, 

then they would equal 100%. One hundred percent was subtracted from each 

calculated value to yield the percentage difference from zero, either positive 

(control larger) or negative (infested larger). 

EXAMPLE 3. Experiment 2. Run 1, Day 0.08 (2 hours) 

ethylene concentration control = 0.065 ng C2H4 per gram root 

ethylene concentration infested = 0.066 ng C2H4 per gram root 

Percentage difference 

0.066 ng C2H4/gram root 
0.065 ng C2H4/gram root x 100% - 100% = 2% 

Since infested was the larger value and the numerator, the difference is 

designated negative. 

Thus the percentage difference is -2% 

These percentage differences were then correlated to the independent 

variate x, time, as outlined in the growth data example. 

All other linear regression analyses performed incorporated the data as 

recorded experimentally without further arithmetic conversions or operations. 

(iii) Test for Significant Correlation: 

With each linear regression analysis a coefficient of correlation r 

was computed: 

r = _~S.;;.S;;;;xyoL-_ 

ISSxSSy 
(Mendenhall, 1975) 

The value obtained was compared to the critical value at 95% confidence and 
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n - 2 degrees of freedom for a two-tailed test (Hurdoch and Barnes, (1970». 

A value of r greater than the critical value indicated that a significant 

correlation existed. 

EXAMPLE 4. Experiment 3. Root Weights versus Time. 

From the table of example 2, solve for r: 

SSxy = -1368.23 

SSy = 526.8 

SSx = 4238.06 

r = -;s~s~xy~=­
ISSxSSy 

-1368.23 
=~~~~~ 

1(4238.06)(526.8) 
= -0.92 

critical r for 95% confidence and 13 degrees of freedom = 0.59 

decision: There is a significant negative correlation of root 

weight differences, control versus infested, with time; or equi-

valently infested root weights increased significantly in a linear 

manner over controls. 

The numerator here is the same as that for Bl the slope, so that a 

negative slope indicates a negative correlation and positive slope a 

positive correlation. Logically, when the slope equals zero, there is no 

linear correlation since r must also equal zero. Further if there is a 

significant linear correlation, it follows that the slope will be signifi-

cant1y different from zero (Mendenhall, 1975)1 

1 A slope significantly different from zero can be tested using t = Bl-BIQ/ss~ 
where SID is the slope of the bivariate population data and SI= 0 for t~e null 
hypothesis. Calculations using this formula gave decisions identical to 
those obtained with the coefficient of correlation and was thus abandoned as 
redundent for further calculations. 
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(iv) Test for a Zero Intercept 

Standard curve 1 for ethylene gas concentrations provided a particular 

problem in that some experimental values were less than the theoretical 

y-intercept computed by linear regression analysis (see results). To overcome 

this problem, it was assumed that the y-intercept was actually zero and the 

line of best fit was defined by y = SIX (Bliss, 1967). To test whether the 

line so defined fitted the data within acceptable limits of confidence, the 

following calculations were done. 

Workform 13-8. Test of a Zero Intercept 

Term D.F. SS and SP Slope Reduced Estimates 

xZ xy y2 D.F. SS Hs F 

Intercept 1 Cx Cxy Cy 812-80 2 1 Cy-81 2+80 2 Ao Ao/S2 

Scatter !if-I [x2J [xy] [y2] S02 N-2 [y2]-S02 S2 80 2/S 2 I 

l 
Total N L:x2 L:(xy) L:y2 81 2 N-l L:y2-S02 S02 81 2/ S02 

1 
Cx = (L:x) 2 

Cxy = L:xL:l Cy = (L:l~2 
N N N 

(from Bliss, 1967) 

The scatter row represents the line of best fit by the method of least 

squares which has both a slope and y-intercept. The total row is the line of 

best fit constrained to pass through the origin. The difference between 

these lines Ao is the sum of the squares resultant of fitting an intercept 

and slope to the data. The F value AO/S2 tests the null hypothesis that 

the true intercept is zero by comparison of this figure to the critical 

F values at the appropriate level of significance and degrees of freedom. 



EXAl1PLE 5. Ethylene Standard Curve 1. 

x y xy x2 
Concentration mean 
of standard peak size 
(]JIll) (counts) 

0 0 0 0 

0.04 7.9 0.348 0.0016 

0.13 10.7 1.391 0.0169 

0.26 12.5 3.263 0.0676 

0.45 13.1 5.869 0.2025 

0.63 21.4 13.487 0.3969 

1.11 30.7 34.077 1.2321 

2.25 35.5 79.875 5.0625 

4.43 68.6 303.898 19.6249 

Totals 

9.30 200.4 442.203 26.6050 

Using these calculations workform 13.8 was completed 

Term D.F. SS and SP 

xy y2 

Slope Reduced Estimates 

D.F. SS MS 

Intercept 1 9.61 207.20 4462.24 2099 1 363 363 

Scatter 8 17.00 235.00 3409.18 3253 7 156 22.29 

Total 9 26.61 442.20 7871.42 7352 8 519 64.88 

slope = Z(x;:) 442.20 = 16.62 = 26.61 Zx2 

equation of line of best fit: y = 16.62 x 

F value to test the fit of zero intercept line = Ao/S2= 16.29 

Critical F value at 95% confidence = 5.32 

70 

y2 

0 

62.41 

114.49 

156.25 

171.61 

457.96 

942.49 

1260.25 

4705.96 

7871. 42 

F 

16.29 

145.9 

113.3 
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Decision: Constraining the line of best fit to pass through the origin 

fits the data to a high degree of confidence and is therefore an acceptable 

assumption. 

4-10. C. Paired Sample t-Test 

This test was employed on data where no significant correlation existed 

as determined by linear regression analysis. The test calculated an interval 

estimate for the difference between the population means of control and 

infested treatments and provided a significance test on the null hypothesis 

that this difference was zero 

EXA.1I1PLE 6. Experiment 2. Root Weights Control versus Root Weights Infested. 

Run x y z z2 Run x y z z2 

1 11.8 12.2 -0.4 0.16 11 12.9 13.3 -0.4 0.16 

2 9.8 10.8 -1.0 1.0 12 10.8 13.3 -2.5 6.3 

3 9.9 12.2 -2.3 5.3 13 13.7 12.7 1.0 1.0 

4 10.2 12.2 -2.0 4.0 14 12.4 14.2 -1.8 3.2 

5 10.6 12.2 -1.5 2.3 15 16.4 18.1 -1.7 2.9 

6 12.3 12.0 0.3 0.09 16 15.3 16.5 -1.2 1.4 

7 11.5 13.3 -1.8 3.2 17 6.8 8.7 -1. 9 3.6 

8 9.6 11.6 -2.0 4.0 18 8.6 9.4 -0.8 0.64 

9 12.4 12.2 0.2 0.04 19 10.3 14.3 -4.0 16.0 

10 10.6 14.3 3.7 13.7 TOTALS -27.5 68.99 

x = Root weight control (g), y = root weight infested (g), z = x - y 

Mean difference = Z = -1.45 

Test for significance, 

observed t = z 

S/m 
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where the variance of z is: 

8 2 = _____ -'::n"--_ 

n - 1 (Campbell, 1967) 

Therefore, 82 1.62 and 8 = 1.27 

tobs = 4.96 

Critical t for 95% confidence and 18 degrees of freedom (two-tailed 

test) = 2.101 

Decision: Observed t is greater than the critical t and the null 

hypothesis is rejected. There is a significant difference between 

the mean root weight of control and infested plants. 

Data which showed no significant linear correlation of differences 

(control minus infested) and whose mean populations (control and infested) 

were not significantly different as determined by the paired t-test, were 

considered identical (i.e., any variations occurring were due to random 

variations). 

4-10. D. Analysis of Variance 

This statistical analysis was used exclusively ~or data relating extent 

of root galling to gas concentrations. Plants were grouped in four columns 

according to gall severity (see methods) and a one-way analysis of variance 

computed. The test compared means across groups and determined how much of 

the difference was due to population differences and how much to random 

variability. A computed F-value was used to determine the level of signi-

ficance of the differences. The null hypothesis can be written as 



and 

F = 

= 

the F-test of this hypothesis as 

sum of squares between groups/k - 1 
sum of squares within groups/n - k 

k ni 2 k n· 
n - k I 1 I Xi 

1 I 1:1 
i=l ni j=l n i=l j=l 

k n' k 1 [ni r k - 1 I 11 XIj -I - x·· 
i=l j=l i=l ni j=l 1J 

2 

Xij 

which has k - 1 and n - k degrees of freedom, 

and, nl to nk = size of independent random samples 

k = number of populations from which n taken 

Xij = j-th observation of the i-th population. 
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(Wang Laboratories Inc., 1973) 

EXAMPLE 7. Experiment 5. Ethylene versus Extent of Galling. 

Ethylene Percentage 
Differences (Control 
and Infested) 

Mean Percentage 
Differences 

Percentage Estimate of Root Galled 
Group 1 G~oup 2 Group 3 
(0%) (1~24%) (25-49%) 

6, 15, 94 1 

-14, 16, -1 

17.5 

-204, 16, -114 
-27, -32, -110 

-78.5 

49, 52, -38 
-2, 47, -49 
-50, -12, -2 
-23, -61, -15 

-8.7 

Group 4 
(50-100%) 

33, 17 
-24, 3 

7.3 

1 Positive values indicate control greater than infested, negative the 

opposite 

Source 

Between groups 
Wi thin Groups 

Total 

F-value 4.49 

Sum of Squares 

32976.83 
58740.42 

91717.25 

Degrees of Freedom Mean Square 

3 10992.28 
24 2447.52 

27 
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Critical F-value for 95% confidence with 3 and 24 degrees of freedom = 3.01 

Decision: The null hypothesis is rejected. The means of the groups are 

different within 95% confidence. 

A Wang 2200 computer system was used for all one-way analysis of 

variance computations. Where taped programs were available, this system was 

utilized including mean, standard deviation and variance analyses, linear 

regressions without a zero intercept and paired t-test analysis. 
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5. RESULTS 

Results are presented in this section<on an experiment:"by-experiment 

basis. It was necessary to interpret the data this way since some 

experimental conditions were altered between experiments. Changes in the 

age of plants used in each experiment., the season in which plants were grown, 

number of infectious nematode larvae applied and whether the plants were 

susceptible or resistant made it necessary to analyze data from each 

experiment individually. The conditions for each experiment are summarized 

in the following table. Each experiment was designed so that results 

obtained were extensive enough to be analyzed by statistical techniques. 

Where statistical significance was found, it refers to the 95% level of 

confidence. Marginal significance refers to a 90% level of confidence and 

in cases where great significance in the result was obtained, it is 

indicated in brackets (i.e., 99%). 

Table 2. Summary of Experimental Conditions for Experiments 1 to 6. 

Exper- Plant Date Conducted 
iment Phenotype 

1 susceptible Jan-Feb 1977 
var. Vendor 

2 susceptible May-June 1977 
var. Vendor 

3 susceptible July-Aug 1977 
var. Vendor 

4 resistant July-Aug 1977 
var. Anahu run concurrent 

experiment 3 
with 

5 susceptible Dec-Jan 1977-78 
var. Vendor 

6 resistant Dec-Jan 1977-78 
var. Anahu run concurrent with 

experiment 5 

Age of Plants 

46 days old at 
infestation 

95 days old at 
infestation 

90 days old at 
infestation 

90 days old at 
infestation 

125 days old at 
infestation 

125 days old at 
infestation 

Numbers of 
Nematodes Applied 

2,000 per plant 

10,000 per plant 

18,000 per plant 

18,000 per plant 

17,000 per plant 

17,000 per plant 
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5-1. Growth of Plants 

Experiment 1. Susceptible Tomato Plants 

Stem Heights 

Stem heights of both control and nematode infested plants increased 

in a linear fashion for the duration of experiment 1 (Fig. SA). At day 2 

these were about 6.5 cm and they increased to 24.7 cm and 2l.S cm by day 

43 for control and infested plants respectively. The graphs indicate no 

noticeable differences between control and infested stem heights up to day 

IS, however from this point on there is a tendency for infested stem heights 

to be less than controls. The differences (control minus infested) were 

analyzed statistically to determine if there was a linear correlation 

between increasing or decreasing differences with time. The linear regression 

did not satisfactorily fit the data. It was assumed then that overall the 

differences in stem height were distributed about a mean value. A paired j 

t-test was used to compare the mean of one set to the mean of the other and I 
J 

determine if they were significantly different. Results showed no .signifi-

cant difference existed at the 95% level of significance, however there was 

a difference at the SO% level, indicating that the trend to difference from 

day IS on may have been due to. nematode infestation. 

Top Weights 

Beginning at 2.5 grams per plant, top weights increased in a nearly 

linear manner to levels of 21.0 and 22.6 grams by day 43 for control and 

infested plants respectively (Fig. SB). Analysis of the differences 

reveal.ed a linear correlation of increasing (C - I) differences with time. 

Top weights of infested plants were clearly greater than their controls by 

days 36 and 43 post-infestation. Paired t-test analysis, however, 



Figure SA-C. Growth measurements of the susceptible plants of Experiment 1. 

Each point on all graphs is the mean value from S plants 

(. control, ~ infested). 

A. Graph of stem heights versus time post-infestation. 

B. Graph of top weights versus time post-infestation. 

C. Graph of root weights versus time post-infestation. 
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determined that the mean top weights of control and infested plants were 

not significantly different. 

Root Weights 

Figure Be reveals that root weights increased over the course of the 

experiment from values of approximately 2.B grams to 13.4 grams for both 

control and infested plants. No obvious differences are apparent in the 

graphs and both linear regression analysis with time and the paired t-test 

indicated there were no significant differences in root weights of control 

and infested plants. Galls were observed on only a small percentage of 

roots of these infested plants. 

Experiment 2. Susceptible Tomato Plants 

Stem Heights 

Figure 9A illustrates the generally linear increase of stem heights 

from about 25 cm to 70 cm and 55 cm for control and invested plants 

respectively. There was no apparent corisistant difference in these up to 

day 22, however after this time there was a marked trend to greater stem 

heights of control plants. Linear regression analysis of the differences 

versus time fits significantly (99%), indicating that less stem elongation 

was occurring with time in infested plants. 

Top Weights 

Plants increased in top weight from about 40 grams to 130 grams in the 

course of experiment 2 (Fig. 9E). Linear regression and paired t-test 



Figure 9A-C. Growth measur.ements of the susceptible plants of Experiment 2. 

Each point on all graphs is the mean value from 4 plants 

(e control, ~ infested). 

A. Graph of stem heights versus time post-infestation. 

B. Graph of top weights versus time post-infestation. 

C. Graph of root weights versus time post-infestation. 
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analysis revealed that there was no significant difference between control 

and infested plants. 

Root Weights 

Root weights in experiment 2 increased from 12 grams to 20.5 grams and 

28.5 grams for control and infested plants respectively (Fig. 9C). Infested 

roots were heavier than controls almost from the time of infestation with 

the difference being most consistent and marked from day 22 onwards. 

Linear regression analysis revealed that there was a significant linear 

correlation between increasing differences and time (99%). Considerable 

galling progressed with time in infested roots (see Figs. 37, 38 plate 4) 

which accounted for the heavier nematode-infested root weights. 

Experiment 3. Susceptible Tomato Plants 

Stem Heights 

Plants of experiment 3 increased in stem height over the course of the 

experiment only slightly. Figure lOA shows that from day 4 onwards, control 

plants tended to elongate at a greater rate than infested. A linear increase 

of control with respect to infested stem heights over time was not significant. 

A paired t-test however indicated the mean control stem he1ght to be greater 

than the mean infested stem height at the marginal level of significance. 

Top 1.Jeights 

Top weights increased over the 30 days of experiment 3 from levels of 

about 40 grams each to approximately 50 grams control and 60 grams infested 

(Fig. lOB). Linear trends to increasing or decreasing differences between 

the data points were not apparent and linear regression analysis was negative 



Figure lOA-C. Growth measurements of the susceptible plants of Experiment 3. 

Each point on all graphs is the mean value from 2 plants. 

ee control, ~ infested) 

A. Graph of stem heights versus time post-infestation. 

B. Graph of top weights versus time post-infestation. 

C. Graph of root weights versus time post-infestation. 
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in this respect. Values for infested plants appear from the graphs to be 

greater than their control counterparts and a paired t-test analysis con­

firmed this observation. 

Root Weights 

Figure lOC shows a slight increase in control root weight with time 

while infested roots increased dramatically reaching 3 times the weight of 

controls by day 30. This trend was noticeable by day 4 and was obvious 

from day 13 onwards. Linear regression analysis of the difference between 

control and infested root weights with time was highly significant (99.9%). 

Galling of infested roots was observed to proceed rapidly and extensively 

so that roots were severely galled by the end of the experiment (see Figs. 

37, 38 plate 5). 

Experiment 4. Resistant Tomato Plants 

Experiment 4 was run concurrently with experiment 3 so that the plants 

from these experiments were subjected to the same growth conditions. They 

also were of the same age at the start of the experiment and were treated 

identically as those of experiment 3 with nematodes. 

Stem Heights 

As in experiment 3, plants of experiment 4 increased slightly in stem 

heights with time which indicated that the plants were growing at a slow 

rate. Stem heights of control and infested plants were similar up to day 

15, after which time those of infested plants were regularly greater than 

controls (Fig. llA). Linear regression analysis showed no significant 



Figure IIA-C. Growth measurements of the resistant plants of experiment 4. 

Each point of all graphs is the mean value measured from a total 

of 2 plants. (. control, ~ infested). 

A. Graph of stem heights versus time post-infestation. 

B. Graph of top weights versus time post-infestation. 

C. Graph of root weights versus time post~infestation. 
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correlation between differences in height with time. Paired t-test analysis 

determined that the mean infested stem height was significantly greater than 

the mean control stem height. 

Top Weights 

Variations in the data on top weights of plants are immediately apparent 

from Figure lIB. Both linear regression and paired t-test analysis revealed 

no significant differences between top weights of control and nematode­

treated plants. 

Root Weights 

Figure IIC indicates some root growth occurred for all plants during 

experiment 4. Consistent differences between control and infested plants are 

lacking. Both linear regression and paired t-test analysis confirmed that 

no significant difference existed. As well, no galls were ever observed on 

nematode-treated roots of experiment 4 plants. 

Experiment 5. Susceptible Tomato Plants 

Stem Heights 

Plants of experiment 5 showed no growth over the course of the experi­

ment as determined by measurements of stem heights, these being mostly in 

the range of 60-70 cm (Fig. l2A). Infested stem heights were consistently 

greater than their controls over the course of the experiment. The differ­

ence between the two sets of data was quite uniform and the absence of any 

significant correlation with time substantiated this observation. The mean 

infested stem height was determined to be significantly greater than the mean 

control stem height by paired t-test analysis. 



Figure 12A-C. Growth measurements of the susceptible plants of experiment 5. 

