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Abstract

Optimization of wave functions in quantum Monte Carlo is a difficult task because the

statistical uncertainty inherent to the technique makes the absolute determination of

the global minimum difficult. To optimize these wave functions we generate a large

number of possible minima using many independently generated Monte Carlo ensembles

and perform a conjugate gradient optimization. Then we construct histograms of the

resulting nominally optimal parameter sets and "filter" them to identify which parameter

sets "go together" to generate a local minimum. We follow with correlated-sampling

verification runs to find the global minimum. We illustrate this technique for variance

and variational energy optimization for a variety of wave functions for small systellls.

For such optimized wave functions we calculate the variational energy and variance as

well as various non-differential properties. The optimizations are either on par with or

superior to determinations in the literature. Furthermore, we show that this technique

is sufficiently robust that for molecules one may determine the optimal geometry at tIle

same time as one optimizes the variational energy.
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Chapter 1

Variational Monte Carlo

Variational Monte Carlo (VMC) is a method wllich allows one to obtain an approximate

analytical solution of the time independent Schrodinger equation for one or multi-electron

systems. In our case the system is either a single atom or a diatomic molecule, and we

are interested only in the ground state. Throughout we assume the so-called Born­

Oppenheimer approximation, i.e., we treat the nuclei as illfinitely heavy. The theoretical

basis for VMC is the variational theorem and the numerical method llsed for evaluating

many dimensional integrals is Monte Carlo (MC).

1.1 Variational theorem

Suppose we have Hamiltonian fI and are looking for the solution of tIle time-independent

Schrodinger equation

where WG is the ground state wave function and EG is the ground state energy; i.e., the

lowest eigenvalue of the Hamiltonian.

The Variational theorem states. that the EG is a lower bound to the average energy

for any possible physical state W. The proof can be done as follows: First, we expand the

wave function W in a series of orthonormal eigenfunctions WI, W2 , • •• of fI (fIWi = EiWi)

1



Chapter 1. Variational Monte Carlo

(E)IJ! (wIHlw) = ,~(CiWiIHICjWj) = L cicj(wiIHwj)
1"J ' 1"J

Because ICil2 are positive numbers and EG :::; Ei

(E)\I! == L ICil 2Ei 2:: L ICil 2EG == EG L ICil2 == EG
iii

QED

2

The variational method is based on this theorem and can be described in following

manner.

1. Choose a wave function depending on a set of so-called variational parameters

2. Obtain the multi-variable function

();) = (W ();)IHI W(); )) = In W*();, R)HW();, R)dD
E (w( A) Iw(A)) In w*( A, R)w(A, R)dD

(1.1)

3. Find the parameters corresponding to the global minimum of E(~), ~*, and the

corresponding energy, E (~*) ..

The wave function \l1(~*) is then the so-called variational solution of the Schrodinger

equation. We can use it for calculating an arbitrary property of the ground state such

as dipole moment, average electron distance etc..

The procedure described above is very easy in theory, but in practice we face ·various

problems in every step.

The first step is crucial. The form of the wave function we choose has to satisfy various

quantum mechanical conditions (e.g., it has to be antisymmetric for the fermionic system)



Chapter 1. Variational Monte Carlo 3

and should incorporate as much qualitative information about the system as possible (e.g.,

it should reflect the symmetry of the problem). This can often significantly decrease the

number of variational parameters and save a lot of computer time.

The problem which arises in the next step is due the fact tllat with the exception

of the simplest systems (and simplest wave functions), the analytical form of E(~) is

not known. Therefore we must use numerical methods for evaluating the energy. This

introduces an error which is present in every numerical method. For an N-electron

system the corresponding configuration space is 3N-dimensional. Beginning with N == 2

(6-dimensional integral) the best known numerical method is Me.

The last step is to find a global minimum of a multi-variable function. .This is a

difficult task. Despite much effort no general algorithm is available. There are many

completely different approaches, and no one is better than the others in every aspect. To

choose a good algorithm (in a sense of reliability and time requirements) for a specific

problem is therefore very important. In addition we have another difficulty related to

the unavailability of the analytical formula for the E(~). Because every ~valuation of

E(~) is accompanied with an error (which is random in nature for VMC) the function is

not a well-defined mathematical object. For example, when we evaluate the function at

the same point (in parameter space) two times, we will get two different values. We can

imagine such a function as a superposition of the "true" function E(~) and a random

"noise" function 6(~). Therefore, such optimization is sometimes called optimization

with the presence of noise.

Fortunately, there is a way to circumvent this problem and obtain a continuous and

differentiable approximation of the E(~), so one can use conventional optimization meth­

ods.
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1.2 Monte Carlo integration

4

In this section we will explain Me integration, one of the most powerful methods for

evaluation of multi-dimensional integrals. We will be particularly interested in evaluation

of integrals of the type

in f(R)p(R)dD ,

where p(R) is a non-negative function with a property

in p(R)dD = 1 ·

Hence we can write it ill the form

(1.2)

This function can be considered a probability density distribution of a random vector R.

If R is sampled from p(R), the probability of finding R in a volume element dO of the

vector space RN is P(R) == p(R)dO.

By definition, the integral 1.2 can be written as

Nin f(R)p(R)dD = J~~ f(Ri)p(Ri)~Di ,

where

This can be processed further ~s follows:
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where Ni == N P(Ri) is the number of samples (later called walkers) in the volume element

~!li . In summary, we can write in more conventional notation:

f f(R)p(R)d!1 = In f(R~'Ii2(R)d!1 ~ ~ L f(R i ) ,

In In 'Ii (R)d!1 N {Ri}q;2

where {Ri } p denotes a random sequence of vectors R i generated from the distribution p.

1.3 Metropolis algorithm

In this section we will describe how to generate sequences of random vectors R i sampled

from arbitrary distribution \]!2. The method was first described by Metropolis et ale [15]

in 1953, hence the name Metropolis algorithm.

First, we give the general description of the algorithm and the appropriat~ formulas

will be derived afterwards. The basic object used in the Metropolis algorithm is called

a walker. In general, a walker represents a state of some system, in our case, a point in

3N-dimensional space R3N
. The algorithm can be described as follows:

1. Create a set (ensemble) of M walkers {Rt} randomly placed in the configuration

space R3N (or for the practical purposes in the domain !l C R3N w11ere the function

\]!2(R) is non-zero).

2. For each walker propose a step R7 --+ R~ with probability T(R~ f- R7) and accept

this move with probability A(R: f- R7) . If the step is accepted R7+1 == R~ ,

otherwise R7+1 == R7.

3. Step 2 completes an iteration. Repeat step 2 until equilibrium is reached. This

means that (in the limit M --+ (0) in every region of configuration space ~!l we

would find M IL1n \]!2(R)d!l/ In \lJ2(R)d!l walkers. Further iterations retain that

property so there is no macroscopic change of the density of walkers. For M finite

there are of course statistical fluctuations.
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This algorithm has one interesting property. If we take only one walker and move

it through the configuration space (iterate it), we would see that the walker visits e,rery

region in space and the "time" spentJin each region is exactly proportional to \lJ2. Thus

instead of taking the "space" average offunctioll f(R) over (equilibrated) whole ensemble

(the sum over index i below), we can take the "time" average following one walker (the

sum over index k below) and those results will be equall (in statistical limit). We can

write this as follows:

1 M 1 M
lim M L f(R7) == lim M L ~f(R7) .

M -+00 i==l M -+00 k==l

Although there is no difference between those two averages in theory, in practice every

approach has its advantages and disadvantages. To get a sufficiently accurate estimates

of the Me integral one has to use a large number of walkers (often 106 -108
). However, to

store the position of each walker is impossible (for double precision calculations one needs

8 X 3N bytes for every walker), and equilibration of such ensemble would be extremely

time consuming. The problem with taking only one wall<er and using the "time" average

is due the fact that the random walk is correlated, in other words, the (i + 1)-th position

is not independent on the i-th position. This so-called serial correlation decreases the

number of effective iterations (often by factor of 10 or more), so the precision due to

serial correlation is lower than the theoretical estimate.

In practice, we taJ<e the combined average

. 1 N e 1 N]

(1) == M L N Lf(R7) ,
o i==l I k=l

(1.3)

where R7 is the position of i-th walker after k iterations (after equilibrium is reached) and

No, N 1 are the number of configurations (ensemble size) and the number of iterations,

1Process which satisfies this property is called ergodic. A necessary (but not sufficient) condition for
ergodicity is that there is a non zero probability for the walker to visit every region in configuration
space.
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respectively. In addition this allows us to estimate the statistical error correctly. More

details will be presented in the next section.

Let us now explore the conditions' for T(R' f- R) and A(R' +- R) which result from

the equilibrium condition. Because in equilibrium there is no macroscopic "drift" of

walkers, the number of walkers which leave some domain has to be equal to tIle number

of incoming walkers from other regions. Suppose our ensemble is already equilibrated,

i.e., the walkers are distributed according to \lJ2. The decrease of the density of walkers

at some point R' is

The increase of the density of walkers due to walkers incoming from other regions is

TIle equilibrium condition dictates that ~_(R') - ~+(R') ::;::: 0 which gives

An obvious way to satisfy the above condition is to require the so-called detailed balance

condition

which yields an expression for the' ~cceptance probability ratio

A(R' f- R)
A(R +- R')

\lJ2(R')T(R +- R')
\lJ2(R)T(R' +- R) .

The most common form used for A(R' +- R) is to set

, . \]!2(R')T(R +- R')
A(R +-- R) = mm(1, \]i2(R)T(R' +-- R) ) ·
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As we can see one needs to evaluate only the ratio of the density function at two different

points. Therefore the density function does not need to be 11ormalized, which is very

convenient for practical calculations: Although any form of the transition probability

T(R' ~ R) is theoretically suitable, the efficiency of the Metropolis algorithm depends

strongly on that choice. Appendix A deals with the issue of the tral1sition probability

choice in more detail.

1.4 Monte Carlo estimators

As we have mentioned in the previous section to calculate the error of a Me estimate

(1) is not completely trivial. In our work we need to evaluate expressions of the type

(0) = (wIOlw) = IOL(R)W*(R)W(R)d!1
(WIW) f W*(R)W(R)d!1 '

wllere OL(R) is defined as

(1.4)

OW
OL=W"

If the operator 0 is the Hamiltonian fI the quantity OL is called local energy and is

usually denoted as EL .

To estimate the expectation value w~ use the formula 1.3

(1.5)

To estimate the error of the expectation value (0) one could naively calculate the variance

1 Me 1 N]

8
2 = N L N L(OL(R7) - (0))2 ,

C i=l I k=l

and use the standard error formula
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However, the error calculated in such way would be underestimated due the serial corre­

lation of the quantities OL(R7), OL(R7+ 1
) •.•• In order to avoid such a bias we can look

at the equation 1.5 in a different way

1 N c

(0) = M L:(O)i ,
o i=l

where (0) i is the average local energy tal{en over the i-th configuration. Because

OL(R~), OL(R~), . .. ,OL(Rtc ) are not correlated the configuration averages (O)i are

not correlated either. We can use now the standard formula and estimate the error of

the average

~
S(O}=y~ ,

where s~ = Jc L:~~((O)i - (0))2,

It is useful to have some quantity which measures the strength of the serial correlation.

Introduction of such quantity can be lllotivated by followillg consideration. Without any

correlation we can write

NoNI - 1 No - 1 '

and because No, N I » 1 we can ignore the factor -1 in each denominator. After this

we get
8

2
2

N
1

== Sc .

TIle above relation can be rewritten as

where Tcorr == NI8~/ 8
2 is the so-called correlation time, and is equal to one when there is

no correlation. This quantity may be used to find the optimal choice for the transition

probability T(R +--- R') which affects tIle efficiency of the Me algorithm. It is important

to note that the correlatioll time is different for each quantity. It is most commonly

calculated (and optimized) for the energy.
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1.5 Correlated sampling

10

Correlated sampling is a technique which makes it possible to estimate the \Talue of a

MC integral (1) (p2 by using an ensemble sampled from a different distribution \]/2. The

derivation can be done by starting from its definition by performing SOlne simple algebraic

manipulations:
j f~\f!2dn

jW2 dn

J <1>2 \f!2dn ·
w2

jW2 dn

We see that the numerator and denominator have exactly the form we need for using

MC integration, and we can estimate the MC integral as follows:

(f) - L{R;}'f2 f(Ri)w(Ri)
([>2 - L{R;}'f2 w(Ri ) ,

where the Wi == w(Ri ) == <I>2(Ri )/\]/2(Ri ) are called "weights". The above formula

resembles the weighted average of the function f.

If the two distributions are not very different the weights are I10t far from unity and

the estimate is reliable. However, for two significantly different distributions some weights

can reach very large values and dominate in the average. In tllis case the effective size

of the ensemble is drastically reduced and the estimate is not reliable anymore. As a

measure of the effective ensemble size we introduce a so-called index [1] which is defined

as follows:

. d (L~ Wi)2
~n ex == N c 2 .

. Li=l Wi

The index ranges from 1 (for one weight dominating) to No (all weights are unity).

What are the features of the correlated sampling for which we find this method so

appealing? To answer this let us take the expression for the variational energy 1.1.

