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Abstract

Catalase dismutes H20 2 to O2 and H20. In successive two

electron reactions H20 2 induces both oxidation and reduction at

the heme group. In the first step the protoheme prosthetic

group of beef liver catalase forms compound I, in which the

heme has been oxidized from Fe3+ to Fe4+=0 and a porphyrin

radical has been created. Compound II is formed by the one

electron reduction of comp I. It retains Fe4+=0 but lacks the

porphyrin radical and is catalytically inert. Molecular

structures are available for Escherichia coli Hydroperoxidase

II, Micrococcus Iysodeiktus, Penicillium vitale and beef liver

enzymes, which contain different hemes and heme pockets.

In the present work, the pockets and substrate access channels

of protoheme (beef liver & Micrococcus) and heme d (HPII of E.

coli and Penicillium) catalases have been analysed using

Quanta™ and CharmMTM molecular modeling packages on the

Silicon Graphics Iris Indigo 2 computer. Experimental studies

have been carried out with two catalases, HPII (and its

mutants) and beef liver. Fluoride and formate' are inhibitors of

both enzymes, and their binding is modulated by the heme and

by distal residues N201 & H128. Both HPII and beef liver

enzymes form compound I with H202 or peracetate. The
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reduction of beef liver enzyme compound I to II and the decay

of compound II are accelerated by fluoride. The decay of

compound II is also accelerated by formate, and this reagent

acts as a 2-electron donor towards compound I of both

enzymes.

It is concluded that heme d enzymes (Penicillium and HPII of E.

coli) are formed by autocatalytic transformation of protoheme

in a modified pocket which contains a characteristic serine

residue as well as a partially occluded heme channel. They are

less active than protoheme enzymes but also do not form the

inactive compound II species. Binding of peroxide as well as

fluoride and formate is prevented by mutation of H128 and

modulated by mutation of N201.
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Chapter I

Introduction

Catalase (EC 1.11 .1.6) is an enzyme which is present in many

evolutionarily distant respiring organisms. It belongs to the

hydroperoxidase family which break down hydrogen peroxide (see

eqns. 1-4, pp. 7-8), thereby protecting cells against the toxic

effects of oxidants generated as a by-product of respiration. The

most common form of catalase is a homo-tetramer heme protein.

Generally the catalase subunit is approximately 470 amino acid

residues long and is associated with a protoheme. The secondary and

tertiary structures are highly conserved, and most residues at the

active site are homologous among prokaryotes, plants, fungi and

animals.

Five to three billion years ago, the amount of free oxygen in the

atmosphere was virtually zero. The gradual introduction of free

oxygen into the atmosphere is postulated to have occurred first by

the radiolysis of water vapor by ultraviolet rays and later by the

decomposition of water by photosynthetic cyanobacteria. The free

oxygen produced was removed by oxygen sinks, mainly by the

oxidation of Fe(lI) to magnetite or hematite. Geological evidence

suggests that formation of these iron deposits abruptly ceased

approximately 2 billion years ago when the supply of Fe(II) was

exhausted and the atmosphere became more oxygenic. Organisms

began to utilize the strong oxidizing power of oxygen, evolving

efficient aerobic metabolisms (Holland 1984, Veizer 1983,
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Walker et al. 1983). Catalase is thought to have evolved at the

same time as protection against oxidative stress due to the

generation of hydrogen peroxide as a by-product of cellular

metabolism and respiration. Catalases have remained highly

conserved, animal/fungal and plant catalases still bearing strong

similarity to those of prokaryotes (von Ossowski, Hausner and

Loewen 1993).

The fact that catalases have retained high homology among

evolutionary diverse organisms, may be indicative of their

physiological importance. The number of known disease processes

in which oxygen toxicity is involved continues to grow. Early

findings have shown that peroxide will cause tumors in

drosophila embryos (Plaine 1955). Damage to the lens of the eye

in organ culture (Zigler et al. 1985), and DNA damage have been

directly linked to the presence of peroxide (Tullis 1987). Peroxide

causes cell death in fibroblasts (Simon et al. 1981) and age

related damage in drosophila (Sohol et al. 1995). The potential

therapeutic uses of catalase along with new techniques to

engineer organism with increased tolerance to oxidative stress,

have continued to drive a search for the use of protective

enzymes in the treatment of human diseases (Greenwald 1990).

Catalase has been studied for more than a century, decades before

the physiological importance of catalase had been elucidated.

Catalase is a very stable enzyme, robust enough to have been

2



isolated from tobacco plants by Loew in 1901, and purified in the

early 1920·s. Much is known about the biochemistry of catalase,

albeit the precise mechanism of catalytic action has yet to be

clarified. The primary sequences for nearly 100 catalases from

sources representing prokaryotes, fungi, animal and plants are

available. The crystal structures have been determined for bovine

liver catalase (BLC), Escherichia coli hydroperoxidase II catalase

(HPII), Micrococcus Iysodeiktus catalase (MLC), Penicillium vitale

catalase (PVC) and Proteus mirabilis catalase (PMC). The tertiary

structures of these catalases are very similar, but their

activities, their reactivities with substrate analogues and

hydrogen donors, and their sensitivities to inhibitors are all

different.

Because of its robust protein nature catalase was one of the first

enzymes purified, and because of its physiological importance it

has remained of great interest. The objective of this study is to

further characterize ligand binding by mammalian and bacterial

catalases (wild-type and site directed mutants) and to relate the

observed differences to structural differences, thereby

furthering knowledge of the enzyme mechanism. Ultimately this

knowledge may be applicable to the study of degenerative

processes of the cell related to oxygen toxicity.

3



General Features and Function

The catalytic reaction of catalase is a 2-electron transfer

mechanism involving the dismutation of hydrogen peroxide to

oxygen and water. Hydrogen peroxide has the unique ability to both

oxidize and reduce the heme group of catalase. The first molecule

of peroxide will execute a 2-electron oxidation of the heme to

form compound I. A second molecule of peroxide will perform a 2

electron reduction of the heme back to the resting state. A 1

electron reduction of compound I will yield the inhibited

intermediate form of the enzyme, compound II. Free enzyme,

compound I and compound II are spectrally distinct. The transition

of compound I to compound II and the decay of compound II is

accelerated in the presence of high-spin ligands (Nicholls 1961).

If high-spin ligands have the same affinity for the free enzyme,

compound I and compound II, high-spin ligand complexes with the

heme group may depend only on the heme pocket environment and

not the oxidation state of the iron.

Evolutionarily distant catalases are composed of four identical

subunits. Each subunit is a single polypeptide with a porphyrin

containing a high-spin Fe3+ as a prosthetic group (figure 1). Beef

liver catalase (Fita and Rossman 1985b) and Micrococcus

Iysodeikticus (Vainstein et al. 1986) catalase contain protoheme

whereas Penicillium vitale and Escherichia coli HPII catalases

contain heme d (Murshudov 1996). HPII originally binds protoheme

4
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Figure 1. Ribbon diagram of the HPII tetramer.
The four identical subunits are arranged with a 222 symmetry. Each subunit is associated with
a heme prosthetic group (shown in red). The secondary structures were determined from the
torsion angles of the backbone.
All structural diagrams contained in this thesis were generated using QUANTATM software
on an SGI Indigo 2 system.
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y

Figure 2. Space filling model of the HPII tetramer.
Each subunit is individually coloured, and the o~ening of the active site channel is coloured
green. The size of the tetrarner is 90X150X71 A.
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then catalyses the conversion to a heme dcis in the presence of

hydrogen peroxide (Loewen et al. 1993). Amino acid sequences of

the four enzymes show ~700/o homology and their tertiary

structures are similar. The hemes are typically 20A from the

surface of the protein and are accessible to solvent by a largely

hydrophobic channel (figure 2). All have the phenolate of a tyrosyl

residue occupying the fifth coordination position of the heme iron

(Fita and Rossman 1985b, Sharma et al. 1989). The heme iron is

penta-coordinated with the sixth coordination site vacant (Fita

and Rossman 1985b, Andersson et al. 1995). All have the distal

residues histidine and asparagine which are essential to catalytic

activity (Fita and Rossman 1985b, Loewen et al. 1993). Their

activities, their reactivities with peroxide and their ligand

binding affinities are all different. These differences may be due

to the differences in heme type and heme pocket amino acid

residues as well as differences in the accessibility to the heme

group.

