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ABSTRACT

Exchange energy of the He-He system is calculated using
the one-density matrix which has been modified according to
the supermolecular density formula quoted by Kotos. The ex-
change energy integrals are computed analytically and by the
Monte Carlo method. The results obtained from both ways com—
pared favourably with the results obtained from the SCF program

HONDO.
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Chapter 1

INTRODUCTION

The intermolecular forces are of fundamental importance for understand-
ing the dynamic and static properties of gases, liquids, and solids [1].
The theory of intermolecular forces can be extended to difficult systems
(e.g. hydrogen-bonded systems, adsorbates, macromolecules, etc.), and serious
work on the problem of three body forces in dense phases can be started when
the intermolecular forces between two closed systems are known precisely [2].
The quantum mechanical methods like SCF, CI, or perturbation theory can be
applied at most to medium size atoms or molecules, and even for simple systems
such calculations become very tedious if one wishes to obtain accurate results.

The first successful a priori prediction of the intermolecular repulsive
potentials between closed-shell atoms, ions, and molecules has been proposed
by Gaydaenko, Nikulin [3] and by Kim and Gordon [4]. The method is based on
the statistical model of the atom, and mostly known as the Electron Gas
Approximation (EGA). The agreement between theory and experiment was pretty
good, except for the case of the He-He system, In the case of He-He, the
potential energy curve obtained was too negative and had a very deep well.

The EGA theory of intermolecular forces has been modified by Rae [5],
removing the self-exchange energy part from the exchange energy which was
estimated in the EGA method. He also introduced the long-range dispersive
interaction, to improve the long-range potential energy curve. Rae's method
gives a better potential energy curve for the He-He system than the Gordon-
Kim method; however, Rae's method is not without its difficulties. It pre-

dicts too repulsive interatomic potentials at small intermolecular distances.



Therefore one can conclude that neither the original method nor the corrected
one succeeds in yielding reliable results for all systems. This deficiency
in the electron gas calculation encouraged Waldman and Gordon to correct the
exchange energy in an electron gas calculation. They decided that only the
self-exchange energy should be removed by subtracting contributions of the
separate atoms in a molecular calculation and proposed a scaled correction
for the exchange energy [6]. Even in its scaled form, the EGA not only fails
to predict the noble gas pure and mixed interactions with useful precision
but also shows error trends that are not consistent with the basic approxima=
tion of the method.

However, the electron gas model has been properly criticized because
atomic and molecular densities are far from uniform., Brual and Rothstein
have the statistical model with a rational function used for the correlation
energy density and they have opted for an entirely different approach to the
exchange energy which was developed by Handler [7]. The results are a signif-
icant improvement over those available from competing electron gas models.

A simple reliable method for the prediction of intermolecular potentials
is presented for the lighter noble gases and the mixtures by Hepburn, Penco.
and Scoles [8]. This method is the hybrid SCF plus damped dispersion models
of the Hartree-Fock Dispersion (HFD). The interaction potentials can be found
with a sufficient precision to obtain information of value comparable to
experimental potential.

A recent and promising effort is the Approximate Exchange Energy (AEE).
This model has been developed by Ng et al. [9] and shown to be very accurate
for He-He, Ne-Ne, Ar-Ar, and Kr-Kr, but suffers from the shortcoming that one
of its parameters has to be determined by fitting to experimental property.

The exchange energy is a purely quantum mechanical effect and can not



be related directly to any observable property of the interacting systems.
There is thus a great interest in ab initio methods capable of providing
accurate estimates of this effect.

An approximate ab initio approach for calculation of the exchange
repulsion energy between closed shell systems described by Hartree-Fock
determinants has been proposed by Bulski et al. [10].

The first order exchange energy for the Ar-Ar interaction has been
reported using SCF wavefunction for Ar in a large gaussian basis set by
Chalasinski et al. [11].

In the present work the supermolecular one-matrix PAB(1;2) of two
closed shellg A and B is modified from the supermolecular density
of two-closed shell system. The supermolecular density PAB(l;l) is quoted
by Kotos [12] after Frdman and Lowdin [13] and Jeziorski et al. [14]. The
supermolecular one-matrix will be substituted for the spinless one-matrix
in the exchange energy formula.

This supermolecular one-matrix formalism will be applied to the He-He
system which is the simplest two-closed shell system, to calculate the ex-
change energies of He-He at different internuclear distances. The results
of the exchange energies of He-He at different internuc¢lear distances
obtained analytically and by the Monte Carlo method will be compared with
those obtained from a SCF program HONDO [15].

In Chapter 2, the SCF theory and the SCF program HONDO are presented
in detail together with our modifications to HONDO, which were necessary
to get it to run on Brock University's BURROUGH's B6700 computer.

In Chapter 3, the density matrix and the exchange energy for the
supermolecule is given in a form appropriate for rare gas systems. The

proposed supermolecular one-matrix is applied to the He-He system. The



necessary integrations are done analytically. Comparison with the true
results from HONDO is presented.

For a large system, e.g. Ar-Ar, the two electron integral which must
be evaluated for the exchange energy is complicated. To facilitate its
calculation, it is evaluated by the Monte Carlo simulation. Chapter 4
gives the evaluation of the exchange energy integral for the He-He system.
Extensions to the larger systems are discussed therein.

In Chapter 5, the summary and conclusions are presented. The applica-

bility of this method to the other systems is also discussed.



CHAPTER 2
SELF-CONSISTENT FIFELD THEORY

2.1 Introduction

The Schrtdinger equation
fiy = By (2-1)

gives the analytic solutions for the atoms and the molecules with one~
electron. For an N electron system one must turn to approximate solutions
to obtain a property such as the total electronic energy E.

One of the approaches to approximate solutions of the Schrddinger
equation is the variational principle, which\says that if ¥ is a trial
many-electron ground-state wave function, and if W = <W|ﬁ|¥>/<?[?>, then

W > E. where H is the complete Hamiltonian, and E, is the exact energy.

0 0
Since W is always above EO’ Y may be varied to minimize W. The most common
application of the variational principle is the self~consistent-field method
(SCF) which will be outlined in this section.

For a molecule having A nuclei of charge Z) and N electrons, neglecting
magnetic interactions and other higher-order effects, the purely electronic

Hamiltonian, in atomic units (electronic mass me, electronic charge e, and

h/2m set to unity) is

NA Z N
& 1 k 1
-3 v -kl =+ ] (2-2)
i ik "ik j>i ij

The first sum in Eq. (2-2) contains the kinetic energy operators for the N
electrons; the second sum is the potential energy for the attractions between
the electrons and nuclei. T is the distance between electron i and the

kth nucleus; the last sum is the potential energy of the interelectronic
repulsions between pairs of electrons; rij is the distance between electron

i and electron j. The restriction j>i avoids counting the same interelectronic

repulsion twice.



The "best" possible variation function that has the form of an anti-
symmetrized product of spin orbitals is the Hartree-Fock SCF wave function
[16, 17]. For closed-shell systems the Hartree-Fock wave function is of
the form

¥op = AMG (16, (2) .6, (D) (2-3)

in which A(N) is the antisymmetrizer for N electrons and the ¢'s are spin
orbitals, products of a spatial orbital and a one electron spin function o
1 1
(for ms = +§) or B (for ms = —ED.
X.o
i
¢i = or (2-4)
XiB
The Hartree-Fock wave function is the best function of the single

determinant form which can be written as a Slater determinant [18].

61 (16, (1) e nbg (1)
61(2)0,(2) e ng(2) (2-5)

by M, (D ee g (D)

1
1,...,N) =

\1} I ee——————
(N!>l/2

HF(

It is usually the case that all the orbitals in the Slater determinant in

Eq. (1-5) are orthogonal

55 = Jdv<1)¢i<1>¢j<1> = 5y, (2-6)

where dv(l) indicates integration over the space and spin coordinates of
electron 1 and 61j is the kronecker delta.
The exclusion principle is accounted for since the determinant vanishes
identically unless the N spin orbitals form a linearly independent set.
Using the wave function Eq. (2-5) and the purely electronic Hamiltonian

Eq. (2-2) in the expression E gives the expecta-

ar = Yap B Ve e Y



tion value of the energy, E 7 which is as close to E, as possible with

H 0

a single determinant form.

N

N
E_= ) H + )Y } (J,.-XK.) (2=7)
I = T N = B BN

This formula was derived by Slater [19] [Appendix I].
The first summation in Eq. (2-7) goes over the one-electron integrals;
the second sum represents the electron repulsion integrals or two-electron

integrals where ,
2

P T
H, = Jdv(l)¢i*(l) {- 5 - E ;I; }¢i(l) (2-8)
Jig = Ifdv(l)dv(2)¢i*(1)¢j*(2) ;%Z~¢j(2)¢i(l) (2-9)
1
Ky = dev(l)dv(2)¢i*(l)¢j*(2) ;I;-¢j(l)¢i(2) (2-10)

The spin integrations in Egqs. (2-8, 9, 10) drop out immediately since none
of the terms in our electrostatic Hamiltonian is spin dependent.

The two electron integrals in Eq. (2-9) and Eq. (2-10) are called
Coulomb integrals and exchange integrals, respectively. The exchange
integrals Eq. (2-9) differ from Eq. (2-10) only by interchange of the last
two indices i and j. These terms arise from the permutations inherent in
the determinantal form. Kij vanishes, due to the spin orthogonality, unless
¢i(l) and ¢j(l) have the same spin component. Exchange integrals account
for energy differences between singlet and triplet configurations.

By minimizing the energy Eq. (2-7) resulting from the single determin-
ant wave function Eq. (2-5) a set of N coupled integrodifferential equations
can be derived [ see Appendix II]. These Hartree-Fock integrodifferential

equations may also be put in the form of effective one-particle SchrBdinger



II' (l)¢'(l) E'i'(l) 1 l""’I] (2"'11)

In the Hartree~Fock approximation, the motion of each electron is
solved for in the presence of the average potential created by the remain-
ing (N-1) electrons. The effective Hartree-Fock Hamiltonian may be written

as follows

~ eff _ av

BSN(D) = H (D) + VD) (2-12)
where

A I -

H (D) =-57 E o (2~13)
and

aviiy = %(2) —L1_ (1- -

v @ j;i f @@ T AP 85D (2-14)

in which Pij is an operator which exchanges the subscripts i and j occur-

ring to the right of it, e.g. Pij¢j

the Coulomb and the exchange operators can be defined, respectively

(2)¢,(1) = ¢i(2)¢j (1). From Eq. (2-14),

5.1 = 7 f av(2)6,*(2) == ¢ (2) (2-15)
= % -m-];— -
K (1) = j;i f @) 45%(@2) = Pyyby(2) (2-16)

Since the exchange integrals Kij are always positive [20], the total energy

EHF is lowered by the operation of exchange forces Eq. (2-7) [21]. 1In the

Hartree-Fock equation Eq. (2-11), the "exchange forces' between electrons

of parallel spin are given as follows

- Y tfev@epo s @1 . (2-17)

J# 12



The effect of the exchange term is to reduce the Coulombic repulsions
between electrons with the same spin. Physically, its effects may be
simulated by surrounding each electron with a small spherical volume within
which other electrons of the same spin may not intrude; the excluded volume
is often referred to as the Fermi hole. This mutual avoidance of electrons
with the same spin permits the space orbitals to be closer to the atomic
nucleus and therefore more strongly bound in these instances [22].

