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Abstract

Optimization of wave functions in quantum Monte Carlo is a difficult task because the
statistical uncertainty inherent to the technique makes the absolute determination of
the global minimum difficult. To optimize these wave functions we generate a large
number of possible minima using many independently generated Monte Carlo ensembles
and perform a conjugate gradient optimization. Then we construct histograms of the
resulting nominally optimal parameter sets and “filter” them to identify which parameter
sets “go together” to generate a local minimum. We follow with correlated-sampling
verification runs to find the global minimum. We illustrate this technique for variance
and variational energy optimization for a variety of wave functions for small systems.
For such optimized wave functions we calculate the variational energy and variance as
well as various non-differential properties. The optimizations are either on par with or
superior to determinations in the literature. Furthermore, we show that this technique
is sufficiently robust that for molecules one may determine the optimal geometry at the

same time as one optimizes the variational energy.
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Chapter 1

Variational Monte Carlo

Variational Monte Carlo (VMC) is a method which allows one to obtain an approximate
analytical solution of the time independent Schrodinger equation for one or multi-electron
systems. In our case the system is either a single atom or a diatomic molecule, and we
are interested only in the ground state. Throughout we assume the so—ca,lied Born-
Oppenheimer approximation, i.e., we treat the nuclei as infinitely heavy. The theoretical
basis for VMC is the variational theorem and the numerical method used for evaluating

many dimensional integrals is Monte Carlo (MC).

1.1 Variational theorem

Suppose we have Hamiltonian H and are looking for the solution of the time-independent

Schrodinger equation

HYg = EqVg,

where Wg is the ground state wave function and Eg is the ground state energy; i.e., the
lowest eigenvalue of the Hamiltonian.

The Variational theorem states fhat the Fg is a lower bound to the aver;ige energy
for any possible physical state W. The proof can be done as follows: First, we expand the

wave function V¥ in a series of orthonormal eigenfunctions Wy, Uy, ... of H (I:I U, = E;V;)

v = ZCZ'\II,' .
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Then

Because |¢;

QED

(B)y = (UIHY) =Y (e Wil HlejW5) = 3 cie; (Wil ;)

0 0]

= ¢ ¢, By (VW) ciei B0 = ¢|PE;.
S BN = X e Fidy = e

i’j

| are positive numbers and Eg < E;

B)y =Y el B > Y | Ee = Ee Y leil* = Ba

The variational method is based on this theorem and can be described in following

manner.

Choose a wave function depending on a set of so-called variational parameters

A= (O Aa s M)

Obtain the multi-variable function

(A, R)d0
NEC)) o U0, R)U(, R)dD (L.1)

Boy = Y (A()'HN’(/\)) LU (\LR)HT

(v

Find the parameters corresponding to the global minimum of E()), \*, and the

corresponding energy, E(\*).

The wave function W(\*) is then the so-called variational solution of the Schrédinger

equation. We can use it for calcu‘lating an arbitrary property of the ground state such

as dipole moment, average electron distance etc..

The procedure described above is very easy in theory, but in practice we face various

problems in every step.

The first step is crucial. The form of the wave function we choose has to satisfy various

quantum mechanical conditions (e.g., it has to be antisymmetric for the fermionic system)
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and should incorporate as much qualitative information about the system as possible (e.g.,
it should reflect the symmetry of the problem). This can often significantly decrease the
number of variational parameters and save a lot of computer time.

The problem which arises in the next step is due the fact that with the exception
of the simplest systems (and simplest wave functions), the analytical form of E()) is
not known. Therefore we must use numerical methods for evaluating the energy. This
introduces an error which is present in every numerical method. For an N-electron
system the corresponding configuration space is 3 N-dimensional. Beginning with N = 2
(6-dimensional integral) the best known numerical method is MC.

The last step is to find a global minimum of a multi-variable function. This is a
difficult task. Despite much effort no general algorithm is available. There are many
completely different approaches, and no one is better than the others in every aspect. To
choose a good algorithm (in a sense of reliability and time requirements) for a specific
problem is therefore very important. In addition we have another difficulty related to

the unavailability of the analytical formula for the E()). Because every evaluation of

E()) is accompanied with an error (which is random in nature for VMC) the function is
not a well-defined mathematical object. For example, when we evaluate the function at

the same point (in parameter space) two times, we will get two different values. We can

imagine such a function as a superposition of the “true” function E()) and a random

“noise” function §(A). Therefore, such optimization is sometimes called optimization
with the presence of noise. |
Fortunately, there is a way to circumvent this problem and obtain a continuous and

differentiable approximation of the E()), so one can use conventional optimization meth-

ods.
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1.2 Monte Carlo integration

In this section we will explain MC integration, one of the most powerful methods for
evaluation of multi-dimensional integrals. We will be particularly interested in evaluation
of integrals of the type

[ f®p(R)a2. (12)

where p(R) is a non-negative function with a property

/Q p(R)Q =1 .

Hence we can write it in the form

(R)

PR) = Ry

This function can be considered a probability density distribution of a random vector R.
If R is sampled from p(R), the probability of finding R in a volume element d) of the
vector space R is P(R) = p(R)dQ.

By definition, the integral 1.2 can be written as

[ FR)p(R)IQ = lim 3 f(Ro)p(R)AD,

where

AQ; C O, [[AQxr 250, [JAQ: = Q (AL AQ; = @i # j).

This can be processed further as follows:

lim Zf QN = hm Zf O)P(R;) = hm —ZfR)NP( i)

N—)oo
) =1

:hm—Zf N—hm—Zf

N—)oo {Rt}p
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where N; = N P(R;) is the number of samples (later called walkers) in the volume element

AS); . In summary, we can write in more conventional notation:

[, rp(ryd = IR o L 5w

{Ri}\ﬂ

where {R;}, denotes a random sequence of vectors R; generated from the distribution p.

1.3 Metropolis algorithm

In this section we will describe how to generate sequences of random vectors R; sampled
from arbitrary distribution W2. The method was first described by Metropolis et al. [15]
in 1953, hence the name Metropolis algorithm.

First, we give the general description of the algorithm and the appropriate formulas
will be derived afterwards. The basic object used in the Metropolis algorithm is called
a walker. In general, a walker represents a state of some system, in our case, a point in

3N-dimensional space R*". The algorithm can be described as follows:

1. Create a set (ensemble) of M walkers {R}} randomly placed in the configuration

space R2V (or for the practical purposes in the domain  C R*N where the function
U%(R) is non-zero).

2. For each walker propose a step RF — R with probability T'(R;; + R¥) and accept

7
)

this move with probability A(R; — RF) . If the step is accepted R¥' = R

otherwise R¥! = RF.

3. Step 2 completes an iteration. Repeat step 2 until equilibrium is reached. This
means that (in the limit M — oo) in every region of configuration space AQ we
would find M [ rq VER)AQ/ [ U2(R)dQY walkers. Further iterations retain that
property so there is no macroscopic change of the density of walkers. For M finite

there are of course statistical fluctuations.
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This algorithm has one interesting property. If we take only one walker and move
it through the configuration space (iterate it), we would see that the walker visits every
region in space and the “time” spent-in each region is exactly proportional to W2. Thus
instead of taking the “space” average of function f(R) over (equilibrated) whole ensemble
(the sum over index 7 below), we can take the “time” average following one walker (the
sum over index k below) and those results will be equal® (in statistical limit). We can

write this as follows:
i L3S SRN = fm 3 FRY) .
M—eo M i Y Mmoo M
Although there is no difference between those two averages in theory, in practice every
approach has its advantages and disadvantages. To get a sufficiently accurate estimates
of the MC integral one has to use a large number of walkers (often 10¢ —10®). However, to
store the position of each walker is impossible (for double precision calculations one needs
8 x 3N bytes for every walker), and equilibration of such ensemble would be extremely
time consuming. The problem with taking only one walker and using the “time”average
is due the fact that the random walk is correlated, in other words, the (7 + 1)-th position
is not independent on the i-th position. This so-called serial correlation decreases the
number of effective iterations (often by factor of 10 or more), so the precisibn due to
serial correlation is lower than the fheoretical estimate.
In practice, we take the combined average
RN R e (1.3)
Ne = Niio v

where RF is the position of i-th walker after k iterations (after equilibrium is reached) and

N¢, Nj are the number of configurations (ensemble size) and the number of iterations,

!Process which satisfies this property is called ergodic. A necessary (but not sufficient) condition for
ergodicity is that there is a non zero probability for the walker to visit every region in configuration
space.
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respectively. In addition this allows us to estimate the statistical error correctly. More
details will be presented in the next section.

Let us now explore the conditions for 7(R’ <— R) and A(R' < R) which result from
the equilibrium condition. Because in equilibrium there is no macroscopic “drift” of
walkers, the number of walkers which leave some domain has to be equal to the number
of incoming walkers from other regions. Suppose our ensemble is already equilibrated,
i.e., the walkers are distributed according to W2. The decrease of the density of walkers

at some point R’ is
AJRﬁ:/W%RﬂﬂieR)ﬂReR&M—w%Rﬂﬂ{&BAMR%—RMQ.
The increase of the density of walkers due to walkers incoming from other regions is
zhmﬁ:/Wmﬂu{eRmmkamm—wmwﬂﬁeimmEerm.
The equilibrium condition dictates that A_(R') — A4 (R’) = 0 which gives
ﬂwmﬂRmeEem—Wmeeﬁmm%EWmﬂ.

An obvious way to satisfy the above condition is to require the so-called detailed balance

condition

U2(R)T(R « R)A(R « R) = V}R)T(R + RHA(R + R') ,

which yields an expression for the acceptance probability ratio

AR «R) UV*RHT(R«R)

AR<R) U(RT(R «R)
The most common form used for A(R' + R) is to set

UX(RHT(R + R)

Amem:mﬁwmmRemy
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As we can see one needs to evaluate only the ratio of the density function at two different
points. Therefore the density function does not need to be normalized, which is very
convenient for practical calculations: Although any form of the transition probability
T(R' < R) is theoretically suitable, the efficiency of the Metropolis algorithm depends
strongly on that choice. Appendix A deals with the issue of the transition probability

choice in more detail.

1.4 Monte Carlo estimators

As we have mentioned in the previous section to calculate the error of a MC estimate

(f) is not completely trivial. In our work we need to evaluate expressions of the type

_(YIO]Y) _ [ OL(R)TH(R)¥(R)d

©Or="wy T fe®u®a 14
where OL(R) is defined as )
0~ %

If the operator O is the Hamiltonian H the quantity O, is called local energy and is
usually denoted as Ef.

To estimate the expectation value we use the formula 1.3

(0) =373 3 L. Ou(RY) o

To estimate the error of the expectation value (O) one could naively calculate the variance
2 1 Jo1 M k 2
=— ) — OrL(R;) — (O
$ No ; N Z( L( z) < >) )

I =1

and use the standard error formula

52
MO TNV NN, =1
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However, the error calculated in such way would be underestimated due the serial corre-
lation of the quantities O (R¥), Or(Rf*Y) ... . In order to avoid such a bias we can look

at the equation 1.5 in a different way
1 X

NC =1

(0) (0);

7 )

where (O), is the average local energy taken over the i-th configuration. Because
Or(Rf), Or(R5),...,OL(RY,) are not correlated the configuration averages (O),; are
not correlated either. We can use now the standard formula and estimate the error of

the average

2
S¢

Nog—1"

s(o) =

where 52 = 2 -15((0), — (0))2.
It is useful to have some quantity which measures the strength of the serial correlation.
Introduction of such quantity can be motivated by following consideration. Without any

correlation we can write

2 2
s E

NoN;—1 Ng—1"

and because Ng, Ny > 1 we can ignore the factor —1 in each denominator. After this

we get

where T.,,, = Nys?/s? is the so—calied correlation time, and is equal to one when there is
no correlation. This quantity may be used to find the optimal choice for the transition
probability T'(R <+ R') which éffects the efficiency of the MC algorithm. It is important
to note that the correlation time is different for each quantity. It is most commonly

calculated (and optimized) for the energy.
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1.5 Correlated sampling

Correlated sampling is a technique which makes it possible to estimate the value of a
MC integral (f)4. by using an ensemble sampled from a different distribution W2. The
derivation can be done by starting from its definition by performing some simple algebraic

manipulations:
[ 15 v2an
Jf®2dQ T [vran
[®2dQ [ wrde
J w240

We see that the numerator and denominator have exactly the form we need for using
MC integration, and we can estimate the MC integral as follows:
(Rt W(R)

where the w; = w(R;) = ®*(R;)/V*(R;) are called “weights”. The above formula

pre

resembles the weighted average of the function f.

