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ABSTRACT

Blood serum and egg-white protein samples from individuals representing

seven colonies of Larus argentatus, and four colonies of Sterna hirundo

were electrophoretically analysed to determine levels of genetic variability
and to assess the utility of polymorphic loci as genetic markers.
Variability occurred at five co-dominant autosomal loci. S. hirundo protein
polymorphism occurred at the Est-5 and the Oest-1l loci, while nineteen loci
were monomorphic. L. argentatus samples were monomorphic at seventeen loci
and polymorphic at the Ldh-A and the Alb loci. Intergeneric differences
existed at the Oalb and the Ldh-A loci. Although LDH-A}00 from both species
possessed identical electrophoretic mobilities, the intergeneric differences
were expressed as a difference in enzyme thermostabilities.

Geographical distribution of alleles and genetic divergence estimates
suggest S. hirundo population pammixis, at least at the sampled locationms.
The L. argentatus gene pool appears relatively heterogeneous with a discreet
Atlantic Coast population and a Great Lakes demic population. These
observed population structures may be maintained by the relative amount of
gene flow occurring within and among populations. Mass ringing data coupled
to reproductive success information and analysis of dispersal trends appear
to validate this assumption. Similar results may be generated by either
selection or both small organism and low locus sample sizes. To clarify
these results and to detect the major factor(s) affecting the surveyed
portions of the genome, larger sample sizes in conjunction with precise

eco-demographic data are required.
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INTRODUCTION

The post 1945 industrial expansion of our society has precipitated a
series of environmental problems. The widespread utilization of water
systems as cheap, reliable and efficient sewage disposal sites, has
introduced problematical quantities of relatively inert chemicals into the
hydrosphere (Gerakis and Sficas, 1974; Haque and Freed, 1974; Harris and
Miles, 1975). The bioconcentratable nature of these chemicals led to the
political issue of govermment responsibility for public health and
environmental quality. As part of the Canadian Wildlife Service's response
to these questions, an indicator species has been sought to monitor toxic
chemical problems in the Great Lakes ecosystem.

Fish-eating colonial nesting seabirds were selected as potential
indicator species due to the well-documented correlative evidence of toxic
chemicals on particular aspects of their reproductive biology (Cooke, 1973;
1975; Stickel, 1973; Foster, 1974; Peakall, 1975; Simkiss, 1975).
Gilbertson (1974) suggested the following criteria for selecting an
indicator species.

1. The species must be ubiquitous and numerous.

2, It should be relatively non-migratory and its local distribution
be restricted to the Great Lakes watershed.

3. It should be a colonial nesting species, such that it will
continue to nest in specific locations.

4, The species should be preferably euryphagic and at, or close to,

the apex of its food chain.



Plate 1: Sterna hirundo
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5. It should construct a substantial nest to reduce the influences
of varying environmental factors.

6. The mean clutch size should be relatively invariable.

7. The species must show readily discernible signs of xenobiotic
intoxication.

Initially it was proposed that Sterna hirundo (Plate 1) be used as an

indicator species (G. A. Fox, pers. comm.). However, Gilbertson (1974)

suggested that Larus argentatus (Plate 2) was more suitable as an indicator

species, especially for the Great Lakes ecosystem, as this species fulfilled
all of his criteria.

The suitability of L. argentatus as an indicator species depends upon
the assessment of age-dependent dispersal, inter-colony movements, and the
antagoﬁistic interactions of these population parameters with the
behavioural mechanisms associated with coloniality. Knowledge of dispersal
trends is necessary to prevent ambiguous or erroneous conclusions, when
attempting to establish correlations between toxic chemical loads and
envirommental chemo—-dynamics. The evaluation of dispersal parameters in
L. argentatus populations is complicated by the high rate of loss and
deterioration of standard aluminum rings1 (Kadlec and Drury, 1968; Kadlec,
1975).

An alternative method of assessing organismal movements or dispersal
" is the use of genetic markers (Tracey, 1974). Initially, the amount of

genetic variability within and among populations must be determined, and if

1 Although the U.S. Fish and Wildlife Service Bird Bands are conventionally
referred to as "'bands" by North American workers, I will use the European
terminology "ring" throughout this thesis. This choice of terminology is
to avoid confusion between bird 'bands' and electrophoretic 'bands'.



Plate 2: Larus argentatus
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possible, suitable markers chosen (see Maurer, 1968). TFollowing selection
of suitable loci and the determinatioq of population gene frequencies,
subsequent shifts in gene or genotypic frequencies may be attributed to
either stochastic or directional events, such as selection, migration,
mutation (Li, 1955; Falconer, 1964), or drift (Wright, 1970, 1977).

This thesis presents the results of a preliminary electrophoretic
investigation into genetic variation at selected gene loci in S§. hirundo
and L. argentatus. Also polymorphic loci are assessed for suitability
as population genetic ﬁarkers, and mechanisms that are effecting or

maintaining the variability will be examined.
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LITERATURE REVIEW

The advent of supporting zone electrophoresis in 'molecular sieves'
(Smithies, 1955; Raymond and Weintraub, 1959; Davis, 1964; Ornstein, 1964)
allowed high resolution separation of proteins based on differences in
molecular weight, net electrical charge and molecular configuration.
Empirical data indicated that the same protein may exist in functionally
equivalent forms, yet with different discrete electrophoretic mobilities
(Smithies, 1959A). Concurrent advances in molecular biology allowed
electrophoretic data to be extrapolated to the DNA level of an organism.

These methodologies have been increasingly applied in an attempt to
quantitatively estimate the amount of genetic variability in both natural
and laboratory populations (Powell, 1975A). The most striking result of
these surveys has been the large amount of variability present in populations,
although electrophoresis can detect only 20-307% of amino acid substitutions
(Ayala, 1975; 1976; Nei, 1974; Powell, 1975A, 1975B; Scandialios, 1975;
Johnson, 1977; Throchmorton, 1977). This level of detection may be raised
to 80-907% by using combinations of gels with different acrylamide concen-
trations (Coyne, 1976; Johnson, 1977), and by further separating electro-
phoretic groups on the basis of different enzyme thermostabilities (Singh
et al., 1975; 1976; Cochrane, 1976; Johnson, 1977), sensitivity to high
urea concentrations (Lewontin, in Powell, 1975A), and investigations of
enzyme catalytic properties (Johnson, 1977).

Investigations of allelic variants having the same electrophoretic
mobilities (electromorphs) have revealed considerable variability within

classes. Turner (1973) used thermostabilities to identify species specific
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esterases in five species of the genus Cyprinodon. Thermolabile esterase

variants at the Est-6 locus in Drosophila melanogaster were discovered,

although the locus appeared to be monomorphic (Cochrane, 1976). Monomorphic

octanol dehydrogenase in Drosophila wvirilis, could be defined into different

thermolabile variants, that showed some gene pool differentiation (Singh
et al., 1975). Similar results were obtained at the xanthine dehydrogenase

locus in D, pseudoobscura (Singh et al., 1976; Prakash, 1977). Such changes

in enzyme thermostabilities may result from the substitution of an amino acid
with an acidic side group (e.g., aspartic acid, glutamic acid) in the
interior of a tertiary/quaternary structured polypeptide/protein (Johnson,
1977). Internal amino acid residues are protected from the effects of
external pH shifts by the buffered proteinaceous internal environment of the
enzyme, Consequently,‘the ionization states of these residues cannot be
altered as a means of further separating electromorphs.

These allelic variants may be the result of either simple amino acid
substitutions, or complex regulatory events, Changes in regulatory gene-
structural gene interactions may either accompany or be the major force in
cladogenesis and speciation (Britten and Davidson, 1976; Valentine and
Campbell, 1976; Wilson, 1976). Regulatory genes may allow the transcription
of a structural gene, such that the properties of the structural gene
product are affected (Pandey, 1977; McDonald and Ayala, 1978; Hendrick and
McDonald, unpublished manuscript). Structural gene product alteration may
be due to either the presence or absence or mutation of enzyme(s), that
alter either the nascent mRNA or the nascent polypeptide (henceforth these
mechanisms will be collectively referred to as post—transcriptional

mechanisms) to confer different thermostabilities on initially identical
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DNA base sequences. Recent findings from recombinant DNA plasmids indicate

the presence of post-transcriptional mechanisms. Sacchromyces cerevisiae

tRNA precursor cannot be activated until a nuclear enzyme(s) tailors the

immediate gene product (O'Farrel et al., 1978). Gallus gallus ovo-albumin

gene plasmids have shown the gene to be approximately 6 x 103 base pairs,

or three times the length of the DNA required to directly encode the mRNA
for this protein. Additionally six gene interruptions occur, which do not
occur in ovo-albumin mRNA. The nascent mRNA is either tailored after
transcription, or the DNA-RNA polymerase skips these segments. Furthermore,
two ovo—-albumin electromorphs differ in the number of interrupting segments
in the gene; the major electromorph has six gene interruptions, while the
minor form has five gene interruptions (Garpin et al., 1978; Mandel et al.,
1978). If similar events have occurred at regulatory loci, and if regulatory
loci function in the mechanisms documented above, the thermostabilities

may indicate even greater genome divergence than just one mutational event
at a structural locus.

These empirical results generated new theoretical interpretations, and
two major hypotheses were developed. Although allelic variants are produced
by mutation, their maintenance in the population was the point of contention.
One theory suggested that genetic variability was a transient phenomenon,
and most allelic states were maintained in the population by stochastic
events (Kimura and Ohta, 1972). The other theory proposed that genetic
polymorphisms, caused initially by mutation, were maintained in the
population by selection (Powell, 1975B). A subsequent polarization of
empirical tests and theoretical developments occurred and influenced both

evolutionary and population genetics (Harris, 1976; Selander, 1976).
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Invertebrates have the highest levels of genetic variability,
followed by vertebrate poikilotherms. The lowest levels of genetic
variability are found in the vertebrate homeotherms. Heterozygosity values
repqrted for avian populations appear to be significantly smaller than any
other taxa, although non-regulatory enzyme variability is considerably
higher than any other vertebrate class (Powell, 1975A). The genetic
variability pattern of the three enzyme classes (Johnson, 1973) is reversed
compared to any other taxa, either vertebrate or invertebrate. However,
interpretations of the preceding must be made with caution as relatively
few avian species have been surveyed for heterozygosities at multiple loci.
Similar observations were initially made on levels of heterozygosities in
Crustacea and the low levels of genetic variability were hypothesized to
result from the restricted mobility of this taxon (Tracey et .al., 1975;
Tracey, pers. comm.). However, Hedgecock and Nelson (unpublished manuscript)
reported average heterozygosities from 60 decapod crustaceans; values range
from 0.0% to 12.0%. These values are approximately the same as reported
for other invertebrate taxa (Powell, 1975A). The degree of heterozygosity
within a taxon may then be correlated with metabolic, physiological and
environmental factors. Determination of the extent of heterozygosity
within avian species requires an increased number of surveys of genetic
variability.

Investigations of genetic variability in avian populations have
generally been restricted to either domesticated species and breeds or to
captive populations of wild birds (Common et al., 1953; Lush, 1961; Clark
et al., 1963; Baker, 1968; Tamaki and Tanabe, 1970; Beck et al., 1975;

Juneja and Wilhelmson, 1975; Meyerhoff and Haley, 1975; Tamaki, 1975;
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Tamaki et al., 1975; Grunder and Hollands, 1977). Complications arise
from such work as the investigations may specifically examine only one or
two loci. Resultant conclusions may have little applicability to wild
populations (see Manwell and Baker, 1975), as captive populations may have
higher levels of variability than occur in natural populations (Corbin
et al., 1974; Manwell and Baker, 1975). However, the transmission and
inheritance patterns of a specific locus may have direct application in the
understanding of the genetics of the same locus in wild populations.
Electrophoretic methodologies have been applied in avian systematics
(Gysels, 1963; Brown and Fisher, 1966; Sibley and Brush, 1967; Sibley et al.,
1969; Sibley and Hendrikson, 1970; Sibley and Frelin, 1972). Data acquired
from phylogenetic assays may be useful in predicting potential polymorphic
loci which may be used in intraspecific population surveys. Milne and
Robertson (1965) investigated variability in the egg-white proteins from
several avian species. In 200 eggs from L. argentatus colonies, no

polymorphic loci were resolved. Populations of Somateria mollissima

mollissima examined were polymorphic at the ovo-albumin locus, with three

electromorphs. In the S. mollissima mollissima colonies surveyed, all but

one conformed to Hardy-Weinberg equilibrium expectations. This colony was
composed of two subgroups; one migratory, the other non-migratory and
dispersing locally. During the reproductive season both subgroups nested
in relative separation from each other.

Genic variability at loci encoding egg-white protein fractions were
reported by other workers. Conalbumin (ovo-transferrin) was polymorphic in

Phasianus colchius (Baker et al., 1966), Passer domesticus, Hirundo tahitica

neoxena and Petrochelidon ariel (Manwell and Baker, 1975). In egg-white
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samples from Coturnix coturnix six protein fractions, including lysozyme,

were polymorphic (Baker and Manwell, 1967). Ovo-albumin was polymorphic

in Lagopus scotius with an apparent two loci multi-allelic system

generating the phenotype (Henderson, 1976).
A penta-allelic polymorphic ovo-esterase locus was resolved in

Passer domesticus, Hirundo tahitica neoxena and Petrochelidon ariel. The

variability at this locus allowed Manwell and Baker (1975) to survey
populations of these three species to estimate the amount of intraspecific
nest parasitism ("mest infidelity") occurring in the populations. Ten
percent of P. domesticus and 2.5% of P. ariel nests contained at least one
egg with different esterase electropherograms than the remainder of the
clutch.

Vohs and Carr (1969) resolved four co-dominant alleles at the blood

serum transferrin locus in Phasianus colchicus. When Montag and Dahlgren

(1973) sampled wild populations from Pennsylvania and South Dakota, three
common alleles were found. Allelic frequencies from the Pennsylvania
populations were uniform over the sampling area, while gene pool hetero-
geneity occurred in three South Dakota populations.

The Ngase locus was polymorphic in Dendragapus obscurus (Redfield

et al., 1972) and Hardy-Wienberg equilibrium expectation deviations
occurred in three of the nine populations sampled. Selective pressures
operative at this locus were invoked to explain the observed deviations.
The authors suggested that this locus and its correlation to selective
pressures may make the locus useful as a genetic marker in monitoring the

behaviour cycle of this species.
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Nottebohm and Selander (1972) reported results from a multi-locus

genetic variability survey in four populations of Zonotrichia capensis.

Twenty-four loci were examined, but only fifteen loci could be scored
consistently, five of which were polymorphic. The mean heterozygosity was
3.53%Z and percent polymorphic loci 31.3%. The authors indicated that an
essentially panmictic breeding structure may exist in the populations
studied. However, song dialect analysis and a non-significant trend in
gene frequencies at three loci were suggestive of gene pool heterogeneity.
No definite comments concerning the’popu]ation structure could be advanced
due to the small sample size. When the study was repeated (Handeford and
Nottebohm, 1976) with a larger sample size over an altitudinal gradient,
genetic variability was similar to the first study. Average heterozygosity
was 8.10% with 37.57 polymorphic loci. Significant clinal patterns in
allelic frequencies existed at three loci; glucose-6-phosphate dehydrogenase,
6-phospho-gluconate~l-dehydrogenase, and mannose-6-phosphate isomerase.
Song dialect analysis and geographic patterns of allelic distributions were
indicative of gene pool heterogeneity that corresponded to the altitude

and a 'patchy' environment. The authors commented that the association of
these factors structured the Z. capensis population .into specific
philopatric demes.

Baker (1975) attempted to assess the effect of female-male choice and
the role of vocal dialects on population structure of Z. leucophrys.
Nineteen loci were surveyed to determine if gene pool heterogeneity existed
in populations from Colorado and California. Colorado populations were
polymorphic at three loci (15.8% polymorphic loci), with an average

heterozygosity of 4.18%. These results were indicative of gene pool



24

heterogeneity and a demic population structure. California populations
were polymorphic at six loci (31.67% polymorphic loci), and had an average
heterozygosity of 9.94%. Results again suggested a demic population
structure. Such a population structure could be due to a founder effect
in association with site tenacity (philopatry), and female choice for a male
with the 'proper' song. A heterogeneous environment with differential
selection pressures could also structure such a population.

The effect of extensive topographical barriers on genetic variability

in colonial nesting (Aplonis metallica) and solitary nesting (A. cantoroides)

birds was examined by Corbin et al. (1974). Three of eighteen loci were
polymorphic, and a clinal pattern of variability was observed at two of
these three loci. éi_metailica had an extensive polymorphism at the Ldh
loci which corresponded to gene pool heterogeneity at these loci. The
Est-1 locus was also polymorphic, although no apparent pattern existed in
the geographical distribution of allelic variants. A. cantoroides was
polymorphic for two loci: Ldh and Est-1. The pattern of genetic
variability was reversed in this species, Ldh allele frequencies had a
uniform distribution, while gene pool heterogeneity existed at the Est-1
locus. Average heterozygosity was 4.7% (16.6% polymorphic loci) for

A. metallica, and 0.8%7 (11.1% polymorphic loci) for A. cantoroides. The
paucity of data describing age structure, mortality, reproductive success,
dispersal, feeding habits, as well as heterospecific and conspecific
interrelationships, prevented the authors from formulating any explanatory
definitions of the observed results. (The aforementioned parameters will

be collectively referred to as eco-demographic data).
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Passer domesticus populations in Australia were marked by considerable

variability, average heterozygosity was 9.87% and 407 of the loci surveyed
were polymorphic. Manwell and Baker (1975) suggested that this level of
genetic variability was high ; however, Z. leucophyrs from California were

also marked by high values (Baker, 1975). This result may represent either
the adaptability of P. domesticus, or else is a result of its being introduced

into new environments. Hirundo tahitica neoxena (average heterozygosity

7.8%) and Petrochelidon ariel (average heterozygosity 6.5%) were believed to be

more representative of variability estimates in birds . However, in comparison
with other published values, the results of Manwell and Baker (1975) appear
inflated. 1If these values are indeed respresentative of genetic variability
estimates in avian populations, then similar results may be occurring with
birds as Hedgecock and Nelson (unpublished manuscript) reported for decapod
crustaceans.

Smith and Zimmerman (1976) investigated the biochemical phylogenetic
relationships of seven species-of the Agelaine and Quiscaline groups
(Family: Icteridae). Fifteen loci were examined and five loci were
monomorphic (P = 1.00). However, variability was restricted at the Mdh-1
locus. One individual out of 215 was heterozygous at this locus, all
others were monomorphic. Calculated allele frequencies are p = 0.998 and
q = 2.0 x 1073, which suggests that actually six loci were monomorphic
(Selander, 1976). Although genetic identities (I = 0.797 * 0.116) and
genetic distances (D = 0.237 * 0.142) are reported, average heterozygosities
are not. Using the published allele frequencies, average heterozygosity
is 17.22% (H = 8.,93% to H = 22.11%) with 45.7% polymorphic loci (33.3% to

60.0%) .
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Peden and Whitney (1976) examined populations of Anas platyrhynchos

from Quebec, Manitoba and British Columbia. Blood serum when electro-
phoresed, showed variation in an esterase which indicated that very little
gene flow existed between western and eastern populations.

Studies of genetic variability in wild avian populations have made use
of plumage variations and colour phase frequencies. Jefferies and Parslow
(1976) found that bridling in Uria aalge is controlled by a recessive allele
at a single autosomal locus. The frequency of bridling in colonies increases
on a south-north cline, although evidence of a west—east cline off the shores
of Norway was evident. The authors suggested that bridling may be selected
for in areas where surface water has a low temperature. How bridling confers
this superior fitness is unknown. Alternatively, balancing selection may be
maintaining the polymorphism in the areas of the reported clines.

Colour phase polymorphism is also found in Stercorarius parasiticus

with three distinct genotypes: light, intermediate, dark-intermediate and
dark. The polymorphism is controlled by two alleles at a semi-dominant
locus (0'Donald and Davis, 1975) and studies of colonies on Fair and Foula
Islands in the Shetlands appear to indicate that several selectional events
may be presently maintaining the polymorphism (0'Donald, 19723 1974; 1978;
0'Donald and Davis, 1975; Davis and O0'Donald, 1976A; 1976B).

Cooch and Beardsmore (1959) identified a colour phase polymorphism in

Anser caerulescens and indicated that positive assortative mating was

occurring in the population. Furthermore, the authors suggested that the
reported increase of the blue phase in all locations was due either to blue
males having an increased advantage as a result of mate choice, or to

balancing selection maintaining the polymorphism. . .Genetic studies.of the
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colour phases indicated that plumage colour was controlled by two alleles

at a single autosomal locus with the blue allele semi-dominant to white
(Cooke and Cooch, 1968; Cooke and Mirsky, 1972). The increasing blue phase
may be a function of male dispersal as most females return to their natal
colony. However, the rate of increase may be slowed by assortative mating
coupled with early imprinting and differential phase migration (Cooke et al.,
1975). Considerable gene flow occurs between the Hudson Bay colonies due

to mixing on the wintering grounds where initial mate choice occurs.
Furthermore, such large amounts of gene flow would appear to negate any

selection acting on the subpopulations (Rockwell and Cooke, 1977).

THEORETICAL REVIEW

Observed genotype frequencies obtained from electrophoretic method-
ologies are routinely compared to Hardy-Weinberg equilibrium expectations.
Under equilibrium conditions, observed genotypes should be normally
distributed. If two alleles, A, a, are present at a single co-dominant
locus, then the resulting genotypes are: A//A, A//a, a//a. In a sample of
N diploid organisms (2N gene sample size), the representative contribution
of each genotype is D, (A//A); H, (A//a) and R, (a//a), where D+ H + R = N.
The observed genotypic frequencies are,

D/N + H/N + R/N = 1.0 (1)

The frequency of the A allele (p) in the sample is given by

2D + H
2N
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and the frequency of the a allele (q) in the sample is given by

- 2R+ H
2N

such that p + q = 1.0. Under equilibrium conditions, the two alleles assort
to form the genotypes

(p +9)2 =1.0

p2 + 2pq + g2 = 1.0 (2)

This relationship (2) is the Hardy-Weinberg equilibrium expectation for
the two alleles, A, a (Li, 1955; Falconer, 1964). Deviation from the
expected values implies the presence of perturbing forces (migration,
mutation, selection and population structure) affecting the sampled portion
of the genome. In a demic population, either isolated random breeding
subunits may exist or the population may be panmictic. If a population
consists of i subunits, then Py is the.frequency of the A allele in the
h-th subunit (ph + 9, = 1.0). Assuming that each of the i subunits are in
equilibrium, then the zygotic proportions of the two alleles in the h-th
subunit are: phz, 2phqh, qhz.

The mean frequency of p in the entire population is given by

P =Py

i

and the variance of p is

P

The zygotic proportions of the pooled subunits are:

o2 =} (p -~ P)?/1
1

MA = Yp2/i = p? + o2
;ph B 2

el R

AMa = nghqh/i = 2pq - 20
afa

275 _ =2 2
th/l gs + 05
i

which become
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(P2 + 02) + (2pq - 202) + (F+ 02) = 1.0 (3)
p p P

If the population subunits were from a panmictic breeding structure
then the zygotic proportions would be:

B2 + 253 + g% = 1.0
which is similar to equation (2), and describes a Hardy-Weinberg population.
In cases of isolated breeding pools, the heterozygote classes are reduced by
the quantity ZO%, and each homozygote class is increased by O%. The
numerical value of c% is dependent upon the frequency distribution of p in
the i subunits (Wahlund, 1928 in Li, 1955).

An increase in the homozygote class may arise from inbreeding occurring
in the subunits. Furthermore, any process affecting the genome may be
responsible for the establishment of gene pool heterogeneity. However,
regardless of the mechanism generating the heterogeneity, gene flow must
be reduced between subunits to maintain differentiation, otherwise Py will
approach p. Sampling of subpopulations, that are separated by extremely
small interdemic distances, may not detect gene pool heterogeneity. Allelic
frequencies are not subunit frequencies, but rather mean allelic (p)
frequencies.

Deviation from Hardy-Weinberg equilibrium expectation may arise from
small sample size. This experimental error arises from probabilistic
considerations of the sampling regime. In one locus—-two allele systems,
there exists a greater probability of sampling a homozygote (either of the
two classes), than sampling a heterozygote (Levene, 1949). On the other
hand, with either multi-locus systems, or multi-allelic systems, or
combinations of these two, there exists a greater chance of sampling

heterozygotic classes than homozygotic classes (Li, 1955: Milkman, 1975).
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These sampling-induced errors may be corrected by altering the Hardy-
Weinberg equilibrium expectations to increase either heterozygotic or
homozygotic deficiencies. Levene's (1949) small sample size correction
compensates for the heterozygote deficiency in one locus systems, while
Li (1969) and Milkman (1975) suggested corrections for homozygote
deficiencies in multi-locus systems.