The eigenvalues, Elseves€ of the Hartree-Fock equations Eq. (2-11) may

N
be related to the integrals Eq. (2-8), Eq. (2-9) and Eq. (2-10), evaluated
using the minimized spin orbital functions ¢i(l). Multiplying the ith

equation in Eq. (2-11) by ¢i*(l) and integrating over dv(l) the following

equation can be obtained

e, =H, + ) (J,. -K,.) (2-18)

e; are known as orbital energies. Koopmans' theorem states that these
orbital energies e, may be associated with the ionization potentials of

the closed shell atom or molecule. For closed shell systems -e, equals the
ionization potential for the ith electron minus the total energy of the ion
formed by removing electron i. It should be noted that the total electronic
energy Eq. (2-7) is not equal to the sum of one-electron energies. This is
because the sum of one-electron energies is greater than the total energy

since interelectronic repulsion terms Jij - Kij are counted twice over.

N N N
121 17 1§1H * jazéi 1-2—-1 U3 = %49
N N
i izl £ zjzi izl(Jij " i)
N
=Ept L) Gy - K
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E can be written as follows

HF
Te,- 3 0
E. . = e, - (J,. - K..) (2-19)
HE oyt 485420 W8
and we also have Eq. (2-7) for EHF'

Since all the orbitals appear in Viv, Eq. (2-14), they occur in each
equation of Eq. (2-11). Therefore the Hartree-Fock equations cannot be
solved without making an initial guess at the ¢i. One can solve for the
¢i and use these as input for another calculation (iteration). Iteration
is continued until the calculated set agrees with the input set as closely
as desired. The calculation is then said to be self-consistent, that is,
the orbitals calculated from Eq. (2-11) are consistent with the orbitals
which supply the field viv for the calculation; thus the term "self-
consistent-field (SCF) calculation". If the variation has been complete,
the final orbitals are not only self-consistent, but they are the Hartree-
Fock orbitals of the atom.

The average potential %iv mostly takes care of the mutual inter-
electronic repulsion between electrons. Furthermore, this discussion of
the Hartree-Fock method identifies %iv as the source of the screening which
reduces the nuclear charge to Zeff and depends on the other occupied orbitals
in the atom or molecule. However, Zeff is only one parameter per orbital;
in general, several variational parameters should be introduced and varied
to achieve an orbital of Hartree~Fock accuracy.

The Hartree-Fock equations, Eq. (2-11), were originally solved by
numerical methods which yield orbitals as tables of radial functions. The
Hartree~Fock equations reduce to ordinary differential equations in r (rather
than partial differential equations in r, ¢ and V) because vav is spherically

symmetric (for atoms). As a result the angular solutions must be the
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spherical functions and the Hartree~Fock equations need only be solved
for an(r). When highly refined, this is probably the most accurate
method, but it is seldom used. The Hartree-Fock-Roothan procedure is
easily adapted to rapid calculation on electronic computers and is very

widely applied in atomic and molecular calculations.

2.2 SCF LCAO-MO Approach

The Hartree~Fock Roothaan procedure provides an approximate Hartree-
Fock solution for a molecular system [23]. One obtains a set of ortho-
normal molecular orbitals which minimize the energy of a single Slater
determinant representing the ground state molecular wave function. These
molecular orbitals are formed as linear combinations of the chosen basis
set [24] of one electron atomic orbitals

NI

9, (1) = 21 €% (1) (2-20)
B:

where the linear coefficients, C are evaluated variationally and are

ig
solutions of the following equation
Nl

Y

v = = v o
L aSaB)CiB 0 a 1,.0.,N (2-21)

aB
and where N' is the number of linearly independent functioms Xl""’XN'°
If N is the number of atomic or molecular spin orbitals, it is necessary
that N' 2 N.

If we insert Eq. (2-20) into Eq. (2-11), multiply on the left hand

%
side by Xa(l)’ and integrate over dv(l), we obtain Eq. (2-21) where
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_ % ff
Hyg = fdv(l)xa(l)ﬂg (l)XB(l)
= [o]8] + Jzyia C5. Cys(LaB|Y8] ~ [a8]YBD) (2-22)
and
. *
Sup = Jdv(l)Xa(l)XB(l) . (2-23)

The total molecular wave function is obtained by solving Eq. (2-21), that

is by finding the solution of the secular equation
- = . -2
det(HaB ES@B) 0 (2-24)

This secular equation determines the orbital energies, €3 Eq. (2-21)
determines the corresponding coefficients.
In Eq. (2=22) the one-electron integrals [aIB] and the two-electron

integrals [uBlyG] can be expressed as follows:

z
% . 1 2 k
[ofB] = Jdv(l)x (1){- 5 V" = § =} X, (1) (2-25)
| ¢ 2 K T P
_f % 1 %
[aB|y8] = dev(l)dv(Z)Xu(l)XB(l) EZ;‘XY(Z)Xs(Z) (2-26)

Hence, the problem of determining the wave functions for a closed
shell molecule comprised of N electrons is reduced to the straightforward

solution of a secular equation. In practice an initial Ci is chosen,

B

H _ and Su are computed from Eq. (2-22) and Eq. (2-23), respectively, and

af B

Eq. (2-24) is solved. Using the first improved Ci and Su are solved

B

again. The procedure is repeated until the total energy and eigenvectors

B? H@B

are unchanged to the extent of some accuracy.
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2.3 Program HONDO

The SCF program HONDO which is reported by Dupuis, Rys and King [15]
has been used to calculate the exchange energy between two closed shell
systems. HONDO calculates RHF and UHF SCF molecular wave functions,
optimizesmolecular geometries using the gradient of RHF or UHF energy with
respect to the 3*N nuclear coordinates and calculates the following pro-
perties:of RHF and UHF wave function: (a) dipole moment, (b) Mulliken
population analysis. This program uses Gaussian type basis functions.
Pople's STO-NG and N-31G basis sets are available.

Calculation of an ab initio wave function by the Roothaan LCAO-SCF
method involves two major computational steps; SCF iteration and calcula-
tion of two-electron integrals, each of which can be made more efficient
if the molecular system possesses some point group symmetry. By consider-
ing symmetry one can reduce the number of two-electron integrals to be
manipulated, and speed up calculation of the Fock matrix during each SCF
cycle [25].

In HONDO orbital basis functions are grouped into shells and integrals
into blocks for efficient integral evaluation. The shell structure of
HONDO is ideally suited for use with Dacre-Elder scheme [26,27] for treat-
ing point group symmetry. The SCF program HONDO efficiently computes
blocks of integrals using a formula based on the properties of orthogonal
polynomials. An entire block of two electron integrals is eliminated if
it is symmetrically equivalent to another block with a higher index. TUsing
the "petite list" of block of integrals, a skeleton matrix is formed from

which the true Fock matrix is generated by "symmetrization'". 1In order to
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reduce the amount of input data to be supplied, all symmetry information
in input data is the Schonflies point group symbol and the coordinates of
three points which specify the symmetry frame. It can be used for any
closed shell molecule and requires negligible computer time to carry out
the symmetry-related computations.

HONDO employs Cartesian Gaussian type basis functions. Angular
dependence of a basis function may be introduced by a factor Yzm(e,¢).
However for Gaussians the angular dependence is more frequently introduced,

as suggested by S. F. Boys [28], by a primitive basis function of the form
s —urz
c xP y9 2% e ‘ (2-27)
where p, q and s are integers. The sum of powers, ),
AX=p+q+s (2-28)

is closely related to the total angular momentum quantum number. Functions
of this type Eq. (2-27) are usually called Cartesian Gaussian.

As has been mentioned the Roothaan procedure is iterative and large
basis sets may need more iterations in order to reach convergence. It is
possible to reduce the number of integrals to be evaluated while only
slightly reducing the flexibility of the basis set, by using contracted

Gaussians, linear combinations of Gaussians with fixed coefficients
- P.4s 2
X = Xy 'z Z C, exp(-a, r")
x k k

In HONDO a shell of functions is a collection of x all on the same

centre and all made up from the same set of exponential parameters a To

K
achieve the necessary flexibility without making the x basis needlessly

large, the construction of a small number of well-chosen, highly contracted
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low angular momentum inner shell functions and a lightly contracted valence
shell set with high-) functions have been used by Dupuis, Rys and King [29].

A shell structure is computationally‘advantageous and particularly
simple if an integral over primitives can be written as a product of three
factors corresponding to the three Cartesian coordinates. Dupuis and King
proved that the two-electron Coulomb repulsion integral can be expressed
as a finite sum of such products of three factors. Each term corresponds
to one root of a Rys polynomial, the degree of which depends upon the sum
of four A values. The Coulomb repulsion integral is evaluted by an exact
numerical Rys quadrature formula [30].

The method of Rys quadrature is applicable to a wide variety of mole-
cular integrals over Gaussian basis functions including those for all the
usual one-electron properties as well as for the three and four electron
integrals that arise in certain treatments of electron correlation. This
method is simple, accurate and applies to any positive integer values of p,

g, and s in Eq. (1).

2.4 Modifications to HONDO

HONDO is written in FORTRAN IV for the CDC 6400 by Dupuis, Rys and
King.

To get HONDO to. work for the Burroughs B 6700/B 7700 several changes
have been made. In this section all modifications to HONDO will be given.

Mass storage input/output (MSIO) subroutines in CDC allow the user to
create, access, and modify files on a random basis without regard for their
physical positioning. Mass storage subroutines which are used in the CDC
version of HONDO are OPENMS, CLOSMS, READMS and WRITMS.

