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Science seldom proceeds in the straightforward
logical manner imagined by outsiders. Instead,
its steps forward (and sometimes backwards) are
often very h'Lrrnan events in whicl1 personalities
and cultural tradi tions play nlajor roles.

The Double Helix
by James D. Watson.

Th.Qugh I kept insisting ·that we should keep the
backbone in the center, I know none of my
reasons held water.

The Double Heli){ i1

by James D. Watson.
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ABSTRACT

A naturally occurring population of photosynthetic bacteria,

located in the meromictic Crawford Lake, was examined during two

field seasons (1979-1981). Primary production, biomass, light

intensity, lake transparency, pH and bicarbonate concentration were

all monitored during this period at selected time intervals.

Analysis of the data indicated that (14C) bacterial photo­

synthesis was potentially limited by the ambient bicarbonate

concentration. Once a threshold value (of 270 mg/l) was reached a

dramatic (2 to 10 fold) increase in the primary productivity of the

bacteria was observed. Light intensity appeared to have very little

effect on the primary productivity of the bacteria, even at times

when analyses by Parkin and Brock (l980a) suggested that light

intensity could be limiting (i.e., 3.0-5.0 ft. candles). Shifts

in the absorption maxima at 430 nrn of the .bacterio-

chlorophyll spectrum suggested that changes in the species or strain

composition of the photosynthetic bacteria had occurred during the

summer months. It was speculated that these changes might reflect

seasonal variation in the wavelength of light reaching the bacteria.

Chemocline erosion did not have the same effect on the popula­

tion size (biomass) of the photosynthetic bacteria in Crawford Lake

(this thesis) as it did in Pink Lake (Dickman, 1979). In Crawford

Lake the depth of the chemocline was lowered with no apparent loss

in biomass (according to bacteriochlorophyll data). A reverse
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current was. proposed to explain the observation.

The photosynthetic bacteria contributed a significant

proportion (10-60%) of the lake1s primary productivitya Direct

evidence was obtained with (14C) labelling of the photosynthetic

bacteria, indica.ting that the zooplankton were grazing the photo­

synthetic bacteria. This indicated that some of the photosynthetic

bacterial productivity was assimilated into the food chain of the

lake. Therefore, it was concluded that the photosynthetic bacteria

made a significant contribution to the total productivity of

Crawford Lake.
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LITERATURE REVIEW

Crawford Lake is located on Silurian Guelph-Ambel dolomite

(Karrow, 1963; Tovell, 1965; Boyko, 1973), in Halton Region.

The lake is situated 300 m above sea level and 170 m above

Lake Ontario. The lake displays micro-climate conditions which are

atypical of the low-lying area (Boyko, 1973). In general, the area

has a 200-day growing season, experiencing light spring and

summer winds followed by strong fall and winter winds (Boyko, 1973).

To date Crawford Lake has been examined for the sediment pollen

distribution (Boyko, 1973), zooplankton.population dynamics (Prepas

and Rigler, 1978), sediment chironimid head capsule distribution

(Cheek, 1979) and Chaoborus population dynamics (Sardello, pers.

corom.). The photosynthetic bacterial layer was examined by

Dickman (1979) and Severn (1979).

Major Classes of Photosynthetic Bacteria

To provide some background, a review of- the major groups of

anaerobic photoautotrophs is given below. It is in no way complete

or comprehensive as the published literature concerning identification

and biochemical characteristics of these organisms is both

voluminous and often contradictory.

The prokaryotic autotrophs are presently divided into 5 groups:

Cyanobacteria, Chlorobiaceae, Chloroflexaceae, Rhodospirillaceae and

Chromatiaceae (Pfennig, 1967, 1979; Pierson and Castenholz, 1974a).
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These groups are sufficiently different from one another that they

can be distinguished by their spectral properties (Table 1).

The cyanobacteria are characterized by the pigments

chlorophyll a and phycobiliproteins (Stanier, 1974a; Pfennig, 1979).

They are the only prokaryotes possessing photosystem II (Avron,

1967). Therefore, unlike photoautotrophic bacteria, they are able

to evolve O
2

as a consequence of photosynthesis. Hence, they are

typically found in well oxygenated water. Oscillatoria limnetica

and Q. salina, found in Solar Lake, Israel, are the only

cyanobacteria able to photosynthesize anaerobically (Cohen et al.,

1977b). In both cases the presence of H
2

S inhibits photosystem II

(Cohen et al., 1975). However, the sulphide acts as an electron

donor to photosystem I with no apparent decrease in productivity

(Cohen et al., 1975).

There are two forms of green sulphur bacteria (Chlorobiaceae)

(Stanier and Smith, 1960; Gloe et al., 1975). Both forms have

BChl a (Table 2). However, the green fb~ has one of either

v
BChlc or BChl dand the brown form BChl~ (Liaaen Jensen, 1965). The

The brown form also has carotenoides isonenieratene and B-

isorenieratene which tend to extend the absorption range between

480 and 550 nm (Liaaen Jensen, 1965; TrUper and Genouese, 1968;

Pfennig, 1979). Both forms are non-motile, but some species are

able to form gas vacuoles or consortiums with non-pigmented cells

(Pfennig and TrUper, 1974). The green consortium is called

Ch1orochromatium and the brown Pelochromatium (Pfennig and TrUper,
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Table 1: Bacteriochlorophyll of the PQototrophic Bacteria
(adapted from Pfennig, 1979)

IChlorophyll

I
I Plant
i Chlorophyll
i

------------
Characteristic Peak

(urn)

660-670

Division of '-----~

Bacteria

Cyanobacteria

I Bchl a 375 590 800-810 830-890 1\.11 (except
Cyanobacteria.

;1

I b 400 605 835-850 1015-1035 Chromat.iaceae &

Rhodospirillaceae

I c 335 460 745-760 812 Clllorobi.aceae &

! Cl"11oroflexaceae

!
d 325 450 725-745 805 Chlorobiaceae

i e 345 450- 715-725 805 ~ Chlorobiaceae

i 460 (Brown forlus)

,L



-19-

1974; Pfennig, 1979).

All green sulphur bacteria are obligate anaerobic photo-

autotrophs capable of ptlotoassirnilation of CO
2

and some simple

organic molecules (like acetate) depending on the concentration of

both CO
2

and H
2

S (Kelly, 1974).

Chloroflexus aurantiacus is the only species in the division

Chloroflexaceae. These rare motile bacteria are found in hot springs

with an average teraperatl-lre of 50 to 60 degrees Celsius (Pierson and

Castenholz, 1974ai b). ~. aurantiacus is an obligate pl1ototrophic

anaerobe, resembling Chlorobi1~ln sp. (Pfennig, 1979). Unlike

~hlorobilL.~ sp. / ~_. ~urantiac~~ can survive oxygenated environrnents

using respiration (Pfennig, 1979).

The Rl1.odospirillaceae 11a've the abilit.y t:o e}:.ist facu,ltatively

as microaerophilic lithoorganotrophsor as anaerobic photoorganotrophs.

These bacteria! however 1 are never found at high concentratioI1S,

(Pfennig and Trllper, 1974).

The Chromatiaceae are obligate photoli~hotrophic or photo-

organotrophic anaerobes. Thioca1?sa .!oseoPEsiciEa is the onl:-i

exception. This organism can exist as an organotroph under micro-

aerophilic conditions (Pfennig and TrUper, 1974; Pfennig, 1979) ~

Under anaerobic conditions, Rhodospirillaceae and Chromatiaceae

are distinguished by their respective inability or ability to oxidize

elemental sulphur to sulfate during CO~ photoassimilation (Pfennig
L.

and TrUper, 1974). All species of Cllromatiaceae ha"'l.t e the abili ty to

oxidize sulphide ions to elemental sulphur and ultimately to

sulphate, but none of the Rhodospirill.aceae can perfOrlTI the oxidation
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of sulphur to sulphate. Both the Chromatiaceae and Chlorobiaceae

have adenyl-sulphate reductase and therefore can reduce sulphate

to elemental sUlphur. The Chromatiaceae and Rhodospiril1aceae both

have BCh1a and b (Table 2). The Chromatiaceae contain spirillox­

cinthin, okeme and rhodopina1 carotenoids (Pfennig and TrUper, 1974).

Both have motile and non-motile forms, with or without gas vacuoles

and flagella (Pfennig and Trtlper, 1974). The motile forms of

Chromatiaceae often undergo a diurnal migration (Sorokin, 1970).

In summary, there are several characteristics that all photo­

synthetic bacteria possess. They are generally greater than 0.5 urn

in length or width (cyanobacteria have been found as large as 10 urn;

Pfennig and Trftper, 1974). Coccoidal, vibroidal, and bacillus shapes

are common to all the divisions (Pfennig and TrUper, 1974).

Pleomorphism, different shapes under different environmental

conditions, is also common to all species (Caldwell and Tiedje, 1975a).

Unfortunately, these characteristics and shared similarities make

species identification and ecological studies on natural populations

difficult (Caldwell and Tiedje, 1975a).

A Review of the Ecology of the Photosynthetic Bacteria

The literature dealing with the ecology of photosynthetic

bacteria can be roughly divided into two groups: 1) studies that

attempt to demonstrate the ecological significance of the photo­

synthetic bacteria, and 2) studies examining parameters (such as



Table 2: Major Differences Between the Divisions of the
Phototrophic Bacteria (from Pfennig, 1979)

Division

Cyanobacteria

~hlorobiaceae

Photo pigments

ChI a
phycobiliproteins

Bchl a, c, d & e

Carotenoid

B-carotene
& zeaxanthin

isorenieratene &
B-isorenieratene

Life conditions

--aerobically - photo-assimilation using
both photo systems

--anaerobically using only photosystem I

--obligate photolithotrophs anaerobic

Chloroflexaceae Bchl a & c

Chromaticaeae Bchl a & b spirilloxanthin
okene & rhedopina1
series

--obligate phototrophic anaerobes
--facultative microaerophyllic heterotrophs

--photoorganotrophs & photo autotrophic
--~bligate anaerobes, except £. roseo-

persicina which can exist as a hetero­
trophic in microaerophy1lic conditions

I
tv
f-'
f

Rhodospir­
illaceae

Bch a & b spiri11oxanthin,
ketocarotonoids of
spheradenone and
rhodopinal series

--photoorganotrophs
--obligate photolithotrophs
--can exist heterotrophically under micro-

aerophyllic conditions
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light, H
2

S and oxygen) that might control the primary productivity

and population size of the phototrophic bacteria. Many studies

attempt a combination of the tvlO approacl1es. However 1 in the

following review each will be trea~ed separately.

The Iiterature is replete \.yi th exarnples attempting to persuade

readers of the importance of photosynthetic bacteria. In all cases,

researchers have stressed high relative primary productivity (per~s

productivity) values as ~~e parameter which is indicative of the

importance of L~e photosynthetic bacteria (Table 3). '.ralues as

high as 85 and 91 percent have been reported for the contribution

made by the anaerol)ic autotropl1S to the tota.l lake primary

productivity (Culver and Brunskill, 1969; Cohen et ~! .. , 1977b).

However, primary productivity values as low as 0.26 percent have

also been demonstrated (Parkin and Brock, 1980b). This suggests

that photosynthetic bacteria may be very import.i?-nt in some lakes and

unimportant in others.

I feel it is rnisleading to assume a. high primar17 p~oductivity

value represents high ecological significance. The r8al impor'tance

of any organism to an aquatic system should be based on its

probability of affecting other trophic levels (Ricklefs, 1976).

For example, if the productivity produced by the anaerobic photo­

autotrophs is locked up in the anaerobic zone (unavailable to the

next trophic level), then tl1ey are unimportant to the sys tern.

However, if the production, by tl1e anaerobic photoa.utot.rophs, is

used by the next trophic level, then even low le'lsls of anaerobic
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Table 3: Primary Production in Meromictic
Lakes by Photosynthetic Bacteria (from Cohen
et al., 1977bi Pfehnig, 1979)

Name of Lake

Peter, Paul and
1--1urror

Belovod

Belovod

Muliczne

I-Ioruna

Suigestsu

% Contribution to
Total Productivity Reference

0.26 to 6.3 Parkin and Brock, 1980b

40 Lyalikova (1957)

20 Sorokin (1970)

24 CZ2czuga (1968a)

20 Takahashi & Ichilrlura
(1968)

45 Takahashi & Ichimura
(1968)

Kisoratsu Reservoir

Medicine

Fayetteville (N.Y.)

Solar

60

55

85

91

Takahashi & Ichimura
(1968)

Hayden (1972)

Culver & Brunskill (1969)
I

Cohen et ale (1977a,b)

TIlis is not a complete list, but it dernonstrates the extensi·ve
examination of producti'vi ty in these systerns.

--;
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photoautotrophic prodllctivity wallld be significant.

Indirect evidence already exists suggesting that the photo-

synthetic bacteria are grazed by zooplankton (Culver and Brunskill,

1969; Prepas and Rigler, 1978). However, the direct evidence is as

yet poor and inconclusive (Sorokin, 1966; Takahashi and Ichimnra,

1968).

14
Obtaining d.irect ev'idence J throu911 - C labelling experirnents

or direct observation, vJould demOl1strate conclllsively the irnportan.ce

of anaerobic photosynthetic organisms to a meromictic lake.