If the two distributions are not very different the weights are not far from unity and
the estimate is reliable. However, for two significantly different distributions some weights
can reach very large values and dominate in the average. In this case the effective size
of the ensemble is drastically reduced and the estimate is not reliable anymore. As a
measure of the effective ensemble size we introduce a so-called indez [1] which is defined

as follows:

The index ranges from 1 (for one weight dominating) to N¢ (all weights are unity).
What are the features of the correlated sampling for which we find this method so
appealing 7 To answer this let us take the expression for the variational energy 1.1.

Suppose our ensemble is equilibrated according to W?()o). Using correlated sampling we
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can write the variational energy function as

Z{Rt}qf?uo EL( & ) (
Z{Rz}q,z ( 5‘) ’

E(\) =

where w(R;, \) = U2(R;, A)/¥3(R;, Ao) . The first thing we notice is that we can obtain
the variational energy for different parameters A without any need of re-equilibration.
Second, and perhaps even more important feature is that such defined E(\) is a smooth
function of the parameters A . This is easy to see because for fixed {R;} and )\ both
Er(R;,A) and w(R;, \) are smooth functions of A, and the product, sum and ratio of
smooth functions is again a smooth function. This is the key property which allows us to
use conventional methods for optimizing £()) . The only problem which could arise is if
for some R; the corresponding value of W?(R;, \o) is zero. However, this is not possible
because the probability of finding a walker in such region is zero.

One immediate application is the numerical calculation of the first derivatives of E())

with respect to the individual parameters

OEN)  E(uyo At Ay M) = By, A — by )

o\ 2h

(The symmetric form for numerical derivatives is chosen for better numerical behav-
ior.) Knowledge of first derivatives is necessary for the conjugate gradient optimization
method. In practical applications we prefer using analytical formulas for derivatives, but
this is not always possible.

One of the drawbacks of this method is the previously mentioned index problem. If
during the optimization we go too far? from the initial value Ag and the index becomes
too small, we have to stop it and start a new one. More about this and other optimization

related topics will be presented in the section on optimization.

2the meaning of the word far is not well defined and is used very loosely here
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1.6 Trial wave functions

Quantum mechanics demands that many-body wave functions exhibit certain fundamen-
tal properties. For fermionic systems such as electrons, the corresponding wave functions
have to be antisymmetric with respect to exchange of any pair of electrons.

Generally, in our work we take
U =0y,

where W 4 is completely antisymmetric, and the so-called Jastrow factor J is completely
symmetric with respect to the interchange of any pair of coordinates. Hence the product
as a whole is completely antisymmetric.

¥ 4 has the form of a Slater determinant

B(1) €,(2) ... By(n)
v cp@ @2.(2) - @ZFn) | o)
B,(1) u(2) ... Bu(n)

where ®;(j) denotes i-th spin-orbital as a function of j-th electron coordinates. Our
Hamiltonians do not include any spin operators, so the spins of the electrons, once set,
do not change in-time. This gives us a tool for distinguishing between two types of
electrons: spin-up and spin-down.

Motivated by this reasoning we require that the wave functions be antisymmetric only

with respect to interchange of electrons of the same spin. As a consequence the Slater




Chapter 1. Variational Monte Carlo 13

determinant 1.6 reduces to a product of two Slater determinants of spatial orbitals

oi(1)  4(2) ... ¢1(”T) ¢nT+1(nT‘|‘1) ¢nT+1(nT+2) oo Gprga(n)
G2(1)  ¢2(2) v @a(n?) || Guria(nT+1) Surpa(nT+2) .. @urpa(n)

Gut(1) Gut(2) oo Gur(n?) || Su(nT+1)  Su(nT+2) ... gau(n)
-

where n' is the number of spin-up electrons, and n is the total number of electrons. This
decomposition can be justified mathematically and the proof is given in appendix C.

Let us now have a look at the symmetric part of the wave function—the Jastrow
factor J . The purpose of that factor is to explicitly incorporate the electron-electron
correlation and sometimes other types of correlations as well. We need a mechanism
which would decrease the probability of finding two electrons very near to each other.
Slater determinants incorporate the Pauli exclusion principle and prevent two electrons
with the same spin from occupying the same region in space (so-called Fermi correlation).
However, there is no such mechanism for electrons with opposite spins (so—calledv Coulomb
correlation).

In general
T = (e i)

where r;; is the inter-electronic distance, and r,; is the distance between the a-th nucleus
and z-th electron.

In our work we have used several different types of the Jastrow factor. The details
will be given in sections dealing with specific systems.

If we look at the expression for the local energy

EL(R)Z%:—*ZQZED%“FE Z —

a=11=1 1= 1]—z+1
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we see that one can run into difficulties when an electron approaches a nucleus(r,; — 0) or
when two electrons approach each other (r;; — 0). In the above formula 7" is the kinetic
energy operator, N, (N.) is the number of nuclei (electrons) in the system. To avoid
singularities in the local energy one can derive a set of so-called “cusp” conditions [9] for
the variational parameters which cause cancellation of divergent terms Z,/r,; and 1/r;;
by similar terms from the kinetic part of the local energy. Cusp conditions can be directly
incorporated into the trial function so that it satisfies them for all values of variational
parameters. This is not always easy to achieve so the cusp conditions are often checked
after optimization as a “quality indicator” since the true wave functions obey the cusp
conditions. Our wave functions (except W, for He) do not explicitly incorporaté the cusp

conditions.

1.7 Optimization

By optimization we mean the procedure of finding the best set of variational parameters.
However we need to explain the meaning of the word “best”.

There are basically two criteria used to optimize a wave function. The first, and
most straightforward, is to directly minimize the energy, or to be more precise the MC
estimate of the energy 1.5. The second possibility is to minimize the MC estimate of the

variance of the local energy
o Z{Ri}wz(io)[EL(Ri; \) — Er*w(R;, A)
Ey ‘V Z{Ri}w2(x0) ’w(Rz, )\) )

where FEr is our best guess for the ground state energy. This optimization is not very

sensitive to the choice of E7. Common practice is to choose its value below the expected
ground state energy which corresponds to the minimization of a combination of the
variance and energy. In the ideal case, i.e., if there is a set of variational parameters for

which the trial wave function becomes the true eigenfunction of the Hamiltonian, those
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two methods lead to the same result — the true eigenstate. But in practice that is almost
never the case and those methods give different results.

Many people prefer to optimize the variance for several reasons (see for example [23]).
The lower limit of the variance is known—it is zero. Furthermore, minimizing the variance
resembles least squares fitting for which powerful algorithms were developed. We decided
to optimize both and compare the results afterwards.

As we explained before, correlated sampling gives a smooth approximation of the
E()). The larger the ensemble size the better the approximation is. An immediate con-
clusion might be to take a sufficiently large ensemble and do one optimization. However

this rather naive approach has several drawbacks;

1. As the dimensionality of the configuration space increases the accuracy of the MC
integral decreases. Therefore, we do not know in advance what number of configu-

rations is sufficient.

2. Having only one optimal set of variational parameters we can not say how much
each parameter contributes to the energy, i.e., if a small change of a parameter
leads to a small or a large change in energy. This kind of information helps us

better understand the qualitative characteristics of the trial wave function.

3. We might get trapped in one of many local minima and there is no way of realizing
it.
There is another more or less techniéal problem related to the need for large memory to
store all the configuration positions. But this issue is becoming less and less important
nowadays when memory prices are falling rapidly and computers with hundreds and
thousands MB of memory are commonly available.
The basic rule in experimental physics is to repeat measurements of some properties

of some physical system as many times as possible. This allows one to use statistics for




Chapter 1. Variational Monte Carlo ' 16

processing the data and to get reliable estimates of the error of the measurement. It
also decreases the probability of accidentally measuring some random fluctuation of the
system without noticing it. Such data points known as outliers can be ignored.

Our approach is very similar: we repeat the optimization many times and use statistics
to estimate the value for each parameter at the global optimum. Of course, if we used
the same ensemble for every optimization we would arrive at the same minimum every
time (using a deterministic minimization algorithm). So we re-equilibrate the ensemble
between optimizations which randomly changes the function (). This also reduces the
risk of being trapped in local minima.

We have to realize that the local minima are shallow and even a slight change of
the function can help us out. There is another big advantage of this approach. The
optimizations are completely independent and can be run in parallel. For example, if we
have ten processors available, the time necessary for collecting all the data is reduced by
factor of ten. Our task is naturally parallel, and no knowledge of parallel programming

is necessary”.

The optimization method used here can be summarized as follows:

1. Choose the best estimate of the variational parameters Ay and equilibrate the en-

semble according W2()g) .

9. Start from the point Ag and find from a standard algorithm the minimum of the

E(N), Af .

3. Re-equilibrate the ensemble (again according the W2()o)) .

3The trend in computer industry is in parallelization. One way is to increase the number of processors
in modern supercomputers and speed the communication among them. Other (and perhaps even more
promising for certain tasks) is to use the tremendous computer power distributed in the Internet or even
in a local university computer network. There are hundreds and sometimes thousands of computers in
every university which are most of the time used for e-mail and word processing, which is like doing
nothing for the processor. Experiments involving thousands of computers used for breaking the standard
encryption algorithms were very impressive and led to the change of industrial security standards.
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4. Repeat steps 2-3 until a sufficient number of A7 is collected.

5. Process the collected data using the “histogram filtering” method (which will be
described later). ‘

The above description needs several comments.

To come up with a good value of the starting parameters g is not an easy task. If we
do not have any prior knowledge of the parameter values we just choose some reasonable
numbers. In such case we assign the SCF orbital exponents and linear coefficients to the
Slater part of the wave function, and set the Jastrow parameters to zero. Similarly, we
should assign some reasonable value to the bond distance parameter. After performing
a short series of optimizations, normally we get much better estimates of the starting
parameters. Then, starting from the new point, we perform several other optimization
runs (the number depends on how fast it converges). The usual procedure is to take
the averages of the nominally optimal parameters from those runs and set those as the
starting point for the main optimization. To get as close as possible to the minimum is
advantageous not only for the greater accuracy of the optimization, but the time needed
for convergence is decreased also. That is an important factor when several hundred
optimizations are performed.

It should be pointed out that for complicated wave functions (such as W, for LiH) it
can happen that the convergence to the optimum is too slow or the number of successful®
runs is very small. In this case we can try to do a “staged” optimization which means
that in each stage we fix either thé Slater determinant or the parameters in Jastrow. In
the next stage we fix the previously optimized part and optimize the previously fixed

part. This procedure can be applied several times until the parameters do not change

4By “successful” we consider those runs which converge to the optimum. It can happen that we must
prematurely stop some optimizations because of the index problem or variance being too large (in the
case of energy optimization). Occasionally the conjugate gradient exceeds the preset maximum number
of iterations.
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too much or the energy (or variance) does not drop significantly. In the last stage we
can try to optimize all parameters. The above procedure is most efficient when the bond
distance is fixed, because in that case we do not need to recalculate the “fixed” part
(determinant or Jastrow) of the wave function during the optimization.

If we still have trouble optimizing all the parameters we have to decrease their number
by fixing some of those which do not change too much or which contribute relatively little
to the variational energy.

We applied the “staged optimization” scheme to the fixed geometry energy optimiza-
tion of LiH molecule (¥;). For geometry optimization of this molecule we fixed the Slater
determinant®.