Catalase accelerates the rate of hydrogen peroxide decomposition.

In the overall catalatic reaction (equation 1), two molecules of

hYltdrogen peroxide are decomposed to molecular oxygen and water

in successive two-electron reactions as shown below (equation 2

and 3):
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The first molecule of peroxide acts as a two electron oxidant

forming the primary intermediate compound I (eqn. 2). Both

catalases and peroxidases can form compound I, but only catalase

compound I has the ability to oxidize a second molecule of

hydrogen peroxide (eqn. 3). This ability is presumably related to

tyrosinate ligation as well as to the nature of the distal heme

pocket (Schonbaum and Chance 1976). A second function of

catalase is the less specific peroxidatic decomposition of

compound I (eqn. 4) via two-electron donors:

Compound I + AH2 --7 Catalase + A + H20 (4)

where AH2 is a two-electron donor such as ethanol or formate. The

peroxidatic reaction of catalase predominates in the presence of

hydrogen donors and low hydrogen peroxide concentrations (Chance

et al. 1952b, Keilin and Hartree 1955). Under suitable conditions,

cQmpound I can spontaneously react with a one-electron

endogenous donor to form a second intermediate, compound II.

Compound II is catalytically inert, and is formed slowly in the

absence of added electron donors (Chance 1948). The conversion of

compound I to compound II can be accelerated by anions (Nicholls

1961). Accumulation of compound II in vivo may occur under
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abnormal conditions such as those associated with cell necrosis,

tumor, or prolonged hypoxia (Oshino et al. 1973). Compound III is

formed from compound II in the presence of excess hydrogen

peroxide (Keilin and Hartree 1951) or from the association of the

resting enzyme with superoxide (Kono and Fridovich 1982, Shimizu

et al. 1984). Compound III does not participate in the normal

catalatic or peroxidatic cycles and is inactive towards most

electron donors (Chance et al. 1984).

History

In 1901, Loew first introduced the term catalase. Most work with

catalase from the turn of the century untill the mid-1930·s was

directed at purification of the enzyme (Sumner and Dounce 1937)

and studies of the action of metals in biological systems. The

history of catalase research is summarized in reviews by Nicholls

and Schonbaum (1963), Deisseroth and Dounce (1970) and

Schonbaum and Chance (1976). From the early 1930·s to the end of

the 1940·s compounds of hemoproteins and their substrates were

studied by visual spectroscopy. Using a concentrated preparation

of. liver catalase, Zeile and Hellstrom (1930) demonstrated the

hematin nature of catalase as being similar to that of hemoglobin.

It was impossible to ascertain whether the hematin of catalase

was ferric or ferrous because neither sodium dithionite nor

potassium ferricyanide had any effect on the absorption spectrum.

By analogy with other hemoproteins, this was considered a

9



"remarkable" property of catalase (Zeile and Hellstrom 1930).

They also showed that compounds which inhibited the activity of

catalase (KCN and H2S) also modified the absorption spectra of the

hematin. The spectra of neither KCN-catalase nor H2S-catalase

were affected by the addition of small amounts of hydrogen

peroxide, showing that KCN and H2S inhibited the formation of an

intermediate enzyme-substrate compound (Keilin and Hartree

1936b). Another stable spectral derivative of catalase was

reported by Stern in 1936. Stern identified a red intermediate of

catalase and ethyl hydrogen peroxide, now known as compound II.

Keilin and Hartree (1935) reported that the spectrum of catalase

was not affected by the addition of peroxide, although an

immediate decomposition of hydrogen peroxide did occur. In fact it

was not till 1947 that Chance (1947a), using the stopped flow

method and an improved sensitive spectrophotometer, discovered

the primary compound of catalase (now known as compound I).

Shortly after the discovery of compound I, Chance (1948) proposed

that not only does hydrogen peroxide bind with catalase to form

the primary enzyme-substrate complex but also reacts again with

this complex to cause the decomposition of hydrogen peroxide and

regenerating catalase, a mechanism first proposed by Albers in

1933 to explain the kinetics of catalase. Because the rate of

hydrogen peroxide decomposition is directly proportional to

peroxide concentration, no saturation effects were expected.

Chance suggested that any decrease in enzyme activity in the

presence of continuously supplied hydrogen peroxide is the result

1 0



of the slow conversion of compound I to the enzymatically

inactive compound II (Chance 1948).

Very little direct evidence for a catalase reaction mechanism had

been obtained before the rapid spectrophotometric methods used

by Chance in 1947. It had been known since 1936 (Keilin and

Hartree 1936a) that catalase had the ability, under certain

conditions, to catalyse the oxidation of alcohols by hydrogen

peroxide. In 1949, detailed spectroscopic studies to investigate

the properties of the primary complex and the oxidation of

alcohols were carried out. Chance (1949a) found that 1.2 ± 0.1

hematin groups are occupied by hydrogen peroxide using a method

involving the reaction of the complex with cyanide. Chance

(1949b) also measured the velocity constants for the reactions of

compound I with various alcohols and formate, leading to the

distinction between the catalatic and peroxidatic activity of

catalase.

By the early 1950's, many of the intermediates of catalase had

been well defined spectroscopically. The introduction of stopped

and rapid flow methods with sensitive spectrophotometers, the

d~velopment of the spectrophotometric technique for following

the breakdown of hydrogen peroxide, and the invention of the

electric analog computer allowed for quantitative methods for the

study of catalase kinetics (Chance and Herbert 1950, Beers and

Sizer 1952).
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Ligands and Intermediates

Historically, the oxidation state of the heme iron was determined

by the reaction of the hemoproteins with sodium dithionite or

ferricyanide. Neither compound had any effect on the absorption

spectrum of catalase, but magnetometric measurements could be

used for the elucidation of the electronic structure of the resting

heme state, as well as reaction intermediates and derivatives of

catalase. The magnetic suseptibility technique for the study of

iron proteins was developed in the lab of Pauling (Coryell et al.

1936). Magnetic susceptibility is the ratio of the intensity of

magnetization of a substance to the strength of the magnetic

field. Substances are classified as to whether they are

diamagnetic (negative, indicating fully paired electrons) or

paramagnetic (positive, indicative of unpaired electrons) (Hartree

1947). Magnetic susceptibility measurements of horse liver

catalase were first reported by Theorell and Agner in 1943. The

iron of free catalase was determined to have 5 unpaired

electrons, cyanide and H2S derivatives showed 1 unpaired

electron with a IIcovalentll bond to the iron (low-spin) and both

azide and fluoride derivatives contained 5 unpaired electrons. The

azide and fluoride bond to the heme iron was suggested as being

ionic (high-spin). Deutsch and Ehrenberg (1952) reported identical

results with erythrocyte catalase. Theorell and Ehrenberg (1952)

found that catalase compound II has 2 unpaired electrons, which

might imply a low-spin complex with an extra unpaired electron

12



associated with its single oxidation equivalent (Nicholls and

Schonbaum 1963). Deutsch and Ehrenberg (1952) also reported no

change in the paramagnetism of the heme from pH 4.8 to 10.4.