OPENMS opens the mass storage file and informs the system that it is
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a random (word addressable) file. By creating the files in the job file
the same work can be done in Burroughs so that there is no need to have
an OPENMS subroutine in Burroughs.

CLOSMS writes the master index from central memory to the file and
closes the file. CLOSMS is provided to close a file so that it can be
returned to the operating system before the end of a FORTRAN run. To
achieve that the CLOSE statement can be used in Burroughs, the CLOSE state-

ment is given for a disk file as follows:

CLOSE (n,DISP=KEEP)

where n is an arithmetic expression and represents a file designator and
DISP stands for DISPOSITION.

READMS transmits data from the file to the central memory. In order
to transfer data from the file to the central memory the executable READ

statement which is used in the Burroughs of HONDO is-given as follows:

READ(n=r)m

where n and r are arithmetic expressions representing a file designator and
record number, respectively, and m is an input list.

WRITMS transmits data from central memory to the file. In the Burroughs
version of HONDO, the WRITE statement has been used. The executable WRITE
statement causes data to be written from internal storage to one or more
records of a program file. The WRITE statement which is used in the new

version can be given

WRITE (n=r)m

where n and r are arithmetic expressions representing a file designator
and record number, respectively, and m is an output list.

OVERLAYS have been changed into subroutines.
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The READ statement, READ(IS)XX,IX,NX in subroutine PREAD has been

changed as follows:

READ (IS)NX

INX=TIABS (NX)

READ(IS) (XX(I),I=1,INX)
READ (IS) (IX(I),I=1,INX)

The same modification to READ has been applied to the WRITE statement in
SUBROUTINE PWRIT.

The subroutines, ISOIN, ISOOUT and HSTAR have been subjected to seweral
changes, since the proper library function SHIFT is not on the B 6700. This
problem has been taken over by introducing a new external funétion, IPACK,
to HONDO [see Appendix III]. In subroutine SCFOP the Burroughs CONCAT in-
trinsic has been used instead of SHIFT.

The DATA statements with MASK15 and MASK30 have been changed into
MASK12 and MASK24 respectively.

Statements SECOND, DATE, and TIME have been changed into Burroughs
versions as well.

In order to get the exchange energy from modified HONDO, another
subroutine has been introduced to HONDO. This subroutine is called KSTAR
which is derived from HSTAR by eliminating F(NIJ) and F(NKL) statements,
to compute the exchange operator only. Just after WRITE(IW,9991) the

following changes have been added to HONDO:

WRITE (IW,9991)
CALL KSTAR(DA,FA,XX,IX,NINTMX)
CALL SYMH(FA,HO,IA)
EX=TRACEP (DA, FA,NUMSCF) /TWO
WRITE (6,8888) EX
8888 FORMAT(/,15X,"EXCHANGE ENERGY",F20.12)



CHAPTER 3
DENSITY MATRICES AND THE EXCHANGE ENERGY
3.1 Introduction
The total Hamiltonian operator for an N-electron system, Eq. (2-2),

can be rewritten in the following form:

Yo 1N
R-liy+g Lo @ =D
i 1,3 713

1]

where the first sum in this equation represents the one-electron term for
each electron; the second sum is the electron repulsion term for each
electron pair.

The expectation value of the one-electron part is given as follows:

N % N )
<§ Ho> = j.[ dv(l)...dv(N)Wi(l,Z,...,N)[gHi]?i(l,Z,...,N) (3-2)

*
From the symmetry of ¥ ¥ .each value of i must give the same contribution;
therefore the result for the one-electron part is expressed as N times the

result for the first term in the sum:

N )
<lAa>=N J dv(l),...,dv(N)ﬁlwl(l,z,;..,N)w*(l',z,...,N) (3-3)
i
1'=1

where Hl works on functions of 1 only and the name of the variables are

changed from 1 to 1' to protect v" from the effect of H After operating

1
with Hl’ but before completing the integration, 1' can be equalized to 1.

Thus Eq. (3-3) can be expressed as follows:

<) ﬁi> = j dv(1)H,p, (1i1") (3-4)

t 1'=1

11

where the one-electron density matrix is

0,(131') = N J Jdv(z)...dv(N)W(l,Z,...,N)W*(l',Z,...N) (3-5)
N N N

(a) )" means 2 ) where i # j
i,] i

18
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In a similar way the expectation value of two-electron part may be

written in terms of the two-electron density matrix 02(1,2;1',2') [31,32,33]

A
[
~1
=
=
v
]
N

J dv(1)dv(2) ;1— 0,(1,231,2") (3-6)

SN 1'=1 2'=2 12

where

0,(1,2;1',2") = N(N-1) dv(3)...dv(N)T(l,2,...,N)W*(l',Z',...,N) (3-7)
2

The two-density matrix p2(1,2;1',2') reduces to 02(1;2) when it is taken
1'=1 and 2'=2. Since 1 is just a factor in the integrand, the primes may
12

be dropped at once.

Now, the total energy for an N-electron system becomes

dv(l)ﬂ
1

(o7 (1510) + %—JJdv(l)dv(Z) Lo a2 (3-8)

HE 12

=
Il
N

ll
Considering the one-determinant approximation [see Appendix IV for
details], the two-density matrix can be determined by the one-density

matrix

<11 91y = .11 Loty 10 .ot _
02(1,2,1 »2') Ol(l,l )01(2,2 ) 01(2,1 )01(1,2 ) (3-9)
where the one-density matrix [31] is

o (51D = T 4 e, AN (3-10)
i(occ)

¢ stands for the spin orbital. Thus the total Hartree-Fock energy can be
expressed in terms of the one-density matrix
E_ = | dv(Dip, (1;1") + = ||av(1)dv(2) =2 o, (131)0, (2;2)
HF 171 2 T 1 17
1121 12

-3 JJdv(l)dv(2> ?i;‘01<2;1)91(1;2) (3-11)
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The second term in Eq. (3-11) is the coulomb energy term; the third term
represents the exchange energy.
The spinless counterparts of the one-electron and the two-electron

densities are obtained by integrating over spins,
P (131" = J ds(1)p, (1;1") (3-12)
51751
P2(1,2;1';2') = J J ds(l)ds(2)p2(l,2;l',2') (3-13)

811751 S2178)
Using Eqs. (3-12) and (3-13) the total Hartree-Fock energy becomes

By = J dr (AP, (131") +-% JJdr(l)dr(Z) ;i;-Pz(l;Z) (3-14)

1'=1

where the spinless two-density matrix can be represented entirely in terms
of the spinless one-density matrix for a closed shell [32]

L1 91y = Lt Loty _ 1 L1t .ot _
P2(1,2,1 ,21) Pl(l,l )Pl(2,2 ) 5 Pl(2,l )Pl(l,2 ) (3-15)

By inserting Eq. (3-15) into Eq. (3-11) the total Hartree-Fock energy is
found in terms of the spinless one-density matrix

Eyp = J ar (1)HP, (131" + %—JJdr(l)dr(Z) ;i;—Pl(l;l)Pl(Z;Z)
1151

- %~JIdr(l)dr(2) ;i;—Pl(Z;l)Pl(l;Z) (3-16)

The second term and the third term in Eq. (3-16) are the spinless counter-
parts of the coulomb energy and the exchange energy in Eq. (3-11), respec-

tively, and where

P, (131") =2 Y X (Wx -ah, (3-17)

UOCC

and Hoce indicates the summation over the occupied MO's.
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3.2 Method

The exchange energy for an N-electron system has been defined in Eq.
(3-16) in the following way:

P_(1;2)P.(2;1)
E, = --% JJdr(l)dr(Z) 1 1 (3-18)

12

where Pl(l;2) is the spinless one-matrix.

In the present work, the spinless one-matrix is approximated by the
supermolecular density for two-closed shell systems A and B. The super-
molecular density is calculated according to the formula given by FroOman,

Lowdin [13] and Jeziorski et al. [14], as quoted by Kotos [12]

_ -1
P,p(1;1) = Zuzvxu(l)(A ) WK, M (3-19)

where XU and Xv stand for atomic orbitals of both constituents. The summa-
tion goes over the occupied atomic orbitals of both A and B atoms. A_l is
the inverse of the total overlap matrix A which may be decomposed into two

parts

A=1+S (3-20)

where 1 is the unit matrix (1's on the diagonal)zeros elsewhere) and S
denotes the matrix of the intermolecular overlap integrals, vanishing as
the intermolecular distances tend to infinity and the matrix elements of 8

are given as follows:

S = Jer X -6 (3-21)
uv T uv
The matrix A—l can be expanded in the following power series
st =1 -s+s2 s34, (3-22)

and it is convenient to express the matrix
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AT =1+0D (3-23)
where
-1
D=-S(1+ 8) (3-24)
Hence, the supermolecular density PAB can be expressed as follows [12]
A
Pyp(131) =P, + Py + 2] DX, (DX (1)
HsV
B A B
+ Zuszquu(l)Xv(l) + 4 E % DX, (MX (1) (3-25)

where PA and PB are the electron densities of both constituent atoms A and

B, respectively, and Duv are the matrix elements of D.