Suppose our ensemble is equilibrated according to \]/2(~O)' Using correlated sampling we
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can write the variational energy function as

11

where W(Ri,~) == \]!2(Ri , ~)/lJ!2(Ri, ~O) . The first tIling we notice is that we can obtain

the variational energy for different parameters ~ without any need of re-equilibration.

Second, and perhaps even more important feature is that such defined E(~) is a smooth

function of the parameters ~ . This is easy to see because for fixed {Ri } and ~o both

EL(Ri,~) and W(Ri,~) are smooth functions of ~, and the product, sum and ratio of

smooth functions is again a smooth function. This is the key property wllich allows us to

use conventional methods for optimizing E(~) . The only problem which could arise is if

for some R i the corresponding value of lJ!2(Ri , ~o) is zero. However, this is llot possible

because the probability of finding a walker ill such region is zero.

One immediate application is the numerical calculation of the first derivatives of E(~)

with respect to the individual parameters

(The symmetric form for numerical derivatives is chosen for better numerical behav­

ior.) Knowledge of first derivatives .is necessary for the conjugate gradient optimization

method. In practical applications we prefer using analytical formulas for derivatives, but

this is not always possible.

One of the drawbacks of this method is the previously mentioned index probleln. If

dllring the optimization we go too far 2 from the initial value ~o and the index becomes

too small, we have to stop it and start a new one. More about this and other optimization

related topics will be presented in the section on optimization.

2the meaning of the word far is not well defined and is used very loosely here
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1.6 Trial wave functions

12

Quantum mechanics demands that many-body wave functions exllibit certain fUlldamen­

tal properties. For fermionic systems such as electrons, the corresponding wave functions

have to be antisymmetric with respect to exchange of an~y pair of electrons.

Generally, in our work we take

where WA is completely antisymmetric, and the so-called Jastrow factor J is completely

symmetric with respect to the interchange of any pair of coordinates. Hence the product

as a whole is completely antisymmetric.

\]!A has the form of a Slater determinant

(1.6)

where <I>i(j) denotes i-th Spil~-olbital as a function of j-th electron coordinates. OUf

Hamiltonians do not include any spin operators, so the spins of the electrons, once set,

do not change in -time. This gives us a tool for distinguishing between two types of

electrons: spin-up and spin-down.

Motivated by this reasoning we require that the wave functions be antisymmetric only

with respect to interchange of electrons of the same spin. As a consequence the Slater
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determinant 1.6 reduces to a product of two Slater determinants of spatial orbitals

13

<P1(1) <P1(2) <P1(nt) <Pnt+1(nt +1) <Pnt+1(nt + 2) <Pnt +1(n)

\II A
<P2(1) <P2(2) <P2(nf) <Pnt+2(nt + 1) <Pnt+2(nt + 2) <Pnt +2(n)

<Pnt (l) <Pnt (2) <Pnt(nt ) <Pn(nt + 1) <Pn(nt + 2) <Pn(n)

\II~\II~,

where ntis the number of spin-up electrons, and n is the total number of electrons. This

decomposition can be justified mathematically and the proof is given in appelldix C.

Let us now have a look at the symmetric part of the wave function-the Jastrow

factor J . The purpose of that factor is to explicitly incorporate the electron-electron

correlation and sometimes other types of correlations as well. We need a mechanism

wllich would decrease the probability of finding two electrons very near to each other.

Slater determinants incorporate the Pauli exclusion prillciple and prevent two electrons

with the same spin from occupying the same region in space (so-called Fermi correlation).

However, there is no such mechanism for electrons with opposite spins (so-called Coulomb

correlation) .

In general

where rij is the inter-electronic distance, and r ai is the distance between the a-th nucleus

and i-th electron.

In our work we have used several different types of the Jastrow factor. The details

will be given in sections dealing with specific systems.

If we look at the expression for the local energy

H\II T\II N a N e Za N e N e 1
EL(R) == - == - - L L - + L L

\II \II . r ~,; . .. r ';J'a=1 ~=1 '-All ~=1 J=~+1 II
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we see that one can run into difficulties when an electron approaches a nucleus(rai -+ 0) or

when two electrons approach each other (rij --+ 0). In the above formula T is the kinetic

energy operator, N a (Ne ) is the number of nuclei (electrons) in the system. To avoid

singularities in the local energy one can derive a set of so-called "cusp" COllditiollS [9] for

the variational parameters which cause cancellation of divergent terms Za/rai alld l/rij

by similar terms from the kinetic part of the local energy. Cusp conditions can be directly

incorporated into the trial function so that it satisfies them for all values of variational

parameters. This is not always easy to achieve so the cusp conditions are often checked

after optimization as a "quality indicator" since the true wave functions obey the cusp

conditions. Our wave functions (except lJ! 2 for He) do not explicitly incorporate the cusp

conditions.

1.7 Optimization

By optimization we mean the procedure of finding the best set of variational parameters.

However we need to explain the meaning of the word "best".

There are basically two criteria used to optimize a wave function. The first, and

most straightforward, is to directly minimize the energy, or to be more precise tIle Me

estimate of the energy 1.5. The secqnd possibility is to minimize the MC estimate of the

variance of the local energy

. I:{R'} 2 - [EL(Ri,~) - ET]2w(Ri,~)
2 ~ 'lJ (Ao)

SEL == . ~' w(Ro A)
L..J{Ri }'lJ2 (>'0) t,

where ET is our best guess for the ground state energy. This optimization is not very

sensitive to the choice of ET . Common practice is to choose its value below the expected

ground state energy which corresponds to the minimization of a combination of the

variance and energy. In the ideal case, i.e., if there is a set of variational parameters for

which the trial wave function becomes the true eigenfunction of the Hamiltonian, those
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two methods lead to the same result - the true eigenstate. But in practice that is almost

never the case and those methods give different results.

Many people prefer to optimize tlre variance for several reasons (see for exalTIple [23]).

The lower limit of the variance is known-it is zero. Furthermore, minimizing the variance

resembles least squares fitting for wllich powerful algorithms were developed. We decided

to optimize both and compare the results afterwards.

As we explained before, correlated sampling gives a smooth approximation of the

E(~). The larger the ensemble size the better the approximation is. An immediate con­

clusion might be to take a sufficiently large ensemble and do one optimization. However

this rather naive approach has several drawbacks;

1. As the dimensionality of the configuration space increases the accuracy of the Me

integral decreases. Therefore, we do not know in advallce what number of configu­

rations is sufficient.

2. Having only one optimal set of variational parameters we can not say how much

each parameter contributes to the energy, i.e., if a small change of a parameter

leads to a small or a large change in energy. This kind of information helps us

better understand the qualitative characteristics of the trial wave function.

3. We might get trapped in one of many local minima and there is no way of realizing

it.

Tllere is another more or less technical problem related to the need for large memory to

store all the configuration positions. But this issue is becoming less and less important

nowadays when memory prices are falling rapidly and computers with hundreds alld

thousands MB of memory are commonly available.

The basic rule in experimental physics is to repeat measurements of some properties

of some physical system as many times as possible. This allows one to use statistics for
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processIng the data and to get reliable estimates of the error of the measurement. It

also decreases the probability of accidentally measuring some random fluctuation of the

system without noticing it. Such data points known as outliers can be ignored.

Our approach is very similar: we repeat the optimizatioll many times and use statistics

to estimate the value for each parameter at the global optimum. Of course, if we used

the same ensemble for every optimization we would arrive at the same minimum every

time (using a deterministic minimization algorithm). So we re-equilibrate the ensemble

between optimizations which randomly changes the functioll E(~). This also reduces the

risk of being trapped in local minima.

We have to realize that the local minima are shallow and even a slight change of

the function can help us out. There is another big advantage of this approach. TIle

optimizations are completely independent and can be run in parallel. For example, if we

have ten processors available, the time necessary for collecting all the data is reduced by

factor of ten. Our task is naturally parallel, and no l{nowledge of parallel programmillg

is necessary3.

The optimization method used here can be summarized as follows:

1. Choose the best estimate of the variational parameters ~o and equilibrate the en­

semble according \]!2(~O) .

2. Start from the point ~o and find from a standard algorithm the minimum of the

3. Re-equilibrate the ensemble (again according the \]!2 (~o)) .

3The trend in computer industry is in parallelization. One way is to increase the number of processors
in modern supercomputers and speed the communication among them. Other (and perhaps even more
promising for certain tasks) is to use the tremendous computer power distributed in the Internet or even
in a local university computer network. There are hundreds and sometimes thousands of computers in
every university which are most of the time used for e-mail and word processing, which is like doing
nothing for the processor. Experiments involving thousands of computers used for breaking the standard
encryption algorithms were very impressive and led to the change of industrial security standards.
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4. Repeat steps 2-3 until a sufficient number of ~i is collected.

17

5. Process the collected data using the "histogram filtering" Inethod (wllich will be

described later).

The above description needs several comments.

To come up with a good value of the starting parameters ~o is not an easy task. If we

do not have any prior knowledge of the parameter values we just choose some reasonable

numbers. In such case we assign the SCF orbital exponents and linear coefficients to the

Slater part of the wave function, and set the Jastrow parameters to zero. Similarly, we

should assign some reasonable value to the bond distance parameter. After performing

a short series of optimizations, normally we get much better estimates of the starting

parameters. Then, starting from the new point, we perform several other optimization

runs (the number depends on how fast it converges). The usual procedure is to take

the averages of the nominally optimal parameters from those runs and set those as the

starting point for the main optimization. To get as close as possible to the minimum is

advantageous not only for the greater accuracy of the optimization, but the time needed

for convergence is decreased also. That is an important factor when severa~ hundred

optimizations are performed.

It should be pointed out that for complicated wave functions (such as W2 for LiH) it

can happen that the convergence to the optimum is too slow or the number of successful4

runs is very small. In this case we can try to do a "staged" optimization which means

that in each stage we fix either the Slater determinant or the parameters in Jastrow. In

the next stage we fix the previously optimized part and optimize the previously fixed

part. This procedure can be applied several times until the parameters do not change

4By "successful" we consider those runs which converge to the optimum. It can happen that we must
prematurely stop some optimizations because of the index problem or variance being too large (in the
case of energy optimization). Occasionally the conjugate gradient exceeds the preset maximum number
of iterations.
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too much or the energy (or variance) does not drop significantly. In the last stage we

can try to optimize all parameters. The above procedure is most efficient when the bond

distance is fixed, because in that case we do not need to recalculate the "fixed" part

(determinant or Jastrow) of the wave function during the optimization.

If we still have trouble optimizing all the parameters we have to decrease their number

by fixing some of those which do not change too much or which contribute relatively little

to the variationa~ energy.

We applied the "staged optimization" scheme to the fixed geometry energy optimiza­

tion of LiH molecule (\]/2). For geometry optimization of this molecule we fixed the Slater

determinant5
.

If our trial function is based on some' previously optimized trial function with known

optimal values we can simply use them as our starting point.

The standard optimization algorithm of choice here is the conjugate gradient method

(see appendix B). This method is deterministic and requires the first derivatives of the

given function.

5In the beginning we have done about 30 optimizations of all parameters and we set the determinant
parameters to the average values taken from those 30 runs. Thus in some sense the determinant was (at
least partially) optimized.
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Examples of Histogram Filtering Method

In this chapter we illustrate the procedure of llistogram filtering in some detail. All the

numbers reported from this chapter on are in atomic units! The arrows in histograms

indicate the values of initial parameters (lower arrow) and optimal parameters (upper

arrow). If the lower arrow is missing it means that the value is out of the range. The

arrows in the energy and variance histograms indicate the appropriate optimal values

obtained from verification runs.

2.1 The hydrogen molecule ion

As a first example we take the energy-optimized Ht molecule ion vvith variable geometry.

TIle trial wave function has the simple form

where ra , rb are the electron-nuclear distances, k is the orbital exponent and it is the

first variational parameter. The distance between the nuclei R is the second variational

parameter. For this s'ystem the·variqtional energy E(k, R) can be calculated analytically

E(k R) = _~k2 k2 - k - 1/R + (1 + kR)e-2kR/ R + k(k - 2)(1 +kR)e-
kR

~
, 2 + 1 + (1 +kR + k2R2 /3)e- kR + R

alld it is easy to determine the optimal values: k == 1.23803 and R == 2.0033 ao witll the

corresponding energy E == -0.5865065 Eh
2

.

IThe unit of energy is called hartree (Eh), 1 Eh == 27.2114 eV. The unit of length is called bohr (ao),
1 ao == 0.529177 A

2 Eexact == -0.6026 Eh

19
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We performed both energy and variance optimizations. The variance optimization

yields very poor results with Ropt over a factor of two larger and the accompanying

variational energy uncompetitive (E~pt == -0.528269 Eh ). As we shall see later this is

generally the case for variance optimization using a crude wave functions. The histograms

are shown in figure 2.1.

Next, we discuss the energy optimization. To find out how the optimization depends

on the choice of initial parameters, we started from three different initial values of varia-

tional parameters. Figures 2.2-2.4 show histograms for variational parameters k, Rand

energy at the minimum for those three different choices of initial variational parameters.