Each point on all graphs is the mean value measured from a 

total of 2 plants. (. control, ~ infested). 

A. Graph of stem heights versus time post-infestation. 

B. Graph of top weights versus time post-infestation. 

C. Graph of root weights versus time post~infestation. 
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Top Weights 

Top weights did not increase for either control or infested plants in 

experiment 5 (Fig. l2B). Infested plants remained about 50 grams per plant 

throughout the 30 experimental days. Control plant top weights decreased 

in this same time span as a result of senescence and abscission of leaves. 

Infested top weights were regularly larger than controls. Linear regression 

analysis of the differences with time showed no significant correlation, 

however the mean infested top weight was significantly greater than the mean 

control top weight as determined by paired t-test analysis. 

Root Weights 

Figure l2C demonstrates that infested roots did not appear to change in 

weight during the experiment but were largely constant at about 7.0 grams 

per root. In contrast control roots decreased in weight over the 30 day 

duration. Linear correlation of changing differences in root weights with 

time were not significant. Paired t-test analysis determined the mean 

infested root weight was significantly greater than the mean control root 

weight. Galling advanced at a moderate rate in infested roots (see Figs. 

37, 38 plate 3). 

Experiment 6. Resistant Tomato Plants 

Experiment 6 was conducted concurrently with experiment 5 so that the 

plants of both experiments were all 125 days old at nematode-treatment and 

were subject to the same experimental conditions. 

Stem Heights 

Figure l3A indicates that stems of both control and nematode-treated 



Figure 13A-C. Growth measurements of the resistant plants of experiment 6. 

Each point of all graphs is the mean value measured from a total 

of 2 plants. (e control, ~ infested). 

A. Graph of stem heights versus time post-infestation. 

B. Graph of top weights versus time post-infestation. 

C. Graph of root weights versus time post-infestation. 
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plants did not increase in length over the 30 days. Hith respect to each 

other, no consistent differences between control and nematode-treated plants 

were found by linear regression and paired t-test analyses. 

Top Weights 

Plants treated with nematodes had top weights constantly greater than 

controls from day 4 onwards (Fig. l3B). The differences did not yield a 

significant linear correlation with time. Mean nematode-treated weight 

was determined to be significantly greater than mean control top weight. 

Top weights of both control and nematode-treated plants did not increase 

over the 30 days indicating little or no. active plant growth was occurring. 

Root vJeights 

Root weights of both control and nematode-treated plants decreased 

somewhat throughout the 30 day experiment. A large, fairly uniform difference 

between the lines of figure l3C is obvious with nematode-treated roots being 

heavier. This difference did not change significantly with time as deter­

mined by a linear regression. Paired t-test analysis determined the mean 

nematode treated root weight to be significantly greater than the mean 

control root weight. 

A summary of root-knot nematode effects on growth data is presented in 

Table 3. In 3 out of 4 susceptible experiments, infested root weights and 

infested top ll7eights were greater than controls. A tendency for control 

stem he.ights to be less than infested stem heights was observed in 2 of the 

4 susceptible experiments. 



Table 3. Summary of Meloidogyne incognita effects on growth of 
susceptible and resistant plants. 

Experiment 
and 
Date 

Exp. 1 
Susceptible 
Jan/Feb 
1977 

Exp. 2 
Susceptible 
May/June 
1977 

Exp. 3 
Susceptible 
July/Aug 
1977 

Exp. 5 
Susceptible 
Dec/Jan 
1977-78 

Exp. 4 
Resistant 
July/Aug 
1977 

Exp. 6 
Resistant 
Dec/Jan 
1977-78 

Physiological Growth Stage 
of Experimental Plants 

46 days old at 
infestation 
young--rapidly growing 

95 days old at 
infestation 
maturing plants--
growing but less rapidly 
as Exp. 1 plants 

90 days old at 
infestation 
mature plants--slow 
growth less than plants 
of Exp. 2 

125 days old at 
infestation 
stable physiological 
age-~-no measurable 
active growth 

90 days old at 
infestation 
mature plants--slow 
growth less than plants 
of Exp. 2 

125 days old at 
infestation 
stable physiological 
age--no measurable 
active growth 

Statistical 

Stem 
Heights 

NS 

C > I 
(LR) 

C > I 
(tT)* 

NS 

N.T. > C 
(tT) 

NS 

Analysis 

Top 
Weights 

I > C 
(LR) 

NS 

I > C 
(tT) 

I > C 
(tT) 

NS 

N.T. > C 
(tT) 

of 
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Growth Data 

Root 
Weights 

NS 

I > C 
(LR) 

I > C 
(LR) 

I > C 
(tT) 

NS 

N.T. > C 
(tT) 

I = infested, C = control plants, N.T. = Nematode~treated resistant plants 
NS = no significant difference between control and infested 
I > C, C >I etc. = a significant difference (95%) as indicated 
* = marginal significance (90%) only 
(LR) = significance determined by linear regression analysis 
(tT) = significance determined by t-test analysis 
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5-2. Time Course of Gas Extraction from Roots 

Results of experiments designed to establish the volume of gas collected 

with time exposed to evacuation are shown in Figure l4A. Resistant and 

susceptible tomato varieties exhibited the same pattern. Eighty percent of 

the gas collected over the 60 minutes of extraction was obtained in the first 

10 minute interval for the seven experiments (susceptible 83%, resistant 76%). 

After 20 minutes extraction a mean of 85% of the total gas had been collected 

(susceptible 87%, resistant 81%). Only 5% more gas was obtained with the 

second 10 minute evacuation. It was further observed that gas bubbles 

emerged most rapidly and consistently in the first 10 minutes of the gas 

extractions in experiment 1 (gases were extracted for 45 minutes in experiment 

1). It was therefore decided to extract gases for 15 minutes per run in 

experiment 2. 

Two mercury manometers were installed on the gas extraction apparatus 

by run 15 of experiment 2. This was necessary since variations in water 

pressure were encountered from day to day and at different times of the day. 

Such variations could have affected the efficiency of the aspirator and hence 

the efficiency of gas extraction. 

Results showing the drop in partial pressure of the gas extraction 

chamber with time of evacuation for run 15 of experiment 2 are shown in 

Figure l4B. An hyperbolic relationship existed whereby the drop in partial 

pressure was at first rapid but tapered off as it became less than 3.0 cm Hg. 

This pattern was consistent for both control and infested plants on either 

extraction apparatus. An end point of 2.0 cm Hg was reached with apparatus 

A after a mean extraction time of 11.5 minutes. Apparatus B, being slightly 

greater in volume, required a mean time of 15.5 minutes to reach the same 

partial pressure. These time intervals correlated closely with those 



Figure l4A. The volume of gas extracted from tomato roots versus time of 

extraction. 

Gases were extracted from the roots of 4 plants per experiment. 

The total volume of gas extracted from the roots of each 

experiment was measured in 10 minute intervals over a total time 

of 60 minutes. Seven experiments were conducted, 4 on root­

knot nematode susceptible plants (S) and 3 on resistant plants 

(R) • 

Figure l4B. Drop in partial pressure of the root gas extraction chamber 

versus time of aspiration. 

The gas extractions of experimental run 15 of experiment 2 were 

monitored with mercury manometers attached to the evacuation 

chamber (Fig. 5). Two ,determinations for each control and 

infested roots were obtained. Two aspirators designated A and B 

were used for the determinations and in all subsequent experiments. 

• 15-1 control, aspirated A. 

o 15-2 control, aspirator B. 

~ 15-1 infested, aspirator B. 

o 15-2 infested, aspirator A. 
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determined to collect 85% of the total root gases. Since extraction of gases 

to a determined end point of partial pressure (2.0-3.0 cm Hg) should ensure 

more consistent results, this method was used for all subsequent experiments 

(i.e., experiments 3, 4, 5, 6). 

5-3. Identification of Gases Extracted f,rom Roots 

A representative chromatographic trace of the gases extracted from tomato 

roots is shown in Figure l5A. Peaks 2 and 3 were consistently symmetrical 

as shown. Peak 1 was very sharp and always offscale. Peak 4 characteristically 

tailed off. Peak 5 usually was overrun by peak 1 but was sometimes distinct. 

Mean retention times calculated from numerous samples were: peak 1, 45 seconds; 

peak 2, 135 seconds; peak 3, 180 seconds and peak 4, 300 seconds. 

Figure l5B is a typical tracing obtained from injection of an ethylene 

standard diluted with air. The ethylene peak obtained had a mean retention 

time of 135 seconds which coincided with the retention time of peak 2 in the 

sample gas tracing. A small sharp peak preceded the ethylene peak and had 

a mean retention time of 53 seconds. It was determined that injecting a 

sample of plain air or simply inserting the needle briefly into the injection 

port resulted in this same sharp peak (Fig. l5C, D). It was concluded that 

this small peak was an artifact resulting from a perturbation of gas flow 

in the column and was thereafter referred to as an air peak. 

Sample gas tracings exhibited a much larger peak 1 than that obtained 

from air. Standard preparations of methane had a mean retention time of 

45 seconds (Fig. l5E) and it was suspected that the off scale peak 1 was 

methane. 

Standard preparations of ethane gave the characteristic trace seen in 

Figure l5F. Again the air peak was present and the ethane peak had a mean 



retention time of 180 seconds which coincided with peak 3 of the sample 

gas tracings. 
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Root gases were shaken with mercuric perchlorate to absorb any olefins 

present and after flushing out unabsorbed gases were released with lithium 

chloride. The released gases resulted in tracings identical to those of 

ethylene standards. Peaks 1, 3 and 4 which were present in samples of the 

same root gases had disappeared leaving only peak 2 and the air peak. The 

mean retention time of peak 2 was 135 seconds. Standard ethylene preparations 

subjected to the same treatment produced identical tracings with a mean 

retention time of 135 seconds. 

Unequivocal identification of the sample gas peaks was attempted with 

mass spectra data. A gas chromatograph-mass spectrophotometer (GCjMS) was 

used. The gas chromatograph had a thermal conductivity detector which was 

orders of magnitude less sensitive than the flame ionization detector used 

in experimental runs. Sample peaks were therefore undetectable on the gas 

chromatograph of the GCjMS and a direct analysis of the spectra accompanying 

sample gas peaks could not be obtained. 

Methane and ethylene standards at higher concentrations than sample 

gases were analyzed with the GC/MS. The peaks obtained had retention times 

of 75 and 230 seconds and their corresponding mass spectra were characteristic 

of methane and ethylene respectively. A longer column (305 cm x .64 cm) 

accounted for the greater retention times. The ratio of methane retention 

time to ethylene retention time was however, identical from both gas 

chromatographs. Ethane standards were not analyzed. Although GC/HS 

experiments did not accomplish an unequivocal proof of the identity of 

sample gas peaks, the evidence supports the conclusion that peak 1 of the 

sample gases was methane and peak 2 ethylene. 



Figure 15. Gas chromatographic traces of gases extracted from tomato roots 

(A) and of various gas standards (B-F). 

Gases were analyzed on a Hewlett~Packard 5700A gas chromatograph 

equipped with a flame ionization detector. Retention times are 

those obtained with a carrier gas flow of 60 ml per minute. 

A. Tracing obtained on analysis of 1.0 ml sample of extracted 

root gas. Characteristic peaks are numbered, identified and 

their retention times indicated. 
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B. Tracing obtained on analysis of 0.1 ml of standard ethylene 

gas of concentration 65 ~1/1. Only a small 'air' peak and the 

ethylene peak were obtained. 

C. Tracing obtained on analysis of 1.0 ml sample of air. 

D. Tracing obtained on insertion of hyperdermic needle into the 

injection port without deposition of any sample. 



B 

0 

c 

o 

Of) 

"0 
c: 
0 
u 
CD 
II) 

1'1') 
to 

-Il: 

_<i. 

CD 

co 
"0 
c: 
o 
u 
CD 
II) 

1'1') 
to 

Of) 

"0 
C 
0 
U 
CD 
I/) 

U') 
1'1') 

w 
z 
W 
..J 
)0-
X 
I-
W 

2 

TIME 

2 

95 

*' 

I 

3 4 5 6 7 8 

(minutes) 

Of) 

"0 c: 
0 
u 
CD 
II) 

1'1') 
to 

Il: 
<i. 

0 J 
CD 

'-
3 4 0 2 3 4 

TIME (minutes) 



E. Tracing obtained on analysis of 0.01 ml of pure methane gas. 

The flat top of the peak indicates an offscale recorder response. 

F. Tracing obtained of analysis of 1.0 ml of ethane standard gas 

of concentration 4.43 ~l/l. 
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Altered carrier gas flow rates (30 ml per minute) used in experiments 

5 and 6 changed retention times of methane, ethylene and ethane to 80 

seconds, 270 seconds and 315 seconds respectively. 

5-4. Calibration Curves for Measuring Concentrations of Extracted Gases 

Calibration curves indicating the size of peaks for known gas concen-

trations of ethylene and ethane were established. Peak areas were calculated 

by summing the counts recorded by the electronic integrator for each peak. 

Since experiments 1-4 were conducted under identical gas chromatographic 

conditions, data obtained with gas standards during this period have been 

pooled (appendix 2 tables 1-4) and a single calibration curve for ethylene 

and ethane computed (figs. 16, 17). All peak sizes obtained for each 

standard concentration were used in a linear regression analysis. 

The analyses yielded the best straight line fit of the data as defined 

by the equation y = So + ~lX (Mendenhall, 1975) where Sl is the slope and 
A 

So the y-intercept. The best straight line to fit the data was in all cases 

highly significant (99%) which indicated that any daily variations of 

recorder sensitivity were within acceptable limits. Similarly the results 

of analysis of ethane and ethylene standards with the experimental conditions 

used in experiments 5 and 6 were pooled. The best straight line fit of 

these data as computed by linear regression analysis was significant at the 

99.9% level. 

Ethylene peak sizes in these experiments were generally in the range of 

standards used. In some runs of experiments 1-4, however, the ethylene peak 

size was less than the calculated y-intercept (9.63 counts) obtained from 

this analysis (appendix 2, tables 1-4). Since no ethylene peak was obtained 



Figure 16. Calibration curves for ethylene determinations. 

Calibration curves for ethylene were obtained from pooled data of 

individual sets of standards analyzed with each experiment:. Gases 

for experiments 1-4 (A) were analyzed with a carrier gas flow rate 

of 60 ml nitrogen per minute while gases of experiments 5 and 6 (B) 

were analyzed with a nitrogen flow rate of 30 ml per minute. The 

lower rate of carrier gas flow resulted in a broadening of peak 

width and a concomitant shortening of peak height. This permitted 

standards of higher concentration to be analyzed with experiments 

5 and 6 than was possible for experiments 1-4. Reproducibility of 

peak sizes with low gas concentrations was improved with the lower 

carrier gas flow rate of experiments 5 and 6. 



98 

A ETHYLENE STANDARD CURVE EXPERIMENTS I - 4 

70 

Y = 16.62)( 

60 

50 -II) -C 
:J 

40 0 
(,) -

lIJ 
30 N -f/) 

! ~ 
~ 20 
lIJ 
0. 

10 

0 
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

ETHYLENE CONCENTRATION (ul/I) 

B ETHYLENE STANDARD CURVE EXPERIMENTS 5,6 

120 

-;; 100 
1: 
:J o 

.,g. 80 

lIJ 
N 
f/) 60 

~ 
~ 
lIJ 40 
0. 

20 

y = 7.41 ... 10.87)( 

4.5 

°0~~I.~0--~2~.0--~3~.0---4~D---5~.0---6~D---~~0---8~.0---9~.0---IQ~.O---­

ETHYLENE CONCENTRATION (ulll) 



Figure 17. Calibration curves for ethane determinations. 

Ethane standard curves for experiments 1-4 (A) and 5-6 (B). 

Nitrogen carrier gas flows were as described for ethylene curves. 
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with injection of air, the point (0,0) was included in the gas standard 

data. Exponential (y = AeBX) and geometric (y = AxB) curves were fitted 

to the data but the most satisfactory fit was obtained with a straight 

line passing through the origin (statistical analysis example 5). 

In all other experimental runs, peak sizes were within the range of 

standards selected and the line of best fit with a y-intercept was used. 

Statistically, this line fit the data to a higher degree of significance 

(99.9%) than when omitting the intercept (95%), however both were within 

acceptable limits of significance. 

5-5. Calculation of Gas Concentrations 

Areas under gas peaks were integrated electronically by a second pen on 

the chart recorder and peak size indicated by an arbitrary scale of counts. 

Experimental gas samples were usually less than 1.0 ml in volume. Standard 

ethylene and ethane preparations were analyzed in 1.0 ml aliquots and the 

calibration curves obtained correlated peak size (counts) to gas concentration 

(~l/l) for a 1.0 ml sample. Increasing or decreasing the volume of a sample 

of known concentration should result in proportional changes in peak size. 

Results of an experiment conducted to establish the truth of this assumption 

are illustrated in Figure 18. Increasing the amount of standard ethylene 

(2.34 ~l/l) sample injected into the gas chromatograph resulted in a 

proportional increase in recorded peak size. 

Ethane and ethylene peaks from experimental gas samples of less than 

1.0 ml volume (approximately 90% of gas volumes analyzed were between 0.3 

and 1.0 ml) were measured and then converted to the size appropriate for a 

1.0 ml sample. For example, an ethylene peak size of 17.0 counts obtained 



Figure 18. Relationship between gas volumes injected and the size of ethylene 

peaks. 

Chromatographic tracings were obtained on injection of 0.3, 0.4, 

0.5, 0.7 and 1.0 ml volumes of ethylene standard of concentration 

2.32 mIll. The standard preparation had a slight methane impurity. 

Both methane and ethylene peaks show a linear increase in size 

(counts) as the volume of gas injected was increased. Arrows 

indicate time of injection of gas sample. 
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from 0.60 ml sample gas was converted arithmetically to an equivalent 

28.3 counts for a 1.0 ml sample. With the peak size expressed as that which 

would have been obtained from a 1.0 ml sample the concentration of the gas 

in microlitres per litre could be calculated from the standard curves by 
A A 

solving the equation of the line of best fit y = So + SIx where 

So = y-intercept (counts), SI = slope of line (counts/~l/l), y = peak size 

(counts) and x = gas concentration (~l/l). Experiment 5 run 1-1 control 

had an ethylene peak size of 24.0 counts per 1.0 ml of sample gas. The 

equation of the line for the ethylene standard curve for experiments 5 and 6 

(fig. l6B) was y = 7.41 counts + QO.89 counts/~l/l)(x). To solve this for 

x gas concentration, the appropriate value for y (peak size) was substituted 

in the rea~ranged equation 
A 

Y - So 
x = --------

(24.0 counts - 7.41 counts) 
x = (10.89 counts/~l/l) = 1.52 ~l/l 

All concentrations of experimental gas samples were calculated similarly 

using the appropriate standard curve. 

