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ABSTRACT

Exch~nge energy of the He-He system is calculated using

the one-density matrix which has been modified according to

the supermolecular density formula quoted by Kolos. The ex­

change energy integrals are computed analytically and by the

Monte Carlo method. The results obtained from both ways com­

pared favourably,with the results obtained from the SCF program

HONDO.
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Chapter 1

INTRODUCTION

The intermolecular forces are of fundamental importance for understand­

ing the dynamic and static properties of gases, liquids, and solids [1].

The theory of intermolecular forces can be extended to difficult systems

(e.g. hydrogen-bonded systems, adsorbates, macromolecules, etc.), and serious

work on the problem of three body forces in dense phases can be started when

the intermolecular forces between two closed systems are known precisely [2].

The quantum mechanical methods like SCF, CI, or perturbation theory can be

applied at most to medium size atoms or molecules, and even for simple systems

such calculations become very tedious if one wishes to obtain accurate results.

The first successful ~ priori prediction of the intermolecular repulsive

potentials between closed-shell atoms, ions, and molecules has been proposed

by Gaydaenko, Nikulin [3] and by Kim and Gordon [4]. The method is based on

the statistical model of the atom, and mostly known as the Electron Gas

Approximation (EGA). The agreement between theory and experiment was pretty

good, except for the case of the He-He system. In the case of He-He, the

potential energy curve obtained was too negative and had a very deep well.

The EGA theory of intermolecular forces has been modified by Rae [5],

removing the self-exchange energy part from the exchange energy which was

estimated in the EGA method. He also introduced the long-range dispersive

interaction, to improve the long-range potential energy curve. Rae's method

gives a better potential energy curve for the He-He system than the Gordon­

Kim method; however, Rae's method is not without its difficulties. It pre­

dicts too repulsive interatomic potentials at small intermolecular distances.

1
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Therefore one can conclude that neither the original method nor the corrected

one succeeds in yielding reliable results for all systems. This deficiency

in the electron gas calculation encouraged Waldman and Gordon to correct the

exchange energy in an electron gas calculation. They decided that only the

self-exchange energy should be removed by subtracting contributions of the

separate atoms in a molecular calculation and proposed a scaled correction

for the exchange energy [6]. Even in its scaled form, the EGA not only fails

to predict the noble gas pure and mixed interactions with useful precision

but also shows error trends that are not consistent with the basic approxima­

tion of the method.

However, the electron gas model has been properly criticized because

atomic and molecular densities are far from uniform. Brual and Rothstein

have the statistical model with a rational function used for the correlation

energy density and they have opted for an entirely different approach to the

exchange energy which was developed by Handler [7}. The results are a signif­

icant improvement over those available from competing electron gas models.

A simple reliable method for the prediction of intermolecular potentials

is presented for the lighter noble gases and the mixtures by Hepburn, Peneo

and Scoles [8]. This method is the hybrid SCF plus damped dispersion models

of the Hartree-Fock Dispersion (HFD). The interaction potentials can be found

with a sufficient precision to obtain information of value comparable to

experimental potential.

A recent and promising effort is the Approximate Exchange Energy (AEE).

This model has been developed by Ng et ale [9] and shown to be very accurate

for He-He, Ne-Ne, Ar-Ar, and Kr-Kr, but suffers from the shortcoming that one

of its parameters has to be determined by fitting to experimental property.

The exchange energy is a purely quantum mechanical effect and can not
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be related directly to any observable property of the interacting systems.

There is thus a great interest in ab initio methods capable of providing

accurate estimates of this effect.

An approximate ab initio approach for calculation of the exchange

repulsion energy between closed shell systems described by Hartree-Fock

determinants has been proposed by Bulski et ale [10].

The first order exchange energy for the Ar-Ar interaction ,has been

reported using SCF wavefunction for Ar in a large gaussian basis set by

Chalasinski et ale [11].

In the present work the supermolecular one-matrix PAB (1;2) of two

closed shells A and B is modified from the supermolecular density

of two-closed shell system. The supermolecular density PAB(l;l) is q~oted

by Kolos [12] after Froman and Lowdin [13] and Jeziorski et ale [14]. Th~

supermolecular one-matrix will be substituted for the spinless one-matrix

in the exchange energy formula.

This supermolecular one-matrix formalism will be applied to the He-He

system which is the simplest two-closed shell system, to calculate the ex­

change energies of He-He at different internuelear distances. The results

of the exchange energies of He-He at different internu~lear distances

obtained analytically and by the Monte Carlo method will be compared with

those obtained from a SCF program HONDO [15].

In Chapter 2, the SCF theory and the SCF program HONDO are presented

in detail together with our modifications to HONDO, which were necessary

to get it to run on Brock University's BURROUGH's B6700 computer.

In Chapter 3, the density matrix and the exchange energy for the

supermolecule is given in a form approptiate for rare gas systems. The

proposed supermolecular one-matrix is applied to the He-He system. The
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necessary integrations are done analytically. Comparison with the true

results from HONDO is presented.

For a large system, e.g. Ar-Ar, the two electron integral which must

be evaluated for the exchange energy is complicated. To facilitate its

calculation, it is evaluated by the Monte Carlo simulation. Chapter 4

gives the evaluation of the exchange energy integral for the He-He system.

Extensions to the larger systems are discussed therein.

In Chapter 5, the summary and conclusions are presented. The applica­

bility of this method to the other systems is also discussed.



CHAPTER 2

SELF~CONSISTENT FIELD THEORY

2~1 Introduction

The Schrodinger equation

H'¥ = E'¥ (2-1)

gives the analytic solutions for the atoms and the molecules with one-

electron. For an N electron system one must" turn to approximate solutions

to obtain a property such as the total electronic energy E.

One of the approaches to approximate solutions of the Schrodinger

equation is the variational principle, which says that if 'II is a trial

many-electron ground-state wave function, and if W = <'l'IHI'l'>/<'l'I'l'>, then

W ~ EO where His the complete Hamiltonian, and EO is the exact energy.

Since W is always above EO' 'II may be varied to minimize W. The most common

application of the variational principle is the self-consistent-field method

(SCF) which will be outlined in this section.

For a molecule having A nuclei of charge Zk and N electrons, neglecting

magnetic interactions and other higher-order effects, the purely electronic

Hamiltonian, in atomic units (electronic mass me, electronic charge e, and

h/2n set to unity) is

(2-2)

The first sum in Eq. (2-2) contains the kinetic energy operators for the N

electrons; the second sum is the potential energy for the attractions between

the electrons and nuclei. r
ik

is the distance between electron i and the

kth nucleus; the last sum is the potential energy of the interelectronic

repulsions between pairs of electrons; r .. is the distance between electron
1J

i and electron j. The restriction j>i avoids counting the same interelectronic

repulsion twice.

5
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The "best" possible variation function that has the form of an anti-

symmetrized product of spin orbitals is the Hartree-Fock SCF wave function

[16, 17]. For closed-shell systems the Hartree-Fock wave function is of

the form

(2-3)

in which A(N) is the antisymmetrizer for N electrons and the ¢'s are spin

orbitals, products of a spatial orbital and a one electron spin function a

(for illS = 4) or 8 (for illS = -t).

¢ .
1

X.. a
1

or

x. (3
1

(2-4)

The Hartree-Fock wave function is the best function of the single

determinant form which can be written as a Slater determinant [18].

'YHF(l, ••• ,N)
1

¢1(1)¢2(1)···¢N(l)

¢1(2)¢2(2)···¢N(2) (2-5)

It is usually the case that all the orbitals in the Slater determinant in

Eq. (1-5) are orthogonal

S.. = JdV(l)¢.(l)¢ .. (l) = 0 ..
1J 1 J 1J

(2-6)

where dv(l) indicates integration over. the space and spin coordinates of

electron 1 and 0.. is the kronecker delta.
1J

The exclusion principle is accounted for since the determinant vanishes

identically unless the N spin orbitals form a linearly independent set.

Using the wave function Eq. (2-5) and the purely electronic Hamiltonian

Eq. (2-2) in the expression EHF = <~HFIHI~HF>I<~HFI~HF> gives the expecta-
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tion value of the energy, EHF , which is as close to EO as possible with

a single determinant form.

N

I
i=l

H. +
1

N

t I
j>i i=l

(J .. - K .. )
1J 1J

(2-7)

This formula was derived by Slater [19] [Appendix I] .

The first summation in Eq. (2-7) goes over the one-electron integrals;

the second sum represents the electron repulsion integrals or two-electron

integrals where

'V 2 A Z
H. = IdV(l)¢.*(l)' {-~ - I ~ }¢.(l)

1 12 k r l .k 1
(2-8)

J ..
J..J I·f"dV(1)dV(2)¢.*(1)¢.*(2) ~ ¢.(2)¢.(1)

, 1 J r 12 J 1
(2-9)

K .. = ff dV (1)dV(2)¢.*(1)¢.*(2) __1__ ¢.(1)¢.(2)
1J 1 J r 12 J 1

(2-10)

The spin integrations in Eqs. (2-8, 9, 10) drop out immediately since none

of the terms in our electrostatic Hamiltonian is spin dependent.

The two electron integrals in Eq. (2-9) and Eq. (2-10) are called

Coulomb integrals and exchange integrals, respectively. The exchange

integrals Eq. (2-9) differ from Eq. (2-10) only by interchange of the last

two indices i and j. These terms arise from the permutations inherent in

the determinanta1 form. K.. vanishes, due to the spin orthogonality, unless
1J

¢.(1) and ¢.(l) have the same spin component. Exchange integrals account
1 J

for energy differences between singlet and triplet configurations.