TIle histograms shown are already free of outliers. In this case the Ilumber of outliers was

small. Results are given in table 2.1. The variational energy Eopt is calculated from the

analytic formula for the corresponding optimal parameters R opt , kopt . Eacll trial produced

good agreement with the analytic values for E. For each choice of initial parameters we

did 500 optimization runs. The ensemble was re-equilibrated 10 times after every opti­

mization. This number is sufficient for the next optimization to be independent of the

prevIous one.

k I R 1 /2 kopt ~kopt R opt /2 ~(R opt /2) Eopt ~E

0.8 1.5 1.2424(9) 4.4E-:-3 1.004(2) 2.4E-3 -0.5864891 1.7E-5
1.0 1.5 1.2409(8) 2.9E-3 1.003(1) 1.4E-3 -0.5864994 7E-6

1.23 1.0 1.2387(4) 7E-4 1.0021(7) 5.5E-4 -0.5865060 5E-7

Table 2.1: Variational parameters' .for Ht molecule ion, energy optimization. R1,kI are
the initial parameters, R opt , kopt are the optimal parameters.
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2.2 Description of histogram filtering

23

In the previous section we have seen histograms consisting only of one single Gaussian­

like peak for every parameter. In the general case, however, the structure of histogralTIs

is much more complicated, and we often see several (many times overlying) peaks in

llistograms for some variational parameters. This is very probably due to existence of

several local minima.

OUf data have the following form:

A~, A~, , Ak

Ai, A~, , A~

(2.1)

A~, A~, ... ,Ak ,

where A~ is the value of the j-th parameter in the i-th optimization. We can introduce a

set of conditions for the variational parameters-the "filter"

Aminl < Ai < Amaxl

Amin2 < A~ < Amax2
(2.2)

Amink < At < Amaxk ·

Through this so-called direct filter. can pass only those parameter sets for wllich all the

above conditions are satisfied. If at least one condition is invalid the set does not pass

through the filter. There is a~other possible mode of filtering-"reverse" filtering. In

this mode we discard3 sets for which all the above conditions hold true. Thus if at least

one condition is invalid the set passes through.

30£ course we do not physically destroy our data.
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Each type of filtering is used for different purpose. In our work we have used almost

always direct filtering which for now on is, simply referred to as "filtering". It is a powerful

tool for isolating the different local minima, i.e., for finding which peaks are'mutually

connected. As a result of the filtering we obtain several "candidates" for the global

minimum. In many cases we can judge the candidates simply by looking at the energy

(or variance) histogram of each candidate. For some of them there is often a visible shift

of their energy (or variance) peak towards higher or lower values. This can be used as a

first step in the process of looking for the best candidate.

To decide which minimum corresponds to the lowest energy (or variallce) we have to

calculate the energy (or variance) for eacll candidate alld choose the best one. Because the

energy (or variance) differences are usually very small this would require much computer

time. Therefore we use correlated sampling which is much more sensitive to differences,

and calculate the corresponding energies (or variances) for every candidate ill one run.

After the best candidate is selected, the energy and other properties are calculated using

standard Me codes.

In case of energy optimization one has to be more careful with using the comparison

based on the energy shifts. Many times the energy shift to the left (towards lower values)

is accompanied with variance shift to the right (towards larger values). We could say

that energy "expI9its" the large variance to get low energy values.

How this works i:p. practice will be seen in next section, where we will employ this

technique for isolating the minima for system with a more complicated 11istogram struc­

ture.
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2.3 The hydrogen molecule

25

In this section we demonstrate histogram filtering method on more complicated system­

variance-optimized \lJ3 wave function with variable geometry (see section 3.1 for details).

We have used the same starting point for variance optimization as for ellerg~y optilnization.

This is not by far the best choice, but the optimizations (at least in tllis case) do not

strongly depend on ~,he choice of the starting point.

The wave function W3 has formally 12 parameters - 6 in the Slater determinant,

5 in the Jastrow factor, and one is the 'bond distance. Without any loss of generality

we can fix one linear coefficient4 in the molecular orbital expansion (Cl), since only the

ratios of the linear coefficients are important. Thus we have together 11 free adjustable

variational parameters.

Figure 2.5 shows the histograms after completing 320 optimizations. We immediately

notice the very visible and well-separated double peaks for the (Is, (2s, C2, C3 and some-

wllat less obvious but still visible double peak structure for 93, 94, R/2 and the variance

itself. To determine which peak goes with which we can use a simple direct filter for

any of the "double-peaked" parameters. We have chosell C3, and after applying the filter

C3 < 0.09 we get the histograms 2.6. Keeping the other peak (0.1 < C3) we get 2.7. The

scales were deliberately kept unchanged to make the comparison easier. In this particu­

lar example we can be certain that the 2.6 corresponds to the lower variance (there is a

significant shift in the variance histo,gram) and in the following we will concentrate only

on it.

In order to see more details it is convenient to re-scale. The figure 2.8 shows the same

histograms as 2.6, only with different scales. To get rid of the outliers we set the (direct)

4If we did not fix this parameter there would be infinite equivalent parameter sets of optimal vari­
ational parameters and this would result in an ambiguous minimum and the optimization wouldn't be
reliable.
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filter:

(2.3)

< 0.833

< 0.99

< 0.4

(Is

(2s

d

-0.5 < g2

-0.9 < g4

0.722 < R/2 < 0.829

varIance < 0.0115.

Each of the above conditions usually serves to filter out only a few outliers.

The resulting histograms are shown in figure 2.9. The most obvious structure there

is the double peak for g3 and g4. Keeping the left peak for g4 (-0.859 < g4 < -0.191)

and filtering out couple of outliers we obtain the histograms 2.10. Taking the average

for every histogram we get our first candidate (see table 2.2). We report three digits but

the error for some parameters (such as g"s) is already at tIle second decimal place.

We can go even further and try to separate the possible two-peak structure for (28.

The filter would be (28 < 0.96 for the left peak, and 0.96 < (2s for the right one. The

corresponding histograms are shown in figures 2.11 and 2.12. Taking the average for

each histogram we get second and third candidates (table 2.2). To filter further is useless

because now we have only 15 parameter sets and every other filtering would decrease the

number even more.

Let us now return back to the figure 2.9 and isolate the right peak for g4 (-0.191 < g4).

The result is on the figure 2.13. This yields the fourth and last candidate.

To check which candidate is' the best, we performed a correlated sampling verification

run. Thus although the true variances are related to the reported sigmas, the relative

values, i.e., the ordering should be correct even if two values are within the statistical
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error. The results appear in table 2.2. The second candidate has the lowest variance thus

we report its parameter values as the optimal ones.

Unfortunately, we do not have always such a nice structure with so well-separated

peaks. In that case the filtering is more complicated and not as straiglltforward. We

always try to find the parameters with most separated peaks and start filtering there.

If we have more possibilities, we can start from different parameters and in the end we

compare all the candidates in the correlated sampling run.

1 2 3 4

(Is 0.793 0.782 0.800 0.804

Cl 1.0 1.0 1.0 1.0

(2s 0.962 0.953 0.968 0.968

C2 -0.556 -0.563 -0.551 -0.543

(2Pz 1.686 1.670 1.697 1.684

C3 0.073 0.073 0.073 0.0748

d 0.309 0.321 0.301 0.251

91 0.820 0.794 0.838 0.983

92 -0.180 -0.163 -0.192 -0.241

93 0.504 0.539 0.479 0.107

94 -0.453 -0.472 -0.439 -0.062

R/2 0.777 0.792 0.766 0.778

~ variance ~ 0.011262(14) I 0.011230(9) I 0.011259(10) I 0.011266(12) ~

Table 2.2: Candidates for the minima of the variance and their variances obtained
by correlated verIfication run for H2 with trial function \]13 with variable geometry,
ET == -1.175.
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Figure 2.6: Results of filtering the left peak of C3 ill figure 2.5.
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Figure 2.7: Results of filtering the right peak of C3 in figure 2.5.
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Figure 2.8: Same as 2.6, only with different scaling.



Chapter 2. Examples of Histogram Filtering- Method 32

.45.40.30 .35

d
.25

0-+-'----'---r--J-.......L--r'--.L--I"---,1---'----'--r-'---'---J..,-!----'--+
-0.58 -0.57 -0.56 -0.55 -0.54 -0.53 -0.52

c
2

16 +------'----'---------'------'-----L---4-

14

12

10

15

10

10

15

25 -+----'----'--------'-----'----'----+

20

20

25 +----'----.L------'-----l.---4-

0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02

(" 25

r--

- - r---

- -
1---

I--

Milr-r

10

25 -+-_-'--_-'---_-'--_-1-_-'--_---'-_-+

15

20

15

20

10

2.8

5.6

0.0
.066 .068 .070 .072 .074 .076 .078 .080

c
3

8.4

11.2

14.0

20

15

10

5

0
.76 .78 .80 .82 .84 .86

(" 1s

25

20

15

10

0
1.60 1.65 1.70 1.75 1.80 1.85 1.90

(" 2pz

20

15

10

0 0
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.2 0.4 0.6 0.8 1.0

9 1 92 93

25 20 25

20 20
15

15 15

10

10 10

0 0 0
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 .65 .70 .75 .80 .85 .0108 .0110 .0112 .0114 .0116 .0118 .0120 .0122 .0124

94
R/2 variance

20

15

10

O+---L.,I---I--1-+-J--.l.--L,-J'--'--'--,.I--L--'---'r-'--l.--+
-1.172 -1.170 -1.168 -1.166 -1.164 -1.162 -1.160

energy

Figure 2.9: Same as 2.8, after filtering to remove outliers.
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Figure 2.10: Result of filtering the left peak of g4 in figure 2.9.
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Figure 2.11: Result of filtering the left peak of (28 in figure 2.10.



Chapter 2. Examples of Histogram Filtering- Method 35

20 25 16

14
20

15 12

15 10

10

10

0 0 0
.76 .78 .80 .82 .84 .86 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 -0.58 -0.57 -0.56 -0.55 -0.54 -0.53 -0.52

(" 15 (" 25 C
2

25 14.0 25

20 11.2 20

15 8.4 15

10 5.6 10

2.8

0 0.0 0
1.60 1.65 1.70 1.75 1.80 1.85 1.90 .066 .068 .070 .072 ,074 .076 .078 ,080 .20 .25 .30 .35 .40 .45

(" 2pz C
3

d

20 25 25

20 20
15

15 15

10

10 10

0 0 0
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.0 0.2 0.4 0.6 0.8 1.0

91 92 93

25 20 25

20 20
15

15 15

10

10 10

0 0 0
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 ,65 .70 .75 .80 .85 .0108 .0110 .0112 .0114 .0116 .0118 .0120 .0122 .0124

94
R/2 variance

20

15

10

o +--...I.-..rl--'--..L-.J.,r-'-.l-....L-f---'--..........l..-.l..---'----',.--_t_

-1.172 -1.170 -1.168 -1.166 -1.164 -1.162 -1.160

ener9Y

Figure 2.12: Result of filtering the right peak of (28 in figure 2.10.



Chapter 2. Examples of Histogram Filtering.- Method 36

20 25 16

14
20

15 12

15 10

10

10

0 0 0
.76 .78 .80 .82 .84 .86 0.94 0.98 0.99 1.00 1.01 1.02 -0.58 -0.57 -0.56 -0.55 -0.54 -0.53 -0.52

(15 ( 25 C
2

25 14.0 25

20 11.2 20

15 8.4 15

10 5.6 10

2.8

0 0.0
1.60 1.65 1.70 1.75 1.80 1.85 1.90 .066 .068 .070 .072 .074 .076 .078 .080 .25 .30 .35 .40 .45

( 2pz C
3

d

20 25 25

20 20
15

15 15

10

10 10

0 0 0
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.0 0.2 0.4 0.6 0.8 1.0

91 92 93

25 20 25

20 20
15

15 15

10

10 10

0 0 0
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 .65 .70 .75 .80 .85 .0108 .0110 .0112 .0114 .0116 .0118 .0120 .0122 .0124

94 R/2 variance

20

15

10

o -/------,-L---.l.-L-.L.-,,J-I-...L-..L-+--..J.---L....JL-l.,--.l........L-""""-----,,----/-

-1.172 -1.170 -1.168 -1.166 -1.164 -1.162 -1.160

energy

Figure 2.13: Result of filtering the right peak of 94 in figure 2.9.



Chapter 3

Applications to Ground States of Small Systems

In this chapter we present the results of optimizations of various wave functions for three

different systems-hydrogen molecule H2 , helium atom He and lithium hydride molecule

LiH. For each wave function we report the initial and optimal parametersl , variational

energies and histograms ridden of outliers. The optimal parameter values were obtained

in similar manner as we described in chapter 2.

For some systems the optimal values are almost the same as the illitial Olles., This due

to the fact that the initial values are results of previous optimizations (see section 1.7).

We will use the following abbreviations to make the tables and text more readable:

EO - Energy Optimization

VO - Variance optimization

EOVe - Energy Optimization with Variable Geometry

EOFG - Energy Optimization with Fixed Geometry

VOVG - Variance Optimization with Variable Geometry

VOFG - Variance Optimization with Fixed Geometry

IP - Initial Parameters

OP - Optimal Parameters

CE - Correlation Energy

The (electronic) correlation 'energy is defined as the difference between the variational

1If there is a star by some parameter value it means that that parameter was not optimized.

37
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energy and Hartree-Fock energy

CE == Evar - EHF .