3.3 Application to He-He System

Using the method mentioned in the previous section the exchange energy
for two-closed shell systems can be calculated. In this present work, the
He~-He system has been considered. For the He-He system which has four

electrons and two orbitals, the supermolecular density can be written as

Prooge (131) = Py (131) + B (131) + P, (131)D
+ PHeZ(l;l)D22 + 2%, (L)X, (1)Dy, + 2X,(1)X;(1)D,, (3-26)
where
P (131) = 2X.(1)X,(1)
1 ' ' (3-27)
PHez(l;l) = 2%, (1)X, (1)

For the calculation of the exchange energy we will hypothesize that

Preote(132) = 2X (D)X, (2) + 2%, ()X, (2)Dy; + 2X,(1)X,(2)

+ 2X2(1)X2(2)D22 + 2X1(1)X2(2)D12 + 2X2(1)X1(2)D21 (3-28)
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Dll and D22 are equal to each other because of the indistinguishability of

the He atoms. For simplicity we can represent X, and X, as a and b, res-

1 2
pectively
PHe_He(l;Z) = A2[a(1)a(2) + b(1)b(2)]
+ C2[a(1)b(2) + b(1)a(2)] (3-29)
where A= (1+ Dll) and C = D12 (3-30)

Using the idempotency condition [34]:
Jdr(B)Pl(l;B)Pl(3;2) = 2Pl(l;2) (3-31)

the correctness of A and C has been verified. Details are provided in
Appendix VI.
Inserting Eq. (3-28) into Eq. (3-18), the exchange energy, EX’ for

He-He becomes

P (1;2)P_ . (2;1)
B = -+ ”dr(l)dr(Z) He-tle He-fie (3-32)
X 4 T
12
After some algebraic manipulations we have
1 2 2
EX = - Z—{A [aa‘aa] + 2A [ab|ab] + 4AC[aa|ab] + 4AC[ablbb]
2 2 - 2
+ A“[bb|bb] + 2C“[aa|bb] + 2C“[ab|ab]} (3-33)
where a and b are the minimum basis set of the Slater functions
_ 3 1/2
a(l) = (ul /) exp(—ulral) (3-34)
_ 3 1/2
b(1l) = (uz /) exp( azrbl) (3~35)

where ral is the distance between electron 1 and the centre A and rbl is the

distance between electron 1 and the centre B as they are shown in Fig. 1.

o is the optimized orbital exponent from atomic SCF calculations using

minimum basis sets and given by Clementi and Raimondi [35]. In most cases
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the energy-optimized exponents are not a great deal different from those

is equal to a, because

obtained by Slater's rules [36]. The parameter a 9

1
of the homonuclear casej; hence, the results of integrals [aalaa] and

[aa|ab] are equal to [bb|bb] and [bb|ba], respectively, considering

symmetry of a and b. Then Eq. (3-33) can be re-arranged as

By = - 7{2A°[aa]aa] + 2(a% + ¢*)[ab|ab] + 8AC[aalab]
+ 2C%[aa|bb]} (3-36)
where
[aalaa] = 4JJdr(l)dr(2)a(l)a(l) ;i;-a(Z)a(Z) (3-37)
[ab|ab] = 4[Jdr(l)dr(2)a(l)b(l) ;i;-a(Z)b(Z) (3-38)
[aa|ab] = 4”dr(1>dr<z)a(1)a(1) }i a(2)b(2) (3-39)
[aa|bb] = 4JJdr(l)dr(2)a(l)a(l) ;i;—b(Z)b(Z) (3-40)

The analytical solutions of two-centre integrals [ablab], [aalab], and
[aalbb] are given by Slater [37]. Integrals are in atomic units; the factor
of 4 in front of above integrals comes from the supermolecular one-matrix
definition, Eq. (3-28).

The results of the exchange energies of He-He af different R obtained
by this method and HONDO are given in Table 1. As it is shown in Figure 2

the exchange energy results from this work are in good agreement with HONDO.



TABLE 1

Exchange Energy of He-He?

Exchange Energy

R(ay) Present Work HONDO
1.0 -2.37108 -2.37417
1.5 -2.25624 -2.25916
2.0 -2.18138 -2.18427
2.5 -2.14036 -2.14332
3.0 -2.12123 -2.12426
3.5 -2.11348 -2.11656
4.0 -2.11069 -2.11379
4.5 -2.10977 -2.11288
5.0 -2.10945 -2.11260
5.5 -2.10940 -2.11252
6.0 -2.10938 -2.11250
6.5 -2.10938 -2.11250
7.0 -2.10938 -2.11250

a . . .
All values are in atomic units.
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Figure 2. Comparison of the exchange energy

results of this work with HONDO.
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CHAPTER 4
MONTE CARLO METHOD

4.1 Introduction

The Monte Carlo method solves the mathematical and physical problems
approximately by the simulation of random quantities [38].

Integrals can be evaluated by the Monte Carlo method. For simplicity,
we can choose the one-dimensional integral as an example to exhibit the

fundamental features of the Monte Carlo method.
b
I = J dxf (x) (4-1)

a
where f(x) is an arbitrary continuous function which is defined on the
interval a €« x € b. In fact, such integrals can be computed by quadrature
formulas, a more precise technique, but for multidimensional integrals the
situation is different: quadrature formulas become tedious while the Monte
‘Carlo remains principally unchanged.

In the Monte Carlo method the essential feature is that at some point
we have to substitute for a random variable a corresponding set of actual
values having the statistical properties of the random variable. The
values that we substitute are called random numbers. There are several
ways to generate random numbers which have also been subjected to almnumber
of statistical tests to check that these numbers are correctly distributed
over the interval or not [39].

In order to compute the integral Eq. (4-1) we need to know the values
of random variables v which are distributed over the interval [a,b] with
probability density pv(x). The values of random variable v can be constructed
transforming one or more values of random number G 1is given by the follow-

ing formula

28
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v
[ dxpv(x) = G (4-2)
a

where the probability density pv(x) must satisfy the following two conditions:

(1) the probability density pv(x) is positive,
p,(x) >0 (4-3)

(2) the integral of the density pv(x) over the whole interval [a,b] is

equal to 1,
b
J dxp_(x) =1 (4~4)

a
Each value of G gives the solution of Eq. (4-2) for the corresponding v
value.

To compute the integral Eq. (4-1) by the Monte Carlo method, besides the
random variable v, defined on the interval [a,b] with density pv(x), we need

a random variable such as

g - L) (4-5)

The expectation value of H is I.

b
f(x)
| BGEEPR®
B(H) - 2— - J G b () = I (4-6)
v
J dx pv(X) &
a

Let us consider N independent, identically distributed random variables,
Hl’ HZ’ coes HN’ that is, the probability densities of these variables co-
incide. Applying the central limit theorem [38] [Appendix VII] to the sum

of the variables we can write the following relation
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N ———
prob(l%l— .ZlHi -1 < 3/(_;&‘——1];-(1{1)) N 0.997 (4-7)
1=

This relation shows that the absolute error between the true result of the
integral and the result obtained by the Monte Carlo method will almost

. var (H) , . .
certainly not exceed 3 G—ﬁf~“0 , provided we choose sufficiently large
N. Thus we compute

f(v )

N
zlp (v ) v 1 (4-8)

Z =
I 12
Z}H

i l

Any random number v, defined on the interval [a,b] can be used to compute

the integral Eq. (4-1) because

f(v)
p, (V)

E(H) = E( ) =1 (4-9)

but the variance of H and hence the estimate of the error of Eg. (4-9) are
dependent on what variable v we use.

b
var (H) = E(HZ) - 1% - J (

a

f (x)
p_(x)

v

y ax - 12 (@) (4-10)

Since the random variable is extracted from pv(x) on the interval [a,b] the
variance is also dependent on the probability density pv(x) which we use.

The variance can be minimized when pv(x) is proportional to |f(x)| ("impor-
tance sampling") [39,40], but we have to restrict our choice of the proba-
bility density pv(x) to functions that we can integrate analytically, since

the values of v are constructed from Eq. (4-2).

4.2 Application to Exchange Energy Integral

In this section our aim is to compute the exchange energy formula given

N
(@) var(m & gy [ @p” -5 C
i=1 i

H.)z]

1

It ~12

1
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by Eq. (3-29) using the procedure described in the previous section for
multidimensional integrals since we have to integrate our Eq. (3-29) over
electron 1 and electron 2.

To compute the integral by the Monte Carlo method we have to define
the probability density which satisfies two conditions: Eq. (4-3) and Eq.

(4-4). Since the product P (l;2)PHe_He(2;l) appears in Eq. (3-29), we

He-He
can use it as a guide to choose the probability density. Of course, our
choice would not be very complex since the random variable would be con-
structed from it.

The square of our supermolecular one-matrix for He-He is given as
follows:
(1;2) x P

PHe—He He—He(Z;l)

= {A[2a(1)a(2) + 2b(1)b(2)] + C[2a(1)b(2) + 2b(1)a(2)]1}
x {A[2a(2)a(l) + 2b(2)b(1)] + C[2a(2)b(1) + 2b(2)a(l)]1} (4-11)
Assuming that the off-diagonal element of the inverse matrix is smaller than

the diagonal element of the inverse matrix, that is, C is smaller than A, we

can choose our probability density as
p,(1;2) = N[a(1)a(2)a(1)a(2) + a(1)a(l)b(2)b(2)
+ b(1)b@)a(2)a(2) + b(1)b(2)b(1)b(2)] (4-12)
This expression can be rearranged as follows:

p,(1;2) = N[a(1)a(l) + b(1)b(1)][a(2)a(2) + b(2)b(2)] (4-13)

where a and b are the normalized 1s STO's, and N is the normalization con-

stant. (pv(l;Z) has to be normalized to 1, Eq. (4-4).)

fjdr(l)dr(Z)pv(l;Z) =1 (4-14)



Our calculations will be in the p
of their usefulness in treating "two ¢
[41].

W= (r, +r)/R 1<

v = (ra - rb)/R -1 <

¢ 0 g
and the volume element is

dr = (%)3(u2 ~ vZydudvdg

The 1s STO's a and b can be expressed

>as follows:

3
o
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rolate spheroidal coordinates because

entre" problems [see Appendix VIII]

s @ (4-15)
vgl (4-16)
¢ s 2w (4-17)

(4-18)

in the prolate spheroidal coordinates

() = EM? expla 5wy + v))] (4-19)
o3 1/2 R
() = M exploa iy - )] (4-20)

To construct the random variable we recall Eq.

variables will be ul, and u

\)l, q)l 2’ v

over electron 1 and electron 2. For u

derived from Eq. (4-2):

|

1

o 1 1 2T

ovg | oo [y oty |

1 -1 -1 0 0

M1
dul

[a(l)a(l) + b(1)b(1)][a(2)

Since a and b are the normalized funct
M 1 2m
o [ 3 av. | ae. &3, ? -
M1 1 1 V) W T
1 -1 0

In a similar way v, and ¢l can be cons

1

(4-2). Our random

29 ¢2 because the integration is

1 the following equation can be

A

asy &0 - v Hw, -7

)

a(2) + b(2)b(2)] = GU (4-21)

ions Eq. (4-21) turns out to be

Ha@a@) +bMbM] =6 (4-22)

tructed:
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° V1 21 R332 2 *

2N J dul f dvl J d¢lC§) (ul - ¥y Y[a(l)a(l) + b(1)b(1)] = Gv (4-23)
1 21000
® 1 ¢é R.3, 2 2 )

2N dul dvl ¢lC§) (ul - vy Y[a(l)a(l) + b(1)b(1)] = G¢ (4-24)
1 210000

After integrating Egs. (4-22) and (4-23) a nonlinear equation is obtained

for Hy and vy To find the roots of this equation an IMSL subroutine ZSCNT
has been used. This gives Hy and vy To find ¢l we integrate Eq. (4-24)
and obtain ¢l
1
T J d¢l = G¢ ¢l = 2m X G¢ (4-25)
0

In Egqs. (4-21) to (4-25), G is a random number uniformly distributed between
0 and 1. To generate these an IMSL subroutine GGUBFS has been used.