In the final form gas concentrations were expressed as a weight of gas 

per gram root weight. Concentrations in ~l/l were converted to a weight as 

follows. The weight of 1.0 ml of pure gas (ethane of ethylene) was calculated. 

The moles of gas in a given volume is dependent on temperature and pressure 

according to the relationship defined by the 'ideal gas law' PV = nRT where 

P atmospheric pressure (ml Hg = torr), V = volume of gas (ml) , 

n = number of moles of gas, R = universal gas constant (ml torr deg-Imole- I ) 

T temperature (degrees Kelvin) (Moore, 1972). The value of 1 mole of 

ethane or ethylene gas was calculated by rearranging this equation to 
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v = nRT/P. Mean temperature and pressure calculated from those recorded 

with each set of standards for a given calibration curve (data in appendix 2, 

tables 1-4) were substituted into this formula. Continuing with experiment 

5 run l-lc as an example, 

constants, n 1 mole, 

R 0.62362 x 105 ml torr deg-1mole- 1 

experiment 5,6 ethylene standard curve mean values 

P 755.3 torr 

T 295.1 degrees Kelvin 

Thus, 
(1 mole) (0.62362 x 105 ml torr deg-1mole- 1) (295.1 deg) 

755.3 torr v 

V 24,365 ml 

Therefore the volume of 1 mole of gas at the experimental conditions of 

experiments 5 and 6 was 24,365 mI. The number of moles of gas in 1.0 ml 

is the inverse of this or 4.10 x 10-5 moles. The gram molecular weight of 

ethylene is 28.06 grams per mole and mUltiplying this value with the number 

of moles in 1.0 ml gives the weight of pure ethylene in 1 mI. 1.15 x 10-3 

grams. The weight of ethylene in 1.0 ml of root gas sample was found by 

multiplying the weight of ethylene in 1.0 ml of pure ethylene gas by the 

fraction of ethylene in the root gas sample 

1.52 (VI/I) 
106 (VI/I) 

= 1.76 x 10-9 g (1.76 nanograms) ethylene in 1.0 ml of root gas sample. 

This was the weight of ethylene in a 1.0 ml sample of gas from the roots of 

control plants in experiment 5 run 1-1. The total gas extracted from these 

roots was 1.03 ml so that mUltiplying this volume by the weight of ethylene 

llin a 1.0 ml sample gave the total weight of ethylene extracted from these 

roots, 1.81 nanograms. This value was divided by the total weight of the 
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roots from which it had been extracted (5.48 g) to yield a concentration 

of 0.34 nanograms ethylene per gram of root. Gas concentrations were in 

this way normalized for comparisons across experiments. Ethane concentra­

tions were calculated similarly by substituting in the gram molecular 

weight for ethane (30.08 g/mole) where appropriate. 

5-6. Ethane and Ethylene Concentrations of Susceptible and Resistant Roots 

Experiment 1 Ethylene 

In experiment 1, ethylene concentrations of control and infested roots 

were quite variable with time (Fig. 19A). Concentrations as low as 0.023 ng 

C2H4/g root and as high as 0.Z6 ng C2H4/g root were found. These variations 

in concentration from run to run were roughly parallel in both control and 

infested plants. This indicates that some common factor affected all plants. 

Effects of root knot nematode infestation on ethylene concentrations should 

be evident as differences between control and infested concentrations. 

Graphical representation of percentage differences revealed that control 

concentrations were more often greater than infested concentrations, the 

exception to this being found at days l~ and 36 (Fig. 19B). Linear regres­

sion analysis determined no correlation of increasing or decreasing percen­

tage differences with time and a PQ;,red t-test determined the mean difference 

to be +0.2% which was not significantly different from zero. 

Ethane 

Concentrations of ethane from both control and infested roots though 

varying somewhat from run to run showed a general tendency to decrease with 

time (Fig. ZOA). Ethane concentrations from both control and infested plants 

generally varied in parallel. Concentrations ranged from 0.29 to 4.37 ng 
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C2H6/g root. Comparison of control and infested ethane concentrations using 

percentage differences is shown in Figure 20B. Initially control levels 

were greater but as the experiment progressed, infested levels tended to 

become greater. However, a linear regression analysis determined that this 

trend was not significant. Paired t-test analysis of the mean percentage 

difference determined that it was not significantly different from zero. 

Experiment 2 Ethylene 

Ethylene concentrations for the first 12 days of experiment 2 were 

consistent around 0.1 ng C2H4/g root. These increased abruptly at day 14 

and assumed levels in the range of 0.3-0.76 ng C2H4/g:;:root for the remainder 

of the experiment (Fig. 2lA). The pattern was similar for both control and 

infested plants. Graphical representation of the percentage differences 

between control and infested concentrations is seen in Figure 2lB. Patterns 

indicating a linear trend to increasing positive (control larger) or negative 

(infested larger) differences with time are not obvious and linear regression 

analysis revealed no significant correlations here. A mean percentage 

difference of + 18% was marginally significant (90%). 

Ethane 

Concentrations of ethane increased at day 14 of experiment 2 as they 

did for ethylene, but to a lesser degree (Fig. 22A). Again daily variations 

in ethane levels were largely similar for both control and infested roots. 

The pattern of these variations over the course of the experiment was similar 

to that for ethylene (Figs. 2lA and 22A). A range in levels from 0.73 to 

4.21 ng C2H6/g root was encountered. A trend of percentage differences from 

positive to negative is suggested by Figure 22B. This indicates that control 

concentrations initially larger than infested concentrations were about 
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equal by the termination of the experiment. Linear regression analysis 

determined that this trend was only marginally significant (90%). A paired 

t-test analysis of the data determined the mean difference of +15% was 

marginally significantly different from zero. This positive percentage 

difference indicates that overall ethane concentrations were greater in 

control than infested roots. 

Experiment 3 Ethylene 

Control and infested ethylene concentrations exhibited sdtmilar 

patterns of variation over the course of experiment 3 (Fig. 23A). Relatively 

high concentrations were found in all roots analyzed in the first two days 

however by day 4 ethylene concentrations had assumed lower levels which were 

relatively consistent for the remainder of the experiment. A range in 

concentrations of 0.023 to 0.63 ng C2H4/g root was found. Percentage 

differences tended to increase in a positive direction over the duration of 

the experiment indicating that control concentrations were increasing 

relative to infested concentrations (Fig. 23B). A marginally significant 

correlation (90%) of this tendency to increase with time .was determined by 

linear regression analysis. Paired t-test analysis determined that the 

mean percentage difference of +47% was significantly different from zero. 

Thus, roots of control plants had significantly greater ethylene concen­

trations than roots of infested plants and this difference was increasing 

with time. 

Ethane 

Considerable daily variations in ethane concentrations were found over 

the course of experiment 3 (Fig. 24A). A range of 0.25 to 2.28 ng C2H6/g 
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root was found. In this experiment, ethane and ethylene levels appear to 

have varied together (Figs. 23A and 24A). Percentage difference calculations 

revealed that control ethane concentrations were consistently greater than 

infested (Fig. 24B). A tendency for these differences to increase with 

time is seen with the exception of an atypically large day 9 percentage 

difference (+SlO%). Consequently linear regression analysis determined 

that this trend was not significant. The mean control ethane concentration 

was 91% greater than the mean infested ethane concentration which was 

significant. 

Experiment 4 Ethylene 

The pattern of ethylene concentrations versus time of experiment 4 

resistant plants was markedly similar to that of experiment 3 susceptible 

plants (Fig. 2SA). Relatively high ethylene concentrations were found for 

the first 2 days in both control and nematode-treated plants with no 

consistent differences between them. By day 4, ethylene concentrations had 

decreased considerably and were consistently in the range 0.048 to O.lS 

ng C2H4/g root for the remainder of the experiment. A range of 0.30 to 

0.40 ng C2H4/g root was found for days 0 to 2. Similar concentrations were 

found in the roots of the susceptible plants of experiment 3. 

Graphical representation of the percentage differences of ethylene in 

control and nematode-treated plants showed a random orientation about zero, 

(Fig. 2SB). There was no linear correlation of these differences with time 

and paired t-test analysis determined the mean percentage difference (-S%) 

was not significantly different from zero. Thus there were no significant 

differences between ethylene concentrations of control and nematode­

treated plants in experiment 4. 
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Ethane 

Ethane concentrations from control and nematode-treated plants were 

similar and in the range of 0.28 to 1.22 ng C2H6/g root (Fig. 26A). This 

range was comparable to that obtained from the susceptible plants of 

experiment 3. Figure 26B reveals that no linear changes of percentage 

differences occurred with time. Linear regression analysis substantiated 

this observation. The mean ethane concentration of control plants was 

determined to be 5% greater than that of infested plants. This was not a 

significant difference. 

Experiment 5 Ethylene 

Ethylene concentrations in experiment 5 ranged from 0.21 to 0.93 ng 

C2H~/g root with most concentrations in the range of 0.3 to 0.6 ng C2H~/g 

root (Fig. 27A). Consistent differences of ethane concentration between 

control and infested susceptible plants were not apparent. Graphing the 

percentage differences (Fig. 27B) further illustrated the lack of any 

consistent pattern here and linear regression analysis determined no signi­

ficant correlation existed between ethylene concentration and time. The 

mean percentage difference was -17% but this was not significant as 

determined by the paired t-test. 

Ethane 

Ethane concentrations from control and infested plants in experiment 5 

are plotted against time in Figure 28A. A dramatic increase in ethane 

concentrations from control and infested plants is seen over the 30 day 

experimental time course. Concentrations ranged from 0.47 to 5.43 ng C2H6/g 

root. No significant correlation of changing ethane percentage differences 
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with time existed as determined by linear regression analysis of the data 

in Figure 28B. Paired t-test analysis determined that the mean ethane 

percentage difference of -10% was not significantly different from zero. 

Experiment 6 Ethylene 

A range of 0.19 to 0.60 ng C2H4 /g root was found for the resistant 

plants of experiment 6 (Fig. 29A). As this range indicates concentrations 

were fairly consistent and daily variations minimal. The variation of 

concentrations with time was similar to that obtained with susceptible 

plants in experiment 5. Experiments 5 and 6 were run concurrently. Analysis 

of the percentage differences revealed that no linear changes with time 

occurred (Fig. 29B). The mean ethylene concentration was 3% larger in 

control roots as compared to nematode treated roots. This value was not 

significantly different from zero. 

Ethane 

Root concentrations of ethane increased considerably over the course of 

experiment 6 (Fig. 30A). Levels of 0.37 to 4.60 ng C2H6 /g root were obtained. 

The pattern and range of concentrations found were similar to those of 

experiment 5. Ethane concentrations of control and nematode treated plants 

were similar up to day 13. After day 13, consistently greater ethane 

concentrations were obtained from control plants (Fig. 30B). Linear 

regression analysis determined no significant correlation between changing 

percentage differences and time. The mean ethane concentration was 29% 

greater in control plants and this value was significantly different from 

zero as determined by the paired t-test. 



Figures 19-30A and B. 

Changes in ethylene and ethane root concentrations with time. 

Each point on the graphs is the mean value obtained from two 

experimental determinations. Graphs 19-30A show the root concen­

trations of ethylene or ethane in nanograms per gram root versus 

time post-infestation for experiments 1-6. (e control, ~ infested) 

Graphs 19-30B show the percentage differences of control versus 

infested root gas concentrations plotted against time post­

infestation for experiments 1-6. Percentage differences were 

calculated with the large concentration for each run, control or 

infested, as the numerator. 100% was then subtracted to give the 

difference. Control concentrations larger had percentage differ­

ences designated positive and infested concentrations larger had 

percentage differences designated negative. Since each point was 

the mean value of two determinations, the range in percentage 

difference is indicated. Absence of range bars indicates that the 

value was obtained from a single experimental determination. A 

single range bar through the centre of a point indicates identical 

values were obtained from both determinations. The mean percentage 

difference is indicated by a horizontal dashed line. 
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FIGURE 20. EXPERIMENT I ETHANE 
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FIGURE 22. EXPERIMENT 2 ETHANE 
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FIGURE 23. EXPERIMENT 3 ETHYLENE 
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EXPERIMENT 3 ETHANE 
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FIGURE 25. EXPERIMENT 4 ETHYLENE 
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FIGURE 26. EXPERIMENT 4 ETHANE 
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FIGURE 27. EXPERIMENT 5 ETHYLENE 
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FIGURE 30. EXPERIMENT 6 ETHANE 
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5-7. Ethane/Ethylene Root Contration Ratios 

Ethane and ethylene concentrations for the six experiments indicated 

considerable similarities. Concentrations of ethane were invariably greater 

than ethylene obtained from the same root gas sample. Concentrations of 

ethylene and ethane generally varied in parallel with time. To further 

examine the relationship of these gases in the experimental roots, the 

ratio of ethane/ethylene was computed for each experimental run. If the 

relative ethane and ethylene concentrations fluctuated together their 

ratios would be a constant value around which some random variation would 

occur. Conversely, if the two gasses varied independently, graphing the 

gas ratios would indicate variations in ratios with time. The analysis also 

resulted in a comparison of ethane/ethylene ratios for both control and 

nematode-infested roots. 

Results of the calculations are seen in Figures 31-36. In all cases, 

control and infested ethane/ethylene ratios within an experiment tended to 

vary in parallel. This enabled general patterns to be assessed for each 

experiment. Experiment 1 ratios varied widely over a range of 4 to 104. 

Ethane/ethylene ratios for experiment 2 displayed a statistically significant 

trend to decrease over the experimental time period. In contrast, ratios 

consistently increased over the time course of experiments 3-6. Linear 

regression analysis of both control and infested ratios determined that the 

trend to increase with time in experiments 3 to 6 was significant. 

To determine any effects of root knot nematode infestation differences 

between control and infested ratios were calculated. Linear regression and 

paired t-test analyses were performed on these differences. Linear 

regression analysis determined that a significant change in differences 

with time occurred in experiments 4 and 6, both of which involved resistant 



Figures 31-36. Ethane/ethylene ratios versus time post-infestation for 

experiments 1-6. 

Ratios were calculated by dividing the mean ethane concentration 

by the mean ethylene concentration for each run of an experiment 

for both control and infested plants. C. control, ~ infested). 
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FIGURE 31. EXPERIMENT I ETHANE/ ETHYLENE RATIOS 
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FIGURE 33. EXPERIMENT 3 ETHANE / ETHYLENE RATIOS 
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FIGURE 35. EXPERIMENT 5 ETHANE I ETHYLENE RATIOS 
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plants. In these experiments, the ratios of control roots were increasing 

as compared to the ratios of nematode-treated roots. No significant 

correlations were found in any of the experiments involving susceptible 

plants. 

Paired t-test analysis determined that the only experiment in which 

the mean ethane/ethylene ratio from control plants was significantly 

different from that of infested plants was experiment 6. In this case, 

mean control ratios were greater than infested. The resistant plants of 

experiment ~ were unique in that there was no significant difference 

between their mean control and infested ratios, however a significant 

correlation of changing differences with time was found. 

5-8. Correlation of Gas Concentration with Root Weights 

Root weights of infested plants tended to increase more rapidly than 

those of control plants due to the formation of galls. In a number of 

experiments, gas concentration when expressed on a per gram root weight 

basis decreased with time. These two trends suggest that the total amount 

of root ethylene and ethane did not increase in proportion to increases 

in root weight. This possibility was investigated by linear regression 

analysis on ethane and ethylene concentrations expressed in nanograns per 

gram root versus their corresponding root weights. If these two parameters 

increased in direct proportion to each other, no significant correlation of 

increasing or decreasing gas concentrations versus root weights would be 

found. Graphically this situation would yield a horizontal line parallel 

to the x-axis (root weight). Linear regression analysis determined signi­

ficant linear deviations from the line of zero slope. 

~ 
1 
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Table 4. Summary of Ethane/Ethylene Root Concentration Ratios. 

Experiment 

1. 

2. 

3. 

5 . 

4. 

6. 

Susceptible 
plants 

Susceptible 
plants 

Sus cep tib Ie 
plants 

Susceptible 
plants 

Resistant 
plants 

Resistant 
plants 

Pattern of ratios over 
time for both control 
and infested plants 1 

-varied widely 
-no consistent trends 
with time 

-decreased with time 
-significant for both 
control and infested 

-increased with time 
-significant for both 

control and infested 

-increased with time 
-significant for both 

control and infested 

-increased with time 
-significant for both 
control and infested 

-increased with time 
-significant for both 

control and infested 

Differences control minus 
infested ratios 

Linear Paired t-test 3 
Regression2 

NS NS 

NS NS 

NS NS 

NS NS 

-signifi- NS 
cantly 
increasing 
with time 

-signifi- significantly 
cantly di f ferent 
increasing C '> I 
with time 

1. Significance of patterns of ratios with time were determined by linear 
regression analysis of control and infested data individually. 

2. Linear regression analysis of differences (control minus infested) with 
time determined if a significant linear increase or decrease in magnitude 
of these differences occurred with time. 

3. Paired t-test analysis determined whether the mean ratios of control and 
infested roots were significantly different. 

NS indicates not significant. 



Significant correlations between ethylene concentration and root 

weights were obtained for infested plants of experiments 1 and 3, and 

control plants of experiment 6 (Table 5). The line of best fit in each 
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of these cases had a negative slope which indicated that as root weights 

increased, the increase in total ethylene in these roots was less than the 

proportional increase in root weight. Where no linear correlation was found 

it was assumed that there was no significant difference between the 

proportional increase in total root ethylene and root weight. In half the 

experiments with susceptible plants a negative correlation was found for 

infested roots while their controls showed no linear correlation between 

root concentration of ethylene and root weights. 

Experiments showing significant linear correlations outnumbered 

experiments showing no correlation by two-to-one for ethane concentrations 

plotted against their corresponding root weights. Significant correlations 

were obtained for experiments 1, 3 and 6 control and infested data, experiment 

5 infested and experiment 4 control. In all cases the slope of the line of 

best fit was negative. 

The results indicate that total root gas volumes increased either 

proportionally with increasing root weight (no significant correlation) or 

increased less than the relative increase in root weight (significant 

negative correlation). This latter trend was obtained more often for 

ethane than for ethylene and in some experiments where ethylene had no 

significant correlation, ethane data from the same roots exhibited a negative 

correlation (experiments 3, 4 control; experiments 5, 6 infested). 