By minimizing the energy Eq. (2-7) resulting from the single determin-

ant wave function Eq. (2--5) a set of N coupled integrodifferentia1 equations

can be derived [see Appendix I~. These Hartree-Fock integrodifferentia1

equations may also be put in the form of effective one-particle Schrodinger
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equations

"effH. (1) ¢ . (1) = s. ¢ . (1)
1 - 1 - 1 1

i = 1, ••• ,N (2-11)

In the Hartree-Fock approximation, the motion of each electron is

solved for in the presence of the average potential created by the remain-

ing (N-l) electrons. The effective Hartree-Fock Hamiltonian may be written

as follows

li.eff(l) = H.(l) + V~V(l)
11- I

where

H.(l) = - l V 2 _ I __Z__
1 2 1 k r 1k

and

(2-12)

(2-13)

V~V(l)
1

L f dv(2)¢J.*(2) 1 (1-P .. )¢.(2)
j#i r 12 1J J

(2-14)

in which P .. is an operator which exchanges the subscripts i and j occur­
1J

ring to the right of it, e.g. P .. ¢.(2)¢.(1)
IJ J I

¢.(2)¢.(1). From Eq. (2-14),
I J

the Coulomb and the exchange operators can be defined, respectively

J. (1)
J

K. (1)
J

L f dv(2)¢.*(2) ~ ¢.(2)
j#i J r 12 J

I f dv(2) ¢.*(2) __1__ P .. ¢.(2)
j#i J r 12 IJ J

(2-15)

(2-16)

Since the exchange integrals K .. are always positive [20], the total energy
IJ

EHF is lowered by the operation of exchange forces Eq. (2-7) [21]. In the

Hartree-Fock equation Eq. (2-11), the "exchange forces" between electrons

of parallel spin are given as follows

- L [fdV(2)¢.~~(2) ~ ¢.(2)]¢.(1)
j:fi J r 12 1 J

(2-17)
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The effect of the exchange term is to reduce the Coulombic repulsions

between electrons with the same spin. Physically, its effects may be

simulated by surrounding each electron with a small spherical volume within

which other electrons of the same spin may not intrude; the excluded volume

is often referred to as the Fermi hole. This mutual avoidance of electrons

with the same spin permits the space orbitals to be closer to the atomic

nucleus and therefore more strongly bound in these instances [22].

The eigenvalues, El, ••• ,EN of the Hartree-Fock equations Eq. (2-11) may

be related to the integrals Eq. (2-8), Eq. (2-9) and Eq. (2-10), evaluated

using the minimized spin orbital functions ¢.(l). Multiplying the ith
1

equation in Eq. (2-11) by ¢.*(l) and integrating over dv(l) the following
1

equation can be obtained

E. = H. +
1 1 I

j=l
(J .. - K•• )

1J 1J
(2-18)

E. are known as orbital energies. Koopmans' theorem states that these
1

orbital energies si may be associated with the ionization potentials of

the closed shell atom or molecule. For closed shell systems -s. equals the
1

ionization potential for the ith electron minus the total energy of the ion

formed by removing electron i. It should be noted that the total electronic

energy Eq. (2-7) is not equal to the sum of one-electron energies. This is

because the sum of one-electron energies is greater than the total energy

since interelectronic repulsion terms J .. - K.. are counted twice over.
1J 1J

N

2
i=l

s. =
1

N
I H. +

i=l 1

N

I I
jri i=l

(J ..
1J

K .. )
1J

N N
I H.+2L I(J··-K.. )

i=l 1 j>i i=l 1J 1J

N
= EHF + I I (J .. - K •. )

j>i i=l 1J 1J



10

E
HF

can be written as follows

N
L E. -­

i=l 1
I I

j>i i=l
(J .. -K.. )

1J 1J
(2-19)

and we also have Eq. (2-7) for EHF -

Since all the orbitals appear in V~v, Eq. (2-14), they occur in each
1

equation of Eq. (2-11)_ Therefore the Hartree-Fock equations cannot be

solved without making an initial guess at the ¢.• One can solve for the
1

¢. and use these ~s input for another calculation (iteration). Iteration
1

is continued until the calculated set agrees with the input set as closely

as desired. The calculation is then said to be self-consistent, that is,

the orbitals calculated from Eq. (2-11) are consistent with the orbitals

Aav
which supply the field V. for the calculation; thus the term "self­

1

consistent-field (SCF) calculation". If the variation has been complete,

the final orbitals are not only self-consistent, but they are the Hartree-

Fock orbitals of the atom.

Aav
The average potential V. mostly takes care of the mutual inter­

1

electronic repulsion between electrons. Furthermore, this discussion of

the Hartree-Fock method identifies V~v as the source of the screening which
1

reduces the nuclear charge to Zeff and depends on the other occupied orbitals

in the atom or molecule. However, Zeff is only one parameter per orbital;

in general, several variational parameters should be introduced and varied

to achieve an orbital of Hartree-Fock accuracy.

The Hartree-Fock equations, Eq. (2-11), were originally solved by

numerical methods which yield orbitals as tables of radial functions. The

Hartree-Fock equations reduce to ordinary differential equations in r (rather

than partial differential equations in r, ¢ and ~) because ~ is sphericallyav

symmetric (for atoms). As a result the angular solutions must be the
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spherical functions and the Hartree-Fock equations need only be solved

for Rn2 (r). When highly refined, this is probably the most accurate

method, but it is seldom used. The Hartree-Fock-Roothan procedure is

easily adapted to rapid calculation on electronic computers and is very

widely applied in atomic and molecular calculations.

2.2 SCF LCAO-MO Approach

The Hartree-Fock Roothaan procedure provides an approximate Hartree-

Fock solution for a molecular system [23]. One obtains a set of ortho-

normal molecular orbitals which minimize the energy of a single Slater

determinant representing the ground state molecular wave function. These

molecular orbitals are formed as linear combinations of the chosen basis

set [24] of one electron atomic orbitals

¢.(1) =
1

N'
I C. Q XQ (l)

S=l l~ ~
(2-20)

where the linear coefficients, CiS are evaluated variationally and are

solutions of the following equation

N'
~ (HaB - eSaS)CiB = 0 a = 1, ••• ,N' (2-21)

and where N' is the number of linearly independent functions X1' ••• '~'.

If N is the number of atomic or molecular spin orbitals, it is necessary

that N' ~ N.

If we insert Eq. (2-20) into Eq. (2-11), multiply on the left hand

*side by X (1), and integrate over dv(l) , we obtain Eq. (2-21) where
a



and

HaB IdV(l)X:(l)Hiff (l)XS(l)

= [alB] + I I c: c'o([aBlyo] - [aolyB])
j yo JY J

12

(2-22)

(2-23)

The total molecular wave function is obtained by solving Eq. (2-21), that

is by finding the solution of the secular equation

(2-24)

This secular equation determines the orbital energies, Ei ; Eq. (2-21)

determines the corresponding coefficients.

In Eq. (2-22) the one-electron integrals [aIS] and the two-electron

integrals [aSIYo] can be expressed as follows:

[aIS] I
*, 1 2 ~ Zk

-dv(l)X(l){--V -L-··}X(l)
a 2 k r1k S

(2-25)

[as Iyo] :: f'J· dV(1)dv(2)X*(1)XQ (1) -.!.- X* (2)Xs (2)a IJ r l2 Y u
(2-26)

Hence, the problem of determining the wave functions for a closed

shell molecule comprised of N electrons is reduced to the straightforward

solution of a secular equation. In practice an initial CiS is chosen,

HaS and SaS are computed from Eq. (2-22) and Eq. (2-23), respectively, and

Eq. (2-24) is solved. Using the first improved CiS' HaS and SaS are solved

again. The procedure is repeated until the total energy and eigenvectors

are unchanged to the extent of some accuracy.
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2.3 Program HONDO

The SCF program HONDO which is reported by Dupuis, Rys and King [15]

has been used to calculate the exchange energy between two closed shell

systems. HONDO calculates RHF and UHF SCF molecular wave functions,

optimizes molecular geometries using the gradient of RHF or UHF energy with

respect to the 3*N nuclear coordinates and calculates the following pro­

perties:of RHF and UHF wave function: (a) dipole moment, (b) Mulliken

population analysis. This program uses Gaussian type basis functions.

Pople's STO-NG and N-3IG basis sets are available.

Calculation of an ab initio wave function by the Roothaan LCAO-SCF

method involves two major computational steps; SCF iteration and calcula­

tion of two-electron integrals, each of which can be made more efficient

if the molecular system possesses some point group symmetry. By consider­

ing symmetry one can reduce the number of two-electron integrals to be

manipulated, and speed up calculation of the Fock matrix during each SCF

cycle [25].

In HONDO orbital basis functions are grouped into shells and integrals

into blocks for efficient integral evaluation. The shell structure of

HONDO is ideally suited for use wlth Dacre-Elder scheme [26,27] for treat­

ing point group symmetry. The SCFprogram HOND'O efficiently computes

blocks of integrals using a formula based on the properties of orthogonal

polynomials. An entire block of two electron integrals is eliminated if

it is symmetrically equivalent to another block with a higher index. Using

the "petite list" of block of integrals, a skeleton matrix is formed from

which the true Fock matrix is generated by "symmetrization". In order to
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reduce the amount of input data to be supplied, all symmetry information

in input data is the Schonflies point group symbol and the coordinates of

three points which specify the symmetry frame. It can be used for any

closed shell molecule and requires negligible computer time to carry out

the symmetry-related computations.

HONDO employs Cartesian Gaussian type basis functions. Angular

dependence of a basis function may be introduced by a factor Y£m(8,¢).

However for Gaussians the angular dependence is more frequently introduced,

as suggested by S. F. Boys [28], by a primitive basis function of the form

where p, q and s are integers. The sum of powers, A,

A = p + q + s (2-28)

is closely related to the total angular momentum quantum number. Functions

of this type Eq. (2~27) are usually calledCari~sianGaussian.

As has been mentioned the Roothaan procedure is iterative and large

basis sets may need more iterations in order to reach convergence. It is

possible to reduce the number of integrals to be evaluated while only

slightly reducing the flexibility of the basis set, by using contracted

Gaussians, linear combinations of Gaussians with fixed coefficients

In HONDO a shell of functions is a collection of X allan the same

centre and all made up from.the same set of exponential parameters a
k

. To

achieve the necessary flexibility without making the X basis needlessly

large, the construction of a small number of well-chosen, highly contracted
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low angular momentum inner shell functions and a lightly contracted valence

shell set with high-A functions have been used by Dupuis, Rys and King [29].

A shell structure is computationally advantageous and particularly

simple if an integral over primitives can be written as a product of three

factors corresponding to the three Cartesian coordinates. Dupuis and King

proved that the two-electron Coulomb repulsion integral can be expressed

as a finite sum of such products of three factors. Each term corresponds

to one root of a Rys polynomial, the degree of which depends upon the sum

of four A values. The Coulomb repulsion integral is evaluted by an exact

numerical Rys quadrature formula [30].

The method of Rys quadrature is applicable to a wide variety of mole­

cular integrals over Gaussian basis functions including those for all the

usual one-electron properties as well as for the three and four electron

integrals that arise in certain treatments of electron correlation. This

method is simple, accurate and applies to any positive integer values of p,

q, and s in Eq. (1).

2.4 Modifications to HONDO

HONDO is written in FORTRAN IV for the CDC 6400 by Dupuis, Rys and

King.