In a similar way M v, and ¢2 can be constructed. Since [a(l)a(l) +

22 72
b(1)b(1)] x [a(2)a(2) + b(2)b(2)] is symmetric, we do not even have to gen-

erate Hos V and ¢2; their values are found in the same way as Hys Vq» and

2
¢;- Obviously uy # Hys Vg # v, and ¢, # DY

We need to know the r in the prolate spheroidal coordinates to compute

12
the integral Eq. (3-29). This expression is given by KoXos and Roothaan [42]
2

1
T1p =3 R

2 2 2 2 2
{ul + vl + uz + vz - zulvluzvz -2

2,,1/2

=20y - DA - v 0, - DA - v,H1 s, -0 (4-26)

Recalling Eq. (4-8), we can compute the exchange energy integral as follows:

*The expression is not correct. Indeed we should choose 2 from the pro-

bability of v conditioned upon the value of My That is,

V1
J p(vluddv = ¢
0

v

2m 1 27
where p(vlul) = p(ul,v)/P(Ul)= (J p,d¢/
0

—_—
%
)
<
[a
<
[N
=
SN———"
|
=
,—I
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1 g EQy V13001404940V %24)
N .z

£
X 1Py (Mg 45 0055M050V010095)

where

- _ 1 . )
£=- 4 PHe-He(l’Z)PHe—He(Z’l)/rlZ

and Pv is given by Eq. (4-13).

The list of the results of the exchange energy of He-He at different
R, obtained by the Monte Carlo method, is given in Table 2. If we compare
Table 2 with Table 1, we can see that the results from the Monte Carlo
method are in good agreement with the results from HONDO.

It has been mentioned that the probability of the absolute value of
the error in calculating an integral exceeding the value 3¢ is less than
1%. However, in reality as a rule turns out to be noticeably less than
this value such as in our exchange integral calculation. Therefore we can
use the "probable error'.

§p = 0.675 ¢
The probable error J&p gives not the likely upper limit of the error, but
rather its order of magnitude. In fact, deviations from the expected value
larger and smaller than the probable error 0.675 o are equally probable [38].

L +0.6750
dxP (x) = 0.5
z
- 0.675 ¢

In Figure 3 the results from the Monte Carlo method is compared with
the results from HONDO. The probable error is also shown in this figure.

The contributions of the exchange energies, AEX, at various internuclear
distances are given in Table 3. As it is shown in Figure 4, AEX values ob-
tained from the analytical way are in good agreement with HONDO. The results

obtained from Monte Carlo are not far from the others at short distances but



TABLE 2

Exchange Energy Results of He-He at different R,

obtained by the Monte Carlo method with probable errors®

35

R(ao) Exchange Energy of He-He Probable Error (8p)
1.0 -2.39746 0.04824
1.5 -2.26792 0.04162
2.0 -2.18542 0.03697
2.5 -2.14253 0.03549
3.0 -2.12386 0.03498
3.5 -2.11727 0.03485
4.0 -2.11581 0.03485
4.5 -2.11598 0.03487
5.0 -2.11646 0.03490
5.5 -2.11688 0.03493
6.0 -2,11721 0.03485
6.5 ~2,11744 0.03487
7.0 -2.11761 0.03498

a . , .
All values are in atomic units.



Figure 3. Comparison of the exchange energy results

from Monte Carlo method with HONDO.
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at long distances Monte Carlo results show some deviations from the others.
This shows that exchange energy calculations by Monte Carlo need some im-

provement which could be done in the future.

TABLE 3
AEinal(a), AEﬁC(b) and AEiONDO(C) of He-He at Different R
R(ao) AEinal AEzc AEEONDO
1.0 ~2.61705 x 107 -  -2.88085 x 10T 2.62274 x 10T
1.5 1.46865 x 1071 -1.58545 x 107% ~1.47734 x 1071
2.0 ~7.20050 x 1072 -7.60450 x 1072 ~7.28442 x 1072
2.5 ~3.09850 x 1072  -3.31550 x 1072 3.18942 x 1072
3.0 ~1.18550 x 1072 ~1.44850 x 1072 1.28342 x 1072
3.5 ~4.10500 x 107> -7.89500 x 107> -5.13420 x 1073
4.0 ~1.31500 x 107> ~6.43500 x 107> 2.36420 x 107
4.5 3.95000 x 10°%  -6.60500 x 107> ~1.45420 x 1073
5.0 ~7.50000 x 107> ~7.08500 x 107> ~1.17420 x 107>
5.5 ~2.50000 x 10> ~7.50500 x 107> ~1.09420 x 107>
6.0 ~5.00000 x 107° ~7.83500 x 107> ~1.07420 x 107>
6.5 ~5.00000 x 107° ~8.06500 x 10> ~1.07420 x 107°
7.0 ~5.00000 x 107° ~8.23500 x 107> -1.07420 x 1073
(a) AEinal = EX of He-He (analytical) - 2 x EX of He (analytical).
(b) AEﬁC = EX of He-He (Monte Carlo) - 2 x EX of He (analytical).
(c) AEEONDO = EX of He-He (HONDO) - 2 x EX of He (HONDO).

EX of He (HONDO with STO 6G) = -1.05571 a.u.

EX'of He (analytical result with minimum basis set of STO) = -1.05488 a.u.



Figure 4. Comparison of the exchange energy contributions of
the He-He system obtained analytically and by the

Monte Carlo method with the results obtained HONDO.
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CHAPTER 5

SUMMARY AND DISCUSSION

In Chapter 2 the SCF program HONDO has been introduced with some
modifications to it.

Our aim is to find the exchange energy of the He—Heksystem as close
as possible to results of HONDO by a different way. We generalized the
supermolecular density for two interacting closed shells to the super-
molecular one-matrix. In Chapter 3, we proved that using the super-
molecular one-matrix one can find the exchangé energy of He~He correctly.
To extend this formula to larger two-closed systems we should find the
easiest way to calculate the exchange energy integral. The exchange
energy integral is very formidable job because of its unlocal nature.
In addition, the supermolecular density should be normalized to the number
of electrons and obey the idempotency condition [34]. As the number of
electrons increagesthis job will be more difficult to manage by using
analytical and numerical integration .

In Chapter 4 we applied the Monte Carlo method to the exchange energy
integral of He-He since the simplicity of the Monte Carlo method for multi-
dimensional integral. We found that the results from Monte Carlo are also
very close to the results from HONDO for 5000 random points. One can min-
imize the absolute error of the estimation by increasing the number of
random points and/or by taking the probability density which mimics the
function we want to integrate. Our aim should be to choose some probability
density to reduce the standard error of our estimate and to reduce the.
variance. Some other variance reduction methods are given by Davis and

Rabinowitz [40].
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We proved that the Monte Carlo method can provide accurate results
for the exchange energy of He-He at different internuclear distances.
Our method can be extended to larger two-closed shells using the Monte
Carlo method. All we need is to find the probability density which
follows closely the integrand. For larger systems such as Ne-Ne, Ar-Ar

and Ne-Ar, etc., required overlap integrals can be provided from [47].



APPENDIX I

DERIVATION OF THE HARTREE-FOCK ENERGY EXPRESSION

The antisymmetrizer in the Hartree-Fock wave function Eq. (2-3) is

defined as follows:

-1/2 g!

r=1

A(N) = (N!) -2, (1-1)

The N! permutation operators Pr are so labelled that even(odd) r corres-

ponds to an even(odd) permutation [21].

The antisymmetrizer operators A(N) have three required properties:

A2 = antam (1-2)

A(N) = A*(N) , (I-3)
and

A(N)Q = QA(N) (I-4)

where Q is any operator totally symmetrical in the coordinates l,...,N.

To prove the first property Eq. (I-2) we can write

N! N!
—1/2 Z (—'l)rPr (N! )—1/2 z
r=1 s=1

A% = (1) (-1)°P_

NI N!
anty T ntter . (I-5)
r=1 s=1 rs

Il

Using the fact that the product of two permutation operators is another

permutation operator of the same set, we can rewrite Eq. (I-5) as follows:

) LMW N! 1/2
AT = DT Y Y (-1)"1»t =9 (-1)tpt = A . (1-6)
r=1 t=1 t=1

The Hermitian propergy of A(N), Eq. (I-3), shows the integral relation
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f...Jdv<1)...dv(N)g*(l,...,N)A(N)n(l,...,N)

- J...fdv(l)...dv(N)[A(N)g(l,...,N)]*n(l,...,N) (1-7)

for two arbitrary well-behaved functions £(1,...,N) and n(l,...,N). The
third property of the antisymmetrization operators is the commutative
property, Eq. (I-4).

Considering three properties of A(N) we have
J...Jdv(l)...dv(N)W;F(l,...,N)QWHF(l,...,N)
- J...Jdv(l)...dv(N)[A(N)¢l(l)...¢N(N)]*QA(N)¢1(1)...¢N(N)
= [...Jdv(l}...dv(N)¢i(l)...¢§(N)A2(N)Q¢l(l)...¢N(N)

N!
t
LD Mty (1-8)

- j...Jdv(l)...dv(N)¢i(l)...¢§(N)
t=1

Let the totally symmetric operator Q be equal to 1, then we can say that
Eq. (2-3) or Eq. (2-5) is normalized.
*
J...Jdv(l)...dv(N)WHF(l,...,N)WHF(l,...,N)

N!

- ]...fdv(l)...dv(N)¢i(l)...¢N(N)tzl(—l)tPt¢l(l)...¢N(N)

J...jdv(l)...dv(N)¢l(l)...¢N(N)¢l(l)...¢l(N)

[fdv(1)|¢l<1)|2]...[fdv(N>I¢N(N)|2] =1 (1-9)

Only the identity permutation of the Hartree-Fock wave function avoids
zero because of the orthonormality of the set ¢i(l) [Eq.(2-6)].
To evaluate the Hartree-Fock energy expression Eq. (2-7) the operator

Q in Eq. (I-8) can be set to

v,

? i g — %‘EE_ Ly I
H. [=-) ¢( ' )] and to = .
t= = R P 2 341 171 Tij
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N
From z ﬁ. we have
i=1 *
N * * ~ N t
zl[...fdv(l)...dv(N)¢1(l)...¢N(N) Hi zl(-l) Pt¢l(l)...¢N(N)
t=

i=

N
=

1[Jdv(l>¢i(1)¢l<1)]...[Jdv(i>¢i*<i>ﬁi¢i<i>1
1=

N
...[Jdv(N)¢§(N)¢N(N)] = VA, (1-10)
i=1

and for 1 Z Z —!;-We have
2 .5, . r..
j#i i=1 "1ij

N
j...fdv(l)..dv(N) D el A C TS, SN ¢ NOON )
3>i =1 Tij

N N!