It is usually reported as the percentage of the exact CE:

CE[%] = Evar
- EHF x 100% .

Eexact - E HF

38

It indicates how good the variational wave function reflects the inter-electronic (Coulomb)

interactions.

3.1 The hydrogen molecule

The forms of the trial functions considered here are the simplest LCAO \lJ 1 and two

explicitly correlated ones, W2 and W3, given as follows:

WI == q>1 (1 )q>1 (2)

W2 == q>1 (1 )q>1 (2)J1

W3 == <I>2(1)<I>2(2)J2

q>1 == ¢lsa((ls) + ¢ISb((ls)

q>2 == Cl [<Plsa((Is) + <P1Sb ((Is)] + C2.[<P2sa((2s) + <P2Sb ((2s)] + C3 [<P2pza ((2pz) + <P2p;b ((2pz)]

J1 = expC~;)

J2 == exp (2:%=1 gkr~2)

if -~
12 - l+dr 12 '

(3.1)

where <p'8 are Slater-type atomic orbitals centered on the hydrogen atom a or b.

\]! 1 is a minimal basis set, uncorrelated wave function with a variable orbital exponent,

first optimized by Wang [24] in 1928. Reynolds, Ceperley, Alder, and Lester, Jr. [20]

optimized W2, which is WI augmented by a simple electron correlation function. There
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is one additional variational parameter: b in the J astrow-Pade function, J1 . The a

parameter in the Jastrow is fixed by the cusp condition, and its value is taken from

the original paper. Therefore, including the equilibrium inter-nuclear distance R as an

adjustable parameter, \]! 1 and \]! 2 have two and three variational parameters, respectively.

\]!3 is much more sophisticated, consisting of a double-zeta plus polarization basis

set and a Schmidt and Moskowitz [21] electron-correlation factor. Including R as an

adjustable parameter, and keeping the dominant MO coefficient fixed, altogether there

are eleven parameters in this wave function. Basic characteristics of those wave functions

are summarized in table 3.1. The initial and optimized parameters are in tables 3.2­

3.5. The variational energies and CE's are reported in table 3.6. Figures 3.1-3.12 show

the corresponding histograms. We show only histograms for parameters which were

optimized, together with the energy and variance. In a few cases the variance histograms

for energy optimization are missing because those runs were performed among the first,

and the variance was not stored in the file that time.

For the energy-optimized \]! 1 the variational energy and the optimal geometry are in

excellent agreement with Coulson's [4] calculations in 1937. The variance-optimized wave

function is somewhat inferior: the variational energy is 0.11 Eh higher and the optimal

equilibrium bond distance is in excess of 1.24 ao longer.

The variationaJ energy for energy-optimized W2 is 6 mEh below the fixed-geometry

optimizations of Reynolds2
, et ai. [20], accounting for just over half of the electron CEo

TIle equilibrium bond distance is' within 0.023 ao of experiment. Again the variance­

optimized wave function gives somewhat inferior results: we do not recover any of the

CE, and the equilibrium geometry is 0.76 ao longer than experiment.

\]!3 is more typical of high-accuracy variational wave functions. The energy-optimized

wave function recovers 93% of CE, and the optimal bond distance is within 0.007 ao of

2We used their optimal parameter values as our initial parameters for optimization.
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the experimental value. The variance-optimized wave function is somewhat less accurate:

77% of CE with bond distance only within 0.18 ao of experiment.

o Np ~ e-e correlation ~

WI 1+1 0 no
W2 2+1 1 yes
W3 10+1 5 yes

Table 3.1: Characteristics of the wave functions for H2 molecule. Number of variational
parameters N p , number of variational parameters in the Jastrow factor N Jp .

81---(1-8----r-j_la -R/-2- r--(1-8--'----a--.---j-2-b-------.--R-/r-2 -~
IP 1.194 0.692 1.285 0.28* 0.05 0.7005
OP 1.192 0.6933 1.296 0.28* 0.163 0.689
IP 1.19 0.7005* 1.29 0.28* 0.15 0.7005*
OP 1.1893 0.7005 1.2904 0.28* 0.1627 0.7005*

Table 3.2: Variational parameters for WI and \]!2, energy optimization.

a Ref. [4]: (18==1.197, R/2==0.692 ao
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IP 1.0 1.2 .. 1.22 0.28* 0.162 0.7
OP 0.961 1.322 1.0955 0.28* 0.1500 1.0802
IP 1.14 0.7005* 1.29 0.28* 0.15 0.7005*
OP 1.1368 0.7005* 1.2198 0.28* 0.1679 0.7005*

Table 3.3: Variational parameters for WI and W2 , variance optimization.

IP 1.311 1.0* 0.587 0.008 1.937 0.127
OP 1.3108 1.0* 0.587 0.0065 1.9377 0.125
IP 1.312 1.0* 0.589 0.007 1.97 0.123
OP 1.313 1.0* 0.590 0.0066 1.968 0.123

IP 0.241 0.959 0.117 -0.184 -0.24 0.7005*
OP 0.239 0.962 0.12 -0.183 -0.24 0.7005*
IP 0.239 0.964 0.122 -0.184 -0.242 0.7
OP 0.238 0.964 0.123 -0.185 -0.243 0.697

Table 3.4: Variational parameters for W3 , energy optimization.

IP 1.312 1.0* 0.589 0.007 1.97 0.123
OP 0.8092 1.0* 0.9844 -0.56 1.775 0.0688
IP. 1.312 1.0* 0.589 0.007 1.97 0.123
OP 0.782 1..0* 0.953 -0.563 1.670 0.073

IP 0.239 0.964 0.122 -0.184 -0.242 0.7005*
OP 0.312 0.812 -0.205 0.531 -0.51 0.7005*
IP 0.239 0.964 0.122 -0.184 -0.242 0.7
OP 0.321 0.794 -0.163 0.539 -0.472 0.792

Table 3.5: Variational parameters for W3, variance optimization.
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WI "" W2 W3

energy CE [%] energy CE [%] energy CE [%]
EOVG -1.12824(5) <0 -1.15657(3) 56 -1.17166(2) 93
EOFG -1.12822(7) <0 -1.15654(3) 56 -1.17163(2) 93
VOVG -1.01814(5) <0 -1.09681(3) <0 -1.16492(2) 77
VOFG -1.12546(6) <0 -1.15184(3) 44 -1.17051(2) 90

Table 3.6: Variational energies for H2 molecule.

ET ==-1.175 Eh , Eexact==-1.17447... Eh (Ref. [12]), EHF==-1.1337 Eh (Ref.[11])

42
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Figure 3.1: Histograms for H2 molecule, WI, energy optimization witl1 variable geometry.
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Figure 3.3: Histograms for H2 molecule, W1, variance optimization with variable geolne­
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Figure 3.9: Histograms for H2 molecule, W3, energy optimization with variable geometry.
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Figure 3.10: Histograms for H2 molecule, \I!3, energy optimization with fixed geometry.



Chapter 3. Applications to Ground States of Small Systems 48

-0.1-0.2-0.4 -0.3

C
2

-0.5

40

20

O+-'--I..-L--'--,,....-----,-----.--.==L.-I-l----I-
-0.6

160 -!---'--------I-----I---...I..-----I-

140

120

100

80

60

1.151.101.00

10

20

30

60 ;-----'-----'----'--------!-

40

50

1.21.10.9 1.0

(" 15

0.8

I-

~ I ho
0.7

20

40

60

80

35 +------I'---_~__-L..-__.J.--_ _t_ 60 +-_....L.--_-'---_l------I_---l._-L_-+ 50 +-_..1.-_-'---_-'---_1...-_1---..1_--1-

30 50 40
25

40

20 30

30

.24 .26 .28 .30 .32 .34 .36

d

10

20
20

.07 .08 .09 .10 .11 .12 .13

C
3

10

1.851.801.70 1.75

(" 2pz

1.65

10

15

50 -!-__'---_----'-__--'--__.L.-_--+

.8.6.2
o --t---'---'--..L.---J::==r=="'-'""'---J'--'--r-----'--'-....l--l:=r--'--'---'--__;_

.0

20

40

60

80

100

120

140 -+-__----'- "--__.......L-____+_

0.0-0.1-0.2-0.3-0.4

10

20

30

40 +----'------'---....1.-..-~'r-----l-

1.21.11.0

gl
0.90.8

10

20

30

40

200 -!-__'---_----'-__--'--__.L.-_--+ 35 -+-_--'__----'-__....1.-..__'---_-+ 50 -+------'-----'-----'-----+-

.0115 .0120 .0125 .0130

variance
.0110

10

30

20

40

.85.80.70 .75

R/2
.65

0+--.L.......L..,...L.-L.~'-+-....L....L.-L..-I-,-1-.l..-L....l-....Lr---l--1...-L-..l_.+

.60

10

15

20

25

30

0.20.0-0.4 -0.2

94

-0.6
O-i==-.l..-.I::j:J.......J..--I-=.--=~==i'_..l--I..-...L-..L.,..J___J'---_t_

-0.8

50

100

150

50 +---'-----'----'---"------'----'----'-------1-

40

30

20

10

O+--'---I.-..j--'-.........,...~'_r_'_-I..-.I.r-'-.L._.J,_....J,.-J._+_..L--L-T'-'__'+

-1172 -1170 -1168 -1166 -1164 -1162 "31160 -1158 -1156

energy (x 10- )

Figure 3.11: Histograms for H2 molecule, \lJ3 , variance optimization with variable geom­
etry.



Chapter 3. Applications to Ground States of Small Systems 49

..--

r-

-

I~n
..-

20

60

40

o
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1

C
2

80

120

100

140

60

o--+---'-.....J--..T'--'----T-'--r----.--r---r--'-----L,-..l..--l--+
0.96 0.98 lOO l02 1.04 1.06 1.08 1.10 1.12

( 28

20

40

80

100 -+------.L---'-----'---'-----'---'-----'---t-
..-

r--

I-- -

,~

I h ..-o
0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

( 18

60

20

40

80

120

140

100

40

10

o -t-.J-Jf-.J..-..L...,..L.......I-Y-L.....J,-l--'--l-.....L......l...,.L-J-...J..,-J-~....l....--1-

.22 .24 .26 .28 .30 .32 .34 .36 .38 .40

d

20

50 -+----'--------'--'---'--------'--'----'----'---+-

30

-

~

-
I--

,,~

I h Io
.06 .07 .08 .09 .10 .11 .12

C
3

20

60

40

80

120

100

o -+------lL.-..L.,-JL.....J-L.-L-J,---L-J.-.J.-L..,-L-.I..-.I.-.l-I..,-.l--L.-.l--L.-+

1.74 1.75 1.76 1.77 1.78 1.79

( 2pz

10

20

40

50 -+--_---L-__.L--_--1.-_--L__-f-

30

30

20

10

o-t---J1-1...r.J--'--I,--l---L..-,J---I-..l-r'-.L.-.L.-...L--I--+--L'---'---;-'--'--'-t-

0.65 0,70 0.75 0.80 0.85 0.90 0.95 lOO 1.05

9 1

40 -+---.L._-'------'-_-'------'-_-'-----'-_-+

30

20

10

0-+---'-T'--'--.J..r.L-~...!..-I-_T_J_~--L-I.--+---J.__L._,I--l--L.+_

-0.45-0.4G-0.35--0.3G-0.25--0.2G-0.15-0.1G-0.05

92

160 -1--_-'---_-'---_-'--_-'--_-'--_+

140

120

100

80

60

40

20

0.0 0.2 0.4 0.6 0.8 1.0

93

,--

-
..-

- -

c--
~

I--
-

..--
-

- -

~
~ h

10

20

40

30

10

(J -+---'--'--'--'--r'-'--'---'--'--'-r-'-..J,........1--'--'---'r-'---L.......J.-'--'-t- 0
,0110 .0115 .0120 ,0125 .0130 -11729-11715-11719-1170§-1170e-116~§-1169e-1168~

variance energy (x10-)

20

40 -+-----'-----'-----'-----t-

30

o -t-L-.J--'-....r:;:=-....L..-I...~--I-..l-r'-l.......J....L.-"r-'-""'---"-+-""~+

-1.0 -0.8 -0.6 -004 -0.2 0,0 0.2

94

40

20

60

80

160 -t---'-----'-----'----'----'---+

140

120

100

Figure 3.12: Histograms for H2 molecule, W3, variance optimization with fixed geometry.
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3.2 The helium atom

50

The ground state of helium atom often serves as a bellcllmark test for different types

of calculations in quantum chemistry. In our work we have considered three variational

wave functions with the following forms:

\]! 1 == e-a{rl +r2) (1 + br12)

l]! == exp [-Zr (l+ar J ) - Zr (1+ar2 ) + .!.r12e-CT12]
2 1 1+br l 2 1+br2 2 1+dr 12

\]13 == <I>(I)<I>(2)JsM

<I> == C1<P1s((1s) + C2<P2s((2s1) + C3<P2s((2s2) + C4<P3s((3s)

JSM == exp [I:%=1 gk(r~kr;k + f~kr;nk)r~~]

- br
r == 1+br

r -~
12 - 1+dr 12 •

(3.2)

\]! 1 is the classic two-parameter Hylleraas type wave function. W2 is a more recent four-

parameter form of Kenny, Rajagopal, and Needs [10]. W3 is much more sophisticated,

consisting of an extended single-particle basis set (seven variational parameters), and an

eleven-parameter Schmidt-Moskowitz Jastrow electron correlation wave function. In the

optimizations we set the value of g1 to 0.5 and kept the values of band d parameters fixed

for better performance. The values of band d were determined after several optimization

runs in which they were not fixed. (Other workers usually set these parameters to unity

and do not vary them, at all.) The set of nine exponents mk, 1~k, Ok is given in the table 3.7.