The study of Controlling Factors

The study of factors that control the pOp1.11ati.on size and

productivity of photosynthetic bacteria 1tlaS begun under laborato!.'y

conditions in the rnid-forties. Based on his laborat:ory experiments

\lan Neil (1944) predicted that the major factoLJs infltlencing the

population size and productivity of photosynthetic bacteria in

their natural environment would be ligllt intensi ty I H
2

S concentration

and the presence or absence of oxygen. This prediction fOl.-rned tIle

basis for 'virtually all the modern work on the anaE-?~r-obic prlC)to-

autotrophs.

Light Intensity and Quality

The intensity of light reaching the photosynthetic bacteria is

usually selected as the most important factor influencin(j photo-

synthetic productivity {Takahashi and Ichinrura, 1968, 1970;
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Lawrence et ale I 1978; Coherl et al., 1977bi Parkin and Brock, 198Gb).

Light has· also proved to be the most difficult factor to understand.

In all but one case (Parkin and Brock, 198Gb) researchers have been

unable to show any correlation between light intensity and product-

ivity. Culver and Brunskill (1969) stated that light was

controlling during periods of ice cover and at no other time.

Takahashi and Ichinlura (1970) prOd1.1Ced one of the most

extensive pieces of work on the relationship between biomass

(bacteriochlorophyll concentration) and the light intensity

incident on the phototrophic bacteria. They suggested a direct

logari.thInic relationship bet\~leen the percentage of light and

photosynthetic bacterial biomass (Table 4). Their equation \vas

based on severa.l assumptions e Two of t118se \vilI be discussed belo,v.

The first assQ~ption, that self shading within the population would

~

give lower values tl1arl expected, was addressed at some leng·th.

They concluded that in very dense pcpulations the equation would tend

to over-estimate the maximum bacteriochlorophyll concentration.

Their conclusion was based on the assumption that at high densities

self shading would tend to decrease the over-all productivity.

Hence, only photosynthetically-active cells would be included in

their analysis.

It was clear to me, however, that to assume that only photo-

synthetically-active cells were included in their measurements was

faulty because they were not measuring just photosynthetically-

active cells but all cells that contained bacteriochlorophyll (i.e.,
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they measured bacteriochlorophyll concen~ration). Therefore, it

did not matter if the cells were photosynthetically active as long as

they were intact and contained bacteriochlorophyll. -Hence, their

expectation should have been to under-estimate the potential standing

crop. This was probably why both Harutori and Wakunuma lakes had

higher than expected bacteriochlorophyll concentrations (Table 5).

The reason the other four lakes were over-estimated could be due to

the second assumption.

In the second assumption, Takahashi and Ichimura (1970) claimed

that a limiting nutrient would only affect the rate increase of

production but not the maximal obtainable production. This may have

been a reasonable assumption at that time. However, it-was discovered

by Kelly (1974) that low cO
2

or H
2

S not only reduced the rate of

production but also limited the maximum amount of growth. Hence, the

under-estimation observed in Wakuike, Kisaratsu, Suigetsu and Suga

Lakes (Table 5).

As I indicated above, Takahashi and Ichimura (1970) were unable

to predict the maximum population size based on light intensity (Table

5). This was probably because their assumptions were faulty in the

ways that have been pointed out above. However, this was one of the

first attempts to tackle what has proved to be a very difficult problem.

Parkin and Brock (198Gb) were the only researchers, to my

knOWledge, able to demonstrate a linear correlation between

production and light intensity based on field data (Fig. 1).

However, interpretation of:the figure was difficult. Essentially,

they suggested that lakes with good penetration have high product-
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Table 5: Observed Bacteriochlorophyll Concentration and
Calculated Bacteriochlorophyll Maxima for Six
Japanese Lakes

2mg/m

Lake [BChl] measured [BChl] c'a1culated

Harutori 587 d 280

Wakuike 235 c 345

Kisaratsu 352 d 370

Suigetsu 182 d 300

Suga 119 d 370

Wakunuma 492 d 330

Based on Table 2; Takahashi and Ichimura, 1970.
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Figure 1: Percent production as a function of percent of surface
light. The graph was originally introduC9d by
Parkin and Brock, 198Gb. The nU.rr"beJ'_-s represent the
following lakes:

1 r.1a:cy 9 Kisaratsu...L

2 Fish 10 HarlJna
3 Peter 11 ~-vadolek

4 IIiruga 12 Waldsea
5 Mirror 13 Wadolek "
6 Paul 14 Green
7 Rose 15 KisaratS'll
8 Waku-Ike 16 Solar
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ivity. Unfortunately, the terms "percent product.ion" and "percent

surface light II were too vague. Wi tl10Ut absolute values it was

inlpossible to kno"w if a low percent prod.uction Val1..1e represent.ed

10\'1 algal production \vi th even lowe.r photosynthetic bacterial

production, or if it meant high algal values with low to moderate

bacterial productivity values. However, in a general way these

types of relationships do tend to be useful.

In another paper, Parkin and Brock (1980a) stated that the

photosynthetic bacteria are saturated at light intensities on the

2
order of 1-10 u Elm s. This was a very significant point for two

reasons: 1) most culture work done on the photosynthetic bacteria

used light intensities in excess of 700 lux (about 70 ft. candles

2
or 25 u Elm Si Pfennig, 1967; Takallasl1i al1d Ichirnura, 1968, 1970) i

2) that field productivity data tended to be taken at about 12:00

hours, or at times when the intensity reaching \he bacteria vIa.S in

f
I 2

excess 0 1-10 u Elm s. Therefore, it cOl1.1d be concluded tl1a·t, vii tl1

the possible exception of cloudy days and ice cover, photosynthesis

would. not be limited by light intensi ty. Hence I Parkin and Brock's

(1980b) relationship between percent light intensity and percent

production might have no ecological significance. Nonetheless,

these two works consti ttlte some of tl1e best work on ligh.t intensity

and productivity of the 1970s.

Pfennig (1967) proposed that the species composition of photo-

synthetic bacteria at the chemocline was a result of the wavelength

of light incident at the chemocline. The results o-F numerous
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laboratory studies have lent support to this hypothesis (Matheron

and Baulaigue, 1977; Herbert and Tanner, 1977; Osnitskaya, 1964;

Osnitskaya and Chudina, 1964, 1977). In all cases, these works

have demonstrated specific wavelengths of light absorption by

different species of photosynthetic bacteria. There have been two

field studies on naturally-occurring populations of phototrophic

bacteria. Trtlper and Genovenese (1968) predicted the presences

and demonstrated the occurrence of a blue light (460-500 nm)

absorbing bacteria, .9hl<.?.E~?i_~ .£haeC2:~a.:..~i:eri0..9.E~~_, in Faro 1 Sicily'.

Parkin and Brock (1980a) dernonstrated conclt1sively that the wave-

length of light was a major factor controlling photosynthetic

bacterial species composi tion in tl1~~ee small lakes in \visconsin ..

T:heir conclusion was based on two observat.i.ons: 1) photosynthetic

bacterial species composition (based on spectral analysis) was

strongly dependent on tl1e wavelength of light i'ncident on tIle

photosynthetic bacteria, and 2) they were able to select the

dominant species by changing the wavelength of light in laboratory

cultures (Parkin and Brock, 1980a). This work ~las particularly

beneficial as it points the direction for further questions

concerning seasonal selection of bacterial species due to change

in the incident wavelength of light.

Chemical Factors

Photosynthetic bacteria require light, H
2

S and CO
2

in order to

photoassimilate inorganic carbon (Pfennig, 1979). CO
2

lS usually
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ver, there is some evidence that this may not be

thetic bacteria (Culver and Brunskill, 1969;

and Brunskill (1969) observed a 2.5 fold

14
3similation of C, NaHco

3
after precipitation

.1OOnimol:LPlnibn·· of la:kes~.,,_.. Kel).y (1974)

)robium could be limited by insufficient CO
2

= relieved by the addition of acetate. However,

1 no careful examination of the potential

tivity due to low CO
2

concentration under

3, H
2

S has been suggested as a potential,

1ashi and Ichimura, 1968; Culver and

Nell and Tiedje, 1975a,b; Parkin and Brock,

= levels rise from zero near the chemocline to

j 4.0 mg/L in the monimolimnion along a well-

)st meromictic lakes (Caldwell and Tiedje,

Tiedje (1975b) suggested that in combination

, H
2

S concentration was responsible for the

ithin the water column of species observed in

Lakes, Michigan.

~ggest that the rate of H
2

S production and not

tion is the limiting factor (Culver and

H2S production is

Reduction of

pply to these organisms

lation (Culver and

2S production could be

ere not necessarily

Iphide, as a limiting

~tion (Parkin and Brock,

ity can vary widely

reshold there will be

:i productivity

~hold limitation is a relatively

. and as: yet supporting

to be a prime candidate

~ purple photosynthetic

'fennig, 1967, 1979).

~ would cause a mass

,thetic bacteria

e process in which the

s eroded is called

is process of partial

emocline occurs twice



-35-

a year (Hutchinson, 1957), but has the most impact on the bacteria

during the fall mixing period. In Pink Lake, oxygen is introduced

several meters into the anaerobic zone, resulting in a yearly

mortality of the vast majority of the photosynthetic bacteria

(Dick1Uan, 1979).

This process alone could account for a massive loss of

productivity. Therefore, it has been included here as a possible

controlling factor. As yet, little is known about ventilation and

its effects on photosynthetic bacteria. In fact, it is net known

if all lakes are affected in the same way as Pink Lake.

Zooplankton Grazing

The presence of zooplanktors wi-th Ifpink g11tS H has been ol')served

numerous times (Takahashi and Ichimura, 1968; Culver and Brunskill,

1969; Seki et al., 1974; Prepas and Rigler, 1976; I.Jawrence ~_!:. al. 1

1977). In a.ll cases the pink coloration in the zooplankton was

attributed to the presence of phc1tosynthetic bacteria. However,

spectral analyses of the red pigments in the zooplankton by l~icrlolls

(pers. camm.) on s~~ples of Dafk~~ia 2£- collected by M. Dickman

and R. M. Miracle from the anaerobic zone of Crawford Lake,

indicated that some of the coloration of the animals was due to

the presence of haemoglobin (Fig. 2). At that time no evidence was

obtained that \vOll1d suggest the coloration w'as due to the photo­

synthetic bacteria. From these data it was not possible to conclude

that the zooplankton were grazing the photosynthetic bacteria. In
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Figlrre 2: l~})SOrI)tion spectrum of l1aemoglobin in pa.p!2~rlia

~l). by Nicholls, ~rs. E..?mm. The fig"ure
was obtained from M. D. Dickman.



A
100 --

90

L £OEt{D
air/air 0./ A

•• · · · .. · .. extract 2.0 14/05 A
.-._. extract + dithionite
- - - extract + carbon rnonoxide

Sor~

4/5

42/

.EL ..P_
576 540 -541

570 538 -539

OXYHEMOGLOF31lV
CARBON MOr\JO)()/I·"/E~A10{3L08/N

t540 nrn

.·~53,g nm

y"'" .... . 570 n~
• / \~'. ,/ ~5 75 nm. ~ ~,~~!-. .: ~

• (I . __;JIiiIIIII' t - ,\," "~$ ,it l.)'. '. . ~~ ~"'..,..;.»:.~!J~ ..
~ •.....a..-.~- ~.~...,r:; ~r~ ...

'~ •/ ".: '\ ~--OXYHEft10GLOB1N-- .~ II' ~ ..
~ ~ ... - ~.l!l '.

';r~ •
\\ ..

\~.
\, '"',

CARBON fYi'OfvO>:V ~~.,~\ ~ . .
HEfv1()GLOBlrJ ~-- \\ '.... \~~REDUCED HEMOGLOBIN" ~. ,\. .

'

-8 e "
.,~ .. ,~ ..."'.,it ,..,"·.,e '-...

.......,,, ,,.~

~ ..~
',~ fiJ4~ ••••

.....,~.--.......:.....
~ ...........:: ...

............. ~:"
...~loi"''!liita;~I~,~•.•,Qft.c.:lJ:~"" )"i,. Ie" ---....____ ~

~,,----- f-;M""",L.3'-t!\!l.. ... ~'"", ~ .........

--~"". ~wL>_~.•_ ••J... t ! I I 1 1 .. ' ' l_~....--..,.""_j~.__.L..<",__~r::=:::t,~l I i :r
480 500 520 . 540 5€·O 580 600 ' 620 640 660 680460

1 1 !

420400

fO

2()

80

.
L. 420 nm

r\
70 I- • (.~415 nl1'l

2: l :/" \o I '.
i=: "
& 60 I \ \
o : I · \
U'):' :
en : ,. : \
c:::[. •

UJ 50 • I :. \
~ J \\
~ 40 II l
~ / \Q {.j\'"

30 '\\ ....
\ ...., ....

'- ....
.~ '.~ ....

~"., "iiI.~ ' .
~1lii'!fI~",.....

VI,4V£ LENGTI1 (NAr'JrJ()r}f1ETr~~E~S)



-38-

fact, the presence of zooplankton in the anaerobic zone could be

interpreted as a predator avoidance adaptation.

Hence, it was still necessary to carry out labelling

experiment~s to determine if the zooplankton did graze the photo­

synthetic bacteria.
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INTRODUCTION

In the past decade, many authors have observed that the biomass

and primary productivity of the photosynthetic bacteria vary widely

depending on the time of year (Takahashi and Ichimura, 1968, 1970;

Culver and Brunskill, 1969; Lawrence et al., 1978; Parkin and Brock,

1980b). Most have attributed the observed variation to one of a

number of physical and chemical factors (i.e., light intensity and

H
2

S concentration). However, in all cases the factor suggested

as the major limiting factor was often the only factor examined

(Culver and Brunskill, 1968; Takahashi and Ichimura, 1970).