1 . . )
= zﬂj;i izlj-..fdv(l)...dv(N)¢1(l)...¢N(N) Ly tZl(—l) P97 (1) e by (1)
1 N . . . .
= —2— .é. .zlfo-.J‘dV(l)o..dV(N)qbl(l)o.-¢i(i)o..¢N(N) rijq)l(l)_..
j#i d=

X

[, ()05 () = 45 (D)(D)]-- -0y ()

N

N
2 , X R R 1
[dv(1)§ <1>]...[[fdv<1>dv<3>¢.<l>¢.<->—~—¢.<- G
j;i izl 1 i 5 o 1)¢J(J)

[[vwevmeoriiar 2= o, 0e, @1
13

N

2 1
[Jdv(N)¢ ™M1 =% (J.. - K..) (I-11)
| : 2 jzi izl = A

X

Hi’ Jij and Kij are defined, Egs. (2-8), (2-9), and (2-10).

Inserting these results, Egqs. (I-9), (I-10), and (I-11), dinto

J...Jdv(l)...dv(N)WzF(l,...,N) i ¥ (LyerasM

E =
HF J...Jdv<1>...dv(N)ng(l,...,N)wHF(l,...,N)
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we obtain

N . N
Eyp = lZlH T3 J.;i 121( 3 7 Ky
N N
) ilei ’ jzi izl(Jij " Kig) (1)



APPENDIX II

DERIVATION OF THE HARTREE-FOCK EQUATIONS

We want to minimize Eq. (2~7)

N N
E._= YH + ) ] (J,. =-K,.) (I1-1)
= R A = R B
%
subject to the conditions Eq. (2-6) Sij = Jdv(l)¢i(l)¢j(l) = 6ij with
respect to ¢i. Applying Lagrange's method of undetermined multipliers

we can find the minimum of the functional

F=E_- ) ) e..8.. (I1-2)
HF j=1 =1 ij i3

where the Eij are the constants. That is, we need

N
1
0=¢8F=1)68H +% )} ) (8J,,-6K,.) - e..6S.. (1I-3)

i i 2 421 i=1 ij ij ij ij

where §'s represent virtual variations induced by virtual variations in the

¢i. For simplicity we can assume that all orbitals are real; then we can

write

854 = JdV(l)5¢i(l)¢j(l) + JdV(l)¢j(l)6¢i(l) (I1-4)

s, () = [eves, ;W) + [av@o; R W6, )

2Jdv(1)6¢i(l)ﬁi(l)¢i(i) (1I-5)

Similarly, if we recall the definitions of Jij and Kij from Eqs. (2-9) and

(2-10)
1

— 2 er—
1y = [Jeweoia =y o
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and

f
= dv(l)¢i(l)Kj(l)¢i(l)

r
= |av(2), ()X, (2)0,(2)

J

f
K., = I dv(1)dv(2) 9, (1) ¢ (1) S

r

f
= Jav(Do; (I W4, = Jdv(z>¢j(2>Ji<2)¢j<2>

£ (2)05(2)
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(I1-6)

(I1-7)

where the Coulomb and the exchange operators are as defined in Eq. (2~15)

and Eq. (2~-16). Then we have
aJij = Jdv(l)6¢i(l)Jj(l)¢i(l)
+ Jave, 3, @0,
+ [avi@r00; @3, 20, @)
+ [avere; @3, @00, 2
6344 = 4Jdv(l)6¢i(l)Jj(l)¢i(l)

and similarly

+ 2[dv(2)6¢j(2)Ki(2)¢j(2)
6%,y = 4fav(se, WK, @6, @)

Thus Eq. (II-3) gives

N

0= 7= T [so,im @@ +F

i=1

J

GGG

(11~9)

(I1-10)

(I1-11)

The coefficients of each term vanish identically since 6¢i are arbitrary;

then we have
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B (D6, +5 T 5,Mo M - K We;M] = Te o, (I-12)
j#1 j=1

Egs. (II-12) are the Hartree-Fock integrodifferential equations. These

equations are different from the Hartree-Fock equations Eq. (2-11) by the

presence of off-diagonal multipliers Eij’ i#j. It is possible to trans-

form Eq. (II-12) into Eq. (2-11) as described by Blinder [21]. This

transformation can be chosen so as to bring the gij matrix to diagonal

form:

e,. = 6,.€. (II-13)
ij ij i

Assuming that this transformation has been made, Eq. (II-12) becomes more

simple:

;o 1 _
{H,(1) + 5 j};l [3,(1) - K,(M13o; (1) = 54, (1) (T1-14)

where the terms in the curled parentheses correspond to the effective

Hartree~Fock Hamiltonian operator and Eqs.. (II-14) are the Hartree-Fock

equations.



APPENDIX III

MODIFICATIONS TO ISOIN, ISOOUT AND HSTAR SUBROUTINES

FUNCTION IPACK (IA,IB,N,M)
C  TRANSFER N BITS FROM ARRAY IB STARTING AT
C  LOCATION INTO ARRAY TA AT LOCATION M
IPACK = CONCAT (IA,IB,M,N-1,N)
RETURN

END

The CONCAT intrinsic is provided to allow partial word manipulation
whereby one field of a data word may be placed into a selected field of
another data word [see Burroughs -B6700/B7700 FORTRAN Reference Manual].

All changes in subroutined ISOIN, ISOOUT and HSTAR are shown as
underlying. Since KSTAR is derived from HSTAR, KSTAR has the same changes

as HSTAR.
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1982 NOV 17 16302  (CSSCENC)BERKSOY/SCF/SOURCE/III ON PACK.
Cawxa CALL CVERLAY(3HTEN»10B»0s0) 000885040
CALLT JKUER . 0Q0886CC

RETURN . 00088700

END 00088800
T SR ROUTINE T SOIN g00889C¢C
Cexsx2eBPACK THE SYMMETRY LABLES#xasenn . 00088901
COMNMON/SYVTRY/T(432),INVI(4B)»150(70s€ )sNT 00089CCC
”““‘“"*‘CUPFUWIIStPBUTINUINtla)iTRDCUT(G )j 000891CC
IMAX=( 00089200

I=¢ 0008923CC

T IMIN=TIMAX+] ] 00089400
IMAN=IMAXEE 00089500
IFCIMAX.GT.NTY IMAX=NT 00089€00

T IRCUIMAY = TN INYUECLS) GO T 3219 600896C1
L=TVAX=TMIN+1 0CQ0BIEC?

G0 10 7658 00089E(06

32T =% 00083¢&C8
7658 IND=0 o - 00089700
00 20 K=IMIN, IMAX 0008971¢
IRCSIFACKUIND, INDINCIFAXF ININ=-K )5 7o 220L=1) 000898C1

20 L=L-1 0008983
Cee?0 INCSHIFTCIND,7)+INDINCIMAX4IMIN=K) 000899C¢C
I=1%1 : 00C90CAC

c WRITE(H-978) 1 ' . 00090602
€978 FORMATUIH »"l.cea="516) 00090004
TRCTGTCII=1ND 0009010¢
IFCIMAXLLY.AT) GO TC 10 000902¢¢C

RETURN .000902¢¢

END . 000904C¢C
SUBROUTINE 1500UT ' 00090500
CraxxasUNPACK THE SYMMETRY LABLESasssss ‘ 00090510
T T CCGMNCN/SYMTRY/TCA3Z),INVTC(48),IS0C705E DoNT 00090€CC
COMMGN/ISGPAC/ZINDINLGB) » INDCUTLR ) — 000907¢C0

L MASK=127 ) _ : 000908¢0¢
[ 4 FASK=¢3 00090801
00 5 IT=1,NT . 000909C¢

5 INCINCIT)=0 . 00091000

1=0 ~ g00911CC

IMAX=C ' g0091zcCC

10 IMIN=IMAX+1 0091300
TVAY=TNAX#5 : €009140¢
IFCIMAX.GT.NT) IMAX=NT ) 0009150¢

I=1+1 000916¢CC
T WRTTE(E,907Y T . 00091€C2Z
€987 FORNATLIH »"leeas=",16) , : 000916C4h
INC=INDCUT( ) 000917C¢C

=1 00091701

.00 20 K=ININ, IMAX - goo91ece
INDINCKI=C 00091803
INCINCK)=CONCATCINDIN(K)» IND» 6o 6472(L-1),7) g00918CS

20 [=C+1 000918¢7?
crz INCINCK)=ANDCIND» MASK) ' 000915¢¢
T 20 INTSSHIFTCINTS=7) ¢0a9zcoe
c20 INC=SHIFTCIND,=€) 00092001
IFCIMAXSLTNT) GO TC 10 000921¢¢C

RETURN 00092200

END ' 00092300

SUBROUTINE TIMITCINDEX) 0009z4cCC
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! 1982 NOV 17 16:C2 (CSSCENC)IBERKSOY/SCF/SOURCE/III ON PACK.