To get HONDO tOe work for the Burroughs B 6700/B 7700 several changes

have been made. In this section all modifications to HONDO will be given.

Mass storage input/output (MSIO) subroutines in CDC allow the user to

create, access, and modify files on a random basis without regard for their

physical positioning. Mass storage subroutines which are used in the CDC

version of HONDO are OPENMS, CLOSMS, READMS and WRITMS.

OPENMS opens the mass storage file and informs the system that it is
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a random (word addressable) file. By creating the files in the job file

the same work can be done in Burroughs so that there is no need to have

an OPENMS subroutine in Burroughs.

CLOSMS writes the master index from central memory to the file and

closes the file. CLOSMS is provided to close a file so that it can be

returned to the operating system before the end of a FORTRAN run. To

achieve that the CLOSE statement can be used in Burroughs, the CLOSE state­

ment is given for a disk file as follows:

CLOSE (n,DISP=KEEP)

where n is an arithmetic expression and represents a file designator and

DISP stands for DISPOSITION.

READMS transmits data from the file to the central memory. In order

to transfer data from the file to the central memory the executable READ

statement which is used in the Burroughs of HONDO ~s given as follows:

READ (n=r)m

where nand r are arithmetic expressions representing a file designator and

record number, respectively, and m is an input list.

WRITMS transmits data from central memory to the file. In the Burroughs

version of HONDO, the WRITE statement has been used. The executable WRITE

statement causes data to be written from internal storage to one or more

records of a program file. The WRITE statement which is used in the new

version can be given

WRITE (n=r)m

where nand r are arithmetic expressions representing a file designator

and record number, respectively, and m is an output list.

OVERLAYS have been changed into subroutines.
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The READ statement, READ(IS)XX,IX,NX in subroutine PREAD has been

changed as follows:

READ (IS)NX
INX=IABS (NX)
READ (IS) (XX(I) ,I=l,INX)
READ (IS) (IX(I),I=l,INX)

The same modification to READ has been applied to the WRITE statement in

SUBROUTINE PWRIT.

The subroutines, ISOIN, ISOOUT and HSTAR have been subjected to several

changes, since the proper library function SHIFT is not on the B 6700. This

problem has been taken over by introducing a new external function, IPACK,

to HONDO [see Appendix III]. In subroutine SCFOP the Burroughs CONCAT in-

trinsic has been used instead of SHIFT.

The DATA statements with MASK15 and MASK30 have been changed into

MASK12 and MASK24 respectively.

Statements SECOND, DATE, and TIME have been changed into Burroughs

versions as well.

In order to get the exchange energy from modified HONDO,. another

subroutine has been introduced to HONDO. This subroutine is called KSTAR

which is derived from HSTAR by eliminating F(NIJ) and F(NKL) statements,

to compute the exchange operator only. Just after WRITE(IW,999l) the

following changes have been added to HONDO:

WRITE (IW, 9991)
CALL KSTAR(DA,FA,XX,IX,NINTMX)
CALL SYMH(FA,HO,IA)
EX=TRACEP(DA,FA,NUMSCF)/TWO
WRITE (6,8888) EX

8888 FORMAT(/,15X,"EXCHANGE ENERGY",F20.l2)



CHAPTER 3

DENSITY MATRICES AND THE EXCHANGE ENERGY

3.1 Introduction

The total Ham~ltonian operator for an N-electron system, Eq. (2-2),

can be rewritten in the following form:

N. 1 N, 1

l~ Hi + 2 I r .. (a)
i, j ,1J

(3-1)

where the first sum in this equation represents the one-electron term for

each electron; the second sum is the electron repulsion term for each

electron pair.

The expectation value of the one-electron part is given as follows:

JJ
'k N.

<I.· H
l
·> =. dv(l) ... dv(N)\l': (1,2, 0 •• ,N)TLH.]\1'. (1,2, ... ,N)

1.1 1
1 • • • 1

(3-2)

'f~

From the symmetry of \j! 'If each value of i must give the same contribution;

therefore the result for the one-electron part is expressed as N times the

result for the first term in the sum:

N
< I H>

i i

A *
dv (1), . . • , dv (N) HI 'If 1 (1, 2 , 9>. • ,N) 'If (1', 2, . . • ,N) (3-3)

where HI works on functions of 1 only and the name of the variables are

'f~

changed from 1 to l' to protect 'If from the effect of Hlo After operating

with HI' but before completing the integration, l' can be equalized to 1.

Thus Eq. (3-3) can be expressed as follows:

<L H.>
i 1

J dv(I)HIPI(I;I')
1'=1

(3-4)

where the one-electron density matrix is

Pl(l;l') = N J JdV(2) ... dV(N)~(1,2,... ,N)~*(I,,2,... N) (3-5)

(a)
N
I' means

N N
L I where i i: j

i,j i j

18
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In a similar way the expectation value of two-electron part may be

written in terms of the two-electron density matrix PZ(l,Z;l',Z') [31,3Z,33]

1 ~
<- I'Z ..

1J

1-->
r ..

1J

1= -
Z J J dv(1)dv(2) r~2 p2(1,2;1',2')

1'=1 Z'=Z

(3-6)

where

PZ(l,Z;l' ,Z') J J
~
~.. , ,

N(N-l) dv(3) ... dv(N)\l'(1,Z, ... ,N)\l' (1 ,Z , ... ,N) (3-7)

The two-density matrix P
Z
(1,2;1 ,2 ) reduces to P

Z
(l;Z) when it is taken

1'=1 and Z'=Z. Since~ is just a factor in the integrand, the primes mayr
lZ

be dropped at once.

Now, the total energy for an N-electron system becomes

J dv(1)H1P1(1;1') + t JJdV(1)dV(2) r~2 P2(1;2)
1'=1

(3-8)

Considering the one-determinant approximation [see Appendix IV for

details], the two-density matrix can be determined by the one-density

matrix

PZ(l,Z;l',Z') = PI (l;l')P l (Z;Z') - PI (Z;1')P 1 (l;Z')

where the one-density matrix [31] is

P1(1;1') = I ~.(l)~.*(l')
i(occ) 1 1

(3-9)

(3-10)

¢ stands for the spin orbital. Thus the total Hartree-Fock energy can be

expressed in terms of the one-density matrix

(3-11)
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The second term in Eq. (3-11) is the coulomb energy term; the third term

represents the exchange energy.

The spin1ess counterparts of the one-electron and the two-electron

densities are obtained by integrating over spins,

PI (1;1') I ds(1)P1 (1;1') (3-12)

sl,=sl

P2(1,2;1';2') = J Jds(1)ds(2)P 2(1,2;1',2') (3-13)

Using Eqs. (3-12) and (3-13) the total Hartree-Fock energy becomes

EHF I dr(1)H1P1 (1;1') + t IIdr(1)dr(2) r~2 P2(1;2)
1'=1

(3-14)

where the spin1ess two-density matrix can be represented entirely in terms

of the spin1ess one-density matrix for a closed shell [32]

1
P2 (1,2;1',2') = PI (1;1')P1 (2;2') - 2 PI (2;1')P1 (1;2') (3-15)

By inserting Eq. (3-15) into Eq. (3-11) the total Hartree-Fock energy is

found in terms of the spin1ess one-density matrix

EHF I dr(1)H1P1 (1;1') + t IIdr(1)dr(2) r~2 P1 (1;1)P1(2;2)
1'=1

(3-16)

The second term and the third term in Eq. (3-16) are the spin1ess counter-

parts of the coulomb energy and the exchange energy in Eq. (3-11), respec-

tive1y, and where

P
1

(1;1') = 2 I X (l)X *(1') ,
~ ~

~occ

and ~ indicates the summation over the occupied MOts.
occ

(3-17)
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3.2 Method

The exchange energy for an N-electron system has been defined in Eq.

(3-16) in the following way:

(3-18)

where PI (1;2) is the spinless one-matrix.

In the present work, the spinless one-matrix is approximated by the

supermolecular density for two-closed shell systems A and B. The super-

molecular density is calculated according to the formula given by Froman,

Lowdin [13] and Jeziorski et ale [14], as quoted by Kolos [12]

2 I X (1)(6-1) X (1)
lJ lJV v

1l,V

(3-19)

where X and X stand for atomic orbitals of both constituents. The summa-
lJ v

tion goes over the occupied atomic orbitals of both A and B atoms. ~-l is

the inverse of the total overlap matrix ~ which may be decomposed into two

parts

~ = 1 + S (3-20)

where 1 is the unit matrix (l's on the diagonal)zeros elsewhere) and S

denotes the matrix of the intermolecular overlap integrals ,,'vanishing as

the intermolecular distances tend to infinity and the matrix elements of S

are given as follows:

S
lJV Jdr X X - <5

lJ v lJV
(3-21)

-1
The matrix ~ can be expanded in the following power series

and it is convenient to express the matrix

(3-22)
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fJ.

where

1 + D

22

(3-Z3)

D = -5(1 + 5)-1 (3-Z4)

Hence, the supermolecular density PAB can be expressed as follows [lZ]

A
PA + P

B
+ Z L D X (l)X (1)

11V 11 v
lJ,V

B A B
+ Z L D X (l)X (1) + 4 LID X (l)X (1)

11V 11 v 11V 11 v
lJ,V lJ v

(3-Z5)

where P
A

and P
B

are the electron densities of both constituent atoms A and

B, respectively, and D are the matrix elements of D.
llV

3.3 Application to He-He System

Using the method mentioned in the previous section the exchange energy

for two-closed shell systems can be calculated. In this present work, the

He-He system has been considered. For the He-He system which has four

electrons and two orbitals, the supermolecular density can be written as

where

(3-Z6)

PH- (1; 1)e
l

PH (1;1)e Z

ZXl (l)Xl(l)

ZXZ(l)XZ(l)
(3-Z7)

For the calculation of the exchange energy we will hypothesize that

PHe-He(l;Z) = ZXl(l)Xl(Z) + ZX1(1)X1(Z)D11 + ZXZ(l)XZ(Z)

+ ZXZ(l)XZ(Z)DZZ + ZXl (l)XZ(Z)DlZ + ZXZ(l)Xl (Z)DZI (3-Z8)
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D
ll

and D
22

are equal to each other because of the indistinguishability of

the He atoms. For simplicity we can represent Xl and X2 as a and b, res-

pectively

PHe- He (1;2) = A2[a(1)a(2) + b(1)b(2)]

+ C2[a(1)b(2) + b(1)a(2)] (3-29)

where (3-30)

Using the idempotency condition [34]:

(3-31)

the correctness of A and C has been verified. Details are provided in

Appendix VI.