Catalase with 5 unpaired electrons has no oxidizing equivalents,

compound I has 2 oxidizing equivalents and compound II has one

oxidizing equivalent (Chance 1949b, Keilin and Nicholls 1958,

Brill and Williams 1961). The spin state of the resting enzyme

does not change with pH, nor is there any effect of pH on catalase

activity. This suggests that there are no heme linked groups to be

dissociated over the pH range between 5 and 10 (Chance 1952a).

However, the binding of anions is dependent upon pH. It is

normally the acid form and not the ion which binds at the active

site, as shown for cyanide, fluoride and formate (Chance 1952b).

The visible spectrum of catalase reflects not only changes of

heme iron ligands and spin state, but any transitions of the 1t

electrons of the porphyrin (Hartree 1946, Brill 1966). The

absorption band of catalase in the Soret region is due to n-n*

transitions of the aromatic system of the porphyrin ring, the

622 nm (a) band and the 500-505 nm band are due to the metal to

ligand charge transfers that increase in magnitude during

excitation. The band at 535-540 nm is also thought to be due to a

metal to ligand charge transfer (Brill and Williams 1961, Sanders

et al. 1964).

13



Catalase can exist in three oxidation states. The peroxide

intermediates, compounds I, II and III, are spectrally distinct. The

formation of the primary complex can be observed by an

absorption band in the visible region, and a decrease in optical

density in the Soret region at 405 nm. The formation of the

secondary intermediate from the primary compound can be

observed as a red shift of the Soret band and a blue shift of the

a-band in the visible region. The transition of compound II to III

affects the spectrum by blue shifting the Soret region band, as

well as causing spectral changes in the visible region. These

various oxidation states of catalase are interconvertable upon the

addition of suitable oxidants and reductants to the resting form of

the enzyme (Lardinois 1995).

Evolutionarily diverse catalases are efficient in the dismutation

of hydrogen peroxide. Even though mammalian and bacterial

catalases contain over 90% structural homology, their rate

constants for the formation of the primary intermediate are

different. The catalytic activity of the bacterial catalase MLC is

nearly twice that of mammalian catalases. The rate of compound

de-cay in the presence of ethanol is very different, mammalian

catalase being 100 times greater than that of MLC. The small

differences in the active site residues may account for the

differences in catalytic activity as well as peroxide and hydrogen

donor reactivity.
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Hydrogen peroxide performs both oxidation and reduction of the

heme group. The first molecule of peroxide reacts with the heme

of catalase to form compound I. Compound I is a strong oxidizing

agent where the heme has been oxidized from Fe3+ to Fe4+=0.

Compound II is formed by a 1-electron reduction of compound I.

The nature of compound I is best studied with the use of hydrogen

peroxide analogues which 90nvert free catalase completely into

compound I (Chance 1949a). The absorption spectrum of catalase

compound I formed with ethyl hydrogen peroxide led Brill and

Williams (1961) to suggest that the formation of compound I

involves an attack on the porphyrin conjugated ring system at one

methylene bridge. They concluded that the magnetic evidence

allowed for a radical on the porphyrin combined with an Fe(IV)

state. Direct evidence for a x-cation radical was reported by

Dolphin and co-workers in 1971. The optical properties of

cobaltous octaethylporphyrin cation radicals are analogous to

those of catalase and peroxidase compound I. If the primary

compound is a cation radical, and the one electron reduction of

the porphyrin system results in the formation of compound II,

then both compound I and II should contain Fe(IV). Mossbauer

spectroscopy (Maeda and Morita 1968) has shown that the

electronic configurations of compound I and compound II are the

same. Dolphin and co-workers (1971) also suggest that a stable

porphyrin cation radical permits transfers in the catalytic cycle

to occur via the porphyrin ring.

1 5



High-spin ligands such as fluoride and formate bind to the free

enzyme. The transition of compound I to compound II and the decay

of compound II is accelerated in the presence of anions suggesting

that anions form complexes with the heme even when the heme is

in the form of compound I and II. High-spin ligands are thought to

enhance the rate at which the endogenous donor can reduce

compound II. These reactions are first order with respect to the

enzyme concentration in the absence of external hydrogen donors.

The formation of compound II from compound I is accelerated by

fluoride although fluoride is not thermodynamically capable of

acting as a hydrogen donor. Fluoride accelerates the formation of

compound II ten fold, from 0.012 8-1 to 0.15 8-1 at pH 5. The decay

of compound II is increased a hundred fold, from 0.0009 s-1 to

0.08 s-1. Both free catalase, compound I and compound II have a

similar affinity for fluoride, 3.0 mM, 3.5 mM and 4.4 mM

respectively at pH 5 (Chance 1952b, Nicholls 1961). Formate is a

unique high-spin ligand, as it has the ability to donate 2 electrons

to compound I in a second order reaction. The reaction rate of

formate with compound I is 470 M-1s-1. (Chance 1950b). Formate

also increases the rate of compound II decay (Keilin and Nicholls

1958, Nicholls 1961). Free enzyme and compound II share a similar

affinity for formate, 13 mM at pH 5 (Nicholls 1961).

Catalase compound II shows a much lower affinity for low-spin

~ ligands such as cyanide. The low affinity of compound II for

1 6



cyanide is presumed Ito be a consequence of the heme iron already

being covalently bound to substrate (George 1953, Nicholls 1961).

Recent resonance Raman investigation of covalent HeN binding to

the heme iron of catalase showed that HCN binds with two

conformers. At physiological pH, the heme iron binds cyanide with

a linear conformer with the proton presumably protonating the

distal histidine imidazolium group. At higher pH when the

imidazole is presumably deprotonated, cyanide binds to the iron

in a bent conformer presumably stabilized by another distal

residue (AI-Mustafu et aI.· 1995).

Kinetics

In the first half of this century, only investigation of steady

state enzyme reactions were possible. In the early 1950's, using

electric circuit technology from the second world war, analog

computers were developed specially designed to solve

mathematical equations representing the' non-steady state

reaction kinetics of complex enzyme systems and their

substrates (Chance et al. 1952a). Chance and his coworkers

(1952b) employed such a computer to study the peroxidatic and

catalatic routes of compound I decay (Chance et al. 1952b).

When catalase accelerates hydrogen peroxide decomposition to

oxygen and water, the reaction rate is directly proportional to

H20 2 and catalase concentrations.

17



dx I

- = -k1 *e * x (5)
dt

where x = [hydrogen peroxide], e = [catalase] and k1
1= velocity of

hydrogen peroxide decomposition (Bonnichsen et al. 1947).

Catalase also accelerates the oxidation of alcohols and related

compounds by H20 2 . This reaction predominates at low peroxide

concentrations:

18

da
-=-k4 *a*p
dt

(6)

where a = [alcohol], k4 = alcohol oxidation and p = compound I

(Chance 1947b).

Compound I forms at a rate proportional to the concentration of

free catalase and hydrogen peroxide:

(7)

where p = compound I and k1 is the rate of camp I formation

(Chance 1947b).