Significant negative correlations were obtained for control and infested 

ethane data in equal frequencies. 
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Table 5. Linear Regressions of Gas Concentrations Versus Root l.Jeights 

Gas Experiment Phenotype Significance of Fit of Linear Regression 
of Plants Control Slope Infested Slope 

Ethylene 1 NS 90% -0.0086 

2 NS NS 
Susceptible 

3 NS 99% -0.019 

5 NS NS 

4 
} Resistant 

NS NS 

6 95% -0.029 NS 

Ethane 1 99% -0.22 99% -0.16 

2 NS NS 
Susceptible 

3 90% -0.18 90% -0.023 

5 NS 90% 

4 
} Resistant 

99% -0.060 NS 

6 99% -0.37 95% -0.14 

NS-indicates no significant correlation 
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5-9. Magnitude of Nematode Infestations 

The extent and severity of nematode infestation was determined by the 

size of the root system at infestation and the amount of infectious second 

stage larvae applied to it. Plants in experiment 1 were grown in 5 cm 

square pots whereas all other experimental plants were grown in 10 cm 

square pots. Infectious second stage larvae of ~ incognita were applied 

in doses per plant of 2.000 experiment 1. 10.000 experiment 2 and 17.000 

to 18.000 experiments 3 to 6. The extent of nematode infestation was 

quantified by estimating the percentage of total mass of a root system that 

was gall (Figure 38. plates 1-6). 

The extent of infestation of experimental root systems is shown in 

Figure 37. First visible signs of galls occurred at day 11 (post­

infestation in experiment 1 as compared to day 4 in experiments 2 and 5 

and day 6 in experiment 3. Galls developed slowly over the time course 

of experiment 1 and by the last run of this experiment (day 43) galls 

accounted for an estimated 25% of the total root mass of the infested plants . 

Galls developed on the roots of experiment 2 plants at a quicker rate than 

in experiment 1. Levels of 50 to 60% were found over the last three runs 

of the experiment (days 25. 27 and 46). Development of galls on the roots 

of experiment 5 plants was initially more rapid and extensive than in 

experiment 2 but slowed to approximately the same rate of development from 

day 15 on. At the termination of experiment 5 (day 30) 60% of the total 

root mass of the plants in that run was estimated to be gall. Galls 

developed most rapidly on the roots of plants in experiment 3. The most 

severe infestations were encountered in this experiment with galls accounting 

for an estimated 80% of the root mass of the plants by the last experimental 

run (Fig. 38 plate 5). 



Figure 37. Rate of gall formation with time. 

Roots were examined under a stereomicroscope and the mass of root 

galled estimated as a percentage of total root mass. Each point 

is the mean value of all infested roots used in that run. 
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Figure 38. Plates 1-6. Photographs of roots demonstrating severity of 

M. incognita infestation. 

A Canon AE-l 35 mm camera and macrolens with Pand t omic X asa 64 

film was used. 

Plate 1. Nematode treated roots of a resistant plant taken from run 9 

(day 15) of experiment 6. Roots of plants in this experiment 

were well developed and extensive. Small dark spots seen on 

these roots arose from kinks in the rootlets which increased the 

density of stain and are not small galls. Galls were never 

encountered in roots of resistant plants. 

Plate 2 Root system of a susceptible plant taken from run 8 (day 11) of 

experiment 2. Galls were visible as small swellings (arrows) 

and are often continuous for some distance along the rootlets. 

An estimated 20% of this root mass was gall. 
1 

l 
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PLATE 2 



Plate 3 

Plate 4 
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Root system of a plant taken from run 9 (day 15) of experiment 

5. Galls are fairly well established (arrows) however much of 

the root system remains uninfested. An estimated 35% of this 

root system was gall. 

Heavily infested root system taken from run 16 (day 26) of 

experiment 2. Galls are extensive and well developed accounting 

for an estimated 55% of this root mass. 
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Plate 5. 

Plate 6. 
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Severely infested root system taken from run 15 (day 30) of 

experiment 3. Galls are developed to an advanced degree and 

are continuous along most of the rootlets of the plant. An 

estimated 80% of this root mass was gall. 

A selection of galls at different stages of development. These 

include juvenile galls associated with early stages of galling 

(b, c), mature easily visible galls (a) and well developed 

advanced stage galls Cd, e). 

I 

1 



PLATE 5 

PLATE 6 
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Roots of resistant plants were exposed to levels of infectious second 

stage ~ incognita larvae of 17,000 and 18,000 per plant in experiments 

6 and 4 respectively. Galls were never encountered in any of these roots 

nor were there any overt signs of lesions (Fig. 38, plate 1). 

5-10. Effects of Galling on Ethane and Ethylene Concentrations of Roots 

Changes in ethane and ethylene concentrations over the time course of 

an experiment should give an indication of any effect nematode infestation 

had on these gases. The extent of galling in any given root was however, 

su~ject to some variation so that it could not be assumed that the severity 

of infestation increased linearly with time. Figure 37 illus1rates this case. 

Consequently the roots of all experimental runs were grouped "' according to 

the severity of nematode infestation, against which the concentrations of 

ethane and ethylene in roots were compared. 

Using the percentage gall of total root mass estimates, roots were 

grouped into four categories: 1 = 0%, 2 = 1-24%, 3 = 25-49%, 4 = 50-100%. 

Due to the imprecise n ature of the estimates, only four categories were 

chosen to give greater confidence in the accuracy of this classification. 

For each root gas sample of each run, a percentage difference between control 

and infested was computed. This amounted to two values per experimental run. 

The mean of all gas percentage differences for roots within a given gall 

classification was calculated. These means were then plotted against gall 

classifications 1-4. A one-way analysis of variance was computed for both 

ethane and ethylene from experiments 1, 2, 3 and 5. 

Significant variation between mean percentage differences of gas 

concentrations from one gall classification to another were uncommon. The 

only significant variation of these means between gall classification was 
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found in experiment 5 ethylene data. Marginal significance was found for 

ethane data from experiment 5 and ethylene data from experiment 3. The 

mean ethylene percentage difference of gall classification 2 in experiment 

5 notably favoured infested roots (i.e., ethylene concentrations were 

greater in infested than control roots). Mean percentage differences of 

the other groups in experiment 5 were less pronounced (Fig. 39). In 

contrast, group 2 ethylene percentage differences in all other experiments 

indicated higher concentrations in control roots. Examination of the 

histograms in Figures 39 and 40 reveals that there was no consistent 

variation of mean gas percentage differences across gall classifications for 

all experiments. In most cases, there were no significant variations and 

where significance (or marginal significance) was found, the pattern of mean 

gas percentage difference for a given gall classification contrasted with 

that determined in other experiments. Thus the hypothesis that elevated 

levels of ethylene (or ethane) would be found with increased galling was not 

substantiated by these results. 

5-11. Rates of Ethylene Production 

Various methods have appeared in the literature for the collection of 

ethylene evolved from plant tissues. The earliest methods involved placing 

plant tissue into a closed vessel out of which a sample of the atmosphere 

could be withdrawn with a syringe and analysed via gas chromatography. 

This technique had the drawback of creating artificial conditions since 

partial pressure of ethylene could be built up in the atmosphere, pC0 2 

would decrease due to photosynthesis and p02 would increase via the same 

process. Within limits the longer the tissue was left in the vessel the 

I 

~ 



Figure 39. Ethylene percentage differences versus gall classification. 

The mean percentage difference of gas concentration within each 

category of gall severity is indicated along with 95% confidence 

limits. Gall classifications were 1 = 0%, 2 = 1-24%, 3 = 25-49% 

and 4 = 50-100% of the total root mass estimated to be gall. 
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Figure 40. Ethane percentage differences versus gall classification. 
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the greater these effects would be. Host recent publications concerning 

the rate of ethylene evolution from plants have utilized flow-through 

systems. These consist of a chamber (usually plexiglas) sealed about a 

section of plant tissue through which a slow flow of air is passed. Ethylene 

in the effluent air may be trapped by agents such as liquid nitrogen (Abeles 

1973) or silica gel (Phan 1976). Collecting the gases evolved from a small 

area of plant tissue (i.e., section of stem or a leaf) allowed slow air 

flows to be used (i.e., 270 ml/minute, Pegg and Cranshaw 1976). The 

apparatus designed and used in the present investigation was of a large 

volume which accommodated 4 to 6 mature tomato plants. The purpose was to 

collect total ethylene evolved from control or infested plants. It was 

felt that to minimize partial pressure gas changes in the chamber, a 

relatively fast air flow was needed. A flow of 3300 ml/minute was calculated 

to theoretically flush out the atmosphere of the chamber every 10 minutes. 

This flow rate was selected for experimental runs. 

Numerous attempts to trap ethylene with a variety of techniques were 

made. The first technique involved freezing ethylene out of the effluent 

air by passing the air through a copper loop submerged in liquid nitrogen. 

Problems were encountered with this method as CO 2 and H20 were also frozen 

out in the ethylene trap, thereby plugging it. This was corrected by 

placing a CO 2 trap (vessel packed with Indicarb 10-20 mesh) and H20 trap 

vessel submerged in a dry ice-acetone bath) in series before the liquid 

nitrogen bath. However, removing the copper loop and attaching it to the 

gas chromatograph while maintaining liquid N2 temperatures was a difficult 

task. Further, upon warming the loop to room temperature to permit the 

trapped gaseous contents to be flushed through the gas chromatograph, a 
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pressure build up within the loop resulted in leakage of the gases at the 

swagelock fittings. This method of trapping ethylene was therefore 

abandoned. 

Copper loops packed with 80 mesh silica gel could not accommodate 

much more than 'trickle' flows of air to pass through and were thus 

unsuitable for the experiments. 

° The loops were also packed with 4 A molecular s t6ves which absorb 

ethylene at room temperature (Friesen and Friesen 1967). To regenerate 

trapped gases, the molecular sieves were heated to 350°C in molten solder 

baths while connected to the gas chromatograph. Although the procedure of 

collecting gases from plants and attaching the loops to the gas chromatograph 

was easily accomplished with this technique, no consistent ethylene peaks 

were obtained from numerous trials. It was felt that the absence of 

consistent ethylene peaks reflected inadequate technique rather than a rate 

of ethylene production too low to measure. 
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DISCUSSION 

Root Weights, Galling and Nematode Infestation 

The effect of Meloidogyne incognita infestation on susceptible and 

resistant tomato plants was expressed in the relative root weights of control 

as compared to nematode-treated plants. For most experiments performed, 

control and nematode-treated root weights were similar over the first few 

experimental runs. Exceptions to this rule were found in experiments 5 and 

6 which will be discussed later. Galls appeared on infested susceptible 

roots as early as day 4 of experiments 2 and 5, day 6 of experiment 3 and 

day 11 of experiment 1 (Fig. 37). Once galls had been initiated, they 

developed fairly rapidly. This phenomena resulted in higher root weights of 

infested roots. Differences between control and infested root weights 

increased linearly with time. Since controls were grown under identical 

conditions, difference in root weight may be attributed to the weight of 

galls in the roots. This phenomenon was also observed in another laboratory. 

Olthof and Potter (1977) found greater root weights 8 weeks post-infestation 

in Meloidogyne hapla infested tomatoes (var. Veebrite) than in controls. 

Susceptible plants of experiment 1 showed no significant difference 

between control and infested root weights even though galls accounted for a 

maximum estimate of 25% of total root weights (figs. 8, 37). This may have 

resulted from a combination of factors. Firstly, only 2,000 Meloidogyne 

incognita larvae were applied per plant in experiment 1. The plants when 

infested were 46 days old and about 7 cm in height with correspondingly 

small root systems. Since root systems were minimally developed and low 

levels of nematode inocula were applied, relatively small numbers of larvae 
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would have entered the roots. Although galls developed normally on these 

roots, their effect was masked since plants were at a very active stage of 

growth and considerable new root growth was added with time (i.e., a 430% 

increase over 36 days). This growth is indicated by the steep slopes of 

increasing infested and control root weights with time in Figure 8C. 

The absence of any increased root weight in infested plants in experiment 

1 despite an estimated 25% galling might have been due to a reduction of 

overall growth of the root system. Temporary inhibition of mitosis in root 

meristem tissue has been observed immediately following root-knot nematode 

penetration (Christie 1936, Thorne 1961). It may be that this occurred in 

the infested plants of experiment 1. Intuitively it may further be reasoned 

that such inhibitions would be most pronounced in young 'fragile' plants 

such as those of experiment 1. 

Plants from experiments 2 and 3 were found to have infested root weights 

increasing over their controls with time (figs. 8, 9). This indicated that 

considerable galling occurred in the infested plants of these experiments. 

Nematode-treated plants of experiment 2 were exposed to 10,000 larvae per 

plant, while those of experiment 3 received 18,000. Plants in experiments 

2 and 3 were 95 and 90 days old respectively and had well-developed root 

systems at infestation. The plants were mature as indicated by flowering 

prior to infestation. Galls developed more rapidly in experiment 3 than in 

experiment 2 (fig. 37). Multiple entry through single ports may have 

occurred (Thorne 1961, Bird 1961). Gall size has been shown to be propor­

tional to the number of nematodes within the gall (Orion and Minz 1969). 

It is quite possible that more nematodes were present in the galls of 

experiment 3 than experiment 2 because of the greater number of larvae 
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applied. More individual galls were apparent on these roots as well, but 

precise numerical counts could not be made. 

Differences in rates of gall development may have been due to seasonal 

variations. Plants in experiments 3 and 5 for example received approximately 

equal numbers of larvae, however gall development was considerably more rapid 

and extensive in experiment 3. Experiment 3 was conducted in summer (July-

August) while experiment 5 was conducted in winter (December-January). The 

shorter days, less intense sunlight and lower temperatures of winter affected 

plant growth despite greenhouse temperature control and a 16 hour photoperiod 

provided by fluorescent lights. Nematode development is sensitive to 

environmental conditions (Crofton 1966, Endo 1975) and gall formation has 

been found to coincide with the development and growth of the nematode in the 

roots (Owern and Specht 1964; Bird 1967, Orion 1973). It may be that seasonal 

differences affected nematode development and hence gall formation in these 
1 

Control root weights of experiment 5 plants decreased while infested 1 
experiments. 

roots maintained a constant wei.ght over the experimental time course (fig. 12). 

The decrease in root weights of controls may have been due to senescence. 

Plants for experiment 5 were 125 days old at infestation, their root systems 

had filled the 10 cm square pots to a large degree and the experiment was 

conducted in the winter months. Symptoms of senescence were visible in the 

yellowing and abscission of leaves. It is possible that the decrease in 

root weight observed for control plants was due to degeneration of roots. 

Infested roots did not decrease in weight. This was due to the added weight 

of galls which compensated for degeneration of roots. 
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Resistant plants of experiment 4 had similar control and nematode 

treated root weights, a result consistent with the observation that no galls 

ever formed on resistant roots. This result further supports the suggestion 

that higher root weight increases of susceptible infested plants was due to 

galling. 

Both nematode treated and control root weights of resistant plants in 

experiment 6 were observed to decrease presumably due to senescence and 

degeneration (fig. 13). The rate of this decrease was similar for both control 

and nematode-treated roots as determined by linear regression analysis of the 

differences. However, nematode-treated roots were consistently greater in 

weight than control roots. It is suggested that this was due to a difference 

in growth conditions of nematode-treated and control plants since no galls were 

ever observed on these roots. Figure 4 shows the arrangement of plants for 

experiments 5 and 6 (run concurrently) as compared to experiments 1 thiIJough 

4. It can be seen that while each bench for the first four experiments 

contained 1/2 infested and 1/2 control plants, experiments 5 and 6 had 

separate benches for nematode-treated and control plants. In these experiments 

nematode-treated plants were located centrally and controls peripherally under 

the fluorescent lights. The shorter days of winter and less direct sunlight 

may have increased the importance of the bank of fluorescent lights on plant 

growth. Centrally located plants were directly under the lights while 

peripherally placed ones would have received less fluorescent light. The 

nematode treated plants of experiments 5 and 6 were grown in this location 

before, during and after infestation without any change in position. It is 

proposed then that the nematode treated plants of experiment 6 had already 

established healthier root systems than controls and that infestation had no 

j 
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effect on root weight, the difference observed being due to the difference 

in light available to these two groups of plants. The experimental design 

here could have been improved by randomizing the plants prior to infestation 

as they were in previous experiments. 

Effects of Nematode Infestation on Stem Heights 

Both nematode infestation and ethylene application can result in stunting 

of stem height (Orion and Hinz 1969, Brueske and Bergeson 1972, Abeles 1973, 

Orion 1973). Susceptible infested plants of most experiments showed some 

stunting of stem growth (Results Section 5-1). Stem heights of control plants 

originally equal to those of infested plants progressively increased in 

length over their nematode infested counterparts in experiment 2 (fig. 9). 

This significant difference increased in a linear manner with time, indicating 

that as gall development progressed infested stems elongated at a slower rate 

than non-infested plants. No significant differences between experiment 1 

infested and control stem heights was found. However, there was a detectable 

trend from day 18 onward where infested stem heights were less than cont~ols 

(fig. 8). The absence of a significant difference here was probably due to 

the low levels of nematode inocula applied and masking of the effects of 

infestation due to rapid plant growth as previously discussed. 

Stem heights of experiment 3 control plants were marginally significantly 

greater than infested stem he'l'ghts, however they were increasing significantly 

in this way if the last atypical value (run 15) was rejected (fig. 10). It 

is surprising that this difference was not greater (i.e., more significant) 

since nematode treated plants of experiment 3 were the most severely infested 

of all experiments. It was noted that control plants of this experiment did 
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not increase in stem height to a large degree with time (less than experiment 

2). Infested plants had virtually stopped stem elongation from day 9 onwards 

but since control plants were not elongating rapidly the difference between 

these was slow to develop. At any rate evidence for the stunting of stem 

elongation subsequent to infestation was present in this experiment. 

No significant differences between control and infested susceptible 

plants in experiment 5 or resistant plants in experiment 6 were found. As 

discussed previously the plants in the two experiments did not show signs of 

active growth. Since no stem elongation was occurring in these plants (figs. 

12, 13), no effect of nematode infestation on this growth phenomenon could 

be detected. 

Resistant nematode-treated plants in experiment 4 had significantly 

greater stem heights than their controls. There is no obvious explanation 

for this result and it could, perhaps, be due to random chance. 

Effects of Nematode Infestation on . Top Weights 

All infested susceptible plants showed significantly greater top weights 

than their controls except in experiment 2 where this difference was signifi­

cant at 80% confidence only. It is known that growth responses regulated by 

ethylene in healthy plants are observed in root-knot nematode parasitized 

plants (Orion and Minz 1969). The present investigation reconfirmed that 

nematode infestation had a stunting effect on stem elongation, a result 

consistent with stimulated ethylene production in the stems of these plants. 

Concurrent with ethylene inhibited stem elongation is a promotion of lateral 

expansion (swelling) of the stem tissue. This is due to a reoriented 

deposition of cellulose microfibrils in the cell walls (Eisinger and Burg 

1972). It is possible that heavier top weights of infested plants in 
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experiments 1, 2 and 3 resulted from increased ethylene production in the 

stems of nematode infested plants. 

Resistant plants in experiment 4 showed no significant difference 

between nematode-treated and control top weights. This result supports the 

previous suggestion. 

Susceptible plants in experiment 5 and resistant plants in experiment 6 

both exhibited significantly greater top weights in nematode-treated plants. 