Studies that have examined a number of factors tend to use either

a larger number of lakes over a single day (Parkin and Brock, 1980b),

impose laboratory conditions on a natural population (Parkin and

Brock, 1980a) or examine the diurnal effect of a single factor

(Parkin and Brock, 1981). To my knowleqge; -no one has

examined the seasonal variation in primary production and biomass

as a possible function of several factors.

There have been many studies that attempt to convince the

reader of the importance of the photosynthetic bacteria to an

aquatic ecosystem (Lyalikova, 1957; Czeczuga, 1968aj Sorokin, 1970;

Hayden, 1972; Cohen et al., 1977a,b). All of these studies claimed

that the photosynthetic bacteria were important because they made

a substantial contribution to the total inorganic carbon fixed in

the lake. Recently these criteria were questioned because they
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tended to reject lakes where the photosynthetic bacteria made

a relatively small « 1%) contribution (Parkin and Brock, 1980b).

An alternative would be to demonstrate not only a contribution to

the total inorg'anic carbon fixed btlt that some of the prirnary

production got into the secondary level of the food web. This

would involve den10rlstra.ting tl1a-t some of the photosyn'thetic

bacterial production was assirr.ilated b~{ a fler:bivore (for exarnple

a zooplankton). r~J.1he cladocern zooplank Jcon f Da.phn~_~~ £ul~~J llas

been observed in the anaerobic zone {Prepas and Rigler, 1978) and

contains a blood-like ha.ernoglobin (Fig. 2) \vhic:h vverula. allow it

to stay in the anaerobic zone for an extended period of time.

These o:bser,la:tions suggest that the ZOoI)larlk-ton are able to s·tal!.d.

what are nOl-"1ual1y toxic condi tions of the anae!~obic zone 1 2.. t least

for a short time. However, it is not known if the D~hnia 3E.

swim into the anaerobic zone simply to avoid pr~dation or if they

actually utilize the photosynthetic bacteria. Takahashi and

Ichimura (1968) and Sorokin (1970) claimed to have demonstrated

zooplankton grazing, but to my knowledge the data were never

published.

The purpose of this study was to collect chemical (bicarbonate

concentration) and physical (light intensity and ventilation) data

that would lead to an explanation of some of the seaso~al

. to . h· .. t· .~ {14 k \ d bOvarla lons In t e prlmary produc lVl~Y C uptareJ an· lomass

(bacteriochlorophyll concentration) of the photosynthetic bacteria

of Crawford Lake, Ontario.
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Furthermore, it Tt-laS necessary to examine the question of the

importarlce of the photosynthet.ic bacteria to the tot~al primary

production of the lake, demonstrating that they fulfill both of

the criteria--primary and secondary production contributions--to

the lake.
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SITE DESCRIPTION

Crawford Lake (43 0 28'N, 79° 57'W) (Fig. 3), located near

Cam~~ellville, Ontario, is a bicarbonate-rich meromictic lake

(BO}~~Of 1973; Dickman and Hartman, 1979). The lake has a steep-

sided conical mo~phometry, with a mean depth of 10.5 meters, a

maximum depth of 24 meters, an area of 2.1 x 10
4

m
2

and a volume

5 3
of 2.2 x 10 m. The lake is protected from the wind by steep

dolo3ite cliffs topped with a deciduous-coniferous forest.

l1ATERIALS ~.ND 1-1ETliODS

Sampling Schedule

Crawford Lake was sampled weekly during th~ 1979 field season

from mid-May to fall overturn at the end of November. I felt that

tr1is sa.!npli::g schedule ,\:"ould reveal any sea~onal changes. In the

seco~d year (beginning May 1980), a more intensive schedule was

adopted in oreer to mGnitor day-to-day changes as v,~ell as seasonal

changes. In 1980, a daily sampling schedule frcm the loth to the

20th of each month was begun. In addition, there were periodic

samplings rn.ade between the 10 c011secutive sample periods.

In 1980, the intensive sarnpling program was begun in 1'1ay and

conti:1ued to the October overturn. Inclement weatller in Noveml)er

(1980)- forcEd a saInplirlg regin18 of every other day from the 9th to
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Contour map of Cra\'lford Lak.e, ~di th both area
and depth in meters (after Prepas and Rigler,
1978) .
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By the end of the month (25th of November) the lake had begun to

freeze. The lake was also sampled on-two day~ in December (5th and

7th) following a thaw period. However, after the 7th of December

the ice conditions forced me to terminate my sampling program.

Conductivity, Oxygen, Temperature and Light

On each sampling date in 1979 and at a minimum of once a month

in 1980, the following profiles were obtained: conductivity

(umhos/cm), tempera-ture (~C), oxygen (%- saturation) and light (foot

candles; starting September 1979). Conductivity, temperature and

dissolved oxygen were all measured using Yellow Springs Instrument

Company meters (Model 51 and Model 33, re§ipectively). The light

measurements were made using a Protomatic meter (Dexter, llichigan).

Temperature, dissolved oxygen, conductivity and light

profiles were made at one meter depth intervals from the surface of

the bottom of the lake (0-23 m at my mid-lake sample location) or to

the zero point of. the meter. Conductivity was measured at 0.25 meter

intervals from 13 to 17.0- meters in late November. Measurements

were also taken in reverse order on several occasions, in order to

check meter readings. Light measurements were taken under direct

light conditions (i.e., no cloud cover) whenever possible. On days
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of partial cloud cover measurements were taken both in direct

sunlight and under cloud cover.

Measurements of conductivity, temperature and dissolved oxygen

,are displayed in' .isopleth graphs similar to those presented by

Wetzel (1975). Measurements of light intensity from 13 m were used

as an indicator of the..intensity at the chemocline, because below

this depth the meter approached its lower limit of sensitivity.

Chemocline Location

In order' to study the photosynthetic bacteria it was necessary

to select a method that would allow me to locate the top of the

chemocline with some precision. The conductivity profile from 13

through 16 meters provided a quick .and easy method of locating the

chemocline. The chemocline loc~tion often coincided with the

dissolved oxygen minimum. However, this correlation failed when

the mixolimnion developed an anaerobic zone above the chemocline in

August. At these times (as was the case in August-November 1980)

it was possible to check the chemocline's depth with a light meter.

The rapid drop in light intensity as recorded by the underwater

photocell was always correlated with the presence ofa dense "cloud"

of photosynthetic bacteria at the chemocline.
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Water Column Tr~nsparency (Secchi Disc)

Water Col~~~ Transparency was determined using a 30 em Secchi

Disc. The disc was lowered into the water on a metered cord. The

depth (in meters) that the disc disappeared from sight was recorded

and is referred to as the Secchi depth. All measurements were made

in the shade of the canoe.

!:,1ethc.:.9- for Obtaini~_vJater Sarnples for C11er(li~a~-.J\na_~~isL

Charact~rization, Bacterioch!or~:hyllAnal:lsis and. Produci:i.vi ~)~

In 1979 and 1980, ~l1ater samples '\vere taken froll1 the rnoni--

rnolirn:nion in order to dete:cmine depth and seasonal changes irl t118

biomass of the photosYlTtheJcic bacteria", I used cell ·rl1lInber as an

indicator of bionla.ss in 1979 '" Howe\l~~r, since 'changE~s in cell ntlnt1.)ey.:

were significantly correlated with the changes in bacterioclllorophyll

concentration, only bacteriochlorophyll concentration was used in 1980.

This simplified the biomass determinations irrmensely.

In 1979 water sarnples containing the })acteria Vlere collect.ed

wi t:l1 a 6 Ii ter Van Dorn water sarn.pler (v.Jildlife SUl;I)ly ComJ).a.n::z;) at:

one meter intervals from 15 to 20 meters. Typically, a single Van

Darn sample was obtained from each depth. HO\tvever, mul tiples of tl1ree

were taken at each dept.h frorn time to time in orc1e~c to calcu.late sartl.ple

variance. Photosynthetic bacteria are both light and temperature

sensitive (Pfennig, 1979). For this reason, the water containing the

bacteria was stored on ice in black 3 liter bottles until t~ey could

be transported back to the laboratory (us'ually \v_i.t"nin two hours). T11e

laboratory procedures for characterization and ·bacteriochlorophyll
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analysis are presented in a later section.

A twelve volt sealed aquatic bilge pump was secured to a 30 m

garden hose (metered at one meter intervals). The pump was powered

by a 12 volt battery located at the surface. The system was

operated by lowering the pump end of the hose to the desired depth,

waiting five minutes for clearing and then collecting the desired

water sample. This system provided a continuous water supply from

the desired depth.

In 1980, samples were taken every three meters from the top of

the chemocline. The following parameters were measured: pH,

alkalinity, H
2
S, bacteriochlorophyll ,concentration and primary

productivity. As well, samples were taken periodically to attempt to

characterize and culture the photosynthetic bacteria. However, a

viable culture w~s not obtained.

Chemical Analysis

pH

Three water samples were taken from each of 0, 3, 6, 9, 12 .and

15 meters and top of chemocline twice a month (first and last day in

the field). The pH of the ~ater was determined in the field using

a Metrohm Herisaw pH meter (model #488). During May to September a
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gel-filled pH probe was used. Both were standardized using pH 4.0,

7.0 and 10.0 buffers.

Alkalinity

Replicate water samples were obtained as noted in the section

on pH. The alkalinity of the water was determined using a standard

titration method (Lind, 1974). Lake water was titrated with 0.02 N

H
2

S04 to an end point of pH 4.3 determined both colormetrically

(bromcresol green-methyl red indicator) and with a pH meter. The

following calculation was used to determine the mgcaC0
3
/1iter from

Total Alkalinity
(mgcaC0

3
/1)

C = titration of
indicator

(A-C) X N X 40,000
mls of sample

A = Volume of Acid to titrate to
pH 4.5

N = Normality of the Acid

All titrations were done in the field. Samples from the chemocline

had to be filtered first because the photosynthetic bacteria's pink

color interfered with the titration.
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Determination of Bacteriochlorophyll Concentration

This parameter was monitored throughout both of the field seasons.

The bacteriochlorophyll concentration was used primarily in monitoring

seasonal changes in photosynthetic bacterial biomass during both

field seasons.

Water samples (containing the photosynthetic bacteria) were taken

from the monimolimnion in the following ways. In 1979, a profile of

biomass versus depth was obtained by sampling at a series of deptlls

(15-20 meters) with the Van Darn. In 1980, only the most concentrated

zone of photosynthetic bacteria was sampled. This was always at the

top of the chernocline which was at a depth of approximately 15 ffi.

Both samples were obtained as described in the above section.

Fifty to five hundred milliliters was filtered through a Whatman

GF/C filter concentrating the bacteria on the filter. This was

repeated a minimum of three to a maximum of ten times for each bottle

returned to the laboratory.

In 1979, samples were contained on 'the 'tilter paper~, lyophilized and

stored at -76 0 in dark containers for a maximum of two months. Some

filters were analyzed immediately in order to determine the loss of

bacteriochlorophyll due to storage. It turned out that the loss was

minimal. The water samples were filtered in the field in 1980,

stored on ice in the dark and analyzed for bacteriochlorophyll within

two weeks after filtering.

In both years the analysis of the bacteriochlorophyll concentration

on the filter was done in the same way.
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First the samples containing the photosynthetic bacteria were

. homogenized (using a glass homogenizer) into approximately 30 rnL

of an acetone:methanol:water mixture (80:15:5; Daley et a!., 1973).

The resulting slurry.was then passed through another Whatman GF!C

filter with 3 to 5 mL of Acetone-Methanol H
2

0 mixture. The

supernatant was collected and the volume meas~red and analyzed

spectrophotometrically (from 640 nm - 670 nrn). The residue left

after the first extraction was re-analyzed to determine the

efficiency of the extraction procedure (about 90-95%). All the

filters containing the photosynthetic bacteria were analyzed, hence

a mean and standard deviations were calculated for each water sample.

The bacterioclorophyll concentration was calculated from data

obtained from the spectrum according to the equation of Takahashi

and Ichimura (1968):

mg (BChl)654/L 10.2 X D X F

D Absorbance at 654 nm

-1
F = (Extr'acted Volume) X (Filtered Volume)

This method used 90% acetonei therefore, a number of samples were

redone to .check if this caused a difference in the concentration

calculation. The concentration di·ff.e'rence calculated was minimal

as -long as ·the acetone: methanol peak was used for the calculation.

The.methanol tends to shift the 654 nm peak to 657 nm.
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In Situ 14c productivity Method for Determination of the Carbon
Uptake by the Photosynthetic Bacteria

The productivity for both the photosynthetic bacteria and algae

was measured in situ by the 14c method (Lind, 1974; Parkin and Brock,

1980).

Field Procedures

Biological Oxygen Demand (B.O.D.) 125 mL bottles (3 light, 3

dark) were flushed with at least three volumes of water obtained

1
from the desired depth. The bottles were then inoculated with 8

14
uCi of sterile anaerobic NaH C0

3
solution per bottle and stoppered

to prevent air bubble formation. After a five minute dark incubation,

the bottles were resuspended to depths corresponding to the

collection depths. The incubation period was 4 hours (10 AM to 2 PM).