Selander (1976) defines a polymorphic locus, as a locus that has a
common allele frequency equal to less than 0.99. This definition is an
arbitrary, but commonly used standard. Small sample surveys do not allow
determination of actual population allele frequencies, but rather generate
estimates thereof. The process of estimation is dependent upon the
probability of non-detection of rare alleles (Table 1). At intermediate
allele frequencies (p = 0.80) the non-detection probability is low, even
with an organismal sample size of three. However, when the common allele
frequency is high (p = 0.99), the non-detection probability is low only when
the organismal sample size approaches fifty. The non-detection probabilities
indicate that only common alleles will be detected. As a result the genetic
variability in the population will be underestimated. Conversely, if a
rare allele is detected, the small sample size would inflate the estimate
of population genetic variability. Such sampling errors may cause erroneous
conclusions about either gene pool homogeneity or heterogeneity, if only
genetic data are considered.

Selection may be responsible for the alteration of allelic frequencies,
and levels of genetic variability due to phenotypic response to environ-
mental factors (Wright, 19703 1977; Powell, 1975A; 1975B; Lowther, 1977;

Berry, 1978), cumulative differential viability and steady drift (Wright,
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! of Rare Alleles in Relationship
to Number of Individuals Sampled and Population Frequency of the
Common Allele

Number of Individuals Sampled

Frequency of the Common Allele

0.99 0.95 0.90 0.80 0.70 0.60 0.50
3 0.94 0.79 0.53 0.26 0.12 0.05 0.02
6 0.89 0.54 0.28 0.06 0.01 2.2 2.4
x 1073 107k
9 0.83 0.40 0.15 0.02 1.6 1.0 3.8
x 1073 x 107 x 1076
12 0.79 0.29 0.08 4.7 1.9 4.7 6.0
x 1073 x 107" x 1076 x 1078
15  0.79 0.21 0.04 1.2 2.3 2.2 9
x 1073 x 107° x 1077 x 10710
18 0.70 0.16 0.02 3.2 2.7 1.0 1.5
x 1074 x 1076 x 1078 x 10711
50 0.37 0.01 2.7 2.0 3.2 6.5 7.9

x 1075 x 10710 10716 10723 x 10723

b
b

The probability that only common allele (p) homozygotes are drawn in a
sample is equal to the frequency of this homozygote (p?) raised to the
power of the sample size (n). Thus the probability of non-detection is

(p?)™

e.g., p = 0.99; p2 = 0.9801; therefore when n = 3, the probability of
non-detection becomes (p2)3 = 0.94148.
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1970). Populations established by either sampling drift (Cain and Curry,
1963 in Wright, 1970), or sampling processes (Li, 1955; Falconer, 1964),
and then having undergone random drift, may have different genotypic
expressions when directionalized by selection (Wright, 1969; 1970; 1977).
Selection has its influence on the genotype (Waddington, 1976), or the
"mean fitness (F(w/w))" (Dobzhansky, 19663 Wright, 1970; 1977). Since the
phenotype is the summation of genetic and environmental events, different
genotypic phenotypes may respond differently to similar selective pressures.
This process is related to the concept of multiple adaptive peaks in a
fitness space (Wright, 1970; 1977). Populations may respond to equal
selective préssures and the result may be gene pool heterogeneity, with
population subunit fitnesses being equally maximized. This process of
selection would, in the context of evolution, allow multiple routes to
fitness maximization.

The presence or absence of selection affecting the zygotic proportions
of a locus depends on variability at the locus under study. Since changes
in gene frequency are used to quantify selection, there can be no selection
if the locus is monomorphic (p = 1.00) (Wright, 1970; 1977). However, lack
of electrophoretic variation does not necessarily indicate a lack of
selection, due to the previously documented implications of hidden
variability within electromorph classes. Yet electrophoretic monomorphism,
by similar criteria, does not imply selection operating on the locus.

The effectiveness of selective pressures on genic variability depends
on the frequency of the allele, regardless of the phenotypic effect of that
allele (Li, 1955; Falconer, 1964; Kimura and Ohta, 1972). If allele

frequencies are either high (p >> 0.99) or low (p << 0.01), the effectiveness
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of selection is extremely small in altering them. Alleles in these
frequency classes may behave in a neutral fashion as described by Kimura
(Kimura and Ohta, 1972), and may be lost from a population due to the
statistical implications of gametic sampling and founder effects.

Selection may alter population allele frequencies indirectly
either through linkage effects, or through effects on regulatory loci.
Genes are distributed in linkage groups in an organism's genome.
Consequently, if two genes are closely linked, then both genes may appear to
be responding to the same selective pressure. Actually selection may be
operative at only one of the loci, while spatial and positional effects
cause the second locus (not affected by the selective pressure) to respond
with perturbed zygotic proportions (Kimura and Ohta, 1972; Powell, 1974;
Hedrick, unpublished manuscript).

The large amount of genetic variability maintained in a population may
be due to selection. However, the actual effect of selection is difficult
to prove, and equally difficult to disprove (Tracey, pers. comm.). The
invocation of selection may categorically explain observed variability.

Yet due to the tautological relationship between selection and fitness,
experimental proof in natural populations is difficult to obtain.
Requirements of proof of selection usually entail postulations of functional-
physiological enzyme effects or linkage disequilibrium.

Initially, selection coefficients, arising from the abiotic factors
(especially climate), are very high and result in a rapid increase in
population fitness to these selective pressures. Subsequently, as fitness
increases, the selection coefficients decrease with respect to that

population; that is the population becomes more fit to a specific locale
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(Lowther, 1977). As selection coefficients decrease, increasingly larger
sample sizes are required to detect deviations from Hardy-Weinberg
equilibrium expectation due to selection (Hubby and Lewontin, 1966;
Powell, 1974). Small sample surveys may generate expectation agreements,
when larger sample sizes would show perturbations arising from selection.

Endler (1973) investigated the establishment of gene pool heterogeneity
by selection even in the presence of gene flow. However, reproductive
success of the migrants, with respect to the residents, was not determined.
In instances of gene pool heterogeneity and migration, reproductive success
of migrant individuals should be monitored. Differences in reproductive
success may lead to the development of gene pool heterogeneity. This
concept is essential when interactions between gene flow and selection happen
simultaneously and gene pool heterogeneity results.

Genetic variability may be measured by several parameters; average
heterozygosities, percentage polymorphic loci, and average number of alleles
at a locus. The last two metrics are dependent upon large sample sizes,
which detect rare alleles and increase variability estimates (Nei and
Roychoudury, 1974; Nei et al., 1975; Nei, 1975; 1978; Selander, 1976;
Fuerst et al., 1978). Average heterozygosity is dependent more on locus
sample size than organismal sample size (Tracey et al., 1975; Nei, 1975;
1978). However, when average heterozygosity is large with a corresponding
small genetic distance, a large sampling bias is associated with the average
heterozygosity (Fuerst et al., 1978; Nei, 1978). Average heterozygosity
(H) is given by

H = §H°k/ i

where Hok is the observed heterozygosity at the k-th locus and i is the
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total number of loci surveyed. Average heterozygosity may also be given by

H= é(l - Zxﬁ)/i
where X is the frequency of the x~th allele at the k-th locus (Nei and
Roychoudury, 1975; Nei, 1975; 1978; Selander, 1976).

Percentage polymorphic loci is equal to the number of polymorphic loci
divided by the total number of loci surveyed, and multiplied by 102,

Average number of alleles at a locus (A) is given by

A = gak/l
where a is the number of alleles at the k-th locus and i is the total
number of loci surveyed (Tracey et al., 1975; Tracey, pers. comm. ) .

Single locus inbreeding coefficients (Fi) are calculated by

B = (g - Hop) /g
where HEk is the Hardy-Weinberg equilibrium expectation heterozygosity at
the k-th locus and Hok is the observed heterozygosity at the k-th locus
(Li, 1955; Nei, 1975). ©Nei (1975) has used this metric as another method
for evaluating gene pool heterogeneity. Single locus inbreeding coefficients
may indicate the presence of perturbing influences affecting a sample
locus: ~F values indicate a sampled population has a heterozygote excess,
while +F values indicate a sample has a homozygote excess. This coefficient
is a measure of population divergence rather than Malecot's (1948) metric
which measures the degree of relatedness Within the population.

Degrees of genetic variability maintained in two populations may be
compared by statistical methods (Li, 1955; Falconer, 1964; Wright, 1968;
1969), or by the use of Nei's statistics (1974; 1975). These latter
calculations are designed specifically for computation using electrophoretic

allele frequency data. The frequency of the alleles may be used to compute



36

statistical measures of genetic similarity between two populations or taxa.
Nei's statistics estimate the probability of drawing two electrophoretically
identical alleles at the same locus from two populations. If two
populations, X and Y, exist and K is a given locus , then the normalized
probability that the two electromorphs from X and Y are identical is given
by:

1
L, = Days Qe lyD ™
i i i

where x4 and y; are the frequencies of the i-th allele at the K-th locus in
populations X and Y, respectively. If I is calculated for all loci
analysed, then the average genetic identity over all loci is

I= JXy(JXJy)_%

where J J, and Jy are the arithmetic means over all loci assayed of Zixiyi

Xy® vYx
ZiX% and ziy% respectively. The mean genetic identity is the average
identity over all loci common to both populations. Since the genetic
identity is a probability, then I can assume any value from 0.0 to 1.0.
If two populations are identical, then I = 1.0; if they share no common
alleles, then I = 0.0.
Genetic distance is estimated as the natural log transformation of I
Dy = -log Iy
where I is the genetic identity at the K-th locus. Mean genetic distance
over all loci is
D = -logcI
D may assume any value from 0.0 to «®; D = 0.0 when I = 1.0 and D = =
when I = 0.0.

Genetic distance is the measure of electrophoretically detectable

amino acid substitutions between populations X and Y for a given protein.
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Since proteins are gene products, amino acid substitutions reflect changes
in the DNA nucleotide base sequence. Genetic distance therefore measures
population differences at the DNA level.

In application of these statistics, Nei (1974; 1975) made the assumption
that soluble proteinaceous gene products are a random representative sample
of the entire genome. However, structural gene products may be effected
either by different evolutionary events or by different magnitudes of the
same events thén either non-structural or fegulatory genes (Wilson, 1975;
McDonald and Ayala, 1978; McDonald and Hedrick, unpublished manuscript).
Consequently, information obtained from analysis of structural gene products
may apply only to the surveyed portion of the genome and conclusions should
be cautiously drawn.

Dobzhansky (1976) indicated that a genetic distance of D = 0.226 * 0.033

between semi-species in Drosophila paulistorum correlates with divergence

existent in separate reproductivity isolated populations. Avise (1976)
reviewing the genetic differentiation that accompanies the speciating
process showed that genetic identity values in the D. willistoni complex
range from I = 0.970 * 0.06 (geographic populations) to I = 0.352 * 0.23
(non-sibling species). 1In sunfishes, particularly the species Lepomis
macrochirus, the two subspecies produce fertile F; hybrids, yet the genetic
divergence is large D = 0.171. Considering the entire genus, mean inter-
specific genetic distance (D = 0.627 = 0.029) is high, fertile F; hybrids
are also produced by any combination. This large genetic distance and

the distinct morphology are perplexing in the light of the ability to inter-
breed. In the genus Taricha Hedgecock, (1974; 1978) genetic identity and

distance approximate those observed in the D. willistoni complex. Smith
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and Zimmerman (1976) published interspecific and intergeneric divergence
estimates for the Icteridae that ranged from I = 0.989 to I = 0.637
(I =0.797 £ 0.116; D = 0.237 + 0.142).

Discussions of genetic variability within populations, either
conspecific or heterospecific may estimate large genome divergence even when
fertile F; progeny are produced. Genetic variability detected by electro-
phoresis may not indicate actual divergence, unless genome reorganization
has occurred. Within a species, or subspecies, large divergence estimates
may indicate the presence of mechanisms affecting the genome, while at
generic levels they indicate only structural similarities or differences.
If genome organization, particulary gene-chromosome arrangements, has been
conservative, then information on regulatory loci is important. If genome
reorganization has occurred, then regulatory gene differences may correlate
with observed structural gene changes. In concepts of evolutionary processes
total genome divergence may be driven by a single event (chromosomal
rearrangements) or by a summation of mutational events.

In cladogenesis, whether speciating or non-speciating, the greater the
degree of temporal-spatial isolation, the greater the genetic divergence.
With non-speciating events, divergence is dependent upon gene flow and
selection (Avise and Ayala, 1975). Population subdivision, whether due
to intrinsic or extrinsic factors, is an evolutionary event that may lead
to speciation.

The most important factors in the establishment of a new deme are the
genotypes of the founder/colonizer(s), and the effective population size
(Kimura and Ohta, 1972). The establishment of a new population is a
sampling event and is governed by the same probablistic considerations as

experimental sampling (Li, 1955; Cain and Curry, in Wright, 1970). It is
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this mechanism that reduces genetic variability in new populations.
Furthermore, loss of variability may arise from selection, increased
inbreeding and drift correlated with initial sampling (Wright, 1970). This
loss of genetic variability or bottleneck persists for several generations
and is followed by a time period that is characterized by rapidly increasing
genetic variability. The length of time for a population to enter this
last stage is dependent upon the relative rate of population increase
(Ayala, 1976; Nei et al., 1976). The effect of gene flow on an expanding
new population dilutes this process, and does not allow the formation of
gene pool heterogeneity (Ehrlich and Raven, 1969). Rather, new frequencies.
allele frequencies rapidly conform to population mean allele frequencies.
Levels of genetic variability and geographic distributions of specific
alleles in time and space are intrinsically dependent upon the eco-demographic
parameters of species existence. The knowledge of the natural history of a
species will aid in attempting to assess the effects of selection, gene

flow and drift upon a population's genetic variability.

NATURAL HISTORY

Sterna hirundo and Larus argentatus (family Laridae) are colonial

nesting seabirds that have circumpolar distributions (Godfrey, 1966;

p. 178; p. 189). S. hirundo may be described as a medium sized migratory
stenophagic bird (Austin, 1938; 1942; 1949; 1951; 1953; Palmer, 1941A,
1941B; Hunter, 1976), while L. argentatus is a large euryphagic bird that
has an age dependent dispersal (Hickey and Allen, 1937; Gross, 1940;
Paynter, 1949; Hofslund, 1959; Smith, 1959; Tinbergen, 1960; Kadlec and

Drury, 1968; Moore, 1976; Threlfall, 1978). 1In the Great Lakes, colonies
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of both species may nest in association with each other and with colonies

of L. delawarensis (Ontario Nest Records Scheme (ONRS)).

The spring arrival of S. hirundo on colony sites is largely weather
dependent, and may occur from mid-April to early June. When weather
donditions are favourable, colony members may arrive in pairs or in small
groups. In the presence of spring inclemency, colony members may arrive
en masse with the onset of moderating weather (Austin, 1938; 1942; 1949;
1951; 1953; Palmer, 1941A; pers. obs.).

With the end of the reproductive period, pairs that have successfully
nested may disperse locally as family groups (Palmer, 1941A; Austin, 1942;
1951). Ringing recoveries from newly fledged juveniles indicate that
dispersal from the Cape Cod terneries occurs immediately after fledging
(Austin, 1942; 1949; 1951). Palmer (1941A; 1941B) indicates that a similar
pattern exists for the Sugar Loaf, Maine colony, with migration commencing
as early as 10-15 August, although most of the migration occurs from 10-20
September. Migration from the Port Colborne Lighthouse colony (and
possibly the adjacent Canada Furnace Colony) occurs around 1-8 October
(J. Bonnisteele and A. Kendrick, pers. comm.).

Austin (1940; 1942; 1953), Palmer (1941A; 1941B) and recent ringing
returns (Godfrey, 19663 p. 189; G. A. Fox, pers. comm.; Haymes, unpublished
data; Haymes and Blokpoel, 1978) indicate that S. hirundo migrate through
the Great Lakes, then south-east to the Finger Lakes, New York, to the
Mohawk-Hudson River valleys and then to the Atlantic coast. At this point,
the flyways of the Great Lakes and Atlantic Coast populations merge, and
the migration continues along the Atlantic Coast to Florida. Eventually,

the migration may continue as far south as Peru on the Pacific and Brazil on
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the Atlantic coasts by approximately mid-January, at which time potential
breeders begin to retrace their migratory route. The initial stages of
courtship are expressed as an integral part of the northward migration
(Austin, 19403 1942; 1945; 1953; Palmer, 1941A; 1951B).

The distribution of S. hirundo juveniles, the majority of which do not
mature sexually until their fourth year, is not well documented (Palmer,
1941B; Austin, 1949). Haymes (unpublished data), and Haymes and Blokpoel
(1978) report ringing recoveries of Great Lakes juveniles from Ascension
Island in the Atlantic to the Hawaiian Islands in the Pacific. Palmer
(1941A; 1941B) suggested that the juveniles are pelagic wanderers over their
winter range distribution during the years before their first nesting season.
The sighting of '"white-faced terns" reported from some colonies may be
older birds nesting in eclipse plumage (Austin, 1938; Palmer, 1941B),
although very rare occurrence of juveniles on colonies is documented
(Palmer, 1941B).

L. argentatus pairs arrive on the gullery from mid-March to mid-May
(Gross, 1940; Paynter, 1949; Hofslund, 1959; Smith, 1959; Tinbergen, 1960;
Kadlec and Drury, 1968; Moore, 1976; Threlfall, 1978). The onset of
courtship usually occurs before the pair return to the gullery, and may
commence at loafing points or 'clubs' (Tinbergen, 1960). After fledging,
parents and young may remain in the vicinity of the colony. First-year
juveniles usually undergo a slight northward dispersal from October to
mid-November (Moore, 1976; Threlfall, 1978), and from mid-November to
December juveniles have an increasing tendency to move south. However,
this southward dispersal is regionally specific. Juveniles from Newfoundland

(Threlfall, 1978), and the Atlantic Coast (Kadlec and Drury, 1968) follow
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the coast south to Florida and the coast of the Gulf of Mexico. Juveniles
from Lakes Erie, Ontario and eastern Huron move south-east then follow
either the St. Lawrence River, or the same route as S. hirundo (Gross,
1940; Kadlec and Drury, 1968; Moore, 1976). Flyways of both eastern

Great Lakes and the Atlantic Coast populations merge and continue south.
Hofslund (1959) and Smith (1959) indicate that juveniles from the western
Great Lakes have a tendency to move south along the Mississippi River
valley to the Gulf of Mexico. Occasionally, migrants from the upper Great
Lakes may move south-east and join the flyway of the lower Great Lakes
population. Moore (1976) and Kadlec and Drury (1968) imply that these
flyways are unique enough that the Great Lakes' population may be divided
into two groups, an eastern subunit and a western subunit, both of which
are distinct from the Atlantic Coast population.

In spring juveniles retrace their migratory route returning to their
natal lake, or more specifically their natal colony. Second and third year
juveniles and sub-adults have a restricted winter dispersal that increases
with increasing age. Individuals of these year classes either remain in
their respective natal lakes, or move not more than 500 km during the
winter (Moore, 1976). Adults, if food supply is sufficient, may remain in
the vicinity of the colony and overwinter a few miles from the breeding
grounds (Kadlec and Drury, 1968; Moore, 1976). Adults usually return to
their natal colonies to nest (Gross, 1940), or have restricted distributions
within their natal lake (Hofslund, 1959; Smith 1959; Kadlec and Drury, 1968;
Threlfall, 1978). Adults who are not breeding, whether they are taken a
year off from breeding or have not yet bred, loaf on the edges of their

affiliated colony (Kadlec and Drury, 1968).
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Implicit in the concept of larid coloniality are the twin phenomena of
group adherence and site tenacity (philopatry). These three ethological
mechanisms function to bind the individuals into a social aggregate and
ensure the integrity of the colony as a‘self—perpetuating unit (Austin,
1948; 1953; Nelson, 1973; McNicholl, 1975). Group adherence is the
mechanism which promotes colony integrity by the development of associations
between individuals. Specific relationships or attachments may be formed
by monogamy, family units (R. A. Hunter, pers. comm.), kin groups, inter-
actions between nearest neighbours and possible social hierarchies (Austin,
1938; 1949; 1951; Palmer, 1941A). 1In S. hirundo, colony members may arrive
or depart from the colony site as a unit, however no information concerning
the maintenance of these associations on the wintering grounds is available.
Individual L. argentatus colony members may remain together throughout the
winter at loafing points, if sufficient food is available (Tinbergen, 1960).

Site tenacity (philopatry) is the attachment expressed by an individual
for a specific geographic location for breeding purposes. This behavioural
mechanism is enhanced by a pair's continued reproductive success, which
ensures that the pair will continue to nest in the same location (Austin,
1949).

As a breeding pailr ages, continued successful reproduction increases
site tenacity and group adherence. When these factors are balanced and
environmental conditions are optimal, maximum reproductive success may be
realized. With age, the balance of these mechanisms may shift. Younger
birds have a stronger group adherence trait, while older colony members
have an increased site tenacity (Austin, 1949; 1951). Since colony

integrity favours the maximization of reproductive success, a balance of
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these factors in a colony is beneficial to colony well-being. If the
colony site becomes unsuitable, then the colony members as a unit may
desert and begin nesting in a more favourable location. However, if the
0ld site improves, the individuals may return to the original site (Austin,
1949; 1951; McNicholl, 1975).

The concept of a colonial breeding system and how such a system would
shape the genetic variability of a species was discussed by Shields (1977).
Basically, the ethological mechanisms restrict variability by promoting
inbreeding which would maximize relatedness among colony members. The
effect with time, is that the breeding system may approach selfing; at
least to the extent that mandatory outcrossing diploid individuals can
achieve. The end effect is to maximize reproductive output and generate
progeny that conform to maximum mean phenotypic fitness. The distribution
of progeny fitness is altered from a normal distribution to a leptokurtotic

distribution.



MATERIALS AND METHODS
Sampling Locations

Sterna hirundo

45

In late May to early June of 1975, eggs approximately one to four days

of age were collected from four locations: Port Colborne on Lake Erie

Il

(n 35), Presqu'ile on Lake Ontario (n = 22), South Limestone Island

(n 9) and Little Courtlin Island, Malp&que Bay, Prince Edward Island

(n = 39). On May 23, 1976, eggs (n = 10) were collected from Port Colborne

(Map 1). Eggs taken from Port Colborne and Prince Edward Island were
removed from numbered nests and egg ages were relatively well known. Eggs
taken from Presqu'ile and Limestone Island were aged by the technique of
Hays and Le Croy (1971). The first egg of a clutch was removed for
sampling, except in instances where the entire clutch was sampled. For

clutch sampling, individual eggs were aged to establish laying order.

Larus argentatus

In mid-May 1975, eggs were collected from three locations, Port
Colborne (n = 20), Presqu'ile (n = 15) and South Limestone Island (n = 15)
Fifteen, one day old chicks and two unincubated eggs from Little Courtlin
Island, Prince Edward Island were provided by G. A. Fox (Canadian Wildlife
Service). In mid-May to early June of 1976, eggs were collected from Port
Colborne (n = 10), Little Courtlin Island (n = 12) and Mohawk Island (n =
The aging techniques and the method of nest sampling were identical with
those described for S. hirundo. However, G. Haymes collected three unaged

eggs from Mohawk Island. Ten, one day old chicks from Chantry Island, and

3).
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Table 2: Number of Eggs Incubated and Resulting Chick Sample Sizes
from Four Nesting Locations of Sterna hirundo.

Colony Location Date of Sampling Number of Eggs Chick
Incubated Sample Size

Port Colborne May 22, 1975 17 17

Port Colborne May 20, 1976 15 10

Presqu'ile May 23-25, 1975 11 11

Limestone Island June 1, 1975 5 1

Prince Edward June 13, 1975 17 7

Island



Table 3: Number of Eggs Incubated and Resulting Chick Sample Sizes
from Five Nesting Locations of Larus argentatus.1

Colony Location Date of Sampling Number of Eggs Chick
Incubated Sample Size

Port Colborne May 12, 1975 11 11

Port Colborne May 20, 1976 10 2
Presqu'ile May 23-25, 1975 9 3
Limestone Island June 1, 1975 9 4

Prince Edward May 11, 1976 12 4

Island

Mohawk Island May 27, 1976 3 3

1. Chicks were obtained from C.W.S. for Prince Edward Island (1975)
(n = 15); Chantry Island (1976) (n = 10); Scotch Bonnet Islands
(n = 3)
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Table 4. Egg-White Sample. Sizes from Four Nesting Locations of

Sterna hirundo, and Four Nesting Locations of Larus argentatus.