The average number of hemes forming compound I with H20 2 is

30% (Chance 1947b, Chance 1949a). All hemes form compound I

with alkyl peroxides:

dp ..
-=k1*x(e-p) (8)
dt



I

where k~' is the rate of compound I formation, x = [alkyl peroxide],

p = [compound I] and e = [hematin] (Chance 1949b).

Compound I will decompose in a first order reaction:

where k_ l is the spontaneous rate of decomposition,

a = [alcohol] and k4 is the rate of alcohol oxidation (Chance

1949b).

The following reaction mechanism adequately explains the

catalatic and peroxidatic reactions:

19

E + S _, -.A\ E + P (1 0)

ES + S
(11 )

ES + AH2 ----0» E + A ( 1 2)

where E = catalase, S = hydrogen peroxide, ES = compound I,

AH 2 = donor molecules and P = products.

A third route available for the decay of compound I is the slow

accumulation of the inactive second intermediate. Compound II is

formed from compound I in a first order reaction (Keilin and

Nicholls 1958) due to the presence of an internal donor. The

endogenous donor reacts at a rate independent of catalase



concentration, suggesting a unimolecular decomposition of

compound I, where compound II formation is the result of a

transfer from the same protein molecule (Nicholls 1961).

Sometimes the transitions among the intermediates are

accelerated in the presence of reagents such as ascorbate and

ferrocyanide (Chance 1950a), suggesting that these reagents react

with compound I (Nicholls 1961). Alcohols and formate, if added at

the beginning of a reaction, prevent the formation of compound II

by keeping a low steady state concentration of compound I.

Compound III is produced from compound II in the presence of

excess hydrogen peroxide, and seems to decompose to gi\(.e

compound II, therefore retaining at least one oxidizing equivalent.

Compound III is rather inactive towards most hydrogen donors so

it is an inhibited form of the enzyme (Chance 1952a).

Reaction Mechanism

The exact mechanism by which catalase dismutes cellularly

generated hydrogen peroxide has yet to be defined. However, some

conclusions have been drawn based on decades of biochemical

investigation. The catalytic and peroxidatic cycles of catalase

action, intermediates of these cycles and their oxidizing

equivalents are summarized in figure 3.
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Compound I Fe4+ por+

H20 + Aldehyde

O2 + H20

Compound II Fe4+

Catalase Fe3+

Figure 3. The reaction cycle and principle redox reactions of catalase.
Catalytic reaction with hydrogen peroxide will occur in the absence of hydrogen
donors (shown in black). The peroxidatic reaction (shown in gray) will occur in the
presence of hydrogen donors (AH2).One molecule of peroxide will induce the oxidation
of the heme from Fe3+ to Fe4+ and a cation radical (por+). A second molecule of
hydrogen peroxide (catalytic) or a hydrogen donor (peroxidatic) will induce a 2
electron reduction of the heme regenerating the resting enzyme. Compound I can also
undergo a 1-electron reduction via the porphyrin ring. This 1-electron reduction is
due to the presence of an internal donor and can be accelerated in the presence of
anions such as fluoride and formate.

The mechanism of the reaction at the active site is controlled by

the influence of the phenolate oxygen of tyrosine at the fifth

coordination site of the heme iron, as well as the effect of the

basic distal residues histidine and asparagine in stabilizing

substrate at the active site. The mechanism of the reaction is also

controlled by the length, size and hydrophobicity of the active site

ch.annel (Bengal et al. 1989).

The role of tyrosine as the fifth ligand was investigated by Robert

and coworkers in 1991. Their attempts to model catalase activity

with simple iron porphyrin compounds indicated that oxygen

donors (phenolate, tyrosinate & alcoholate) at the fifth



coordination site are less efficient in catalyzing the dismutation

of hydrogen peroxide than if the fifth site is occupied by a

nitrogen ligand such as imidazole (Bengal et al. 1989 and Robert et

al. 1991). However a tyrosine residue as a proximal ligand will

draw the heme iron out of the plane thereby increasing the

probability of penta coordination (Hildebrand et al. 1995), leaving

an open 6th ligand site more easily occupied during catalysis

(Andersson et al. 1995). This suggests that penta coordination as

well as distal residues at the active site are responsible for the

catalytic efficiency of catalase (Bengal et al. 1989 and Robert at

al. 1991).

Amino acid residues distal to the heme govern the events leading

up to the formation of the primary complex of catalase. The events

of compound I formation were computer-simulated by Fita and

Rossman (1985b). They concluded that hydrogen bonding to the

distal residues histidine and asparagine as well as electrostatic

interaction with the heme iron stabilizes the substrate at the

active site (figure 4). A general acid-base reaction can occur

resulting in a single oxygen bound to the iron in the Fe(IV) state, a

1t-cation radical at a methylene bridge and the release of a water

molecule. Compound II could be formed through the donation of an

electron from the surrounding protein matrix (Fita and Rossman

1985b).
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Figure 4. The formation of BLC compound I.
The events leading to the formation of compound I are governed by the stabilization of
substrate at the active site by the distal histidine and asparagine. The electrostatic
interaction of peroxide with Fe3+ as well as hydrogen bonding to Nehis74 will lower
the pKa of the OH group of the peroxide inducing the oxygen to bind to the heme iron.
The iron will increase in oxidation from Fe3+ to Fe4+ thereby decreasing the
nu~leophilic nature of the distal histidine. The ensuing molecular rearrangement of
the peroxide molecule will result in an oxygen covalently bound to the iron. One
delocalized porphyrin electron will be utilized in creating this bond, resulting in a
stable prophyrin x-cation radical. These events are based on the computer generation
studies of Fita and Rossmann (1985b).

The active site channel is approximately 20A long, is lined with

hydrophobic residues and is rather narrow. Before the crystal



structure of catalase was known, biochemical data indicated that

the heme of catalase was buried in the protein and that the heme

was connected to the surface by a narrow channel. The reaction

rates of catalase with alkyl peroxides decrease with increasing

alkyl size (Jones and Middlemiss 1972) and compound I reacts less

rapidly with higher alcohols (Chance 1947b) indicating that

smaller molecules are more accessible to the active site. The

protein channel acts as a filter preferring small neutrally charged

molecules (figure 5). The acid form of anions bind at the active

site suggesting that there is an electrostatic constraint on the

access of substrate to the active site (Deiseroth and Dounce

1970). Recent site-directed mutagenesis experiments (Zamoky et

al. 1995) relieved the narrow constraint of the yeast catalase A

channel by replacing four channel phenylalanines with valines, and

one valine with alanine. The result was an increase in the non

specific peroxidatic rates and a decrease in the catalytic rates.

The difference in the protein moieties are responsible for the

relative rates of specific catalytic and broad range peroxidatic

reactions.