Again this can be attributed to an imbalance of the growth conditions of 

nematode-treated and control plants in these experiments. As was discussed 

previously, nematode treated plants in these two experiments were more fully 

developed at infestation than control. Thus, they had heavier top weights 

at the start of the experiments and since plants in these experiments did 

not show signs of active growth during the experiment, this difference in 

top weight remained constant. 

Veebrite var. tomatoes subjected to moderate doses of Meloidogyne hap1a 

(i.e., 1840 larvae/kg soil) had greater top weights than controls 8 weeks 

post-infestation (Olthof and Potter 1977). This result is also consistent 

with a possible stimulation of ethylene production in stems of infested 

plants. 

Summary of the Effects of Nematode Infestation on Plant Growth 

Analysis of the growth of nematode-treated and non-treated plants 

provided an estimate of the pathogenicity resulting from nematode infestation. 

This was most obvious in the measurement of root weights where dramatic 

increases often occurred due to galling induced by the nematodes. Results 

also indicated that stem elongation was inhibited and top weights increased 
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by nematode infestations of susceptible plants. No alterations in plant 

growth of resistant plants were found after nematode-treatment. Alterations 

in the growth of susceptible plants infested with Meloidogyne incognita are 

consistent with the possibility that increased ethylene production occurred 

(i.e., stress ethylene) in the stems of these plants. 

Ethylene Levels in Resistant Plants 

Meloidogyne incognita larvae penetrate the roots of resistant tomato 

plants as easily as susceptible ones (Riggs and Winstead 1959). Resistance 

of Anahu var. tomatoes to this pathogen is controlled by a single incompletely 

dominant gene (Mi ) (Winstead and Riggs 1963), the nature of which is expressed 

in a hypersensitive host response eRR) (Paulson and Webster 1972, Webster 

and Paulson 1972). Only cells in the immediate vicinity of the parasite 

undergo the RR and there is evidence that it occurs only in cells on which 

the parasite has fed (Paulson and Webster 1972). Thus, it can be assumed 

in the present study that ~ incognita larvae penetrated the resistant roots 

but were unable to develop since they could not induce syncytia to form. 

As indicated in the introduction, published data suggests that ethylene 

is involved in the mechanism of resistance to certain fungal and bacterial 

phytopathogens (Clare et al. 1966, Sequira 1973). It has been proposed that 

ethylene acts to stimulate the activities of tyrosine and phenylalanine 

ammonia lysases (Giebel 1973) and peroxidases (Riov ~ al. 1969, Gahagan 

~ al. 1968, Ridge and Osborne 1970). The products of these enzymes all affect 

the activity of IAA-oxidase. It has been postulated that increased IAA­

oxidase activity is the key factor in the mechanism of resistance (Wilski 

and Giebel 1972). 
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Comparison of ethylene concentrations from susceptible and resistant 

roots of control plants indicated possible differences between ethylene 

concentrations for these two phenotypes. Root concentrations of ethylene 

from susceptible plants were comparable across all experiment$ (Results 

Section 5-6). Ethylene concentrations of resistant control plants of 

experiment 6 (fig. 29) were similar in range and generally varied in parallel 

with ethylene concentrations of experiment 5 susceptible control plants 

(fig. 27). In addition, no difference between ethylene concentrations of 

experiment 4 resistant plants and experiment 3 susceptible plants was found 

(fig. 23 and 25). It is concluded from this work that endogenous ethylene 

levels of Anahu var resistant tomatoes are not different from Vendor var. 

susceptible tomatoes. Similarly, Pegg and Cronshaw (1976) determined that 

near isogenic lines of tomato plants (var. Craigella) resistant and 

susceptible to the fungus Verticillium albo- atrum had similar rates of 

endogenous ethylene production prior to infestation. 

Internal ethylene concentrations of a tissue vary in direct proportion 

with the rate of ethylene produced by the tissue so that the magnitude of 

the gradient between internal and external ethylene levels remains constant 

(Abeles 1973). For example, a tissue with an internal ethylene concentration 

of 1.0 ppm in ethylene-free air has 1.2 ppm ethylene when 0.2 ppm ethylene is 

added to the surrounding atmosphere. The gradient between internal and 

external ethylene levels remains constant at 1.0 ppm. The ratio between 

internal ethylene levels and the rate of production of ethylene can therefore 

be expressed as a conversion constant equal to ppm ethylene in the tissue 

per ml ethylene produced per kg fresh weight per hour. Kang and Ray (1969) 

found equal conversion constants for ethylene and carbon dioxide of 0.42 
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ppm/ml/kg/h in bean hypocotyl tissue. Chadwick and Burg (1967) found a 

conversion constant for ethylene from pea roots of 0.3 ppm/ml/kg/h. Thus 

measurements of the internal ethylene concentration of a tissue reflect 

the rate of production of ethylene by that tissue. 

It may be reasoned that if ethylene action is involved in Anahu 

resistance to ~ incognita, increases in ethylene production must occur 

after infestation since endogenous production rates were similar for resistant 

and susceptible plants. This has been observed in resistant responses of 

host plants to other pathogens (Weise and De Vay 1970, Shain and Hillis 1972, 

Sequira 1973). Shain and Hillis (1972) investigated ethylene production in 

the gymnosperm Pinus radiata from tissue surrounding lesions made by oviposi­

tion of the wood wasp Sirex noctilo. At oviposition Sirex also deposits 

arthrospores of the decay fungus Amylo.sterum areolatum into the lesion. Two 

varieties of Pinus radiata, one resistant to this fungus and the other 

susceptible, were investigated for rates of ethylene production after Sirex 

oviposition. An increase in ethylene production from 2.5 ml/g dry wood/h in 

control resistant tissue to 42.3 ml/g dry wood/h after oviposition was found. 

This represented an increase of 17 fold. The greatest single increase in 

root-knot nematode treated resistant tomato roots was 175% that of resistant 

control roots. In addition, no significant differences were detected between 

nematode treated and control resistant plants. These results indicate that 

ethylene production as measured by internal root concentrations was not 

stimulated with the resistant response. Similarly, rates of ethylene 

production in tomato plants resistant to Verticillium albo-atrum were not 

altered subsequent to inoculation with this fungus (Pegg and Cronshaw 1976). 
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Ethylene Levels in Susceptible Plants 

In no experiments were significantly greater ethylene concentrations 

obtained from roots of infested plants. In fact, ethylene concentrations 

were often greater in control than in infested plants. Experiment 3 was 

determined to have mean control root ethylene concentrations 47% greater than 

mean infested root ethylene concentrations (Results Section 5-6). This 

significant difference between control and infested root ethylene concentra­

tions increased with time. Experiment 2 had ethylene concentrations of 

control roots 18% greater than infested roots which was a marginally signifi~ 

cant dif f erence. No significant differences were found for control and 

infested root ethylene concentrations of experiments 1 and 5. In contrast 

to the hypothesis presented in the introduction, the present work indicates 

that not only do ethylene concentrations not increase subsequent to nematode 

infestation and gall development, but actually appear to decrease. 

Orion and Minz (1969) reported that Meloidogyne javanica induced galls 

on tomato roots increased proportionally with the amount of exogenous ethrel 

(ethylene precursor) applied. Later work confirmed this response of Fortes 

var. tomato with ~ incognita induced galls and ethrel application (Orion and 

Hoekstra 1974). It was suggested that increased ethylene levels were involved 

in the pathogenicity, specifically in the development of galls (Orion 1973). 

Results of experiment 3 indicate however that as the galling response 

increased the concentration of ethylene per gram root decreased. 

Further analysis examined the relationship of ethylene root concentrations 

to the extent of galling. Analysis of variance calculations were performed 

on ethylene concentrations grouped into four gall classifications (Results 

Section 5-10). No consistent variations in ethylene concentration with 
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extent of gall formation was detected by this procedure. 

Comparisons were then made between ethylene concentrations and root 

weights as a different indicator of the relationship between extent of galling 

and tomato root ethylene concentrations (Results Section 5-8). Linear 

regression analysis of nanograms ethylene per gram root versus root weight 

for all susceptible plants (experiments 1, 2, 3 and 5) revealed that in most 

cases there was a proportional increase in amount of ethylene with increasing 

root weight. However, the infested plants of experiment 3 which were the 

most severely galled of all experiments, did not show this relationship and 

total ethylene levels did not keep pace with increases in root weight. The 

same result was found for experiment 1 infested plants but was significant 

at only the 90% level. Experiments 1, 2, 3 and 5 susceptible control plants 

were determined to have proportionally increased ethylene levels with increased 

root weights. These results suggest that increases in ethylene levels of 

infested tissues did not keep pace with increasing root weight. This suggests 

that on a per gram weight basis, gall tissue contains less ethylene than 

normal root tissue. 

That this trend was not found in experiments 2 and 5 is readily explain­

able. It has been noted that the roots of infested plants in experiment 5 

did not increase in weight over the experimental time course while controls 

actually decreased (Results Section 5-1). Since root weights did not change 

much the relationship between ethylene levels and changing root weights could 

not be determined. Ethylene concentrations of experiment 2 infested and 

control plants increased dramatically at day 14 assuming a new elevated range 

of concentrations for the remainder of the experiment (fig. 21). This 

abrupt increase at day 15 overshadowed the effects increases in root weight 

had on ethylene levels. 
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A limited number of studies have investigated the relationship of 

ethylene production in plants infested by pathogens on a time course basis. 

None of these involved plant parasitic nematodes. One of the more rigorous 

investigations of this sort was that recently conducted by Pegg and Cronshaw 

(1976). They investigated rates of ethylene production from stem internodes 

and leaves of tomato varieties susceptible and resistant to a strain (T179) 

of the fungus Verticillium albo-atrum. Elevated ethylene production was found 

in stems and leaves after infestation and this rise in ethylene production 

either coincided with or was detected shortly after symptom development 

(i.e., epinasty, chlorosis, necrosis, adventitious roots, loss of turgor). 

Ethylene production in the first stem internode increased to a maximum of 

12.83 nl/gram dry weight/h, 12 days after fungal infection. This represented 

a 44-fold increase in the rate of ethylene production over the rate prior to 

infestation. The rate of ethylene production by the second leaf of 

susceptible tomato plants increased from about 2 nl/g dry weight/h 6 days 

post-infestation to 24 nl/g dry weight/h 9 days post-infestation, an increase 

of 12 times the former production rate. In both instances (in stem and 

leaf) increased ethylene production was detected shortly after visible 

pathogenic symptoms had appeared. The authors interpreted this to indicate 

that the increase in ethylene production was stress ethylene resulting from 

the pathological conditions and that ethylene itself was not acting as a 

phytotoxin and was not involved in the mechanism of infestation. 

Other investigators have found similar dramatic increases in ethylene 

production-associated with disease. Olsen et al. (1970) found an increase 

in internal ethylene concentrations of lemons and limes infected with 

Stubborn virus of about 110 fold (i.e., control levels 0.01 ppm ethylene, 
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virus-infected levels 1.1 ppm ethylene). Talboys (1972) incubated stem 

segments of hops infected with V. albo-atrum or V. dahlia and collected the 

ethylene evolved. Results indicated an increase in ethylene production up to 

33 x control rates in infected stem segments. Weise and De Vay (1970) however 

reported only 2 and 5 fold increases in rate of ethylene production in cotton 

plants infected with non-defoliating and defoliating strains of V. albo-atrum 

respectively. Their technique, in which plants were enclosed in polyethylene 

bags or jars for the collection of gases has been criticized (Pegg and 

Cronshaw 1976). 

These results are uniform in that rates of host plant ethylene production 

increased subsequent to pathogenic infection. The magnitude of these 

increases were generally in the range of 10 to 100 times. If changes in 

ethylene levels are involved in the relationship between ~ incognita and 

tomato plants, similar large changes in ethylene may reasonably be expected. 

However, in the present study the greatest difference in ethylene levels 

of ~ incognita infested versus control roots was a 2~ fold increase 36 days 

post-infestation in only one experiment (experiment 1, run 15). Values of 

ethylene levels of infested roots for the greatest majority of determinations 

ranged with ~ to 2 times ethylene levels of control plants. Increases in 

ethylene concentrations of M. incognita infested versus non-infested tomato 

roots in the order of 10 to 100 fold as found by other researchers in similar 

studies were never encountered. 

The hypothesis in the literature that ethylene is involved in the 

galling response of host plants to root-knot nematodes (Orion and Minz 1969, 

Orion 1973) was not supported by the present study. Ethylene concentrations 

on a per gram root weight basis either decreased significantly as root 
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weights increased due to galling, or shmved no significant difference where 

the increase in root weight of galled plants was not large. Orion and ~linz 

(1969) based their proposal on the fact that ethrel application increased 

gall size of tomato seedlings (var. Hossen Eilon) infested with Meloidogyne 

javanic~, However, a later publication revealed that ethrel treatment did not 

affect tomato galls induced by M. hapla. Further, although root-knot nematode 

induced galls of cauliflmver, cucumber and calendula increased in size 

subsequent to ethrel application, galls on okra, carrot and wheat did not 

(Orion 1973). In another publication similar discrepancies arose. Orion and 

Hoestra (1974) determined that galls on Fortos var. tomatoes induced by 

either M. incognita or ~ javanica increased in size with ethrel application. 

However, galls of Moneymaker var. tomato were unaffected. These results are 

perplexing. It is difficult to believe in the involvement of ethylene in 

gall formation when treatment with the ethylene procursor ethrel resulted in 

increased gall size in one tomato variety but not in another when both were 

infested with the same nematode (M. incognita). Although this hypothesis was 

proposed in 1969 (Orion and Minz) , it was restated in 1973 (Orion) and not 

reconsidered in light of the variety of host-parasite responses to ethrel 

reported in 1973 (Orion and Hoestra). 

The explanation given for ethylene action in gall formation as detailed 

by these researchers is also questionable. It was suggested (Orion and Minz 

1969) that ethylene caused proliferation of parenchyma tissue of galls by a 

mechanism analogous to that which causes swelling in etiolated pea stems 

(Burg and Burg 1968). However, the swelling of pea stem tissue results from 

increases in cell size, whereas the increase in gall size was reported to 

involve an increase in mitosis of parenchyma cells. It is my contention, 
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as supported by the experiments reported in this investigation, that ethylene 

does not play a significant role in gall formation. It may be that 

applications of the high ethrel doses used by Orion and Minz (1969) resulted 

in a pathological condition in the plants due to the release of toxic levels 

of ethylene. As a result the metabolism of some hosts was altered such that 

galling increased while in others it did not. It seems likely that results 

obtained by Orion and Minz resulted from ethylene concentrations that were 

not physiological. 

Ethane Levels in Susceptible and Resistant Plants 

Recently Elstner and Konz (1976) reported on ethylene and ethane 

production in sugar beets. Leaf discs were point frozen with a 3 mm 

diameter stainless steel rod kept at liquid nitrogen temperatures. Production 

of both gases increased linearly as greater percentages of the leaf disc 

surface areas were frozen. Ethylene production peaked when 50% of the leaf 

disc areas were frozen and decreased linearly as greater proportions were 

frozen. With 100% of the leaf disc area frozen, ethylene production was 

negligible. Ethane production however increased linearly to a maximum rate 

with 100% frozen. It was suggested that ethylene production increased in 

the cells immediately surrounding the damaged cells. This would account for 

the maximum production rate observed when 50% of the surface area of the leaf 

discs were frozen. Freezing greater proportions resulted in decreased 

ethylene productions. The authors speculated that intact cellular compart­

mentalization was necessary for ethylene but not ethane biosynthesis since 

ethane production was maximum when the leaf discs were entirely (100%) 

frozen. This result was substantiated by a further test in which sugar 
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beet leaf discs were pressed with a plastic piston and ethane and ethylene 

productions measured (Elstner and Konz 1976). While the rate of ethylene 

production decreased sharply after pressing, ethane production increased 

sharply. The authors proposed that ethane and ethylene are produced via two 

different biosynthetic pathways. 

It has been well documented that tissues of higher plants stop producing 

ethylene after homogenization while ethane production continues (Burg and 

Burg 1961, Lieberman and Mapson 1962, Curtis 1969). Apple sub-cellular 

particulate preparations evolved ethane only when a source of unsaturated 

fatty acid was present in the system (Lieberman and Mapson 1962). Recently 

John and Curtis (1977) isolated and characterized linolenic acid as the 

specific unsaturated fatty acid required for ethane production in tissue 

homogenates of Phaseolus vulgaris. Additionally a high molecular weight 

soluble enzyme was determined to be involved in ethane biosynthesis. They 

suggest that linolenic acid is the precursor of ethane biosynthesis in 

~ vulgaris. John and Curtis (1977) also observed that oat root tissue 

homogenates supplemented with linolenic acid demonstrated an 8 fold increase 

in ethylene production. Ethane production also increased in these prepara­

tions in response to linolenic acid, a result which is consistent with the 

proposal that linolenic acid is the precursor for ethane biosynthesis. 

Since linolenic acid increased both ethane and ethylene production in this 

system, it may be that some common factor is involved in the biosynthesis of 

both gases. This interpretation is in contradiction to that proposed by 

Elstner and Konz (1976). 

Root gases in the experiments reported here contained both ethane and 

ethylene. Ethane concentrations were determined since controversy existed 

in the literature concerning the relationship between ethane and ethylene 
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biosynthesis. Without exception, every root gas sample analysed had a greater 

concentration of ethane than ethylene. This result is contrary to the 

findings of Elstner and Konz (1976)who found greater ethylene than ethane 

production in sugar beet leaf discs. 

The apparent parallel variations of ethane and ethylene with time in most 

experiments has been documented in the results (Section 5-6). Statistical 

analysis of ethane and ethylene percentage differences between control and 

infested plants supported this observation. In every experiment where a 

significant difference in ethylene levels was found a similar significant 

difference for ethane was found. For example, ethylene concentrations from 

the roots of plants in experiment 3 (susceptible) were significantly greater 

in control than infested plants. This same result was found for ethane. 

1ihere there was no significant difference in ethylene concentration there 

was also no significant difference in ethane concentrations. Only one 

exception to this pattern was found and that was a significantly greater mean 

ethane concentration from control resistant plants in experiment 6. As 

previously discussed ethylene concentrations of susceptible plants were either 

unaffected or decreased relative to controls after root-knot nematode 

infestation. Since ethane concentrations were affected in the same way as 

ethylene concentrations, it appears that nematode infestation affected the 

synthesis of these two gases in a common manner. These results would seem 

to corroborate the results obtained by John and Curtis (1976). 



159 

Ethane/Ethylene Ratios 

In order to investigate further the relationship of these gases, ratios 

of ethane concentrations over ethylene concentrations were calculated. In 

4 out of 6 experiments, ethane/ethylene ratios increased significantly with 

time for both control and infested plants (experiments 3-6). Ratios of 

experiment 1 showed no tendency to increase or decrease with time and were 

scattered over a wide range of values. Ratios from plants in experiment 2 

significantly decreased with time (figs. 31-36). 