1

Colony Location Date of Sampling
Port Colborne May 12, 1975
Port Colborne May 22, 1975
Presqu'ile May 23-24, 1975
Limestone Island June 1, 1975
Prince Edward June 13-23, 1975
Island

Sample Sizes

Sterna hirundo

Larus argentatus

18

11

22

9

1. Two eggs collected on June 8 from Prince Edward Island were provided by

C.W.S.



Map 1: Locations of Sampling Sites of Larus argentatus and Sterna hirundo

on the Great Lakes and Prince Edward Island (inset).

(0) Port Colborne

(1) Presqu'ile

(2) S. Limestone Island

(3) Prince Edward Island

(4) Chantry Island

(5) Scotch Bonnet Island

(6) Mohawk Island

C Sterna hirundo colonies sampled

H Larus argentatus colonies sampled







three, one day old chicks from Scotch Bonnet Island were provided by

G. A. Fox and A. P. Gilman (Canadian Wildlife Service) (Map 1).

Sample Preparation

Eggs collected from the sampling locations were portioned into two
groups. One group (Table 2, Table 3) was incubated to term in a Robbins
Hatchmatic Incubator (Model 1-~A, Robbins Hatchamatic Co., Denver, Colorado)
at 37.2 * 0.3°C and a relative humidity (R.H.) of 60 % 5.0% (Hunter et al.
1976). The second group of eggs (Table 4) were opened at the point of

T

greatest shell diameter and the contents poured into a petri dish. WO
ml samples of egg-white were pipetted into numbered glass vials and stored

at -80°C in a Series HO Ultra-Cold Freezer (Kelvinator Co., Manitowac,
Massachusetts).

L. argentatus and S. hirundo chicks aged 24 to 36 hours were decapitated,
and bled into 15 ml centrifuge tubes containing 2 ml of chilled 0.9% sodium
chloride (w/v). With the cessation of bleeding, additional saline was added
to achieve a final 1:1 dilution of whole blood to saline. The resultant
blood clot was broken up and extracted from the tube using wooden applicator
sticks. The tubes and contents were then centrifuged at 5000 G for 10 min .
in a clinical desk top centrifuge (Danon/IEC, Needham Heights, Massachusetts).
The supernatant was pipetted off, dispensed into numbered glass vials, and
stored at -80°C. All separation procedures were performed at 4°C.

Samples from 1976 were placed in numbered cryogenic vials (Alman
Cryogenics Inc. Oakland, California), frozen in liquid nitrogen (P. Nicholls,

pers. comm.), and stored at -80°C. Samples from 1975, that were stored in
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glass vials that had cracked due to the low storage ( temperatures, were
transferred to similarly numbered cryogenic vials, and restored at -80°C.

For electrophoretic analysis, sample vials were removed from the
freezer, and placed in an ice bath. Approximately 50 ul of the frozen
sample was chipped out with a laboratory spatula, and placed in plastic
sample holders. Egg-white samples were diluted 1:5 with distilled water
immediately before electrophoresis.

Polyacrylamide Discontinuous Gel Electrophoresis1

Conventional polyacrylamide discontinuous gel electrophoresis (Davis,
1964; Ormstein, 1964) was initially used to attempt to separate protein
components from egg-white from S. hirundo and L. argentatus. However,
polymerization of the acrylamide monomer was prevented by the inclusion
of egg-white in the sample-gel. The reduction of dilute egg-white concen-
tration, even at 1% (v/v) of the large pore solution still had an inhibitory
effect on polymerization. Doubling of polymerization time, or increasing the
relative concentrations of riboflavin and TEMED (N,N,N',N'-tetramethyl-
ethylenediamine) or the combination of the two processes were ineffective
in producing a polymerized sample-gel. To circumvent this problem, the
gross structure of the gel matrix, and the pH of the gel buffer systems
were altered. The main criteria in assessment of a successful modified
system were ease of sample loading, and the maintenance of the excellent

resolution typical of polyacrylamide discontinuous gel electrophoresis.

1 See Appendix 1 for a detailed listing of solutions and buffers used in
this study.
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The modified system was characterized by not including the protein
sample into a sample gel. Rather 20 pl of the protein sample was mixed with
20 ul of 50% sucrose (w/v)-0.049 M Tris-HC1l (pH 6.8), and 20 pl of the
sucrose-sample solution was layered, with a micro-pipette, directly onto the
stacking-gel interface. The pH of the stacking-gel buffer (0.049 M Tris-
HCl) was lowered to 6.9, while the small pore (separation-gel) buffer
0.30 M Tris-HCl was maintained at pH 8.9 (Davis, 1964). Samples were
layered after the gel tubes had been positioned, and both reservoirs filled
with chilled electrophoresis buffer (Electrophoresis Stock Buffer 0.05 M
Tris-glycine, pH 8.3 diluted 1:10 with distilled water). To minimize
convectional disturbances, and resulting perturbations in electrophoreto-
grams, during electrophoresis the current was reduced to 2.0-2.5 mA tube™ 1.
and the electromotive force maximized at 250 volts. Electrophoresis was
performed at 4°C, until the marker front had migrated 7-10 mm from the
anodal end of the gel. To reduce inter-run variation due to minute
differences in the pore size of the gel matrix, gels were constructed in
four sets of 12, and stored ét 4°C in a water—saturated environment
(A. J. S. Ball, pers. comm.).

Larus delawarensis serum protein electrophoretograms resulting from

both polyacrylamide discontinuous gel electrophoresis systems were cross
compared. No difference in either overall electrophoretic pattern or
resolution were visually apparent. Similar results were obtained when
electrophoretograms resulting from stored gels vs freshly constructed gels
of both systems were cross compared. In light of these results, the
modified system fulfilled all criteria and was subsequently used in all

polyacrylamide discontinuous gel electrophoresis procedures.
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The complexity of general protein and esterase electrophoretograms of
both serum proteins and egg-white proteins from L. argentatus and S. hirundo
prevented easy and unambiguous electromorph determination (Smith et al.,
1973), and genotype assessment. The comparative relative ease of using
starch-gel electrophoresis in this assessment was the principal reason for
adopting this medium in the electrophoresis of proteins from the serum and
egg-white of both species.

Upon completion of electrophoresis, gels were removed from the tubes,
dark-stained for Lactate Dehydrogenase (LDH), scored, and dark stored in
individual screw-capped glass tubes containing 10 ml of 30% ethanol (v/v).

Potential electromorph variants were identified by polyacrylamide
discontinuous gel co-electrophoresis (Smith et al., 1973). Twenty ul of a
sample containing one suspected electrophoretic variant were mixed with
20 yl of another sample containing either a suspected identical or suspected
different electrophoretic variant. Twenty pl of this mixture was electro-
phoresed in parallel with pure samples containing the suspected electromorphs.

Starch Gel Eléctrophoresis1

Starch gel slabs (17.3 x 13.0 x 0.7 cm) composed of 40 g of Electrostarch
and 330 ml of Poulik Gel Buffer (pH 8.65) (Poulik, 1957) in combination with
500 ml of Poulik Bridge Buffer (pH 8.1) (Poulik, 1957) were used in the
separation of both egg-white and blood serum proteins (Milne and Roberston,
1965; M. L. Tracey, pers. comm). Samples were absorbed on paper wicks (7.0

x 10.0 mm) cut from Whatman No. 4 Filter Paper and inserted into the sample

! See Appendix 1 for a detailed list of solutions, buffers and their
chemical composition.



wells. Gels were electrophoresed for three hours at 4°C with a current of
80 mA, after which, slabs were removed from the plastic gel trays, sliced,
stained, rinsed in distilled water, scored, fixed, dried, wrapped in plastic

film and dark-stored.

Histochemical Techniques
General Protein
Starch-gel slices were stained overnight in a solution of 50 ml of
0.25% Coomassie Brilliant Blue R 259 C. I. 42660 (w/v) (Davis 1964;
Wilson, 1973), 50 ml of methanol, and 10 ml of glacial acetic acid
(Smithies, 1959B). After staining gels were rinsed in distilled water,
and destained overnight in 60 ml of 95% ethanol and 40 ml of 7.57 acetic

acid (v/v).

0il Red "0O"
Albumens in both blood serum and egg-white were identified using 50 ml
of 20% trichloroacetic acid (w/v) and 50 ml of saturated solution of 0il Red

"0" in methanol (Smithies, 1959B), and were stained overnight.

Esterases

Starch-gel slices were pre-soaked in 0.5 M boric acid for 30 min and
were stained overnight. The staining solution was composed of 1 ml of
1% naphthyl ester (w/v) (Brewer and Singh, 1970), 50 mg of either Fast Red
TR salt or Fast Blue RR salt, and 125 ml of 0.2 M sodium phosphate buffer

(pH 6.8) (Oxford, 1973).
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For routine analysis of blood serum esterases, Fast Red TR salt was
used in conjunction with o-naphthyl acetate, B-naphthyl acetate, a-naphthyl
caprylate and R-naphthyl stearate, while Fast Blue RR salt was used with
a-naphthyl propionate and a-naphthyl butyrate. o-Naphthyl propionate dye
coupled with Fast Red TR salt was used as the routine analysis for egg-
white esterases. Substrate specificity of the egg-white esterases was
determined using all substrates. Positive identification of esterases was

determined by excluding substrates from the staining mixture.

Lactate Dehydrogenase

Polyacrylamide gels were individually dark-stained for 1 hour at room
temperature. The staining mixture was composed of 5 mg of nicotinamide
adenine dinucleotide (NAD), 7.5 mg of nitro-blue tetrazolium (NBT), 1 mg
of phenosine methosulphate (PMS) and 10 ml of 0.2% sodium lactate (w/v)
(Hebert, 1973). Positive identification of zones of enzyme was determined
by the exclusion of the substrate from the staining mixture and using 10 ml
of distilled water. Stepwise exclusions of NAD, NBT and PMS from the
staining mixture were used to further define the enzyme as LDH.

Tetrameric subunit composition was defined using 10 ml of 0.05%
o-hydroxybutyric acid (w/v) as the enzyme substrate (Market et al., 1975).
Gels were dark stained for three hours at room temperature. Stepwise
exclusions of chemicals from the staining mixture were used to clarify and
specify activity zones.

1

Thermostabilities® of the electromorph were examined by heating 40 ul

1 Results for the thermostabilities of LDH-A 100 are reported in Appendix 2.
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aliquots of serum to 60 * 0.5°C for 2, 5, 10, 15 and 20 minute intervals in
a water bath (Heto, Model No. 623, Heto Co., BRirkerod, Denmark). Subsequent
electrophoretic and histochemical procedures were identical to the routine
LDH assay. The effect on enzymatic activity of a-hydroxybutyric acid was
also monitored. After staining gels were scored at 550 nm in a Gilford
Photospectrometer (Model No. 2400, with a Model 2410-S Linear Transport,

Gilford Instrument Co., Oberlin Ohio) Calibrated to 3.0 Absorbance units

with a gel scan speed of 1.0 cm min~™! and a chart drive speed of 2.5 cm min™!.

Blood serum LDH from Larus delawarensis was used to determine the reproduc

ability of the technique. Maximum peak height was used as the measure of

enzyme activity (Singh et al., 1976).

Protein and Allelic Nomenclature!

Zones of either enzyme activity or protein bands in a starch-gel were
numbered anodally from the origin. Within each zone, the most common
variant was arbitrarily designated as the 100 electromorph. If a locus
was polymorphic, then the electrophoretic variants were defined in relation
to the electrophoretic mobility of the 100 variant. If an electromorph
migrated 1 mm further into the gel than the 100 variant, then the faster
electromorph was designated as the 101 variant. If the variant migrated
1 mm less than the 100 electromorph, the slower variant was designated as
the 99 electromorph.

Due to the increased resolution of polyacrylamide discontinuous gel

electrophoresis, the above nomenclature criteria were altered for this

1 A1l sample genotypes are recorded in Appendix 3.
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system. To distinguish between electrophoretic variants 0.5 mm was used
instead of 1 mm. The designation of electromorphs in relation to the most
common variant was identical to the procedure outlined above.

Serum proteins were designated by a code of three upper case letters
followed by the banding zone number (e.g., EST-2). The gene encoding that
specific protein was designated by a three letter code (the first being an
upper case letter, the last two being lower case) banding zone number italic
code (e.g., Est-2). Egg-white proteins were similarly designated, only a

four letter code beginning with 'O' was used (e.g., OPRO-1; Opro-1).

Blood Serum Proteins

Lactate dehydrogenase-A (Ldh-A) was polymorphic in samples from
L. argentatus and monomorphic in S. hirundo. The 100 electromorph was
located about 0.5 cm into the gel , the 99 about 0.45 cm, 102 about 0.6 cm
and the 104 about 0.7 cm.

Tetrazolium oxidase 1 (To-1) was located about 3.5 cm into the gel and
was monomorphic in both species.

Tetrazolium oxidase 2 (Ig:g) was located about 4.2 cm into the gel and
was monomorphic in both species.

Protein 1 (Pro-1) was located about 1.4 cm into the gel and was
monomorphic in both species.

Protein 2 (Pro-2) was located about 2.5 cm into the gel and was
monomorphic in both species.

Protein 3 (Pro-3) was located about 2.8 cm into the gel and was
monomorphic in both species.

Protein 4 (Pro-4) was located about 3.0 cm into the gel and was

monomorphic in samples from S. hirundo. Samples from L. argentatus were



not able to be scored accurately or unambiguously.

Protein 5 (Pro-5) was located 5.6 cm into the gel and was monomorphic
in samples from both species.

Albumin (Alb) is a polymorphic locus in L. argentatus. The 100
electromorph was located approximately 6.2 cm into the gel, while the 98
variant was located about 6.0 cm into the gel. Samples from S. hirundo
were monomorphic for the 100 allele.

Esterase 1 (Est-1) was located about 1.7 cm into the gel, and was
monomorphic in both species. This esterase showed little substrate
specificity as all substrates were hydrolysed, except for a-naphthyl
caprylate and B—naphthyl‘stearate.

Esterase 2 (Est-2) was located about 2.2 cm into the gel and was
monomorphic in both species. A slight specificity for a-naphthyl acetate
was observed, although all substrates, except o-naphthyl caprylate and
B-naphthyl stearate were hydrolysed.

Esterase 3 (Est-3) was monomorphic in samples from both species, and
was located about 3.0 cm into the gel. An increased substrate specificity
for a-naphthyl acetate compared to Est-2 and a concommitant decrease in
hydrolysis of other substrates, with no hydrolysis of o-napthyl caprylate
or B-naphthyl stearate was observed.

Esterase 4 (Est-4) was located about 3.2 cm into the gel, was
monomorphic and was found only in samples from L. argentatus. A high
specificity for a-naphthyl propionate, no hydrolysis of either a-naphthyl
caprylate or B-naphthyl stearate; and slight hydrolysis of the remaining

substrates was observed.
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Esterase 5 (EEEZE) was not able to be scored in samples from
L. argentatus, but was polymorphic in samples from S. hirundo. The 100
electromorph was located about 4.5 cm into the gel, and the 98 variant
about 4.3 cm. No substrate specificity was apparent, although a-naphthyl
caprylate or B-naphthyl stearate were not hydrolysed.

Esterase-6 (Est-6) located about 6.0 cm into the gel, was monomorphic
and was found in samples from S. hirundo only. a-Naphthyl caprylate and
B-naphthyl stearate were not hydrolysed, and no other substrate specificity
was apparent.

Ngase (ﬁg} was located about 5.0 cm into the gel and was monomorphic

in samples from both species.

Egg-White Proteins

Ovo-protein-1 (Opro-1) was located about 0.6 cm into the gel and was
monomorphic in samples from both species.

Ovo-protein-2 (OEro—Z) was located about 1.1 cm into the gel and was
monomorphic in samples from both species.

Ovo-protein-3 (Opro-3) was located about 1.3 cm into the gel and was
monomorphic in samples from both species.

Ovo-protein-4 (Opro-4) was located about 3.8 cm into the gel and was
monomorphic in samples from both species.

Ovo-albumin (0alb) was polymorphic in both species. However, the 99
allele, located at 6.6 cm, was monomorphic in samples from L. argentatus,
while the 100 allele, located at 6.7 cm was monomorphic in samples from

S. hirundo.



Ovoesterase (Oest-1l) was polymorphic in samples from S. hirundo, but
was not resolved in samples from L. argentatus. The 100 allele and the

106 allele were located at 0.1 cm and 0.7 cm, respectively.

Chemicals

Hydrolysed potato starch was obtained from Electro-Starch Company,
Madison, Wisconsin,

All artificial enzyme substrates, dye-indicators, NAD and PMS were
purchased from Sigma Chemical Company, St. Louis, Missouri. O0il Red "'O"
was donated by M. Kingery of the Greater Niagara General Hospital,
Hiagara Falls, Ontario.

TEMED, BIS (methylene bisacrylamide), were purchased from Kodak
Distillation Products, Eastman Kodak, Rochester, New York, U. S. A.

All other chemicals were of the highest grade available and were

purchased from BDH Chemical Company, Toronto, Ontario.
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RESULTS

Intraspecific Genetic Variation

Sterna hirundo samples from four nesting locations were analysed

electrophoretically for protein variation. Twenty-one loci were scored in
samples from Port Colborne, Presqu'ile, and Prince Edward Island, and nine
loci were scored in samples from South Limestone Island ternery. Genetic

variation was found at only two loci (Oest-1 and Est-5); the other nineteen

loci (eight loci in the Limestore Island sample) were monomorphic (Opro-1,

Opro-2, Opro-3, Opro-4, 0Oalb, Ldh-A, To-1, To-2, Est-1, Est-2, Est-3, Est-6,

Ng, Pro-1, Pro-2, Pro-3, Pro-4, Pro-5, Alb). Blood serum from the single

chick hatched from incubated eggs from the Limestone Island ternery was
used primarily as an electrophoretical standard for LDH-A, TO-1 and TO-2.
As a result, only these three blood serum proteins and the egg-white proteins

1 sample sizes and heterozygosities are

were analysed. Allele frequencies,
presented in Table 5. Sample sizes given for each location represent gene
sample sizes, or twice the individual sample size.

The observed heterozygosities (HO) were Chi-Square tested against Hardy-
Weinberg equilibrium expectations (HE),2 and Levene's small sample size
corrected expectations (HL) (Levene, 1949). 1In addition, both expected
heterozygosities were Chi-Square tested to determine if significant differ-

ences in expectation were evident. None of the Chi-Square probabilities (P)

were significant for any of the comparisons at any of the nesting locations.

1.See Appendix 5 for Hardy-Weinberg equilibrium expectations, and observed
genotypic frequencies

2.See Appendix 6 for all results of Chi-~Square analysis.
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Table 5: Protein Variation in Sterna hirundo.! Gene sample sizes (twice
the number of birds), allele frequencies, observed (Hjp) and
Hardy-Weinberg expected (HE)2 heterozygosities and Chi-square
probabilities (P) are recorded for the four nesting locations.
Means and standard deviations of allele frequencies are recorded
in the total column for alleles; Hy, Hp and P are pooled values.
Nesting Locations
Locus Allele Port Presqu'ile Limestone  Prince Edward Total
Colborne Island Island
Sample Size 24 14 6 44 88
Oest-1 100 0.54 0.29 0.33 0.68 0.46%0.18
106 0.46 0.71 0.67 0.32 0.54+0.18
Hy 0.75 0.29 0.00 0.36 0.43
Hg 0.50 0.41 0.44 0.43 0.49
P 0.14 - - 0.65 0.50
Sample Size 48 22 0 14 84
Est—-5 98 0.44 0.45 0.21 0.37+0.13
100 0.56 0.56 0.79 0.63+0.13
Hg 0.46 0.36 0.14 0.38
Hp 0.49 0.50 0.34 0.48
P 0.90 - - 0.25

1. The following 19 loci were assayed and found to be monomorphic in samples

taken from these four nesting locations:

Opro-1l, Opro-2, Opro-3,

Opro-4, Oalb, Ldh-A, To-1, To-2, Ng, Est-l, Est-2, Est-3, Est-6, Pro-l,

Pro-2, Prol3,‘Pro—4, Pro-5, Alb.

2. Expected heterozygosities were also calculated using Levene's (1949)
procedure to correct for small sample size, Chi-square probabilities
were non-significant in all cases indicating agreement with the genetic

model of co-dominant inheritance in Oest-1 and Est-5.

See Appendix 6.



Note that the pooled sample suggests nesting location allele frequency
homogeneity, as pooled populations are expected to yield heterozygote
deficiencies (Wahlund, 1928 in Li, 1955).

Considerations of non-detection probabilities suggest that, the
estimated frequency of polymorphic loci for S. hirundo may be a valid
estimate of population polymorphic loeus frequency. Furthermore, it is
highly unlikely that any of the loci designated as polymorphic have a common
allele frequency in excess of 0.99.

At all sampled nesting locations, with the exception of the Limestone
Island ternery, the number of alleles per locus ranged from one for each
of the monomorphic loci to two alleles at each of the polymorphic loci.

The average number of alleles per locus was 1.09, while percent polymorphic
loci was 9.5%. As three individual samples from Limestone Island were
assayed for only the six egg-white protein loci, and only one individual
provided information on Ldh-A, To-1 and To-2, the average number of alleles
per locus (1.17) and percent polymorphic loci (16.7%), are higher than
observed at the other three sampling 1ocations; These values result from
the reduction of locus sample size.

Average heterozygosities (Nei, 1975; 1978; Nei and Roychoudhury, 1974;
Tracey et al., 1975) observed for the sampling locations are: Port
= 0.06; Presqu'ile, H |

Colborne, H = 0.03; Prince Edward Island, H, = 0.02;

A A A
Limestone Island, HA = 0.00, and the pooled sample, HA = 0.04. Average
heterozygosity over all locations is H, = 0.03 + 0.02.

A

No single locus inbreeding coefficients (Table 6) are presented for
samples from the Limestone Island ternery, as no heterozygotes were observed

at the Oest-l locus, and the Est-5 locus was not assayed. Oest-l locus F
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Table 6. Single Locus Inbreeding Coefficients (F)! for Samples from Six
Nesting Locations of Larus argentatus, and Three Nesting Locations
of Sterna hirundo. Totals represent pooled samples from all
locations. Mean F values and standard deviations are over all
sampling locations, and do not include the total (pooled) F values.

Larus argentatus Sterna hirundo
Location Ldh-A Alb Oest-1 Est-5
Port Colborne 0.292 --3 0.50%  0.06
Presqu'ile -0.18 -0.18 0.29 0.28
Limestone Island - - —_ n.s.>
Prince Edward Island 0.00 - 0.27 0.59
Chantry Island 0.08 -
Scotch Bonnet Island -0.18 -0.18
Mohawk Island -0.10 -
Total 0.63 0.00 -0.14 0.21
Mean * Std. Dev. -0.02 -0.18 0.02 0.31
* Standard Deviation *+0.18 *+0.00 $0.45 x0.27

H, - Hy

L. ¥ = —~—ﬁ£m~——- (Li, 1955)

2. Positive F Values indicate a trend towards heterozygote deficiency.
3. Dashes indicate that Hy = 0.00, i.e., the locus was monomorphic.
4. Negative F values indicate a trend towards homozygote deficiency.

5. Limestone Island ternery sample was not assayed for this locus,
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values range from -0.50 for Port Colborne to 0.27 and 0.29 for samples from
Prince Edward Island and Presqu'ile, respectively. At the Est-5 locus
calculated inbreeding coefficients are F = 0.59 for Prince Edward Island,

F = 0.28 for samples from Presqu'ile and F = 0.06 for samples from the

Port Colborne ternery. Values for the pooled samples are: F = =-0.14 at
the Oest-1 locus and F = 0.21 at the Est-5 locus. Mean and standard
deviation (Qest-1: 0.02 * 0.45 and Est-5: 0.31 % 0.27) do not include the
pooled sample F values. Note that with the exception of the Oest-1 F value
for samples from Port Colborne, all other F wvalues are positive indicating
a trend towards heterozygote deficiencies. The negative F value at the
Oest-1 locus in samples from Port Colborne indicates a trend towards
homozygote deficiency.