If our trial function is based on some previously optimized trial function with known
optimal values we can simply use them as our starting point. |

The standard optimization algorithm of choice here is the conjugate gradient method
(see appendix B). This method is deterministic and requires the first derivatives of the

given function.

5In the beginning we have done about 30 optimizations of all parameters and we set the determinant
parameters to the average values taken from those 30 runs. Thus in some sense the determinant was (at
least partially) optimized.
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Examples of Histogram Filtering Method

In this chapter we illustrate the procedure of histogram filtering in some detail. All the
numbers reported from this chapter on are in atomic units' The arrows in histograms
indicate the values of initial parameters (lower arrow) and optimal parameters (upper
arrow). If the lower arrow is missing it means that the value is out of the range. The
arrows in the energy and variance histograms indicate the appropriate optimal values

obtained from verification runs.

2.1 The hydrogen molecule ion

As a first example we take the energy-optimized Hf molecule ion with variable geometry.

The trial wave function has the simple form
\IJT — e—kra T e—krb ’

where r, , r, are the electron-nuclear distances, k is the orbital exponent and it is the
first variational parameter. The distance between the nuclei R is the second variational

parameter. For this system the variational energy E(k, R) can be calculated analytically

K=k — 1/R+ (L + kR)eR/R + k(k — 2)(1 + kR)e™* L
L+ (1 +kR+Kk2R?[3)e kR R

and it is easy to determine the optimal values: k = 1.23803 and R = 2.0033 ao with the

E(k,R) = —%zﬁ +

corresponding energy £ = —0.5865065 F),2.

!The unit of energy is called hartree (Ej), 1 Ej = 27.2114 eV. The unit of length is called bohr (ao),
1ag=0.529177 A
?Eogact = —0.6026 Ej,

19
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We performed both energy and variance optimizations. The variance optimization
yields very poor results with R, over a factor of two larger and the accompanying
variational energy uncompetitive (FE;,; = —0.528269 E),). As we shall see later this is
generally the case for variance optimization using a crude wave functions. The histograms
are shown in figure 2.1.

Next, we discuss the energy optimization. To find out how the optimization depends
on the choice of initial parameters, we started from three different initial values of varia-
tional parameters. Figures 2.2-2.4 show histograms for variational parameters k, R and
energy at the minimum for those three different choices of initial variational parameters.
The histograms shown are already free of outliers. In this case the number of outliers was
small. Results are given in table 2.1. The variational energy E,,, is calculated from the
analytic formula for the corresponding optimal parameters R,p, kope. Bach trial produced
good agreement with the analytic values for E. For each choice of initial parafneters we
did 500 optimization runs. The ensemble was re-equilibrated 10 times after every opti-
mization. This number is sufficient for the next optimization to be independent of the

previous one.

ki TR1/2] Fopt | Dkopt | Bopt/2 | A(Bopt/2) | Eopt AE
08 | 1.5 [ 1.2424(9) | 4.4E-3 | 1.004(2) | 2.4E-3 |-0.5864891 | 1.7E-5
1.0 | 1.5 || 1.2409(8) | 2.9E-3 | 1.003(1) | 1.4E-3 |-0.5864994 | 7E-6
123 1.0 || 1.2387(4) | 7E-4 |1.0021(7) 5.5E-4 |-0.5865060 | HE-7

Table 2.1: Variational parameters- for Hi molecule ion, energy optimization. Rr,k; are
the initial parameters, Rop, kopt are the optimal parameters.
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Figure 2.1: Histograms for Hf molecule, variance optimization.
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Figure 2.2: Histograms for Hf molecule, k; = 0.8 , R;/2 = 1.5.
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2.2 Description of histogram filtering

In the previous section we have seen histograms consisting only of one single Gaussian-
like peak for every parameter. In the general case, however, the structure of histograms
is much more complicated, and we often see several (many times overlying) peaks in
histograms for some variational parameters. This is very probably due to existence of
several local minima.

Our data have the following form:

AN, L
AL, A
. . ' (2.1)
DU L
AT, AL, AR,

where /\g is the value of the j-th parameter in the i-th optimization. We can introduce a

set of conditions for the variational parameters—the “filter”

/\minl < /\21 < /\maxl

)fming < /\12 < )\maxz (22)

)\mink < /\}c < )‘maxk .
Through this so-called direct filter can pass only those parameter sets for which all the
above conditions are satisfied. If at least one condition is invalid the set does not pass
through the filter. There is another possible mode of filtering—“reverse” filtering. In
this mode we discard® sets for which all the above conditions hold true. Thus if at least

one condition is invalid the set passes through.

30f course we do not physically destroy our data.
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Each type of filtering is used for different purpose. In our work we have used almost
always direct filtering which for now on is simply referred to as “filtering”. It is a powerful
tool for isolating the different local minima, i.e., for finding which peaks are mutually
connected. As a result of the filtering we obtain several “candidates” for the global
minimum. In many cases we can judge the candidates simply by looking at the energy
(or variance) histogram of each candidate. For some of them there is often a visible shift
of their energy (or variance) peak towards higher or lower values. This can be used as a
first step in the process of looking for the best candidate.

To decide which minimum corresponds to the lowest energy (or variance) we have to
calculate the energy (or variance) for each candidate and choose the best one. Because the
energy (or variance) differences are usually very small this would require much computer
time. Therefore we use correlated sampling which is much more sensitive to differences,
and calculate the corresponding energies (or variances) for every candidate in one run.
After the best candidate is selected, the energy and other properties are calculated using
standard MC codes.

In case of energy optimization one has to be more careful with using the comparison
based on the energy shifts. Many times the energy shift to the left (towards lower values)
is accompanied with variance shift to the right (towards larger values). We could say
that energy “exploits” the large variance to get low energy values.

How this works in practice will be seen in next section, where we will employ this
technique for isolating the minima for system with a more complicated histogram struc-

ture.
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2.3 The hydrogen molecule

In this section we demonstrate histogram filtering method on more complicated system—
variance-optimized W3 wave function with variable geometry (see section 3.1 for details).
We have used the same starting point for variance optimization as for energy optimization.
This is not by far the best choice, but the optimizations (at least in this case) do not
strongly depend on the choice of the starting point.

The wave function W3 has formally 12 parameters — 6 in the Slater determinant,
5 in the Jastrow factor, and one is the bond distance. Without any loss of generality
we can fix one linear coefficient* in the molecular orbital expansion (cy), sincé only the
ratios of the linear coefficients are important. Thus we have together 11 free adjustable
variational parameters.

Figure 2.5 shows the histograms after completing 320 optimizations. We immediately
notice the very visible and well-separated double peaks for the (i5, (25, ¢2, ¢3 and some-
what less obvious but still visible double peak structure for gs, g4, R/2 and the variance
itself. To determine which peak goes with which we can use a simple direct filter for
any of the “double-peaked” parameters. We have chosen ¢z, and after applying the filter
c3 < 0.09 we get the histograms 2.6. Keeping the other peak (0.1 < ¢3) we get 2.7. The
scales were deliberately kept unchanged to make the comparison easier. In this particu-
lar example we can be certain that the 2.6 corresponds to the lower variance (there is a
significant shift in the variance histogram) and in the following we will concentrate only
on it. |

In order to see more details it is convenient to re-scale. The figure 2.8 shows the same

histograms as 2.6, only with different scales. To get rid of the outliers we set the (direct)

4Tf we did not fix this parameter there would be infinite equivalent parameter sets of optimal vari-
ational parameters and this would result in an ambiguous minimum and the optimization wouldn’t be
reliable.
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filter:

G, < 0.833
CZS < 0.99

d < 0.4
—-0.9 < [

0.722 < R/2 < 0.829
variance < 0.0115 .
Each of the above conditions usually serves to filter out only a few outliers.

The resulting histograms are shown in figure 2.9. The most obvious structure there
is the double peak for g3 and g4. Keeping the left peak for g4 (—0.859 < g4 < —0.191)
and filtering out couple of outliers we obtain the histograms 2.10. Taking the average
for every histogram we get our first candidate (see table 2.2). We report three digits but
the error for some parameters (such as ¢’s) is already at the second decimal place.

We can go even further and try to separate the possible two-peak structure for (o5
The filter would be (35 < 0.96 for the left peak, and 0.96 < (y, for the right one. The
corresponding histograms are shown in figures 2.11 and 2.12. Taking the average for
each histogram we get second and third candidates (table 2.2). To filter further is useless
because now we héve only 15 parameter sets and every other filtering would decrease the
number even more.

Let us now return back to the figure 2.9 and isolate the right peak for g4 (—0.191 < g4).
The result is on the figure 2.13. This yields the fourth and last candidate.

To check which candidate is the best, we performed a correlated sampling verification
run. Thus although the true variances are related to the reported sigmas, the relative

values, i.e., the ordering should be correct even if two values are within the statistical
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error. The results appear in table 2.2. The second candidate has the lowest variance thus

we report its parameter values as the optimal ones.

Unfortunately, we do not have always such a nice structure with so well-separated

peaks. In that case the filtering is more complicated and not as straightforward. We

always try to find the parameters with most separated peaks and start filtering there.

If we have more possibilities, we can start from different parameters and in the end we

compare all the candidates in the correlated sampling run.

l | ! 2 3 4 |
Cis 0.793 0.782 0.800 0.804
o 1.0 1.0 1.0 1.0
Cas 0.962 0.953 0.968 0.968
e -0.556 -0.563 ~0.551 -0.543

Com. 1.686 1.670 1.697 1.684
e 0.073 0.073 0.073 0.0748
d 0.309 0.321 0.301 0.251
@ 0.820 0.794 0.838 0.983
% ~0.180 -0.163 70.192 20.241
% 0.504 0.539 0.479 0.107
9 -0.453 0.472 70.439 -0.062

R/2 0.777 0.792 0.766 0.778

[ variance || 0.011262(14) | 0.011230(9) | 0.011259(10) | 0.011266(12) ||

Table 2.2: Candidates for the minima of the variance and their variances obtained
by correlated verification run for Hy with trial function W3 with variable geometry,

Er = —1.175.
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Figure 2.9: Same as 2.8, after filtering to remove outliers.
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Figure 2.10: Result of filtering the left peak of g4 in figure 2.9.
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Figure 2.12: Result of filtering the right peak of (3, in figure 2.10.
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Figure 2.13: Result of filtering the right peak of g4 in figure 2.9.




Chapter 3

Applications to Ground States of Small Systems

In this chapter we present the results of optimizations of various wave functions for three
different systems—hydrogen molecule Hy, helium atom He and lithium hydride molecule
LiH. For each wave function we report the initial and optimal parameters!, variational
energies and histograms ridden of outliers. The optimal parameter values were obtained
in similar manner as we described in chapter 2.
For some systems the optimal values are almost the same as the initial ones. This due
to the fact that the initial values are results of previous optimizations (see section 1.7).
We will use the following abbreviations to make the tables and text more readable:
EO - Energy Optimization
VO - Variance optimization
EOVG - Energy Optimization with Variable Geometry
EOFG - Energy Optimization with Fixed Geometry
VOVG - Variance Optimization with Variable Geometry

VOFG - Variance Optimization with Fixed Geometry

IP - Initial Parameters
OoP - Optimal Parameters
CE - Correlation Energy

The (electronic) correlation energy is defined as the difference between the variational

If there is a star by some parameter value it means that that parameter was not optimized.

37




Chapter 3. Applications to Ground States of Small Systems 38

energy and Hartree-Fock energy
CE = Eyor — EHF .

It is usually reported as the percentage of the exact CE:

Evar - EHF
" % 100% .
Eexact - EHF

CE[%) =

It indicates how good the variational wave function reflects the inter-electronic (Coulomb)

interactions.