Tbe mechanism of catalase activity is governed by at least three

things. The first is tyrosine at the fifth coordination site inducing

the penta-coordination of the heme iron. The next is the basic

distal residues histidine and asparagine. The third factor is the

control of substrate specificity by protein moities of the active

site channel.
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Figure 5. Stereo view of the catalase active site channel.
Show here is the q.ccessibility of solvent to the active site. The active site channel is
approximately 20 A in length, and 5 Ain diameter at its most narrow region. The channel
is lined with hydrophobic residues. The dimensions of each cube representing solvent
accessibility is 1 cubic angstrom.
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Structure of Typical Catalases

The sequence and structure of catalases have been very highly

conserved among diverse organisms. The active site residues and

their secondary structures are nearly identical for animal, plant,

fungal and bacterial catalases. Most catalases utilize protoheme

IX (figure 6a) as the prosthetic group (e.g. BLC and MLC). Other

enzymes originally associate with protoheme IX then

biosynthesize a derivative of the heme upon turning over (Hansson

and von Wachenfeldt 1993). HPII and PVC execute a cis

hydroxychlorin gamma-spiralactone derivative referred to as

heme dcis (figure 6b). The protein surrounding the heme controls

the heme bioconversion (Jacob and Orme-Johnson 1979, Varva et

al. 1986, Chiu et al. 1989, Timkovich and Sondoc 1993, Loewen et

al. 1993, Murshudov et al. 1996). The details of the heme

modification are still unknown. Catalases share the distinctive

feature of having the phenolate group of a tyrosine residue (figure

7a & b) coordinated to the heme as the fifth ligand (Reid et al.

1981, Dawson et al. 1991). Catalases also share a distal histidine

and asparagine (figure 7a & b) which are necessary for efficient

dismutation of hydrogen peroxide (Loewen et al. 1993). The distal

histidine is at an angle unique to hemoproteins. The plane of the

imidazole ring lies parallel to that of the porphyrin ring. This

histidine has phi psi angles normally permitted for glycine only

and may be stabilized by a strong interaction of the histidine

carbonyl with the guanidium group of a nearby arginine.
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6 b. heme dcis6 a.protoporphyrin IX
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Figure 6 a&b. Distal view of Ble protoporphyrin IX (a) and HPII heme dcis (b).
The orientation of the hemes are as viewed from the distal side.



7a} Ble protoporphyrin IX
28

7b) HPH heme d (cis)

Asn201 ~rg165
~

Figure 7 a&b. Stereo views of catalase active sites.
The veiw is from the proximal side of the heme showing the orientation of the proximal tyrosine as
well as the distal histidine and asparagine for a)BLC and b)HPII. The unique conformation of the
distal histidine is held in place by hydrogen bondin·g to other distal residues.. Figure b) shows the
hydrogen bond from the hydroxyl of heme d to ser414.This serine residue may assist in the
bioconversion of protoheme to heme d (cis).



The carbonyl of a threonine points directly at the plane of the

imidazole group of the distal histidine, thereby constraining the

orientation of these distal residues (Fita and Rossman 1985b). The

distal histidine is absolutely required for catalytic activity,

whereas mutation of the distal asparagine produces an enzyme

with limited activity. The distal asparagine stabilizes substrate

at the active site during catalysis (Loewen et al. 1993).

The three dimensional structures of five catalases are known, PVC

at a 1.8 A resolution (Murshudov et al. 1996), HPII at 2.8 A

resolution (Bravo et al. 1995) BLC at 2.5 A resolution (Fita et al.

1986) MLC at 1.5 A resolution (Murshudov et al. 1992) and PMC at a

2.2 A resolution (Gouet et al. 1995). These five catalases share

four common domains per subunit (figure 8a & b). The first 70

residues form the first domain which is an arm that extends from.

the globular region of the subunit and interacts with the active

site channel of a neighboring sUbunit: The next ::= 250 residues

form the second domain which is a large 8-stranded antiparrallel

B-barrel. The third domain (residues 300-450) is referred to as

the wrapping domain in which the essential helix containing the

proximal tyrosine is located. The fourth domain consists of (X-

helices on the external part of the molecule (figure 8a). Both PVC

and HPII contain an additional c-terminal domain extension of

about 250 residues with a flavodoxin-like topology (Bravo et al.

1995, Murshudov et al. 1996). This extension is located in a

crevice between the B-barrel domain and a-helical
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8a)BLC

Domain 2

8b)HPIl

Figure 8 a&b. Stereo domain diagram of a BlC (a) sununit and an HPII sun-unit (b).
All typical catalases share these four typical domains. Domain 1 (yellow) involves the first -70
amino acid residues. Domain 1 is an extension from the globular region of the subunit which
interacts with active site channel of a neighbouring subunit. The next .....250 residues (Domain 2.white)
are involved in the formation of an 8-stranded anti-parallel beta barrel. The heme group
(shown in grey) is contained in this domain. Domain 3 (red) is called the wrapping arm of the
subunit which stabalizes the tetramery and is composed of -100 residues. Domain 4 (blue) is the
carboxy terminus. Ble and MLC contain an NADPH binding site a) at the interface between
domain 2 &4 (NAPDPH shown in pink). HPII and PVC do not bind NADPH but they do contain an
additional globular region b) of -250 residues which has a flavodoxin-type binding site.



domain 4 (figure 8b). BLC tightly binds NADPH (figure 8a), one

molecule per subunit (Kirkman and Gaetani 1984). The bases of

NADPH (figure 9) are approximately perpendicular rather than

parallel, and these bases are close to the helices of domain 4. The

folded conformation of the NADPH is unlike the extended

conformations found in other protein structures (Fita and Rossman

1985a). Most mammalian catalases (Kirkman et al. 1987) as well

as MLC (Murshudov et al. 1992) and PMC (Jouve et al. 1989) bind

NADPH. Bound NADPH protects catalases from forming the inactive

compound II peroxide complex (Eaton et al. 1972, Kirkman et al.

1987, Hillar et al. 1994). Table 1 summarizes the structural

information for MLC, BLC, PVC and HPII. The four tetramers

crystallize in the same space group. The molecular sizes are close

to 240000 MW per tetramer for the protoheme containing enzymes

(BLC and MLC) but larger for the heme d enzymes (PVC and HPII).

The channels leading to the heme pocket differ in length, with BLC

(eukaryotic) enzyme having the shortest path and MLC

(prokaryotic) the longest. There is no correlation between the

heme type and channel length, however there may be a correlation

between the heme type and molecular size.
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Figure' g.-Stereo view'of the Ble NADPH binding site.' .-
The folded conformation of the NADPH molecule is shown. The bases face into the protein
crevice. The crevice is at the surface of the protein at the interface between domain 2 and 4
(cf. fig. 8a).



Table 1. A summary of the information concerning the structure of
BLC, PVC, MLC and HPII.

Physical Eukaryotes Prokaryotes
properties BLC PVC MLC HPII
Structure and tetramer; 222 tetramer; 222 tetramer; 222 tetramer; 222
crystal form sym~etry1 symmet ry2 sym~etry2 sym~etry3

2.0 A resolution 2.0 A resolution 1.5 A resolution 2.8 A resolution
M.W. and 506 residues ~670 residues 492 residues 753 residues
subunit Md 60x80x90 A 67x90x127 A 66x90x93 A 71 x90x150 A

Md 57550 Da Md 71200 Da Md 55645 Da Md 84200 Da
Heme group protoheme4 heme d2 protoheme5 heme d6

NADPH site yes? no8 yes5 no3

Channel 20 A 25 A 30 A 23 A
length
1Murthy et al. 1981, 2Murshudov et al. 1996, 3Sravo et al. 1995, 5Murshudov et
al. 1992, 6Chiu et al. 1989, 7Kirkman and Gaetani 1984, 8Vainshtein et al. 1986.