It is known that ethane production in many higher plant tissues increases 

after homogenization (Lieberman and Hapson 1962). Mechanical damage of sugar 

beet leaf tissues also resulted in increased ethane production (Elstner and 

Konz 1976). In the latter case, greatest ethane production rates occurred in 

the most severely damaged tissues. It appears from these results that ethane 

production may be associated with degeneration of dead or dying plant cells. 

Results of experiments reported here may be consistent with this suggestion. 

The senescent condition of plants in experiments 5 and 6 has been 

discussed. Symptoms of this condition were seen in decreasing root weights 

of control plants with time, the absence of stem elongation and a decrease 

of top weights with time (fig. 13). Root weights were decreasing with time 

presumably due to degeneration associated with senescence. It may be that 

increases in ethane concentration were a direct result of this process. 

Ethylene concentrations did not demonstrate a concurrent increase. Thus, 

increasing ethane/ethylene ratios with time for experiments 5 and 6 were 

observed. 

Plants in experiments 3 and 4 were 90 days old at infestation as compared 

to 125 days old in experiments 5 and 6. These plants were grown in spring 
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and summer months, grew rapidly and were mature at infestation (see ,' 

Results Section 5-1, fig. 10-11). It is likely that the aging process was 

pro ceding in these plants. Increased ethane/ethylene ratios with time in 

these experiments perhaps indicate increased ethane production as a result 

of increases in dead and dying cells associated with ag ins. 

Plants in experiment 1 were young (46 days old at infestation) and 

rapidly growing (Results Section 5-1, fig. 8). Presumably dead and dying 

cells were at a minimum in these plants. The absence of increasing ethane/ 

ethylene ratios with time in this experiment therefore is consistent with 

the hypothesis that increases in ethane production resulted from increases 

in dead and dying cells. 

Results from experiment 2 were anomolous. A dramatic increase in 

ethylene concentrations at day 14 and onwards was observed. These increases 

were 5-6 times former levels. Although increases were also observed for 

ethane concentrations, they were to a lesser extent (i.e., 2-3 times 

former levels). This resulted in significantly decreasing ethane/ethylene 

ratios with time. There is no apparent explanation for the observed dramatic 

increases of ethylene and ethane concentrations. 

In general the results obtained upon investigation of ethane/ethylene 

ratios are consistent with the suggestion made by Elstnerand Konz (1976) that 

ethane production rates reflect the integrity of a tissue. It may be that 

ethane is anatural product of decay processes in degenerating plant cells. 
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SUMHARY 

1. No significant difference was found between endogenous root ethylene 

levels of root-knot nematode resistant (var. Anahu) and susceptible 

(var. Vendor) tomato plants. 

2. No significant increase in ethylene levels was detected in roots of 

susceptible (var. Vendor) tomato plants after infestation with 

~ incognita. This result does not support the hypothesis in the 

literature that increased ethylene production accompanies gall formation. 

3. No significant changes in ethylene levels in roots of resistant (var. 

Anahu) tomato , plants were detected after exposure to large numbers of 

~ incognita. This result suggests that ethylene is not involved in 

the mechanism of this resistance. 

4. Root ethylene concentrations decreased in susceptible plants after 

~ incognita infestation in two experiments (experiments 2 and 3). Root 

ethane concentrations also decreased in these experiments and the level 

of significance of this decrease was the same for both gases. This 

result appears to substantiate the suggestion that the processes of 

ethane and ethylene biosynthesis may have some components in common. 

5. Ethane/ethylene ratirn increased significantly with time in 4 of 6 experi­

ments (experiments 3 to 6). The possibility that increases in ethane 

production were due to an increase of degenerating tissue is discussed. 

6. Results indicated that M. incognita infestation of susceptible (var. 

Vendor) tomato plants influenced the growth of these plants such that 

root weights increased, stem heights were reduced and top weights 

increased. 

7. Growth of resistant (var. Anahu) tomato plants was unaffected by exposure 

to large numbelliof ~ incognita. No galls were ever detected on roots 

of resistant plants. 
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0 .~8 

0.10 
0.11 

0.10 
0.42 
0.39 
0.l3 

0.28 
0.10 
0.15 
o. :,8 

0.060 
0.01,3 
0.060 

0.091 
0.0 82 
0.072 

0.060 
0.026 
C. 2} 
0.028 

0.02 4 
0.015 
O.O U , 
o.un 
0.026 
O. (;1.1 

0.0 :)1 
a. oen 
0 . 0J2 
0 . 0,:,2 
O.O t) f) 

0.1 :> 

0.11 

C~H(, 
PC(l.k Si.ze 
( com, t 5 ) 

19 
2B 
35 
44 

105 
90 
1.6 
60 

80 
78 
70 
68 

76 
121 
76 
:15 

33 
104 
39 
30 

55 
53 
77 
52 

80 
84 
81 
65 

60 
122 
67 
73 

290 

186 
250 

167 
116 
151 
79 

176 
371 
389 

273 
278 
403 
218 

106 
175 
105 
206 

32() 
251 

223 

43 
10 
60 

81 

11i2 

174 

(nglg root.) 

0.80 
1. 22 
2.28 
3.47 

5.39 
3. ) /, 
2.26 
3.19 

4.;J2 
1. 78 
2.65 
2.42 

J.l.4 
3.18 
2.64 
2 .01 

1. 23 
3.6!' 
1.11. 
0.87 

2.06 
2.02 
2.1,7 
1. 50 

/ •• 74 
3 .91 
3.71 
2.29 

0.55 
1.',7 
1.4.1 
0.61 

3.0/, 
:<,19 
2.08 
2. 14 

1. 2l, 
0.80 
1. 27 
0.47 

1. 81 
2.25 
2.59 

2.79 
1.81 
1. /8 
1. 21, 

0.65 
L06 
0.li2 
J.. 32 

7.50 
1.32 

1.50 

0.31 
0.1.6 
0.80 

0.B5 

1. 69 

AI} o UH'~ r H t(~ : t l !H' if,;!JeH ilnd t op W(·tg t !..; aiL~ th e nH~ itl1 t.' ~li l,l l_ ' '.1 (Pf If plan"s . Root \.,n~ 'fgllt i n th e· to ta l 
\.,/ c iK1)t \,If all ron t' !~ tl f-Jcd !.n t he Cx.pcrilrCrdJ d r un. Tt}l: d l g;~ !;1 ~. R t.h':it !'J: tra c ted frum nU, roots o!-
tht~ run . 

Dlllfi. not i]\!, If. I ,lbl.e doe to l !' chnl C'u l prub -l enH3 tJ! t'~ t IH'. f~.lecL ton r , \' n~ co'..~ d(·r or gnB vx t rl'l ction 
lJpp a r!l t t1 i-~. 

l~xr, r rinl ( n t cnnd l\~: t('(! .l:tll\ji.i r y / h' h~: 'Ji d: y , 197/. 

j 



r:xper IiJlt'nt 
Run N\Jf~b C' r 

I-Ie 
1··2C 
1-11 
1-21 

2-1C 
2-2C 
2- 11 
2-21 

3- 1C 
3--2C 
3-11 
3- 21 

4-IC 
4-2C 
4- 11 
4-21 

5- IC 
S-2C 
5-11 
5-21 

6-1C 
6-2C 
6-1I 
6-21 

7-le 
7···2C 
7-11 
7-21 

8-IC 
8- 2C 
8-11 
8-21 

9-1C 
9-2C 
9-1 1 
9- n 

lO··lC 
lO-LC 
10-1I 
10-21 

11-lC 
U-2C 
ll··II 
11-'1l 

12-1C 
12···2C 
12··1 J. 
12-2I 

13-1C 
13-2C 
n·ll 
l3-- 2I 

14-.1C 
J.I. ··2C 
14·1I 
H"2I 

15-1 C 
15-2C 
lS-11 
15-21 

10-1C 
16-2C 
l o· lJ 
16-1J. 

17-· JC 
)7-2<.; 
17··J1 
1.7 - ~J 

(days) 

0 . 06 

0.80 

1. 33 

2 

I, 

8 

11 

12 

14 

15 

16 

19 

2S 

26 

27 

StdTl 
Il (!Jtill: 
(em) 

24 . 5 
28.5 
26.8 
2B . 3 

30.5 
2B.7 
32.8 
26.6 

33.5 
30.0 
31. 2 
27.1 

33.4 
31.0 
25 . 9 
30.8 

32 . 0 
29 . 5 
30 . 6 
28 . 9 

:n.6 
33.6 
33.0 
32 .7 

29 . 8 
31.9 
32 . :5 
32 . 3 

35.4 
33.6 
35.4 
30.0 

29.8 
33.2 
33.9 
33. 1 

31. fl 
37 . 5 
35 . 8 
37.0 

34.7 
34 . 5 
39.0 
36 . 9 

30 . 8 
34.0 
3B . 6 
40 . 3 

1,4 . 0 
37.9 
41. 3 
41.1 

47.S 
39.9 
44.3 
47 . 3 

L;I,.6 

50. 1 
t. 5. 4 
I,!,. 2 

50.~ 

49.8 
~ 8.1! 

40.0 

52.0 
5/,,5 
51.0 
46.0 

'It'1' 
h't'f ~~ht 
(g) 

17.:: 
20.3 
1 7 . 'i 
22.0 

20.7 
20.1 
23 . 3 
18.1 

20.1 
17,1, 
25.4 
17.0 

20 . 6 
18.7 
18 . 4 
22 . 1 

20 . 5 
17.7 
2J.5 
18.2 

16.5 
27.4 
21.0 
22.5 

20 . 9 
17 . 9 
26.1 
24 . 8 

18.2 
19. 1 
22.7 
20 . 2 

24.9 
17.3 
27.S 
20 . 0 

19 . 2 
21.4 
26 . 6 
33.5 

13.3 
21.6 
26.9 
26 . 2 

20.8 

26 . 1, 

28.9 
76 . 4 
26 . 2 
29.2 

3:'; .0 
25.0 
39.9 
33.2 

I.e.!. 
50 . 7 
3S.9 
37.E 

36.5 
113. 7 
39.8 
.D.9 

1~5. 2 
:, 7.3 
4/,.8 
40.IJ 

i\'.'ot 
\.Jeight 
(g) 

11.9 
11.6 
ll. . S 
12 . 9 

9 . 6 
10.0 
10 . 9 
10 . 7 

10 . 2 
9. 5 
1',. 5 
9.8 

10 . 2 
10.1 
10 . 4 
1.1 • • 0 

11. 3 
9.9 
1.5 . 6 
8.6 

9.5 
15.1 
11 . 7 
12.2 

12 . 9 
10 . 0 
15.5 
ILl 

9.5 
9 . 6 
1 2. 8 
10.3 

14.6 
10. L 
13.0 
11 . .3 

11. :. 
9.9 
D. ? 
15.4 

1l.1 
14 . 6 
13 . 2 
13.3 

10.9 
10 . 7 
14 . 4 
12.2 

15.2 
12." 
11.1 
11 •. 2 

12 . 1 
12.5 
15 . 9 
12.1.. 

14.4 
IB.I, 
H. , 
20.n 

1' • . 7 
15.8 
H,.O 
16.9 

6 . 9 
6.7 
7.9 
9 . .!. 

VOlll:::l~. 

of Gas 
(ml) 

0. 56 
0.43 
0.99 
0.76 

1.11 
0.49 
0 . 35 
0 . 84 

0 . 79 
1. 38 
l.00 
0.74 

O. }2 

1. 36 
0.64 
0 . 47 

1.07 
0.84 
0 . 75 
0 . % 

0.87 
0 . 99 
1. 20 
l.12 

0.91 
1.02 
1.17 
0.48 

0 . 96 
0.65 
0 . 64 
0.67 

0.56 
1 . 39 
1.3:< 
0 . 52 

1. 62 
1. " 6 
J . 1·8 
2.07 

1.57 
2.30 
1. 54 
2.02 

1. 60 
1. 74 
1. 58 
1.61 

1.71 
1. 81 
1. 04 
1. 39 

0 . 98 
1.16 
1.1.3 
1. 06 

1. 34 
1. 59 
1. 68 
1. 75 

1 . 44 
J. 57 
1. J i~ 

.L 119 

0.87 
0.59 
(J . 67 
1.18 

C"Hl , 

t~ca!( S l.~ e 

( counts) 

11.0 
16. I 
17.9 
6.1 

:<1. 3 
8 . 9 
3.3 
21. 3 

13.3 
25.3 
23.0 
15.0 

11, . 3 
3 . 9 
20 . 8 
20 . 0 

25 . 5 
12.5 
8.6 
25.0 

'3, 4 
20 . 5 
21. 5 
7 . 8 

57.7 
25 . 6 
23 . 0 
40 . 0 

22.4 
5.8 
4.2 
42 . 9 

5.5 
26 . 5 
16.0 
10 . 9 

25.5 
32.8 
60 . 8 
37.5 

8~.5 

62 . 5 
71.5 
76.5 

70.8 
59.0 
53.3 
53 . 5 

70.0 
74 .5 
87,0 
88.0 

(,0 . 0 
76.0 
102.0 
79 . 0 

62.0 
58 .0 
7l,.0 
43.0 

43.0 
::'4 .0 
56.0 
46.(\ 

102. 0 
91., .0 
1.21,.0 
63 .0 

(ng/g rout) 

O. (' J6 
0.0 93 
O • .l1 
0.0 25 

0.17 
0 . 030 
0.0074 
O.O~O 

0.072 
0.26 
O. l.l 
o. on 
0.070 
0.037 
0.0 <3 9 
0.047 

0 . 17 
0.0"11, 
0.019 
0.19 

0, 060 
0 . 093 
0. 15 
0 . 050 

0.28 
0.18 
0 . 1~ 
0.12 

0.16 
0.027 
0.015 
0 .19 

0.015 
0.25 
0 . 11 
0.OJ5 

0 . 25 
o. :'. ~ 
0.41 
0 . 3:> 

O. B3 
0.68 
0.58 
C.81 

0 . 72 
0 . f. 7 
0.l,8 
0 . 49 

0.55 
o.n 
0.57 
0 . 4/, 

o. :'4 
o. 4~; 
O. SO 
0.4"1 

0 . 40 
0.35 
0 . ~3 

O.2C 

0 .2 9 
0."7 
0 . }7 
0.36 

O. £Y 
(..I . '~ 8 

O.7J 
0 . 5:1 

C:, H(, 
Pe ak Sizf: 
( l!.O lltltS) 

84 
8d 
9/, 
3,,. 

11,9 
152 
90 
157 

176 
172 
B8 
211 

I8} 
160 
'L)7 
III 

177 
130 
1e4 
180 

165 
197 
202 
151, 

65 
128 
l!1 
fJ7 

75 
73 
21 
15J 

54 
YO 
69 
98 

LYj 
J34 
206 
156 

201 
204 
192 
214 

119 
163 
171 
172 

177 
~01 

1.34 
95 

1.0G 
113 
11',. 
125 

175 

(ng/g ruot:) 

0 . 51 
0 . 95 
l.U9 
0.21, 

2 . 36 
l .m 
O. 3Y 
1. 70 

1. 89 
J . '.6 
1. 80 
2. 22 

1. 1'3 
2.98 
2.22 
0. 50 

2 . 32 
1. 51 
1.23 
2.73 

2. 09 
1. 80 
2 . 88 
1. 95 

0.60 
1. h 
1.13 
0.50 

1. 00 
0 . 65 
0 . 11 
1. 35 

0.264 
I.M 
o.n 
0. 61. 

2. 14 
2.70 
3.22 
~~. 89 

3.95 
4.1,7 
3 . 10 
4.53 

:< . 21, 
2. 94 
2.1? 
2. 57 

1. fJ2 
3.34 
2 . 21 
1.72 

1.16 
1.05 
1. 79 
1.67 

2 . 23 
1 . 113 
1. 90 
1.12 

1. 32 

1 . 50 
1. 91 

2 . 31 
1./~ 2 

?. Gy' 
1. . 'i() 
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Tnbl('~ 2, 1'. 

Exp(~)"h(tcnt 'rIme St !'1rt TOl) Root Voluille C 2H ,_! C'iHl1 C:?Hb (:211 6 
Run Numb(:r Height Weight: Height of CUB Peak SIze P('ok She 

(day s ) (cm) (!:) (g) (n: 1.) (counts ) (ngi g root ) (cuunt,,) (;>g /g root) 

18.- 1, (: 28 53.3 46.7 8.4 0.75 l1.2.0 0 . 70 210 2.61 
IS-·2e 50.7 47.0 0.7 0.68 63.0 0.34 1.51, 1.66 
1S-U 53.0 49.9 9.0 0.69 88.0 0.47 131, 1.1,0 
18-11 '~5. 5 44.4 9.8 0.87 61 •. 0 0.40 181 2.23 

19-1C 46 6 7 .2 71.9 12.5 0.90 86.0 0 .4 3 148 1.46 
19-2C 73.3 61.6 8.0 0.82 116.0 0.83 178 2.52 
EJ-lI 54.1, 58 . 4 12.1, 1.10 122.0 0.75 210 2 . 59 
19-2I 5(" 3 69.4 16.1 1.19 71 .. 'J 0 . 38 138 1.40 

St cr,: He ights and Top Pe:f.f~ht~ a re the mean values for 2 pl.lnts per pxperi:nental run up t.o and 
including :"an 16. Run 17 ~~d on are the values o[ a ai,ogle piallt us e d in each cxperim~ntal ru~. 

Root ldei g hr. is the to ta l v,' eight of all r-O()t~ used in the e):re.c:i.r:H'!otal run. 
Totol gas is that extracted f rom all roots of the cxpp.r.i.m.;:! nt::l1 run 
--Record of this dnta l ost. 
Expe riments cond.uct~d Hay/June 1977. 



'fah l e 3. E:~qh' r lmL' l\t J. Suscl'!ptJblt.: Tor,:nto PluntH 

EX:1cr i ment Ti me 
Run Nun~her 

(r1 nys ) 

I-IC 0.25 
1-2C 
I -· ll 
1-21 

2-1C 1 
2-2C 
2-11 
2-21 

3-1C 
3- 2C 
3-1 ~ 

3-21 

4-1t: 
4-2C 
to-lI 
1,-2I 

5-IC 
5-2C 
5-1I 
5-21 

6-1C 
6-2C 
6- 1I 
6-21 

7-1 C 
7-2C 
7-11 
7-21 

8-J.C 
8- 2C 
8-11 
8-2J. 

9-1C 
9-2C 
9-1J 
9-21 

10-;C 
IO-·2e 
10-11 
10-21 

11- 1C 
ll-2C 
Ho·lI 
11-21 

12-1C 
12-2C 
12-11 
12-21 

13-1C 
13-2C 
B-lI 
13·-21 

14- JC 
14- 2(; 
14-11 
14 -2J 

1:',,1(; 
15- 2C 
J 5 .. ·11 
1 ) -21 

[. 