Larus argentatus samples from seven nesting locations were analysed

for protein variation. Eighteen loci were scored in samples from the Port
Colborne, Presqu'gle, Limestone Island and Prince Edward Island colonies.
Thirteen genetic loci were scored in samples from Chantry Island, Scotch
Bonnet, and Mohawk Island gulleries. Locus sample size reduction was a
result of not sampling egg-white proteins from these three colonies.

Genetic variation occurs at two loci: Alb and Ldh-A. The remaining loci

were monomorphic (Opro-l, Opro-2, Opro-3, Opro-4, Oalb, To-1, To-2, Est-1,

Est-2, Est-3, Est-4, Ng, Pro-l1, Pro-2, Pro-3, Pro-5). Sample sizes,

1 and heterozygosities are presented in Table 7.

allele frequencies,
Where allelic variation occurs and sample size was statistically

adequate the observed heterozygosities (HO) were Chi-Square tested against

Hardy-Weinberg equilibrium expectations (HE), and against Levene's (1949)

1. See Appendix 5 for Hardy-Weinberg expectations and observed genotypic
frequencies.



Table 7.

Protein Variation in Larus argentatus.

Gene sample sizes (twice the number of birds), allele
frequencies, observed (Hp) and Hardy-Weinberg expected (HE)2 heterozygosities, and Chi-square
probabilities (P) are recorded for seven nesting locations.

Means and standard deviations of
allele frequencies are recorded in the total column for alleles; Hy, Hp and P are pooled values.

Nesting Locations

Locus Alleles Port Presqu'ile Limestone Prince Edward Chantry Scotch Bonnet Mohawk Total
Colborne Island Island Island Island Island
Sample Size 26 6 8 40 20 6 6 112
Ldh-A 99 0.04 0.00 0.00 0.00 0.30 0.83 0.50 0.13+0.32
100B 0.04 0.17 0.00 0.98 0.45 0.17 0.33 0.47x0,34
102 0.88 0.83 1.00 0.00 0.25 0.00 0.17 0.38+0.44
104 0.04 0.00 0.00 0.03 0.00 0.00 0.00 0.018
+1.7x1072
Hop 0.15 0.33 0.00 0.05 0.60 0.33 0.67 0.23
Hg 0.21 0.28 0.00 0.05 0.65 0.28 0.61 0.62
P 0.85 - 0.62 - — 1.4x1078
Sample Size 26 6 8 40 20 6 6 112
Alb 98 0.00 0.17 0.00 0.00 0.00 0.17 0.00 0.02
+8.3x102
100 1.00 0.83 1.00 1.00 1.00 0.83 1.00 0.98
+8.3x1072
Hp 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.04
Hg, 0.00 0.28 0.00 0.00 0.00 0.28 0.00 0.04
P - — 0.73
1. The following 16 loci were assayed and found to monomorphic in samples taken from Port Colborne,
Presqu'ile, Limestone Island and Prince Edward Island: Opro-1l, Opro-2, Opro-3, Opro-4, Oalb, To-1,
To-2, Est-1, Est-2, Est-3, Est-4, Ng, Pro-l1, Pro-2, Pro-3, Pro-5. Samples from Chantry Island,
Scotch Bonnet Island and Mohawk Island were monomorphic for all serum proteins listed above, but
no egg-white protein samples were assayed at these three nesting location.
2. Expected heterozygosities were also calculated using Levene's (1949) procedure to correct for small

sample size; Chi-square values were non significant in all cases indicating agreement with the
See Appendix 6.

genetic model of co-dominant inheritance in Alb and Ldh-A.
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small sample size corrected expectations (HL). In addition both expected
heterozygosities (HE XE.HL) were analysed by Chi-Square to detect any

1 Chi-Square

significant discrepancies between the two expectation values.
probabilities (P) were not significant in any of the nesting locations.
This lack of significance implies agreement with the Hardy-Weinberg
distribution of genotypes.

The Ldh—-A pooled sample Chi-Square probabilities are highly significant

P=1.43 x 1078, H vs H.: P = 7.4 x 107%). The highly

o' 0

significant P values generated by the Chi-Square comparison of observed

(Hy vs H L
heterozygosity versus expected heterozygosity indicates a deviation from
Hardy-Weinberg equilibrium expectation, in that a homozygote excess occurs
in the pooled sample. This discrepancy implies that the nesting locations
have dissimilar allele frequencies at the Ldh-A locus. In addition, an
almost significant difference exists between the Hardy-Weinberg equilibrium
expectation heterozygosity and Levene's (1949) small sample size corrected
heterozygosity (P = 5.9 x 1072)., Levene's correction invariably reduces
the homozygote expectation; the near significant difference between H_ and

E
HL stresses the extent to which the homozygosity has been reduced. The
interesting point is however, that the observed discrepancy between HO and
either HL or HE is not likely the result of small sample size, as the
correction for small sample size yields an expectation with a lower
probability than the uncorrected expectation. In an attempt to clarify the
extent of gene pool heterogeneity at this locus, the data were re-grouped

and re-analysed (Table 8). When L. argentatus sample genotypes were pooled

according to the lakes in which the sampled colonies are located, resultant

1. See Appendix 6 for all results of Chi~Square analysis.



Table 8: Larus argentatus LDH-A Gene Pool Summations.

Gene Pool Summations, gene sample sizes (twice the number of
birds) (n), Allele Frequencies, Observed and Expected

Heterozygosities (Hg, Hp) and Chi-square Probabilities (P).

Gene Pool Summation

Port Colborne-Mohawk
Island

Presqu'ile

Chantry Island-South
Limestone

Chantry-Scotch Bonnet-
Mohawk

Port Colborne-
Presqu'ile-Limestone-
Prince Edward Island

Port Colborne-
Presqu'ile-South
Limestone

All colonies,
Great Lakes

Great Lakes,
except Chantry

Gene Sample Allele

Size (n)

32

12

28

32

80

40

72

52

Frequency
99: 0.13
100B: 0.09
102: 0.75
104: 0.04
99: 0.42
100B: 0.17
102: 0.42
104: 0.00
99: 0.21
100B: 0.32
102: 0.46
104: 0.00
99: 0.94
100B: 0.38
102: 0.19
104: 0.00
99: 0.01
100B: 0.51
102: 0.45
104: 0.03
99: 0.025
100B: 0.05
102: 0.90
104: 0.025
99: 0.21
100B: 0.19
102: 0.58
104: 0.014
99: 0.19
100B: 0.08
102: 0.71
104: 0.02

Hy

0.25

H

E

0.41

P

O

=

~

.30

.27

17

.75

.90



Table 8, p. 2:

Gene Pool Summation

1975 Samples

Port Colborne,
Presqu'ile-Limestone-
Prince Edward Island

1976 Samples

Port Colborne-Prince
Edward Island-Chantry-
Scotch Bonnet-Mohawk

1975 Samples
Port Colborne-
Presqu'ile-Limestone

1976 Samples
Port Colborne-Chantry-
Scotch Bonnet-Mohawk

Gene Sample Allele
Frequency

Size (n)

68

44

36

36

99:
100B:
102:
104:

99:
100B:
102:
104:

99:
100B:
102:
104:

99:
100B:
102:
104:

0.015
0.
0.
0.

oNeoNeoNe [eNeNoNe]

[eNeoNoRe]

49
50
00

.32
.45
.18
.05

.03
.03
.94
.00

.39
.36
.22
.03

0.50

0.11

0.55

0.51

0.66

0.11

0.67

b

70

10~7

.18

.79

42
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zygotic proportions conformed to Hardy-Weinberg equilibrium expectations.
This conformation implies gene pool homogeneity within lakes. Pooling data
from all Great Lakes colonies deviation from expectation occurs

(P = 1.9 x 107°), even when Chantry Island (see Moore, 1976) data are
excluded (P = 7.5 x 1079). Pooling data by sampling year, a deviation from
expectation occurs in the 1975 samples (P = 3.6 x 10_7), however when Prince
Edward Island samples are excluded, gene pool homogeneity results

(P = 0.74). A similar trend is also evident in the 1976 samples; exclusion
of Prince Edward Island samples raises the probability from P = 0.18

to P = 0.42, the trend is however non-significant.

The number of alleles ranged from one for the monomorphic loci to four
alleles at the Ldh-A locus. Samples from Port Colborne were polymorphic at
the Ldh-A locus only, with four alleles present giving an average of 1.17
alleles per locus and 5.6% polymorphic loci. Samples from the Presqu'ile
gullery were polymorphic at the Ldh-A and Alb loci, with 10.5% polymorphic
loci and 1.11 alleles per locus. Samples from South Limestone Island were
monomorphic at all loci surveyed. Prince Edward Island samples were
polymorphic at the Ldh-A locus with 1.06 alleles per locus, and 5.6%
polymorphic loci. Samples from Chantry Island (1.15 alleles per locus and
7.7% polymorphic loci) and Mohawk Island (1.15 alleles per locus and 7.7%
polymorphic loci)were polymorphic at the Ldh-A locus only. Scotch
Bonnet gullery samples were polymorphic at the Ldh-A and the Alb loci, with
1.15 alleles per locus and 15.47 polymorphic loci. The last three colonies
were assayed for only thirteen loci, rather than the eighteen loci for the
first four colonies. The decreased locus sample size may explain the

inflated values for the last three colonies.
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Average heterozygosity for the sampled colonies are: Port Colborne,

HA = 7.9 x 1073, Presqu'ile, HA = 3,5 x 10" 2, Limestone Island HA

Prince Edward Island, H, = 2.6 x 10”3, Chantry Island HA = 4.6 x 10 2,

= 0.00,

A
Scotch Bonnet Island, HA = 5.1 x 1072, and Mohawk Island, HA = 5.2 x 10 2.

Mean and standard deviation of the average heterozygosities over all
nesting locations is HA = 0.03 = 0.02.

Inbreeding coefficients (Table 6) at the Ldh-A locus are: Port
Colborne, F = 0.29, Presqu'ile, F = -0.18, Prince Edward Island, F = 0.00,
Chantry Island, F = 0.08, Scotch Bonnet Island, F = -0.18, Mohawk Island,

F = -0,10. Samples from the Limestone Island gullery weré monomorphic

for the Ldh-A 100B allele, and inbreeding coefficients were not calculated
for these samples. The mean inbreeding coefficient and associated standard
deviation at the Ldh-A locus is -0.02 * 0.18. 1Inbreeding coefficients for

both Presqu'ile and Scotch Bonnet gulleries are F = -0.18, indicating a

trend to heterozygote excess in both colonies.

Conspecific Genetic Identities and Genetic Distance

Sterna hirundo

The six pairwise combinations (Table 9) for the Oest-l locus average
to a genetic identity of T = 0.88 % 0.09 and a genetic distance of D
D =0.13 £ 0.11. Genetic identity and genetic distance for the Est-5 locus
(Table 10) have average values of I = 0.94 + 0.04 and D = 0.06 * 0.04.
Total genetic identities over all loci surveyed for all pairwise combinations
are recorded in Table 13. Average total genetic identities and genetic

distance are I = 0.99 * 0.06 and D= 0.01+ 0.01.



Table 9. Single Locus Genetic Identities
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! and Genetic Distances? at the
Oest-1 Locus in Samples from Four Nesting Locations of Sterna
hirundo (genetic identities above the diagonal, genetic distances
below the diagonal).

Sterna hirundo

Port Presqu'ile Limestone Prince Edward
Colborne Island Island
Port Colborne 0.88 0.92 0.96
Presqu'ile 0.12 0.99 0.73
Limestone 0.08 0.00(3) 0.78
Island
Prince Edward 0.04 0.31 0.24
Island

-
Genetic Identity = Ik = Exiyi[zx%Zyi] *; where x4 and yi are the
i i i
frequencies of the i-th allele at the k-~th locus in populations X and
Y respectively (Nei, 1974, 1975).

Genetic Distance = Dy = -(loggIy) (Nei, 1974, 1975).



Table 10: Single Locus Genetic Identities
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! and Genetic Distances? at the

Est-5 Locus in Samples from Three Nesting Locations of Sterna
hirundo (genetic identities above the diagonal; genetic distances
below the diagonal).

Sterna hirundo

Port Colborne Presqu'ile Prince Edward Island
Port Colborne 0.99 0.92
Presqu'ile 0.001 0.91
Prince Edward Island 0.08 0.09

-1
Genetic Identity = Iy = ZXiyi ZX%ZY%J *, where x4 and y4 are the

i i i
frequencies of the i-th allele at the k-th locus in populations X and
Y respectively (Nei 1974, L975).

Genetic Distance = Dy = —(logeIy) (Nei 1974, 1975).



75

Larus argentatus

Genetic identities and genetic distance at the Alb locus are recorded
in Table 11. Average values over all nesting locations sampled are
I =0.98 + 0.01 and D = 0.02 * 0.01. ALB-98 alleles are found only in
samples from Lake Ontario (Presqu'ile and Scotch Bonnet Island, Table 6),
which accounts for the slight differences observed among all pairwise
combinations, and the uniform identity distributions.

Average genetic identities and genetic distances for the Ldh-A locus
are T = 0.47 *+ 0.36 and D = 1.04 * 1.07. Pairwise combinations recorded
in Table 12 show a considerable range in genetic identity and genetic
distance. Comparisons of colonies separated by approximately 2000 km
(Prince Edward Island - Presqu'ile I = 0.20; Prince Edward Island - Port
Colborne I = 0.05) with colonies 16 km apart (Port Colborne - Mohawk Island
I = 0.33; Presqu'ile - Scotch Bonnet Island I = 0.04) indicates that spatial
separation of nesting locations is not an explanation of the genetic distance
at this locus.

Genetic identities and genetic distances over all loci are I = 0.90
+ 0.15 and D = 0.12 * 0.19. Surveying all pairwise combinations (Table 13),
those combinations of Chantry Island with either Port Colborne, Presqu'ile,
Limestone Island and Prince Edward Island appear to exceed these means and

associated standard deviations.

Interspecific Genetic Identities and Genetic Distances
Interspecific allelic variation was detected at three loci: O0Oalb,

Alb and Ldh-A. Samples from all nesting locations of Larus argentatus

are monomorphic for OALB-99, and colonies from Lake Ontario were poly-

morphic at the Alb locus with two allelic variants (ALB-98, ALB-100)



Table 11: Single Locus Genetic Identitied and Genetic Distances
Nesting Locations of Larus argentatus (genetic identities above the diagonal,

distances below the diagonal).

2

at the Alb Locus in Samples from Seven
genetic

Larus argentatus

Port
Colborne
Port Colborne
Presqu'ile 0.02
Limestone 0.00
Island
Prince Edward 0.00
Island

Chantry Island 0.00

Scotch Bonnet 0.02
Island
Mohawk Island 0.00

Presqu'ile

0.98

0.02

0.02

0.02

0.00

0.02

1.00

0.98

0.00

0.00

0.02

0.00

Limestone
Island

Prince Edward
Island

1.00

0.98

1.00

0.00

0.02

0.00

Chantry
Island

1.00
0.98

1.00

1.00

0.02

0.00

Scotch Bonnet
Island

0.98

0.98

0.98

0.98

0.98

0.02

Mohawk
Island

1.00

0.98

1.00

1.00

1.00

0.98

1. Genetic Identity = Iy = ZXiYiI
i

1 1

the k-th locus in populations X and Y, respectively (Nei, 1974, 1975).

2. Genetic Distance = D = -(logg,I})

(Nei, 1974, 1975).

=1
Zx%iy%] 6, where Xy and y; are the frequencies of the i-th allele at

94



Table 12: Single Locus Genetic Identities

1

and Genetic Distances

2

at the Ldh-A Locus in Samples from

Seven Nesting Locations of Larus argentatus (genetic identities above the diagonal, genetic
distances below the diagonal).

Larus argentatus

Port
Colborne
Port Colborne
Presqu'ile 0.01
Limestone 0.00(3)
Island
Prince Edward 0.11
Island

Chantry Island 0.75°

Scotch Bonnet 0.97
Island
Mohawk Island 1.13

Presqu'ile

0.99

0.02

1.00

0.58

3.26

1.00

Limestone
Island

0.99

0.98

0.57

1.32

Prince Edward

Island

0.05

0.20

0.00

0.28

1.63

0.63

Chantry
Island
0.75
0.56

0.42

0.72

0.44

0.03

Scotch Bonnet
Island

0.

0.

05

.04

.00

.20

.64

12

Mohawk

Island

0.33

0.37

0.28

0.53

0.92

0.89

-1
1. Genetic Identity = Ij = inyi[ZXiZyi] ?, where x; and y; are the frequencies of the i-th allele at
i i i

the k-th locus in populations X and Y, respectively (Nei, 1974, 1975).

2. Genetic Distance = Dy = —(logeIk)

(Nei, 1974, 1975).

LL



Table 13. Total Genetic Identities! and Genetic Distances? from Samples from Four Nesting Locations of Sterna hirundo, and Samples from

Seven Nesting Locations of Larus argentatus (genetic identities above the diagonal, genetic distance below the diagonal).3

Sterna hirundo Larus argentatus
Port Presqu’'ile Limestone Prince Port Presqu'ile Limestone Prince Chantry Scotch Bonnet Mohawk
Colborne Island Edward Colborne Island Edward Island Island Island
Island Island
Sterna Port
hirundo Colborne 0.99 0.99 0.99 0.89 0.89 0.88 0.88 0.60 0.92 0.94
Presqu'ile 0.003" 0.99 0.99 0.89 0.89 0.88 0.88 0.60 0.92 0.94
Limestone
Island 0.01 0.00 0.96 0.76 0.76 0.75 0.75 0.75 0.70 0.79
Prince
Edward
Island 0.003 0.01 0.01 0.89 0.89 0.88 0.88 0.60 0.92 0.94
Larus Port
argentatus Colborne 0.12 0.12 0.27 0.12 0.99 0.99 0.95 0.60 0.94 0.98
Presqu'ile 0.12 0.12 0.27 0.12 0.02 0.99 0.96 0.61 0.94 0.97
Limestone
Island 0.13 0.13 0.29 0.13 0.004 0.003 0.95 0.60 0.93 0.96
Prince
Edward
Island 0.12 0.12 0.27 0.12 0.05 0.04 0 .06 -0.60 0.95 0.97
Chantry
Island 0.51 0.51 0.29 0.51 0.51 0.50 0.51 0.51 0.98 0.99
Scotch
Bonnet
Island 0.08 0.08 0.36 0.06 0.06 0.06 0.07 0.06 0.02 0.99
Mohawk
Island 0.06 0.06 0.29 0.06 0.03 0.03 0.04 0.03 0.004 0.01

1. Genetic Identity = I ny(Jny)_%, where ny, Jx and Jy are the arithmetic means of ZXiYi, Xx% and Zy% respectively over all loci
(Nei, 1974;1975). i i i

Genetic Distance = D

1}

~(logeI) (Nei, 1974;1975). 4, See Appendix 7 for loci included in pairwise combinations.

3. Although only two significant digits are routinely used in this work, the use of three digits in mandatory when two digits would
indicate D = 0.00.

8L
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detected. Sterna hirundo samples were monomorphic for both OALB-100 and

ALB-100. The Ldh-A locus has five allelic variants over both species.

The 100 allele was found in all samples from all locations except the
Limestone Island gullery. The Ldh-A locus is monomorphic for the 100 allele
in 8. hirundo. The identical electrophoretic mobility of the LDH-A 100
allele in both species does not allow distinction of the two variants.
However, the 100A allele found in samples from S. hirundo has a different
thermostability than does the 100B allele found in samples from L. argentatus.
This observed alteration of a basic enzymatic trait implies a genetic
difference between these two species at this locus.

The average interspecific genetic identities (I = 0.83 * 0.11) and
genetic distance (D = 0.20 * 0.14) over all loci is calculated from 28
pairwise combinations (Table 11). Considering these structural loci, these
two species appear to be as genetically similar as some of the populations
of L. argentatus are to each other, at least at the loci compared.

The éata show that co-dominant autosomal polymorphic loci exist in the
sampled portion of both species' genomes. Due to their polymorphic nature,
these loci may be exploited as genetic markers to monitor populations. The
spatial arrangement of allele frequencies and the genetic divergence
estimates imply both species have different population structures.

S. hirundo populations appear to be pamnmictic, at least over the sampling
range. The L. argentatus gene pool appears relatively heterogeneous with

a discreet Atlantic Coast population and a Great Lakes demic population.
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DISCUSSION

Non-Genetical Explanations

In assessing the results, artifacts arising from the methods used must
be considered. Artifacts may arise from the alteration of the in vivo
environment to the electrophoretic environment. These changes may result
in shifts of protein structure, which will result in concommitant changes
of the electrophoretograms. This type of artifact should be uniform for
specific proteins assayed from all samples. However, deciphering this
problem is beyond the scope of this work. Changes in protein electrophoretic
mobilities, and total electrophoretograms may arise from altered physiological
states, and pathological conditions (Smithies, 1959B). Storage conditions
may affect both enzyme activity and electrophoretic mobilities (M.L. Tracey,
pers. comm.). However, eighteen months of storage caused no changes in
either electrophoretic mobilities, or enzyme action in comparison to the
same fresh sera-saline mixture electrophoretic pattern.

Depending on the definition of artifacts, they may arise from
statistical analysis. The use of Nei's Statistics (Nei, 1974; 1975) for
intraspecific and intergeneric comparisons relise on the dogmatic assumption
that electromorphs are genetically identical. However, the hypothesis of
the 'wandering electrophoretic profile' (Kimura and Ohta, 1974; Wright,
1978), and hidden variability in electromorph classes (Singh et al., 1976;
Prakash, 1977) suggest that the aforementioned assumption may not be valid
in intergeneric comparisons. As a result, genetic distances may be under-
estimated, and the high genetic identity may be an artifact due to the use

of this statistic.
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Genetic Variability

Sterna hirundo: Variability was detected at only two loci in this

species; blood serum esterase (Est-5) and ovo-esterase (Qest-1). OEST-1

is a product of the maternal genotype and female birds are heterogametic;
therefore Qest-l is a co—dominant autosomal locus (see Mandel et al., 1978).
If this locus were sex linked, only single banded electrophoretograms would
be expected. Double and single banded electrophoretograms were observed

and their frequencies did not depart from Hardy-Weinberg equilibrium
expectations. Both ovo-transferrin (conalbumin) and ovo-albumin are
secreted by the magnum of the oviduct and their synthesis and subsequent
secretion are under hormonal control (Sharma et al., 1976; Breathnach et al.,
1977) OEST-1 may also be synthesized by cells in the oviductal wall and may
be similarly controlled (see Grunder and Hollands, 1977; Mandel et al., 1978).
Furthermore, this enzyme is not synonymous with blood serum esterases due

to electrophoretic mobilities and substrate specificities. Manwell and

Baker (1975) reported ovo-esterase polymorphisms in Passer domesticus,

Hirundo tahitica neoxena and Petrochelidon ariel.

Although five zones of esterase activity were resolved from the blood
serum, only EST~5 was polymorphic. The remaining four zones of activity may
possess allelic variants not resolved by the electrophoretic system used
(Singh et al., 1975; Coyne, 1976; Singh et al,, 1976; Prakash, 1977).

Avian esterase polymorphisms have been previously reported (Corbin et al.,
19743 Manwell and Baker, 1975; Smith and Zimmerman, 1976; Peden and Whitney,

1976) .
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Larus argentatus: Variability was detected at two loci in this species;

blood serum albumin (Alb) and lactate dehydrogenase (Ldh-A). Baker (1975)

reported an albumin polymorphism in Zonotrichia leucophTys populations from

Colorado. Albumin polymorphisms were also reported from samples from
Icteridae. Five alleles at a single autosomal locus generated double-banded
homozygotes and triple-banded heterozygotes (Smith and Zimmerman, 1976).
These observations vary from my results. This discrepancy may be explained
by considering that the faster (light) band, which Smith and Zimmerman
assumed to be under the genetic control of the albumin locus, is in fact a
definite pre-albumin and controlled by a separate locus. This would generate
single-banded homozygotes and double-banded heterozygotes, which would be
comparable to the electrophoretic phenotypes that I observed.