Escherichia coli hydroperoxidase II
Heme d catalases

Escherichia coli is a gram-negative, facultatively anaerobic, rod

shaped bacteria. E. coli has two distinct catalases, HPII which is

a monofunctional catalase coded for by the katE gene (von

Ossowski et al. 1991), and HPI which acts as both a catalase and

a peroxidase which is coded for by the katG gene (Clairborne and

Fridovich 1979). HPII of E. coli K12 is purified using a protocol

that also allows the purification of HPI in large amounts. HPII is

very stable and is maximally active between pH 4-11 (Loewen and

Switala 1986). HPI and HPII are induced independently, HPII

during bacterial growth into stationary phase and HPI during

logarithmic growth (Loewen et al. 1985). HPI contains protoheme

as the prosthetic group and is found in both the periplasmic and
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cytoplasmic membrane fractions. HPII contains heme dcis as the

prosthetic group, and is found only in the cytoplasm (Heimberger

and Eisenstark 1988). A visible and fluorescent library of heme d,

its derivatives and complexes of heme d, compiled from

biochemical analysis of the terminal oxidase complex of E. coli

(Varva et al. 1986), was used to prove the presence of the heme d

in HPII catalase (Chiu et al. 1989).

HPII from aerobically grown E coli normally contains heme d but

cultures grown with poor or no aeration produce a mixture of heme

d and protoheme catalases. It was concluded that heme d found in

HPII catalase is formed by the cis-hydroxylation of protoheme in a

reaction catalyzed by HPII using peroxide as the substrate

(Loewen et al. 1993). The distal amino acid residue histidine 128

is absolutely required for the protoheme to heme d conversion.

Two mutants of the distal histidine, H128A and H128N, are

catalytically inactive and contain only protoheme which is

unaffected by treatment with peroxide. Mutation of the distal

residue asparagine 201 indicates that it is not absolutely required

for the heme conversion. The mutant N201 A contains mostly heme

d ~and is partially active, though mutation of the distal asparagine

to histidine has been shown to interfere with heme conversion.

The N201 H enzyme is isolated containing protoheme and has very

limited activity. There is, however, a reversible conversion to a

heme d like species which occurs in the presence of continuously

generated peroxide (Loewen et al. 1993).

34



The crystal structures of PVC (Murshudov et al. 1996) and HPII

(Bravo et al. 1995) show the stereochemistry of the two heme d

chiral carbon atoms as being identical (figure 7b). The heme

prosthetic groups for PVC and HPII are found at similar depths and

orientation in the protein, however electron density maps for PVC

and HPII indicate that the prosthetic group of PVC and HPII are

rotated 180° relative to that of BLC (figure 10). Residues which

are within contact distance of the heme are different between

heme d and protoheme enzymes. The heme contacting residues for

PVC are ile41, va1209, pr0291 and leu342. The corresponding

residues for HPII are ile114, ile279, pr0356 and leu407. Analogous

residues for BLC are met60, ser216, leu298 and met349, and for

MLC are his43, ser198, leu280 and met341. These differences

may govern the orientation of the heme at the active site

(Murshudov et al. 1996). Heme d catalases also have a unique

serine residue located just below pyrole ring d. A hydrogen bond is

formed between the hydroxyl group of the heme d (figure 7b) and

the O-y of a serine residue (349 PVC, 414 HPII). This serine is also

hydrogen bonded to the carboxylate oxygen of an aspartic residue

located in domain 1 of a neighboring subunit (53 PVC, 118 HPII).

These interactions may stabilize heme d with the hydroxyl oxygen

pointing toward the proximal side. The crystal structure of the

inactive HPII mutant N201 H indicates that the prosthetic group

remains as protoheme but its orientation is the same as that of

the wild type enzyme (180° with respect to the heme of BLC). This
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10b. Heme dcis10a.Protoporphyrin IX
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Figure 10 a&b. The orientation of heme d (b) is reversed with respect to protoporphyrin IX
of Ble (a).
There are 6 residues of HPII (conserved in PVC) which differ from those found in
BlG. These 6 residues may be responsible for the inversion of the heme, as well as the
conversion of HPII protoheme to heme d (Murshudov et al. 1996).



confirms the idea that HPII originally associates with protoheme

which is then bioconverted to heme d upon turning over with

hydrogen peroxide (Loewen et al. 1993, Murshudov et al. 1996).

Heme d enzymes appear to be more resistant to oxidative damage

than are protoheme enzymes during turnover. Protoheme enzymes,

such as BLC and MLC, become inactivated by the slow formation of

compound II during catalytic activity. The binding of NADPH

(figure 11 a & b) is thought to protect against this formation of

compound II (Hillar et al. 1994). PVC and HPII both possess a

flavodoxin like domain and lack the ability to bind NADPH (figure

11 c & d). Heme d is a weaker lewis base than protoheme .(Varva et

al. 1986), and heme d catalases do not react with one electron

donors to give the inactive compound II (Hillar et al 1994,

Murshudov et al. 1996). Therefore there may be an evolutionary

correlation between the extra c-terminal domain and heme d.

Evolution of catalases

Catalase has been isolated from a large number of respiring

organisms, and their amino acid sequences are essentially the

same. Because these catalases from evolutionarily distant sources

are fundamentally similar, it appears that the enzyme is of some

antiquity, and is potentially useful for phylogenetic

reconstruction (von Ossowski et al. 1993). Melik-Adamyan and

. coworkers (1986) proposed that the high degree of structural
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a) BLC

c) PVC

Figure 11 8, b, c&d.Ribbon diagrams of catalase subunits.
a) Ble and b) MLC both contain protoheme as the prosthetic group (shown in purple).
Each subunit ofBLCand MlC bind one molecule of NADPH (shown in pink).NADPH is
thought to prevent these catalases from self-inactivation. The heme d catalases c) PVC
and d) HPJI have an extra c--terminal domain which is located at the same crevice where
the protoheme enzymes bind NADPH.Heme d catalases are not known to form the inactive
compound II.



homology between mammalian and fungal catalases makes it probable 39

that they have diverged from a common ancestor more than 109

million years ago. A phylogenetic analysis of heme containing

catalase sequences from prokaryotes, fungi, plants and animals was

reported in 1993 by von Ossowski, Hausner and Loewen. Of the 20

organisms studied, it was determined that catalase may be

polyphyletic, and that animal/fungal catalases are derived from a

single prokaryotic ancestor. Plant catalases appear to form a second

class of catalase, arising independently from a different prokaryotic

ahcestor. However there is still a very high degree of homology

between animal/fungal and plant catalases. This is attributed to the

fact that eukaryotic proteins which are compartmentalized in

peroxisomes are not exposed to the same evolutionary pressures as

are cytosolic proteins, and evolve slowly (Ingual et al. 1992). The

investigation of 15 bacterial heme catalases by Ingual and coworkers

(1992) shows the same polyphyletic character as shown by von

Ossowski and colleagues. Catalases show no clear divergence

between gram positive and gtam negative bacteria (Rocha and Smith,

1995). The evolution and potential origin of catalases may become

more evident as more sequences from archaebacteria and

cyanobacteria become available (von Ossowski et al. 1993).

Peroxisomes

Peroxisomes are cellular microbodies which contain a number of

peroxide producing oxidases ( e.g. urate oxidase and d-amino acid

oxidase) and large amounts of catalase. Peroxisomes are organelles

with diameters ranging from 0.1-1.7 J.1m, and are bound by a single

membrane. Catalase typically constitutes as much as 40% of the



total peroxisomal protein (de Duve et al. 1966). Kidney and liver 40

tissues have much higher catalase activities than most other

mammalian tissues. Catalase is renewed at a rapid rate in the liver

and the enzyme is synthesized by rough surfaced microsomes and

then rapidly transferred to peroxisomes (de Duve 1966). The

peroxisomal rat liver catalase and catalase A of Saccharomyces

cervisiae contain at least six carboxy terminal amino acids which

appear to direct the proteins into peroxisomes (Furuta et al. 1986,

Kragler et al. 1993).