After incubation the bottles were prepared for scintillation

·counting.

lAn In Situ productivity Machine was developed throughout the
experimental period and used in the spring (the first prototype)
and again in the late fall (the second prototype). The methods for
the new device are in Appendix 1.
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Laboratory Procedures

Filtering

After incubation, two 25 mL replicates of water from each B.O.D.

were filtered fur0 ugh a 0.45 urn millepore filter (HAWP 04700) collecting

the photosynthetic bacteria on the filters. Each filter was then

washed with 50 mls of 1% HCl and dried or fumed for 4 hours in HCl.

Both methods were used as it was suggested (Parkin, 'pers. carom.) that

the fuming method would provide better results by reducing l4C02

retention on the filter. In comparing the two methods I observed no

difference. Hence, the 1% HCl wash method was used most often as it

was easier to use and allowed me to handle more samples.

The dried and washed filter papers containing the photosynthetic

bacteria, were then placed in a toluene-based scintillation cocktail

(A.C.S. Amersham-Searle). The vials were stored in the dark until

they were counted (at least 24 hours after the filters were placed in

the scintillation cocktail).

Scintillation Counting

The vials containing the photosynthetic bacteria were counted

in a Searle Liquid Scintillation counter for 20 minutes per vial.

Along with the sample vials were 5 blanks each containing scintillation

fluid and an unused filter paper.

The number of counts/min. and the internal to external standards

used to calculate coun~ing ~fficiency,.wererecorded.
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Background

It was necessary to correct the sample vials for the artificial

luminescence of the scintillation fluid-filter paper combination'.

This was done by subtracting the blank (cocktail and filter) from the

sample vials containing the labelled bacteria, filter and scintillation

cocktail.

Efficiency and Quenching

The scintillation counter's ability to count the real number of

emissions from the l4carbon in the vials was dependent on two factors.

The first was inherent in the machine's electronic inability to detect

all the emissions from the fluid. The second was due to the loss of

emissions from chemical absorption within the vial (quenching). These

two factors potentially-contribute to the underestimation of the actual

number emissions.

Bacteriochlorophyll absorbs light, hence affects the amount of

quenching. The effect of the bacteriochlorophyll on the efficiency

was corrected by placing known concentrations of bacteriochlorophyll

into scintillant, then adding l4c hexaderane with a known D.P.M.

(disintegration per minute). A series from no bacteriochlorophyll to

relatively high concentrations was counted. The C.P.M. (counts per

minute) to D.P.M. ratio was used to give the percent efficiency

expected for any bacteriochlorophyll concentration. This was further

simplified by using the ratio of the internal to external standard

which was dependent on the amount of quenching. The internal to external
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ratio was plotted against its respective percent efficiency. The result

was a graph that for any internal to external ratio gave a corresponding

percent efficiency value. Since each C.P.M. had an internal to

external ratio associated with it, it was possible to correct the

C.P.M. of the sample vial directly without knowing the bacterio-

chlorophyll concentration. This method also took into account the

machine's inherent inefficiency. The final result being that both

factors were corrected with one calculation.

Calculation of l4carbon Uptake

3
The mg Carbon/rn .hr. uptake was calculated according to Lind (1974).

The equation used was:

Pl,Pd = A (~x C x 1), where
R t

Pl,Pd = light and dark productivity

A = # counts corrected for background and efficiency

r = volume of the B.O.D. bottle
volume filtered

R

t

c

2.22Xl0
6

X uCi added

time (hrs.)

Alkalinity temperature conversion factor

Zooplankton Grazing on Photosynthetic Bacteria Determinations

General Approach

I was also interested in demonstrating by direct observation that

the zooplankton (specifically Daphnia pulex) were grazing

on the photosynthetic bacteria. Two methods were selected. The first
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was based on being able to label zooplankton with previously labelled

l4c of photosynthetic bacteria. The second method consisted of

spectrophotometrically analyzing their gut contents for bacterio-

chlorophyll.

It was hoped that the one method would confirm the other.

l4carbon Labelling of the Zooplankton (Haney Trap)

This potentially quantitative method was used in a qualitative

way to show photosynthetic bacterial uptake by Daphnia pulex (the

dominant form present in November 1980).

A Han~y Trap (supplied by Dr. P. Stokes, University of Toronto)

was used to capture and label Daphnia pulex found at 15.5 and 16

meters in Crawford Lake. All the experiments were attempted in late

November 1980.

Preparation of Bacterial Pellet

The trap was inoculated with a l4c labelled pellet of photo­

synthetic bacteria prepared in the following way.

One liter of water from 15 meters (containing photosynthetic

bacteria) was incubated in ~e presence of 100-200 uCi of Na (14C)C0
3

low light (100 ft. ·candles). The sample was then concentrated by

'centifugation, washed with filtered sterile anaerobic water and

recentrifuged. The resulting pellet was resuspended in sterile
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water (approximately' 15 mL) taken from 15 meters and in the dark

until it was used. later that-day.

Incubation of the Haney Trap

14
The piston in the trap was inoculated with the e labelled

bacteria and closed. Then the trap was lowered to the depth of the

initial sample (15.5-16 m). The outside plexiglass doors were closed

with a messenger which also opened the piston containing the bacteria.

The zooplankton were incubated for 0, 5, 10, 15, 20 and 25 minutes

in separate tests. After the incubation the trap was pulled up and

the zooplankton removed.

Preservation

After incubation, the zooplankton were collected and placed in

10 mL of carbonated water (in order to anaesthetize them, Prepas &

Rigler, 1978). Then forty percent formalin was added to bring the

concentration of formalin to approximately 4%. The samples were

transported to the laboratory for further analysis.

Counting the l4c Content of the Zooplankton

Upon returning to the laboratory the Daphnia pulex were taken
\

from the sample bottles and washed; first with 25 mL diluted H
2

0

and then with 25 mL of 1% HCl. The Q. pulex were then placed into

scintillation bottles containing 5 mL of tissue solubilizer (N.e.B.

Amersham-Searle) for 7 days. Then 10 mL of organic scintillation
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cocktail was added. The vials were stored in the dark for a minimurn,~

of 72 hours. After the second storage period the bottles were

placed in a scintillation counter and counted every 20 minutes for

4 hours per vial. This included a blank that held the N.C.S.,

o.C.S. and non-labelled Daphnia pulex. This experiment was repeated

at least twice per incubation time interval and as many as 5 times

for the 5 minute incubation.

Each vial was corrected for background and for the number of

Daphnia pulex per sample vial in the following way:

# of counts/min/~. pUlex (C.P.M.-B) x l
D

C.P.M.

B

D

Counts per minute

Background

# of D. pulex in the vial

Spectral Analysis of the Gut Contents of Daphnia pulex

An alternate method was selected to test the observations made

using the Haney Trap method. This was also carried out in late

November using Daphnia pulex.

D. pulex were captured using a Birge-Juday closing net. The

samples were taken by pulling the net from 17 to 15 meters and then

closing the net. Samples were brought to the surface in the closed

net and preserved as described in the previous section.

In the laboratory the £. pulex were washed with distilled water

and homogenized in 2 mL of 90% acetone. The resulting solution was
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filtered (Whatman GF/C) and washed in 3 mL of acetone. The super­

natant was examined using a scanning spectrophotometer f~om 370 nm

to 700 nm. The resulting spectrum was compared to the spectrum

obtained from an acetone extracted sample of photosynthetic bacteria.
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RESULTS

Physical Parameters

Monitoring Chemocline Changes

The reasons for monitoring the seasonal fluctuation in chemo­

cline depth were two fold: 1) the peak population of photosynthetic

bacteria coincides with the first major increase in conductivity at

14-15 m (Fig. 4); 2) the formation of the chemocline in the spring

and deterioration in the fall can be monitored and compared to

changes in photosynthetic bacterial population size (Fig. 5).

The chemocline was delimited in Crawford Lake by a steep change

in conductivity (600 to 1000 umhos/em (Fig. 5». Specific

conductance was therefore used to monitor changes in the depth of

the chemocline. Chemocline depth fluctuated between 14.0 and 15.5

meters in 1979 and 13.5 to 15.0 meters in 1980. These fluctuations

followed a very predictable seasonal pattern. In the spring of both

years, the chemocline was located at a depth of approximately 15.0

meters. During the spring, observations made with S.C.D.B.A.

indicated that the photosynthetic bacteria in the anaerobic zone had

formed pink "clouds" with an upper limit of approximately 14.5 m.

Gradually, the clouds formed a plate as the chemocline-mixolimnion

junction became sharper during the summer. The plate was present

during the summer and early fall.

The chemocline coincided with the top of the anaerobic zone

during spring (Fig. 6). However, during the summer the water above the
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The relationship between bacteriocl--).lorophyll
concentration (mg/m3 ;---) and conductivity
(Qmhos/cmi ---i corrected to 25~C) as a
function of depth (meters).
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Figure 5: An isobar diagrarn of te.l1pE:rat-L1re corrected (25°C)
specific conductivity (u.'1lhos/cm) as a function
of both depth (meters) and time (months). The
thickened line at zero meters extends over the
period of ice cover. The thickness of the line
does not represent ice thickness. Plot of raw
data in Appendix 3K.
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Figure 6: An isobar diagram of dissolved oxygen (% saturation)
as a function of both depth (meters) and time
{months May 1979 to February 1981)~

The thick line at zero neters was used to
represent ice cover. The thickness of the line
does not represent ice thickness. Plot of raw
data in Appendix 3L.
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chemocline (i. e., the lO\-v1er hypolirnnion) beca!ue anaerobic (Fig. 6).

The chemocline was thereafter defined in terms of rapid light

attenuation and specific conductivity.

Ventilation ~7as defined as t,h.e erosion of tIle top of the chenlo-~

cline by wi11d-genera ted mixing. This was obser·ved in the fall of

both years (1979 and 1980). Prior to ventilat:ion i tlle chernocline

was observed at 14.0 meters in late October 1979 and 14.25 meters

in Inid-lJovembeY" 1980 (Fig" 5). Ventilation erodel..l tl1e tOIJ of th.e

chemocline to 15.1 and 15.25 meters in 1980. The erosion of the

chemocline occurred in the first week of Noven~er 1979 and between

the 17tll and 21st of t~overl1ber, 1980.

In both years complE;te Inixolirnnetic horneotlierrny vIas obser~ve(l

only after ventilation had occurred (Fig. 7). This was unexpected

as it was assumed that homeothermic conditions necessarily preceded

",
ventilation. This will be described in more detail in the discussion

section..

Seasonal Changes in the Chemocline Light Intensity Incident on the
Chemocline

Productivity data suggested the subdivision of the Sllil@er into

three periods: spring (May-June) 1 summer (July-September) and fall

,(October-:November). The objective for divicling the phOt.Osyz1thetic

bacteria seasoI1al product.ivity pat'tern into 3 was to determine Wflether

light intensity or light quality and photosynthetic bacterial

.producti'vity follo\ved the same seasonal pattern~ Light intensi,ty'

measured at 13 nlete:cs y·;·as used to indicate the relai:ive aniount of
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Figure 7: An isotherm diagr~~ of temperature (CC) as a
function of both depth (meters) and time
(months, May 1979 to Febru2~Y 1980).
The thick line at zero meters represents ice
cover. The thickness of the line dces not
represent ice thickness. Plot of raw data
in Appendix 3M.
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light incident at the cllemocline (Fig. 8).

There was no significant difference (U b = 62, U "t = 33 at
o s crl

P = 0.95) between the number of sample days of high light intensity

in spring as compared to summer. However, there was a significant

difference (U = 36.0, U I = 55 at P = 0.95) in the nuwber of
obs crlt

days with high light intensity during the summer when compared to the

fall. Therefore, light intensity was high in spring and SUIDn1er,

low in fall while the pattern of photosynthetic bacterial product-

ivity was low in the spring and fall and high only in summer.

Changes in pH and Alkalinity at the Chemocline

Alkalinity was measured because of its possible importance to

photosynthesis (Pfennig, 1979) and because it was necessary for the

d I • . += 14 I I ( 1 I )etex1TLJ.natlon OJ... C ~prJ.mary productlon Vol env~.der, 1969b ...

~'he chemocline was moni tored for changes i'n pII (-log [H-f·]) and

alkalinity (expressed as n-lgcaC0
3
/1) from April to May 198().

The alkalinity at the chemocline peake~ in August at 350 mg

caC0
3
/1 (Fig. 9).

December (Fig. 9).

The lowest recorded value was 154 mgCaCO,/l in
3

The pH was 6.6 ~ .05 throughout most of the study period,

ranging from a maximum of 6.8 in August and a minimum of 6.4 in

July (Fig. 10).



Figure 8:
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Light intensity (it. candles) at 13 meters
plotted against time (months May 1980 to
DecentlJer 1980). rrhe points ~. u' wi thout
vertical bars represent the light intensity at
1200 hours. Points ) with vertical bars
represent the average of the recorded
in'te!1Sities over the time period 10 Ai\1 to 2 PM.

The vertical bars extended from the lowest to
the highest light intensity va1ues~recorded

ort the sarnp1e day.
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Figure 9: The change in alkalinity at chemocline
(MgCaCO~/l) as a function of time from

May to r5ecernber 1980. The InaximUln
recorded error was::!:. 7.5 m<JCAC03/1 in August.
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Figure 10: The pH at the chemocline recorded from April
to December 1980. The vertical bars represen-t
the potential range due to the accuracy of
the pH meters used~
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Biolopcal Parameters

Monitoring Changes in the Population Size of the Photosynthetic
Bacteria

Bacteriochlorophyll concerltration was used as an inc1~icator of

photosynthetic bacterial population density (Severn, 1979). I

was interested in examining seasonal cl1anges in the population size

of tIle bacteria for patterns that could 1)8 correlated wi'th physica.l

and biological changes in the lake.