TIle first four terms, corresponding to mk == nk == 0, provide for electron-electron corre­

lations, while the next three, those with nk == Ok == 0, are nuclear-electronic correlation

terms. The remaining two terms allow explicit electron-electron-lluclear correlation, a

type of correlation shown to be important for highly-accurate wave functions [21]. Wave

function characteristics are summarized in the table 3.8.

Tables 3.9-3.12 report the initial and optimal parameter values. The appropriate
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histograms are shown in figures 3.13-3.18.

Parameters obtained from energy optimization of WI (see Ref. [16]) and varIance

optimization of W2 (see Ref. 3 [10]) are in good agreemeI1t with the literature.

Parameters for W3 are quoted in table 3.11 (EO) and 3.12 (VO).

Table 3.13 reports the results of verification runs done using these wave functions.

The Hylleraas energy is within statistical error of the accepted value. Our variance

optimization of Kenny et al.'s wave function improves the variational energy by 0.2

mEh , while energy-optimization lowers it by 0.7 mEh . As was the case for the hydrogen

examples, the variational energy of variance-optimized wave functions agree better with

the energy-optimized ones as the quality of the wave function improves. For the most

accurate wave function they agree to within statistical error, with the variance-optimized

energy having a substantially smaller error-bar.

1 0 0 1
2 0 0 2
3 0 0 3
4 0 0 4

5 2 0 0
6 3 0 0
7 4 0 0
8 2 2 0
9 2 0 2

Table 3.7: Coefficients mk, nk, Ok.

3The columns of Table 1. in the reference are mislabeled.
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~ e-e correlation In-e correlation Ie-e-n correlation ~.

WI 2 1 yes no no
W2 4 2 yes J yes no
W3 15 8 yes yes yes

52

Table 3.8: Characteristics of the wave functions for He atom. Number of variational
parameters Np , number of variational parameters in the Jastrow factor NJp •

IP 1.8 0.35 0.024 0.0842 0.086 0.285 I
OP 1.8495 0.3658 0.02427 0.0842 0.08596 0.28549 I

Table 3.9: Variational parameters for WI and W2, energy optimization.

aRef. [16]: a==1.849, b==0.364

IP 1.9 0.4 0.0046 0.064 0.037 0.442
OP 1.9554 0.4162 0.00627 0.06581 0.0363 0.4431

Table 3.10: Variational parameters for tIt 1 and w2 , variance optimization.

aRef. [10]: a==0.00383, b==0.0620, c==0.0316, d==0.455

(Is Cl ( 2S1 C2 ( 2S2 C3 (3s C4 b
IP 1.594 1.348* 1.866 -0.229 2.623 -0.0734 5.314 0.001 0.847*
OP 1.526 1.348* 1.757 -0.366 2.88 -0.103 5.229 0.0226 0.847*

o d 95 97 98 I gg I

" IP I 0.478* 0.5* -0.116 -0.265 -0.404 0.224 0.0375 -0.0848 -1.42 1.944

II OP I 0.478* 0.5* -0.18 -0.138 -0.343 0.623 0.111 -0.155 -1.73 1.825

Table 3.11: Variational parameters for W3 , energy optimization.
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(Is Cl ( 2S1 C2 (2s2 C3 (3s C4 b
IP 1.578 1.348* 1.852 -0.288 2.664 -0.0524 5.3 -0.0009 0.847*
OP 1.5686 1.348* 1.841 -0.2973 2.6671 -0.0524 5.298 -0.00094 0.847*

53

o d I 91

IP 0.495* 0.5* -0.267 0.102 -0.702 0.360 0.05 -0.103 -1.59 2.12
OP 0.495* 0.5* -0.2855 0.1956 -0.80 0.353 0.0457 -0.095 -1.577 2.084

Table 3.12: Variational parameters for W3, variance optimization.

\]1 1a W2 b \]13

energy CE [%] energy CE [%] ellergy CE [%]
EO -2.89110(4) 70 -.2.900033(9) 91 -2.903109(21 ) 99
VO -2.88296(4) 51 -2.89957(1) 90 -2.903107(7) 99

Table 3.13: Variati~nal energies and variances for He atom.

ET ==-2.905 Eh , Eexact==-2.90372 ... Eh (Ref. [17]), EHF==-2.86179... Eh (Ref. [3])
a Ref. [16]: Evar ==-2.8912 Eh .

bRef. [10]: Evar ==-2.89933(1) E h
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Figure 3.18: Histograms for He atom, W3 , varIance optimization.
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3.3 The lithium hydride molecule

58

Lithium hydride is one of the smallest stable heteronuclear molecules in nature. We have

chosen it as an example of more complicated system.

We have optimized two types of wave functions-WI and W2. TIle form of these wave

functions is as follows:

det I<I>i (1 ) <I>~ (2) Idet I<I>i (3) <I>~ (4) IJ1

det I<I>i (1) <I>~ (2) Idet I<I>i (3) <I>~ (4) IJ2

(
arij )

exp 1 +br ..
~J

2 4 4

exp [L L L Uaij ]

a=l i=l j=i+1

9
'" A (-mk-n k + -nk-mk)-OkLJ ukgk r ai raj r ai raj rij
k=l

{

1/2 for k ~ 4

1 otherwise

rax
brax

1 +brax

drij

1 + drij .

X =::. Z,)

The \lI 1 is relative~y simple trial wave function with modest basis set and one parameter

Jastrow factor opti~ized by Reynolds et al. [20]. The molecular orbitals <Pi and <I>~

consist of linear combinations of 3 S'TO-type atomic orbitals, 2 centered on lithium and

1 on hydrogen atom. There are 4 free adjustable variational parameters in the Slater

determinant (5 is fixed) so together with the bond distance the total number of variatiollal

parameters is 6. The initial and optimal parameters are reported in tables 3.14-3.17 and

the corresponding histograms are shown in figures 3.19-3.22. The subscript a is used for

orbitals centered on the lithium atom, and the subscript b is used for orbitals centered
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on the hydrogen atom.

The W2 has larger basis set and it incorporates the Schmidt-Moskowitz Jastrow elec­

tron correlation wave function. The molecular orbitals <I>i and <I>~ consist of linear COlTI­

binations of 8 STO-type atomic orbitals, 5 centered on lithium and 3 on hydrogen atom.

W2 has 24 parameters in the Slater determinant, 11 in the Jastrow factor (table 3.7),

and 1 parameter is the bond distance. The set of nine exponents mk, nk, Ok is given in

the table 3.7. One linear coefficient in each orbital can be fixed, and we set the linear

coefficient by the lSb orbital exponent in <1>i to zero. Thus the total number of adjustable

parameters is 33.

The energy optimization of W2 wave function with fixed geometry was done by stages

(see also section 1.7). We started with the determinant parameters taken from [20]

and set all the J astrow parameters to zero. After performing one optimization run

(to get some reasonable J astrow parameters) we have fixed the J astrow and optimized

the determinant. We have again fixed the determinant and optimized the Jastrow and

then reversed the process. 50 000 configurations were used for these optimizations. In

the last stage we have performed optimization of all the 32 parameters with 200 000

configurations. The ensemble size had to be increased to improve the average number of

successful runs (76%).

The energy optimization with variable geometry is harder to perform. The problem

is the low number of successful runs. When all the parameters were optimized using

100 000 configurations, we had only 13% successful runs (we fixed band d in that run

so we had 31 free parameters). With 200 000 configurations it was 29%, and with 400

000 configurations 60% (in both cases band d were optimized as well so we had 33 free

parameters). The starting point for these optimizations was the same as for the final

all-parameters optimization for fixed geometry, only the bond distance was set to 3.0 ao

instead of the exact value 3.015 ao. The results from these optimizations were used to
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choose the determinant parameters for the Jastrow-only optimizations. It is interesting

to note that the number of successful runs for the Jastrow-only optimization did not

increase. However, the speed of the.toptimization was higher because there were fewer

parameters to optimize (although we had to re-calculate the determinant as well because

of the variable geometry).

The variance optimization of \lJ 2 was done by stages as well. Unlike the energy opti­

mization the problem of optimizing all parameters is not the small number of successful

runs but the slow convergence. To obtain starting parameters we performed two op­

timizations with 200 000 configurations starting from the energy-optimized parameter

values. After that, we have determined the best parameter set by a correlated sampling

run (we considered the average parameter values of those two runs as well). In the first

stage we optimized only the Jastrow factor, in the second stage the Slater determinant

and in the last third stage again only the Jastrow. The final Jastrow optimization was

relatively fast and the parameters and variance did not change significantly. We have

used 50 000 configurations during the stage optimizations.

We decided not to perform the VOVG. The results of the previous optimizatiolls show

that it is not competitive and the time spent would be not worth doing it. However, we

did couple of optimizations to see the approximate value for the bond distance. That

value lies somewhere around 3.14 ao (vs. 3.011 ao (EOVG) vs. 3.015 ao (experimental)).

The initial and optimal parameters for \lJ 2 are given in tables 3.18 - 3.21, and the

corresponding histograms are shown in figures 3.23-3.26.

The variational energies and variances are reported in the table 3.22.
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(a,b,R/2)
IP (0.5* ,0.9,1.5075*)

OP (0.5* ,0.883,1.5075*)

STO
2.8
1.33
0.88
2.804
1.315
0.867

q>1
1

1.0*
0.0*
0.0*
1.0*
0.0*
0.0*

q>1
2

0.0*
0.29
1.0*
0.0*
0.283
1.0*

Table 3.14: Variational parameters for WI, energy optimization with fixed geometry.

(a,b,R/2) STO ( q>1 q>1
1 2

IP (0.5* ,0.9,1.5) ls a 2.8 1.0* 0.0*
2pza 1.33 0.0* 0.29
ls b 0.88 0.0* 1.0*

OP (0.5* ,897,1.47) ls a 2.796 1.0* 0.0*
2pza 1.337 0.0* 0.276
ls b 0.868 0.0* 1.0*

Table 3.15: Variational parameters for W1, energy optimizatio11 with variable geometry.

(a,b,R/2) STO ( q>1 q>1
1 2

IP (0.5* ,0.697,1.5075*) ls a 2.935 1.0* 0.0*
2pza 1.09 0.0* 0.34
ls b 0.95 0.0* 1.0*

OP (0.5,0.699,1.5075*) ls a 2.943 1.0* 0.0*
2pza 1.029 0.0* 0.55
lSb 0.999 0.0* 1.0*

Table 3.16: Variational parameters for WI, variance optimization with fixed geometry.

(a,b,R/2)- STO ( q>1 q>1
1 2

IP (0.5* ,0.697,1.6) ls a 2.935 1.0* 0.0*
2pza 1.09 0.0* 0.34
ls b 0.95 0.0* 1.0*

OP (0.5* ,0".690,1.625) lSa 2.938 1.0* 0.0*
2pza 0.973 0.0* 0.511
lSb 0.985 0.0* 1.0*

Table 3.17: Variational parameters for W1, variance optimization with variable geometry.
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IP

OP

STO
lSa

Is a

2s a

2pza

2pza

Is b

Is b

2PZ b

Is a

Is a

2s a

2pza

2pza

Is b

Is b

2PZ b

2.414
4.273
0.988
1.219
2.301
0.751
1.355
0.838
2.419
4.268
0.997
1.218
2.304
0.75
1.3554
0.831

<1>1
1

1.0*
0.159
0.0153
0.029
-0.039
0.0127
0.0*
0.002
1.0*
0.144
0.0097
0.0169
-0.0273
0.019
0.0*
-0.0016

<1>1
2

-0.13
0.0354
0.35*
0.44
0.018
1.362
-0.004
-0.184
-0.1287
0.028
0.35*
0.4418
0.0236
1.358
-0.016
-0.188

Table 3.18: Variational parameters in Slater determinant for \]/2, energy optimizatiol1
with fixed geometry.