Up to 10% of oxygen uptake is converted to hydrogen peroxide

(Boveris et al 1972). Under normal physiological conditions catalase

controls the peroxide concentration so that this does not reach toxic

levels (Tolbert and Essner 1981, del Rio et al. 1992). 40 - 80% of the

peroxide generated in peroxisomes is destroyed inside the organelle.

The remaining 20 - 60% diffuses to the surrounding medium (Boveris

et al. 1972). Very low amounts of peroxide is maintained in the

medium surrounding the peroxisomes because of the permeability of

peroxide to the peroxisomal membrane. The permeability coefficient

is estimated at 0.2 cm min- 1 (de Duve 1965) which is 5.5 times

larger than that estimated by Nicholls (1965) for the red blood cell.

The diffusion of peroxide into blood circulation is regulated at

concentrations below 10-7 M by cytosolic catalase and glutathione

peroxidase (Sies et al 1973).

Oxygen toxicity

Cellular oxidative stress occurs in all aerobically respiring

organisms. Active oxygen species such as superoxide, hydrogen



peroxide and OHe occur as a by-product of cellular respiration and 41

metabolism. High levels of these active oxygen species can result in

metabolic impairment and cell death (McCormick et al. 1976). Studies

over the last few decades have begun to show the extent of damage

caused by active oxygen species. Oxidative stress has been

associated with aging (Sohol et al. 1995), carcinogenesis (Cerutti

1985), cell damage due to ischemia-reperfusion (Conner et al. 1992)

and degenerative processes such as Alzheimer's disease (Luft, 1994).

The action of catalases, superoxide dismutases and peroxidases keep

the intracellular levels of active oxygen species acceptably low

(Chance et al. 1979, Sies 1993). Cellular response to high levels of

hydrogen peroxide is the increased synthesis of at least 21 proteins

(Toyokuni et al. 1995). Both superoxide dismutase and catalase are

essential components of the biological defense against oxygen

toxicity. In the absence of catalase, superoxide dismutase decreases

activity after turnover suggesting that superoxide dismutase is

inhibited by peroxide (Hodgson and Fridovich 1975), and catalase is

inhibited by superoxide in the absence of superoxide dismutase

(Shimizu et al. 1984). Superoxide dismutase and catalase are

currently being exploited being as therapeutic agents in the

treatment these human diseases (Szelgi et al. 1986, Greenwall 1990,

Darley-Usmar et al. 1995).

Molecular Modeling

The method of x-ray diffraction to study large molecules was

developed mainly in the lab of Perutz and Kendrew. The first three

dimensional protein structure solved by x-ray crystallography was

that of myoglobin in 1958. Physical models of proteins were used for



the three dimensional representation of proteins up until the 1970's 42

when computer models began to be used. Computer models are

mathematical representations based on atomic positions, bond

lengths, angles and torsions. Molecular surfaces are mathematical

functions based on atomic position and radii. Atomic energies are

based on equations involving atomic distances, the atom type and

bonding arrangements. Dynamic systems such as vibrations, diffusion

and conformational changes can be modeled as well. The current

applications of molecular modeling include drug design (Lybrand

1995), the study of enzyme structure and folding (Shakhnovich 1996)

as well as enzyme interaction during catalysis (Jones and Willet

1995, Stoll et al. 1996). Computer modeling and simulations have

also become a valuable tool in relating the function of proteins to

their structure.

The crystal structures of five catalase enzymes from diverse

organisms have been elucidated. Biochemical information is available

for all of these enzymes with the exception of PVC. The differences

in catalysis and ligand binding affinities between protoheme and

heme d catalases may be correlated to the differences in heme types.

The pockets and substrate access channels of protoheme (beef liver &

Micrococcus) and heme d (HPII and Penicillium) catalases have been
»

analysed using Quanta ™ and CharmM TM molecular modeling packages

on a Silicon Graphics Iris Indigo 2 computer. Experimental studies

have been carried out with two catalases, HPII (and its mutants) and

beef liver. Fluoride and formate are inhibitors of both enzymes. The

reduction of beef liver enzyme compound I to II and the decay of

compound II are accelerated by fluoride. The decay of compound II is

also accelerated by formate, and this reagent acts as a 2-electron



donor towards compound I of both enzymes. The differences in residues

that comprise the heme pockets and the channel walls may be

correlated with the observed differences both in enzymatic activity

towards peroxide and in sensitivity to ligation by anions such as

fluoride and formate.

The focus of this study is to answer the following questions:

1. What are the differences in high-spin ligand binding between

protoheme and heme d containing catalases?

2. What are the differences in high-spin ligand binding between

three catalytic states of eukaryotic catalase?

3. What are the differences in high-spin ligand binding between

wild-type HPII and HPII mutants with modified residues distal to the

porphyrin ring?

4. What are the relationships between high-spin ligand binding

and the catalytic activity of different catalases?

5. What is the most important factor determining the differences

in reactivity of different catalases, the heme group chemistry or the

residues in the heme pocket?
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Mater!ials and Methods

Materials

The beef liver catalase (EC 1.11.16, 65000U/mg) was supplied

by Boehringer Mannheim Biochemica Canada. The crystalline

suspension was diluted to ~ 80 J..lM in sodium borate/HCI buffer

(pH 8.24) and centrifuged at high speed for 3 minutes to

remove any insoluble material. This suspension was used as a

stock solution. Hematin concentration was determined

spectrophotometrically with the extinction coefficient of

120 M-1cm-1 at 406 nm (Nicholls and Schonbaum 1963).

Escherichia coli HP II catalases were obtained courtesy of

P. Loewen, Dept. of Microbiology, University of Manitoba,

Winnipeg, Manitoba. Purification of HP II is described by

Loewen and Switala (1986). Catalase hydroperoxidase II (HPII)

was isolated from E. coli, purified from strain UM255 and

transformed with pAMkatE22 a plasmid containing the katE

gene which encodes for the 753 amino acid protein.

Oligonucleotide-directed mutants of HPII were prepared as

described by Loewen and Switala (1993). The oligonucleotides

were synthesized on a PCR-Mate synthesizer. Asn201 mutants

replace the sequence AAT at 1421. The sequence was

confirmed by the Sanger method on single-stranded DNA

from the same phagemids. The mutagenized fragments

were reincorporated into pAMkatE72 and transformed into

UM255 for expression. The concentrations of HP II hematin
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were estimated using the millimolar extinction coefficient as

reported by Dawson et ai, (1991) of 118 M-1cm- 1 at 405 nm. The

lyophilized protein was diluted in potassium phosphate buffer and

centrifuged to remove insoluble material.

Fisher Scientific supplied the 30% hydrogen peroxide.

Peroxoacetic acid (30% wt) was supplied from Aldrich (St. Lewis,

USA). Pre-treatment of the peracetate was carried out to remove

any presence of H20 2 from the solution (Jones and Middlemiss

1972). The stock solution of peracetate was brought to pH 5 and

2 nM catalase was added. The solution of peracetate was then

diluted to 10 mM with distilled water and left for 30 minutes

before use. KH2P04 was a product of Baker Chemicals and K2HP04

a product of Caledon Laboratories. All other chemicals were of

analytical grade and had been purchased from BDH (Darmstadt,

Germany) or Sigma (St. Lewis, USA).