ETGT=ZEROD . 01514200
EHF==EN ’ ' _ 01514 2C0

1500 CCNTINUE ' ' 01514 40¢C
C i ' 015145¢CC
C—=wwww PRINT ACTUALT VALUE UF ENERGY ===== : 01514¢€CC
c : ‘ 01514700
WRITECIWN,9979) ETOTSEHF 015148¢¢C
IFCNPRINT.EC.5-CR-NPRINT.EG.~-5) GC TQ 1€00 015149CC

C#x CALL READMSTICAF»VsL255) : 01515¢00
FEACCIDAF=5)((V(I,J)sJ=1586)51= 1.85) - 015151¢¢C

CT+#+ CALL READVSUITAF,DA-NX58) : 01515200
REACCIDAF=6)(DA(I22)5122=1,NX) - . 01515 2C¢C

Cre CALL FEADNMSCICAF,E,NUNSCF,7) ) 015154¢C¢C
B REACCIDAF=7)CE(122),122=1,NUMSCF) 015155¢C¢C
WRITECIN,S$996) " 01515€CC

CC 1550 I=1,NCOGORB . 01515700

1550 KRITECIW,99655) 1,E(1) 015158c¢¢C
WRITECIW»5964) , 0151590¢

CALL VOUT(V,E»NCOORE,NUNSCF) 01515¢0¢C¢C
NRITECIWN,G953) 015161CC

CALL COUTC{DA,NUMSCF) - , : ) : 01516200

1600 CONTINUE - . 01516 2¢C¢

, TF(FPUNCH.E6.0) GO TC 1600 ’ 015154CC

c 01516500
c ==-=-= PUNCH THE CCCUPIED CRBITALS 01516£0C
[ v 01516700
Ce*« CALL FREADMSCICAF»VsL255) , 015168CC
FEADCIDAF=5)(LV(I,J)sJ=1586)»1= 1,55) 015165C¢C

U0 1750 J=1,NA . . 01517000

1c=¢ . 015171¢¢C

MAX=( _ 015172040

1700 MIN=MAX+1 ) _ . 015172¢C
MAX=MAX+5S 01517 4CC
IC=1C+1 . , 01517sc¢
IF(FAX.GT.NUMSCF) NAx—Nuw<cr G1517€C¢C
WRITECIP»99E8) JsrICsCVCUI»J)»I=MIN»MAX) 015177¢0
IF(MAX.LT.NUMSCF) GC T0 1700 . 015178C¢

1750 CONTIMUE : - 015175¢0C
1800 CONTINUE . B 01518CCC
CALL TINMITC(D) 015181¢C¢C
WRITECIF»9986)TIMNLIVM,NPRINT»ITOL, ICUTsNORMF»NORMP»NCPK» IREST» 015182cC¢C

.1 IST,JST,KST,LST,NREC,INTLGC»IHES 015182cC¢
Caes CALL WFITMSCIDAF,IREST,752Cr~1) 015184C¢C
WRITECICAF=CZO0)IREST»NREC, INTLOC,ISToJSToKSTHLST 01518%C¢C
RETURN . 01518€0¢

END 015187¢¢C
SUERQUTINE FSTARCC,FsXXs IX»NINTFX»1AsNGPK) g15138¢C¢C

c 01518900
c —e—e- SUBFULT!NEﬁHSTeMMEﬂEM*_Iﬁ£_AL£L£1ﬁN_MAIBll________—_________nlil&czc
[ F=C H" ¢+ H )/2 015191¢C¢
c 01519200
c FCI,J)=(Haa (I, J) + Hex(J,1))/2 0151912¢¢C
T 015194C0
c INDICES IN LABELS ARE IN STANDAFD ORDER: 015195¢¢C
c TeCEed » KoaGEal » (IJ)GELCKL) ) C1519E€C¢C
( 01519760
c ALL CONTRIBUTIONS AFE MADE INTO LOWER HALF OF - g15198¢¢
[ SKELETON MATRIX. 015199C¢C
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1982 NOV 17 16302

(CSSCENC)BERKSOY/SCF/SOURCE/III ON FACK.

c CNLY CFF-DIAGONAL ELEMEANTS NEED BE DIVICED BY TWO» - 01520CC¢C
[ TG CEYAIN THE CORRECT F MATRIX. 0152010¢
c ) 015z0z¢C¢C
CCHMON/IOFILE/ZIR, IW, 1P, IS»IPK,IDAF,IOCAL21) 015203200
CINENSION DC2)»F (205 T1AC 2D 015204CC
DIVENSION XXCNINTMX)»IXCNINTMX) €15z20:5C¢C
COHPDAIINFGA/NAT»ICF:NUt’hUMSCF’NCGBRE»NX’NE’MA'NB-ZAN(IO)» 015206C¢C

T, 10 0152C¢7¢C¢

CATA ZERD»TWO/0<0FE+00s2.0E+007 01520800

£ CATA MASKlSprASK’C/?????5.777?7777778/ 015205c¢C¢C
[78.9 AT A MASKSF MASKIG7/5 1152621437 01520910
00 SO M=1sNX 01521cc¢C

50 F(M)=ZERD 015211C¢
=0 015212¢¢C

=0 0157113C¢

K=¢ 015214CC

=0 01521:5C¢
IF(NOFK.NEL1) GO TO 100C - G1521€6CC

c 01521700
T «=<=="INTEGFALS ARE NOT IN SUPERMATRIX FORM (NGPK=2TRUEe) ===== 015218¢C¢C
c 0152190¢
100 CALL PREADCIS»XX» IXsNXX»NINTMX) 01522¢CC
TUX=1 A8 TUNXX) R 015zz(CC2

- IFC(NXX.EQ.0) G0 TO 1250 0152210¢
MINT=TABSCNXX) : g9152z2C¢
IFCNINT.GT.NINTMX) CALL CLOSDACS) 015223¢0¢

CO 20C V=1, NINT g15224C¢C
LABEL=IX(M) 0152Z5¢C¢C

I=U 015225¢C1
l-chCAT(x.LABEL.9,39 1C) g15zz5¢*s

. L=LABEL. ANC.PASK1S 81522600
T L. UABELSSKIFT(LABEL,-15) 015227¢C
d=C 015227¢2
J=CONCAT(JrLABEL»9»25,10C) 015227¢2

—C- F=LAEELLANT FASKIS ) C15zzaccC
-c. LABEL=SHEIFTCLABEL»=15) e15229¢¢
k=¢ 0152z9¢Cs
R=CCNCATIK, LABEL59,19,10) 01522908

£ JELAEELs ANDC.NASKIS 01523¢cC¢
c, I PIFT(LABEL» 15) 01523100
015231C1

t CCNCAT(L;LAREL 555,10) 015231(2
VAL=XX{M) 015232¢0

VALG= (VALIVALDY (VAL #VAL) 0152310¢
NIJ=IACI)+J 015234090
NKL=TACK)+L 01523s¢¢
RIKSTACTIV+K 01523€6CC
NIL=IACTI)+L 015237¢¢C
IFCJ.LT.K) €0 TO 15¢C 015z320C
NIK=TACJ) +K 015235C0¢
NJL=TACJ)+L 01524CC¢C

G0 To 250 015241¢¢

150 NJKSTACKI+J 015242¢C¢
IFCJ.LT.L) GO TO zo¢ 015Z47¢C¢C
NJL=TACJ) +L 01524400

€C To 250 015z45¢C¢C

200 NJL=IACL)+J 01524€00

250

FANIJ)=F(NIJI+VALA=C(NCL)

015247C¢C
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1982 NOV 17 16:02  {CSSCENCI}BFRKSOY/SCF/SGURCE/III ON PACK.

FONKL)=FONKLI®VAL L= T (RI J) . : 015248C¢C
FINTRY=FONT R =Y AL =B (N I) 0152490¢C
FONILI)=F(NIL)=VAL*D(NJK) g1525¢C¢C
FOMNJK)=F{NJK)=VALDIRTL) ) €15251C(C
F(hJL)=F(hJL)-¥lLiu«31K)xy,, 015252C¢C

300 CONTINUE e 0157253¢¢
IF(NXX.GT.0) 60 10 100 015254090

350 CONTINUE - 01525¢%¢¢C
IF(NUMSCF.EC.1) GC T0 5¢Co0 015Z5€0¢

CC 40C M=2,NUMSCF ) 0152570¢C
FAX=M-1 . . c15258¢¢

CO 40C N=1, MAX . 0152558¢0
NIJ=TA(NMI+N 01526CCC

i 400 FONTIDI=F(NI I /TWO , v 0152610¢
500 CONTYIANUE ’ 015252¢0¢
REWINE (IS) 01576 2(¢C
FETURN > €152564C¢C

1000 CONTINUE 01526%5C¢C
c . 01525600
C ee=== INTEGRALS ARE IN SUPERMATRIX FOFM (NOPK=eFALSEe) ===== g15z67¢cC
C . 01526890
00 1C€S50 M=1,NUMSCF ’ 0152690C¢C
NIJ=TA{F)+H 01527¢C0¢C

1050 CANTJYI=D(NIS)/TND 01527 1¢C¢C
1100 CALL PREADCIS»XX>IXsNXXLNINTMX) 015z720¢
TF(NXX.EC.0) 60 TQ 1350 ] 01527 2¢0¢
MAT=IABSINYX) . 01s5z74c¢
IFCNINTLGT.NINTMX)Y CALL CLOSDACS) 01527¢5¢¢
DT 1300 M=1,NINT 01527€CC
LABEL=IX{(¥) 01527740

£ iKL=LABEL. AND.MASK30 ' 015278¢¢
T TTTTTUNRL=G : 015z781¢C
NKL=CONCAT(NKL»LABEL»19»19520) . . 01527812

C MIJ=SHIFT(LASEL»=30) ) 81s5zZ79C¢
- RIJ=T ' 015279¢1
AIJ=CCNCATINIJ,LABEL,»19,39,20) - Q015275Cz
VAL=XX{(V) v 01528000
FONTIY=FINTJI+VAL#DNRLD 015281CC
FONKLI)=F{NKL)#VAL2DI(NIJ) . 015232¢¢

1300 CONTINUE 0152823¢¢
TFORXXSGTSU Y GG 10 1100 015284C¢C

1350 CONTINUE ’ 01528%50¢C
COC 1400 M=1,NUMSCF . G15Z8¢€CC
NTIJETATMY+M : 01528700

1400 CUNIJI=DU(NIJI+D(NIID) . ) 015288¢¢
0C 1500 M=1,NX : 015239040

1500 F(M)I=FIMI7T¥D 01523CCC
-REWIND (IS) €15291¢C¢C
RETURN ' 01529z2¢0¢C

END 015292¢C¢C

Caxxs CVERLAY(FIVSS5,3) 01529400
C#% PRCGRAM SCFCP. . Q1529s¢¢e
SUERGUTINE STFUFP 01529€ECC
CCMMON/SCFOFP/SZsS52 015297Q¢

[ eew== UNRESTRICTED HF=SCF CALCULATIGN =====- 015292ac¢¢
C J.A, FOPLE AND R.K., NESBET, A 0152990¢
C JeCFEMLPHYSe 225 S71 (1554) 01530cCCQ
c 015301CC




APPENDIX IV

ONE-DETERMINANT APPROXTMATION

The density functions, pl(l;l') and p2(1,2;1',2'), are special cases
of the reduced density matrices. For a one-particle system, with a pro-
bability, v, say, of being found in state ¢i, the "pure state" density
matrix p(13;1') = ¢(1)¢*(l’) for the definite state ¥ is replaced by the