Inserting Eq. (3-28) into Eq. (3-18), the exchange energy, EX' for

He-He becomes

1 II PH H (1;2)PH H (2;1)
EX = - 4 dr(1)dr(2) e- e r

12
e- e

After some algebraic manipulations we have

EX = - i {A2[aajaa] + 2A2[abl ab] + 4AC[aaj ab] + 4AC[ablbb]

+ A2[bblbb] + 2C2[aajbb] + 2C2[ablab]}

where a and b are the minimum basis set of the Slater functions

(3-32)

(3-33)

a(l)

bel)

(N13/~)1/2 ( )
~ II exp -exlral

(N23/~)1/2 ( )~ /I exp -a
2

r
bl

(3-34)

(3-35)

where r al is the distance between electron 1 and the centre A and r
bl

is the

distance between electron 1 and the centre B as they are shown in Fig. 1.

a
l

is the optimized orbital exponent from atomic SCF calculations using

minimum basis sets and given by Clementi and Raimondi [35]. In most cases



Figure 1. Diatomic Molecule Coordinate Systems

R represents the internuclear distance; r
12

the

electron-electron distance; and rand r
b

the
a l 1

electron-nuclear distances.
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the energy-optimized exponents are not a great deal different from those

obtained by Slater's rules [36]. The parameter a
l

is equal to a
2

because

of the homonuclear case; hence, the results of integrals [aa/aa] and

[aa/ab] are equal to [bb/bb] and [bb/ba], respectively, considering

symmetry of a and b. ,Then Eqe (3-33) can be re-arranged as

EX = - ~{2A2[aajaa] + 2CA2 + C2)[ablab] + 8AC[aajab]

+ 2C2[aajbb]} (3-36)

where

[aalaa] 4Jjdr Cl)drC2)aCl)aCl) __1__ a(2)a(2) (3-37)
r

12

[ab/ab] 4jjdrCl)dr C2)aCl)bCl) __1__ a(2)b(2) (3-38)
r 12

[aa/ab] 4jJdrCl)drC2)a Cl)aCl) __1__ a(2)b(2) (3-39)
r

12

[aa/bb] 4Jjdr Cl)dr C2)a Cl)a Cl) __1__ b(2)b(2) (3-40)
r 12

The analytical solutions of two-centre integrals [ab/ab], [aalab], and

[aalbb] are given by Slater [37]. Integrals are in atomic units; the factor

of 4in front of above integrals comes from the supermolecular one-matrix

definition, Eq. (3-28).

The results of the exchange energies of He-He at different R obtained

by this method and HONDO are given in Table 1. As it is shown in Figure 2

the exchange energy results from this work are in good agreement with HONDO.



TABLE 1

Exchange Energy of He-He
a

Exchange Energy

R(ao) Present Work HONDO

1.0 -2.37108 -2.37417

1.5 -2.25624 -2.25916

2.0 -2.18138 -2.18427

2.5 -2.14036 -2.14332

3.0 -2.12123 -2.12426

3.5 -2.11348 -2.11656

4.0 -2.11069 -2.11379

4.5 -2.10977 -2.11288

5.0 -2.10945 -2.11260

5.5 -2.10940 -2.11252

6.0 -2.10938 -2.11250

6.5 -2.10938 -2.11250

7.0 -2.10938 -2.11250

aA11 values are in atomic units.
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Figure 2. Comparison of the exchange energy

results of this work with HONDO.
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CHAPTER 4

t-10NTE CARLO METHOD

4.1 Introduction

The Monte Carlo method solves the mathematical and physical problems

approximately by the simulation of random quantities [38].

Integrals can be evaluated by the Monte Carlo method. For simplicity,

we can choose the one-dimensional integral as an example to exhibit the

fundamental features of the Monte Carlo method.

I

b

f dxf(x)

a

(4-1)

where f(x) is an arbitrary continuous function which is defined on the

interval a ~ x ~ b. In fact, such integrals can be computed by quadrature

formulas, a more precise technique, but for multidimensional integrals the

situation is different: quadrature formulas become tedious while the Monte

Carlo remains principally unchanged.

In the Monte Carlo method the essential feature is that at some point

we have to substitute for a random variable a corresponding set of actual

values having the statistical properties of the random variable. The

values that we substitute are called random numbers. There are several

ways to generate random numbers which have also been subjected to ai,),number

of statistical tests to check that these numbers are correctly distributed

over the interval or not [39].

In order to compute the integral Eq. (4-1) we need to know the values

of random variables v which are distributed over the interval [a,b] with

probability density p (x). The values of random variable v can be constructed
v

transforming one or more values of random number G is given by the follow-

ing formula

28



v

I dxpv(x)
a

G
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(4-Z)

where the probability density p (x) must satisfy the following two conditions:
v

(1) the probability density p (x) is positive,
v

p (x) > 0
v

(4-3)

(Z) the integral of the density p (x) over the whole interval [a,b] is
v

equal to 1,

b

f dxpv(x)

a

1 (4-4)

Each value of G gives the solution of Eq. (4-Z) for the corresponding v

value.

To compute the integral Eq. (4-1) by the Monte Carlo metho~besides the

random variable v, defined on the interval [a,b] with density p (x), we need
v

a random variable such as

H
f(v)

p (v)
v

(4-5)

The expectation value of H is I.

E(H)

b

I
a

dx( f ~X~)P (x)
P x vv

b

f
dx( f(x)) p (x)

p (x) v
v

a

I (4-6)

Let us consider N independent, identically distributed random variables,

HI' HZ' ... , H
N

, that is, the probability densities of these variables co-

incide. Applying the central limit theorem [38] [Appendix VII] to the sum

of the variables we can write the following relation
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(4-7)

This relation shows that the absolute error between the true result of the

integral and the result obtained by the Monte Carlo method will almost

j var(H) .certainly not exceed 3 (N ), prov1ded we choose sufficiently large

N. Thus we compute

1 N
N I R.

i=l 1

I
N f(v.)

- I 1
N · lP (v.)

1= V 1

I (4-8)

Any random number v, defined on the interval [a,b] can be used to compute

the integral Eq. (4-1) because

E(H) E( f(v))
p (v)

v
I (4-9)

but the variance of H and hence the estimate of the error of Eq:~ (4-9) are

dependent on what variable v we use.

var(H)
(a) (4-10)

a

Since the random variable is extracted from p (x) on the interval [a,b] the
v

variance is also dependent on the probability density p (x) which we use.
v

The variance can be minimized when p (x) is proportional to If(x)1 (ttimpor­
v

tance sampling") [39,40], but we have to restrict our choice of the proba-

bility density p (x) to functions that we can integrate analytically, sinoe
v

the values of v are constructed from Eq. (4-2).

4.2 Application to Exchange Energy Integral

In this section our aim is to compute the exchange energy formula given

(a)
N,

yareR) ~ N-l [ I (R.)2
i~l 1
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by Eq. (3-29) using the procedure described in the previous section for

multidimensional integrals since we have to integrate our Eq. (3-29) over

electron I and electron 2.

To compute the integral by the Monte Carlo method we have to define

the probability density which satisfies two conditions: Eq. (4-3) and Eq.

(4-4). Since the product PH H (1;2)PH H (2;1) appears in Eq. (3-29), wee- e e- e

can use it as a guide to choose the probability density. Of course, our

choice would not be very complex since the random variable would be con-

structed from it.

The square of our supermolecular one-matrix for He-He is given as

follows:

PH H (1;2) x PH H (2;1)e- e e- e

{A[2a(1)a(2) + 2b(1)b(2)] + C[2a(1)b(2) + 2b(1)a(2)I}

x {A[2a(2)a(1) + 2b(2)b(1)] + C[2a(2)b(1) + 2b(2)a(1)]} (4-11)

Assuming that the off-diagonal element of the inverse matrix is smaller than

the diagonal element of the inverse matrix, that is, C is smaller than A, we

can choose our probability density as

p (1;2) = N[a(1)a(2)a(1)a(2) + a(1)a(1)b(2)b(2)
v

+ b (1) b (I ) a (2 ) a (2) + b (1) b (2) b (1) b (2) ]

This expression can b~ rearranged as follows:

p (1;2) = N[a(l)a(l) + b(1)b(1)][a(2)a(2) + b(2)b(2)]
"\l

(4-12)

(4-13)

where a and b are the normalized Is STO's, and N is the normalization con-

stant. (p (1;2) has to be normalized to 1, Eq. (4-4).)
v

fJdr(1)dr(2)PV(1;2) = 1 (4-14)
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Our calculations will be in the prolate spheroidal coordinates because

of their usefulness in treating "two centre" problems [see Appendix VIII]

[41] .

11 (r + rb)/Ra

v = (ra - rb)/R

¢

and the volume element is

-1 ~ v ~ 1

(4-15)

(4-16)

(4-17)

dT (4-18)

The Is STO's a and b can be expressed in the prolate spheroidal coordinates

as follows:

3
a(l) (~)I/Z R

(11
1 vI)] (4-19)exp[-a - +

n 2

3
b (1) (~)I/Z R

(111 - vI)] (4-20)exp[-a -
n 2

To construct the random variable we recall Eq. (4-2). Our random

variables will be 11 1 , vI' ¢l and 11 2 , v2' ¢2 because the integration is

over electron 1 and electron 2. For 11
1

the following equation can be

derived from Eq. (4-2):

11 00 1 1 2n 2n

N J ~J1I JdJ1 z J dV I J dVZ J dcjJI J dcjJZ (~)6(J1IZ - V/)(J1/ - V/)
1 1 -1 -1 0 0

[a(l)a(l) + b(1)b(1)][a(2)a(2) + b(2)b(2)] (4-21)

Since a and b are the normalized functions Eq. (4-21) turns out to be

VIZ) [a(l)a(l) + b(l)b(l)] G (4-22)
11

In a similar way vI and ¢1 can be constructed:
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2N f'd].11 JV1 (IT R 3 2
].11

2
) [a(l)a(l) + b(l)b(l)]

oJ~

dV l d¢l("2) (l-ll G (4-23)
v

1 -1 0

2N f'd].11 J1dV
1
ta R 3 2 2 + b(l)b(l)] G¢ (4-24)¢l (2") (l-ll vI )[a(l)a(l)

1 -1 0

After integrating Eqs. (4-22) and (4-23) a nonlinear equation is obtained

for l-ll and vI. To find the roots of this equation an IMSL subroutine ZSCNT

has been used. This gives l-ll and vI. To find ¢1 we integrate Eq. (4-24)

and obtain

¢ = 2'IT X G
1 ¢

(4-25)

In Eqs. (4-21) to (4-25), G is a random number uniformly distributed between

o and 1. To generate these an IMSL subroutine GGUBFS has been used.