Allelic variability at the Ldh-A locus is more pronounced with four
allelic variants; the 100B allelic product from L. argentatus samples
exhibits a greater thermostability than the 100A allelic product from
S. hirundo samples. The blood serum LDH in both species appears to be the
transcriptional product of one locus for the following reasons:

(1) This enzyme has a pronounced substrate affinity for lactate and not
a-hydroxybutyric acid,
(2) B and C forms of LDH are known to hydrolyse both substrates, but the
C form has a restricted tissue specificity (Market, 1975), and
(3) Due to the lack of substrate specificity of LDH-B, the resolved form of
LDH has been tentatively identified as LDH-A (Market et al., 1973; Whitt
et al., 1975).
The LDH-A electrophoretic phenotypes observed in my study vary from

those descriptions previously published (Market et al., 1973; Corbin et al.,
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1974; Market, 1974; Smith and Zimmerman, 1976). The typical five-banded
electrophoretogram was not observed in either S. hirundo (one band only),

or L. argentatus (maximum of two bands), or L. delawarensis (maximum of

three bands). These results may be explained by considerations of hidden

variability in electromorph classes. The charge differentials between the
tetramers may be slight and preclude their resolution. The largest charge
differentials would be expected between the two homotetramers, and conse-

quently the LDH~A bands may be composed of mixtures of the five tetramers

(Singh et al., 1975; 1976; Coyne, 1976; Prakash, 1976; Johnson, 1977).

LDH genic variability is generally thought to be uncommon in birds
(Powell, 1975A), as most investigations of wild avian populations have found
LDH to be monomorphic (Nottebohm and Selander, 1972; Baker, 1975; Handford
and Nottebohm, 1975; Manwell and Baker, 1975). However, Corbin et al.
(1974) and Smith and Zimmerman (1976) reported LDH polymorphisms in the
populations that they surveyed. Heat sensitive allelic variants have been
reported to occur (Turner, 1973; Cockburn, 1974; Singh et al., 1975; 1976;
Prakash, 1977), although not in birds. The nature of the intergeneric LDH
thermostability allelic variants I observed, appears to be a DNA encoded
amino acid substitutional change due to the magnitude of the inactivation.
However, these results may be artifactual as only crude enzyme preparations
were used. Also, heat-sensitivity may be conferred by either regulatory
events (Pandey, 1977; McDonald and Ayala, 1978; Hedrick and McDonald,
unpublished manuscript), or by post—transcriptional events (Garapin et al..
1978; Mandel et al., 1978; O'Farrell et al., 1978).

The degree of gene pool heterogeneity at the Ldh-A locus in the

L. argentatus colonies samples appears quite pronounced for a large mobile
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vertebrate. However, Ehrlich and Raven (1969) indicate gene pool hetero-
genelty may not be unusual in wild avian populations, which has been shown
using electrophoresis (Corbin et al., 1974), electrophoretic and vocal
dialect analysis (Nottebohm and Selander, 1972; Baker, 1975; Handeford and
Nottebohm, 1975), and colour morph frequency (Cooch and Beardsmore, 1958;
0'Donald, 1972; 1973; 1974; 0'Donald et al., 1974A, 1974B; Cooke et al.,
1975; 0'Donald and Davis, 1975; Davis and O'Donald, 1976A; 1976B; Jefferies
and Parslow, 1976; Rockwell and Cooke, 1977).

Average heterozygosities for both L. argentatus and S. hirundo are
lower than most published estimates of avian genetic variability (Corbin
et al., 1974; Baker, 1974; Handeford and Nottebohm, 1975; Manwell and Baker,

1975; Smith and Zimmerman, 1976), except for Zonotrichia capensis

(Nottebohm and Selander, 1972) and Aplonis cantoroides (Corbin et al., 1974).

This range of average heterozygosities appears to contradict the argument
of Powell (1975A). Levels of genetic variability in birds appear to be
consistent with other surveyed taxa, a result similar to that reported by
Hedgecock and Nelson (unpublished manuscript) for decapod crustaceans.
However, 1if experimenters are selecting loci that are polymorphic to
principally investigate population structure (Tracey, 1974), then these
surveys may represent non-random genome sampling. Estimates of genetic
variability may be inflated, although the results may generate descriptions

of population structure.
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Genetic Identity and Genetic Distance

Interspecific genetic identities and genetic distances in Drosophila
(Ayala, 1975; Avise, 1976; Dobzhansky, 1976), Taricha (Hedgecock, 1974;
1975), and Lepomis (Avise and Ayala, 1975; Avise, 1976; Avise and Smith,
1977), are greater than observed in my study. The high genetic identity
(I = 0.83 + 0.11) and low genetic distance (D = 0.20 * 0.14) observed may
be a reflection of species sample size. However, values reported for the
Icteridae (I = 0.797 + 0.116; D = 0.237 + 0.142) (Smith and Zimmerman, 1976)
appear similar to my results. These low values may reflect processes, or
the lack of processes affecting the avian genome. Wilson (1976) argues
that there has been slow chromosomal evolution and slow loss of hydridization
potential in birds, which may indicate a slow rate of genetic divergence in
this taxon. The low genetic distance values are consistent with Wilson's
tentative conclusion.

The intraspecific genetic identity and genetic distance estimates for
S. hirundo (I =0.99 = 0.01; D =0.01 * 0.01) appear to agree with published
results of population divergence values (Ayala, 1975; Tracey et al., 1975;
Avise, 1976; Dobzhansky, 1976; Avise and Smith, 1977). The values reported
for L. argentatus (T = 0.90 * 0.15; D=0.12 % 0.19) exceed most published
results for intraspecific genetic identity and genetic distance estimates.
It is possible that the considerable genome divergence detected by electro-
phoretic methodologies may not reflect total genome divergence and correlated
reproductive isolation (Avise, 1976), although the converse has also been

observed (Ayala, 1975).
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Genetic distance measures the amount of electrophoretically detectable
amino acid substitutions per 100 codons, that has occurred between the two
gene pools at the surveyed loci (Nei, 1975). Between L. argentatus and
S. hirundo two base changes per 103 codons have occurred, since the clado-
genetic event that resulted in the formation of the two genera. This
statement must be qualified, since only two species have been examined.
Intraspecific genetic distances indicate the existence of considerable
differences between these two species in terms of gene pool sturcture.
Sampled colonies of S. hirundo have an average of six base substitutions per
10° codons, while L. argentatus colonies have an average difference of twelve
base changes per 10" codons. These estimates of mutational events indicate
that different processes or different magnitudes of these processes may be

differentially affecting the surveyed portions of the genomes.

Mechanisms Affecting Genetic Variability

The genetic structure of a population can be altered by either random
(mutation or drift) or directional (selection or migration) events (Li,
1955; Flaconer, 1964; Wright, 1968; 1969; 1970; 1976; Ehrlich and Raven,
1969; Richardson, 1970; Endler, 1973; Nei, 1974; Ayala, 1975; 1976, Avise
and Ayala, 1977). If a mutational event is rare (q = 107°%) then non-detection
probabilities (n = 3; p = 0.99999; n = 50; p = 0.999) indicate that this
mechanism may be relatively inconsequential in small sample surveys, and
will not be considered further. The classical effect of gene flow is to
shift diverging gene pool allele frequencies towards the mean population
allele frequencies (Li, 1955; Falconer, 1964; Wright, 1970). Both genetic
drift and selection can cause gene pool heterogeneity. Possibly one or all

of these mechanisms are operative in S. hirundo and L. argentatus.
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Gene Flow

Migration as gene flow is dependent on the eco-demographic and
ethological parameters describing the donor and the recipient population
subunits. Mass ringing data cannot be used uncritically as a gene flow
estimator as the majority of ringing returns are from dead individuals
(see Paynter, 1949). Consequently individual or pair migration into a new
colony may not be a Eriofi evidence of gene flow, unless coupled with pair
reproductive success. In cases of colony mergence, driven by nest-site
habitat deterioration (Austin, 1949; 1951; McNicholl, 1975), gene flow may
be accelerated. The results of the gametic sampling will then be dispersed
with the return of colony members, if original nest-site amelioration
occurs.

S. hirundo: Austin (1938; 1940; 1941; 1949; 1951; 1953) indicated that
established pair nesting is restricted to a specific social and geographical
location unless nest-site deterioration or death of one of the pair occurs.
This combination of site tenacity and group adherence, in conjunction with
mate fidelity (Palmer, 1941A) constrains individuals in time and space,
subsequently promoting reproductive success.

Colony members from the Great Lakes and the Atlantic coast converge on
migration and on the wintering grounds (Austin, 1953; Haymes and Blokpoel,
1978). However, the question of social group integrity throughout this
period of the life cycle is unknown, although Haymes (unpublished data)
suggests that considerable mixing of juveniles does occur. Palmer's (1941A)
observation on time and location of mate choice in S. hirundo suggests that

this phase of courtship occurs on the wintering areas and on the vernal
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migration. These data suggest that an individual mating for the first time
may have an equal chance of choosing a mate from any colony on either the
Great Lakes or the Atlantic coast. This drawing of immigrants from the
same pool would produce genetic uniformity or panmixia in the population
(Williams et al., 1974). Austin's (1951) data can be used to calculate
estimates of gene flow within the Cape Cod terneries (Table 14). However,
the relationship between the effective population size (ngff) and the
censused population sizes are unknown (see Kimura and Ohta, 1972).
Effective population size was estimated by using the censused population
size, and increasing and decreasing this value. Calculated migration rates
(m = 1.4 x 1072; Neff = 2.5 x 10%) are indicative of large amounts of gene
flow occurring in the population even when the population size is increased
to four times the censused population size. The reduction of S. hirundo
colonies and population numbers (Hunter, 1976) may further decrease the
effective population size, especially if population numbers cycle (Kimura
and Ohta, 1972; Nei, 1975), and subsequently increase gene flow (m = 0.72;
Neff = 500). Austin (1951) realized the importance of these migrants in
affecting the genetic structure of S. hirundo, however, the low

occurrence frequency of migrants did not negate his theories of group
adherence and site tenacity.

The observed gene pool homogeneity at the Oest-1 locus can be explained
by gene flow. Considering that OEST-1 is a product of a co-dominant
autosomal locus implies that the regulatory gene(s) affecting expression is
sex~linked; that is the gene product is found only in reproductively active
females. Consequently this locus is included in both male and female genomes,

which are subject to the averaging effect of gene flow. Gene pool uniformity



Table 14: Estimated Genetic Migration Rates for the Sterna hirundo
Colonies at Cape Cod, Massachusetts (From Austin, 1951).

Effective Number of Number of M2

Population Size Migrants/year Migrants/generation

(ngep)t

5.0 x 102 90 360 7.2 x 1071
103 90 360 3.6 x 1071

5.0 x 103 90 360 : 7.2 x 1072
10" 90 360 3.6 x 1072

1.5 x 10 90 360 2.4 x 1072

2.0 x 10" 90 360 1.8 x 1072

2.5 x 10" 90 360 1.4 x 1072

5.0 x 10% 90 360 7.2 x 1073
10° 90 360 3.6 x 1073
10% 90 360 3.6 x 107"
10° 90 360 3.6 x 107"

Origin of Migrants into the Cape Cod Terneries (ng ¢¢ = 10,000)

Location of Initial Number of M

Migrant Banding Migrants/Generation

South 25 2.5 x 1073
North 6 6.0 x 107"
West 20 2.0 x 1073
Vineyard 410 4.1 x 1072

1. Effective population size (neff) was not available, so step increments
of the censused population size were used in estimating values of

migration rates. .
2. Genetic Migration Rates = M = Number of Migrants ) nlff
e

Generation
(Kimura and Ohta, 1972)
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at the Est-5 locus requires no subtle interpretation of genetic mechanisms,
except that the extent of genetic migration present in the population is
sufficient to generate the observed results. The migratory movements of
adults, the location of initial mate selection, in conjunction with
juvenile pelagic wandering can negate any obvious gene pool heterogeneity,
and produce uniform allele frequencies across the sampling range.

L. argentatus: The aforementioned concepts of larid colomniality apply
equally to L. argentatus as these concepts apply to S. hirundo, yet they
appear to affect different genetic responses in both species. If gene flow
is assumed to be producing the observed gene pool heterogeneity in the
L. argentatus colonies, then this reduction may arise from basic ethological
mechanisms differing between the two species (Ehrlich and Raven, 1969;
Richardson, 1970). Intuitively, the intensity of ethological mechanisms
affecting the breeding cycle, and generating the genetic structure of a
population may be modified by behaviour expressed during the non-reproductive
portion of the life cycle.

The relatively sedentary habits of L. argentatus may accentuate the
coloniality expressed during the reproductive season. Both reproductive
and non-reproductive periods of the life cycle appear to be keyed to specific
geographical locations (Tinbergen, 1960; Kadlec and Drury, 1968).
Information on general dispersal trends indicate that the Atlantic coast and
the Great Lakes populations are separate (Kadlec and Dryry, 1968; Moore,
1976; Threlfall, 1978). Furthermore, data also suggest that the Great Lakes
population is subdivided into eastern and western subunits (Hofslund, 1959;
Smith, 1959; Moore, 1976). LDH-A gene pool summations (Table 8) are in

apparent agreement with these observations as removal of Prince Edward
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Island samples from the pooled data drastically reduced the deviation from
Hardy-Weinberg equilibrium expectation, indicating gene pool homogeneity.
The residual gene pool heterogeneity from all Great Lakes/both years may be
the result of two subgroups, or the existence of subgroup boundary mixing.
The geographical distributions of the ALB-98 allele corresponds to general
movement patterns. Moore's (1976) statement on dispersal trends of eastern
Lake Ontario L. argentatus, implies gene flow from this area may be
primarily eastwards. This restriction would not allow the spread of this
allele into colonies of the other Great Lakes.

The gene pool heterogeneity observed in sampled colonies may be
ascribed to differential selection, which is masking a similar process to

that described for S. hirundo.

Selection

Selection alters gene frequencies and the resultant genotypic proportions
in a quantitative and qualitative fashion through differential reproductive
success (Li, 1955; Falconer, 1964). The influence of selection is not on
the genotype per se, but rather on the phenotypic expression of the genotype
(Waddington, 1976), and there can be no selection if a locus is monomorphic
(Wright, 1969). Selective pressures arise from either biotic or abiotic
elements of the ecosystem. Although both species nest in conjunction, this
does not necessarily imply selection will affect both species equally or in
the same manner.

S. hirundo: The gene pool uniformity over the sampling range suggests
that several possibilities for selective pressures may exist. Selective

pressures may be equal over the sampling range. Conversely, selection may
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not operate during the reproductive stage, but during the migratory period
of the life cycle. A third selective process may operate only on the
regulatory genes that are interrelated to the observed variability at the
structural loci.

If selection operates during the reproductive period, then uniform
selective pressures must be affecting the population across the sampled
area. I1f selection pressures were not uniform, then gene pool divergence
would result (Endler, 1973; Williams et al., 1974), requiring gene flow to
negate this effect. If selection coefficients are uniform and large, then
the data would deviate from Hardy-Weinberg equilibrium expectation, and
would be detectable by the total organismal sample size (n = 88). Since
this last statement is in contradiction to observed results, the alternative
is low uniform selective pressures across the sampled range.

Alternatively, selection may act on individuals on migration and on
the wintering range. Flyway convergence and identical wintering ranges
(Haymes, unpublished data) suggests equal selective pressures on individuals
from the Great Lakes, and the Atlantic coast colonies as indicated by the
high juvenile mortality (Austin, 1940; 1942; 1949; Palmer 1941A). Such a
selective regime would generate uniform genotype distributions over the
sampling range, and this selection would not be countered by gene flow as
all members of all colonies would have essentially similar genetic compon-
ents. Increased winter range fitness would decrease winter range selection
(Lowther, 1977), and concommitently increase the size of the organismal
sample necessary to detect the effects of selection.

Although selective pressures may shape the population on the wintering

range, the Oest-1 locus is expressed only during the egg-laying period.
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Winter range selection cannot be invoked to explain the gene pool homogeneity
at this locus. However, if this locus is linked to another locus, which is
being affected by winter range selection, then both loci would appear to
respond to winter range selection (Kimura and Ohta, 1972; Hedrick,
unpublished manuscript). Alternatively, OEST-1 may be exposed to a

different selection, that involves the enzymes' physiological function in
either chick development or the hatching process.

L. argentatus: Ldh-A gene pool heterogeneity may arise from differ-

ential selective pressures that vary with colony location (Endler, 1973).
Furthermore, the physiological function of LDH in anaerobic metabolism
(Everse and Kaplan, 1973), and the avian ventilatory mechanism, in conjunc-
tion with an alteration of selective pressures following species (Avise,
1976), may account for the different patterns of genetic variability in the
two species. The long distance migration undertaken by S. hirundo (Austin,
1938; 19403 1942; 1953; Palmer, 1941A; 1941A; Haymes, unpublished dataj;
Haymes and Blokpoel, 1978) may result in conditions of temporary anaerobiosis
during flight. This may create an increased selective pressure maintaining
the observed LDH monomorphism. However, the lack of genetic variability

at this locus in S. hirundo is not evidence for selection (Wright, 1969).
In L. argentatus, the slow dispersal, the soaring method of flight, and the
relatively sedentary habits (Kadlec and Drury, 1968; Moore, 1976), may
prevent conditions of anaerobiosis from developing in this species. This
would reduce the physiological constraints on LDH, and reduce selection
allowing greater genetic variability to be maintained at this locus. This

variability may be maintained, as well, by differential selection or by
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heterosis (Li, 1955; Falconer, 1964; Wright, 1968; 1969; 1977; Ehrlich and
Raven, 1969; Endler, 1973).

Genetic variability at the Alb locus may be maintained by balancing
selection, or the 98 allele may be selected against. The heterozygous
state that this allele was found in, and the restricted geographical distri-
bution precludes the possibility of any further definitions of the genetic
variability at this locus.

Since selection affects population structure, alterations in selective
pressures may alter the distributional characteristics of a population or
species. The increasing exploitation by L. argentatus of wastes generated
by man's activity (Kadlec and Drury, 1968; Hunt, 1972), has been related to
the increase of L. argentatus juveniles and sub-adults wintering on the
Great Lakes (Moore, 1976). Furthermore, these non-migrants have a lower
rate of mortality than the migrants (Moore, 1976). This shift in selection
to favour non-migrants may be indirectly generating the low gene flow,
especially if the development of group adherence and site tenacity is an
ontogenetic process. The summation of these events would then be gene pool
heterogeneity, the proximate cause being low levels of gene flow, while the
ultimate cause would be selection.

Uniform selection as described for S. hirundo, may also generate gene
pool heterogeneity. Since selection operates on the phenotype (Waddington,
1976), different phenotypes may have the same fitness, depending upon the
total phenotypic expression.

The gene pool heterogeneity may be due to selective pressure differing
in the different colony environments. However, both polymorphic loci

appear to have similar geographic distribution patterns in the sampled areas.
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Consequently, equal selective coefficients would have to be assigned to
each of the structural loci. This equality would appear unlikely, and
suggests that a reduction in gene flow is generating the observed result.
If both structural loci are controlled by the same regulatory gene(s), then
selection at the regulatory loci may not be discounted. In such a system,
both structural loci would show equal selection coefficients (Hedrick,
pers. comm.). To clarify this situation, both larger organismal and loci

sample sizes are required.

Small Sample Size

Small sample surveys generally do not detect rare alleles yielding
underestimates of population genetic variability. Conversely, if a rare
allele is detected, population allelic frequencies would be inflated.

These sampling errors may lead to conclusions of gene pool heterogeneity,
or homogeneity, when the converse is true. Such a process may be occurring
with the sampled populations of both species. L. argentatus gene pool
heterogeneity at the Ldh-A locus may arise from these errors. Further
complicating the clarification of the results are the processes of
population sampling (Li, 1955; Cain and Curry, 1963, in Wright, 1970;
Wright 1970; Kimura and Ohta, 1972), and gametic sampling (Li, 1955;
Wright, 1970), and the number of alleles at this locus. As four alleles
assort to produce ten genotypes, small sampling may detect disproportionate
amounts of one genotype or the other. Also occurring is lack of sensitivity
to Hardy-Weinberg equilibrium expectations deviations (Hubby and Lewontin,

1966). All of these factors may combine to generate data that can fail to
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detect the actual population structure.

Considerations of genetic data at a single locus may convincingly
argue that small sample data represent an artifactual situation. However,
by invoking ethological and eco-demographic considerations (Richardson,
1970), and genetic data from other polymorphic loci, a countering argument
can be proposed. However, the data for the estimation of some of these

parameters is lacking, and small sample errors cannot be definitely refuted.

Genetic Markers

Assessment of the utility of polymorphic loci as genetic markers should
follow the criteria established by Maurer (1968). Ease of sampling to
reduce colony disturbance should be the next major criteria in sampling.
Oest-1 would be the prime choice for a genetic marker in S. hirundo. The
remaining three loci may serve as population markers, however bleeding of
adults would result in severe colony disturbances. If either Ldh-A, or

Est—5 or Alb were used to monitor the populations, then my sampling

procedure (see Materials and Methods) should be used.

Correlated with studies of genetic markers, is necessary eco-demographic
data (Tracey, 1974). If both systems generate approximate results, then the
duplicity may indicate that the genetic markers may function alone in
population monitoring. The eco-demographic data are required because
changes in allelic frequencies may arise from multiple sources (Dobzhansky,
1966). Parameters generated by or approximated by such data, when couﬁled
with larger sample sizes, may allow the assessment of the major mechanism(s)

influencing the gene pool structure of these two species.



One good tern deserves another.
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Starch Gel Electrophoresis
Poulik Gel Buffer (pH 8.65)
9.08 g of Tris (2-Amino-2-hydroxymethyl-1,3-propanediol)
1.29 g of citric acid
Dissolved in 500 ml of distilled water, pH adjusted to 8.65 with
4.0 N sodium hydroxide or 1.0 N hydrochloric acid and diluted to 1 litre

with distilled water.

Poulik Bridge Buffer (pH 8.1)
18.55 g of boric acid
2.4 g of sodium hydroxide
Dissolved in 500 ml of distilled water, pH adjusted to 8.1 with
4.0 N sodium hydroxide or 1.0 N hydrochloric acid and diluted to 1 litre

with distilled water.
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Polyacrylamide Disc Gel Electorphoresis

Stock Solutions

Solution A (pH 8.9)
48 ml of 1.0 N hydrochloric acid
36.6 g of Tris (2-amino-2-hydroxymethyl-1,3-propanediol)
0.23 ml of Temed (N,N,N',N'-tetramethylethylenediamine)

Adjusted to pH 8.9 and diluted to 100 ml with distilled water.

Solution B (pH 6.9)
48 ml of 1.0 N hydrochloric acid
5.98 g of Tris (2-amino-2-hydroxymethyl-1,3-propanediol)
0.46 ml of Temed (N,N,N',N'-Tetramethylethylenediamine)

Adjusted to pH 6.9 and diluted to 100 ml with distilled water.

Solution C
28.0 g of acrylamide
0.735 g of Bis (methylene-bis-acrylamide)

Dissolved and diluted to 100 ml with distilled water.

Soltuion D
10.0 g of acrylamide
2.5 g of Bis (methylene-bis-acrylamide)

Dissolved and diluted to 100 ml with distilled water.
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Solution E
4 mg riboflavin

Dissolved and diluted to 100 ml with distilled water.

Solution F
40 g sucrose

Dissolved and diluted to 100 ml with distilled water.

Small Pore Solution IT
0.14 g ammonium persulphate

Dissolved and diluted to 100 ml with distilled water.

Reservoir Stock Buffer (pH 8.3)
28.0 g glycine
6.0 g Tris (2-amino-2-hydroxymethyl-1,3-propanediol)
Dissolved in 500 ml of distilled water, adjusted to pH 8.3 and

diluted to 1000 ml.
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Working Solutions

Stacking Gel (Large Pore) Solution
1.25 ml Solution B
2,50 ml1 Solution D
1.25 ml Solution E

5.00 ml1 Solution F

Small Pore Gel Solution
3.5 ml Solution A
7.0 ml Solution C
3.5 ml distilled water

14.0 ml Small Pore Solution II

Layering Solution
0.1 ml of Photo-Flo 200

100 ml distilled water

Electrophoresis Reservoir Buffer
100 ml Reservoir Stock Buffer

Dilute to 1000 ml with distilled water.
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Coomassie Blue Stock Solution
2.5 g Coomassie Brilliant Blue R250 C.I. 42660

0.1 g sodium EDTA (sodium ethylenediaminetetraacetate)

0.2 M Sodium Phosphate Buffer (pH 6.8)
31.202 g sodium dihydrogen orthophosphate
Dissolve and dilute to 1000 ml with distilled water.
71.63 g disodium hydrogen orthophosphate
Dissolve and dilute to 1000 ml with distilled water
For 2 litres of buffer:
980 ml of sodium dihydrogen orthophosphate solution

1020 ml of disodium hydrogen orthophosphate solution
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Appendix 2

LDH-A!00 Thermostabilities

Electrophoretograms of the LDH phenotypes observed are summarized in
Figure 2A. The Ldh-A100 allele is fixed in all samples from all nesting

locations of Sterna hirundo, and is found in samples from six of the seven

Larus argentatus nesting locations. Initial tests suggested that S. hirundo

LDH-A!00 was more thermolabile than that from L. argentatus. After a two
minute exposure to 60%C, spectrophotometric criteria indicate that

S. hirundo LDH-A!00 activity is reduced to 50% to 60% of the control
activity (Figure 2B). Increasing the length of exposure time did not appear
to cause a further reduction in enzyme activity.