3.1 The hydrogen molecule

The forms of the trial functions considered here are the simplest LCAO V¥, and two
explicitly correlated ones, ¥, and W3, given as follows:

\Ill - q)l(].)q)l(Q)

\112 - @1(1)@1(2)J1

lI)'3 - @2(1)@2(2)J2

¢, = ¢18a(<.18) + ¢15b(é.15)
(I)Z =C [¢lsa((ls) + ¢lsb(Cls)] + CQ[¢2S¢1(C23) + ¢2Sb(C23)] + C3[¢2pza((2pz) + ¢2péb(C2pz)]

Jy = exp ()

Jy = exp (E?c=1 9k7ﬂf2)

dris

™2 = Thdrs, 0

(3.1)

vs}here @’s are Slater-type atomic orbitals centered on the hydrogen atom « or b.
¥, is a minimal basis set, uncorrelated wave function with a variable orbital exponent,
first optimized by Wang [24] in 1928. Reynolds, Ceperley, Alder, and Lester, Jr. [20]

optimized Wy, which is ¥y augmented by a simple electron correlation function. There
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is one additional variational parameter: b in the Jastrow-Pade function, J;. The a
parameter in the Jastrow is fixed by the cuspocondition, and its value is taken from
the original paper. Therefore, including the equilibrium inter-nuclear distance R as an
adjustable parameter, Uy and W have two and three variational parameters, respectively.

W3 is much more sophisticated, consisting of a double-zeta plus polarization basis
set and a Schmidt and Moskowitz [21] electron-correlation factor. Including R as an
adjustable parameter, and keeping the dominant MO coefficient fixed, altogether there
are eleven parameters in this wave function. Basic characteristics of those wave functions
are summarized in table 3.1. The initial and optimized parameters are in tables 3.2—
3.5. The variational energies and CE’s are reported in table 3.6. Figures 3.1-3.12 show
the corresponding histograms. We show only histograms for parameters which were
optimized, together with the energy and variance. In a few cases the variance histograms
for energy optimization are missing because those runs were performed among the first,
and the variance was not stored in the file that time.

For the energy-optimized W, the variational energy and the optimal geometry are in
excellent agreement with Coulson’s [4] calculations in 1937. The variance-optimized wave
function is somewhat inferior: the variational energy is 0.11 FEj;, higher and the optimal
equilibrium bond distance is in excess of 1.24 a¢ longer.

The variational energy for energy—optimized Uy is 6 mE), below the fixed-geometry
optimizations of Reynolds?, et al. [20], accounting for just over half of the electron CE.
The equilibrium bond distance is- within 0.023 ag of experiment. Again the variance-
optimized wave function gives somewhat inferior results: we do not recover any of the
CE, and the equilibrium geometry is 0.76 ao longer than experiment.

W3 is more typical of high—aécuraey variational wave functions. The energy-optimized

wave function recovers 93% of CE, and the optimal bond distance is within 0.007 @ of

2We used their optimal parameter values as our initial parameters for optimization.
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the experimental value. The variance-optimized wave function is somewhat less accurate:

77% of CE with bond distance only within 0.18 ag of experiment.

[ | N, | Ny | e-e correlation |

vl 1+1 0 no
U, || 2+1 1 yes
Wy || 1041 ] 5 yes

Table 3.1: Characteristics of the wave functions for Hy molecule. Number of variational
parameters NV, number of variational parameters in the Jastrow factor N,.

v,* v,
Gs | Rf2 Gs | a | b | R/2
IP [ 1.194 | 0.692 [ 1.285 [0.28% | 0.05 [ 0.7005
OP ][ 1.192 [ 0.6933 | 1.296 | 0.28% [ 0.163 | 0.689
IP || 1.19 [0.7005* [ 1.29 [0.28* | 0.15 | 0.7005*
OP [[1.1893 | 0.7005 [ 1.2904 [ 0.28* [ 0.1627 | 0.7005*

Table 3.2: Variational parameters for ¥y and Wy, energy optimization.

“Ref. [4]: (1,=1.197, R/2=0.692 aq
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vy Uy
Cls | R/2 Cls | a ‘ b ' R/2
IP 1.0 1.2 7 || 1.22 |0.28%| 0.162 0.7
OP || 0.961 | 1.322 || 1.0955 | 0.28% | 0.1500 | 1.0802
IP || 1.14 |0.7005* || 1.29 |0.28*} 0.15 |0.7005*
OP || 1.1368 | 0.7005* || 1.2198 | 0.28* | 0.1679 | 0.7005*

Table 3.3: Variational parameters for ¥, and W, variance optimization.

[T 6 [ e [ G [ e [ Go [ e |
TP || 1.311 | 1.0* [0.587 | 0.008 | 1.937 | 0.127
OP | 1.3108 | 1.0% | 0.587 | 0.0065 | 1.9377 | 0.125
TP | 1312 | 1.0F |0.589 | 0.007 | 1.97 | 0.123
OP | 1.313 | 1.0* | 0.590 | 0.0066 | 1.968 | 0.123

L 1 d a9 [ 6 [ o | B2 |
IP || 0.241 |0.959 | 0.117 | -0.184 | -0.24 | 0.7005*
OP || 0.239 [0.962 | 0.12 | -0.183 -0.24 0.7005*
1P 0.239 10.964 | 0.122 | -0.184 | -0.242 0.7

OP || 0.238 10.964 | 0.123 | -0.185 | -0.243 | 0.697

Table 3.4: Variational parameters for U3, energy optimization.

” ” Cis ‘ 1 ‘ Cas ‘ C2 ‘ C2pz ‘ C3 T
IP || 1.312 | 1.0* | 0.589 | 0.007 | 1.97 | 0.123
OP || 0.8092 | 1.0* |0.9844 | -0.56 | 1.775 | 0.0688
[P || 1.312 | 1.0* | 0.589 | 0.007 | 1.97 | 0.123
OP | 0.782 | 1.0* | 0.953 |-0.563 | 1.670 | 0.073

|| d | 91 ‘ 92 ‘ 93 | 94 | R/2 W
IP || 0.239 |0.964 | 0.122 |-0.184 |-0.242 | 0.7005*
OP || 0.312 | 0.812 | -0.205 | 0.531 | -0.51 {0.7005*
IP || 0.239 [0.964 | 0.122 |-0.184 |-0.242 0.7
OP || 0.321 |[0.794 | -0.163 | 0.539 {-0.472 | 0.792

Table 3.5: Variational parameters for W3, variance optimization.

41




Chapter 3. Applications to Ground States of Small Systems 42
\Ill \IIQ \IIB
energy | CE [%]]| energy |CE [%]]| energy |CE [%]
EOVG | -1.12824(5) <0 -1.15657(3) 56 -1.17166(2) 93
EOFG || -1.12822(7) <0 -1.15654(3) 56 -1.17163(2) 93
VOVG || -1.01814(5) <0 -1.09681(3) <0 -1.16492(2) 77
VOFG | -1.12546(6) <0 -1.15184(3) 44 -1.17051(2) 90
Table 3.6: Variational energies for Hy molecule.
Er=-1.175 Ej, Fepaer=-1.17447... E}, (Ref. [12]), Egr=-1.1337 E, (Ref.[11])
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Figure 3.11: Histograms for Hy molecule, U3, variance optimization with variable geom-
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Figure 3.12: Histograms for H, molecule, W3, variance optimization with fixed geometry.



Chapter 3. Applications to Ground States of Small Systems 50

3.2 The helium atom

The ground state of helium atom often serves as a benchmark test for different types
of calculations in quantum chemistry. In our work we have considered three variational

wave functions with the following forms:

Uy = e~ ri72) (1 4 bryy)

Wy = exp [~ Zry (He0) — Zry(Ltarz) 4 Lrpe i)

Uy = O(1)0(2)Jsm

® = c1b1s(Cr) + Codas(Cas, ) + Cotas(Cas,) + cadbas(Cas) (3.2)

Jsur = exp (S gu (P73 + 71477

br
14br

F=

1y = Togi—
U, is the classic two-parameter Hylleraas type wave function. W, is a more recent four-
parameter form of Kenny, Rajagopal, and Needs [10]. W3 is much more sophisticated,
consisting of an extended single-particle basis set (seven variational parameters), and an
eleven-parameter Schmidt-Moskowitz Jastrow electron correlation wave function. In the
optimizations we set the value of ¢; to 0.5 and kept the values of b and d parameters fixed
for better performance. The values of b and d were determined after several optimization
runs in which they were not fixed. (Other workers usually set these parameters to unity
and do not vary them at all.) The set of nine exponents my, n, ox is given in the table 3.7.
The first four terms, corresponding to my = ng = 0, provide for electron-electron corre-
lations, while the next three, those with ny = o, = 0, are nuclear-electronic correlation
terms. The remaining two terms allow explicit electron-electron-nuclear correlation, a
type of correlation shown to be important for highly-accurate wave functions [21]. Wave

function characteristics are summarized in the table 3.8.

Tables 3.9-3.12 report the initial and optimal parameter values. The appropriate
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histograms are shown in figures 3.13-3.18.

Parameters obtained from energy optimization of W; (see Ref. [16]) and variance
optimization of Wy (see Ref.? [10]) are in good agreement with the literature.

Parameters for W3 are quoted in table 3.11 (EO) and 3.12 (VO).

Table 3.13 reports the results of verification runs done using these wave functions.
The Hylleraas energy is within statistical error of the accepted value. Our variance
optimization of Kenny et al’s wave function improves the variational energy by 0.2
m Fy, while energy-optimization lowers it by 0.7 mFE). As was the case for the hydrogen
examples, the variational energy of variance-optimized wave functions agree better with
the energy-optimized ones as the quality of the wave function improves. For the most
accurate wave function they agree to within statistical error, with the variance-optimized

energy having a substantially smaller error-bar.

[ [ [ e [ o |
1[0 ]o0]1
2] 0 [0 2
3]0 03
1004
5] 200
6] 300
72 00
S 2 20
92 [0 2

Table 3.7: Coeflicients my, ny, o.

3The columns of Table 1. in the reference are mislabeled.
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” N, ‘ Ny, | e-e correlation | n-e correlation ‘ e-e-n correlation H

Uy | 2 1 yes no no
Uy | 4| 2 yes yes no
Uy | 15| 8 yes yes yes

52

Table 3.8: Characteristics of the wave functions for He atom. Number of variational
parameters IV, number of variational parameters in the Jastrow factor Ny,.

v, v,
a ‘ b a ’ b ‘ c ‘ d
IP 1.8 0.35 0.024 |0.0842 | 0.086 0.285
OP || 1.8495 | 0.3658 || 0.02427 | 0.0842 | 0.08596 | 0.28549

Table 3.9: Variational parameters for ¥y and ¥4, energy optimization.

“Ref. [16]: a=1.849, b=0.364

U,

Uy
a | b a I b ‘ c ‘ d
IP 1.9 0.4 0.0046 | 0.064 | 0.037 | 0.442
OP || 1.9554 | 0.4162 || 0.00627 | 0.06581 | 0.0363 | 0.4431

Table 3.10: Variational parameters for ¥; and W,, variance optimization.

2Ref. [10]: ¢=0.00383, b=0.0620, ¢=0.0316, d=0.455

Cis 1 C251 C2 C2sz C3 CBs Cy4 b
TP || 1.594 | 1.348% | 1.866 |-0.229 | 2.623 |-0.0734 | 5.314 | 0.001 | 0.847*
OP || 1.526 | 1.348% | 1.757 | -0.366 | 2.88 | -0.103 | 5.229 | 0.0226 | 0.847
I T d | &« | 9 | 9 | 9a | 95 | 96 | g | 95 | g9 |
P || 0.478% | 0.5* |-0.116 |-0.265|-0.404 | 0.224 |0.0375 ] -0.0848 | -1.42 | 1.944
OP [ 0.478% | 0.5 | -0.18 |-0.138 | -0.343 | 0.623 | 0.111 | -0.155 | -1.73 | 1.825

Table 3.11: Variational parameters for W3, energy optimization.
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Cis €1 (s, C2 C232 €3 (35 Cq b
IP || 1.578 | 1.348% | 1.852 | -0.288 | 2.664 |-0.0524 | 5.3 | -0.0009 |0.847*
OP || 1.5686 | 1.348* | 1.841 [-0.2973 | 2.6671 | -0.0524 | 5.298 | -0.00094 | 0.847* |
L I d | o | & | 6 | o | o [ g | o [ g | g |
IP | 0.495* | 0.5* | -0.267 | 0.102 |-0.702 | 0.360 | 0.05 | -0.103 | -1.59 | 2.12
OP || 0.495% | 0.5% [-0.2855 | 0.1956 | -0.80 | 0.353 | 0.0457 | -0.095 |-1.577 | 2.084

Table 3.12: Variational parameters for U3, variance optimization.