Analysis of the 1979 population data shovved TiO pattern. The

population size of photosynthetic bacteria decreased from a maximum

in June and maintained a. level appro}:imately i1alf that of J"tlne t s

for the rest of the study period (Fig. 11).

In 1980, the population size of the photosynthetic bacteria
I

asci llated, approximating a SinlJSoidal Cllrve. The sil1.e curve was

fitted by eye (Fig. 12). This curve was approximated by the

eqtlations, Y
1

= 35 sin (36 x + 86.4) + 100 1 wIlen x<150 and y"
2

53.2 sin [2.5 (x-ISO + 361] + 185, when x.> 150 and \vas t.ested

using least squares analysis.

The population size of the photosynthetic bacteria peaked in

August (day 100) and again in December (day 221) .

Cycling was observed in the change in the wavelength of the

peaks in the blue region of the acetone spectra obtained during the

study period (Fig. 13). The cycling was best represented by peak #1

(Fig. 14). The change in t.ne .peak folloT~ved a sine curve (Fig .. 13).
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Fi.gllre 11:. Bacteriochlorop11yll concentration (rng/In
3

)
as a function of time (days a11d IT10Ilths) •
The straight line was fitted by "regression
analysis and the dotted line (---) by eye.
The vertical bar on the straight line
represents the 95% confidence interval.
Day zero was arbitrarily set equal to May I,
1979.
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Figure 12: 3acteriochlorophyll concentration as a function
of time (days and months). Line (A) is a
sinusoidal line (y = 35 sin (3.6x + 86.4)
+ 100 I \'Jhen x ~ 150 or Y2 = 53.5 sin [2.5 (x-ISO)
+ 261] + 185, when x ~ 150). Line B was
fitted by regression (y = O.33x + 62). The
vertical bar on the straight lirie represents
the 95% confidence interval. Day zero was
arbitrarily set equal to May 1, 1980.
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:£t'ig'ure 13: Seasonal change in wavel~ngth (nm) in the
saret region of the bacteriocll1orophyl1 spectrum.
The line fitted through the points is
approximated by the equation, y = 5.5 sin
(1.95x + 83.67) + 339, the vertical bar
re'pre~~ents a range of ± • 5 nIn on rTtu1..ti:ple
spectra t,aken orl tlla t day.~

'.
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Figul:'e 14: Acet.one extracted sI)ectrum of photosynthetic
bacteria.l pigTG.ents.. 'Phe. 'ver-ticc3.1 bar rep:r:esent.s
0.05 absorbance units and the wavelength was
meas'ured in nanome'ters.
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A trough occurred in August and a peak was observed in early to

mid-November (day 190).

Monitaring Chan.ges in the Population Size as a Restl1 t of Ventilation

The objective was to collect data that would indicate the

effect of ventilation on the pOplllation size of .phot.osynt.hetic

bacteria. Saluples were collected at t)" 25 rneter intervals tllrougll tIle

chemocline (Fig. 15). The peak bacteriochlorophyll concentration

was observed at 14.25 meters on November 17th. Bacteriochlorophyll

concentration maxima were observed at 15~25 meters on November 21st

and Decernber 9th. Hence, from Nov't'enlber 17tl1 to 21st the chernocline

depth decreased by one meter.

Seasonal Changes in Primary Productivity

'.
The seasonal changes in primary productivity of the photosynthetic

bacteria \Vere exarnined in order to deterlnine v.711ether a seasonal

pattern existed. Only one general pattern emerged. I observed that

the sttldy period could be subdi·vided into tl1ree main per.iods (spring,

sununer and fall) ba.sed on tlle analysis of tl1e pllotosynthetic bacterial

primary productivity. Spring (May and June) and fall (October to

Decernber) itlere characterized by relatively low primary productivi ty

(1~8 to 25 mgc/m
3
/hr; (Fige 16). This period also demonstrated a

range of primary productivity values over a wide range of bacterio-

chlorophyll concentrations (Fig. 17). The SUlTilller period (July to

September) vIas chara.cterized by higher productivity valu.es (25 to
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Figure l5: Bacteriochlorophyll concentration (mg/m
3

) as a
function of depth (meters) I for NO\Ternber 17 (--) /
NoveJ.'"Tlber 21 (---) and December 9 (_. -). The
horizontal bars represent 95% confidence intervals.

'.
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Figure 16: The ~rimary productivity (PI-Pd equals 14c
uptake in light bottle - 14C uptake in dark
bottle; mgCarbon m- 3 e hr-1 ) as a function of
tin1e (May -to D(~cernber 1980 (1).. Tlle vertical
bars (~1) represent the mean net prod11ct.i.'vi ty
and 95% confidence interval for each month.
The line (--..__.) joins the mean net productivit.y
values of each month. For clarity purposes
the mean and 95% confidence values were
off-sc~t to t:lle r.i .. ght of tl1e rnid-point, of each
mont.h.
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Figure 17:
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-3
P::cirnary productivi ty (Pl--Pel mg Carbon x m
x hr-' l ) ploti,:ec1 against bacteriochloropllyll
concentration ([bacteriochlorophyll] mg/m3).
The numbers (for exarnple X2) represent
nurnber of Valt12s identified by that.
particular x and y~

!1ay and June

July, August and Septenilier
o October, I'Jovernber and December
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125 mgC/m
3
/hr; Fig. 12) I which were distributed over a narrower

range of bacteriochlorophyll concentrations (Fig. 17).. In all

subsequent analyses this set of subdivisions will be used to

simplify tl1e description of tIle tilhe period !v1ay to l'Jovember, 1980.

I,ake transparency! light intensi ty anc1 alkalini -t~l' I vlere

moni tared and compared to cor:cesponding cllanqes in pl10tosynth.etic

bacterial primary productivity during the 1980 field season. The

effect (if any) that these changes had on primary productivity of

t::he f)hotosynt:heticbacteria. "vas eY~aInined in this sec'tio11 ..

Lake Transparency

~

primary productivity as a function of lake' transparency (Secchi

depth) yielded no significant (meaningful) relationship (Fig~ 18) 4

correcting for population size (by dividing net productivity by

bacteriochloropl1yll concentration) did no-t imprC\le the scatter of

the points or yield any indication that lake transparency affected

primary productivity (Fig. 19).

The Effect of Light Intensity at 13 Meters

No positive correlation was found betTlA7ef.2:n light intensi ty and

bacterial priluary producti\li ty for the spring (Fig. 20) 1 surnrner

(Fig. 22) or fall (Fig. 24). Nor was there any correlation found
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Figure 18: Primary productivity (PI-Pd) as a function
of Secchi depth (meters). The data were
divided :by season, Spring ~ I S'UltLrner (0
and }'all 0 for· reasons given in text.
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Figure 19: Population corrected productivity (PI-Pdj
[BChl] as explained in the text was plotted
against Secchi depth (meters) * The data
were divided into 3 seasons (Sprina
SU.:n:uner 0 and Fall 0) for r~aso;s "given
in the te:xt.o

~.
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Figure 20: Primary productivity (PI-Pd [mg carbon/m
3

/
ro]) as a function of light intensity
incident on 13 meters (ft. candles) for
the Inont.b.s of I"lay C) and Jllne
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Figure 21: Primary productivity (PI-Pd/[Bchl])
corrected for the population size of photo­
synthetic bacteria as a function of light
intensity incident on 13 meter (ft. candles)
for ~lay 0 and June
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Figure 22: Primary productivity (PI-Pd) as a function
of light intensity incident on 13 m (ft.
cand.les) for the mon·ths of ~July 0 '
August 0 anc1 Septernber
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Figure 23: Prod~ctivity (PI-Pd/[Bchl)) corrected for
population size as a function of light
intensity incident on 13 meters (ft~

cand.les) for Ju.ly 0 ' l\_llgUSt 0 and
September

Ji.
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Figure 24: Primary productivity(Pl-Pd)as a function
of the light intensity incident on 13
meters (ft. candles) for the months
October , l\lovember: 0 and December /.),.
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between light intensity and primary production corrected for the

size of the photosynthetic bacterial population for spring (Fig.

21), surnmer (Fig. 23) or fall (Fi.g. 25). flo\ve~ler I if !/lay \vas

excluded frOTIl t.he Spri!lg analysis 1 then a significan·t (r := 0.99 I

p~ o. 95) po~:;itive correlation bct;w'een both I)riInaJ:~Y productivity

and population size corrected productivity and light intensity

occurred (Fig S',. 20 and 21).

Alkalinity

Alkalinity as a function of both primary productivity and

population size corrected productivity approximated a hyperbolic

curve. This indicated that high productivity values would o~ly De

obtained after the alkalini t.y (predorninantly IICO ...
.:)

plateau value ( 270 mgcaC0
3
/1i Figs. 26 and 27) ~

reacl1ed a

'r.he ol)ject:i've of this portion of tl1e tllesis sttl.dy vIas "CO o}-J'ta.5,.n

diroct: evid.ence tl1at tIle ZOof)la.n.kJ:on V7ere gra.zing the ,photo:3yntb.f::ti.c

bacteria. Two rnethods \vt~:re tised: 1) acetone spectra.l analysis of

the gut contents of I2"," pu.lex, and 2} isotope studies as descritled in.

the methods section.

The wavelength of the absorbance f)eaks of tIle gut contents of

tIle Daphnia pulex and fil tered samples of photosynthetic bacteria

obtained fronl 15 meters coincided (Fig. 28). This indicated tIle

presence of photosynthetic bacterial pigments in the guts of the
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Figure 25: Productivity (PI-Pdl
population size of the
}Jacteria as a flj.nction of li9b.t int.ensi ty
incident on 13 meters for October
Novernber () I and Dece.rrLber 6.



o
N

(~~J Ct')
iJ-t!.......'h'liQ ~~

<1

o

r-r--~~----r-~-='~~l-O
o ~ 0 ~ 0 .~ 0
("Y') ('J "" ....... ..-

( OLx) [lHJ8J
l- Pd-ld



Figure 26:

-111-

Alkalinity (mgCaCO~/l) as a function of
productivity (Pl-pcl). The horizontal bars
represent the 95% confidence intervals Ior
t,he l)rir(~ary proQuction.

,I.
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Figure 27: Alkalinity (mgCaCO~/i) as a function of
productivity (PI-P~) corrected for the
population size of the photosynthetic
bacteria.
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Figure 28:
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The acetone extracted spectrum of the
I)igrnents obtained, from a filtered sa.n1.ple
of I)hotosynt:het.ic bacteria and the gut:.
con'Lents of 2~Et~~~i:-~ ~E~ ob-tained £I"01'n

the chemocline of the Crawford Lake.
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zooplankton.

Analysis of the data from labelli.ng experiments sh.owed increasing

uptake of labelled material over time (Fig. 29). This indicated that

the ~ooplankton were taking up and "retaining radioactive material

during the incubation period. Only a five minute incubation was

required to sb.o\"J a significant (p':' C) .. 05) v.p"tak.e over unlabelled

(C011trol) samples (Fig. 29).

fl'he prlrnary prodllctivit.y of tl1e en.tire water columrl was

mO.nitored from Jl1ne to Septenilier i 1980 (Fig .. 30) 1 in order 'that. th·2

:relati'le contributions rnad.e b~l t.hf:~ photo~}yntl1etic b(:i(:tE~x:ia

could. be comparecl to the alg-ae (Fig .. 30).

Both the algal and bacterial pllotosynthet.ic J)roduct:ion sho\ved

)
i. {/' .,.,.. ,.... 'C' I 2.h 1_ \.the sarne trend (Fig. 30· , i. e. I low in trle sljrin9 (\ 10 111'-j ..1m l.cr)

increasing to a peak
2

in A1JgUSt () 45 TIlgC/n1 /11r) and then decreasing in

?
the fall « 10 mgC/m~/hr). The percent contribution of the bacteria

was highest: in 31111e ana July (45-60~6), decreasing to less t:rlal1 1()5s

in Octcber (Fig. 30).

months ~llas 32.

The average percent con-tribu.t,ion for tl10se
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fXihe counts ~per I11inute (Cpr-:1) I?or !?sr:~~~~i_~ 312_"
as a function of time for fed
labelled bacteria (y' =
2.0x + 2*9; r = ~97) and those fed non­
labelled phot.osynthc;;tic }Jacteria



Lr;-~<!
f_ I"d

l~

<!J
>
()

...0
d

L 15
Q..
(...)

o



-120-

Figure 30: Seasonal changes in the total water column
primary productivity (mgC/m2 .hr) of the algae

. and photosynthetic bacteria (June to Oc~ober

1980). The non-stippled area represents the
14.- '.--

Carbon uptake by :both the algae and the bacteria.
The stippled area represents uptake by only
the photosynthetic bacteria.
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Figure 3~: Monthly (June to October 1980) changes in
the percent primary production by the
photosynthetic bacteria of the total
primary production.
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DISCUSSION

The first goal of this thesis was to collect chemical and

physical data that would lead to 'an explanation of some of the

1 .. · h· d·· ( d 14seasona varlatlons ln t e prlmary pro uctlVlty measure as C

uptake) and biomass (bacteriochlorophyll concentration).