LDH-A100 from L. argentatus (Figure 2C) appeared remarkedly thermo-
stable in comparison, although the control activity was considerably less
than that observed in LDH-A!00 from S. hirundo. An apparent slight
decrease of activity was evident with increasing exposure times.

When LDH-A from Larus delawarensis was analysed a three banded

electrophoretogram was observéd. Thermostability profiles (Figures 2D, 2E)
of all three electromorphs appear to resemble the profiles for LDH-A00
from L. argentatus. Reduction of control activity of the three electro-
morphs with respect to exposure times were tested by Two-Way Analysis of
Variance. All F values claculated were not significant (P > 0.05).

With reference to Figure 2B, 2C, 2D and 2E, it is interesting to note
the general similarity between the LDH thermostability profiles of both

L. argentatus and L. delawarensis. Since no significant decrease of enzyme
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Figure 2B Enzyme Activity in Relation to Length of Exposure Times

for th—AlOOA from Sterna hirundo

Ldh-A100A £yom an individual from

Prince Edward Island

Lgh:é}OOA from an individual from
Presqu'ile

LQQ:A}OOA from an individual from

Port Colborne

Figure 2C Enzyme Activity in Relation to Length of Exposure Times

for Ldh-AL00A from Larus argentatus

th—-AlOOB from an individual from
Prince Edward Island
th—AlOOB from an individual from

Port Colborne
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Figures 2D Enzyme Activity in Relation to Length of Exposure Times

and 2E for the Three LDH Electromorphs from Larus delawarensis.

Mean (horizontal line), standard deviation (vertical bar),
95% confidence limits (vertical line) are recorded for a
sample size of six repetitions. Unshaded vertical bars
represent values for the fastest migrating LDH electromorph,
stippled vertical bars represent the intermediate LDH
electromorph, shaded vertical bars represent the slowest

LDH electromorph.



HEIGHT

PEAK

MAXIMUM

8.0.

6.0 4.

4.0-4

8.0

6.0.

4.0L

2.0.

120

0.0.

- F B H t =
conirol 5 i0 15 20

EXPOSURE TIMES TO 60°C
| {mins.)



121

activity occurred with L. delawarensis, it may be that no significant

decrease of enzyme activity occurred with L. argentatus LDH-A'00,

However, LDH-A100 from S. hirundo shows a considerable decrease in activity
compared to the other two larid species. Possible explanations for these
differences may lie at the DNA base sequence level of the LDH locus,
especially between S. hirundo and L. argentatus. Although both charge and
molecular shape have not been altered, a difference exists between these

two allelic products.
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Appendix 3

Sample Genotypes



Table A3A:

Egg-White Protein Genotypes for Samples from
Sterna hirundo.

Locations of

123

Four Nesting

Location

Port
Colborne

Presqu'ile

Limestone
Island

Sample
Numbers

075-c17) !
075-C13
075-Cl4
075-C15
075-C16

7

075-C1,

075-Cl
075-C19
075-C2

075-C21
075-C22
075-C23
075-C24
075-C25
075-C26
075-C27
075-C28
075-C29

175-C
175-C2
175-C3
175-C
175-C5
175-C
175-C7
175-C8
175-C9

175-C10
175-C11

275-C1
275-C2
275-C3
275-C4

Locus

Opro-l1 Opro-2 Opro-3 Opro-4 0Oalb Oest-~1l
100 100 100 100 100 106

100 100 100 100 100 100

100 100 100 100 100 100

-2 - - - - 100/106
100 100 100 100 100 100

- - - - - 100/106
- - - - - 106

— - - — - 100/106
- - - - o 106

100 100 100 100 100 100

- - - - 3

1. Brackets indicate a 3-egg clutch was analysed, and subsequently
evaluated as 1 sample, as egg~white proteins represent the geotype of
the female parent.

2. Bars indicate that the sample had the same genotype as the preceding

sample

3. Indicates that the locus could not be scored accurate, or no activity
occurred.



Table A3A, p. 2

Location

Prince
Edward
Island

375-Cl1

Sample
Numbers

375-Cl1
375-C2
375-C3
375-C4
375-C5
375-C6
375-C7
375-C8
375-C9
375-C10
375-C11
375-C12
375-C13
375-Cl4
375-C15
375-Cl16
375-C17
375-C18
375-C19
375-C20
375-C21
375-C22

Locus

Opro-~1

124

Oest-1

100

101
100
100/101

100/101
100
100/101
101
100/101
100
100/101
100



Table A3B Egg-~White Protein Genotypes for Samples from Four Nesting

Locations of Larus argentatus.

125

Location Sample Locus

Numbers Opro-1 Opro=-2 Opro-3 Opro-4

0alb

Port

Colborne 075-H1 100 100 100 100
075-H2 -2 - - --
075-H3 - - - -
075-H4 - - - -
075-H5 - - —_ -=
075-H6 - - - -
075-H9 - - - -
075-H10 - - - -
075-H11
075-H12 - - - -
075-H13

Presqu'ile 175-HL 100 100 100 100
175-H2
175-H —— — - —
175-H4 :
175-H5 — — — ——
175-H6 - - —— -

Limestone

Island 275-H1
275-H2
275-H

275—H§] - - - -
275-H
Prince

Edward 375-H1 100 100 100 100
Island 375-H2 - _— —_ —

1. Egg-white proteins were sampled from only four locatioms.

2, Dashes indicate that the sample genotype is identical to the
sample genotype.

preceding



Table A3C:

Blood Serum Protein Genotypes for

Samples from Four Nesting Locations of Sterna hirundo.

Location

Port
Colborne

Sample
Numbers

075-c35!
075-Cl4
075-C45
075-C46
075-C47
075-C48
075-C49
075-C52
075-C54
075-C55
075-C56
075~C57
075-C58
075-C59
075-C60
075-C61
075-C65

076-C1
076-C2
076-C3
076-C4
076-C5
076-C6
076-C7
076-C8
076-C9
076-CL0

Locus

Pro-1 Pro-2

Pro-3

Pro~4

Est-1 Est-2 Est-3 Est~-5

Est-6 Ng

100
2

100
98/100
98

100
100
98/100
98/100
98/100
98/100
100
100
98/100
100

98/100
100

100

98

98

98
98/100

98/100
98

98/100
98/100

921



Table A3C, p. 2

Location Sample Locus
Numbers
Pro-1 Pro-2 Pro-3 Pro-4 Pro-5 Alb Est-l Est-2 Est-3 Est-5 Est—-6 Ng Ldh-A To-1 To-2
Presqu'ile 175-C106 100 100 100 100 100 100 100 100 100 98 100 100 100 100 100
175-C107 —-- - - - - —— - — - 100 - - - - -
175-C108 —- - - — - —— - —— - 100 - - - — -
175-C109 —- — —— —— - - - - - 98 — — — - -
175-C111 — - - - — - - - - 98/100 ~-- - - - -
175-C112 -- - — —— - — — - - 98/100 -- —_ - - -
175-C113 -- - - - - -— - — —_ 100 — - - - -
175-C114 -~ - —— - - - - - — 98/100 -—- —— - - e
175-C115 -- - - - - — - — —— 98 - - - — -
175-C116 —- - - — - - - — - 98/100 —- - - — -
175-C118 —— - - —— — — - - —— 100 - - - - -
Limestone
Islands 275~C119 100A 100 100
Prince 375-C50 100 100 100 100 100 100 100 100 100 98 100 100 100 100 100
Edward 375-C51 —- - - — - - - - -
Island 375-C52 -- - - - - - 100 100 100 100 100 100 - — -
375-C53 -- - - —— —— —— - —_ - 100 - - - — —
375-C54 —- - - - — - - - - 100 — — - - -
375~C55 =~ —— - - - - - — - 100 - —— —— — —
375-C56 -~ - - — - - - - - 100 - - - - -
375-C57 -- - -— - - - - - - 98/100 -- — - - —
375-C58 ~—- - - - — - -— -— - - - -— - o
1. No entry under the locus column indicates that the sample was not scored for this locus.

2. Dashes indicate that the genotype of that sample was identical to the preceding sample.

LT1



Table A3D.

Blood Serum Protein Genotypes for Samples from Seven

Nesting Locations of Larus argentatus.

Location

Port
Colborne

Presqu'ile

Limestone
Island

Prince
Edward
Island

Sample
Numbers

075-H38
075-H50
075-H51
075-H62
075-H63
075-H64
075-H66
075-H67
075-H68
075-H69
075-H70

076-H10
076-H11

175-H100
175-H110
175-H126

275-H100
275-H101
275-H102
275-H104

375-H3
375-H4
375-H5
375-H6
375-H7
375-H8

Locus

Pro-1 Pro-2 Pro-3 Pro-5 Alb  Est-1 Est-2 Est-3 Est-4 Ng Ldh-A To-1 To-2
100 100 100 100 100 100 100 100 100 100 99/102 100 100
-1 _— - - _— _ _— _— -_ _ 102 - _
- - - -= -= -= -= -- - - 100B/104 -- -
100 100 100 100  100/98100 100 100 100 100 102 100 100
-- -= - - 100 -—- -= -= - - 100B/102 -- -
-- - -= - 100 -- —-= -- -= - 102 - -
100 100 100 100 100 100 100 100 100 100 102 100 100
100 100 100 100 100 100 100 100 100 100 100B 100 100

8C1



Table A3D,

Location

Prince
Edward
Island

Chantry
Island

. 2

Sample
Numbers

375-H9

375-H10
375-H11
375-H12
375-H13
375-H14
375-H15
375-H16
375-H17

376-H50
376-H51
376-H52
376-H53

476-H1
476-H2
476-H3
476-H4
476-H5
476-H6
476-H7
476-H8
476-H9
476-H10

Locus

Pro-1

100B
100B/102
100B

102
99/102
99/100B
99
99/100B

621



Table A3D, p. 3

Location

Scotch
Bonnet
Island

Mohawk
Island

Sample

Numbers

576~H1
576~H2
576-H3

676-H1
676-H2
676-H3

Locus

Pro-l Pro-2 Pro-3 Pro-5 Alb

Est-1 Est-2 Est-3 Est-4 Ng Ldh-A To-1

100

100 98/100
- 100
- 100
100 100

100 100 100 100 100 98/100B 100
_— _— - _ _ 98 _—

— - — _— _ 98 _

160 100 100 100 100 100B/102 100

_ _— _— _ —_— 98 —

- 98/100B -—-

1. Dashes indicate the genotype of that sample is

identical to the preceding sample genotype.

0E1



131

Appendix 4

Computer Programs Used in Data Analysis



132

LOIGE

M g
G

et d, P P

200ELLCT PRI

Mesyyt A3 YA I Y
COMGTATIHS APITTATHG(D)

LA NINMERO (DY TPUY Z:SELNCY PRI 213

30T E=0T1047 40:I¥ S=1%%d] 50

0

LOPRILT MLARUS ALGEITAZHSY 16070 6

-

ST} TN
S TETTRIIA

{. :MUU

SOV @Y s b in Lo RARARTCETNN A R C A o Fill 5 R ANEES oo e T
GOSTLECT PLINT D05:PRON "THPUD LOCUS CopnMePmIim HEI(N9Nn) spnil

TOUOEST=1(0) 3 H8T-5( 5 ALBCI) 3" DT HaSELEET PRI

4 Ndad 1 n.

\ e
Y LiN=A(2)

[
-

.'.—f‘)rr.('_".' [l
P AT ol aak

SOPLIIT T"ORST-1"GONG 120
anpPRIIM "LeU=5":COM0 120

100PR "LDL=A" GO0 120

1208TLECT PRIV O05:PRINT "DNPIT LOCATIONT GOt

RIAY o NI Iindal

13 CI3nIO009) sPROM YPORT COLBOWL0) M(L)s  LIM
LSTORE ) PRINCE EDUARD ISLAM(3); CUATNY ISLAND(4);
SCOLCH BOIRLY ISLADGO)Y ;) TORAYD ISLAD{E) s TOTALLY
TeSULLCT PRI 211
160¢TF M=1MIM00 17005F =200 180077 =310 19921

FOI=ATITN 200:TF 1E5TMEN 210 TF M=RTIRIT 220 TR =77 230

Ladsr el v dad
LGOUPRTLT "PORY COLBOMIIL":GOTO 240

"PILSOUTILE" :00T0 240

1l

1807RIT "LIITSTOIT :C0T0 240

190PRIHT "PRINCKH EDVARD ISLAM:GOTO 240

200PRIUT "CLHAUTRY TSLAID" :GOTG 240



133

e T T T T . R [ .,
SCOTCH BOIITY ISLAMM:e0T0 240

TTOIAE. ISLALLT 1G0T 249

29070 T

LT

240RI8TORE  1SLLECT

11y s sl
) J‘-._.‘.\ AR,



134

10RTI THIS TARVUAR:DII! A(36),7(2),R(36)

208FLECT PRINT NO5:PRINT “INPUT SAMPLE SIZv(N) 1o ¥

30PRINT "INPUT JUMBER OF ALLELLS GOV PUT M:IF M=1TTUY 50
LOX=IHL L=l - IF V=TUHE 60:G0T0 47

508ELECT PRINT 211:PRIITY "Pi2=1, 0,2P0=0,0,012=0,0":6070  35¢
GOFOR T=1TO L:PRINT "A(";T;™)=";:TP0U7 A(T)ITNT T

70PRIIT MEX(D2); :FOR I=170 L:PRIIT "A(";I;")=";A(I),: 1T I
SOPRINT "CORRECT ISTAIEES IOM™M:STOP :SULECT PRINT 211:PnT T :on
07 "UARDV-ITINBERG H{PHCTATION VALUESY
90 U=(2%A(29)+A(30)+A (31)+A(32)+A(33)+A(34)+A(35)+A(36)) / (221)
100 V=(25A (22)+FA (23)FA (24) 44 (25) 4 (26) A (27) A (23)+A (36) ) / (277)
110 U=(28ALL16)+A (17)+A (LE)A (10)+A (20)+A (21)4-A (20)-A (35) ) / (2%71)
120 T=(23A (L1)FA(L2)FA (13) A (14)+FA (I5)HFA(21)EAL27Y+A (34)) [ (231)
130 S=(23A(DHFA(YFACO)FA (L) FA(LE)FA(20)4A (26)4A(33))Y /(291
14D P=(2%A (L) +A(5)+A(6)+A(LO) A (LA)+A (10)+A (25)4A(32) )/ (247)
150 N=(2%A (3)+A(2)FA(6)+A () A (L) +A (L8) A (24)+A(31)) [ (2577)
160 P=(25A (L)+A(2)+FA(5)FA (D) A (L2)+A (17)+A (23)+A(30)) [ (2517)
170 Z=PH+HDASHTHTHTHT

180T (8)=1/Z:T(7)=V/7:T(6)=U/Z:T (5)=T/Z:T(4)=8/7:T (3)=R/Z:T (2)=0/
7T (1) =P/7
19070R J=1T0 3:TIF J=8THEIT 230:NTAD GS:PRPINTUSING ?10,(;$,T(J};
200F0R. T=J+1 TO 5:RTAD GS$:PRINTIISING 210,G8, 2% (T (IYETLTY)
2107 =,

2201FEXT T:READ G$:PRIITUSIIG 210,G8,T(I)12;:60T0 240

240MEXT J:PRUIT :PRINT "COMIITE FOR ORSTNVED GENOTYPT FRUOUENCT

mn" ~ qrwou






19

UARE

20

1
2]

ino
119
120
139

140

160

179

180

DIN D(2),5(2) RN THIS PROGRA!I CALCULATES SHALL-SAMPLE CHI-SO

94

T
1 A=FREO, OF HETEROZYGOTTS OBSERVED, B=FREG, OF FETEROZYGOT
EXPLOTLD
PRINT "INPUT A,R,U":IUPUT A,DB,N
D(1)=A*T:D(1L)=R"1TsD(2)=(1=A) "L (2)=(1=-R) M P={A=-T) /D
SELLCT PRINT 215(40)
PRINT "ORSERVED HETS=":n(1)
PRINT "OBSERVED HOMO="'3D(2
PRINT "RYPTIICTED HETS=";T(1)
PRINT "OBSERVID IETS="31(2)

M=D(L)-D(31) :IF H]OTLEN 120

H==l1

M= (H=0,5) 12 523=D(2) =T (2) s IF N]0THEY 140

==

N=(11=0,5) 1 2:0=M/T (1) :R=1T/F(2) :C=n+R

PRIIT "LET CHI-SOUARD="3;Q

PRIIIT "LOIO CHI-SOUARE="3R

PRINT "CHI-SQUARE="30

PRI;IT "I=";F

0 SELECT PRIIT ON5:RESTORL :IIlD

136



10 PRINT "SINGLL LOCUS GENETIC IDLNTIITY, AND DISTANCL"

20PRINT "FOR A MAXTIMINM OF 40 ALLELDS."

30PRINT "X(I) IS THL FREQUENCY OF THE ITH ALLELE"

4OPRINT "IIT POPULATION X,V

50PRINT "Y(I) IS THE FREQUENCY OF THE ITH ALLELE"

60PRINT "IN POPULATION Y.,"

70PRINT "N IS THE NUMBER OF ALLELES "

80PRINT "BOTH X(I) AND Y(I) MUST BE THE SAME"

90PRINT "ALLELE IN BOTH POPULATIONS"

100

110

H

120

130

140

150

160

170

180

190

200

210

220

RENM NEIS GEN ID

COM X(40),Y(40) :INPUT "NO, OF ALLELES OVER ALL LOCI ([40) ",

FOR I=1 TO N

INPUT "X AND Y", X(I), Y(I)

NEXT I

FOR I=1 TO N

PRINT "X(";I3")"s X(I) 3™ Y("3I3")"s Y(T);
NEXT I: STOP

FOR I=1 TO N

S1=81+ X(I)*Y(I)

§2=52 + X(I) 12 : $3=83 + Y(I)!2

NEXT I : S4=SQR(S2 * $3): I1=S1/S4

PRINIT "I=";I1, "D="; -1*L0G(I1) :FND
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70
80
90

100

130
140
159
160

170

200
210
220

230

138

REM THIS BASCHI
PRINT "BRANDT-SNEDECOR CHI SQUARE TLST"

PRINT "DATA FORMAT"

PRINT "A(1),A(2),A(3) 5000000 A(T), A(TOTAL)"
PRINT "B(1),B(2),B(3)sevesseeeB(I), B(TOTAL)"
PRINT "N(1),N(2),7(3)5ee0eeq.11(J), N(TOTAL)"
DIM A(20), N(20), C(20),Q(20)

PRINT "INPUT J":INPUT J
FOR I=1 TO J:PRINT "INPUT A(I),N(I)":INPUT A(I),N(I)
PRINT "A(I)=";A(I), "N(I)=";N(I):NEXT I
PRINT "INPUT A,B,H":INPUT A,B,N

M=(A12) /W

P=(N12)/(A%B)

FOR I= 1 TO J:C{(I)=((A(I)12)/11(T))

PRINT "C(I)=";C(I):NIXT I

S=0

FOR I= 1 TO J:S=S+C(I):NEXT I

H=P#% (S§=10): D=(J=1)+(J-1)

PRINT "CHI SQUARL VALUE="3;H

PRINT "p=";P

PRINT "S=";3§

PRINT "M=""3M

PRINT "DEGREES OF FREEDOM="';D
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10RIM "DATASAVE" :COMT A(28) ,B(11) ,AS(4) 64,166,183, L83:PRIIT HEX(0
3);"THIS PROGRAM ASSUMLS A FILD LABVLLED '"DATA'Y EXIe™e ToR 13 PO
PU- LATIONS."

20PRINT "THIS PROGPAM STORES QM A TAPL CASSITTE DATA FOR TIUE COM
PUTE PRO-GRAM"

30PRINT "TO OPEN A DATA FILE 77 FOLLOU THTEn TNeTrierine 7ov
AOPRINT "1ST, PRESS CLEAR/TVEC,. (!'IDO 1IOT REVIND TUE TAPTEIINT
S50PRIIFT "THEN TYPE AND TLUTED THD COMMAIIDsDATASAYE 0PI "DATA'™
GOFRINT " (THIS ESTABLISIES TIN I'TADER FOP. THI DATA FILTY

70PpI0m "THIS HEADER IUST DE O TATT FOR DATA STORACE)"

SOPRILT "THURE END NF FILE MARTER IS PART OF THIS PuaGrA™

90TUPUT "NO. OF FIRST POPULATION FOR TODAY" ,I:DATA LOAD "DATAM™:C
TP D

100¥0R I=17T0 28:A(I)=0:1EX" L:li=1

11NREAD BS,P:1=N:T0ON T=1T0 11:B(TI=N:IEXT L:PRTNT PRI "B0p PO

PULATTON" ;3" LocUs " BS:"INPUT THE NN, OF ALLFLES TO BI ENTERE

T}" .

E

T120I0PUT KeIF RKIJOTHEN 130:B(1)=9.299:G0TC 140

130FPOR I=1T0 i1:TMPUT "VALUT OF ALLELIV,B(T) VT I

amITy

Mhaly

140¥=0:TOR T=1ITO THP=1 =l A(TY=D(F) T Tali=ITHD e TR 1 ]=2

e

159:6GH7T0 110
159RESTORE ¢1T=0
1ANPEAD BS,P:PRINT NEI(N3) "POPULATINT ":H" Locue  ":BS:FOR J=1

TO PePRIVT A IHT "Y' AGHT) sHEZT JeINPIT YIS DATA COPRECT (V=

YEM",KS I KS="Y"TUEN 170:STOP "MAIE CORRECTIONS

) e (95
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L70M=1HP s T H[28THEL 160 PACTIGE HEEDAS QTP A () sDATA SAVTI AS () :
RESTORE «INPUT "ARE YOU FINISEED FOR TODAY (V=YRS)' 14:77 L§="v"

T 190

LLiu

180H=1H1: IF H[1ATHIN 100
190DATA SAVE IND :END
ZOOI)AT[\ "0}.)‘,”‘0-‘1", Hnﬂ'r\() ')'Y f'qv)nn ')" ,__ "I)T\T\f) /," "”/\T h" ’"(‘2

sT",2

ll H -
.2, LD, 4,"T0-1",1,"70-2" ) 1, " 8T-1", 1, "NeT=2", 1, "EST-3", 1

210DATA "EST-AM,3,MTST=5",2, " neT-a", 1, """, 1,Mreo-1" 1, et (]

,"PPO=3" 1, "PRO-4" 1, "PRO-5", 1, "ALRY 2



10RFM "COMPUTE"THIS PROGRAM COMPUTES NEI'S IDENTITY AIID DISTANCE
FOR ALL LOCI, FOR 21 LOCI Al 15 POPULATINMS:DIIT AS(4)64,%(31),

Y(31),B86:11=1

20 FOR I=1TQ 14:DATA LOAD "DATA":FOR J=1TO T:DATA LOAD A$() sHEXT
J:UNPACK (# . #HHHAS ()TO () :READ BS,

30 TOR J=I+1TO 15:SELECT PRINT 211(40):PRINT "POPULATION";I;"COM

PARTD TO POPULATION";J3,"LOCI COMPARTD="'3:DATA LOAD A$ () :UIIPACI(
FoHHIASOQTO Y()

40 IF X(1)=9,999THEN 60:IF Y(11)=9.,099TLNN 60

50 FOR K=l TO IHP-13:S1=81+X ()Y (K) :S2=824+X (F) 12:83=83+V (1) 1211

T K:PRINT BS;",";

60 T=I+P:IF N]1=31THE!! 70:RFAD B$,P:COTO 40

70 S4=SQR(S2%S53):T1=51/S4:PRINT :PRINT "I=";IL1:PRIIT '"N=";-1%L0G
(I1) :PRINT :RESTORE :51,82,83,84=0:1"=1:READ BS,P:NEXT

80 REWIND :RESTORF :NEXT L:SELLCT PRINT 0N5:END

90 DATA "OPRO-1",1,"0PRO-2",1,"0PR0O-3",1,"0PRO-4",1,"0ALR",2,"0L
sT-1",2,"pp", 5, "T0-1",1,"T0-2", 1, "RsT-1" 1, "EST-2", 1,"EsT-3", 1
100DATA "EST=4",1,"EST-5",2,"EST-6",1,"16", 1, "PRO-1",1,"PRO-2",1

,"PRO-3",1,"PRO-4", 1, "PRO-5", 1,"PRO~6", 1, "ALR", 2
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Appendix 5
Hardy-Wienberg Expectation

and Sample Genotype Frequency Calculations
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Appendix 6

All Calculated Chi-square Probability Values
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Table A6A. Chi-Square Probabilities for Hg, Hp, Hp and Gg, Gy, Gy, at the
Qest~1 Locus in Sterna hirundo. Observed Hp, Gp, expected (at
Hardy-Weinberg equilibrium) Hp, Gg, Levene's (1949) correction
for small samples sizes, Hp, Gy, heterozygosities (H),
homozygosities (G), Chi-square Probabilities, P, and gene
sample sizes are recorded for three nesting locations and the
pooled sample.