In a similar way l-l2' v 2 and ¢2 can be constructed. Since [a(l)a(l) +

b(l)b(l)] x [a(2)a(2) + b(2)b(2)] is symmetric, we do not even have to gen-

erate l-l2' v2 and ¢2; their values are found in the same way as 1-1 1 , vI' and

We need to know the r 12 in the prolate spheroidal coordinates to compute

the integral Eq. (3-29). This expression is given by Kokos and Roothaan [42]

2 1 2 2 2 2 2
- 2l-l1\)1l-l2\)2 - 2r

12 = 4 R {lll + vI + 112 + v
2

- 2[(l-l1
2

- 1)(1 -
2 2 2 1/2

- ¢ ) (4-26)v1 )(l-l2 - 1)(1 - v2 )] cos(¢l 2

Recalling Eq. (4-8), we can compute the exchange energy integral as follows:

G
\)

*The expression is not correct. Indeed we should choose vI from the pro­

bability of v conditioned upon the value of lll. That is,

vI
J P(vl].11)dV

o

where
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where

f

and P
v

is given by Eq.(4-13).

The list of the results of the exchange energy of He-He at different

R, .obtained by the Monte Carlo method, is given in Table 2. If we compare

Table 2 with Table 1, we can see that the results from the Monte Carlo

method are in good agreement with the results from HONDO.

It has been mentioned that the probability of the absolute value of

the error in calculating an integral exceeding the value 30 is less than

1%. However, in reality as a rule turns out to be noticeably less than

this value such as in our exchange integral calculation. Therefore we can

use the "probable error".

<5p = 0.675 a

The probableetror 8p gives not the likely upper limit of the error, but

rather its order of magnitude. In fact, deviations from the expected value

larger and smaller than the probable error 0.675 a are equally probable [38].

I .. + 0.675 a

r dxP (x)

t, _0.675 C5 z

0.5

In Figure 3 the results from the Monte Carlo method is compared with

the results from HONDO. The probable error is also shown in this figure.

The contributions of the exchange energies, 6E , at various internuclear
x

distances are given in Table 3. As it is shown in Figure 4, 6E values ob­
x

tained from the analytical way are in good agreement with HONDO. The results

obtained from Monte Carlo are not far from the others at short distances but



TABLE 2

Exchange Energy Results of He-He at differentR,

obtained by the Monte Carlo method with probable errorsa

R(a ) Exchange Energy of He-He Probable Error (op)
0

1.0 -2.39746 0.04824

1.5 -2.26792 0.04162

2.0 -2.18542 0.03697

2.5 -2.14253 0.03549

3.0 -2.12386 0.03498

3.5 -2.11727 0.03485

4.0 -2.11581 0.03485

4.5 -2.11598 0.03487

5.0 -2.11646 0.03490

5.5 -2.11688 0.03493

6.0 ....2.11721 0.03485

6.5 ....2.11744 0.03487

7.0 ....2.11761 0.03498

aA11 values are in atomic units.
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Figure 3. Comparison of the exchange energy results

from Monte Carlo method with HONDO.
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at long distances Monte Carlo results show some deviations from the others.

This shows that exchange energy calculations by Monte Carlo need some im-

provement which could be done in the future.

~,ana1 (a)
liE

x

TABLE 3

MC(b) HONDO (c)
liE and ~E of He-He at Different R

x x

R(a ) liEanal ~EMC liEHONDO
a x x x

1.0 -2.61705 x 10-1 -2.88085 x 10-1 -2.62274 x 10-1

1.5 -1.46865 x 10-1 -1.58545 x 10-1 -1.47734 x 10-1

2.0 -7.20050 x 10-2 -7.60450 x 10-2 -7.28442 x 10-2

2.5 -3.09850 x 10-2 -3.31550 x 10-2 -3.18942 x 10-2

3.0 -1.18550 x 10-2 -1.44850 x 10-2 -1.28342 x 10-2

3.5 -4.10500 x 10-3 -7.89500 x 10-3 -5.13420 x 10-3

4.0 -1.31500 x 10-3 -6.43500 x 10-3 -2.36420 x 10-3

4.5 -3.95000 x 10-4 -6.60500 x 10-3 -1.45420 x 10-3

5.0 -7.50000 x 10-5 -7.08500 x 10-3 -1.17·420 x 10-3

5.5 -2.50000 x 10-5 -7.50500 x 10-3 -1.09420 x 10-3

6.0 -5.00000 x 10-6
-7.83500 x 10-3 -1.07420 x 10-3

6.5 -5.00000 x 10-6 -8.06500 x 10-3 -1.07420 x 10-3

7.0 -5.00000 x 10-6 -8.23500 x 10-3 -1.07420 x 10-3

(a) liEana1 E of He-He (analytical) - 2 x E of He (analytical).x x x

(b) LlE
MC

E of He-He (Monte Carlo) - 2 x E of He (analytical).
x x x

(c) liEHONDO = E of He-He (HONDO) - 2 x E of He (HONDO).
x x x

E of He (HONDO with STO 6G) = -1.05571 a.u.
x

E 'of He (analytical result with minimum basis set of STO)
x -1.05488 a.u.



Figure 4. Comparison of the exchange energy contributions of

the He-He system obtained analytically and by the

Monte Carlo method with the results obtained HONDO.
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CHAPTER 5

SUMMARY AND DISCUSSION

In Chapter 2 the SCF program HONDO has been introduced with some

modifications to it.

Our aim is to find the exchange energy of the He-He system as close

as possible to results of HONDO by a different way. We generalized the

supermolecular density for two interacting closed shells to the super­

molecular one-matrix. In Chapter 3, we proved that using the super­

molecular one-matrix one can find the exchange energy of He-He correctly.

To extend this formula to larger two-closed systems we should find the

easiest way to calculate the exchange energy integral. The exchange

energy integral is very formidable job because of its unlocal nature.

In addition, the supermolecular density should be normalized to the number

of electrons and obey the idempotency condition [34]. As the number of

electrons increases this job will be more difficult to manage by using

analytical and numerical integration .

In Chapter 4 we applied the Monte Carlo method to the exchange energy

integral of He-He since the simplicity of the Monte Carlo method for multi­

dimensional integral. We found that the results from Monte Carlo are also

very close to the results from HONDO for 5000 random points. One can min­

imize the absolute error of the estimation by increasing the number of

random points and/or by taking the probability density which mimics the

function we want to integrate. Our aim should be to choose some probability

density to reduce the standard error of our estimate and to reduce the.

variance. Some other variance reduction methods are given by Davis and

Rabinowitz [40].
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We proved that the Monte Carlo method can provide accurate results

for the exchange energy of He-He at different internuclear distances.

Our method can be extended to larger two-closed shells using the Monte

Carlo method. All we need is to find the probability density which

follows closely the integrand. For larger systems such as Ne-Ne, Ar-Ar

and Ne-Ar, etc., required overlap integrals can be provided from [47].
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APPENDIX I

DERIVATION OF THE HARTREE-FOCK ENERGY EXPRESSION

The antisymmetrizer in the Hartree-Fock wave function Eq. (2-3) is

defined as follows:

A(N)
N!

(Nl)-1!2 I
r=l

(I-I)

The N! permutation operators P are so labelled that even(odd) r corres­
r

ponds to an even(odd) permutation [21].

The antisymmetrizer operators A(N) have three required properties:

and

)~

A(~l) = A (N) ,

A(N}Q = QA(N)

(1-2)

(1-3)

(1-4)

where Q is any operator totally symmetrical in the coordinates 1, ••• ,N.

To prove the first property Eq. (1-2) we can write

N! N!
(NI)-1!2 I (_l)rp (NI)-1!2 I (_l)sP

r=l r s=l s

N! N!
= (Nl)-l I I (_l)r+sP p

r=l s=l r s
(1-5)

Using the fact that the product of two permutation operators is another

permutation operator of the same set, we can rewrite Eq. (1-5) as follows:

N! N!
(Nl)-l I I (_l)tp =

r=l t=l t

Nt
I (_l)tp

t=l t
(1-6)

The Hermitian propergy of A(N) , Eq. (1-3), shows the integral relation

39
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J ••• JdV(l) •••dV(N)~*(l,••• ~N)A(N)n(l,••• ,N)

= J...Jdv(l) • • •dv(N)[A(NH; (1, •• • ,N)] *n(1, •• • ,N) (1-7)

for two arbitrary well-behaved functions ~(l, ••• ,N) and n(l, ••• ,N). The

third property of the antisymmetrization operators is the commutative

property, Eq. (1-4).

Considering three properties of A(N) we have

J •••JdV(l) •••~(N)~:F(l~••• ,N)Q~HF(l,••• ,N)

= J...Jdv(l) ••• dv(N) [A(NH1(1) •• •<PN(N) ]*QA(NH1(1) •• •<PN(N)

J ••• JdV(1) ••• dV(N)<P~(1)••• <P:(N)A2(N)Q<P1(1)···<PN(N)

J J
N'

••• dv(l) •••dv(NH~(1) ••• <P:(N) 1:" (-1) t Q<P1 (1) ••• <PN(N) (1-8)
t=l

Let the totally symmetric operator Q be equal to 1, then we can say that

Eq. (2-3) or Eq. (2-5) is normalized.

j ••• JdV(l) ••• dV(N)~:F(l,••• ,N)~HF(l,••• ,N)

J J
~ . N! t

••• ~(l}••• dv(N)<p~(l)···<PN(N) I (-1) Pt<P1(1) ••• <PN(N)
t=l

j ••• JdV(1) ••• dV(N)<P1(1)···<PN(N)<P1(1)···<P1(N)

[jdV(1)!<P1(1) r2] ••• [JdV(N) I <PN(N) 1
2] = 1 (1-9)

Only the identity permutation of the Hartree-Fock wave function avoids

zero because of the orthonorma1ity of the set ¢.(1) [Eq.(2-6)].
1

To evaluate the Hartree-Fock energy expression Eq. (2-7) the operator

Q in Eq. (1-8) can be set to

2
N ~ N Vi A Zk
I H. [= - I (-2- + I k)]

i=l 1 i=l k r i
and to 1. I I-L

2 ·"/'1 · 1 r ..Jr 1= 1J
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N
From I H. we have

i=1 1

NJ)~ J * AI [ dv(I)¢I(I)¢I(I)] ••• [ dv(i)¢. (i)H.¢.(i)]
i=l 1 11

N
= I H.

i=1 1

(1-10)

1. 1and for - I L --- we have
2 .-/.. · 1 r ..