6 

9 

11 

13 

15 

19 

21 

23 

25 

27 

30 

titem Top Roo t 
"Di~hL We i ght W~iKh t 
(<:;11) ( g) (!\) 

62 . 0 48.1 5. 2 
41.0 37.7 5 .5 
63.5 44 .0 J 5 
51.0 41.0 4.~ 

55.0 33. 2 3.1 
45.0 37.7 4.2 
38.0 36.~ 5.0 
60 . 0 3~ . 5 3.5 

70. (. 
36.0 
53.0 
53 .S 

61. 5 
53.0 
:'1.0 
66.5 

54.0 
61.0 
42.0 
59.5 

91.0 
70.0 
62.0 
63.0 

60.0 
75 .0 
62.5 
69.0 

49 . 0 
68.0 
75.0 
S2. S 

63.0 
7:~. 0 
59 .G 
72.0 

75.5 
70.0 
56 .0 
70.0 

52.5 
100 .0 
6&.5 
61.0 

84.0 
70 .0 
60.5 
61 .5 

n.s 
(,2.0 
5"'. 0 
b9.0 

95.5 
85. 0 
[, ~ .O 

76.0 

6",' .0 
54.0 
64.5 
ilLS 

43 . 2 
34.1 
40.8 
40.6 

41. 5 
40 . 0 

57 .8 
62.2 

33. 9 
36. 0 
3R. 6 
51. 5 

62.(, 
1.2.& 
46.2 
55.1 

[.7.6 
~6.8 
51.[, 
35.8 

35.2 
55 . 8 
49 . 5 
41. S 

38.1 
52.9 
t. S.2 
67.0 

47.7 
55.3 
1.9.0 
48.3 

50.3 
53.0 
fi /, . 1 
[,8.6 

45 .2 
62.!' 
55. 8 
51 •• 1 

1, 8 .2 
J~.1 

40.2 
44. 3 

62.4 
49. 4 
[,2.8 
71. J 

51,.7 
30 .0 
61. 1 
6 3.7 

3.8 
5.0 
5. [, 
4.1 

5.8 
4 .8 
4. 7 
1.4 

3.9 
2.9 
6 . 3 
5.9 

6.8 
5.2 
7.4 
9.4 

G. 7 
5.6 
6 . 0 
3.6 

4.0 
7.3 
6.6 
7.4 

5. 5 
7. ti 
8.7 
9.1 

4.3 
5.f, 
12.0 
11.7 

7.9 
6. 5 
10.1) 
13.3 

6. 6 
7 .7 
14.1< 
13.8 

5.0 
5. 8 
9.3 
15 .5 

(). O 

~.6 

J. S . :! 
2':' . 3 

B.2 
3 . 5 
21..6 
12.2 

Vo l u:n(~ 

(1 f G ll:> 

(ml ) 

0.62 
0. 32 
0.27 
0 . 67 

0.41 
0.29 
O. ) } 
0.47 

0. 36 
0.23 
0.32 
0.[.9 

0.60 
0.27 
0.21, 
0 .87 

0 .56 
0.21 
0.40 
0.74 

0.67 
0.9 6 
0.44 
0. ';0 

0.77 
0.67 
0. 50 
0.60 

0 • .50 
0. 51 
(l . 70 
0.71 

0.89 
0. 52 
0.76 
1.0'7 

o. ~i4 
0.35 
1.01 
1.J.8 

0.74 
0. 56 
0.82 
1.32 

0.81 
0.1,0 
L ~ 7 
1. ::0 

C. 54 
0. 3a 
O. :, 7 
1. ( 4 

O. /2 
O. J.7 
1. 18 
2.~O 

0 . 78 
O. 2J. 
O. e.6 

0 .74 

C2Hli C;::HII 
Peak Size 
(co un ts) ( llg / g roo t ) 

1;9.0 0.74 
56 . ) 0.2'! 
96 . 0 o.~:~ 

70.U 0.7/1 

87 5 0.8!, 
60.0 0. 2') 
5:.L5 O.:Ui 
55.5 0.52 

51. 5 
50.0 
:l8.S 
62.S 

]/ •. 0 
1.2.0 
20 .0 
12.0 

7.5 
17 .5 
11.5 
7.0 

31 .0 
2[,.0 
27. 5 
17.0 

22.0 
22.0 
20.0 
14 .0 

12 . 0 
23 .0 
25.0 
22.0 

20. 0 
!, 2. 0 
29 . 0 
21. 5 

14.0 
23.~ 

19 . (' 
15 . 0 

1 5 . 0 
25 • .5 
13.5 
7.5 

8 .S 
17.0 
12.0 
7. 0 

12.5 
18. '; 
14 .0 
G. '5 

1 3. ~ 
7.0.0 
} 2. U 
G.O 

8 . C' 
20 . 0 
10.5 
6.5 

0. 31,0 
0. 16 
O. ).6 
0 . 52 

0.10 
0.047 
0.0 1} 
0.0913 

0.075 
0. 088 
O.O .~O 

0.061 

0.2J 
0. 31 
0 .11 
0 .051 

0.18 
o . li~i 

0.13 
0. 16 

0.11 
0.11 
0 .19 
0.:5 

0.22 
O.?O 
0.17 
0 . 21 

0.12 
0.11 
0.11 
0.11 

0.097 
0.15 
0.0'16 
0.0 39 

0.073 
0 .062 
O.O Gi; 
0.04 2 

0.094 
0 . C135 
P.057 
0 . 048 

0.11 
0.082 
0 .064 
0.0 38 

o. n ~)2 

0.083 
0 .019 
O. OLl 

Stc!ni hl.'.Jr;ht s and g :u .. .' pt:ak S :b':PD "'e re meas ured ~: o lh~! neares t half un.it: . 

ALL VH .!.. l>£!B meaf)UT0d PCl' n.m "'H~ r c eLt.:.;tne d t rot). a fiingJ.e p lan~: used . 

Exr~ rJm~n t conductc~ .ruly/A~gl!9t 19 77. 
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C211 (, C2H6 
l'cnk Size 
( counts ) (n6!g root ) 

66 1.03 
o 0.31, 

64 0. 64 
56 1.09 

210 3 .86 
76 0.69 
65 0.56 
77 1. 37 

83 
190 

95 

21 
62 
40 
21 

48 
50 
60 
29 

51 
103 
41 
43 

69 
26 
68 
38 

1.3 .5 
66 
50 
76.5 

C3 
126 

154 
90 
li2 .S 
60.5 

8(, .5 
;'2 .5 
25.5 
41.5 

45.5 
60 
3D 
50 

90 
79 
33 

103 . 5 
107 . 5 
50 

71 •• 5 
120 
56 .5 
7(j 

1. O!; 

1.21 
0.33 
1.53 

0.2 2 
0.l,5 
0 .25 
0.25 

0.86 
0.1, 6 
0.49 
0.1,1 

0.6!! 
2.57 
0.30 
o.n 
1. 04 
0.31, 
0.8 3 
0.77 

0.6;' 
0.60 
O.E; 3 
0.97 

1. 89 
0.45 
0.93 
1.2 3 

7..67 
0. 73 
0.93 
0.79 

1. 09 
0. 82 
0.27 
0.39 

0 . 70 
0.40 
0.28 
G. ') 5 

1. 30 
0.62 
0.27 
O.M 

1. 67 
0.85 
O. · ~ 9 

·J.36 

0.93 
1. 01 
0.37 
1..0', 



Expc rim('nt 
R\.\n Nu:ub nr 

1-1C 
],"2C 
1-- 1I 
1-21 

2-1C 
2-2C 
2- 11 
2-2I 

3- 1C 
3-2C 
] -1I 
3-21 

4-1C 
1,,-2C 
I,,··ll 
4-21 

5-1C 
S-2C 
5-··11 
5- 21 

6-1C 
6-2(; 
6-lI 
6-21 

7-1C 
7··2C 
l-ll 
7-21 

8-1C 
8-2C 
8-11 
8-2I 

9-1C 
9-2C 
9· ,l.I 
9-21 

10-lC 
1.O-2C 
10-11 
1\,-,21 

11.-1C 
11-2C 
ll-ll 
11-21 

12-- 1C 
12···2C 
12-11 
12-21 

1 :'-IC 
13-2C 
J 3-1I 
13-21 

14- 1 <: 
11,-2C 
14-11 
16 - 21 

(day s) 

0. 33 

2 

6 

9 

11 

13 

is 

1<) 

21. 

23 

25 

27 

St em 
II cd ght 
( cn,) 

52.0 
55.~ 

55 . 5 
62.0 

57 .0 
55.5 
41.0 
55.0 

57 . 5 
42.0 
59 . 5 
63.5 

53 . 0 
4J.O 
5 ~J . 5 
57. 5 

60 . 0 
59 .5 
58.0 
61.0 

67.0 
63.0 
62.0 
66 . 0 

50.0 
60 .0 
57.0 
63 . 5 

59.0 
59.0 
39 . 0 
66 .0 

59.0 
34.0 
39.0 
66 .0 

57.0 
48 . 5 
7/~ . 0 
71. 0 

49 . 5 
71. 5 
SG.S 
69.0 

56.5 
70.5 
73.0 
64.0 

60.0 
57.0 
55 .0 
84.0 

62.5 
51 . 0 
n. o 
77.5 

TOl) 
\-le i-ght 
( f' ) 

~itl . 8 
,5 !,.6 
54 . 1 
61. 7 

1,2.6 
80.2 
39.3 
33.7 

51.1, 
46.0 
66 .0 
62.4 

48 . 5 
3' •. 9 
26.9 
68 .7 

85.1, 
52.8 
56 . 6 
64.u 

59.0 
85.1 
58.6 
73.7 

I,B .O 
79.8 
60 . 3 
'42.5 

)3.4 
43.8 
62.5 
57.2 

50.5 
45.2 
28.6 
66.1 

43.7 
1, 4 .3 
85 .5 
56.1 

67.8 
47 . 3 
52,1, 
58.6 

54 . 3 
69 . B 
55 . 9 
76.5 

59.0 
77 .4 
66.1 
n.} 
41.i 
53 . 6 
69.1. 
83 .ll 

Rool 
\o,' c l ght 
( g ) 

6 . 4 
6.3 
7. 6 
7. J 

E.O 
12 .1 
6.2 
3.6 

6 . 5 
6 . 5 
8 . 2 
7.0 

5. 4 
5 ., 

3. 2 
9 . 0 

1.' • . 6 
6 . 7 
5 . 0 
6.n 
7. 0 
16.0 
6.0 
10 . 5 

6.2 
1,0 . 8 
8.6 
5.2 

10.5 
7.8 
6. 6 
9.2 

7,] 

5.0 
3. 4 
B.O 

5.0 
5 .6 
9. 7 
6 . 9 

11.6 
4.3 
5.7 
7.0 

7.3 
10.0 
12 .4 
6 . 4 

i'. :, 
13.t, 
7. 8 
14 . ;> 

5.3 
6.4 
7.4 
111.9 

V(llUHl(, 

of C;,w 

(1II1) 

0,69 
O. t~/, 
O. S[; 
0.9t 

1.07 
0.91 
0.0 
0. 58 

0.67 
0.1i0 
0 . .5 ~I 
0.79 

O.~g 

O. :6 
0.2 5 
0.77 

1.5 0 
(l.Sl 
0 . 38 
1. 02 

0.71 
1.03 
0.1i5 
1.08 

0.76 
0.81 
0 . Il 
0.54 

1.05 
0.32 
0 . 60 
1.01 

0.93 
O. ·~2 

0.17 
1.14 

0.64 
0.43 
0. 82 
0.69 

1.01 
0.33 
0.5S 
0. 88 

G.72 
0.72 
0.42 
1.15 

0 .. 71 
O.8? 
0.63 
1. 58 

0.60 
0.48 
(). 60 
L 3'> 

CLH" 
Pel:k S J.l:e 
( c ount,,) 

710.0 
40.0 
42 . 0 
43 . 0 

4C' . 0 
44.0 
41. 5 
52.0 

51, . 0 
50 . 0 
51 •. a 
53.0 

10.0 
8 . 0 
10.0 
8 . 0 

7.0 
13 . 5 
13.0 
10.5 

23.0 
16 . 0 
27 . 5 
l8.0 

26.0 
20.0 
22 . 5 
17.5 

16.5 
26 . 5 
31. 0 
I G.O 

1<\.0 
39 . 0 
22.0 
16 . .) 

J 6 . 5 
15 . 0 
15.5 
14.0 

12.5 
17 . 5 
21.0 
13.0 

R.5 
22.5 
15.0 
9 . D 

6.5 
12.0 
21.0 
" , 
I • . ~ 

10 . 0 
15.0 
17, 5 
6 . 0 

( ng/r, root) 

0. ,~ 5 

0.] 9 
J.n 
0.37 

0.50 
0 . 23 
0 . 20 
0 . 58 

0.39 
0.21 
0.26 
0 ./12 

0.088 
0.0 25 
o. 05/~ 

0.048 

').0Id3 
0.11 
0.058 
0.12 

0 . 17 
0.072 
0.14 
0.13 

0.22 
0.10 
0 . 13 
C.13 

0.11 
0.076 
0 . 20 
0 . 11, 

O . 1~ 

O ,, 2~ 

0. 076 
0 . 17 

0 . 15 
0.080 
0.092 
O. ')97 

0.076 
0.091, 
0 . 14 
0.11 

0.05 9 
0 . 11 
0.06 8 
0. 057 

0 . 044 
0.051 
0 . 12 
0. 056 , 

O.0 7 ~ 
0,07 8 
0.097 
0.038 

Stem height.B and g un pe ak fii.Z CS '.Jere mea.sured lo the n r~~ il1.' er. t ho.] f unJ:.:. 

C?HG 
Peak Size 
( coIJnt&) 

52 . 0 
28 .0 
J7.0 
311 .0 

3fl. 0 
Lc S. O 
38.0 
62.0 

72.0 
7"1.0 
78.0 
71 •• 0 

29.0 
28.0 
38_0 
22 . 0 

22.0 
47 . 0 
30.0 
33 . 0 

49.0 
34.0 
55.0 
45.0 

85 .0 
41.0 
sa.o 
55.0 

61. 5 
7.J . • 5 
82 .0 
53.5 

"12.5 
WI . ', 
31.5 
78 . 0 

80.0 
66 . S 
70 . 0 
76.0 

54 . 0 
62.5 
70.0 
56.5 

68.5 
57 . S 
21 .5 
:, :1. 0 

78 . ~ 

52 .0 
67 . 5 
68 . 0 

110 . 0 
52 . 5 
08.0 
~B.O 

178 

(n::;if. rooe) 

0.7.1. 
o.n 
0 . 34 
0.50 

0.82 
0.1,2 
0 . 12 
1.29 

0.98 
0 . 63 
0.72 
LIO 

0 .42 
O.lA 
0. 36 
0 . 20 

0 . 21, 
0.71 
0.2L 
0.73 

0 .68 
0.26 
0.53 
0 . 58 

1. 39 
0.38 
V ~ S2 

0. 73 

0.79 
0.:19 
0.9') 
O.7S 

1. ?l 
1. 2? 
0 . 54 

1.36 
0.6/ 
0 .78 
1. 00 

0.60 
0.6 ~ 

O. 8~J 
0.3 ;,) 

0, 89 
0 . 48 
0.20 
0.·~ 9 

C.99 
0 . 1,0 
O. (i~; 
O. ')6 

1. G9 
0.50 
0.72 
0.68 



Tabl(' ~} . EJ-:pt ~ r!J1lt~I)t S. Su tZ' ('('p tlbl rJ 'fOI.l,: .• to Fl 'lnt s 

E~:p e ri~(lent T.l~~i(! 

Run NlJ.:ub0r 
(day s ) 

1 .. . 1.C 0.25 
l~ ?G 
1.~. 11 
1-21 

2-1C 1.25 
2-2C 
2-11 
2-21 

3-1C 2 
3-2C 
3-11 
3-21 

4-1C 4 
4-2C 
4-H 
4-21 

5-1C 
5--2<: 
5-H 
5-n 
6-jC 
6-2C 
6-J~ 

6-21 

l-lC 
7-2C 
7-U 
7-21 

S--Ie 
8-2C 
8-11 
3-21 

7-1.C 
9-:;C 
,,-iI 
<;-21 

10-1C 
iO-2C 
10- .n 
10--21 

11-1<: 
11-2C 
ll-lI 
11-21 

12--1C 
12-2(; 
12-11 
12-21 

13-1(: 
13--2e 
13-11 
13--21 

14 --1C: 
14--?'C 
11,-·11 
14-21 

9 

11 

13 

;'9 

21 

23 

30 

Stem Top 
ite lrht \h'ight 
( ell ) (g) 

63.; 113 . 2 
74.5 4(..3 
';;.0 1<1.9 
(.1).0 53 . 7 

52.0 26.5 
59.0 47.5 
6 -;.5 52.8 
45.0 57 . t. 

71.0 SI,.7 
41l.C 2e.5 
63.0 39.2 
56.0 59.7 

50 .0 !.~)'5 

)2.5 33.6 
70 .5 38.9 
54.0 38.8 

5l,.0 
68.5 
72.0 
60.0 

72.0 
66.0 
67.5 
76.0 

65.0 
71. 5 
76_0 
6~,.0 

60.0 
62.0 
70.0 
65.0 

54.0 
8l, . O 
71;.5 
6.>.0 

61.0 
64.5 
(,3.0 
68.5 

51.0 
9&.0 
62.0 
76.0 

59.0 
66.0 
80.0 
61.0 

53.5 
45.0 
94.0 
82.5 

77.0 
55.G 
53.0 
65,0 

39 . 8 
(,1.0 
48.3 
45.1 

59.0 
36.8 
52.2 
45 .7 

43.0 
38.4 
49.0 
~jjd 1 

41. 8 
28 .8 
53 _ 2 
1,6.1 

47.7 
5G.4 
[13.0 
50.1 

31.4 
1,2.7 
51.1 
~6.6 

34.0 
53.5 
48.5 
57.0 

25 . 5 
40.6 
6 ff. ? 
34.6 

22.0 
29.0 
63.0 
.53.5 

31.4 
3/: .0 
30.8 
5~ .4 

l,,-, or 
\\\~ ight 

I,g) 

5 . 4 
i,.9 
5 .5 
1.1 

3.5 
6.5 
6 . 5 
11.0 

I.~ 

3.9 
6.2 
Hl. 7 

b. 4 
-;.3 
8,9 
,', . 2 

5 .2 
9.4 
6 . 7 
8.8 

8.5 
6.2 
7.3 
5.4 

5.8 
5.7 
6.0 
6.1 

5.1 
3.0 
8.5 
6.0 

6.2 
6.9 
7 'J 

10.0 

3.7 
5.8 
6.2 
7.5 

4.7 
5 . 8 
7 .1. 
7. 1 

3.4 
4.4 
9.5 
4.9 

4.3 
3.6 
6.7 
6.7 

4 . 6 
i •. 2 
3.7 
8.6 

Volume C?H,; 
Of Gas llcak Size 
~ml) ( coun ts ) 

1. G3 21, 
O. ~8 33 
0.3J 30 
1. 36 23 

0.l8 25 
0.57 34 
0 • .53 flO 
1. 51 24 

L 06 l,9 
0.26 35 
0.36 43 
1. 32 49 

0.83 26 
0.30 45 
O.l;O 37 
1. 01, 37 

0.95 
0.S8 
0.37 
D.92 

0.38 
0 .50 
0.78 
0.64 

1. 23 
0.50 
0.53 
0.77 

0.64 
0.31 
0.55 
0.69 

0.61 
0.37 
0.37 
0.93 

0 .33 
0,1,0 
0.34 
1.04 

0.70 
0.l,5 
0.48 
0.75 

0.34 
0.32 
0.65 
0.50 

0.39 
0.27 
(J .1, 2 
0.78 

0.1,2 
O . /~,:! 