Sterna hirundo
Location Heterozygosity Homozygosity Total Gene
Sample
Hy Hg Gp Gg ¢, P P Sive

Port

Colborne 0.75 0.50 .30 0.25 0.50 0.30 0.14 24
0.75 .52 0.36 0.25 0.48 0.34 0.19 24

0.50 .52 0.92 0.50 0.48 0.92 0.90 24

Presqu'ile 0.29 0.41 .83  0.71 0.59 0.86 0.78 14

0.29 b 74 0.71 0.56 0.77 0.66 14
0.41 A4 .87 0.59 0.56 0.89 0.83 14

Prince

Edward 0.36 0.43 .74  0.64 0.57 0.77 0.65 44

Island 0.36 0.44 0.69 0.64 0.56 0.72 0.59 44

0.43 A4 .93 0.57 0.56 0.94 0.90 44

Total 0.49 0.43 .61 0.51 0.57 0.66 0.50 88

0.49 .50 0.98 0.51 0.50 0.98 0.98 88
0.43 .50 0.56 0.57 0.50 0.61 0.44 88
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Table A6B. Chi-Square Probabilities for Hp, Hg, Hy, and Gg, Gg, Gy, at the
Est-5 Locus in Sterna hirundo. Observed, Hgy, Gg, expected (at
Hardy-Weinberg equilibrium), Hgp, Gg, Leven's (1949) correction
for small sample sizes, Hp, Gy, heterozygosities (H),
homozygosities (G), Chi-square probabilities, P, and gene
sample sizes are recorded for three nesting locations, and the
pooled sample

Location Sterna hirundo
Location Heterozygosity Homozygosity Total Gene
Sample
Hp Hy Hy P Go Gg Gy, P P Size
Port
Colborne 0.46 0.49 0.93 0.54 0.51 0.93 0.90 48
0.46 0.50 0.86 0.54 0.50 0.88 0.82 48
0.49 0.50 0.94 0.51 0.50 0.94 0.92 48
Presqu'ile 0.36 0.49 0.49 0.68 0.64 0.51 0.69 0.56 22
0.36 62 69 0.51 60 0.47 22
0.49 0.49 92 0.51 51 0.92 0.88 22
Prince
Edward 0.14 0.34 0.58 0.86 0.66 0.69 0.49 14
Island 0.14 36 0.51 0.86 64 0.62 0.41 14
0.34 36 0.84 0.66 64 0.88 0.80 14
Total 0.38 0.48 O 0.41 0.62 0.52 0.43 0.25 84
0.38 0.49 0.31 0.62 0.51 0.43 0.20 84

0.48 0.49 0.97 0.52 0.51 0.97 0.96 84
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Table A6C. Chi-Square Probabilities for Hp, Hg, Hy, and Gg, GE, G, at the
Ldh-A locus in Larus argentatus. Observed Hy, Gp, expected (at
Hardy-Weinberg equilibrium) Hg, Gp, Levene's (1949) correction
for small sample sizes, Hp, Gy, heterozygosities (H),
homozygosities (G), Chi-square probabilities, P, and gene sample
sizes are recorded for six nesting locations, and the pooled
sample.

Larus argentatus

Location Heterozygosities Homozygosities Total Gene
Hp HE Hi, P Go GE Gy, P P Sample
Port Sizes
Colborne 0.15 0.21 0.87 0.85 0.79 0.93 0.86 26
0.15 0.31 0.45 0.85 0.69 0.62 0.37 26
0.21 0.31 0.66 0.79 0.69 0.82 0.62 26
Presqu'ile 0.33 0.28 0.71 0.67 0.72 0.82 0.67 6
0.33 0.33 0.62 0.67 0.67 0.72 0.54 6
0.28 0.33 0.71 0.72 0.67 0.82 0.67 6
Prince Edward
Idland 0.05 0.05 0.63 0.95 0.95 0.91 0.62 40
0.05 0.05 0.62 0.95 0.95 0.91 0.61 40
0.05 0.05 0.63 0.95 0.95 0.91 0.62 40
Scotch Bonnet
Island 0.33 0.28 0.71 0.67 0.72 0.82 0.67 6
0.33 0.33 0.62 0.67 0.67 0.72 0.54 6
0.28 0.33 0.71 0.72 0.67 0.82 0.67 6
Chantry
Island 0.60 0.65 0.98 0.40 0.35 0.98 0.98 20
0.60 0.86 0.50 0.40 0.14 0.07 0.051 20
0.65 0.86 0.51 0.35 0.14 0.37 0.27 20
Mohawk
Island 0.67 0.61 0,81 0.33 0.39 0.76 0.76 0.69 6
0.67 0.67 0.72 0.33 0.33 0.62 0.54 6
0.61 0.67 0.81 0.39 0.33 0.76 0.69 6
Total 0.23 0.62 3.4x! 0.77 0.38 5.9x11.43x! 112
1074 1076 1078
0.23 0.75 7.9x! 0.77 0.25 1.3x17.4x! 112
107" 10-5 1079
0.62 0.75 0.25 0.38 0.25 0.13 5.9§ 112
10™

1. Significance values of Chi-Square Probabilities (P), indicating
departure from Hardy-Weinberg equilibrium expectations, and Levene's
small sample size corrected heterozygosities (1949).
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Table A6D. Chi-Square Probabilities for Hp, Hg, Hy, and Gp, Gg, Gp, at the
Alb Locus in Larus argentatus. Observed, Hg, Gg, expected (at
Hardy-Weinberg equilibrium), Hg, Gg, Levene's (1949) correction
for small sample size, Hy,, G, heterozygosities (H),
homozygosities (G), Chi-square probabilities, P, and gene
sample sizes are recorded for two nesting locations and pooled
samples.

Larus argentatus
Location Heterozygosity Homozygosity Total Gene
Sample
Hp Hg Hy, P Go Gg G, P P Size

Presqu'ile 0.33 0.28 0.7 0.67 0.72 0.82 0.67 6

0.33 0.33 0.62 0.67 0.67 0.72 0.59 6
0.28 0.33 0.71 0.72 0.67 0.82 0.68 6

Scotch

Bonnet

Island 0.33 0.28 0.71 0.67 0.72 0.82 0.67 6
0.33 0.33 0.62 0.67 0.67 0.72 0.54

0.28 0.33 0.71 0.72 0.67 0.82 0.67 6

Total 0.04 0.04 0.74 0.96 0.96 0.95 0.73 112

0.04 0.04 0.74 0.96 0.96 0.95 0.73 112
0.04 0.04 0.74 0.96 0.96 0.95 0.73 112
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Appendix 7
Print Out of

Total Genetic Identities and Genetic Distances



The following printout gives total genetic identities and genetic
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distances for all pairwise combinations of the sampled nesting locations of

both species, and the loci used in these calculations.

correlates species, and sampled locations to population numbers as used in

the printout.

Sterna hirundo

Larus argentatus

Port Colborne

Presqu'ile

Limestone Island

Prince Edward Island
All Great Lakes Colonies
Pooled sample

Port Colborne

Presqu'ile

Limestone Island

Prince Edward Island
Chantry Island

Scotch Bonnet Island
Mohawk Island

All Great Lakes Colonies

Pooled sample

Population
Population
Population
Population
Population
Population
Population
Population
Population
Population
Population
Population
Population
Population

Population

The following list

1

2

3

10

11

12

13

14

15
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POPULATION 1 COMPARLD TO POPULATION 2
LOCI COMPARED=0PRO-1,0PR0~2,0PRO-3,
OPRO=-4 ,0ALB, OEST -1, LD, TO=~1,70-2,RST~1,
LST~2,E8T-3,E8T~5,0ST=6,11G, PRO-1,PRO=2 ,
PRO~3,PRO-4,PRO-5,ALB,

I= ,9967428119139

D= 3,262504270-03

POPULATION 1 COMPARED TO POPULATION 3
LOCI COMPARED=0PRO-1,0PPO-2,0PRO-3,
OPRO-4,0ALB, OE.ST-1,LDII, T0-1,T0-2,

I= ,994912850537

D= 5,10013305E-03

POPULATION 1 COMPARED TO POPULATION 4
LOCI COMPARFED=0PRO-1,0PR0-2,0PR0~3,
OPRO=4 , OALRB, OEST~1,T.0H, T0=1,T0=2,EST=1,
LST~2,EST-3,EST~5,EST=6,1G, PRO=1,PRO=2,
PRO-3,PR0O-4,PRO=5,ALB,

I= ,9965630842187

D= 3.44283554E-03

POPULATION 1 COMPARED TO POPULATION 5
LOCI COMPARED=0PRO-1,0PRO-2,0PR0~3,
OPRO=4 ,0ALB ,OEST-1,1DH, T0=1,T0-2 ,EST=1,
EST-2,EST-3,EST-5,EST-6 ,G,PRO~1,PRO~2,
PRO-3,PRO-4,PRO~5,ALB,

I= ,9993950579497

D= 6.05125101F-04

POPULATION 1 COMPARED TO POPULATION 6
LOCT COMPARED=0PRO-1,0PR0=2,0PR0=3,
OPRO=4 ,0ALB ,OEST=1,LDI, TO=1, T0=2 ,EST~1,
EST-2,1ST-3,EST-5,EST~6 ,1iG,PRO~1,PRO-2,
PRO-3,PRO-4,PRO-5,ALB,

I= ,9999871501945

D= 1.28498881E~05

if

POPULATION 1 COMPARED TO POPULATION 7
LOCT COMPARED=0PRO-1,0PRO=2,0PR0=3,
OPRO~4 , OALB,LDII, TO=1 ,T0=2 ,EST=1,EST=2,
EST-3,H1G, PRO-1,PR0O~2,PRO=3,PRO=5,ALB,
I= .8879153498755

D= .1188788672507

POPULATION 1 COMPARED TO POPULATION 8
LOCI COMPARED=0PRO-1,0PRO=-2,0PRO-3,
OPRO-4 ,0ALB, LDIl, T0~1,T0~2 ,EST=1,EST=2,
EST-3,1G, PRO-1,PRO-2,PRO=3 ,PRO~5,ALR,
I= .8871660018893

D= ,1197231643635



POPULATION 1 COMPARTD TO POPULATION O
LOCI COMPARED=OPRO=-1,0PRO=-2,0PRN-3,
OPRO=-4 , OALB ,LDH, TO=1,T0=2 ,EST-1,EST-2,
EST-3,1G, PRO-1,PRO-2,PRO-3,PRO-5,ALR,
I= .8823529411765

D= 125163142954

POPULATION 1 COMPARED TO POPULATION 10
LOCT COMPARED=0PRO-1,0PRO~2,0PRO-3,
OPRO-4,0ALB, LDI, TO-1,TO=2 ,EST-1,EST-2,
EST-3,NG,PRO-1,PRO-2,PRO-3,PRO-5,ALE,
I= .8836208070904

D= ,1237272596256

POPULATION 1 COMPARED TO POPULATION 11
LOCI COMPARED=0PRO-1,0PRO-3,0PRO-4,LDH,
T0-1,T0~2,EST~1,EST-2 ,EST-3,NG,PRO-1,
PRO-2,PRO-3,PRO-5,ALB,

I= ,5999448253485

D= .5109175857463

POPULATION 1 COMPARED TO POPULATION 12
LOCI COMPARED=LDI,TO-1,T0-2,EST=1,EST-2,
EST-3,NG, PRO-1,PRO-2,PRO-3,PRO-5,ALB,

I= ,9244309469268

D= 7.85769232E-02

POPULATION 1 COMPARED TO POPULATION 13
LOCI COMPARED=LDII,TO-1,T0-2,EST-1,EST-2,
JiST-3,HG,PRO-1,PR0O-2,PRO-3 ,PRO=5,ALB,

I= .9409392739466

D= 6.08766750E=02

POPULATION 1 COMPARED TO POPULATION 14
LOCI COMPARED=OPRO-1,0PRO=-2,0PR0O=3,
OPRO-4,OALB ,LDH, T0-1,T0~2 ,EST~1,EST=2,
18T-3,1{G,PRO~1,PRO~2 ,PRO=3,PRO~5,ALE,
I= ,8975162122315

D= ,1081240950152

POPULATION 1 COMPARED TO POPULATION 15
LOCT COMPARJED=0PRO-1,0PRO-2,0PR0O-3,
OPRO-4,0ALB, LDII, TO-1 ,TO-2 ,EST-1,EST-2,
EST-3,NG,PRO-1,PR0O-2,PR0O-3,PRO=5,ALB,
I= .8987118012786

D= ,1067928729045

POPULATION 2 COMPARED TO POPULATION 3
LOCI COMPARED=0PRO-1,0PRO-2,0PRO-3,
OPRO-4,0ALB ,0EST-1,LDH, TO-1,T0-2,

I= .9997479168391

D= 2.52114939E-04
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POPULATION 2 COMPARED TO POPULATION 4
LOCI COMPARED=0PRO-1,0PRO-2,0PR0O-3,
OPRO=-4 ,0ALB, OEST~1,LDIi, T0-1,T0~2,EST-1,
EST-2,EST-3,LS8T~5,E8T-6 ,1iG, PRO-1,PRO-2,,
PRO-3,PRO-4,PRO-5,ALB,

I= ,9893978819936

D= 1.065872030-02

POPULATION 2 COMPARED TO POPULATION 5
LOCI COMPARED=0PRO-1,0PRO-2,0PRO=3,
OPRO-4,0ALB ,0EST~1,LDH, T0-1,T0-2,EST-1,
EST-2,EST-3,EST~5,1ST=6,11G, PRO-1,PRO-2,
PRO-3,PRO-4,PRO-5,ALB,

I= ,9989441106643

D= 1.05644717E-03

POPULATION 2 COMPARED TO POPULATION 6
LOCI COMPARED=0PRO-1,0PRO-2,0PR0-3,
OPRO-4 ,0ALB ,0LST-1.,LDI1, TO-1,T0~2,EST-1,
LST-2,EST-3,0ST-5,18T-6,11G, PRO-1,PRO-2,
PRO-3, PRO-4,PRO-5,ALR,

I= ,9963550460516

D= 3.65161297L-03

1

POPULATION 2 COMPARED TO POPULATION 7
LOCI COMPARED=0PRO-1,0PRO-2,0PR0-3,
OPRO-4,0ALB,LDH, TO~1,T0=2 ,EST=1,5ST=2,
LST-3,NG,PRO-1,PRO~2 ,PRO-3,PRO~5,ALR,
I= ,8879153498755

D= ,1188788672507

POPULATION 2 COMPARED TO POPULATION 8
LOCI COMPARED=0PRO-1,0PR0-2,0DPR0=3,
OPRO=4 , 0ALD, LDH, T0-1,T0~2 ,EST-1 ,EST=2,
EST-3,HG, PRO-1,PRO-2,PRO-3, PRO-5,ALB,
I= ,8871660018398

D= .1197231643635

POPULATION 2 COMPARED TO POPULATION 9
LOCI COMPARED=0PRO-1,0PR0O-2,0PRO-3,
OPRO-4,0ALB,LDH, T0=1,T0~2 ,EST=1,LST=-2,
EST-3,NG,PRO-1,PRO-2,PRO-3,PR0O=5,ALB,
I= .8823529411765

D= .125163142954

POPULATION 2 COMPARED TO POPULATION 10
LOCI COMPARED=OPRO-1,0PR0-2,0PR0-3,
OPRO-4, 0ALB, LDI1, T0O-1,T0-2 ,[.ST-1,EST-2,
EST-3,NG, PRO-1,PRO-2,PRO-3,PRO=5,ALT,
I= .8836208070004

D= .1237272596256
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POPULATION 2 COMPARED TO POPULATION 11
LOGI COMPARED=0PRO-1,0PRO-3,0PRO-4,LDH,
T0-1,T0-2,EST-1,EST-2,EST-3,1G, PRO-1,
PRO-2,PRO~3,PRO-5,ALB,

I= ,5999448253485

D= .5109175857468

POPULATION 2 COMPARED TO POPULATION 12
LOCI COMPARED=LDH,T0-1,T0-2,EST-1,EST-2,
EST-3,NG,PRO-1,PRO-2,PRO-3,PRO-5,ALB,

I= ,9244309469268

D= 7.85769232E-02

POPULATION 2 COMPARED TO POPULATION 13
L.OCT COMPARED=LDH,T0-1,T0-2,EST-1,EST-2,
EST-3,NG, PRO-1,PRO-2,PRO-3,PRO=-5,ALB,

I= .9409392739466

D= 6,08766750E~02

POPULATION 2 COMPARED TO POPULATION 14
LOCI COMPARED=OPRO-1,0PRO-2,0PRN=3,
OPRO-4 ,0ALB ,LDH, TO-1,T0=2 ,EST=1,EST~2,
EST-3,NG,PRO-1,PRO-2,PRO-3,PRO~5,ALD,
I= ,8975162122315

D= .1081240950152

POPULATION 2 COMPARTD TO POPULATION 15
LOCT COMPARED=0PRO-1,0PRO-2,0PRO-3,
OPRO=4 , 0ALB, LDH, T0O-1,T0-2 ,EST=1,EST=2,
£ST-3,NG, PRO-1,PR0O-2,PRO-3,PRO-5,ALD,
I= .8987118012736

D= .1067928729045

POPULATION 3 COMPARED TO POPULATION 4
LOCI COMPARED=0PRO-1,0PRO-2,0PRO=3,
OPRO-4 ,0ALB, OEST -1 ,LDI1, TO=1,T0=2,

I= .9858132316804

D= 1.42883625E-02

POPULATION 3 COMPARLD TO POPULATION 5
LOCI COMPARED=OPRO-1,0PRO-2,0PR0=3,
OPRO-4,0ALB,ORST-1,L.DH, T0=1,T0-2,

I= ,998866571132

D= 1.13407168F-03

POPULATION 3 COMPARED TO POPULATION 6
LOCI COMPARED=0PRO-1,0PRO-2,0PRO=3,
OPRO-4 ,0ALB, OEST=-1 ,LDI, TO=1,T0=2,

I= .9941487507121

D= 5,86843491E~03
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POPULATION 3 COMPARED TO POPULATION 7
LOCI COMPARED=OPRO-1,0PR0O-2,0PR0-3,
OPRO-4 ,0ALB ,LDH, TO~1,T0=2,

I= ,7601554928097

D= .2742322708277

POPULATION 3 COMPARED TO POPULATION 8
LOCI COMPARED=0PRO-1,0PRO-2,0PRO-3,
OPRO=4 , OALB, LDH, TO=1,T0=2,

I= .7633722333626

D= .2700095116633

POPULATION 3 COMPARED TO POPULATION O
LOCI COMPARED=0PRO-1,0PRO-2,0PRO-3,
OPRO-4 ,0ALB, LDH, T0-1,T0-2,

I= .75

D= 2876820724517

POPULATION 3 COMPARED TO POPULATION 10
LOCI COMPARED=OPRO-1,0PRO=2,0PR0-3,
OPRO-4,0ALB,LDH, T0~1,T0=2,

I= .7522956534512

D= 2846253761128

POPULATION 3 COMPARED TO POPULATION 11
LOCI COMPARED=OPRO-1,0PRO-3,0PR0O-4,LDH,
TO-1,T0-2,

I= ,7513045401677

D= .285944196543

POPULATION 3 COMPARED TO POPULATTON 12
LOCI COlPARED=LDI, T0-1,70-2,

I= .6998599251146

D= .3568750709418

POPULATION 3 COMPARED TO POPULATION 13
LOCL COMPARFD=LDH,T0O-1,70-2,

I= ,7470291047026

D= ,2915703175592

POPULATION 3 COMPARED TO POPULATION 14
LOCI COMPARED=0PRO-1,0PR0-2,0PN0=3,
OPRO=4,0ALB, LDH, T0=1,T0-2,

I= .7785733263687

D= ,2502921028453

POPULATION 3 COMPARED TO POPUTATION 15
LOCI COMPARED=OPRO-1,0PRO-2,0PR0O=3,
OPRO-4 ,0ALB, LDH, TO-1,T0=2,

I= ,780721096813

D= .247537303276
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POPULATION 4 COMPARED TO POPULATION 5
LOCI COMPARED=OPRO-1,0PRO-2,0PR0-3,
OPRO-4 ,0ALB ,OEST-1,LDIT, T0O-1,TO=2 ,EST-1,
EST-2,RST-3,LST-5,R8T=6,11G, PRO~1,PRO=2,
PRO-3 ,PRO=4 ,PRO=5,ALB,

I= ,9943110525938

D= 5,70519110L-03

i

POPULATION 4 COMPARED TO POPULATION 6
LOCI COMPARED=OPRO-1,0PR0-2,0PR0-3,
OPRO=4,0ALR , OLST-1,L.DII, T0-1, T0-2 ,ST-1,
EST=2,EST=3, EST-5,587=6,11G, PRO=1,PRO-2,
PRO-3,PRO~4 ,PRO=5 ,ALR,

I= .9966406973003

D= 3,36495782E-03

POPULATION 4 COMPARED TO POPULATION 7
LOCT COMPARED=0PRO-1,0PRO-2,0PRO-3,
OPRO=4 ,0ALB,LDH, T0-1,70~2 ,EST-1,EST=2,
LST-3,11G, PRO-1,PRO~2,,PRO~3,PRO=5,ALD,
I= .8879153493755

D= ,1188788672507

POPULATION 4 COMPARED TO POPULATION 8
LOCL COMPARED=0PRO-1,0PRO-2,0PR0-3,
OPRO~4,0ALB, LDH, T0O-1,T0-2 ,EST=1,EST-2,
EST-3,HG, PRO-1,PRO-2,PRO=3,PR0=5,ALB,
I= ,8871660018398

D= ,1197231643635

POPULATION 4 COMPARED TO POPULATTON 9
LOCT COMPARED=OPRO-1,0PR0-2,0PR0O=3,
OPPO-4 ,0ALB,LDH, T0-1,T0~2 ,EST-1,EST=2,
FST-3,11G, PRO-1, PRO-2,,PRO-3 ,PRO=5,ALR,
I= ,8823529411765

D= 125163142954

POPULATION 4 COMPARED TO POPULATION 10
LOCI COMPARED=0PR0-1,0PRO-2,0PR0-3,
OPRO-4,OALB, LDI, T0O-1,T0-2,EST~1,EST-2,
EST-3,1iG,PRO~1,PRO-2,PRO=3 ,PRO=5,ALR,
I= .8836208070904

D= ,1237272596256

POPULATION 4 COMPARED TO POPULATION 11
LOCI COMPARED=0PRO-1,0PR0-3,0PR0~4,LDE,
T0-1,7T0-2,EST-1,EST~2,EST-3,11G,PRO-1,
PRO-2,PRO-3,PRO-5,ALE,

I= ,5999448253485

D= ,5109175857463
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POPULATION 4 COMPARED TO POPULATION 12
LOCI COMPARED=LDII,TO-1,T0=2,EST=1,EST-2,
LST-3,NG,PRO-1,PRO~2,PRO=3,PRO=5,ALR,

I= .9244309469268

D= 7.857692325~02

POPULATION 4 COMPARED TO POPULATION 13
LOCI CONPARED=LDH,T0~1,T0~2,EST~1,EST-2,
EST-3,1G,PRO-1, PRO-2 ,PRO-3 ,PRO=5,ALE,

I= .9409392739466

D= 6.08766750E~02

POPULATION 4 COMPARED TO POPULATION 14
LOCI COMPARED=0PRO-1,0PR0-2,0PR0~3,
OPRO=4 ,0ALB, LDH, T0-1,T0~2 ,LST-1,EST-2,
ST-3,11G, PRO~1, PRO-2, PRO-3 ,PRO=5 ,ALB,
I= ,8975162122315