" U, LE
energy | CE [%] energy | CE [%] energy | CE [%]
EO |[-2.89110(4) 70 -2.900033(9) 91 -2.903109(21) 99
VO | 2.88296(4) | 51 | -2.89957(1) | 90 | -2.903107(7) | 99

Table 3.13: Variational energies and variances for He atom.

Er=-2.905 E}, Eopaes=-2.90372... E}, (Ref. [17]), Egr=-2.86179... E), (Ref. [3])
2Ref. [16]: Eyer=-2.8912 E), ‘
bRef. [10]: Ey,.r=-2.89933(1) E,
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Figure 3.18: Histograms for He atom, U3, variance optimization.
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3.3 The lithium hydride molecule

Lithium hydride is one of the smallest stable heteronuclear molecules in nature. We have
chosen it as an example of more complicated system.
We have optimized two types of wave functions—W; and ¥,. The form of these wave

functions is as follows:

Ty det|®(1)®)(2)|det|0}(3)D1(4)] s

Uy = det]®3(1)03(2)|det|02(3)D3(4) |

Ji = exp(

Jy = eXP[ZZ_Z Uaij]

9
Usij = Z o Top + Toi Tt )TeE
1/2 for k <4
Ay =
otherwise
_ brag
14 brys =
_ dri;
Fpi = —.
J 1 —|— dT','J'

The W, is relatively simple trial wave function with modest basis set and one parameter
Jastrow factor optimized by Reynolds et al. [20]. The molecular orbitals ®] and ®}
consist of linear combinations of 3 STO-type atomic orbitals, 2 centered on lithium and
1 on hydrogen atom. There are 4 free adjustable variational parameters in the Slater
determinant (5 is fixed) so together with the bond distance the total number of variational
parameters is 6. The initial and optimal parameters are reported in tables 3.14-3.17 and
the corresponding histograms are shown in figures 3.19-3.22. The subscript a is used for

orbitals centered on the lithium atom, and the subscript 6 is used for orbitals centered
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on the hydrogen atom.

The W, has larger basis set and it incorporates the Schmidt-Moskowitz Jastrow elec-
tron correlation wave function. The molecular orbitals ®? and ®3 consist of linear com-
binations of 8 STO-type atomic orbitals, 5 centered on lithium and 3 on hydrogen atom.
U, has 24 parameters in the Slater determinant, 11 in the Jastrow factor (table 3.7),
and 1 parameter is the bond distance. The set of nine exponents my, ng, o is given in
the table 3.7. One linear coefficient in each orbital can be fixed, and we set the linear
coefficient by the 1s; orbital exponent in ®1 to zero. Thus the total number of adjustable
parameters is 33.

The energy optimization of Wy wave function with fixed geometry was done by stages
(see also section 1.7). We started with the determinant parameters taken from [20]
and set all the Jastrow parameters to zero. After performing one optimization run
(to get some reasonable Jastrow parameters) we have fixed the Jastrow and optimized
the determinant. We have again fixed the determinant and optimized the Jastrow and
then reversed the process. 50 000 configurations were used for these optimizations. In
the last stage we have performed optimization of all the 32 parameters with 200 000
configurations. The ensemble size had to be increased to improve the average number of
successful runs (76%).

The energy optimization with Vé,riable geometry is harder to perform. The problem
is the low number of successful runs. When all the parameters were optimized using
100 000 configurations, we had only 13% successful runs (we fixed b and d in that run
so we had 31 free parameters). With 200 000 configurations it was 29%, and with 400
000 configurations 60% (in both cases b and d were optimized as well so we had 33 free
parameters). The starting point for these optimizations was the same as for the final
all-parameters optimization for fixed geometry, only the bond distance was set to 3.0 a

instead of the exact value 3.015 ag. The results from these optimizations were used to
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choose the determinant parameters for the Jastrow-only optimizations. It is interesting
to note that the number of successful runs for the Jastrow-only optimizatibn did not
increase. However, the speed of the optimization was higher because there were fewer
parameters to optimize (although we had to re-calculate the determinant as well because
of the variable geometry).

The variance optimization of Wy was done by stages as well. Unlike the energy opti-
mization the problem of optimizing all parameters is not the small number of successful
runs but the slow convergence. To obtain starting parameters we performed two op-
timizations with 200 000 configurations starting from the energy-optimized parameter
values. After that, we have determined the best parameter set by a correlated sampling
run (we considered the average parameter values of those two runs as well). In the first
stage we optimized only the Jastrow factor, in the second stage the Slater determinant
and in the last third stage again only the Jastrow. The final Jastrow optimization was
relatively fast and the parameters and variance did nof change significantly. We have
used 50 000 configurations during the stage optimizations.

We decided not to perform the VOVG. The results of the previous optimizations show
that it is not competitive and the time spent would be not worth doing it. However, we
did couple of optimizations to see the approximate value for the bond distance. That
value lies somewhere around 3.14 ag (vs. 3.011 ag (EOVG) vs. 3.015 ao (experimental)).

The initial and optimal parameters for W, are given in tables 3.18 - 3.21, and the
corresponding histograms are shovv_n. in figures 3.23-3.26.

The variational energies and variances are reported in the table 3.22.
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(a,b,R/2) STO ¢ ol @l

IP  (0.5%,0.9,1.5075%) 1s, 2.8 L.0* 0.0%
2z, 1.33  0.0% 0.29

s, 0.88 0.0 1.0%

OP (0.5%,0.883,1.5075%) ls, 2.804 1.0 0.0%
2z, 1.315 0.0% 0.283

ls, 0.867 0.0% 1.0%

Table 3.14: Variational parameters for ¥, energy optimization with fixed geometry.

(a,b,R/2) STO ¢ ol ol

P (0.5%,0.9,1.5) 1s, 2.8 1.0 0.0%
2z, 1.33  0.0% 0.29

s, 0.88 0.0% 1.0%

OP (0.5%,807,1.47) 1s, 2.796 1.0 0.0%
2z, 1.337 0.0% 0.276

ls, 0.868 0.0% 1.0%

Table 3.15: Variational parameters for W, energy optimization with variable geometry.

(a,b,R/2) STO ¢ ol @]
P (0.5%,0.697,1.5075*) 1s, 2.935 1.0 0.0*
2pz, 1.09 0.0%* 0.34
s,  0.95 0.0 1.0*
OP (0.5,0.699,1.5075%) 1s, 2.943 1.0 0.0*
2pz, 1.029 0.0% 0.55
lsy 0999 0.0* 1.0*

Table 3.16: Variational parameters for ¥y, variance optimization with fixed geometry.

(a,b,R/2) STO ¢ ol @2

P (0.55,0.697,1.6) ls, 2.935 L0* 0.07
2pz, 1.09 0.0% 0.34

1sp 0.95 0.0 1.0*

oP (0,5*,0;690,1.625) lss  2.938 1.0 0.0*
9z, 0.973 0.0% 0.511

1s,  0.985 0.0* 1.0*

Table 3.17: Variational parameters for Wy, variance optimization with variable geometry.
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STO ¢ ! Pl
P 1s, 2414 10  0.13
ls, 4.273 0159  0.0354
2s, 0.988 0.0153 0.35*
%z, 1219 0.029 0.4
%z, 2301 -0.039  0.018
s, 0.751 0.0127 1.362
s, 1355 0.0%  -0.004
2pz, 0.838 0.002 -0.184
OP 1s, 2419 1.0%  -0.1287
ls, 4.268 0.144  0.028
2s, 0.997 0.0097 0.35%
%pz, 1218  0.0169 0.4418
Wz, 2.304 -0.0273 0.0236
s, 0.75  0.019 1358
ls, 13554 0.0  -0.016
2pz, 0.831 -0.0016 -0.188

Table 3.18: Variational parameters in Slater determinant for W,, energy optimization
with fixed geometry.

STO ¢ ¢! ol
P 1s, 2453 1.0%  -0.129
& 1s, 4259 0.14  0.0163
OP 2s, 1.036 0.0156 0.35*
2pz, 1.234 0.0272 0.442
2pz, 2.367 -0.0334 0.0305
s, 0.768 0.0162 1.338
ls, 1.355 0.0  -0.028
2pz,  0.835 -0.0009 -0.197

Table 3.19: Variational parameters in Slater determinant for W,, energy optimization
with variable geometry. These parameters were kept fixed during the final stage of the
optimization.
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Table 3.20: Variational parameters in Slater determinant for W,, variance optimization
with fixed geometry. These parameters were kept fixed during the final

STO- ¢ @ Pl
P 1s, 2400 1.0  -0.136
& ls, 3542 0612  0.122
OP 2s, 1.290 -0.0137 0.35*%

2pz, 1.180 -0.0515 0.281
2pz, 1.598 0.073  0.304
s, 0.744 0.0214 1.163
ls, 1.158 0.0% 0.7
2pz,  0.935 -0.0081 -0.332

stage of the

optimization.

EOFG EOVG VOFG

IP | OP IP | OP IP | OP
b [ 1.494 | 1.502 [ 1.502 [ 1.539 | 1.905 [ 1.913
d || 1.094 ] 1.0906 || 1.09 | 1.024 [ 0.970 | 0.972
g1 | 0213 | 0.215 [ 0.217 | 0.219 | 0.2609 | 0.2597
g2 | -0.342 | -0.345 || -0.45 | -0.532 | -0.6358 | -0.634
gs | 0.139 | 0.1348 ]| 0.105 [ 0.050 || 0.167 | 0.155
ga | -0.123 | -0.123 [[-0.133 | -0.156 | -0.3175 | -0.308
gs | 0.021 | 0.0325 [ 0.107 | 0.164 || 0.2653 | 0.2628
g | 0.478 | 0.484 [ 0.499 | 0.476 | 0.0348 | 0.0385
gr | -0.586 | -0.581 [[-0.589 | -0.576 | -0.0233 | -0.0264
gs | -0.474 | -0.508 [/-0.623 | -0.696 || -0.5005 | -0.4987
go | 0.506 | 0.5224 [ 0.652 | 0.777 | 0.7131 | 0.7151
R/2 [ 1.5075% [ 1.5075% || 1.503 | 1.5057 || 1.5075* | 1.5075*

Table 3.21: Jastrow and geometry parameters for LiH molecule, U,.
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vy ® s,
energy | CE [%] energy | CE [%]

EOVG || 3.0104(2) | 28 |-3.06082(14) | 89

EOFG || -8.0100(2) | 27 | -8.0601(1) | &8

VOVG || -7.9874(2) | 0

VOFG || 7.9851(2) | <0 | -8.0575(1) | &5

Table 3.22: Variational energies for LiH molecule.
Er=-8.08 Ey, Eupau=-8.0702... By, (Ref. [2)), Enr=-7.98735 Ej (Ref. [7))
*Ref. [20]: Eyar=-T7.91(1) Ep
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Figure 3.19: Histograms for LiH molecule, ¥y, energy optimization with fixed geometry.
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Figure 3.23: Histograms for LiH molecule, ¥,, energy optimization with fixed geometry.
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Figure 3.24: Histograms for LiH molecule, U5, energy optimization with fixed geometry
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Figure 3.25: Histograms for LiH molecule, ¥y, energy optimization with variable geom-

etry.
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Figure 3.26: Histograms for Lill molecule, W5, variance optimization with fixed geometry.
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3.4 Conclusion

Results of this chapter confirm that h)istogram filtering method (HFM) is able to perform
well for both the variance and energy optimization. Energy optimization yields better
results for ground state energy as well as equilibrium bond distance. We can see that
as the quality of the trial wave functions improves the variational energies for energy
and variance-optimized wave functions tend to approach each other. However, unless
we have very accurate trial wave function (as W5 for He) the energy optimization yields
significantly better results. For the equilibrium bond distance determination the energy
optimization is clearly superior.