0.1,4 
O. Sr: 

18 
54 
73 
47 

1.5 
76 
116 
57 

46 
62 
40 
51 

45 
38 
57 
61, 

60 
51 
77 
58 

40 
60 
61 
42 

43 
48 
63 
52 

33 
43 
35 
42 

Slern h('ight,:, wer e me ::HJUn~c! to t.l ,e lle'-lT.f?st half unit. 

( nlig r o,,[.) 

O. J~ -

0.1(, 
0.14 
0.37 

0.49 
0.25 
0.28 
0.25 

0.63 
G.lD 
O.~2 

0_54 

0.26 
0.16 
O.lt, 
0.78 

0.21 
0.30 
0_39 
0.44 

0.47 
0.59 
1.23 
0.62 

0.87 
0.51 
0.33 
o.sa 
0.50 
0.33 
O. )I, 

0.69 

0.l,9 
0.25 
0.38 
0.33 

0.50 
0.36 
0.40 
0.7It 

0.51 
0.4:1 
0.37 
0.39 

0.39 
0.35 
0.43 
0.40 

0.34 
0.:12 
0.37 
0.55 

0 .30 
0 . 36 
0.35 
0.37 

l.1. J_ value,,: me~lsured P(~ l' run a'n: obt "d:, n ~,:: d from D e :L'lglc plant UGC'd. 

Exrf?riw_en t conducted Di:!cembel:/.l':lfl uary 197'7-197B . 
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C2H" C, H(, 
l' t'ai-: S.:!.ze 
(L Dunl o) (ng/s r00t) 

17 0 . 57 
33 0.36 
:n 0.36 
19 0.66 

IS 0.72 
60 1. 06 
7{J 1.16 
25 0.67 

26 0,70 
60 1.09 
6(1 0.70 
I,:; 1. 02 

34 0.85 
80 0.67 
66 0.60 
4!1 2.36 

126 
197 
91 

71 
142 
14t, 
125 

170 
187 
160 
163 

163 
15? 
204 
268 

140 
21G 
250 
163 

130 
257 
220 
130 

93 
250 
258 
112 

160 
JOO 
149 
184 

247 
292 
2i8 
1~4 

100 
217 
ISO 
180 

1. 60 
2.26 
1.94 

1.71 
2.36 
3.18 
3.06 

7.1:6 
3.1,0 
3. 20 
4.27 

4. 24 
3.26 
2.74 
6.43 

2.84 
2.'-1 
2.h8 
3.14 

2.39 
2.70 
2.51 
3.72 

2.83 
4.04 
3.49 
2.43 

3.31 
4 .55 
2.11 
3.90 

t, . 67 
4.58 
J. 6!~ 
~. 11 

i. 1\ 7 
i •• 30 
4.1,4 
3.73 



}{ur. Number 

)-)C 0.25 
1-2':: 
I-lf 
1-·21 

?- l (: 1. 2S 
2,·-2C 
2- 11 
2-21 

3-1C 2 
3-2C 
3-11 
3-21 

4·-1G 
1,-2C 
1,-11 
4-21 

5-1C 
5··2e 
5·-1I 
5-21 

6-1C 
6-2C 
6-·11 
6-21 

7-1C 
7- 2C 
7-11 
7-21 

8-1,; 
&-2(: 
8-J1 
8-21 

9-1(; 
~-2C 

9-lt 
9-21 

Ifl--le 
10-2C 
10-11 
10-21 

11-1C 
11-2C 
ll-ll 
11-21 

12-lC 
17-~C 

lL-1I 
12-n 

13-LC 
13-2C 
13-:1 
13···21 

14-1C 
14-2C 
lA-H 
14-~1 

9 

11 

13 

1~ 

~.9 

21 

23 

27 

30 

Sr,·", Top 
Ht·1.t;h t: I,'d.!;,.l 
(em) (,,) 

55 . 0 49.0 
7/.0 48.8 
8ll.v 65. B 
97 5 61 •. 5 

82.5 54.7 
5tl.0 35.(, 
61.0 71. 2 
(.4.0 40.2 

()1.5 41.4 
59.5 63.9 
5~.O 30 .3 
93.0 63 .5 

64.' 
SIl.S 
61. S 
5',.0 

68.~ 
6LO 
59.0 
46.0 

66.0 
55.5 
64.0 
6('.0 

57.0 
70.0 
91.0 
41.0 

80.0 
62_0 
68.ll 
66.0 

56.5 
75.0 
50.0 
89.0 

48.5 
54.0 
79 .0 
77 .0 

66.5 
62.0 
31.0 
78.0 

59.0 
80.0 
55.0 
80.0 

87.0 
H.O 
63 .0 
84.0 

M .O 
66.0 
6J~ 5 
69.0 

39.1 
46.7 
50.3 
55.9 

18 .6 
31 •. 3 
68 .5 
36.1 

33.9 
20.0 
59.7 
11.0 

36.5 
36.6 
71. 5 
;'0.5 

50.3 
44.4 
64.0 
73.0 

22.7 
1,1.9 
47.1 
~2.7 

35.6 
38 .0 
67.5 
62.9 

41.1 
23.0 
32.9 
65.0 

38 
43.2 
40.1 
63.3 

46 .8 
44.2 
40.5 
58 . 8 

3&.9 
34.1 
1,9.9 
50.8 

RUDe 
i.f(! i.ght 
(g) 

7.8 
7.1 
lI •. l 
11.4 

1::>.8 
1,.3 
S.Z 
16.7 

6.4 
1.6.2 
5.5 
15.:, 

6_9 
10.4 
7.5 
19.4 

6.6 
5 . 2 
11,.6 
6.0 

7.4 
5.1 
13.5 
14 . 5 

6.6 
7.0 
13.1, 
7.1 

5.0 
8.8 
10.8 
12 . 8 

3.B 
5.5 
8.2 
11.8 

4.1 
7.2 
11.1 
12.8 

5.7 
2.7 
5.4 
11. 2 

4.3 
6.6 
8 . 9 
12.8 

7eO 
6.7 
9.9 
10.6 

6.9 
1 •• 0 
!l . 5 
B.O 

Vu lume 
of G.rw 
(,nl) 

1. 58 
0.51 
0.87 
1. 72 

1. 75 
O.oiC 
a. ~;5 
1.03 

1.ll 
0./6 
O .• S 
1.93 

1.03 
O. ')2 
0.51 
2.11 

0.82 
0.J5 
0.5'1 
0.73 

0.69 
0.33 
0.84 
1.62 

0.74 
0.62 
0.96 
1.09 

O.7l, 
0.64 
0.71 
1. 27 

0.(,9 
0.31 
0.t,6 
0.37 

0.59 
0.39 
0.61 
1.11 

0.68 
0.25 
0.41 
1.12 

0.66 
D.lfS 
0.50 
0.94 

1. 60 
0.50 
0.55 
0.93 

0,72 
0.37 
0.58 
0.83 

Stem heights wer0 ~ra3ured to [he ncareB~ hRlf tlll~ . t. 

C ?Hlj 
Ft~n k Six(. 
(C()UllI:S) 

25 
26 
20 
31 

41 
33 
43 
38 

39 
~') 

49 
37 

53 
47 
63 
44 

43 
70 
61 
1,1 

48 
53 
69 
35 

27 
36 
61 
48 

39 
S4 
75 
52 

6ft, 

(,7 

93 
70 

38 
61 
81 
36 

31 
75 
62 
48 

18 
43 
76 
52 

(ng/g r(lot) 

0.25 
O.D 
0.19 
0.27 

0.30 
0.18 
0.36 
0.15 

0.62 
0.13 
0.31 
0.41 

a.so 
0.22 
0.30 
0.34 

O. E2 
0.28 
0.24 
0.1,7 

0.36 
0.43 
0.35 
0.40 

0.48 
0.1,3 
0.47 
0.45 

0. 31 
0.22 
').37 
O. !,3 

0.61 
O.t.~ 

0.40 
C.35 

0.86 
0.3.', 
0.50 
0.57 

0.39 
0.33 
0.59 
0.30 

0 .:;3 
0.50 
0.32 
0.32 

0.26 
0.28 
0.40 
0.1,1 

0 . 34 
O.~O 

0.28 
0.21 

All v o luc f.! n! l:' tl s ur~! d pt! r (1.1:1 wer e ohralncd fr o:n v ~ingJ.c plnnt. l l8C(i . • 

E:" pcdme"t conducLed De ::cmher!Janu:; ry, 1977-197B. 
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C2H(, C2H6 
Pf~ak Size. 
(r.ounts) (nr,/g root) 

21 O. i 8 
28 0.38 
24 O.211 
17 0.1,5 

~2 0.66 
31 0 . 55 
27 0.93 
25 0.29 

30 1. 00 
70 0.67 
73 1. 21. 
30 0.72 

4~ 

100 
100 
i,O 

119 
!.40 
214 
101 

78 
164 
139 
~6 

182 
195 
241 
135 

113 
U5 
240 
192 

158 
268 
325 
164 

16 ~ 

243 
251 
123 

114 
273 
263 
III 

no 
285 
260 
151 

73 
260 
318 
159 

161, 
292 
no 
122 

1. 30 
1.(13 
1. 39 
0.85 

3.14 
1. 95 
1. 80 
2.52 

1.48 
2.20 
1. 79 
1. 25 

4.21, 
3.59 
3.60 
4.28 

3.43 
2.03 
3.~9 

3 . 96 

5.94 
3.15 
3.81 
2.51 

... 84 
2.74 
2.87 
2.19 

2.79 
5.28 
4.2.4 
2 28 

3.47 
I,. L5 
3 .04 
2.29 

3.33 
4.04 
3.69 
2.8Q 

3.55 
5.64 
2.98 
2.60 



Appendix II. Standard Curve Raw Data 



Table 1- Ethylene Standard Curve Raw Data. Experiments 1-4. 

Standard Sample Peak Size for Each N (counts) Mean Peak Standard Limits (95%) of Mean 
Concentration Size Size Deviation Upper Lower 
(V1 C2H4/1) (counts) (counts) (counts) 

0.044 13 1.9, 5.6, 4.3, 11.6, 14.2, 3.7 7.9 3.63 10.1 5.7 
4.8, 9.0, 8.3, 10.7, 11.5, 8.8 
8.3 

0.13 18 3.8, 8.5, 5,0, 12.2, 12.0, 9.6, 10.7 5.23 13.3 8.1 
10.5, 6.3, 7.5, 7.5, 12.0, 11.0, 
9.5, 12.0 24.0, 9.0, 6.0, 10.5, 
22.5 

0.26 12 12.7, 13.0, 13.0, 13.0, 11.5, 12.2 2.81 14.0 10.4 
9.4, 6, 8.8, 13.5, 15.5, 14.0, 
15.4 

0.45 15 9.5, 12.8, 6.0, 11.2, 12.2, 13.1 5.81 16.3 9 . 9 
11.3, 26.2, 22.5, 10.3, 13.0, 
14.0, 12.5, 7.5, 9.0, 20.5 

0.63 11 9.9, 13.8, 22.6, 23.5, 22.3 21. 4 6.38 25.7 17.1 
29.0, 26.5, 28.3, 24.3, 13.0 
22.0 

1.11 13 24.1, 19.5, 31.0, 23.7, 27.0, 30.7 13.3 38.7 22.7 
51.3, 48.0, 34.7, 21.0, 56.0, 
28.5, 13.0, 21.0 

2.25 11 34.7,30.2,35.8,42.7,38.0, 35.5 3.59 37.9 33.1 
39.7, 34.5, 31.0, 34.5, 35.5 
34.0 

4.43 9 70.3, 65.1, 66.2, 75.5, 70.0, 68.6 3.47 71. 3 65.9 i-' 
co 

70.0, 64.0 i-' 

,"":-""'"9;" '---"M rM¥ .. Wt ..... ·~k·" 



Table 1. 

Confidence limits about the mean were calculated from the formula 

X ± t(s/~) as outlined in Methods Section 4-l0a. 

Mean Barometric Pressure = 752.6 mm Hg 

Mean Temperature = 23.3°C 

182 



Table 2. Ethylene Standard Curve Raw Data. Experiments 5, 6. 

Standard Sample Peak Size for Each N (counts) Mean Peak 
Concentration Size Size 
(~1 C2H4/1) (counts) 

0.045 13 7.0, 7.5, 12.0, 8.0, 7.5, 7.5, 8.3 
6.0, 8.5, 8.5, 5.0, 8.5, 13.0 

0.63 23 23.0, 22.0, 16.0, 15.5, 15.0, 16.8 
18.5, 16.5, 11.0, 14.5, 15.5, 
29.0, 23.5, 16.5, 18.0, 15.5, 
13.0, 11.0, 28.0, 11.0, 9.0, 
16.0, 18.0, 14.0, 19.0 

1.11 21 17.0, 16.5, 14.0, 18.0, 20.5, 20.0 
20.5,11.5,12.0,12.0,17.0, 
16.5, 9.5, 22.5, 43.1, 33,0, 
32.0, 12.0, 32.0, 21.0, 20.0, 
19.0 

2.25 15 44.0, 38.0, 36.0, 33.0, 31.5, 35.1 
30.0 29.0, 31.5, 28.5, 43.5, 
40.5, 32.0, 37.0, 37.0, 35.0 

4.43 15 58.0, 55.5, 53.0, 66.0, 69.0, 53.1 
63.0, 36.0, 34.5, 37.5, 52.5, 
60.0, 52.5, 53.0, 54.0, 52.5 

9.57 9 114.0, 108.0, 110.0, 89.0, 112 
109.0, 99.0, 116.0, 113.0, 
150.0 

Standard 
Deviation 

2.16 

5.03 

8.53 

4.94 

10.3 

16.6 

Limits (95%) of Mean 
Upper Lower 
(counts) (counts) 

9.6 6.8 

19.0 14.6 

23.9 16.1 

37.9 32.4 

58.8 47.4 

125.0 99.0 

I-' 
ex> 
w 



Table 2. 

Confidence limits about the mean were calculated from the formula 

X ± t(s/~) as outlined in Methods Section 4-l0a. 

Peak sizes were measured to the nearest half unit. 

Mean Barometric Pressure 755.3 

Mean Temperature = 22.loC 
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Table 3. Ethane Standard Curve Raw Data. Experiments 1-4. 

Standard Sample Peak Size for Each N (counts) Mean Peak 
Concentration Size Size 
(fl1 C2H6 !1) (counts) 

0.13 11 4.5, 4.0, 4.5, 3.0, 5.0, 5.5, 3;7 
3.5, 3.5, 2.0, 2.0, 2.0, 3.5 

0.45 13 11. 0, 9. 0, 13. ° , 10.0, 8.0, 4.0 7.7 
5.0, 6.0, 4.0, 7.0, 5.5 

0.63 14 14.5, 16.0, 18 . 0, 16. 0, 6. ° , 10.9 
11.0, 8.5, 12.0, 8.0, 7.0, 6.0, 
4.0, 7.0, 5.5 

1.11 12 25.0, 27.5, 48.0, 28.0, 14.5, 20.1 
14.0, 14.0, 12.5, 15.0, 15.0 
19.0, 14.0 

2.25 14 28.0, 55.5, 32.0, 26.0, 34.0, 29.5 
34.0, 29.0, 23.0, 22.5, 21.5, 
21.0, 35.0, 29.0, 23.0 

4.43 13 34.0, 33.0, 31.0, 33.0, 42.5, 41.0 
36.5, 32.5, 51.0, 37.0, 44.0, 
31.0, 78.0, 49.0 

Standard 
Deviation 

1.13 

2.77 

3.95 

12.8 

8.93 

13.0 

Limits (95%) of Mean 
Upper Lower 
(counts) (counts) 

4.5 3.0 

9.4 6.0 

13.2 8.6 

28.2 12.0 

34.7 24.3 

48.9 33.1 

I--' 
00 
\.Jl 



Confidence limits about the mean were calculated from the formula 

X ± t(s/~) as outlined in Methods Section 4-10a. 

Peak sizes were measured to the nearest half unit. 

Mean barometric pressure 755.2 mm Hg. 

Mean temperature = 23.6°C 
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Table 4. Ethane Standard Curve Raw Data. Experiments 5, 6. 

Standard Sample Peak Size for Each N (counts) Mean Peak 
Concentration Size Size 
(\11 C2H6!1) (counts) 

0.63 9 5.0, 3.0, 5.0, 5.0, 5.5, 5.0, 5.9 
9 . 0, 11. 0, 6. 0 

1.11 9 10.0, 13.0, 10.0, 8.0, 10.0, 11.5 
11.0, 18.0, 11.0, 12.5 

2.32 9 15.0, 21.0, 8.0, 15.0, 16.0, 18.1 
14.0, 33.0, 17.0, 24.0 

4.43 9 26.0, 25.0, 13.0, 33.5, 28.5, 26.4 
35.0, 25.0, 25.0, 27.0 

9.57 11 52.0, 41.0, 53.0, 60.0, 45.0, 54.9 
54.0, 71.0, 63.0, 60.0, 61.0, 
44.0 

15.2 12 101.0, 116.0, 121.0, 91.0, 94.2 
92.0, 93.0, 83.0, 83.0, 88.0, 
87.0, 85.0, 90.0 

'f''-~ 53'- _~'-£I",jirjj,;;-,-~."tC>& ' 

Standard 
Deviation 

2.43 

2.85 

7.15 

6.25 

9.15 

12.4 

Limits (95%) of Mean 
Upper Lower 
(counts) (counts) 

7.8 4.0 

13.7 9.3 

23.6 12.6 

31. 2 21.6 

61.5 48.3 

102.0 86.3 

I-' 
00 
...... 



Confidence limits about the mean were calculated from the formula 

X ± t(s/~) as outlined in Methods Section 4-l0a. 

Peak sizes were measured to the nearest half unit. 

Mean Barometric pressure 755.6 rnrn Hg 

Mean Temperature = 23.l o C 
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