D= ,1081240950152

POPULATION 4 COMPARED TO POPULATION 15
LOCI COMPARED=OPRO~1,0PRO-2,0PR0O-3,
OPRO=4 ,0ALB,LDH, TO-1,T0~2,EST=~1,EST-2,
LST-3,NG, PRO-1,PRO~2,PRO~3,PRO=5,ALE,
I= ,8987118012786

D= 1067928729045

POPULATION 5 COMPARED TO POPULATION 6
LOCI COMPARED=OPRO-1,0PRO-2,0PRN-3,
OPRO-4 ,0ALB,0LST -1, LDH, TO=1, TO~2 ,EST~1,
EST-2,EST-3,EST-5,EST=6,1G,PRO~1,PRO~2,,
PRO-3 ,PRO~4,PRO=5,ALR,

I= ,9992193145252

D= 7,80990368E~04

POPULATION 5 COMPARED TO POPULATION 7
LOCI COMNMPARED=0PRO-1,0PRO-2,0PR0-3,
OPRO=4,0ALB,LDH, T0-1,TO=2 ,EST~1,EST=2,
EST-3,1iG, PRO-1, PRO~2 ,PRO-3 ,PRO=5 ,ALE,
I= ,8879153498755

D= .1188788672507

POPULATION 5 COMPARED TO POPULATION 8
LOCL COMPARED=0PRO-1,0PR0-2,0PRO-3,
OPRO-4,0ALB, LDH, T0O~1,T0-2 ,iST-1,EST=2,
EST-3,NG, PRO-1 ,PRO=2 ,PRO~3 ,PRO-5,ALR,
I= .8871660018392

D= .1197231643635

POPULATION 5 COMPARED TO POPULATION 9
LOCI COMPARED=OPRO-1,0PRO=2,0PR0-3,
OPRO-4 ,0ALB LD, TO-1,T0=2 ,EST=1,[ST=2,
EST-3,NG, PRO-1,PRO-2,PR0O-3,PRO~5,ALR,
I= ,8823529411765

D= ,125163142954
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POPULATION 5 COMPARED TO POPULATION 10
LOCI COMPARED=0PRO-1.,0PRO=2,0PRO=3,
OPRO-4 ,0ALB, LDH, TO-1,T0O-2,EST-1,EST-2,
EST-3,1G,PRO-1,PRO-2 ,PRO-3 ,PRO=5 ,ALB,
I= ,8836208070904

D= .1237272596256

POPULATION 5 COMPARED TO POPULATION 11
LOCI COMPARED=0PRO~-1,0PRO-3,0PRO~4,LDI,
T0-1,T0-2,EST~1,EST~2 ,EST-3,11G,PRO-1,
PRO-2,PRO-3,PRO-5,ALB,

I= 5999448253485

D= .5109175857468

POPULATION 5 COMPARED TO POPULATION 12
L.OCI COMPARED=LDH,TO-1,T0~2,EST=1,E8T=2,
EST-3,NG, PRO-1,PR0O-2,PR0O-3,PRO=5,ALR,

I= 9244309469268

D= 7.85769232E-02

POPULATION 5 COMPARED TO POPULATION 13
LOCI COMPARED=LDH,TO-1,T0~2,EST~1,LST=2,
EST-3,NG, PRO-1,PRO-2,PRO-3 ,PRO-5 ,ALB,

I= .9409392739466

D= 6.08766750E-02

POPULATION 5 COMPARLD TO POPULATION 14
LOCI COMPARED=OPRO-1,0PR0O~2,0PRO=3,
OPRO-4 ,0ALB, LDH, TO-1,T0-2,LST=1,EST~2,
LST-3,NG,PRO-1,PRO-2,PRO-3,PR0O=5,ALR,
I= ,8975162122315

D= ,1081240950152

POPULATION 5 COMPARED TO POPULATION 15
LOCI COMPARED=0PRO~-1,0PRO-2,0PRO-3,
OPRO=4,0ALB , LDIL, TO~1,T0O=2 ,EST-1,HST=2 ,
1iST-3,1iG, PRO-1,PRO-2,PRO~3 ,PRO=5 ,ALR,
I= ,8987118012736

D= ,1067928729045

POPULATION 6 COMPARED TC POPULATION 7
LOCI COMPARED=OPRO~-1,0PR0-2,0PR0-3,
OPRO-4,0ALB ,LD!, T0-1,T0-2,EST=1,EST=2,,
ST-3,11G, PRO-1,PRO-2,PRO-3,PRO=5,ALR,
.8879153498755

.1188783672507

[

e -]

POPULATION 6 COMPARED TO POPULATION 8
LOCI COMPARED=0PRO-1,0PR0O-2,0PR0-3,
OPRO-4 ,0ALB, LDH, T0-1.,70-2,FEST=1,EST-2,
EST-3,NG,PRO-1,PRO-2,PR0O-3 ,PRO~5,ALB,
I= .8371660018398

D= ,1197231643635
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POPULATION 6 COMPARLD TO POPULATION 9

LOCI COMPARED=OPRO-1,0PRO-2,0PRO~3,

OPRO=4 ,0ALB , LDH, TO=1 , T0=2,, EST~1, EST=2,
FST=3, G, PRO=1, PRO=2, PRO-3 , PRO-5, AL,
= .8823529411763

D= 125163142954

POPULATION 6 COMPARED TO POPULATION 10
LOCI COMPARED=OPRO-1,0PRO-2,0PR0-3,
OPRO=4 ,0ALB ,LDH, T0-1,T0~2 ,EST-1,EST-2,
EST-3, G, PRO-1,PRO~2,PRO-3,PRO=5,ALE,
I= .883620307090/

= ,1237272596256

POPULATION 6 COMPARED TC POPULATION 11
LGCTL COMPARED=0TPR0O~1 ,0PT0=3 ,0PR0O=4 LD,
T0=-1,T0~2,EST~1, LS&~2 EST=3, IG,PPO—1
PRO-~2,PR0-3,PRO ) ALDL,

I= 5999448hg

D= ,51091758 57460

POPULATION 6 COMPARED TO POPULATION 12
anz COMPARED=LDH, TO=1 , T0~2,EST=1,EST~2,
§T-3 ,31G, PRO~1, PRO=2 ,PR0-3 , PRO=5 AL,
«92244309468268
7.85769232E-02

I

H H'

POPULATION 6 COIIPARED TO POPULATION 13

LOCI COMPARED=LDH,TO-1,T0-2,EST-1,EST-2,

£ST-3,1G, PRO-1,PRO-2,PR0O~3,PRO-5,ALR,
I= .9409392739466
D= 6.087667505=-02

POPULATION 6 COMPARTD TO POPULATION 14
LOCT COMPARED=0PRO-1,0PR0-2,0PR0-3,
QPRO-4,0ALB,LDH,T0—1,TO-2,EST-1,EST-/,
nST-3, 116, PRO-1,PRO~2,PR0O=3,PRO=5 ,ALE,
I= .8975162122315

D= ,1081240950152

POPULATION 6 COMPARLD TO POPULATION 15
LOCI COMPARED=0PRO-I,0PR0O-2,0PR0O-3,
OPRO-4,0ALB,LDH, T0-1,70-2 ,T.ST-1,EST=2,
£ST-3,HG, PRO~1,PRO-2,PRO-3 ,PRO=5 ,ALE,
I= .89871.18012786

D= 1067928720045

#

POPULATION 7 COMPARED TO POPNLATION 8
LOCI COMPARED=0PRO-1,0PRO=2,0PR0O-3,
OPRO-4 ,0ALR, LDH, T0=1,T0=2 ,EST=1,EST=2,
EST-3,EST-4,MG, PRO-1,PRO-2 ,PRO~3,PRO-5,
ALB,

I= .9978434034812

D= 2,15892532F-03

it
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POPULATION 7 COMPARED TO POPITATION 9
LOCI COMPARED=0PRO~1,0PRO-2,0PR0O-3,
OPRO=4,0ALB, LDH, T0O-1,T0=2 ,EST=1,EST-2,
RST-3,1ST-4,NG,PRO-1,PRO-2,PRO-3 ,PRO-5,
ALB,

I= ,9995237976902

D= 4,763157305-04

POPULATION 7 COMPARED TO POPULATION 10
LOCI GOMPARED=0PRO-1,0PRO-2,0PRO~3,
OPRO=-4 ,0ALB,LDH, TO-1,T0~2 ,EST-1,EST~2,
EST-3,EST-4,HG, PRO-1,PRO~2,PRO-3 ,PRO-5,
ALR,

I= ,9535082560131

D= 4,76071953E-02

POPULATION 7 COMPARED TO POPULATION 11
LOCI COMPARED=0PRO=-1,0PR0~3,0PRO~4,LDH,
T0-1,T0~2,EST~1,EST-2,EST-3,EST~4, NG,
PRO-1,PRO~2,PRO~3,PRO-5,ALR,

I= 60165261742

D= ,5080750477042

POPULATION 7 COMPARED TO POPULATION 12
LOCI COMPARED=LDH,TO-1,T0-2,EST-1,EST=2,
EST-3,LST-4,NG, PRO-1,PRO-2 ,PRO-3,PRO-5,
ALB,

I= ,9410975137581

D= 6,07085169E-02

POPULATION 7 COMPARED TO POPULATION 13
L.OCI COMPARED=LDH,T0-1,T0-2,EST-1,EST=2,
EST-3, EST—4 ,1iG, PRO~1,PRO-2 , PRO~3,PRO-5,
ALB,

I= .9676576029386

D= 3.28769702E-02

POPULATION 7 COMPARED TO POPULATION 14
LOCI COMPARED=0PRO-1,0PRN=2,0PRO~3,
OPRO-4 , 0ALB ,LDH, T0O=1,T0-2 ,EST=1,EST=2
LST-3,LST-4,NG, PRO-1,PRO-2 ,PRO-3 ,PRO~
ALE,

T= .995863221557

D= 4,14535858E-03

H
[ 4
D,

POPULATION 7 COMPARLD TO POPULATION 15
LOCI COMPARED=0PRO-1,0PRO-2,0PR0-3,
OPRO—~4 , OALB ,LDH, T0-1,T0=2 ,EST~1 ,EST~2,
EST-3,EST-4,NG, PRO~1,PRO-2 ,PRO~3,PRO-5,
ALB,

I= ,9870068620192

D= 1,30782871L~-02
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POPULATION 8 COMPARED TO POPULATION 9
LOCI COMPARED=OPRO~1,0PRO-2,0PR0-3,
OPRO~4,0ALB,LDH, TO~1, T0=2 ,EST-1,EST=2,
EST-3,EST=~4,1G, PRO-1,, PRO=2 ,PRO-3 ,PRO-5,
ALB,

= 9969864553694
D= 3.01809399E-03

POPULATION 8 COMPARED TO POPULATION 10
LOCI COMPARED=0PRO-1,0PRO-2,0PR0-3,
OPRO~4 ,0ALB,LDH, TO=1,T0O-2 ,EST-1,EST-2
EST=-3,EST~4,NG, PRO=1,PRO=2 ,PRO=3 ,PRO-5,
ALR,

I= ,9604342292752

D= 4.03697746E~02

POPULATION 8 COMPARED TO POPUTATION 11
LOCI COMPARED=OPRO-1,0PRO-3,0PRO~4,LDH,
T0-1,T0-2,EST-1,EST-2 ,EST-3,EST~4,11G,
PRO-1,PRO-2,PRO-3,PRO=5,ALR,

T= 6063811151691

D= ,5002465876699

POPULATION 8 COMPARED TO POPULATION 12
LOCI COMPARED=LDI,TO-1,T0~2,EST-1,EST-2,
EST-3,HST-4,1G, PRO-1,PRO=2 ,PRO=3 , PPO-5,
ALB,

I= 9442004942199

D= 5,74167474E-02

it

POPUTATION 8 COMPARLED TO POPULATION 13
LOCI COMPARED=LDH,TO=-1,70~2,EST-1,EST=2,
EST-3,EST-4,11G,PRO~1,PRO=2,PR0O=3 ,PRO=5,
ALB,

I= 968685959662

D= 3,18148066E-02

POPULATION & COIPARED TO POPULATION 14
LOCT COMPARED=0PRO~1,0PRO=2,0PR0-3,
OPRO=4 ,0ALB ,LDH, T0~1,T0=2 ,LST-1,IST=2,
LST-3,EST-4,NG, PRO=1,PRO~2,PRO-3,PRO=5,
ALD,

I= ,9958192696201

D= 4,189494065-03

POPULATION & COMPARLD TO POPUTATION 15
LOCT COMPARED=0PRO-1,0PR0-2,0PR0-3,
OPRO-4 ,0ALR, LD, TO=1,T0~2 ,[.ST~1,EST-2,
1:8T~3 ,iST-4 ,11G, PRO-1, PRO=2, , PRO=3, PRO=5 ,
ALB,

I= .9894710644781

D= 1,05847569E~02
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POPULATTON 9 COMPARED TO POPULATION 10
LOCI COMPARLD=OPRO-1, opro-z ,OPRO-3,
OPRO=4 , 0ALB , LDH, T0-1.,70~2 , E3T-1, ES7=2,
EST-3 ,I8T—4 .G, PRO=L, ?PO-? PRO-3,PR0-5,
ALB,

I= 9457259033254

D= 5,58024101E-02

]

POPULATION 9 COMPARTD TO POPULATION 11
LOCI COMPARED=OPRO-1,0PRO-3,0PRO~4,LDI,
T0~1,T0-2,EST-1,18T-2,E8T-3,FEST-4,1G,
PRO-l,PRO—Z,PRO Z3,PRO-5,ALB,

I= ,5976453960076

D= 5147576841805

POTULATION O COMPARED TO POPULATION 12
LOCI COMPARED=LDII, TO-1,T0-2,EST-1,LST-2,
£ST~3,5ST~4,1G, PRO-1,PRO-2, PRO=3 ,PRO-5,
ALB,

I= ,9303534943904

D= 7,219066355~-02

POPULATION 9 COMPARED TO POPULATION 13
LOCT COMPARED=IDH,TO-1,T0-2,EST~1,EST~2
EST~3,1ST-4,1iG, PRO-1, PRO=2 PRO-g,PPO—S
ALB,

I= ,9537053240617

D= 4.,21715254E-02

POPULATION 9 COMPARED TO POPULATION 14
LOCI COMPARED=0QPRO-1, OPQO-? OPRO—?

OPRO-4 , 0ALB, LDH, T0O~1,T0-2 ,IST=1,EST=2,
[ST-3 ,1ST~4 11G, PRO-1 ,PRO-2, PPO—B ,PRO-5,
ALB,

I= ,9928479150516
D= 7,17778371E-03

[

POPULATION 9 COMPARED TO POPULATION 15
LOCI COMPARED=OPRO-1,0PRO-2,0PR0-3,
OPRO=4 ,0ALB, LDH, TO-1,T0=2 EST-_,E.T—Z,
EST~3,EST-A,NG,PRo-l,PRo-z,PRo—s,PRo-S,
ALB,

I= ,9822469820765

D= 1,791249308-02

POPULATION 10 COMPARFED TO POPULATION 11
LOCI COMPARED=0PRO-1,

OPRO-3,0PRO-4, LD, TO-1,TO-2,EST=1 ,EST-2,

EST-3,EST-4,HG, PRO-1,PRO=2 ,PRO-3,PRO-5,
ALB,

I= .6012320073906

D= 5087743833478
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POPULATION 10 COMPARED TO POPULATION 12
LOCI COMPARLD=LDF,TO-1,

T0-2,EST-1,FST-2 ,EST-3,EST-4,1G, PRO-1,

PRO=2,PRO=3 ,PRO-5 ,ALE,

I= .9449054284522

D= 5,66704322E-02

POPULATION 10 COMPARED TO POPULATION 13
LOCI COMPARED=LDIL, TO-1,

T0=2,EST~-1,1ST~2,EST~3,EST=4, G, PRO-1,

PRO-2,PRO-3,PRO-5 ALR,

I= ,9730024977563

D= 2.736862975-02

it

POPULATION 10 COMPARED TO POPULATION 14
LOCI COMPARED=0PRO-1,

OPRO=-2,0PRO-3 ,0PRO-4 ,0ALB,LDH, TO~1,T0-2,,

nST-1,EST-2,EST-3,NST~4,1G, PRO~1.,PRO-2,

PRO-3,PRO-5,ALR,

I= ,972191403211

D= 2,82025770E-02

POPULATION 10 COMPARFD TO POPULATION 15
LOCI COMPARED=0PRO~1,

PRO-2., 0PRO=3,0PRO~4 ,0AL R, LD, TO=1,T0=2,

FST-1,EST-2,EST~3,EST~4 ,1IG, PRO=1., PRO-2,,

PRO-3,PRO-5,ALB,

I= ,9884995568928

D= 1.15670846E-02

It

POPULATION 11 COMPARTD TO POPULATTON 12
LOCI COMPARED=LDH, TO~1,

T0-2,EST~1,EST~2,EST=3,EST=4 , NG, PRO=1,,

PRO=-2 ,PR0O-3,PRO~5,ALR,

I= ,980540312370%

D= 1,96515200E-02

POPULATION 11 (‘(‘Tﬂ’/\ﬂr“ TO POPULATTION 13
0CI COMPARLD=LDH,TO-1,

T0-2 EST=1 ES ESJ -3 ,ES5T=4,G,PRO-1,

PPO-R,PQO-B& RO—.},ALB

I= ,9975535506085

1) &g4é944603ﬁ—03

]

POPULATION 11 COMPARED TO POPULATION 14
LOCI COMPARID=0PRO-1,

OPRO-3,0PRO~4 ,LDH, TO=1,T0=2 ,EST-1 ,EST=2,

EST-3,EST-4,11G, PRO=1,PRO-2 ,PRO-3 ,PRO-5,

ALD,

I= 610077000212

D= .4941700999252
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POPULATION 11 COMPARED TO POPULATION 15
LOCT COMPARFD=OPRO-1,

OPRO-3,0PRO=4 , LDI1, TO-1, TO~2 ,EST-1,LST=2,,

EST=-3,EST-4,11G, PRO~1,PRO=2 ,PRO-3 ,PRO~5,

ALB,

I= ,6113577893884

4920729111817

o]
it

POPULATION 12 COMPARED TO POPULATION 13
LOCI COMPARID=LD,TO-1,

TO-2,EST~1,kST~2,EST=3,EST=4, G, PRO-1,

PRO-2 ,PRO-3,PRO=5,ALD,

I= ,9910543383006

D= 8,98591436E~03

POPULATION 12 COMPARTD TO POPULATION 14
LOCI COMPARED=LDII, TO-1,

T0=-2,EST-1,EST~2 ,LST~3,LST~4,11G, PRO-1,

PRO-2,PRO-3,PRO-5,ALB,

I= ,9689487099178

D= 3,154359945-02

it

POPULATION 12 COMPARFED TO POPULATION 15
LOCI COMPARED=LDII,TO-1,

70-2,LST-1,EST-2,EST=-3,EST-4,11G,PRO-1,

PRO-2,PRO-3,PRO-5,ALB,

I= ,96901084677319

D= 3.147160375-02

i

POPULATION 13 COMPARED TO POPULATION 14
LOCI COMPARED=LDII, TO-1,

T0-2,EST-1,1ST-2,EST-3,1:8T~4 ,11G, PRO=1.,

PRO~2,PRO-3,PRO-5,ALB,

I= ,9887581067385

D= 1.13055609E=02

POPULATION 13 COMPARED TO POPULATTION 15
LOCI COMPARED=LDH,TO-1,

T0-2,EST-1,EST=2,E87-3,EST—4 , NG, PRO-1,,

PRO-2,PRO-3,PRO=5 ,ALJ,

I= ,9919986439949

D= 38.03353863E-03

POPULATION 14 COMPARED TO POPULATION 15
LOCI COMPARED=0PRO-1,

OPRO-2,0PRO=-3,0PR0~4 ,0ALB,LDH, T0O~-1,T0-2,

EST-1,HST=2,EST~3,EST=4,11G, PRO~1,PRO-2,

PRO~3,PRO=-5,ALB,

I= ,9964253423071

D= 3,58106204E~03
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APPENDIX 8

Further Statistical Analysis

Initial Chi-Square probabilities may be biased, as a result of the
inclusion of complete broods in the sample size. This procedure, in
conjunction with the small organismal sample size, may cause over=-
estimation of population allele frequencies. To circumvent this problem,
complete broods were represented by only one randomly chosen individual,
and where sample sizes were sufficient, observed heterozygosities were
Chi-Square tested against Hardy-Weinberg equilibrium expectation hetero-
zygosities (Table A8A). Chi-Square probabilities (P) were non-significant

for all species at all locations, except for the Larus argentatus Ldh-A

pooled sample (P = 7.4 x 1079). This deviation from expectation suggests
gene pool heterogeneity at this locus in the L. argentatus populations
sampled.

Chi-Square analysis of sample genotype frequencies and Hardy-Weinberg
equilibrium expectation genotype frequencies (Table A8B, A8C), suggest the
identical data pattern of S. hirundo gene pool panmixis, and L. argentatus

gene pool heterogeneity.
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Table A8A: Statistical Analysis of Genetic Variation in Sterna hirundo
and Larus argentatus. Gene sample sizes (2n) are twice the
organismal sample size, and brood samples are represented by
only one randomly chosen individual. Allele frequencies,
observed (Hp) and Hardy-Weinberg expected (Hp) heterozygosities,
and Chi-Square probabilities (P) are recorded for colonies
represented br brood samples. Means and standard deviations
of allele frequencies are recorded in the total column for
alleles; Hy, Hp and P are pooled values.
Species Locus Alleles Nesting Locations
Port Presqu'ile Prince Total
Colborne Edward
Island
Sample Sizes 42 14 14 70
Sterna Est-5 100 0.45 0.43 0.21 0.36 + 0.13
hirundo 104 0.55 0.57 0.79 0.64 + 0.13
Hpy 0.43 0.57 0.14 0.40
Hp 0.49 0.49 0.34 0.48
P 0.48 0.22
Larus Ldh-A 20 104
argeptatus 99 0.05 0.24 + 0.32
100B 0.00 0.30 = 0.34
102 0.90 0.45 * 0.44
104 0.05 0.01 £ 0.01
Hy 0.20 0.25
Hy 0.19 0.61

P 0.90 7.4 x 1079
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Table A8B: Statistical Analysis of Genetic Variation in Sterna hirundo
Gene Sample Sizes (2n) are twice the organismal sample sizes,
allele frequencies and Chi-Square probabilities (P,,PL)1 are
recorded for nesting locations where sample sizes are
sufficiently large. Means and standard deviations of allele
frequencies are recorded in the total column for alleles; P
and Py are pooled values.

Locus Alleles Nesting Locations

Port Colborne Prince Edward Island Total

Sample Sizes 24 44 88

Oest-1 100 0.51 0.68 0.46 * 0.18
106 0.46 0.32 0.54 £ 0.18
P 0.50 0.32 0.40
Py, 0.15 0.32 0.07

Est-5 98 0.44 0.37 £ 0.13
100 0.56 0.63 + 0.13
P 0.63 0.20
P 0.56 0.12

L p. Chi-Square probability derived from the comparison of observed

genotype frequencies to Hardy-Weinberg equilibrium expectation

frequencies.

Chi-Square probability derived from the comparison of observed
genotype frequencies to Levene's (1949) small sample corrected

Hardy-Weinberg equilibrium expectation frequencies.
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Table A8C: Statistical Analysis of Genetic Variation in Larus argentatus
Gene sample sizes (2n) are twice the organismal sample sizes,
allele frequencies, and Chi-Square probabilities (P, PL)! are
recorded for nesting locations where sample sizes are
sufficiently large. Means and standard deviations of allele
frequencies are recorded in the total column for alleles; P
and Pp, are pooled values.

Locus Alleles Nesting Locations

Port Colborne Prince Edward Island Total

Sample Sizes 26 40 112

Ldh-A 99 0.04 0.00 0.13 + 0.32
100B 0.04 0.98 0.47 * 0.34
102 0.88 0.00 0.38 = 0.44
104 0.04 0.03 0.02 + 0.02
P 0.08 1.00 1.4 x 107%
Py, 0.14 1.00 7.4 x 1079

Alb 98 0.00 1.00 0.98 +* 0.08
100 1.00 . 0.00 ) » 0.02 £ 0.08
P 1.00 1.00 1.00
P, 1.00 1.00 1.00

1 p; Chi-Square probability derived from the comparison of observed

Py,

genotype frequencies to Hardy-Weinberg equilibrium expectation
frequencies.

Chi-Square probability derived from the comparison of observed
genotype frequencies to Levene's (1949) small sample corrected
Hardy-Weinberg equilibrium expectation frequencies.
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