The study concentrated on three factors: bicarbonate

concentration, light intensity and ventilation. Changes in

bicarbo.~ate concentration and light intensi ty at the chemocline were

examined with respect to changes in primary productivity, whereas

the process of ventilation was used to explain variations in the

biomass of the photosynthetic bacteria in the late fall. Furthermore,

some data were collected examining seasonal variation in the

spectral location of the carotinoid peaks. These kinds of data

suggested there may have been changes in the quality or wavelength

of light reaching the photosynthetic bacteria. Alternatively, it

may only reflect changes resulting from other variations in the lake.

The second goal of the thesis was to determine the importance

of the photosynthetic bacteria to the aquatic ecosystem of Crawford

Lake. In order to accomplish this it was necessary to demonstrate

two criteria. The first was that the photosynthetic bacteria make

a substantial contribution to the primary production of the lake.

As indicated in the literature review, this has been demonstrated

many times in other lakes, but never in Crawford Lake. The second

criterion suggested was to demonstrate that the photosynthetic
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bacteria nlade a COl1tribution to tll.e secondary production of the

lake (i. e .. I zooplankton). This c01..1ld only be accomplished by

dernonstra_ting that the zooplankton ingested tl1e bacteria, ~lhich

to date has not been demonstrated.

This was the first study en the photosynthetic bacteria in

Crawford Lake to monitor seasonal variation in both the biomass

aXld prilnary prociu.ct,i-vi ty It Iv1any of the tecl1nical problems

encountered could not be foreseen from other studies. Therefore,

this study was treated as a beginning, often asking more questions

than it answers.

Light Intensity and Bicarbonate Concentration

Primary production uptake) 'Ha.S IHoni tored. f.ront IV1av

to Decenlber 1980 (Fig .. 16). Duri.ng that period a ":'lel',Y c1istinct:.

pattern emerged. During the spring (May and June), the productivity

\vas low 011 the order of 2--10 lng' C/l-lr;/n1
3

, increasin-g in t:he sU.rnrner

1
(July-September) to bet\tleen 25 and 150 mg C/'11r/rn _. and. decreasing- in

the fall (October to Decelnber) to values similar in magni tude to

those found in the spring~ This seasonal variation has been

observed nlli~erous times in other meromictic lakes (Huron Lake,

Takahashi and Ichimura, 1968; Fayettesville Green Lake, Culver and
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Brunskill, .1969; t'llaldsea Lake, La.wrence et_ al., 1978). There are

tvJO explanations t.hat are typicalljl used "to explain the seasonal

variation. Takahashi and Ichimura (1968, 1970) suggested that the

pattern was due t:o seasona.l variation in l.ight intensi ty incident

on the photosynthetic bacteria. Alternatively, Culver and

Brunsk~ill (1969) suggested t'hat the pattern "vas due to tJ18 orgarlJ.c

rua-terial associated wi-th the preciI)itat.ion of Ca.co
3

from tIle

mixolilnnion, ~~lhich in turn st:irnulated. H
2

S production. rrl1f3 hypoi:112si.s

sugg-estin9 t.h.at an insllfficient concentrat.ion of H
2

S couLd limit.

productivi ty has recen tly Y'eceived SUPIJOrt frOIp. \!lork done by Parkin

and Brock (1981). They demonstrated that there was a nocturnal

b~ lLJ..~l~-'l.,.P.. n~ H s~ thich \~~Q 'L1~l'11'~ed D'~Y-_.t...J.- _i.... '-J..J....... 2.'" I '/1,1"-0_ .,., .•. - 'i(•.• ."J '- - 4.' t ~ the phototrophic bacteria

the next day. However, there has been no further evidence to

suggest that tl1e precipitation of Ca.C0
3

stim~11ates H
2

S pro(luc·tion~

I

I ..t=
J.. tlle observ'ed varia.tion in primary productivity could be

att.ributed to the s~:asonal varia.tion in th.e intensi i:y of lig-ht

reaching the bacteria, th.E~rl a silnila1:' seasonal .:pattern in

int.Qnsi ty "tJ'ariat.ion should })e However, it is possible

that t:he light intensi ty did. not, affect tLt2 \vllOle 3tndy perioc1 1

that is, it was saturating during some part of the season. In tl1is

case a positive correlation compa.ring light intensity and primary

production might be observed during months that light intensity

was lower.

Changes in light intensity incident on the phototrophic
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bacteria of Crawford Lake were monitored from May to December 1980

(Fig. 8). Throughout both the spring and summer the light intensity

maintained an average mid-day value of between 15 and 20 ft.

candles. However, as the vertical bars indicate, there was an

enormous amount of daily variation depending on weather conditions.

In October there was a decrease in the intensity of the light

reaching the bacteria to between 5-10 ft. candles, which increased

slightly in November. Unlike the spring and summer, the light

intensity reaching the bacteria during the incubation period (10.00

a.m. to 2.00 p.m.) had less daily variation (at least for the few

points which could be obtained). These data suggest that light

intensity probably was not responsible for the spring to summer

variation, but might have contributed to decreased primary

productivity in the fall. However, even the light intensity in the

fall may not have been limiting. Parkin and Brock (1980a)

demonstrated that light intensities of roughly 1-10 uein/m
2

s

(roughtly 3-10 ft. candles) saturated the photosynthetic mechanism

of laboratory and naturally-occurring populations of photosynthetic

bacteria, suggesting that even in the fall, light intensities

exceeded limiting values.

Analyses of the monthly primary production light intensity

comparisons (including those corrected for seasonal variations in

biomass) suggested no positive relationship (Figs. 20 to 25), the

possible exception occurring in June (Fig. 20). However, there may

be too few points to attribute much significance to the relationship
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(Fig. 20). As no positive relationship was observed in October or

Novem})er, at a tirrle \vhen a relationship nlight be predicted based

on the overall seasonal pattern (Fig. 8) and the lower average

light intensities, it was inferred" that some other factor may be

exertirlg a greater lirai tation on the .:priluary production. This \Vas

further supported using an alterrlate relati"'ve measure of tIle

cla£ity of the water, Secchi depth (Figs. 18 and 19). These data

suggested tl1at there was no relatio11ship bet'\veen ·th.e clari ty of the

wa·ter and prima~ry production in ei th.er t.he spring or fall.

However, there was a positive non-significant relationship

/ ":;:;:.. )
(p -- 0.05 l)et.vveen Secchi deptl1 and primary product.ion duri.ng the

howe"rel~ I tlle cont.radicticn, Inay not exist if a re~-evalu.ation of ··v..<b.at

these (lig11t in.tensi t~l and Secchi deptll) ~paralneters really nleaS1J.re

is considered .. Since Secchi depth variation r~flects changes in

tIle color and particulate rnaterial (sLlcl1 as alg-ae) in the r!li~{olirnnion

it may reflect a potential variation in the wavelength of light

reaching t~e bacteria, as opposed to the light intensity measurements

'''lhich reflect the intensi ty of light reaching the bacteria. over a

broad range of wavelengths. This is speculati.on, but if it were

true, then the Secchi depth might reflect a change in the quality

(wavelength) c)f light reaching the bacteria because it. reflects the

concentx'ation of rnaterials in trle water that absorb ligh.t; for

example, algae and possibly some l1UlUic nlaterial from t:he coniferous

forest surrounding the lake, \vl"lereas measuring the light intensity
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indicated something of the magnitude or quantity of light reaching

the bacteria over the range of the phototubes' sensitivity.

The preceding explanation is highly speculative. However,

there is some literature that suggests that certain groups of

photosynthetic bacteria are selected by the wavelength of light

incident on the photosynthetic bacterial layer (TrUper and

Genouese, 1968; Parkin and Brock, 1980a, Pfennig, 1979). This is

especially true for those forms that are found in deeper lakes

(TrUper and Genouese, 1968). If it were true for Crawford Lake,

then a shift in the wavelengths reaching the bacteria or in the

internal components of the bacterial layer might be observed.

The equipment to measure the wavelength of light incident on the

phototrophic bacteria was unavailable during this study.

Alternatively, variations in the location (nm) of one of the two

carotinoid peaks (peak I, Fig. 14), obtained from acetone extractions,

was used because this peak is associated with the light harvesting

material of the photosynethic bacteria (Pfennig, 1979). Therefore,

it was hypothesized that these pigments might reflect seasonal

variation in the quality of the light incident on the bacteria.

A plot of the wavelength (nm) of the peak maximum against time

(days and months) produced a sigmoidal curve (Fig. 13). This curve

suggested that during the study period there was a continuous

oscillation in the species, strain and/or intracellar ~ components

of the photosynethic bacterial layer. Further, the majority of the
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curve falls through the SUffiW.er (Fig. 13) which tends to suggest that

a shift in the layer occurred predominantly during the surrmer.

This tends to support earlier speculation concerning the relation-

ship between the Secchi depth and ~rimary productivity during the

SQmmer (iee./ the Secchi depth reflects light quality reaching

~the bacteria).. Initially, it does not lead -to an ,explana.tion of the

observTed variat.ion in prinlary production front spring to SUTIuuer and

summer to fall i hO\vcver i it does tend to sUP1;ort argllIn(~n·ts rnade

later in tile discussioll. Therefore, another fact,or \das considered

YJhich migl1t lead to an explanation of t.h~s phenomenon.

Seasonal variations in the alkalinity were chosen as alternate

factors w:hicl1 mig-'lnt be associated wi th the seasonal cl1an9E:s in tIle

primary product:ion (Fig. 9). Crawford Lake experiences a CaCO
3

precipiation from the mixolimnion to the monimolimnion, similar to
~

the one observed in Fayettesville Green Lake by Culver and

Brunskill (1969). However, unlike the Fayettesville Green Lake

study, the gradual loss of the bicarbonate (decrease in alkalinity)

was observed in Cr~wford Lake (Fig. 10). The increase and

eventual loss of the bicarbonate to the top of the chemocline

coincided with-the increase and decrease in the primary production

of the photosynthetic bacterial layer (Fig. 16). This suggested

that the increase of bicarbonate might have stimulated photosynthetic

(14 )H C C0
3

uptake. Next, the monthly average primary production

was compared to variations in the alkalini ty (Fig. 26). r~1ay,
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Oct.ober, November and December, all had rela'tively low bicarbonate

concentrations and low primary production~ However, August, which

had the highest alkalinity, had a primary productivity

intermecliate bet\\!een June, Wllich had low primary productivity

(20 mg C/m
3
hr) but intermediate alkalinity (270 mg CaC0

3
/l) and

July and Septernber I \vhich had an alkalini ty similar to June I s bilt

3
had very high primary productivity values (80-100 mg elm hr) .

These data tend to support the hypothesis that the bicarbonate

stimulates primary production; however, the results were not

cornpletely expected. rrhe hypo·thesis WOll1d predict that July and

Septernber's productiv'i ty vlou.ld be intermediate bet\veen Jl1l1e and

l\ugust. In t.he following few paragraphs a possil)le eXI)larlation for
\

tl1e UneXI)ected reSll1ts "'las attenlpted.

Once the concentration of bicarbonate reaches a value of

between 260 and 270 mg caco
3
/1, the potenti.al for primary

I)rocluction beca.n1e very higl1 (i. e .. , values reacl1ed in .July and

Septerrner). HO\\7e'"Jer, furtller increases in the bicarbonate

concentration would not stimulate further productivity because the

photosynth.etic mecha.nism has been sa.tura.ted for the present

populatiorl size (i. e., no increase in AUgllst). I-Ience I only a

further increase in the photosynthetically-active cells at the

top of the chemocline could produce more productivity. This type

of explanation was used to explain the saturating effects of light

and H
2

S on laboratory populations (Parkin and Brock, 1980a) .. rrhis
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could be taken a step further, to suggest that increases in biomass

(there was a slight increase in August) as the result of an increase

in productivity (Fig. 12) would cause further self-shading,

ultimately reducing the measured photosynthesis (i.e., higher

biomass but lower photosynthesis in August). This does not contradict

earlier statements because only an increase in cells that see the

light would increase production. If this is already maximized, then

further increases in cell number would just be adding to the biomass

and not to primary production. The higher productivity values would

continue until the bicarbonate concentration fell below the

saturating value,' which it did between September and October.

However, this does not explain why June did not have higher

productivity. To explain this, it was necessary to re-examine the

light quality data (Fig. 13). Between June and July the largest

C
shift of the carotenoid peaks occurred. As suggested earlier,

this could indicate a change in the strain, species and/or cellular

components of the photosynthetic bacterial layer. Therefore, it is

possible that there was a shift in the photosynthetic bacteria

from those that could use an organic carbon source to those that

use the increased concentration of inorganic carbon more efficiently.

,',This appeare? t? contradict--: earlier' s-tatemeflts~~laim..ing that_ the

shift was ~e' to ch:anges ·inr',the wavelength o£ li'ght. reaching- the bacteria.

At this time it i~ n'ot possible to separate the ..two possibilities.
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The suggestion that the photosynthetic bacteria could switch from

organic to inorganic photoassimilation was documented by Kelly

(1974) on laboratory populations. However, it has never been

attempted on a naturally-occurring population.

To this point it has been hypothesized that not only did the

increase in alkalinity (HC0
3

) increase photosynthesis, but that the

photosynthetic bacteria could shift from utilizing an organic

carbon source to using an inorganic carbon source. Further

support was obtained for this hypothesis from an unexpected result

comparing primary productivity and biomass (bacteriochlorophyll).