JT1 1= 1J

I I N 1 ~
• •• dv(l) •• dv(N) .I. .I ~ Il';F(l, ••• ,N) Il'HF(l, •• • ,N)

J>l 1=1 1J

= 2
1 L I I···IdV(I) ••• dV(N)¢~lk(l)••• ~:(i)···~N*(N) r:~¢I(I) •••

-../.. · 1 1 1JJT1 1=

x [¢.(i)¢.(j) - ¢.(j)¢.(i)),••• ¢N(N)
1 J 1 J"

II ~ ~. 1
- . dv(i)dv(jH'.(i)¢:(j) -_. ¢.(j)¢.(i)] •••

1 J r. _ 1 J
1J

I
" 2 1 N

x [ dv(N)¢N(N)] = -2 I I (J .. - K .. )
. ../.. · 1 1J 1JJT1 1=

H., J .. and K.. are defined, Eqs. (2-8), (2-9), and (2-10).
1 1J 1J

Inserting these results, Eqs. (1-9), (1-10), and (1-11), into

1~ A

dV(l) ••• dV(N)~HF(I,••• ,N) H ~HF(l, ••• ,N)
)'~

dV(I) ••• dv(N)~HF(l,••• ,N)~HF(l,••• ,N)

(1-11)



we obtain

N 1 N
EHF = I H. + -2 I L (J.. - K. e)

ell . ..J. e · 1 1J 1J1= Jr1 1=

N N
I H. + I I (J e. - K .. ) ·
ell e>.. 1 1J 1J1= J 1 1=

42
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APPENDIX II

DERIVATION OF THE HARTREE-FOCK EQUATIONS

We want to minimize Eq. (2-7)

N N
EHF = IR.+ I L(J .. -K.. )

i=1 1 j>i i=l· 1J 1J
(II-I)

subject to the conditions Eq. (2-6) S.. = IdV(I)¢~(I)¢ .. (I) = 0 .. with
1J 1 J 1J

respect to ¢ .• Applying Lagrange's method of undetermined multipliers
1

we can find the minimum of the functional

E: ••
1J

s..
1J

(11-2)

where the E .. are the constants. That is, we need
1J

o = of
N 1
L oR. + -2 I I (oJ .. -0 K .. )
i 1 j=l i=l 1J 1J

E •• 0 S ••
1J 1J

(11-3)

where o's represent virtual variations induced by virtual variations in the

¢ .• For simplicity we can assume that all orbitals are real; then we can
1

write

oS.. JdV(l)8~.(l)~.(l) + JdV(l)¢.(l)O¢.(l) (11-4)
1J 1 J J 1

8Hi (l) = IdV(l)8~i(l)fii(l)~i(~) + IdV(l)~i(l)ii(l)8~i(l)

= 2JdV(1)0¢.(1)H.(1)¢.(i) (11-5)
111

Similarly, if we recall the definitions of J .. and K.. from Eqs. (2-9) and
1J 1J

(2-10)

J .. = JIdV(l)dV(2)~~(l) -l- ~.(2)
1J 1 r 12 J
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and

= JdV(l)¢.(l)J.(l)¢.(l) = JdV(2)¢.(Z)J.(2)~.(2)
1 J 1 J 1 J

K .. = JJdV(1)dV(2H . (1)¢. (1) -.!- ~. (2H. (2)
1J 1 J r lZ 1 J

= JdV(lH . (l)K. (1)~. (1)
1 J '1

= JdV(2)~j(2)Ki(2Hj(2)

44

(11-6)

(11-7)

where the Coulomb and the exchange operators are as defined in Eq. (2-15)

and Eq. (2-16). Then we have

oJ .. = fdV(l)O~.(l)J.(l)ep.(l)
1J 1 'J 1

+ JdV(l) ~. (l)J. (1) o~. (1)
1 J 1

+ JdV(Z)O¢e(2)Je(Z)¢e(2)
J 1 J

+ JdV(2)~.(2)J.(2)O~.(2)
J 1 J

oj .. = 4JdV(1)0¢.(1)J.(1)¢e(1)
1J 1 J 1

and similarly

K.. = 2JdV(1)8~. (l)K. (1)¢. (1)
1J 1 'J 1

+ ZJdV(2)O¢,.(2)K.(2)¢.(Z)
J 1 J

OKij = 4JdV(1)O~i(1)Ki(1)~i(1)

Thus Eq. (11-3) gives

o = of = ~ Jo~.(1)[2H.(1)~.(1) + 1
2
.. I (4J.(1)~.(1)

i=l 1 1 1 j#l J 1

- 4K.(1)¢.(1»)- I 2s .. ¢.(1)]
J 1 j=l 1J J

(11-9)

(11-10)

(II-II)

The coefficients of each term vanish identically since o¢. are arbitrary;
1

then we have
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~.(l)¢.(l) + 12 L [J.(l)¢.(l) - K.(l)¢.(l)] = I s .. ¢.(l) (11-12)
1 1 j#:l J 1 J 1 j=l lJ J

Eqs. (11-12) are the Hartree-Fock integrodifferential equations. These

equations are different from the Hartree-Fock equations Eq. (2-11) by the

presence of off-diagonal multipliers s .. , i~j. It is possible to trans­
lJ

form Eq. (11-12) into Eq. (2-11) as described by Blinder [21]. This

transformation can be chosen so as to bring the s .. matrix to diagonal
lJ

form:

E •• = o.. E.
lJ 1J 1

(11-13)

Assuming that this transformation has been made, Eq. (II-12) becomes more

simple:

, {Ii. (1) + 1:. L [J . (1) - K. (1) D</J. (1)
1 2 j#l J J 1

s.¢.(l)
1 1

(11-14)

where the terms in the curled parentheses correspond to the effective

Hartree-Fock Hamiltonian operator and Eqs. (11-14) are the Hartree-Fock

equations.



APPENDIX III

MODIFICATIONS TO ISOIN, ISOOUT AND HSTAR SUBROUTINES

FUNCTION IPACK (IA,IB,N,M)

C TRANSFER N BITS FROM ARRAY IB STARTING AT

C LOCATION INTO ARRAY IA AT LOCATION M

IPACK = CONCAT (IA,IB,M,N-l,N)

RETURN

END

The CONCAT intrinsic is provided to allow partial word manipulation

whereby one field ofa data word may be placed into a selected field of

another data word [see Burroughs -B6700/B7700 FORTRAN Reference Manual].

All changes in subroutined ISOIN, ISOOUT and HSTAR are shown as

underlying. Since KSTAR is derived from HSTAR, KSTAR has the same changes

as HSTAR.
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1982 ROv 17 16:02 (CSSCENCl9EPKSOY/SCF/SOURCE/III ON PACK.

47

C*-** CAll OVERlAY(3~TEN.I0B.O.O) 00088500
C~llJKOEJ QOQ88&CC
RETURN 00088700
END 0008SeoC

--;;;===~51jU"OUTINE ISOIN OOQ889CC
C**** •• PACK T~E SYMMETRY tABLES·•••••• 00088901

COM~Oh/5y~r~Y/r(432),IN~T(48).fSb(70.E),NT 00089CCC
----.,.C"-ftO fI.¥lJ ffT! S-L-P-~~TtN011,r{'lf'a)';TKU'CUT'r8 J 00089 1CC

IMAX=Q 00089200
I=Q 00089~CC

10 IHIN-t"A~'l 00089400
IMA)=IMAX~ 00089~OO

IF(IM~X.GT.~T) IHAX=NT 00089€OO
-----.--......IF{·fI10\)'- 1M rNl·~·E b-~q5-)G'lJ-TtJ3219 000 89 6 C1

L:I~AX-IMIN+l 00089EC3
GO TO 76SE 00089606

3219 l-6 000836ce
1658 INC=O 00089700

DO 20 K=IMI~,IMAX 0008971C
----~lNrM

, C-·=l-f1J:'C'Krr~' D,TN o··It·rrrf.f{'·X'+lM ·....,1N~--""K..,....,)r:--·,'""'""'1::--·,-,::7=-.-::"'t-.--=-,-="'--------------::O 0089 8 Cl
20 L=l-l 000898C3

C•• 20 INC=SHIFT(IhO,7).INOIN(IMAX~IMIN-K) 000899CC
1=1+1 00090COO

C WRIT[(6.918) I 00090002
C978 FORfJATCIH ,"I •••• =".I6) 0009Q_QJL~

tNctUT(IJ:I~D 00090100
IF(IHAX.lT. ~T) GO TtJ 10 0'0090,CO
RETURN .0009030C
END OOC904CC
SUBROUTINE tSOOUT 00090500

C",*··-*UNPACK TH'E SYH~ETRY LA BlES-"'*.·* 00090.-5,1..0.
-'c-tH~ ~'Q-~l'S'YMT 11 YI T(: 4 32 j; It{V T( 4-a-j;-fs-o--c 70.,e )., NT 00090 EC C
COH'ON'ISGP~C/INDIN(4a),I~OTIUT(8 ) 00090700

L J-ASI<:127 00090aOC
CZ% 'AS~=E3 00090801

DO 5 IT:l,NT 00090900
5 INC IN ( IT) =0 000,9 1<tOJt

·------:O:I=Q 000911CC
IMAX=C QO~912CC

to IHI~=IHAX+l 00091300
-----I.....Hrr-l··~.-...)--=ll'fAX +0 COO 91 40 Q

tf(IMAX.GT.NT) IMAX=NT 00091500
I =I t 1 Q0 0 91_~C.J'-

--t-..-'- lr,rrY-£··(6'-;<jet-"- ! OC091EC2
C987 FO~fJAT(lH ,"1 •••• ="#16) 000916Clt

INO=I~D(UT(I) Q00917CC
(=1 00091701

.00 20 K=Itilt\,IMAX 00091eCC
IN DIN (K )=C 0009_1JlU
I NO IN (K ) =CO Nt,ft t- fNO f~r(-K ) -'1 N0 ~ 6, 6+7*.( l"l ),7) Q0091 eC5