STO ( <1>1 <1>1
1 2

IP Isa . 2.453 1.0* -0.129
& Isa 4.259 0.14 0.0163
OP 2sa 1.036 0.0156 0.35*

2pza 1.234 0.0272 0.442
2p.za" 2.367 -0.0334 0.0305
Is b" 0.768 0.0162 1.338
Is b 1.355 0.0* -0.028

2PZ b 0.835 -0.0009 -0.197

Table 3.19: Variational parameters in Slater determinant for w2 , energy optimization
with variable geometry. These parameters were kept fixed during the final stage of the
optimization.
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STO~ ( <]?1 <]?11 2
IP 1sa 2.400 1.0* -0.136
& 1sa 3.542 0.612 0.122
OP 2sa 1.290 -0.0137 0.35*

2pza 1.180 -0.0515 0.281
2pza 1.598 0.073 0.304
1sb 0.744 0.0214 1.163
1sb 1.158 0.0* 0.74
2pZ b 0.935 -0.0081 -0.332

63

Table 3.20: Variational parameters in Slater determinant for \l!2, variance optimization
with fixed geometry. These parameters were kept fixed during the final stage of the
optimization.

b 1.494 1.502 1.502 1.539 1.905 1.913
d 1.094 1.0906 1.09 1.024 0.970 0.972

91 0.213 0.215 0.217 0.219 0.2609 0.2597

92 -0.342 -0.345 -0.45 -0.532 -0.6358 -0.634

93 0.139 0.134·8 0.105 0.050 0.167 0.155

94 - -0.123 -0.123 -0.133 -0.156 -0.3175 -0.308

95 0.0.21 0.0325 0.107 0.164 0.2653 0.2628

96 '0.478 0.484 0.499 0.476 0.0348 0.0385

97 -0.586 -0.581 -0.589 -0.576 -0.0233 -0.0264

g8 -0.474 -0.508 -0.623 -0.696 -0.5005 -0.4987

99 0.506 0.5224 0.652 0.777 0.7131 0.7151

R/2 1.5075* 1.5075* 1.503 1.5057 1.5075* 1.5075*

Table 3.21: Jastrow and geometry parameters for LiH molecule, \l!2.
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~ ~ energyW1iCE [%] I energyW
z
ICE [%] ~

EOVG -8.0104(2) 28 -8.06082(14) 89
EOFG -8.0100(2) 27 -8.0601(1 ) 88
VOVG -7.9874(2) 0
VOFG -7.9851(2) <0 -8.0575(1) 85

Table 3.22: Variational energies for LiH molecule.

ET ==-8.08 Eh , Eexact==-8.0702 ... Eh (Ref. [2]), EHF ==-7.98735 Eh (Ref. [7])
aRef. [20]: Evar ==-7.91(1) Eh
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Figure 3.25: Histograms for LiH molecule, w2 , energy optimization with variable geom­
etry.
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Figure 3.26: Histograms for LiH molecule, w2 , variance optimization with fixed geometry.
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3.4 Conclusion

71

Results of this chapter confirm that histogram filtering method (HFM) is able to perform

well for both the variance and energy optimization. Energy optimization yields better

results for ground state energy as well as equilibrium bond distance. We can see that

as the quality of the trial wave functions improves the variational energies for energy

and variance-optimized wave functions tend to approach each other. However, unless

we have very accurate trial wave function (as W3 for He) the energy optimization yields

significantly better results. For the equilibrium bond distance determination the energy

optimization is clearly superior.

For wave functions where there is possible to compare results we were able to repro­

duce the exact parameters and energies (w1 for H2 and He) or ilnprove the literature

values for the energy (W 2 for H2 and He, WI for LiH). The variational energy obtailled

from the energy optimization of w2 for LiH is to our knowledge the lowest ever obtained

from VMC calculations using explicitly correlated wave functions.

Whether to optimize the variance or the energy is not a new question. Most people in

this business prefer to optimize the variance. However, to our knowledge no systematic

work has been done to address this issue rigorously. The arguments are mostly qualitative

and we believe the strong preference toward the variance optimization is due to the fact

that the energy optimization is harder to perform.

The "variance strategy" is to use some sophisticated form of the trial wave func­

tion (often with hundreds of variational parameters) and perform a very crude variance

optimization using only several thousands configurations4 . This method yields wave func~

tions with reasonable variation'al energy and is relatively fast. Usually, wave functions

obtained in such way serve as trial (guiding) functions to the DMC. TIle DlVIC ground

4 As we have seen, energy optimization of complicated wave functions requires hundreds of thousands
configurations.
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state energies are very close to the exact ones.

Our (HFM) approach is to optimize simpler wave functions, but optimize them more

thoroughly. This requires more time" and human effort, but in the end we have simpler

wave functions often with lower energy than those obtained with the previous method.

Although in theory only the position of the nodes of the trial functions is important for

DMC, in practice, it is advantageous to have a good trial function because tIle variallce

of tIle DMC energy (and other properties) depends on the quality of the trial fUllction.

As well a simpler form means faster evaluation of the function values.

We certainly do not claim that the HFM is superior to other methods in every aspect.

In a sense it is a complementary point of view on optimization. There is always a trade-off

between the quality of a given result and the effort necessary for obtaining it ..

For certain class of problems, however, HFM seems to be the natural solution. One

of these is the determination of the equilibrium geometry. In the present work we have

constrained ourselves to the determination of the equilibrium bond distance, but our aim

is to use this technique to optimize geometrically more complicated systems. Anotller

example could be a theoretical study of properties of various types of wave functions.

Because HFM "squeezes" the maximum from the wave functions, it can be used as the

objective indicator of the quality of these tested functions.



Chapter 4

Non-differential Ground State Properties of Small SystelTIs.

In the previous chapter we presented results of energy and variance optimizations. It

turned out that energy-optimized wave functions are superior with respect to both the

variational energy and bond distance determination. However, there are other properties

of interest which play an important role in chemistry and can be used as additional

indicator of the quality of the wave functions.

This chapter contains the results of calculations of various non-differential properties

for each system optimized in chapter 3. The last column of tIle appropriate tables SllOWS

the exact literature values for most of the properties. These are known to a very high

degree of accuracy for hydrogen molecule and helium, but we do not know of any similar

accurate calculations for LiH (except for the dipole momellt). In that case we report the

values calculated by East, Rothstein and Vrbik [6] by diffusion MC (DMC).

For easier comparison of the various properties reported there is a column in the

tables labeled as Order. For example, if we have four columns of properties (as for H2 )

the four numbers 2143 in the column Order mean that the property in the second column

is closest to the exact value, next closest is the property in the first column, third closest

is the property in the the fourth column, and the worst is the property in the the third

column.

The quantity given in the last row in each table labeled as Li /.6.i el
l measures the

overall accuracy of the wave functions. It is the sum of the relative errors, defined as

73
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follows:

I exact I
'" I~r:ell == '" Pi - Pi
L.J 't L.J I exact I '

i i Pi
..

where the Pi'S and pixact,s are the i-th calculated and exact property, respectively.

All numbers are in atomic units, and we take z as the inter-molecular axes.

4.1 The hydrogen molecule

74

Tables 4.1-4.3 show the non-differential properties for hydrogen molecule wave fllnctions

W1-W3 . Most of the entries in tables are self-explanatory, and the rest is defined as follows:

The Q2 and Q4 are the quadrupole and the hexadecapole moments, respectively. Uc and

U z are the transverse and longitudinal projections of the inter-electronic distance r12,

respectively.
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~ ~ EOFG I EOVe; I VOFG I VOVG I Order ~ Literature ~

rI2 2.0457(3) 2.0374(2) 2.1227(3) 2.8149(3) 2314 2.16895a
2 5.145(2) 5.104(1 ) 5.544(2) 9.665(2) 2314 5.63239a

r I2
3 15.237(8) 15.060(6) 17.072(8) 38.65(2)r I2
-1 0.6523(1 ) 0.65498(8) 0.62911(8) 0.47423(6) 2314 0.58737a

r I2
-2 0.704(1 ) 0.7108(9) 0.656(1 ) '0.3790(7) 3412 0.51827br12

rIa 1.5599(3) 1.5525(2) 1.6091(3) 2.2898(4) 2134 1.54880a
2 3.061 (1) 3.0330(9) 3.262(1) 6.580(2) 2134 3.03635a

rIa
3 7.174(5) 7.083(4) 7.922(5) 22.08(1)rIa
-1 0.9035(2) 0.9079(2) 0.8749(2) 0.6443(1 ) 2134 0.91279a

rIa
-2 1.561(6) 1.588(7) 1.459(5) 0.895(3)rIa

rIa rIb 2.713(1) 2.6936(8) 2.918(1 ) 5.183(1 ) 1234 2.70391a

rIa r2a 2.4343(6) 2.4101(5) 2.5894(6) 5.245(1) 2134 2.32141a

rIa r2b 2.4340(6) 2.4103(5) 2.5888(6) 5.241(1) 2134 2.38484a

ZI Z2 -0.0004(3) -0.00002(2) -0.0002(2) 0.0002(6) 1324 -0.15963a

XIX2 -0.0002(2) 0.0001(1) 0.0000(2) 0.0003(2) 1324 -0.05510a

(zi + z~)/2 1.0786(4) 1.0671(3) 1.1436(4) 2.4881(5) 2134 1.02297a

(xi + x~)/2 0.7466(3) 0.7424(2) 0.8139(3) 1.1725(4) 1234 0.76169a

(r~ + r~)/2 2.5714(8) 2.5522(6) 2.7720(7) 4.8329(9) 2134 2.54635a

Q2 0.3174(8) 0.3120(6) 0.3220(8) 0.864(1) 2314 0.45684c

Q4 0.174(8) 0.175(6) 0.184(8) 1.700(9) 3214 0.2826d

u2 2.1570(4) 2.1344(5) 2.2881(5) 4.974(1) 2314 2.3652a
z

Uz 1.1643(1) 1.1579(1) 1.1974(1) 1.7938(2) 2314 1.2441 b

u2 2.9847(5) 2.9696(5) 3.2576(6) 4.691(1 ) 2314 3.2672a
c

Uc 1.4875(1 ) 1.483(1) 1.5538(1 ) 1.8651(2) 2314 1.5699b

-1 1.1275(2) 1.1304(2) 1.0794(1) 0.8993(2) 2314 1.0404bUc

3.849 3.871 3.847 19.88 I 2314 ~L..-- ~

Table 4.1 : Non-differential properties for H2 molecule, \]! 1.

aNearly exact value, Ref. [13]
bDerived from 36 correlated Gaussian geminals, Ref. [22]
cRef. [18]
dRef. [8]
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~ ~ EOFG I Eove; I VOFG I VOVG I Order ~ Literature ~

r12 2.1855(2) 2.1696(2) 2.2895(2) 2.7998(3) 2134 2.16895a

2 5.751(1) 5.670(1) 6.316(2) 9.332(2) 2134 5.63239ar12
3 17.557(6) 17.198(7) 20.234(7) 35.71(1)r 12
-1 0.59122(6) 0.59580(7) 0.56400(6) 0.45632(5) 1234 0.58737ar12
-2 0.5450(6) 0.5532(7) 0.4965(8) 0.3212(4) 2314 0.51827br12

rIa 1.5774(2) 1.5641(2) 1.6412(2) 2.0668(3) 2134 1.54880a

2 3.1333(9) 3.0814(9) 3.397(1) 5.361(2) 2134 3.03635a
rIa

3 7.425(4) 7.246(4) 8.412(4) 16.343(8)rIa
-1 0.9004(2) 0.9076(2) 0.8632(2) 0.7052(2) 2134 0.91279a

rIa
-2 1.591(5) 1.620(7) 1.447(4) 1.041(3)rIa

rla r lb 2.7734(8) 2.7350(8) 3.0412(9) 4.430(1) 2134 2.70391 a

rlar2a 2.4438(4) 2.4037(4) 2.6456(5) 4.1611(8) 2134 2.32141a

rla r2b 2.4897(5) 2.4467(5) 2.6902(5) 4.322(1) 2134 2.38484a

Z1 Z2 -0.1264(2) -0.1225(2) -0.1318(2) -0.3103(5) 2314 -0.15963a

XI X2 -0.0532(1) -0.0527(1 ) -0.0600(1 ) -0.07<99(2) 1234 -0.05510a

(zi + z~)/2 1.1380(3) 1.1171(3) 1.2230(3) 2.0568(5) 2134 1.02297a

(xi + x~)/2 0.7524(2) 0.7452(2) 0.8416(3) 1.0692(4) 1234 0.76169a

(ri + r~)/2 2.6427(5) 2.6073(5) 2.9062(6) 4.1953(8) 2134 2.54635a

Q2 0.2102(6) 0.2375(6) 0.2186(7) 0.358(1) 4231 0.45684c

Q4 0.085(6) 0.123(6) 0.084(7) 0.31(2) 3241 0.2826d

u 2 2.5289(5) 2.4798(5) 2.7105(6) 4.736(1) 2134 2.3652a
z

U z 1.2821(1) 1.2689(1) 1.3246(2) 1.7852(2) 2134 1.2441 b

u2 3.2227(6) 3.1916(6) 3.6064(7) 4.5978(9) 1234 3.2672a
c

Uc 1.5560(1 ) 1.5485(1) 1.6469(2) 1.8584(2) 1234 1.5699b

-1 1.0579(2) 1.0630(2) 0.9979(1) 0.8872(1 ) 1234 1.0404bUc

~ Li l6.iel l ~:...---2_.0_5_6~_1_.95_6------'_3_"2_1_7---,--_11_.0_8------'1_2_1_34__~~__~~

Table 4.2: Non-differential properties for H2 molecule, \]/2.