It was hypothesized that since the bacteriochlorophyll

concentration represented both the population size (Severn, 1979)

and the amount of photosynthetic apparatus available for photo­

synthesis, that there would be a correlative relationship between

the amount of bacteriochlorophyll present and the primary production

(Fig. 17). However, when these two parameters were compared,

there was no apparent relationship. The amount of bacteriochlorophyll

appeared to have varied independently from the amount of photo­

synthesis. Furthermore, a seasonal plot of the bacteriochlorophyll

concentration tended towards a sigmoidal curve, which was unlike

the seasonal plot of the primary productivity curve (Fig. 13).

These observations suggested that the amount, and more importantly

the times, of the inorganic carbon assimilation, were insufficient

to account for the spring and late fall population size. This

inconsistency suggested that the method of measuring total
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(H(14C)C0
3

) inorganic carbon photoassimilation did not measure the

total carbon, both inorganic and organic, taken up by the photo-

synthetic bacteria. Therefore, it was concluded that the photo-

synthetic bacteria could switch carbon sources.

Thus far in the discussion of bicarbonate as a chemical

factor that might stimulate summer primary production, it has been

'I'

assumed that the stimulation was the direct cause of the in"crease of the .,

bicarbonat.e. H~A1ever, Culver aria Brunski:L1 "(1969) suggested tli.at the organic

material associated with the CaCo
3

precipitation stimulated H
2

S

production by the sulphate-reducing bacteria which, in turn,

stimulated photosynthetic bacterial primary production. At this

point in time it is not possible, with data 'collected

as part of this thesis, to discount this possibility. However,

it was possible to suggest how this problem could be examined in

the future and what kinds of data would be necessary to substantiate

or disprove the effects of the H
2

S and/or HC0
3

.

In order to sUbstantiate the claim that H
2

S stimulated photo-

synthesis, it would be necessary to demonstrate that the addition of

H
2

S stimulated primary production. This would probably not be

difficult as it has already been demonstrated that diurnal changes

in H
2

S do stimulate or limit photosynthesis (Parkin and Brock,

1981). It would then be necessary to demonstrate that there was an

increase in H
2

S as a result of the caco
3

precipitation which

occurs in the spring. This might be extremely difficult because if

the bacteria were limited by the concentration of H
2
S, any new H

2
S
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production should be utilized immediately. It might be sufficient

to demonstrate an increase in 804 reduction occurring during the

same period as the CaC0
3

precipitation. Lastly, it would be

necessary to develop an alternate explanation as to the lack of

correlation between the population size and primary production.

This would be necessary because if H
2

8 was limiting, then photo­

organotrophic assimilation would also be limited. If any of these

criteria could not be demonstrated this would tend to disprove the

effects of H
2

S as a factor that influenced the summer increase in

primary production.

It would be useful to demonstrate that the addition of

bicarbonate does directly stimulate photosynthesis. This was

recently done as part of my Ph.D thesis studies (Appendix 3J).

Furthermore, it would be useful to demonstrate either that there

was no organic material associated with the cac0
3

precipitation,

which would also tend to disprove the H
2

8 hypothesis, or that it

did not directly stimulate photosynthesis. It is unlikely that

organic material stimulated photosynthesis because if it had the

results would have showed an increase in biomass but no increase

14in primary production (measured as H( C)C0
3
), because the cell

would have continued to use the organic material; that is,

assuming there was a switch for photoorganotrophic to photo-

lithotrophic bacteria.
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Ventilation

Ventilation,or chemocline erosion, was hypothesized by Dickman

and Artuz (1979) to be responsible for the elimination of bacteria

from the chemocline in the Black Sea. Further, Dickman (1979)

suggested it was responsible for the loss of a significant proportion

of the bacterial biomass of the chemocline in Pink Lake. He

hypothesized the following sequence of events to explain the

observations. During fall mixing the combination of oxygen toxic (to the

phototrophic bacteria), aerobic water and scraping action of mixing

resulted in the death and removal of the bacteria from the chemo-

cline. This hypothesis predicted both a decrease in the top of the

chemocline and the loss of photosynthetic bacteria from that zone

(i.e., the observations that gave rise to the hypothesis).

The photosynthetic bacteria in Crawford Lake were also

associated with the top of the chemocline (Fig. 4). During the

autumn of 1979, the conductivity data suggested that the top of the

chemocline was lowered approximately one meter (Fig. 5). As well,

there had been aerobic water introduced into the anaerobic zone to

15 meters (Fig. 6). This indicated that the bacteria would have

been in contact with oxygenated water during mixing. These data

suggested that mixing had occurred in Crawford Lake; however, in

1979 changes in biomass after ventilation were not monitored,

therefore it was not known if a loss in the photosynthetic bacterial

biomass had occurred as previously predicted.
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(approximately 50-100 times their cell diameter/minute) in order to

avoid tile oxygen entrainment. Since the Chlorobiceae are

unflagellated (Pfennig, 1979) 1 it would be very unlikely that they

could move themselves at this rate~ Therefore, it seemed reasonable

to e:xan1ine only those explanat.ions tllat assuIned -t:hat the })acteria

were rnoved.

Horo.eothermy ha.d bee11 ·t110ught to occtlr during or before

ventilat.ion. ':Phis is assurned by the original 11ypot:hesis beca"l,..1se th.e

depth of mixing \vas felt to ]J8 restricted by the tb.errnocline.. It

was not tlntil a.f-ter the breakdown of the ten1perat·u~ce barrier tl1at

ventilation of the chemically more dense water could occur

(Edm.ond.son and 1~11derson, 1965 i J-Iutchinson, 1957).. In Cra\/lfcrd

L~~e homeothermy (samples taken every few days) did not appear to

have occurred until after ventilation (Fig. 8). In 1980, homeo-

11

tIler'my d,id not a.ppear to occur vAntil 2-5 clays after ventilat.ion...

This suggested that the main mixing force (Fig. 32) did not ventilate

the chemocline directly. Instead, possibly a secondary mixing

current occurred as a resul t of the first (Edmondson and A11derson I

1965). This current would be generated as the result of sarne of

tl1e maiYi current:' s energy g-enerating a current 90in9 in t:h.e OP1)osite

direction under the thernlocline (Fig. 33). 11his ne\\T current vlould

have less magni tl.lde and be restricted between tl1e top of the chen\o-

cline and bottom of the thermocline~ In both 1979 and 1980, the

thermocline just prior to ""ventilation appeared to be betvleen 10 and
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The pre-ventilaticn mixing pdttern.

~.
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Figure 33: The mixing pattern during ventilation
counter current.
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This would have to approximate the time that

the secondary current was generated" Therefore, in 1979,

oxygenated water v:ould have been introduced into the bacterial la.yer 1

vlhereas irl 1980 tb,e secondary CU1.~rent would have been cornpletely

anae.robic .. Therefore, in 1979, the data 'vlould predict that the

bacterial layer may have been ventilated and reduced due to the

infusion of oxyg-en. However, in 1980, the bacteria that were

ventilated and relayered on to the new chemocline v.lere still

viable (Fig. 34). The main mixing current would be still pushing

down, but the steep conical morphometry, denser water and the

secondary current would probably resist further mixing~ Furthermore,

, iC;f,; cover occurred. 1.n !nid"-r~oVer(Lber 1980 I \\711icrl ~l:lould nullify

further vlind input into the major mixing Cllrrent.

Tl1is explanation predicts t.hat years with a large mixolirr~netic

anaerobic zone o'verlying the permanent.ly anaerobic rnoniu101imnion

would generate the results observed in 1980.

the anaerobic zone does not extend as far into the mixolinwion

would generate results consistent with the original hypothesis.

'I'he .PllotosynthE?tic Bacterial Contril)ution to Crav'lford. J..Jake

TIle literature is replete with examples att.emp·ting to persuade

the reacler of -the importance of the phot.osynthetic bacteria to an

aquatic system. However, as explained in the literature review,

very fevl ha\Te really aCCOml)lished their goal. The tendency has been
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Post-ventilation and the formation of
the strong barrier to f~rther ventilation~
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to show that the photosynthetic bacteria contribute a significant

proportion of the total fixed carbon to the lake, concluding from

this that the bacteria \Vere inlportan't contributors to tJl.e aqu.atic

ecosystemo I-Iovlever 1 this analysis' left the question of how rnuch

(if any) is act.ual1~i utilized by th.e at.her trophic lev'els in tlie

system. Therefore, two criteria have been suggested that must be

demonstrated before it can be concluded that the bacteria make a

sig-l1.ificant contriblrtion ·to the ecosystern of the lake. l?irst,..

was necessary to demonstrate that the phototrophic bacteria made a

cO!ltributi.on to the p!:ilnar~l l)1."oduction of the lake. Secondly, and.

nlost irnportant t t:hat some of this producJcion })8 COl1'tributed to the

diets of the producers of the food web.

In Crawford Lake, the photosynthetic bacteria contributed

between 10-60% of the total inorganic carbon fixed du.rin.g the

SlnHJ.rner (Fig. 31) f v:ith t11e greatest relative col1.t,ribution

in J\U1e and Jl11y 1 althOt19h t'he srreatest: contribtrtion in absolu;te

a.PJ?eared thD.t. the pl10tosynt.hetic bacte:-ciD, did make a substarltiaJ.

contribution to the over-all production of the lake. This did not

include COl1sidering the role the bacteria would pIa:}? if -tlley were

recirculating organic carbon into the lake.

The secon.d problelTl was to demonstrate 'tl1at some of this

production was available to another trophic level. Zooplankton have

been observed in the anaerobic zone of other lakes numerous times
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(Takahashi and Ichimura, 1968; Culver and Brunskill, 1969; Lawrence

et al., 1978). Daphnia pulex have been reported in the anaerobic

zone of Crawford Lake (Prepas and Rigler, 1978). Typically, they

are reported to have a red carapace, typically thought to be due

to carot4noids associated with the photosynthetic bacteria.

However, a study done by Dickman and Nicholls (Fig. 2) indicated

that at least some of the red pigment was haemoglobin. Samples taken from

Crawford Lake about the same' time 'as Nicholls and Dickman's study and

extracted with 90% acetone, did not show any of the characteristic

bacteriochlorophyll peaks which would be expected if the Daphnia

were grazing the bacteria. Therefore, before the study began

there was evidence to suggest that the zooplankton were present

in the anaerobic zone but may not be grazing the bacteria. This

'supported the hypothesis t~.attbe zooplankton we.,re

avoiding predation during the day by staying in the anaerobic zone.

Therefore, in order to support or disprove the importance of the

photosynthetic bacteria to the lake (the original problem) it was

necessary to address the question of whether or not the Daphnia

were grazing the photosynthetic bacteria.

The first experiment tried was to modify the method in which

the zooplankton were preserved and extracted with acetone. The

presence of the bacteriochlorophyll in the zooplankton would suggest

that the bacteria were grazed. As stated earlier, when originally

tried, this method did not indicate the presence of bacterio-
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chloro:phyll. ~rnen the procedure was retried (fall 1980) 1 before

.preserv·ing ip 4% form_alin" the samples were f~rst_"

placed in carbonated water. This anaesthetized thern and I as a

secondary resul t l pre\rented them frOTIl dumping thei.r gl.1t contents.

\~Jhen spectra \vere taken of these SarnI)les i th.e charctcterif:itic

}-Jacterioclllorophyll };'Jeaks '!Jere observed (Fig.. 28).. This sugg-ested

t:11at not only vIas t,11ere bacteriochloro:phyll. in t~he ~~_£~~:5~ but th.a.t

it was located in their guts. To further test the grazi~g hypothesis

a Haney trap was used to incubate a radio-labelled pellet of

photosynthetic bacteria in a sanlple of Pbal~~~~~a. trapped ill the

rnonimolimnion, In tllis case I analysis of the D\~1:2h~~a indicat.ed, ttJ.at

SOH18 of t:hc :radioact.i\lity wa.s being taken IIp (Fi9 .. 29) GO Another

observ'at,ion Inade a:: the tirne 7was tha.t tIle Dapr~~~,.§:. vJere still

swirmning abou.t the trap after a twenty minute inctl})a tion .. These

.I'

data conv'incingly clernonstra te not only that: tIle' ,!2aphn~~. graze the

J:)8.cteria }yut tl1ey apIJear to be able to stD.}! in tli8 zone for seIne:,

time. This was probably the result of the haemoglobin

t,he Danhnia ..,._~---~-

in

These data fill both criteria for demonstrating the

importance of the p:hotosynthetic bacteria t.o a lake I s food web.

Furthermore, it suggests ~~estions concerning what proportion of

a ~hnia' s diet is filled by tl1e photosyntl1ctic bacteria.. Do

the ~hnia Inigrate at night -to graze the a.lgae or are they

feeding exclusively on the bacteria? Alternatively; it may be

possible to explain, sorne of thE; variations in ·tIle fJopul.ation size
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(biomass) as a result of seasonal variation in feeding stress.

These types of qlles·tions are now being a_ddressed by'" r1r. Mazumder a,s

a master 1 s thesis at Brock IJniversity.
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CONCLUSIONS

The following are some conclusions made as a result of the

analysis of the data collected as part of this thesis.

1. That at least some part of the seasonal variation in the

photosynthetic bacterial primary production appeared to be

explained by seasonal variation in the bicarbonate concentra­

tion. However, it is still not known if the bicarbonate was

directly or indirectly (i.e., H
2

S stimulation) responsible for

the summer increase in primary production.

2. That no relationship was observed between light intensity

and primary production. It was inferred from this observation

that changes in light intensity could not explain any of the

seasonal variations in the primary production.