For wave functions where there is possible to compare results we were able to repro-
duce the exact parameters and energies (¥, for Hy and He) or improve the literature
values for the energy (¥, for Hy and He, Wy for LiH). The variational energy obtained
from the energy optimization of Wy for LiH is to our knowledge the lowest ever obtained
from VMC calculations using explicitly correlated wave functions.

Whether to optimize the variance or the energy is not a new question. Most people in
this business prefer to optimize the variance. However, to our knowledge no systematic
work has been done to address this issue rigorously. The arguments are mostly qualitative
and we believe the strong preference toward the variance optimization is due to the fact
that the energy optimization is harder to perform.

The “variance strategy” is to use some sophisticated form of the trial wave func-
tion (often with hundreds of variational parameters) and perform a very crude variance
optimization using only several thousands configurations*. This method yields wave func-
tions with reasonable variational energy and is relativély fast. Usually, wave functions

obtained in such way serve as trial (guiding) functions to the DMC. The DMC ground

4As we have seen, energy optimization of complicated wave functions requires hundreds of thousands
configurations.




Chapter 3. Applications to Ground States of Small Systems 72

state energies are very close to the exact ones.

Our (HFM) approach is to optimize simpler wave functions, but optimize them more
thoroughly. This requires more time and human effort, but in the end we have simpler
wave functions often with lower energy than those obtained with the previous method.
Although in theory only the position of the nodes of the trial functions is important for
DMC, in practice, it is advantageous to have a good trial function because the variance
of the DMC energy (and other properties) depends on the quality of the trial function.
As well a simpler form means faster evaluation of the function values.

We certainly do not claim that the HFM is superior to other methods in every aspect.
In a sense it is a complementary point of view on optimization. There is always a trade-off
between the quality of a given result and the effort necessary for obtaining it.

For certain class of problems, however, HFM seems to be the natural solution. One
of these is the determination of the equilibrium geometry. In the present work we have
constrained ourselves to the determination of the equilibrium bond distance, but our aim
is to use this technique to optimize geometrically more complicated systems. Another
example could be a theoretical study of properties of various types of wave functions.
Because HFM “squeezes” the maximum from the wave functions, it can be used as the

objective indicator of the quality of these tested functions.




Chapter 4

Non-differential Ground State Properties of Small Systems.

In the previous chapter we presented results of energy and variance optimizations. It
turned out that energy-optimized wave functions are superior with respect to both the
variational energy and bond distance determination. However, there are other properties
of interest which play an important role in chemistry and can be used as additional
indicator of the quality of the wave functions.

This chapter contains the results of calculations of various non-differential properties
for each system optimized in chapter 3. The last column of the appropriate tables shows
the exact literature values for most of the properties. These are known to a very high
degree of accuracy for hydrogen molecule and helium, but we do not know of any similar
accurate calculations for LiH (except for the dipole moment). In that case we report the
values calculated by East, Rothstein and Vrbik [6] by diffusion MC (DMC).

For easier comparison of the various properties reported there is a column in the
tables labeled as Order. For example, if we have four columns of properties (as for Hy)
the four numbers 2143 in the column Order mean that the property in the second column
is closest to the exact value, next closest is the property in the first column, third closest
is the property in the the fourth column, and the worst is the property in the the third
column.

The quantity given in the last row in each table labeled as Y; |A"®| measures the

overall accuracy of the wave functions. It is the sum of the relative errors, defined as

73
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follows:
_ a:act |

Z |Arel| Z lpl exact|

evact’s are the i-th calculated and exact property, respectively.

where the p;’s and pf

All numbers are in atomic units, and we take z as the inter-molecular axes.

4.1 The hydrogen molecule

Tables 4.1-4.3 show the non-differential properties for hydrogen molecule wave functions

W,-W3. Most of the entries in tables are self-explanatory, and the rest is defined as follows:

Q: = R*[2+ai+a3—2—2

Q4 = R4/8_[$1+$2+Z1+22_6($ 21 + 23%)]

ui = (21— 2)

ul = (1 — )+ (v — y2)?

The @, and )4 are the quadrupole and the hexadecapole moments, respectively. u. and

u, are the transverse and longitudinal projections of the inter-electronic distance riq,

respectively.
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H | EOFG | EOVG T VOFG | VOVG | Order ” Literature H
rig 2.0457(3) | 2.0374(2) | 2.1227(3) | 2.8149(3) | 2314 | 2.16895"
ri, 5.145(2) | 5.104(1) | 5.544(2) | 9.665(2) | 2314 || 5.63239°
e 15.237(8) | 15.060(6) | 17.072(8) | 38.65(2)

r 0.6523(1) | 0.65498(8) | 0.62911(8) | 0.47423(6) | 2314 | 0.58737*
iy 0.704(1) | 0.7108(9) | 0.656(1) | 0.3790(7) | 3412 | 0.51827°
Iia 1.5599(3) | 1.5525(2) | 1.6091(3) = 2.2893(4) | 2134 | 1.54880°
i 3.061(1) [ 3.0330(9) | 3.262(1) | 6.580(2) [ 2134 | 3.03635"
e 7.174(5) [ 7.083(4) | 7.922(5) @ 22.08(1)
e 0.9035(2) | 0.9079(2) | 0.8749(2) 0.6443(1) | 2134 | 0.91279"
e 1.561(6) | 1.588(7) | 1.459(5)  0.895(3)
T1aT16 2.713(1) | 2.6936(8) | 2.918(1)  5.183(1) | 1234 | 2.70391*
Tl 2.4343(6) | 2.4101(5) | 2.5894(6) | 5.245(1) | 2134 | 2.32141*
T1aT2 2.4340(6) | 2.4103(5) | 2.5888(6) | 5.241(1) | 2134 | 2.38484"
2122 -0.0004(3) [ -0.00002(2) | -0.0002(2) = 0.0002(6) | 1324 | —0.15963"
T132 -0.0002(2) [ 0.0001(1) | 0.0000(2) | 0.0003(2) | 1324 [ —0.05510°
(22 +23)/2 ]| 1.0786(4) | 1.0671(3) | 1.1436(4) | 2.4881(5) | 2134 || 1.02297°
(22 4+ 22)/2] 0.7466(3) | 0.7424(2) | 0.8139(3) | 1.1725(4) | 1234 | 0.76169"
(rZ +r2)/2 | 2.5714(8) | 2.5522(6) | 2.7720(7) | 4.8329(9) | 2134 || 2.54635
Q2 0.3174(8) | 0.3120(6) | 0.3220(8) | 0.864(1) | 2314 | 0.45684°
Q4 0.174(8) | 0.175(6) | 0.184(8) | 1.700(9) | 3214 | 0.2826
u? 2.1570(4) | 2.1344(5) | 2.2881(5) | 4.974(1) | 2314 | 2.3652*
u, 1.1643(1) | 1.1579(1) | 1.1974(1) [ 1.7938(2) [ 2314 [ 1.2441°
u? 2.9847(5) | 2.9696(5) | 3.2576(6) | 4.691(1) | 2314 | 3.2672°
U, 1.4875(1) | 1.483(1) [ 1.5538(1) | 1.8651(2) | 2314 || 1.5699"
u;?! 1.1275(2) | 1.1304(2) | 1.0794(1) [ 0.8993(2) | 2314 [| 1.0404"
[ >0AF [ 3849 | 3871 | 3.847 | 19.88 | 2314 | |

Table 4.1: Non-differential properties for Hy molecule, .

2Nearly exact value, Ref. [13]
bDerived from 36 correlated Gaussian geminals, Ref. [22]

°Ref. [18]
dRef. [8]
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[ | EOFG | EOVG | VOFG | VOVG |Order || Literature ||
12 2.1855(2) | 2.1696(2) | 2.2895(2) | 2.7998(3) | 2134 || 2.16895%
rl, 5.751(1) | 5.670(1) | 6.316(2) | 9.332(2) | 2134 || 5.632392
3, 17.557(6) | 17.198(7) [ 20.234(7) [ 35.71(1)
s 0.59122(6) | 0.59580(7) | 0.56400(6) | 0.45632(5) | 1234 || 0.587372
iy 0.5450(6) | 0.5532(7) | 0.4965(8) | 0.3212(4) | 2314 || 0.51827°
Tla 1.5774(2) | 1.5641(2) | 1.6412(2) | 2.0668(3) | 2134 | 1.548802
r2, 3.1333(9) | 3.0814(9) | 3.397(1) | 5.361(2) | 2134 | 3.03635*
e 7.425(4) | 7.246(4) | 8.412(4) | 16.343(8)
T 0.9004(2) | 0.9076(2) | 0.8632(2) | 0.7052(2) | 2134 || 0.91279*
ri2 1.591(5) | 1.620(7) | 1.447(4) | 1.041(3)
1aT1b 2.7734(8) | 2.7350(8) | 3.0412(9) | 4.430(1) | 2134 || 2.70391%
1aT2a 2.4438(4) | 2.4037(4) | 2.6456(5) | 4.1611(8)"| 2134 | 2.32141*
rlaTob 2.4897(5) | 2.4467(5) | 2.6902(5) | 4.322(1) | 2134 | 2.384842
2122 -0.1264(2) | -0.1225(2) | -0.1318(2) [ -0.3103(5) | 2314 | —0.159632
T12y -0.0532(1) | -0.0527(1) | -0.0600(1) | -0.0799(2) | 1234 | —0.05510%
(22 +22)/2 || 1.1380(3) | 1.1171(3) | 1.2230(3) | 2.0568(5) | 2134 | 1.02297°
(zZ +22)/2 || 0.7524(2) | 0.7452(2) | 0.8416(3) | 1.0692(4) ' 1234 | 0.761692
(r2 +r2)/2 | 2.6427(5) | 2.6073(5) | 2.9062(6) | 4.1953(8) | 2134 | 2.54635°
Qo 0.2102(6) | 0.2375(6) | 0.2186(7) | 0.358(1) | 4231 || 0.45684°
Q4 0.085(6) | 0.123(6) | 0.084(7) | 0.31(2) | 3241 | 0.2826¢
u? 2.5289(5) | 2.4798(5) | 2.7105(6) | 4.736(1) | 2134 | 2.3652*
u, 1.2821(1) | 1.2689(1) | 1.3246(2) | 1.7852(2) | 2134 | 1.2441°
u? 3.2227(6) | 3.1916(6) | 3.6064(7) | 4.5978(9) | 1234 | 3.2672°
U 1.5560(1) | 1.5485(1) | 1.6469(2) | 1.8584(2) | 1234 | 1.5699"
uZt 1.0579(2) | 1.0630(2) | 0.9979(1) | 0.8872(1) | 1234 || 1.0404P
I A [ 2056 | 1956 | 3217 [ 11.08 [ 2134 | 1

Table 4.2: Non-differential properties for Hy molecule, W,.