aNearly exact value, Ref. [13]
bDerived from 36 correlated G~ussian geminals, Ref. [22]
cRef. [18]
dRef. [8]
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~ ~ EOFG I Eove I VOFG I VOVG IOrder ~ Literature ~

r12 2.1629(3) 2.1598(3) 2.1504(3) 2.2666(3) 1234 2.16895a

2 5.609(2) 5.594(2) 5.571(2) 6.170(2) 1234 5.63239ar12
3 16.885(8) 16.820(8) 16.94(1 ) 19.67(2)r12
-1 0.58994(7) 0.59094(7) 0.59412(7) 0.56112(7) 1234 0.58737ar12
-2 0.5244(8) 0.5257(6) 0.5305(7) 0.4696(5) 1234 0.51827br12

rIa 1.5520(2) 1.5488(2) 1.5530(3) 1.6532(3) 2134 1.54880a
2 3.040(1 ) 3.028(1) 3.048(1 ) 3.445(2) 1234 3.03635arIa
3 7.158(5) 7.116(5) 7.276(8) 8.70(1 )rIa
-1 0.9106(2) 0.9125(2) 0.9045(2) 0.8526(2) 2134 0.91279arIa
-2 1.608(5) 1.617(7) 1.554(5) 1.408(5)rIa

rIa rIb 2.709(1 ) 2.700(1) 2.722(1) 3.021(1) 2134 2.70391 a

rIa r2a 2.3524(5) 2.3424(5) 2.3620(5) 2.6720(6) 2134 2.32141a

rIar2b 2.4010(5) 2.3914(5) 2.4051(5) 2.7327(6) 2134 2.38484a

ZlZ2 -0.1226(2) -0.1225(2) -0.1065(2) -0.1336(2) 2341 -0.15963a

XI X2 -0.0663(2) -0.0661(2) -0.0606(2) -0.0674(2) 3214 -0.05510a

(zi + z~)/2 1.0175(3) 1.0152(3) 1.0050(4) 1..1398(5) 1234 1.02297a

(xi+x~)/2 0.7661(3) 0.7633(3) 0.7769(4) 0.8382(4) 2134 0.76169a

(ri + r~)/2 2.5495(6) 2.5424(7) 2.5583(8) 2.8165(9) 1234 2.54635a

Q2 0.4787(7) 0.4678(7) 0.5252(8) 0.651(1) 2134 0.45684c

Q4 0.34(1) 0.32(1 ) 0.40(2) 0.65(3) 2134 0.2826d

u2 2.2802(9) 2.2754(6) 2.2245(7) 2.547(1) 1234 2.3652a
z

Uz 1.2150(2) 1.2134(2) 1.1961(2) 1.2863(2) 1243 1.2441b

u2 3.330(1) 3.3184(8) 3.349(1 ) 3.623(1) 2134 3.2672a
c

Uc 1.5884(2) 1.5854(2) 1.5894(2) 1.6524(3) 2134 1.5699b

-1 1.0218(2) 1.0241(2) 1.0199(2) 0.9821(2) 2134 1.0404bUc

~ Li I~iell ~_O_.8_5_7----1..-_0_.76_4------1_1_.3_13_.....1.--_3._73_7------11_2_1_34-1~1_._______'~

Table 4.3: Non-differential properties for H2 molecule, W3.

aNearly exact value, Ref. [13]
bDerived from 36 correlated G~ussian geminals, Ref. [22]
cRef. [18]
dRef. [8]
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4.2 The helium atom

Tables 4.4-4.6 show the non-differential properties for the helium atolTI.

78

EO VO IOrder ILiterature ~

11 + 12 1.7939(1) 1.7055(2) 12 1.85894a

1
2 + 1

2 2.1542(3) 1.9469(4) 12 2.38697a
1 2

1
3 + 1

3 3.2353(7) 2.7787(8)1 2
-1 + -1 3.3778(3) 3.5543(5) 12 3.37663a

11 12
-~ + -~ 11.60(3) 12.90(5) 12 12.0348a

11 12

112 1.37254(9) 1.3078(1) 12 1.42207a

2 2.3277(3) 2.1107(4) 12 2.51644a
112

3 4.671(1) 4.027(1) 12 5.3080b
112
-1 0.97426(7) 1.0206(1) 12 0.94582a

112
-2 1.553(3) 1.696(3) 12 1.46477a

112

Table 4.4: Non-differential properties for He atom, WI.

a Ref. [17]
bRef. [5]
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~ EO VO IOrder ILiterature ~

r1 + r2 1.85142(.9) 1.84731(8) 12 1.85894a

r
2 + r

2 2.3589(3) 2.3601(3) 21 2.38697a
1 2

r
3 + r

3 3.8627(9) 3.902(1 )1 2
-1 + -1 3.3671(2) 3.3835(2) 21 3.37663ar 1 r 2
-2 + -2 11.87(2) 11.97(2) 21 12.0348ar 1 r 2

r12 1.41062(7) 1.40372(7) 12 1.42207a

2 2.4844(3) 2.4748(3) 12 2.51644a
r 12

3 5.244(1) 5.262(1 ) 21 5.3080b
r 12
-1 0.95447(5) 0.96447(5) 12 0.94582ar 12
-:l 1.487(2) 1.5263(9) 12 1.46477a

r 12

Table 4.5: Non-differential properties for He atom, w2 •

a Ref. [17]
bRef. [5]

EO VO IOrder ILiterature ~

aRef. [17]
bRef. [5]

r1 + r2 1.8597(1) 1.8536(2) 12 1.85894a

r
2 + r

2 2.3883(4) 2.3672(5) 12 2.38697a
1 2

r
3 + r

3 3.936(1 ) 3.872(2)1 2
-1 + -1 3.3758(3) 3.3793(5) 12 3.37663a

rl r 2
-2 + -2 12.11(4) 11.99(2) 21 12.0348a

r 1 r 2

r12 1.4225(1) 1.4161(2) 12 1.42207a

2 2.5212(4) 2.4985(6) 12 2.51644a
r 12

3 5.334(2) 5.261(2) 12 5.3080b
r 12
-1

O.946~39(8) 0.9511(1 ) 12 0.94582a
r 12

-:l 1.464(1) 1.482(2) 12 1.46477a
r 12

~ Li I~iell ~ 0.015 I 0.053 I 12 I ~

Table 4.6: Non-differential properties for He atom, w3 .
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4.3 The lithium hydride molecule

80

Tables 4.7-4.8 show the non-differential properties for LiH molecule. U c and U z have

the same meaning as described in 4.1 and f1 is the dipole moment. All quantities are

calculated for parallel and antiparallel electrons separately.

~ EOFG I EOVG ·1 VOFG 1 VOVG I Order ~ Literature ~

parallel 2 14.174(5) 13.728(5) 13.276(4) 14.865(3) 3214 13.2(1)ar 12

antiparallel 2 9.663(4) 9.410(4) 9.433(3) 10.345(5) 1432 9.9(1 )ar 12

parallel r12 3.5724(6) 3.5124(6) 3.4715(5) 3.6843(5) 3214 3.42(1 )a

antiparallel r12 2.6867(4) 2.6526(4) 2.6483(5) 2.7687(5) 1342 2.72(1 )a

parallel -1 0.31767(5) 0.32366(5) 0.32390(5) 0.30314(5) 3214 0.333(2)ar 12

antiparallel -1 0.68186(8) 0.68508(8) 0.69943(8) 0.68627(9) 1243 0.66(1 )ar 12

parallel -2 0.11982(5) 0.12452(5) 0.12300(5) 0.10696(4) 3124 0.132(1 )ar12

antiparallel -2 1.218(3) 1.225(4) 1.300(2) 1.288(4) 1243 1.17(1)ar 12

parallel u
2 10.860(4) 10.427(4) 10.269(4) 11.749(4) 3214 8.98(6)az

antiparallel u
2 6.306(2) 6.068(2) 6.376(4) 7.178(4) 2134 5.55(4)az

parallel Uz 3.0593(6) 2.9922(6) 2.9928(5) - 3.2179(6) 3124 2.718(6)a

antiparallel Uz 1.9804(4) 1.9427(4) 1.9893(5) 2.1102(5) 2134 1.86(1)a

parallel u
2 3.314(2) 3.301(2) 3.007(2) 3.116(2) 1243 4.2(1 )ac

antiparallel u
2 3.357(2) 3.343(2) 3.057(2) 3.167(2) 1243 . 4.3(1)a
c

parallel Uc 1.5404(4) 1.5374(4) 1.4703(4) 1.4938(4) 1243 1.70(2)a

antiparallel Uc 1.4751(4) 1.4723(4) 1.4115(3) 1.4331(4) 1243 1.65(2)a

parallel -1 1.1389(3) 1.1414(4) 1.1922(3) 1.1788(3) 1243 1.09(1 )aUc

antiparallel -1 1.3900(3) 1.3913(3) 1.4456(3) 1.4350(3) 1243 1.29(2)aUc

f1 -2.972(1) -2:915(1 ) -2.514(3) -2.751(3) 4312 -2.30b

~ Li I~iet I 0 1_"9_4_7---,--_1_"74_3---,,"--1_"9_83_"""'""'---_2_.77_1---'1_2_1_34----'~'___ _

Table 4.7: Non-differential properties for LiH molecule, \]!1.

aRef. [6]
bRef. [7]
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~ EOFG I EOVG I VOFG I Order ~ Literature ~

parallel 2 12.966(7) 13.034(7) 13.228(7) 321 13.2(1)ar 12

antiparallel 2 9.456(6) 9.521(6) 9.595(6) 321 9.9(1)ar 12

parallel r12 3.4051(8) 3.4136(8) 3.4420(8) 213 3.42(1 )a
antiparallel r12 2.6629(7) 2.6718(7) 2.6822(7) 321 2.72(1)a

parallel -1 0.33449(7) 0.33373(8) 0.33031(8) 213 0.333(2)ar 12

antiparallel -1 0.6724(1) 0.6714(1 ) 0.6712(1 ) 321 0.66(1 )ar 12

parallel -2 0.13236(7) 0.13178(7) 0.12885(7) 213 0.132(i)ar 12

antiparallel -2 1.177(3) 1.171(3) 1.185(4) 213 1.17(1)ar 12

parallel u 2 9.096(5) 9.123(6) 9.251(6) 123 8.98(6)a
z

antiparallel u 2 5.493(3) 5.511(3) 5.531(3) 321 5.55(4)az

parallel Uz 2.7518(9) 2.7562(9) 2.7797(9) 123 2.718(6)a
antiparallel Uz 1.8481(5) 1.8516(5) 1.8538(5) 321 1.86(1)a

parallel u 2 3.869(5) 3.911(5) 3.977(5) 321 4.2(1)ac

antiparallel u
2 3.963(5) 4.010(5) 4.063(5) 321 4.3(1 )ac

parallel Uc 1.6426(8) 1.6502(8) 1.6692(8) 321 1.70(2)a
antiparallel Uc 1.5836(8) 1.5919(8) 1.6042(8) 321 1.65(2)a

parallel -1 1.1080(5) 1.1066(5) 1.0879(5) 321 1.09(1)aUc

antiparallel -1 1.3447(4) 1.3438(4) 1.3326(4) 321 1.29(2)aUc

11 -2.356(2) -2.373(2) -2.438(2) 123 -2.30b

~ I:i I~iell 0 0.477· I 0.4233 I 0.4234 I 312 ~ ~

Table 4.8: Non-differential properties for LiH molecule, W2.

aRef. [6]
bRef. [7]
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4.4 Conclusion

82

TIle aim of this chapter was to look at properties of wave functions other than the varia­

tional energy. Particularly, we were interested how the energy-optimized wave functions

compete with the variance-optimized ones. The people who prefer to optimize tIle vari­

ance often suggest that although the variational energy of the variance-optimized wave

functions could be worse the electron distribution and henceforth the nodal planes posi­

tions more resembles the exact ones. The argument is that for 110n-exact wave functions

the local energy tends to diverge near the nodes and the variance optimization tries

to suppress this divergence and hence to find such all electron distribution which most

resembles the non-divergent exact one.

Let us first have a look at the results for hydrogen molecule and helium which are

node-less. The overall performance of all the wave functions for H2 and He clearly

indicates that the EO is doing better. W3 for H2 and He are examples where almost

every property is better for the energy-optimized wave functions. It is interesting to note

that the EOVG yields better results even if the bond distance is slightly different from

the experimental one (for which the exact properties were calculated). Except for the

very tight "victory" of the VOFG in the case of \lI I for H2 over the EOFG, the EOFG is

always close behind the EOVG.

To make the comparison for LiH is more difficult. The literature values have large

error bars and for many properties it is crucial to know the exact values with higher :pre­

cision to make reliable comparisons'. Generally, it seems that for the calculated properties

the variance and energy optimization yield comparable quality results. Note, however,

that all the properties for LiH' are functions of the inter-electronic distances. It would

be interesting to compare results of calculations for properties whicll are functions of

nuclear-electronic distances. Again, the EOVG gives better results than the EOFG.
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The calculations done on LiH can neither support nor disprove the hypothesis of the

superiority of the properties derived from variance-optimized wave functions. We are

working on the DMC calculations of the properties for LiH in order to get more accurate

values.



Chapter 5

Comments and Suggestions

In this thesis we llave shown that HFM can be successfully applied to small systems with

simple geometry. However, if the method is to "survive" it has to be able to optimize

more complicated systems in terms of number of electrons and geometrical structure.

The further study can be oriented to several directions. First, we can focus on stan­

dard, i.e. non-geometrical, optimization. The staged optimization proved to be a good

method of dealing with many-parameter wave functions. It is really difficult to predict

how many parameters can HFM potentially handle but it is clear that tIle human filter­

illg by eye can not be pushed much farther than to several dozen of parameters. On the

other hand, we are confident that this procedure can be (at least partially) automatized

(however, short look at the histograms will be always helpful).