3. Shifts in the soret region (blue) of the absorption spectrum

of -acetone extracted~iampleswere in¢licative;-of a' pigment' snift

resulting from a species or intracellular rearrangement of the

bacterial layer. The possible causes were either a change in

the wavelength of light incident on the bacteria or a change

in the trophic nature of the bacterial layer (i.e.,

switching from photo litho to organotrophic) .

4. Ventilation did not eliminate the photosynthetic bacteria as

predicted. The original hypothesis was modified to explain

these results. The modified hypothesis predicted a secondary
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mixing C\lrrent, \vhich 'VIas responsihle for the observed

ventilation. It also predicted that years with a large

mixolimnetic anaerobic zone (>10 meters) should not ventilate

the photosynthetic bacteria. However, years that have a

lesser anaerobic zone w01..l1d show ':"lentilatiorl of tl1e bacteria ~

5. The photosynthetic bacteria contributed a substantial

proportion of the primary production of the lake (10-60%).

Ftt'I..therrnoro, t.he !?al)hl~ '\vE;re not only" equipped t,o stay· iTl

the anaerobic zone because of the presence of haemoglobiD but

\vere able to graze the pl1ctosynthetic bacte·ria.
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As well as using the light-dark bottle technique (method section)

a new device was developed and used (using B.O~D. bottles) to measure

14
C upt.ake by the photosynthetic bacteria.. 1\ rie'rN' t~echnique had to be

deveJ.Or)E~(1 becaus'e I "vas 'unable to aSS1Jre rnyself tl1at: the l)acteria '\vvere

not affected by oxygen, light, and

t.hat cells vlould experience J.Il the B .. () .. [J. batt.Ie techniq118 ..

Dl..lrinq the course of the rnoG.c--:.1s were

developed (Figs. Al and A2). However, the first model was eventually

rejected. I was unable to assure
1 4.

that the --C was being

conSlS e~venly distributed over all t~he cha.lnbe:r:s ~ The second

moclel v'las designed to have six separate loading charrJ)ers each holding

10 mls (averaged 9.9 to 10.1). This guaranteed even distribution.

incubator (I.S.P.I*)

consist:ed of 6 charnl:>ers (3 ligh"t a.nd 3 da.rk) that could:hold 300 ruIs

of H
2

0 each. The lids and piston mechanism (in the last model there

6 · f· 14 .) f . d 1were - plstons, one or each C contalner were -lxe to a re ease

mechanism (Fig. A3). A rod inserted into the apparatu.s fronl the }JottOTIl

was used to charge the piston (Figs~ Al and A2) & Next, the bottom

doors were opened in Modell or the top doors in Model 2.
14

The ( C)

Na.HC0
3

vIas then added at the bottom in l>1odel 1 or tl1rough the sep'lllH1S



Pigure F:..l: In situ
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1&1
~%C incubator, Modell.

M. Dickman and M. Benkel were
contributors to the formation of both modelsD



J~------,~
1

Ir

ltv S/l-U
Me incuba'tor
IC' >'r-O' f"';':" - c:PC'!'i0 t.... f"JJ ,(..~ ;,C~\ to <1!'/'nn)\ -.,.,)..,) '-"<oJ' ~ ...n l~<, ,-,--..,. 4 "vi€

I f

~.

;,,)

J ,

I

~------'y---'--'-~

t

o 234
1"--1-1--6-..1-..01.--'-.1,..L.LlLLiL.t t J I

SCALE ltv INCHES



Figure A2:

-161-

14
In situ productivity C incubator, Model 2
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14
In~, .§i~~~ produ,.;,tivity ~ C incllbator, shovJin9
doot and piston mechanism~
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14
The se1Jturns in ~1odel 2 allowed me to keep the C

solution anaerobic until it was used. In both cases the bicarbonate

was loaded until the clear vinyl-plastic tllbes filled wi.ldl the

solution. The top or bottom doors were then opened and the machine

was rinsed with distilled H
2

0 into a catch basin.

~I:he ISPI VIas then taken to tl18 incu1.1at:ion bllOyS and lO\vered

to t,he incubation depth. A nlessanger released fJ:"'orn ·the surface closed

the doors and released the 14C into the tubes F in t:hat o1:'de:c ..

l\.t t:he encl of tl1e incu.bation 1 the ISPI was retu.rned to tlte

surface. Each tulJe \.;vas emptied into a sntal1 bucket:. 1'11e lYllCke-t was

enlptied iX"lto dark bottles (1-6) until t.he SanlI)le could be analyzed ..

1'he ISPI had th~ree rnajor technica.l drail'lbacl:s., 1) I t itla~3 too

heavy when it was being removed from the water; hence, it was prone

t.o darnage .. 2) I~emoving the incubated 'Vlater from 'the tu.bes was ntessy;

however, this could be solved if a top and bottom~pour spout was

added. 3) The tubos were too long; hence there was both photo~

synthetical1y--active and non--acti've cells

Therefore, high dark uptake values were a constant problem. 1~is was

a.lso a. problem "VIi t:11 t:he light.-dark B. o. D. bottles.

The ISPI had several advantages. 1) It was cornpact for Model

2, only the machine, a syringe, bucket 14C NaHC0
3

and 6 dark

bottles were required for incubation. 2) I could guarantee that the

14
pl1otosynthetic lJacteria experienced no 1 ight., ternperatllre (Note C

HaHC0
3

was kept cold) 1 or oxygen shock. Hence it gave a truer picture

of the photosynthetic capacity of the photosynthetic bacteria~
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14
Alt110ugh no difference was found in the ITtean of the C uptake,

between the BOD battle a.nd model 2 of the ISPI, this may be due

to the extremely low uptake. There were indications that there was

much less variance associated with the measurements (Table lA) .

Th.erefore ( this could I)e a very useful device wi t11 i:he suggestions

I have made previously.
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Table lA: An Exanlple Cornparisor; ?f 1'r1ean Productivi ty 'Jalues
Produ~ced by the ISPI\2) 11achine and B.D.D.

Methods (done Oct. 18, 1980)

ISPI
!1ethod

I
~--_..,,-~--_._-

}lean

Mean

~lean

Mea.n

£.1
n't9C/'m ... /hr

l,j.ght

Bo·ttles

15~79

14~63

14 .. B95
15 .. 11 (.607)

14.38
15.8()

15.40_..~_.·L__"
15~19 (.732)

14.93
15.21
14.77-----
14 .. 97 (.223)

13.15
19t>73
21.64_._--
18.17 (4.45)

Dark
1-3ottles

9.27

9,.56
8~72 (1.23)

10.77
10 .. 49

9 .. 1.7-'""p_ _ ..-,,--
lCJ.,15 (.862)

9 .. 75
9.6.5
9 .. 50
9 .. 63 ( .. 126)

11.35
11.58
11.05
11 .. 33 ( .. 276)

) = S~T.D. to convert to ~ confidence interval multiply by 1~66v
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Figure 2A: The spectrum obtained from a homogenized
. satnple of t,hepl10tosynthetic bacteria. of
Crawford Lake.

/
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Figure 2B:
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A scanning electron o,f 21. cell
taken from 15 meters in Crawford Lake.
The picture was taken H.. I;,1el1e'vil1e of
the Geology , Brock University.
'I'11e lin~2 :r.~epresent.s one )lICi"
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Figure 2C: A light microscope picture of cells taken
from the chemocline in Crawford Lake.
Line represents 5 fi~~"'f",.
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APPE~uIX 3

Extra Data

In this section I have placed data that were not necessarily

used as part of the thesis, but collected during the 1979 and

1980 field seasons~ I have included these data as useful reference

material fo}: tl10se \Y!10 rnay study CravJford Lak.e irl tb.e fl;rture ~

1:.)y tll8 ITa.It.on

Region COl"'lscrvcrtion l\ut~hority. Therefore, future studies are

higl11y probable ~ I have m~ac1e no atternI)t to analyze tl1ese da'ca 1

only COlllpile an.d record tl1ern .. I am indebted to Dre M. Ouellette for

the :Fe; £.'1 I 0"") C ~n .G."t:o·tal ' I f)H, SO 1 1
L.f.

ea a:nd profile::;)

that he made.



Figure 3A:
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Light intensity (at 0.1 mr taken at 12:00 noon)
as a function of time from May to December 1980.
The vertical bars the range of values
recorded dllring other tiInes in t.he day., ~ehose

days with no bars days when the
precipitation was sufficiently intense to cause
darnage to the macftine if repeated nl(~asu.rements

\;]ere rrtade.
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313: .,1: Alk.alin3..t~i (nlgCaCO ")./1) de:pt.h
~ ..... f' - .::") '. - ., r'" ~ '": d .;J. ~?'~ ,,-, ,.- ...,.., 4- .'-,pYo. 1_1.t... 5 1:e"'-'orae...... I.k.vL(l dune LCl

1980. The values represent the
Dcce.rruJer
n12an

val.'lle of 25 sa.nlples taken over '7 days in
approximately the middle of each month.
The rna.xiInurn recorded e:;:ror \'las ± 7. 5
mgCaCO_/liter. The r~present:

.3

OJ-une
Cfuly

o P~-llgust

Septelnber

October
l\joverrLber

A DecerrLber
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Figure 3C: pH profiles recorded mDnthly from June to
December 1980 .. The: fi<;Jure is chax:a.ct.erized
l)y thc:~ following

All unit3 are (-log[H+])

6 J'une

t"\ July

aune

& 1}1vl1~)l

t
r"'=, 17\ l' .--r~., c' +. .~,Li-J -,i,u.'j U.'J \,.. &

Sel')terrLrJc r
Oc·tober
Noverr})er

() Decernbe:t~

December & November





Figu.re 3D:
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Diss01ved ions concentration as a function
of depth. IroD, Manganese, Oxygen,
rrot:al CarlJon { Inorg-anic Carbon 1 I Su1lJhate ,
CalciuIt1 and profiles... Don.e by
Dr. Me Ouellette.
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Figure 3E: Light attenuation (~ ) 1 Secchi depth «()) 1

and depth of 1% surface light ) I as a
function of time (months).
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Fig'ure 3F: r:Clle seasonal change :i.n proc11J.ct.ivi ty
(Pl'-Pdi rn-; c/'rn/hr) as a function of c1epth
(TIl) "

June
J\11y
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Figure 3G: Bacteriochlorophyll concentration (mg/m
3

)
as a function of time, for both light and
dark (stippled) incu~ated bottles~ The
vertical bar represents 95% confidence
interval.
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Figure 3H:
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3
13acteriochlorophyll concentration (mg/rn )
as function of depth (m).

IV1av
J"llY1e

lJuly
l\~.gust

Septerrber

l~ll dete:cmina"tions rnade in 1979. ~
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and concentration (#/m
3

)
and

D~ as a of time (June to
August, 1979) ~ The were collected
:by Lucy· Sax:'dellCl and count.ed S fI Se\tern"

l?igurE~ 3I: 'rlle
of
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14
The disintegration per minute of E ( C)
labelled bacteria were
monitored as a function of increased addition
of HC0

3
- to the ambient concentrations of

HCO~- present in Crawfo~d Lake water. The
cir~les the mean of 5 replicates of
bottles incubated at 25 The vertical
bars represent the 95% confidence interval
about the mean~ The squares mean represented
samples incubated in the dark. Three ~eplicates

at each HC0
3

- were used to calculate the mean.

)
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correct.ect( 25 0 C) Ccndu,ct.ivi
(u.rn]]os/ern) a.s a. func Lion of both c1el)tll
anc1 tin1e (lnon.t~hs) e CO.nduct:.ivi values are
relJresented b'y the follovling ~3Y111bols (a.ll urnhos/
em corrected to 25°C) $

500
550
6C10

<) 18C)O

2000

2300
26()()

280()

The thickened line at zero meters extend over the
period of ice cover. The thickness of the line
does r}ot ref)resent ice thic}:rless .. I.



J?ig-llre

-196-

correct.en (25°C) Conduct.ivi
(lnuhos/cm) as a function of both depth
and time (months) 6 Conductivi values are
relJresentec1 }Jy the following SylTtbols (all urnhos/
em corrected to 25°C) 0

500
550
6()O

<) 1800
2000
2300
2600
:2800

'rh.e thickened line at zero rne-ters e)<~tend over th_e
period of ice cover. The thickness of the line
does not represent ice thickness~ I
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3L: Dissolved oxygen (% satura

to
the

fu.nction OJ.:

1979

150
140
120

6 100
BO

C] 60

(%

40
20
10

o 0
~

. 80, 60, 40, 20, 10
(> 8t.) 1 6C) ! 40, , 2C)

Note: these values were too
to

Hencs, alternative
S)71Tlbol.s were used to
the collective values.

The thick line at zero meters was to
ice cover. 1~e thickness of the line

does. not ice thickn~:;;ss.
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Figure 3M: Temperature (OC) as a function of both
(meters) and time (months, May 1979 to
February 1980). The symbols represent the
follo\,\ling era.!eu.res (Oc)

/''''"", 24 10\.,,/~

t21 22 8

0 20 6
18 () 5

0 16 V 4
14 \7 3

~.

~ I"').t.,

The thick line at zero meters represents ice
cover. The thickness of the line does not
represent ice thickness.
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l\PPENDIX 4

This is a photocopy of the progrmn used to calculate the primary

productivi ty vall1es of t118 photosynthetic bacteria.. IJote Jcr1att.kle

1.06 x raul tiplication factor ~wa.s not tlsed for the

calClllation for the bacteria as it \AlaS not knovlD if it applied *

HO\tvever I it ~Nas used for th.e algal lJrin1ary prod.uc:tion calcula.

(IJin.d, 1924).,
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