20 t:L+l 000918C7
.C%% INOIN(K)=ANO( INO_ M'AS~) 000919CC

--~~~..~._~ IKC=5H1F1llrNDp-7) OQ092COC
C20 INO:S~IFT(IND,-e) 00092001

If ( I MAX• L f • " f) Go' TO 10 0 0.Q22.1Q.C
·----'RElUR'tf----·---·· 00092200

ENQ 00092300
SUB ~ 0 UTI NET IP4 I T( I NO E )I) 0009 , It CC



48

01514200
0IS14~()O

01514400
01514SCC
o1514ecc

(CSSCENC)9ERKSOY/SCf/!OURCE/III ON PACK.

e ••••• P~%~T ACTUAL VALUE OF ENERGY
C 0151~700

WRI TE( I W. 9979) ETOT .. E~F" .. . 01514 eCC
'---......ItTIpAr~rr-.E·':-5. CR. NPRINT. EQ .-';'5) GC TO 1 EO 0 015149 CC

C*... e'll REAOMStICAF,V,lZ .. S) '01515000
~EAC(lDAf=5)(CV(I~J)..J=I~!6),I=I,e6) 015151CC

t 1982 NOV Ii 1~:C2

ETOT=ZERO
----£tlF"=;.-rN

1500 CCNIINUE
C

C** CJet ~EAOPS(ICAF,DA,NX,6l 01515200
REA[(IO-f=6)(OACI22),I22=l,NX) . 01515!CC

_.__C*_*_C_-~iA~g~~:~~:~~:~ (iH~; ~i~; ~ i-~-N-U-M-S-C-F"-)-----------------~";:;"".-'-'i;- i; ~ ~ ~
WRITECIW,9996) 01S1SECC
00 15S0 I=l,NCOORB 01515700

---1--5--5.....0------"--I(T""I1'-":E=-.:(nr;99 95 ) I , E( I) 0 15 15e CC
WRITE(IW,9994) 01515900
C-ll VCUT(V,E,NCaORe~NU~SCf) 01516CCC

-----w RI Tt(-rW-~-99-9:3",--------· 0 1S 16 1 CC
CAll C(} UTCO A... NUM5 CF) . 0 1,5 16 200

1600 CONTINUE 01516~CC

If(~PUNCH.E~.O) GO TC teoo 0151o~CC

c 01516500
C - -- -- PUNCH THE _~_C UP_IE-.D.--L.RJLITAtS 0151b..6-C.t.
C 01516700
C** CJLl R£'O~S(ICAF_V,l2.S) 01516ecc

,; EAn ( lOA F=5 ) ( ( v ( I • J ), J= 1, S6 ) - I =1, e 6 ) 0 t S 16 9 CC
DO 11~o J=l.NA 01517000
IC:C 015171CC
fit AX=0 015172 (lJL--,-.-It-oo'''~-lt-r=MTx-+-l-'-' 0 15 17 .3 CC
~AX:MAX.5 01517'CC
IC=lC+l 015175CC
If(~AX.Gl.NUMSCF) MA)=NUHSCf Q1517ECC
kRI1E(IP.9ge8) J,IC,(V(I,J),I=HIN"MAX) 01517100
IF(tJAX.lT.NUMSCF) GC TO 1700 o151Z.ac.L

---1-750 CCN-ff~-UE--------- 0 1511 9C0
1800 CO~lINU[ . 01518CCC

CALL TI~IT(l) Ol,tB1CC
kRI1E(IP,99S6)TtHlI~.NPRINT,ITal,ICUT_NORMf"NORMP.NCPK,IREST# 015182CC

1 IST,JST~~ST~LST~NREC~INTlOC~IHES 01518!CC
C*** CAll WfITMS<YOAf,IREST_7_2C,-11 01St84Q~

WRI ;fE"f!-fAf-;-'2-,fl "fR-Es'r-;'-i\'REC;I NfLOC, I ~ T.. J 51 .. K5 T-lST 015185 CC
RETURN . 01518EOO
END 01518700

----- SUE f'oUT I NE ... SfA Re 0_ F'. xx .. I) .. NINT fiX .. IA,. ttOPK) 01518 ace
c 01518900
C SUS J;O tT IJ~E_.lts..IAJL...EO8M S THE ~ IS El FION MAT RI x 0 IS 19 CCC
C F=( H' + H )/2 Q15191CC
C 01519200
C FtI.J)=(H**(I,J) + H**(J"I»/2 01519!CC
C 01519400
C INDICES IN tARElS ARE I~ STANOAFO ORDER: 0151950C
C I.E£.J • K.GE.L .. CIJ).GE.(Kl) 01519ECC
C 01519700
C _lL CCNTRI8UTIONS AFE MADE INTO LOWER H-lF Of . 01519BOC
C SKELETON ~ATRIX. 015199CC
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1982 NOV 17 16':02 (CSSCENC)8ERKSOY/SCF/!OURCE/III ON PACK.
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01520100
015202CC
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l=u
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J=C 01522702
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--L lABEL=SHIFT(LA8El,·t5,) 015229CC
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-..,....-------::'m"UNCffll<·-;rAB E[ , 9 ~. i 9 ..1 0) 0 t 5229 ae
~ J:LAEEl.AND.~ASK1S 01523CCC
~ I:S~IFT(lA8EL,-15) 01523100

[=0 015231Cl
WCNC,ATCl, lABEl,9.9" to) 015~31C~
~Al:XX(~) 015232CO

----....,.,V~AL4=("\rA[+V·"AD+(VAL'VAL) 0152330C
" I J =I ~ ( I ) +J . 0 15 23~ 0 0
N"l=IA(K)+L 01523SCC

150 KJk=t~(K).J 015242CC
IFCJ.lT.l) GO TO 20C OlS24:'!OC
NJL=IA(J)+L o152!L.4-CJ1

--,--,-'-'G-(f-'f(f'-2's'o 0 15 245 CC
200 ~JL=I~(L)+J 01524600
250 f ( HI J ) =F( NI J ) +VAl 4. C( NK l ) 0 15Z4 1 CC

·IIrt=IJ[I)+K 01523ECC
NIl=IA(I)+l 015237CC
IfeJ.lT.K) GO TO 1SC C1S,3BCC-----=--,.J'K=I-.-{jj+I(-- ..·-------- 01523900

NJL=IA(J)+L 01524CCC
GO TO ~50 Q15241C~
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f(N~l)=F(NKt).VAl4_t(~IJ) 01524eCC
-----Fr-..(,.-yf\.-.11O=tTNTn-;;"VAT*-OTN·.:...:'J..:.;.[:.....;);...:--------..:.:-------------~O~1-=5-=2-::-4-=-9-:-070

F (N II )= F( NIL) - VAt .. D( NJK ) 0 t 5 25 CCC
FCPtJK )=F'( ~JK )-VAl~D{,~.j,IL ) ClS251CC
F(~J [ ) =F ( f\ J l ) - VA[*ff(trI.;;.K-=-)---------------------O~'".:""'15=-2:::-:_S=-2=""':C:-::-C

300 COhTI~UE " ." 015253CC
If ( NX X• GT • 0) SU T0 1 0 0 Qt 5 25 40 Q

350 C'tlhlI"NUf 01525~CC
If(ttUMSCF.£'.l)GO TO 5eo 0152SEOO
to 400 ~=2,~UMSCF 015257QC
FAX=M-l C152S8CC
CO 40C N~l,~AX 01525900
~ I J =I A(,.,) +N ........ ----'=O'-=1~526 CCc

-'---J;oo-r"( t(tJ·r:d:"r~lJ)-,TkO 0 15 26 10 0
500 CONTI~U( 0152520C

REWINC CIS> 015263CC
REtURN 0152&'CC

1000 CQ~TI~UE 01526~CC

_.~~_._._.. ~.~--~I~~JALS A~E IN SUPERH-A~T~R~I~x-·~F~a~··~~M~(-N-O~P~K-=-.~F~A-l~S~E-.~)~-------.--~~~g~}~~:~~~
c 01526800

DO lCSO M=l,NUMSCF 01526900
~IJ:IA(P)+H 01527COC

1050 C(~IJ)=O(~IJ)/TWO 015271CC
1100 e'lL PREAO( Is~x~_rx~NXX,~N~!~N~T~H~X~) ~ ~01521200.

1F ( kx ). Ecf:cfr--G-o-t-ol-3-S0 0 15 27 ~. CC
~I~T=lABS(NXX) 015274CC
If(NINT.GT.~rNTMX) C~lL ClOSOA(S) 01527500

-----Dr,..lOOM=l~NINr· 01527ECC'
lABEl:Ix(") 01527100

C N~l=l AeEL. AND. t-4 ASK 30 O.152J_8._OJL._-~---"·-t;·R[=o--'''---~'···~--_ ..·__··_· .. _·_ .._·ot 5 27 8 1C

NKl=CONCA1(~KlplA8Et_19~19_20) 01527812
C ~tJ:S~IFT(lAaEL~-30) 015279CC

"IJ:O 01527901
~I~=CCNCAT(~IJ,lA8El_19~39_20) 015219C2
VAL=XX(~) 01~28~~Q

~----=-F("r:rj=FtktJj+-VA'l*IrCNKL) 015~8 tee
fCNI<L);F(f;Kl).VAl*OCNIJ) 01528200

1300 CO~TI~UE 01528300
.1 Ft1\O. GT• 0) GO TOIl 00 015 Z8/t CC

1350 CONTl~UE Q1528~OC
DC 1400 M=l,NUMSCF 0152dECC

-----P;-r-;j=1~A{KJ-+M-----01528700
1400 C(~IJ}=O(NIJ).D(NIJ) 01528ecc

DO 1500 H=l,NX 01528900
l~OO F(M)-FlM)IT)O 01529COC

. ~EwIND (IS) 015291CC
RE1URN 01529200_

-"'---._.--"E·W1f-"_·_··-~-----_·- Q 15 :c 9 ~ CC

c··.· CVE~lAY(rIV_5,3) 01529400
C" PROGRAM SCFCP. 01529~CC

SUERQD' IN~FOP 01529EOC
CCM"O~/~CFOF/SZ,S2 01529700

C UNRESTRICTED HF-SCF C~LCULATION 015t98CC
C J. x:--p-a-'P"C£'--AN-a-R. K. NESIrE T, 0 152990 0
C J • C.. EH• PH YS. 22,. S7 1 (195" ) 0 15 3aco 0
C Q15301CC



APPENDIX IV

ONE-DETERMINANT APPROXIMATION

The density functions, P1(1;1') and PZ(1,Z;1',2'), are special cases

of the reduced density matrices. For a one-particle system, with a pro-

bability, w., say, of being found in state ¢., the "pure state" density
1 1

'1c
matrix p(l;l') = ¢(l)¢ (1') for the definite state ~ is replaced by the

"statistical" density matrix [32]

p(l;l') = I w.¢.(l)¢.(l') •
.11 1
1

The density matrix for the whole system is given as follows:

(IV-I)

p(1,z, ••• ,N;1',2 ' , ••• ,N') '1c " ')W(1,2, ••• ,N)~ (1 ,2 , ••• ,N (IV-2)

It is common in statistical mechanics to use the term "reduced" density

matrix when referring to Pl(l;l'), P2(1,2;1',2'), etc.