*Nearly exact value, Ref. [13]

PDerived from 36 correlated Gaussian geminals, Ref. [22]

°Ref. [18]
dRef. [8]
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[ | EOFG | EOVG | VOFG | VOVG |Order || Literature |
rig 2.1629(3) | 2.1598(3) [ 2.1504(3) [ 2.2666(3) | 1234 [ 2.16895
r2, 5.609(2) | 5.594(2) | 5.571(2) | 6.170(2) | 1234 [ 5.63239°
" 16.885(8) | 16.820(8) | 16.94(1) | 19.67(2)

g 0.58994(7) | 0.59094(7) | 0.59412(7) | 0.56112(7) [ 1234 | 0.58737°
iy 0.5244(8) | 0.5257(6) | 0.5305(7) | 0.4696(5) | 1234 [ 0.51827"
T1a 1.5520(2) | 1.5488(2) [ 1.5530(3) | 1.6532(3) | 2134 || 1.54880°
r?, 3.040(1) | 3.028(1) | 3.048(1) | 3.445(2) | 1234 [ 3.03635"
r3, 7.158(5) | 7.116(5) | 7.276(8) | 8.70(1)
g 0.9106(2) | 0.9125(2) | 0.9045(2) | 0.8526(2) | 2134 || 0.91279°
. 1.608(5) | 1.617(7) | 1.554(5) | 1.408(5)
Tl 2.709(1) | 2.700(1) | 2.722(1) | 3.021(1) | 2134 [ 2.70391®
Tl 2.3524(5) | 2.3424(5) | 2.3620(5) | 2.6720(6) | 2134 [ 2.32141°
TiaT2 2.4010(5) | 2.3914(5) | 2.4051(5) | 2.7327(6) | 2134 || 2.38484°
2122 -0.1226(2) |-0.1225(2) | -0.1065(2) | -0.1336(2) | 2341 || —0.15963%
712y -0.0663(2) | -0.0661(2) [ -0.0606(2) | -0.0674(2) | 3214 || —0.05510°
(z +22)/2 || 1.0175(3) | 1.0152(3) | 1.0050(4) | 1.1398(5) | 1234 || 1.02297*
(22 +22)/2 ]| 0.7661(3) | 0.7633(3) | 0.7769(4) | 0.8382(4) | 2134 | 0.76169*
(r? +r2)/2 || 2.5495(6) | 2.5424(7) | 2.5583(8) | 2.8165(9) | 1234 || 2.54635"
Q2 0.4787(7) | 0.4678(7) | 0.5252(8) | 0.651(1) | 2134 [ 0.45684°
Q4 0.34(1) | 0.32(1) | 0.40(2) | 0.65(3) | 2134 [ 0.28267
u? 2.2802(9) | 2.2754(6) | 2.2245(7) | 2.547(1) 1234 | 2.3652*
u, 1.2150(2) [ 1.2134(2) [ 1.1961(2) [ 1.2863(2) | 1243 || 1.2441P
u? 3.330(1) [ 3.3184(8) | 3.349(1) | 3.623(1) | 2134 [| 3.2672°
U 1.5884(2) | 1.5854(2) | 1.5894(2) [ 1.6524(3) | 2134 || 1.5699"
u;! 1.0218(2) [ 1.0241(2) [ 1.0199(2) [ 0.9821(2) | 2134 || 1.0404"
| >iAe | o857 [ 0764 | 1313 | 3.737 | 2134 | |

2Nearly exact value, Ref. [13]

Table 4.3: Non-differential properties for Hy molecule, Ws.

PDerived from 36 correlated Gaussian geminals, Ref. [22]

“Ref. [18]
dRef. [8]
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4.2 The helium atom

Tables 4.4—4.6 show the non-differential properties for the helium atom.

H7 || EO ‘ VO ‘ Order ] Literature H
ri+re || 1.7939(1) [1.7055(2) [ 12 | 1.858942
ri4ry || 2.1542(3) | 1.9469(4) | 12 | 2.38697°
r3+r3 || 73.2353(7) | 2.7787(8)

rit 4+t 3.3778(3) [3.5543(5) | 12 | 3.37663%
ri’+ry7 | 11.60(3) | 12.90(5) | 12 | 12.03482
T2 1.37254(9) [ 1.3078(1) | 12 | 1.422072
r, 2.3277(3) 12.1107(4) | 12 | 2.51644®
i, 4.671(1) | 4.027(1) | 12 5.3080°
g 0.97426(7) | 1.0206(1) | 12 | 0.945822
e 1.553(3) | 1.696(3) | 12 | 1.46477*
| A 0489 | 1.111 12 |

Table 4.4: Non-differential properties for He atom, V.

*Ref. [17]
PRef. [5]
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|| : H EO VO ‘ Order ’ Literature ||
ro+ry || 1.85142(9) [ 1.84731(8) | 12 1.858942
r2 42 | 2.3589(3) | 2.3601(3) @ 21 2.386972

rs+r3 | 3.8627(9) | 3.902(1)

it 4yt | 3.3671(2) | 3.3835(2) | 21 | 3.376632
riZ 4yt || 11.87(2) | 11.97(2) 21 12.0348*
g 1.41062(7) | 1.40372(7) | 12 1.422072
rZ, 2.4844(3) | 2.4748(3) | 12 | 2.51644>
3, 5.244(1) | 5.262(1) 21 5.3080P
g 0.95447(5) [ 0.96447(5) | 12 | 0.94582*
iy 1.487(2) | 1.5263(9) | 12 1.464772

[ A 009 | 0124 | 12 ] |

Table 4.5: Non-differential properties for He atom, W,.

aRef. [17]
PRef. [5]
H ” EO l VO ‘ Order | Literature H
ri+re || 1.8597(1) [1.8536(2) | 12 | 1.858942
r2 42 | 2.3883(4) | 2.3672(5) | 12 | 2.386972
ri+rs | 3.936(1) | 3.872(2)
rit 4y U] 3.3758(3) |3.3793(5) | 12 | 3.37663%
it 4y | 12.11(4) | 11.99(2) | 21 | 12.03482
12 1.4225(1) | 1.4161(2) | 12 | 1.42207®
r2, 2.5212(4) |2.4985(6) | 12 | 2.51644*
i 5.334(2) | 5.261(2) | 12 5.3080P
rig 0.94639(8) | 0.9511(1) | 12 [ 0.945822
s 1.464(1) | 1.482(2) | 12 | 1.46477*
> JAE [ 0015 [ 0053 | 12 | |
Table 4.6: Non-differential properties for He atom, Ws;.
Ref. [17]

PRef. [5]
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4.3 The lithium hydride molecule

80

Tables 4.7-4.8 show the non-differential properties for LiH molecule. u. and u, have

the same meaning as described in 4.1 and y is the dipole moment. All quantities are

calculated for parallel and antiparallel electrons separately.

| H EOFG ‘ EOVG | VOFG ‘ VOVG ‘ Order ” Literature ”
parallel ri, || 14.174(5) | 13.728(5) | 13.276(4) | 14.865(3) | 3214 13.2(1)®
antiparallel | 7%, | 9.663(4) | 9.410(4) | 9.433(3) | 10.345(5) | 1432 9.9(1)*
parallel rig || 3.5724(6) | 3.5124(6) | 3.4715(5) | 3.6843(5) | 3214 3.42(1)*
antiparallel | 712 || 2.6867(4) 2.6526(4) | 2.6483(5) | 2.7687(5) | 1342 2.72(1)*
parallel | ry; [ 0.31767(5) | 0.32366(5) | 0.32390(5) | 0.30314(5) | 3214 | 0.333(2)2
antiparallel | ri, || 0.68186(8) | 0.68508(8) | 0.69943(8) | 0.68627(9) | 1243 0.66(1)*
parallel | ri; || 0.11982(5) | 0.12452(5) | 0.12300(5) | 0.10696(4) | 3124 || 0.132(1)®
antiparallel | ri;7 | 1.218(3) 1.225(4) 1.300(2) 1.288(4) | 1243 1.17(1)®
parallel u? || 10.860(4) | 10.427(4) | 10.269(4) | 11.749(4) | 3214 8.98(6)*
antiparallel | u? 6.306(2) 6.068(2) 6.376(4) 7.178(4) | 2134 5.55(4)*
parallel u, || 3.0593(6) | 2.9922(6) | 2.9928(5) .| 3.2179(6) | 3124 || 2.718(6)*
antiparallel | u, | 1.9804(4) | 1.9427(4) | 1.9893(5) | 2.1102(5) | 2134 | 1. 86(1)a
parallel u? 3.314(2) 3.301(2) 3.007(2) 3.116(2) | 1243 4.2(1)>
antiparallel | »? | 3.357(2) | 3.343(2) | 3.057(2) | 3.167(2) | 1243 4.3(1)*
parallel | w. | 1.5404(4) | 1.5374(4) | 1.4703(4) | 1.4938(4) | 1243 | 1.70(2)"
antiparallel | u. | 1.4751(4) | 1.4723(4) | 1.4115(3) | 1.4331(4) | 1243 | 1.65(2)
parallel | u ! | 1.1389(3) | 1.1414(4) | 1.1922(3) | 1.1788(3) | 1243 1.09(1)®
antiparallel | w71 || 1.3900(3) | 1.3913(3) | 1.4456(3) | 1.4350(3) | 1243 1.29(2 )a
w -2.972(1) | -2:915(1) | -2.514(3) | -2.751(3) | 4312 —2.30P
[ A [ ] 1947 ] 1.743 | 1983 [ 2771 [ 2134 | |
Table 4.7: Non-differential properties for LiH molecule, ;.
2Ref. [6]

PRef. [7]
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| | EOFG | EOVG | VOFG |Order | Literature |
parallel | 12, || 12.966(7) | 13.034(7) | 13.228(7) | 321 | 13.2(1)°
antiparallel | 7%, | 9.456(6) | 9.521(6) | 9.595(6) | 321 9.9(1)*
parallel | 715 || 3.4051(8) | 3.4136(8) | 3.4420(3) | 213 || 3.42(1)"
antiparallel | 715 || 2.6629(7) | 2.6718(7) | 2.6822(7) | 321 2.72(1)>
parallel | ri3 || 0.33449(7) | 0.33373(8) | 0.33031(8) | 213 | 0.333(2)
antiparallel | 1, || 0.6724(1) | 0.6714(1) | 0.6712(1) | 321 0.66(1)"
parallel | 12 || 0.13236(7) | 0.13178(7) | 0.12885(7) | 213 | 0.132(1)
antiparallel | ri; | 1.177(3) | 1.171(3) | 1.185(4) | 213 || L.17(1)®
parallel | w? || 9.096(5) | 9.123(6) | 9.251(6) | 123 8.98(6)*
antiparallel | w2 || 5.493(3) | 5.511(3) | 5.531(3) | 321 || 5.55(4)"
parallel | w, || 2.7518(9) | 2.7562(9) | 2.7797(9) | 123 | 2.718(6)
antiparallel | w, || 1.8481(5) | 1.8516(5) | 1.8538(5) | 321 || L.86(1)°
parallel | w2 | 3.869(5) | 3.911(5) | 3.977(3) | 321 || 4.2(1)°
antiparallel | «® || 3.963(5) | 4.010(5) | 4.063(5) | 321 || 4.3(1)°
parallel | u, | 1.6426(8) | 1.6502(3) | 1.6692(8) | 321 | 1.70(2)®
antiparallel | w. | 1.5836(8) | 1.5919(8) | 1.6042(8) | 321 1.65(2)*
parallel | w ' | 1.1080(5) | 1.1066(5) | 1.0879(5) | 321 1.09(1)*
antiparallel | u;' | 1.3447(4) | 1.3438(4) | 1.3326(4) | 321 1.29(2)®
po | -2.356(2) | -2.373(2) | -2.438(2) | 123 —2.30P
[ >iAF [ [ 0477 ] 04233 1 04234 | 312 | ]

Table 4.8: Non-differential properties for LiH molecule, ¥s.

2Ref. [6]
PRef. [7]
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4.4 Conclusion

The aim of this chapter was to look at properties of wave functions other than the varia-
tional energy. Particularly, we were interested how the energy-optimized wave functions
compete with the variance-optimized ones. The people who prefer to optimize the vari-
ance often suggest that although the variational energy of the variance-optimized wave
functions could be worse the electron distribution and henceforth the nodal planes posi-
tions more resembles the exact ones. The argument is that for non-exact wave functions
the local energy tends to diverge near the nodes and the variance optimization tries
to suppress this divergence and hence to find such an electron distribution which most
resembles the non-divergent exact one.