In our work we were extremely "picky" in our filtering and tried to inspect every

possible structure suggested by a small gap, a tiny irregularity in shape etc.. We sacrificed

much effort and time to lower the variational energy by every small fraction of a mEh . We

think that for a truly many-parameter wave functions such approach is neither necessary

nor possible, and we can obtain h~gh quality wave function from filtering only the lTIOst

obvious structures and taking the appropriate averages.

The optimization of a geometry of systems with more than one geometrical parameter

is a very challenging project. In the near future we would like to focus on the optimization

of a water molecule. This system has two geometrical parameters (the O-H bond distance

and the H-O-H angle) and ten electrons. There is a lot of theoretical and experimental
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results available for the sake of comparison with ones we derive.

85

We feel that further development and tuning of the HFM itself is possible. We

may, for example, investigate how the results of optimization (the histogram pattern)

depend on the severity of the stopping criteria l of the search algorithm and the choice

of the search algorithm itself. Another way of improving the HFM is to analyze the

numerical instabilities which cause the "blovv up" of the energy optimization. If we could

circumvent this problem (without introducing a bias) the optimization efficiency would

improve significantly.

We are also interested to find out if similar approaches to HFM can be applied to

different problems related to optimization where some background "noise" is present. An

application of HFM to problems in computational biology is in progress.

1In our work we have used rather strong criteria for stopping the optimization which makes it quite
long in certain cases.



Appendix A

Choice of the Transition Probability

Although any form of the transition probability T(R' ~ R) is theoretically suitable, the

efficiency of the Metropolis algorithm depends strongly on that choice. In this section we

will present one effective form of T(R' ~ R) for the case of single atoms. Because the

Hamiltonian in this case exhibits spherical symmetry, it is natural to use spherical polar

coordinates to move the electrons. Furthermore it turns out to be useful to move only

one electron at a time. In our work we have used the scheme proposed by Langfelder [14].

The probability of moving from a point (r, (), ¢) to a point with coordinates belonging

to the intervals (r', r' +dr'), (()', ()' + d()'), (()', ¢' + d¢') consist of two components

The probability function gr'(()" ¢') does not depend on the values of r, (), ¢ and is chosen

to be the uniform distribution over a sphere with diameter r'. Tllus

gr' (()' , ¢' )d()'.d¢'
d~-·'

gr' (()' , ¢' )d()' d¢'
r'2 sin ()' d()' deP' = c

where d~-·' is the infi~itesimalarea element of the surface of the sphere. The constant C

can be calculated from the normali~ation condition f gr' (()', ¢')d()d¢ == 1 and equals to

1/47rr'2. The probability density gr'(()"¢') thus has the form

,(()' A.') = sin ()'
gr ,¥J 47r

TIle function f (r' f- r) has the form

f( , ) - ~ , -r'2/2p2rf-r - 2re ,
p
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wllere p == p(r) is a function of the electron-nuclear distance r

r
p(1') = [max{a,l + (3(1' - ,)}J1/2 ·

TIle parameters (Y, {3, I were found by trial alld error and are chosen as

CY E (0.01,0.05)

{3 (most diffuse orbital

I E (0.1,0.5).

Now, the transition probability density is found by definition:

87

T((r', 0', 1J') +- (r, 0, 1J)) ==
P[(r' +dr', 0' +d()', 1J' + d1J') +- (r, 0, 1J)]

dV
f( r' +- r )gr' (()', 1J')dr'd()' d1J'

r'2 sin 0' dr' d()' d1J'
1 ,

-4'2 f (r +- r) .7Tr

The remaining question is how to generate random numbers sampled from the dis­

tributions f(r' +- r) and gr'(()"¢') ; i.e., how to find the corresponding functions

r'(u),O'(u),¢'(u) ,where u is random number uniformly distributed over the interval

(0,1). Let us consider the case of gr' (()', ¢/) first. Because it does not explicitly depend

on ¢;', ¢' is chosen uniformly from i~terval (0, 27T) (with probability density 1/27T) thus

¢' == 27TU .

The new angle 0' is generated from the probability density sin 0' /2. The cumulative

probability distribution function

r/
F(fl) = f sin t dt = ~(1 - cos 0')

10 2 2

is related to the inverse function u(()') as follows:

F(O') == u
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and the solution is

cos 0' == 1 - 2u .

We apply the same procedure to f(r' +- r) and we get

with the solution

1'" = pV-21n (1 - u) = py'- 21n u ·

88

TIle last equality is due to the fact that both u and 1 - u are random numbers uniforlnly

distributed over the interval (0,1).

For diatomic molecules the Hamiltonian does not exhibit central symmetry and the

above approach is not efficient. In our work we have used the simplest form of the

transition probability density-uniform moves in Cartesian coordinates

,
x x + D(l - 2u)

y y + D(l - 2u)

z z+D(1-2u),

where the parameter D is chosen by trial and error and ranges from 0.5 to 1.0 .



Appendix B

Conjugate Gradient Method

This method was originally designed to minimize convex quadratic functions

Tllis function is minimized when its gradient \l f == Ax == b is zero. Therefore, we

solve a system of linear equations Ax ==. b, where A is a positive-definite matrix. The

procedure, which guarantees convergence to the proper x* after maximum N steps (with

exact arithmetic), can be described in following steps:

• Choose an arbitrary starting point Xo

• Set h o == go == -(Axo -.b)

• For k == 0 until convergence

1. A hfgk
k==hfAhk

2. Xk+l == Xk + Akhk

3. gk+l == gk - AkAhk

4. _ gl+l gk+1

Ik - gfgk

5. hk+ 1 == gk+l + Ikhk

The vectors hand g satisfy the orthogonality and conjugacy conditions

for i i- j .
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But, the A is unknown. However, if we take gk == - \1 f(Xk) for some point Xk, and we

find the local minimum Xk+l alollg the direction h k and set gk+l == - \7 f(Xk+l) , then

this is the same vector as constructed in step 3. We can prove it as follows:

gk - \7 f(Xk) == -AXk + b

gk+l - \7 f(Xk+l) == - AXk+l + Ab == -A(Xk + Ahk) + b == gk - AAhk .

What is left is to find the expression for A. Because A is tIle minimum along the direction

h k , we can write"

Using the fact that

we can finish the proof:

Comparing the left-most side with the right-most side we get the expression for .A:

We see that this is indeed the same formula as written in step 1.

So far we were talking about minimization of exact convex quadratic form. However,

this algorithm can be used for minimization of arbitrary function. The nearer to the local

minimum we are, the better the approximation of convex quadratic form for the function

is. It turns out that a small change of the value Ik (proposed by Polak and Ribiere)

can sometimes significantly improve the algorithm. Now we can rewrite the previous

algorithm into a form suitable for our purpose:
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• Choose an arbitrary starting point Xo

• Set ho == go == - \l f(xo)

• For k == 0 until convergence

1. Xk+l == minimum along the line with direction h k

91

(Polak-Ribiere improvement)

For line search we use the standard Brent's method (see [19]).

Very important and not trivial task is to decide when to stop the minimizatiol1 pro­

cess. In principle we should stop when the gradient vanishes. In practice, however, this

(almost) never happens and we have to use different criterion (or combination of criteria).

In our optimization we stopped when the following criterion was satisfied:

The parameter tot is the tolerance (we used 10-6
) and E is a small number (typically

10-10
) which prevents the criterion to be too severe if the function value is close to zero.



Appendix C

Decomposition of the Slater Determinant

In section 1.6 we have given a qualitative justification of the Slater determinant decom-

position. Next, we give a mathematical proof of the validity of this decomposition. What

we want to prove is that the expectation value of any operator which does not include

spin operators is the same for both the full Slater detarminant and the decomposed Olle.

The operator A is the antisymmetrizer and is defined as follows:

In the above expression we sum over all permutations IT. The expectation value of some

operator 6 is defined as

(C.l)

Because the denominator has the same form as the numerator (for 6 == i), in the following

we will focus on the expression in the nUInerator.

A. t t A

(wIOlw) == (A{<I>1(1)<I>2(2) ... <I>nt(n )<I>nt+l(n + 1) ... <I>n(n)}IOIA{<I>1(1)<I>2(2) ...

c])nt(nt)c])nt+l(nt + 1) ... c])n(n)}) =
. t t A

(n!)(A{<I>1(1)<I>2(2) ... <I>nt(n )<I>nt+l(n + 1) ... <I>n(n)}/OI<I>1(1)<I>2(2) ...

<I>nt (nt )<I>nt +l (nt + 1) ... <I>n(n)) .

TIle spin-orbitals labeled from 1 to nt llave spin up and the rest (n t + 1, ... , n) have

spin down. The spin-up and spin-down orbitals are orthogonal (the operator 6 does not
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affect the spin part):

93

i==1,2, ... nt ; j==nt +1, ... ,n.

Because of this property only those permutations which do not assign a nUlnber greater

than n t to a number less or equal to n t (and vice versa) contribute. Therefore we can

break down the antisymmetrizer of the whole product into two parts:

A{<Pl(1)<P2(2) <Pnt(nt)<pnt+l(nt + 1) ... <Pn(n)} ~

A{<P 1 (1)<P2(2) <P nt(nt )}A{<Pnt+l(nt + 1) ... <Pn(n)}

We can now write:

A t t A

(\}!IOI\}!) == (n!)(A{<Pl(1)<P2(2) ... <Pnt(n )}A{<Pnt+l(n + 1) ... <I>n(7~)}IOI<I>1(1)<I>2(2)...

<pnt(nt)<pnt+l(nt + 1) ... <Pn(n)) ==
(n') t . t A

(nt!)(n+!) (A{<I> 1 (1)<I>2 (2) ... <I>nt(n )}A{<I>nt+l(n +1) ... <I>n(n)} 101

A{<Pl(1)<P2(2) ... <pnt(nt )}A{<pnt+l(nt + 1) ... <I>n(n)}) .

If we substitute the above expression to the numerator and analogous one to the denom­

inator of the C.1, the common numerical factors cancel out and we obtain the desired

formula
(\}! 161 \}!) (\}!t\}!+ 101 \}!t\}!+)

(\}! Iw) (wtw+Iwtw+) ,

where \}!t == A { <I> 1(1) <I> 2(2) . . . <I>nt (n t)} and\}!+== A { <I>nt +1(nt + 1) . . . <I>n(n )} .



Bibliography

[1] S.A. Alexander, R.L. Colwell, H.J. Monkhorst, and J.D. Morgan III. J. Chern.
Phys., 95:6622, 1991.

[2] B. Cllen and J. B. Allderson. J. Chem. Phys., 102:4491, 1995.

[3] E. Clementi and C. Roetti. Atomic Data and Nuclear Data Tables, 14:177, 1974.

[4] C.A. Coulson. Trans. Faraday Soc., 33:1479, 1937.

[5] F. Arias de Saavedra, I. Porras F.J. Galvez, and E. Buendia. J. Phys. B, 28:3123,
1995.

[6] A. L. L. East, S. M. Rothstein, and J. Vrbik. J. Chem. Phys., 88:4880, 1988.

[7] N.C. Handy, R.J. Harrison, P.J. Knowles, and H.F. Schaefer III. J. Phys. Chem.,
88:4852, 1984.

[8] G. Karl, J.D. Poll, and L. Wolniewicz. Can. J. Phys., 53:1781, 1975.

[9] T. Kato. Comm. Pure Appl. Math, 10:151, 1957.

[10] S.D. Kenny, G. Rajagopal, and R.J. Needs. Phys. Rev. A, 51:1898, 1995.

[11] W. Kolos and C.C.J. Roothaan. Rev. Mod. Phys., 32:219, 1960.

[12] W. Kolos, K. Szalewicz, and H.J. Monkhorst. J. Chern. Phys., 84:3278, 1986.

[13] W. Kolos anq L. Wolniewicz. J. Chem. Phys., 43:2429, 1965.

[14] P. Langfelder. Master's thesis, Brock University, (1997).

[15] N. Metropolis, A. W. Rosenbl~th, M. N. Rosenbluth, A. M. Teller, and E. Teller. J.
Chem. Phys., 21:1087, 1953.

[16] L. Pauling and E.B. Wilson, Jr. Introduction to Quantum Mechanics. McGraw-Hill,
New York, N.Y., 1935. p. 224.

[17] C.L. Pekeris. Phys. Rev., 115:1216, 1959.

[18] J.D. Poll and L. Wolniewicz. J. Chem. Phys., 68:3053, 1978.

94



Bibliography 95

[19] W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flanner~y. Numerical
recipes in Fr;rtran. Cambridge University Press, Cambridge, UK, second edition,
1992.

[20] P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester Jr. J. Chern. Phys.,
77:5593, 1982.

[21] K.E. Schmidt and J.W. Moskowitz. 'J. Chern. Phys., 93:4172, 1990.

[22] B.S. Sharma and A.J. Thakkar. J. Phys. B, 17:3405, 1984.

[23] C. J. Umrigar, K. G. Wilson, and J. W. Wilkins. Phys. Rev. Lett., 60:1719, 1988.

[24] S.C. Wang. Phys. Rev., 31:579, 1928.