The total energy expression which is already obtained in terms of spin

orbitals in Appendix I can be rewritten as

I JdV(l)¢~(l)H.¢.(l) + ~ 2' (J·JdV(1)dV(2)
i=l 1 1 1

x -L ¢. (1)¢ . (2»
r 12 J 1

The one-matrix Pl(l;l') may be expanded in the spin orbital form

(IV-3)

pl(l;l') = I
i,j

Pl .. ¢. (1)¢~ (1 ')
1J 1 J

(IV-4)

')'c
where the Pl .. is the numerical coefficient and the factors ¢. and ¢. arise

1J 1 J

51



52

from ~ and ~*, respectively. Thus the general one-electron energy term

has the spin orbital form Eq. (3-4)

I dv(1)H1Pl(1;1')
1'=1

I Pl·.·IdV(l)¢~(l)ftl¢·(l). - 1J J 11,J

= L Pl·· <¢ · rHI I¢ · >
. - 1J J 11,J

(IV-5)

In Eq. (IV-5), the coefficient Pl .. is simply the coefficient of usual
1J

orbital one-electron energy in Eq. (IV-3). If we compare Eq. (IV-5) with

Eq." (IV-3) we can see that if¢. is occupied PI -. = 1; otherwise Pl .. = O.
1 1J 1J

Thus, the one-determinant approximation to Pl(l;l') takes the special form

P(1; 1') =
,,;'"I ¢.(l)cp:(l')

. ( ) 1 1lace
(IV-6)

In a similar way, by comparing the two-electron energy part in Eq.

(3-8) with Eq. (IV-3), the expression for P2(1;2) can be represented as

follows:

L [~ (1)~.(2)~:(1')~:(2')
· · i J 1 J1,J

";~ *- ¢ (2)cp.(I)cp.(1')¢.(2')]
i J 1 J

(IV-7)

Considering Eq. (IV-6), Eq. (IV-7) can be rewritten in terms of PI

(IV-8)

The factorization of the two-matrix in terms of the one-matrix Pl(l;l')

is peculiar to the one-determinant approximation; it means that in this

approximation everything can be determined by the one-matrix PI(l;l') which

is also known as the Dirac density matrix [43].

The energy expression for a "closed shell" system in which the orbitals
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are doubly occupied can be expressed in terms of spatial orbitals [44] as

follows:

~ = 2~ Jdr(l)X ii X + ~ I [2JJdr(1)dr(2)
~ ~ ~ ~,v

X';~(I)X (2)*~. ¢ (2)¢ (1) - J'Jdr(1)dr(2)
~ v r 12 v ~

x X* (l)X* (2) ~ X (l)X (2) ]
~ . v r 12 v ~

(IV-9)

where n is the number of orbitals and ~ and v stand for the spatial orbitals~

The exchange integral in Eq. (IV-9) has reduced weight if we compare it

to the exchange integral in Eq. (IV-3), because spin integration gives

<¢.(1)¢.(2) -l- ¢.(1)¢.(2»
1 J r 12 J 1

<x (l)X (2) ~ X (l)X (2»
~ v r 12 v ~

+ I J J
1l,V

1'=1 2'=2

or zero, according as ¢. and ¢. have parallel spins or not. Eq. (IV-9) can
1 J

be rewritten as

EHF = 2I Jdr(l) H. X (l)X*(l')
~ 1 ~ ~

1'=1

dr(1)dr(2) 1 [2X (l)X (2)X*(lf)X*(2')
r 12 ~ v ~ v

* ';~- X (l)X (2)X (l')X (2')] ~v ~ ~. v (IV-lO)

If we compare Eq. (IV-I0) with spinless energy expression Eqo (3-11), the

spinless analogues of Eqs. (IV-6) and (IV-7) can be found

*Pl(l;l') = 2 I X (l)X (1')
DCC

and

(IV-II)

(IV-12)



APPENDIX V

INVERSION OF THE MATRIX

~ is the overlap matrix and S is the intermolecular overlap matrix.

The matrix ~ can be separated into two parts:

~ = 1 + S

where the elements of ~ are given as

(V-I)

~ = J. dr(l)X X11V 11 v
<1J/ V> (V-2)

If 1J v, <11lv> is 1; otherwise, O. For two orbital systems:

(~ll ~12 )
1 a ) Sll S12

+ (V-3)

~2l ~22 0 1 S2l S22

then the elements of S matrix can be written in terms of the elements of

~ matrix.

S =
~12 ­

~22 -
(V-4)

From Eq. (V - 4) the equality of S12 to ~12 is seen.

-1It is convenient to express the matrix ~ in the following form:

-1
~

where

D

1 + D

-S ~-l 1
-(8 • (1 + 8))

(V-5)

(V-6)

(V-7)

The inverse of the matrix can be found from the following formula [45]:
.+.

(_1)1 Jdet(~ .. )
-1 of ( 1J )~ = transpose

det(~)

Applying the above formula, Eq. (V-7) , to (1 + S) matrix, one can get the
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inverse of the matrix (1 + 5) as in the following form

(1 + 5)-1 1
1 -1112

2
(

-1112
1 )

1 - ~,12

(V-B)

Then the matrix Dean be calculated as

D = -5(1 + 5)-1

-11
12 -1112 1

2
( )

1 - ~12 1 -11
12

Thus the matrix elements of D can be found:

211
12

(V-9)

(V-lO)

(V-II)

(V-12)

As has been seen to invert the matrix 11 is easy when the matrix dimension

is 2 x 2. As the matrix dimension increases, finding the inverse of the

matrix becomes more difficult. In these cases the IM5L subroutines can be

used to invert the matrix.



APPENDIX VI

VERIFICATION OF A AND C COEFFICIENTS

Considering Eq. (3-26), PI (1;3) can be expressed as follows:

PI (1;3) = A 2[a(1)a(3) + b(1)b(3)] + C 2[a(1)b(3) + b(1)a(3)]

From the idempotency condition which is given in Eq. (3-31) as

the following equation can be obtained by

4[A2a(1)a(2) + A2a(1)b(2)~12 + ACa(1)b(2)

+ ACa(1)a(2)~12 + A2b(1)a(2)~12 + A2b(1)b(2)

+ ACb(1)b(2)6 l2 + ACb(1)a(2) + ACa(1)a(2)6 l2

+ ACb(1)a(2) + ACa(1)b(2) + ACb(1)b(2)6 l2

+ c2a(1)b(2)~12 + C2a(1)a(2) + C2b(1)b(2)

+ c2b(1)a(2)~12] = 4[Aa(1)a(2) + Ab(1)b(2)

+ Ca(1)b(2) + Cb(1)a(2)]

where

(VI-I)

(VI-2)

(VI-3)

~12 = Idr(3)a(3)b(3) (VI-4)

Since the atomic orbitals a and b are normalized the following relation

has been considered in Eq. (VI-3).

Equating the coefficients of the same functions of bach sides of Eq.

(VI-3) the following equations are obtained:

and

2 2
4(A ~12 + 2AC + C 612) = 4C

56

(VI-6)

(VI-7)
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Recalling Eqs. (3-30), (V-II) and (V-12), the values of A and C can be

found as
26
12

(1 + --2-)
1 - 612

and (-

respectively. Inserting the values of A and C into Eqs. (VI-6) and (VI-7),

the correctness of A and C coefficients are verified.



APPENDIX VII

THE RULE OF "THREE SIGMAS" AND THE CENTRAL LIMIT THEOREM

Let say SN be the sum of the identically distributed random variables

Xl' XZ' ... , ~ for sufficiently large N. Since the probability densities

of these variables coincide, and hence their mathematical expectations and

variances also coincide, -ewe can write

and

z
v

(VII-I)

(VII-Z)

(VII-3)

(VII-4)

The rule of "three sigmas" for a normal density p (x) [38]
z

Nm + 30

f pz(x)dx

Nm + 30

0.997 (VII-5)

where 0 is the standard deviation. The probability of a normal random

variable Z in the interval (Nm - 30, Nm + 30) is equal to Eq. (VII-5).

Prob(Nm - 30 < Z < Nm + 30) 0.997 (VII-6)

From Eq. (VII-6)we conclude that for a single trial the value of Z can

not differ from E(Z) by more than 30.

The Central Limit Theorem states that the density of the sum SN

approaches the density of the normal variable ZN in such a way that for
S - Nm Z - Nm

every x, peN < x) ~ p( N < x) for all large N. From this theorem
v.f(Nj v

we conclude that the sum SN of a large number of identical random variables

has an approximately normal distribution (PS (x) ~ Pz (x)) with parameters
N N
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Nm and 0
2
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2Nv. From Eq.~II-5) the following relation can be written for

SN:

prob(Nm - 3v n< S < N + 3v n) ~ 0.997 .
N m

If we divide by N the probability remains the same:

prob(m 3v SN
m + 3v ) 0.997- - < -< =

iN N iN

This relation gives the uncertainty of our estimation.



APPENDIX VIII

PROLATE SPHEROIDAL COORDINATES

, The prolate spheroidal coordinates can be generated as a three-

dimensional system by rotating about the major axes of the elliptical

coordinates and introducing ¢ as an azimuth angle [41]. The two centres

will correspond to the two focal points (O,O,~) and (0,0, ~), of ellip­

soids and hyperboloids of revolution. As long as rotating about the

major axes of the elliptical coordinates is considered, the prolate

spheroidal coordinates can be called simply as the elliptical coordinates

x

(O,)Q ,,,,~)

y

¢ (0 < ¢ < 2n)

11 (ra + rb)/R

v = (ra - rb)/R

(1 < 11 < (0)

(-1 < \) < 1)

(VII-I)

(VII-2)

(VII-3)

x = I[(y2 - 1)(1 - v2)]1/2cos¢

y = I[(y2 - 1)(1 - v2)]1/2sin¢

R
z = 2 llV

The volume element

60

(VII-4)

(VII-5)

(VII-7)
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