Let us first have a look at the results for hydrogen molecule and helium which are
node-less. The overall performance of all the wave functions for Hy and He clearly
indicates that the EO is doing better. W3 for Hy and He are examples where almost
every property is better for the energy-optimized wave functions. It is interesting to note
that the EOVG yields better results even if the bond distance is slightly different from
the experimental one (for which the exact properties were calculated). Except for the
very tight “victory” of the VOFG in the case of ¥y for Hy over the EOFG, the EOFG is
always close behind the EOVG.

To make the cbmparison for LiH is more difficult. The literature values have large
error bars and for many properties_ it is crucial to know the exact values with higher pre-
cision to make reliable comparisons. Generally, it seems that for the calculated properties
the variance and energy optimization yield comparable quality results. Note, however,
that all the properties for LiH are functions of the inter-electronic distances. It would
be interesting to compare results of calculations for properties which are functions of

nuclear-electronic distances. Again, the EOVG gives better results than the EOFG.
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The calculations done on LiH can neither support nor disprove the hypothesis of the
superiority of the properties derived from variance-optimized wave functions. We are
working on the DMC calculations of the properties for LiH in order to get more accurate

values.




Chapter 5

Comments and Suggestions

In this thesis we have shown that HFM can be successfully applied to small systems with
simple geometry. However, if the method is to “survive” it has to be able to optimize
more complicate(i systems in terms of number of electrons and geometrical structure.

The further study can be oriented to several directions. First, we can focus on stan-
dard, i.e. non-geometrical, optimization. The staged optimization proved to be a good
method of dealing with many-parameter wave functions. It is really difficult to predict
how many parameters can HFM potentially handle but it is clear that the human filter-
ing by eye can not be pushed much farther than to several dozen of parameters. On the
other hand, we are confident that this procedure can be (at least partially) automatized
(however, short look at the histograms will be always helpful).

In our work we were extremely “picky” in our filtering and tried to inspect every
possible structure suggested by a small gap, a tiny irregularity in shape etc.. We sacrificed
much effort and time to lower the variational energy by every small fraction of a m£j,. We
think that for a trﬁly many-parameter wave functions such approach is neither necessary
nor possible, and we Can obtain high quality wave function from filtering only the most
obvious structures and taking the appropriate averages.

The optimization of a geometry of systems with more than one geometrical parameter
is a very challenging project. In the near future we would like to focus on the optimization
of a water molecule. This system has two geometrical parameters (the O-H bond distance

and the H-O-H angle) and ten electrons. There is a lot of theoretical and experimental
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results available for the sake of comparison with ones we derive.

We feel that further development and tuning of the HFM itself is possible. We
may, for example, investigate how the results of optimization (the histogram pattern)
depend on the severity of the stopping criterial of the search algorithm and the choice
of the search algorithm itself. Another way of improving the HFM is to analyze the
numerical instabilities which cause the “blow up” of the energy optimization. If we could
circumvent this problem (without introducing a bias) the optimization efficiency would
improve significantly.

We are also interested to find out if similar approaches to HFM can be applied to
different problems related to optimization where some background “noise” is present. An

application of HFM to problems in computational biology is in progress.

Tn our work we have used rather strong criteria for stopping the optimization which makes it quite
long in certain cases.




Appendix A

Choice of the Transition Probability

Although any form of the transition probability T(R' < R) is theoretically suitable, the
efficiency of the Metropolis algorithm depends strongly on that choice. In this section we
will present one effective form of T(R' < R) for the case of single atoms. Because the
Hamiltonian in this case exhibits spherical symmetry, it is natural to use spherical polar
coordinates to move the electrons. Furthermore it turns out to be useful to move only
one electron at a time. In our work we have used the scheme proposed by Langfelder [14].

The probability of moving from a point (7,8, ¢) to a point with coordinates belonging

to the intervals (r',r" 4 dr'),(0',0" +d@'), (0", ¢ + d¢') consist of two components
Pl(r +dr' 0 +d0',¢ +d¢)  (r,0,¢)] = f(r < r)g (0, )dr'dd dp .

The probability function g,/(8',¢') does not depend on the values of r,8, ¢ and is chosen

to be the uniform distribution over a sphere with diameter »'. Thus

g, (0", ¢)d0'dg _go(0,4)d0'd¢ _ o
ds’ r'2sin@'dd'dy’

where d< " is the infinitesimal area element of the surface of the sphere. The constant C
can be calculated from the normalization condition fgr/(al, ¢ )dfdp = 1 and equals to
1/47r'? . The probability density g.(6',4) thus has the form

. !
P sin

9:(0,¢) = =~

The function f(r' ¢ r) has the form

7 1 1 U
f(r «r)= —re’ 21207 ,
p
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where p = p(r) is a function of the electron-nuclear distance r

P(") = fnax{a, L+ Bl =17 °

The parameters «, 3,y were found by trial and error and are chosen as

a € (0.01,0.05)

6 - Cmost diffuse orbital

v € (0.1,0.5) .

Now, the transition probability density is found by definition :

Pl(r' +dr', 0 +db', ¢ + do') « (r,0,)]
dV
f(r' — r)gr/(0',¢')dr'd0'd¢'
r'2sin 6'dr'df’' d¢’

T((r',0',¢) « (r,0,4) =

1

= mf(’l“ FT‘) .

The remaining question is how to generate random numbers sampled from the dis-
tributions f(r' ¢« r) and g.(0',4) ; i.e., how to find the corresponding functions
r'(u),0'(u), ¢ (v) , where u is random number uniformly distributed over the interval
(0,1). Let us consider the case of g./(8',¢) first. Because it does not explicitly depend

on ¢, ¢ is chosen uniformly from interval (0,27) (with probability density 1/27) thus
é =2ru .

The new angle 0 is generated from the probability density sin#'/2. The cumulative

probability distribution function

, o sint ,
F(e):/ S0 L cos )
o 2 2

is related to the inverse function u(0') as follows:

F(0)=u
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and the solution is
cos =1—2u .

We apply the same procedure to f(r' < r) and we get

1

/ r 1 2792 2 19,2
F(r)= eIt =1 — e % =y
o p?

with the solution
r'=py/—2In(1 —u) = pv/—2Inu .

The last equality is due to the fact that both v and 1 —u are random numbers uniformly
distributed over the interval (0,1).

For diatomic molecules the Hamiltonian does not exhibit central symmetry and the
above approach is not efficient. In our work we have used the simplest form of the

transition probability density—uniform moves in Cartesian coordinates

r = z+ D(1 —2u)
y = y+D(1—2u)

z = z+D(l—2u),

where the parameter D is chosen by trial and error and ranges from 0.5 to 1.0 .




Appendix B

Conjugate Gradient Method

This method was originally designed to minimize convex quadratic functions
J(x) =x"Ax - b'x .

This function is minimized when its gradient Vf = Ax = b is zero. Therefore, we
solve a system of linear equations Ax = b, where A is a positive-definite matrix. The
procedure, which guarantees convergence to the proper x* after maximum N steps (with

exact arithmetic), can be described in following steps:
e Choose an arbitrary starting point xq
e Set hg =go = —(Axo—Db)
e For £ = ( until convergence

hlg;

2. Xpp1 = Xk 4 Aghy

3. gr+1 — 8k — )\kAhk

 Bhy1Bkt1
g,fgk

4, Yk

5. hpy1 = gre1 + ey
The vectors h and g satisfy the orthogonality and conjugacy conditions
glg;i=0; hig;=0; hiAh;  fori#j.
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But, the A is unknown. However, if we take gy = —V f(xy) for some point x;, and we
find the local minimum X4, along the direction hy and set gr11 = —V f(Xx41) , then

this is the same vector as constructed in step 3. We can prove it as follows:

gr = —Vf(xx)=—-Ax;+b

Ck+1 = —Vf(Xk.H) = —AXp1 + Ab = —A(Xk + )\hk) +b=gr— AAh, .

What is left is to find the expression for A\. Because A is the minimum along the direction
hy , we can write

d
a (Xk—l—)\hk):().

Using the fact that
d
af(xk + Ahg) = hIVf(x), + Ahy)

we can finish the proof:
0 = h] Vf(x + Ahg) = hi (A(xx + Ah;) — b) = h{ (Ax; — b) + Ahf Ah, .
Comparing the left-most side with the right-most side we get the expression for A:

~hTg, = AhlAh,

—h{g;

A = .
h7 Ah;

We see that this is indeed the same formula as written in step 1.

So far we were talking about minimization of exact convex quadratic form. However,
this algorithm can be used for minimization of arbitrary function. The nearer to the local
minimum we are, the better the approximation of convex quadratic form for the function
is. It turns out that a small change of the value v, (proposed by Polak and Ribiere)
can sometimes significantly improve the algorithm. Now we can rewrite the previous

algorithm into a form suitable for our purpose:
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e Choose an arbitrary starting point xg
e Set hg = go = —V f(x0)
e For k = 0 until convergence

1. Xky1 = minimum along the line with direction hy

2. grt1 = =V f(Xkt1)

3. = @‘ild—gfig:Lg’“‘"—l (Polak-Ribiere improvement)

4. hyy1 = grg1 + vihy

For line search we use the standard Brent’s method (see [19]).

Very important and not trivial task is to decide when to stop the minimization pro-
cess. In principle we should stop when the gradient vanishes. In practice, however, this
(almost) never happens and we have to use different criterion (or combination of criteria).

In our optimization we stopped when the following criterion was satisfied:

abs(fi — fiz1) < %tol[abs(fi) + abs(fiy1) + €] .

The parameter tol is the tolerance (we used 107°) and ¢ is a small number (typically

107'%) which prevents the criterion to be too severe if the function value is close to zero.




Appendix C

Decomposition of the Slater Determinant

In section 1.6 we have given a qualitative justification of the Slater determinant decom-
position. Next, we give a mathematical proof of the validity of this decomposition. What
we want to prové is that the expectation value of any operator which does not include
spin operators is the same for both the full Slater detarminant and the decomposed one.

The operator A is the antisymmetrizer and is defined as follows:

A{@1(1)®2(2) ... Br(k)} = Z DM@y (1) @) (2) - - Py (K) -

In the above expression we sum over all permutations 7. The expectation value of some

operator O is defined as

5 _ (TIO)
(0}, = SO ()
()
Because the denominator has the same form as the numerator (for O = 1), in the following

we will focus on the expression in the numerator.
(\II|O|\II> = (A{®;(1)®3(2)... O+ (nN) D1 (0T +1). .. @n(n)}|O|A{q>1(1)®2(Z) e
D, (nT)q)nTH(nT +.1) ()} =
(nh)(A{®1(1)P2(2) .. Dt (nN @ (nT 1) ... @n(n)}|(§|(1>1(1)¢>2(2) e

1 (WM @1 (0T +1) ... @, (n)) .

The spin-orbitals labeled from 1 to n' have spin up and the rest (n' + 1,...,n) have

spin down. The spin-up and spin-down orbitals are orthogonal (the operator O does not
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affect the spin part):
(®;|0]®;) =0, i=1,2,..n" j=nT+ 1, 0.

Because of this property only those permutations which do not assign a number greater
than n' to a number less or equal to n' (and vice versa) contribute. Therefore we can

break down the antisymmetrizer of the whole product into two parts:

A{®,(1)02(2) ... @t (nN) D1 (T +1) ... p(n)} —

A{®,(1)05(2) ... &+ () FA{ @ty (0T + 1) ... ®u(0)}

We can now write:

(WOT) = ()(A{®1(1)B4(2)... 01 (nDFA{®, 1,y (0 +1)... Bp(n)}O]B1(1)B(2) ...

D1 (nN) Bt (0T +1)... 0, (n)) =

%(A{@l(l)%(z) B (VA[Br (nT £1). .. Ba(n) O]

ALD,(1)05(2) ... Bt (W) FA{D 11 (0T 1) ... Bu(n)}) .

If we substitute the above expression to the numerator and analogous one to the denom-
inator of the C.1, the common numerical factors cancel out and we obtain the desired
formula

(TO[T)  (TTWHO|wTw)

(U|U) (w7
where Ut = A{®,(1)D,(2)... @nT('nT)} and Ut = A{® s (nT+1)...9,(n)}.
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