"statistical" density matrix [32]
L1y = ' -
p(1;1") § w6, (D (") . (1v-1)
The density matrix for the whole system is given as follows:
%
p(l,z,..o,N;l',z',co.’N') = W(l,z,.oo’N)‘P (l',z',oo.,N') (IV_Z)

It is common in statistical mechanics to use the term "reduced" density
matrix when referring to pl(l;l'), p2(1,2;l',2'), etc.
The total energy expression which is already obtained in terms of spin

orbitals in Appendix I can be rewritten as

) Jdv<1>¢i<1)ﬂi¢i<1> +5 1 <ffdv<1>dv(z>

i=1

=
|

035 2) 7= 65(2)4 (1) = ffdv(l)dv(2)¢§(1>¢§<2)

12

X

1 _
- qu (L);(2)) (IV-3)

12

X

The one-matrix pl(l;l') may be expanded in the spin orbital form

%
CT1Y = v -
pp (31" = ] ppy0;(De5AN (IV-4)
1,]
where the plij is the numerical coefficient and the factors ¢i and ¢§ arise
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from ¥ and ¥%, respectively. Thus the general one-electron energy term

has the spin orbital form Eq. (3-4)

[favarie,asin = 3oy fvardmie @
1'=1 13

z'plij<¢.lﬁl|¢i> (IV-5)
j

In Eq. (IV-5), the coefficient plij is simply the coefficient of usual
orbital one-electron energy in Eq. (IV-3). If we compare Eq. (IV-5) with
Eq. (IV-3) we can see that if ¢i is occupied plij = 1; otherwise plij = 0.
Thus, the one-determinant approximation to pl(l;l') takes the special form

(131 = T 6, (Me;AN (1v-6)
i(oce)

In a similar way, by comparing the two-electron energy part in Eq.
(3-8) with Eq. (IV-3), the expression for p2(1;2) can be represented as

follows:

! ' * | * |
py(1,251%,2") = } o (1)4,(2)6;(1"M9,(2")

i,]

*oinaFoon -
¢i(2)¢j(l)¢i(l )95(21)1] (IV-7)

Considering Eq. (IV-6), Eq.-  (IV-7) can be rewritten in terms of oy
P, (1,251%,2") = o, (131")0,(252") = 0,(2;1")p,(152") (1Iv-8)

The factorization of the two-matrix in terms of the one-matrix pl(l;l')
is peculiar to the one-~determinant approximation; it means that in this
approximation everything can be determined by the one-matrix pl(l;l') which
is also known as the Dirac density matrix [43].

The energy expression for a "closed shell" system in which the orbitals
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are doubly occupied can be expressed in terms of spatial orbitals [44] as

follows:

n n
Epp = zg Jdr(l)Xu Hy X+ E % [2JJdr(l)dr(2)

%

C XWX 7= @6 (D) - der(l)dr(z)

Lo 12

Al

x Xj(l)X*v(Z) ~l-xv(1)xu(z)] (1V-9)

12
where n is the number of orbitals and uy and v stand for the spatial orbitals.
The exchange integral in Eq. (IV-9) has reduced weight if we compare it
to the exchange integral in Eq. (IV-3), because spin integration gives

<65 o5 (2) =05 (W (D> = X, WX, =X, WX, @)>

or zero, according as ¢i and ¢j have parallel spins or not. Eq. (IV-9) can
be rewritten as
- ~ * '
Eup ZE Jdr(l) B X (DX AN

1'=1

1 L
*1 [ a(1)dx(2) 7= [28, (DX, (DX, ADK, (21

1'=1 2'=2

% ' * '
- Xv(l)XU(Z)XU(l X, 21 . (1V-10)

If we compare Eq. (IV-10) with spinless energy expression Eq. (3-11), the

spinless analogues of Egqs. (IV-6) and (IV-7) can be found

P, (131" = 2 ) X (1)X*(1') (IV-11)
occ
and

1
P2(1,2;l',2') = Pl(l;l')Pl(z;Z') - E—Pl(z;l')Pl(l;Z') (IV-12)



APPENDIX V

INVERSION OF THE MATRIX

A is the overlap matrix and S is the intermolecular overlap matrix.

The matrix A can be separated into two parts:
A=1+S5 (v-1)

where the elements of A are given as

Auv = Jdr(l)XuXv = <pu|v> (v-2)

If w= v, <u|v> is 1; otherwise, 0. For two orbital systems:

A1 By 1 0 511 S12

= + (V=-3)

Bop Boo 0 1 S)1 Sy

then the elements of S matrix can be written in terms of the elements of

A matrix.

g = (V-4)

From Eq. (V-4) the equality of 812 to A12 is seen.

It is convenient to express the matrix A_l in the following form:

o1 (V-5)

where

-1

D=-S A~ =-(S - L

TI—;—gj) (V-6)

The inverse of the matrix can be found from the following formula [45]:

1 deta, )
A—l = -transpose of ( =1 v-7)
det (A)

Applying the above formula, Eq. (V-7), to (1 + S) matrix, one can get the
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inverse of the matrix (1 + S) as in the following form

1 -A
-1 1 12
1 +8)7 = )
L-byy, 12
Then the matrix D can be calculated as
D = -S(1 + s)"1
219 Ay 1
= —= )
1 - A12 1 —Alz
Thus the matrix elements of D can be found:
2
A
_ _ 12
P11 7 P2 T T 7
12
e I
12 21 1 - A2
12

As has been seen

is 2 x 2.

matrix becomes more difficult.
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(V-8)

(V-9)

(v-10)

(V-11)

(Vv-12)

to invert the matrix A is easy when the matrix dimension

As the matrix dimension increases, finding the inverse of the

used to invert the matrix.

In these cases the IMSL subroutines can be



APPENDIX VI

VERIFICATION OF A AND C COEFFICIENTS
Considering Eq. (3-26), Pl(1;3) can be expressed as follows:

Pl(l;3) = A 2[a(1)a(3) + b(1)b(3)] + C 2[a(1)b(3) + b(1)a(3)] (VI-1)

From the idempotency condition which is given in Eq. (3-31) as
Jdr(B)Pl(l;3)P1(3;2) = 2P1(1;2) (VIi-2)
the following equation can be obtained by
sa%a(ya(2) + A%a(L)b(2)A,, + ACa(1)b(2)
+ ACa(L)a(2)A,, + A%b(1a(2)d,, + Ab(L)b(2)
+ ACb(l)b(Z)A12 + ACb(1l)a(2) + ACa(l)a(Z)A12
+ ACb(1)a(2) + ACa(l)b(2) + ACb(l)b(Z)A12
2 2 2
+ C a(l)b(Z)A12 + C7a(1)a(2) + C"b(1)b(2)
+ *b(1)a(2)a ] = 4[Aa(1)a(2) + Ab(1)b(2)

+ Ca(l)b(2) + Cb(1)a(2)] (VI-3)
where

Ay = [dr(3)a(3)b(3) (VI-4)

Since the atomic orbitals a and b are normalized the following relation
has been considered in Eq. (VI-3).

Equating the coefficients of the same functions of bhoth sides of Eq.
(VI-3) the following equations are obtained:

4(a% + 280a. . + C2) = 4 (VI-6)

12
and

4(A2Al + 2AC + ¢2A

2 12) = 4C (VI-7)
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Recalling Egqs. (3-30), (V-11) and (V-12), the values of A and C can be

found as
Az A
a+—2y  aa (- —,
1~ AlZ 1 - A12

respectively. Inserting the values of A and C into Egs.

the correctness of A and C coefficients are verified.

(VI-6) and (VI-7),



APPENDIX VII

THE RULE OF "THREE SIGMAS'" AND THE CENTRAL LIMIT THEOREM

Let say SN be the sum of the identically distributed random variables
Xl’ X2, ey XN for sufficiently large N. Since the probability densities
of these variables coincide, and hence their mathematical expectations and

variances also coincide, we can write

E(Xl) = E(XZ) = ,,., = E(XN) =m (VII“l)

Var(x)) = Var(x,) = ... = Var(x) - v (VII-2)
and

E(SN) = Nm (VII-3)

Var(s,) = N> (VII-4)

The rule of '"three sigmas'" for a normal density pZ(X) [38]

Nm + 30
pz(x)dx = 0.997 (VII-5)
Nm + 30

where ¢ is the standard deviation. The probability of a normal random

variable Z in the interval (Nm - 30, Nm + 30) is equal to Eq. (VII-5).

Prob(Nm - 30 < Z < Nm + 30) = 0.997 (VII-6)

From Eq. (VII-6) we conclude that for a single trial the value of Z can
not differ from E(Z) by more than 30.
The Central Limit Theorem states that the density of the sum SN

approaches the density of the normal variable Z_ in such a way that for
S. - Nm ZN - Nm
every x, p(——= < x) & p(

vy (N) v/ (N)

we conclude that the sum SN of a large number of identical random variables

N

< x) for all large N. From this theorem

has an approximately normal distribution (pS (x) Py (x)) with parameters
N N
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Nm and 02 = sz. From Eq.(VII-5) the following relation can be written for

SN:

prob(Nm - 3v vV N < SN < Nm +3v / N) ¥ 0.997 .

If we divide by N the probability remains the same:

S
prob(m - éz-< ??-< m + éz-) = 0.997 .

/N N

This relation gives the uncertainty of our estimation.



APPENDIX VIII

PROLATE SPHEROIDAL COORDINATES

- The prolate spheroidal coordinates can be generated as a three-
dimensional system by rotating about the major axes of the elliptical
coordinates and introducing ¢ as an azimuth angle [41]. The two centres
will correspond to the two focal points (0,0,%3 and (0,0,—%), of ellip-
soids and hyperboloids of revolution. As long as rotating about the
major axes of the elliptical coordinates is considered, the prolate

spheroidal coordinates can be called simply as the elliptical coordinates

[46].
X
R
(0,0,ﬁzﬂ
y
po= (ra + rb)/R (1 <p<w (VII-1)
v = (ra - rb)/R (-1 < v < 1) (VII-2)
¢ (0 < ¢ < 2m) (VII-3)
x =50’ - na- v 1 20080 (VII-4)
y = 3a? - va - vH1Y%sing (VII-5)
z = % §v (VII-6)
The volume element
at = (—12-{-)3(112 - vYydudvde . (VII-7)
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