Methods

Spectrophotometry

Electronic spectral properties of beef liver catalase, compound I,

compound II, HPII wild-type and HPII mutants upon the addition of

fluoride were monitored by recording the absorption with a

Beckman DU-7000 diode array spectrophotometer. The

concentrations of catalase varied from 4-10 JlM. Peracetic acid
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was used to form a large steady-state concentration of

compound I. Potassium ferrocyanide is a one-electron reductant

of compound I and was used to create a large steady-state

concentration of compound II. Ethanol was added to compound II to

remove residual compound I. All experiments were carried out at

23°C at pH5.0 in 100 mM potassium phosphate buffer.

SP.ectral properties of beef liver catalase, HPII wild-type and

HPII mutants upon the addition of formate were monitored by

recording the absorption with a Beckman DU7 standard single

beam spectrophotometer linked to a Apple IIGS for data transfer.

The concentrations of catalase varied from 3-7 JiM. All

experiments were carried out at 23°C in 100 mM potassium

phosphate buffer at pH 5.8 and 6.8 except where stated.

Catalase Assay

Kinetics

The decay of BLC (11JlM hematin) compound II in presence of

formate was monitored on the Aminco™ dual wavelength double

beam DW2 spectrophotometer linked to a CompaqTM 286 device

with OIiS™ fitting routines for various exponential reactions. The

experiment was performed at 23°C in 50 mM potassium phosphate

buffer at pH 5.8. BLC compound II was generated by the addition of

800 JiM peracetate followed by 33 JiM ferrocyanide.
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Rapid Kinetics

Rapid kinetic measurements were performed using the Durrum™

D-100 stopped flow spectrophotometer linked to a Ancom™ Top

286 computer with Olis™ fitting routines. The rate of BLC (3JlM

hematin) complex formation with fluoride (pH 5.8) and formate

(pH 7.4) as well as the decay. of compound I in the presence of

for~ate (pH 7.4, 10JlM H20 2) were carried out at 23°C in 50 mM

potassium phosphate buffer. BLC compound I formation with

peracetate (pH 5.0) and HPII wild-type compound I formation with

H20 2 (pH 7.0) were performed at 23°C in 100 mM potassium

phosphate buffer.

Subsequent spectral and kinetic data analysis was performed

using the DeltaGraph™ 2.0 application software.

Molecular Modeling

Catalase structures were displayed and distances and

configurations calculated using Quanta™ release 4.1.1 version

95:0320 software (1984-1994 The University of York, York,

England, Molecular Simulations Inc.) which functions on the UNIX

operating system, Silicon Graphics Indig02™ R4400 workstation.

Quanta allows for the manipulation of a molecule in 3-D space. It

also allows for selective displaying, coloring and overlaying

~ structures as well as creating graphical objects. Quanta release
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4.1.1 includes CHARMm™ dynamics calculations whose

simulations include energy minimization and hydrogen bond

calculations.
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Resu Its

Spectral comparisons of beef liver catalase, compound I

and compound II

When peracetate is added to a solution of beef liver catalase

there is an immediate decrease in absorbance of the Soret region

band at 405nm and a red shift of the a-band from 622 (ferric

enzyme) to 660 nm, indicating the formation of compound I

(Figure 12A). Upon addition of ferrocyanide to compound I,

absorbance peaks appear at 425, 535 and 568 nm, characteristic

of compound II (Figure 128). Compound I and II have isosbestic

points at 408 and 602 nm. Ethanol when added to such a mixture

removes any residual compound I and induces a slow reversion of

compound II back to the ferric form of the enzyme (Figure 12C).

Figure 12C shows isosbestic points for compound II and the

native enzyme at 434, 520 and 604 nm. Absorbance data for the

ferric enzyme, compound I and compound II are summarized in

table 2.

Spectral comparisons of HPII wild-type and its mutants

N201 D and N201 Q

The spectrum of the HPII wild-type catalase shows high

similarity to the absorbance spectrum of other heme d enzymes,

such as the catalase of Neurospora crassa (Jacob and Orme

Johnson 1979) and the terminal oxidase complex of Escherichia

coli (Varva et al. 1986). The spectra of HPII wild-type and its
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mutants (Figure 13) all contain an absorbance peak in the Soret

region at approximately 405 nm characteristic of rc-rc*

transitions of the porphyrin ring. Both wild-type and N201 Q

mutant enzymes show an a-band at approximately 715 nm which

is characteristic of heme d, analogous to the 622 nm peak of the

ferric beef liver enzyme. In addition, the heme d HPII spectra

show an intense peak at 590, corresponding to the 480-500 nm

peak of mammalian catalases, and characteristic of heme d. For

the N201 D enzyme, these maxima are shifted to 690 and 580 nm

which may be intermediates of the spontaneous cyclization of a

diol during the bio-conversion to heme d (Chiu et al. 1989). Small

absorption shoulders at ~535 and 630 nm may indicate that the

N201 D mutant preparation has a small population of enzymes

containing protoheme. Protoheme containing enzymes such as HPI

show absorption maxima at approximately these wavelengths

(Loewen et al. 1993). Absorbance data for HPII wild-type, HPII

N201 D and N201 Q are summarized in table 2.

The kinetics of Compound I formation

Beef liver catalase

Peracetate (pera) is an analog of hydrogen peroxide and forms a

stable primary intermediate with beef liver catalase and when

used in excess will convert all heme groups to compound I (refer

to introduction page 18). The kinetics of beef liver catalase

compound I formation with peracetate were monitored at 660 nm.
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(13)

Typical traces of beef liver catalase compound I formation in the

presence of increasing amounts of peracetate are shown in Figure

14A. Figure 148 shows the reaction rates plotted against

peracetate concentration. A calculated linear fit of the data

allows an estimate of the second-order rate constant k;' 0 f

1.1 x 104 M-1 S-1. A first-order decomposition rate constant k~ 0 f

0.3 S-1 was estimated from the ordinate intercept. The maximum

change of absorbance for each assay was plotted against

peracetate concentration (Figure 14C). The data was fitted to the

equation:

A = [i~ax*s]
~+s

where A is the absorbance, Amax is the maximum absorbance change, S is the

k"
concentration of substrate and ......::.l is the apparent dissociation constant.

k"1

k"
The data of Figure 14C show a value of 33J.lM for ;;~, in agreement

1

with the values obtained for Figure 148.
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Table 2. Spectral peaks of Beef liver catalase, intermediates, HPII
wild-type and its mutants.
Spectral analysis performed at pH 5.0 in 100 mM potassium phosphate buffer at
23°C. Spectral peaks were obtained from data collected in Figures 12 & 13.

Catalase Ferric Compound I Compound II
Soret visible Soret visible Soret visible
(nm) (nm) (nm) (nm) (nm) (nm)

BLC 405 500, 537, 622 - 660 425 534, 568

HPII 406 590, 630, 711 - - - -

N201D 408 580, 610, 695 - - - -

N201Q 405 588, 625, 710 - - - -
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Figure 12. Spectra of BLe catalase, compound / and compound II:
formation of compound I and II from native enzyme

The analysis was performed using the diode array
spectrophotometer in 100 mM potassium phosphate pH 5.0 at
23°C. Spectral changes during the transition of intermediates are
indicated by arrows.
A) The first intermediate, compound I, is almost immediately
formed by the addition of 200 JlM of peracetate to a suspension of
10JlM beef liver catalase.
B) Compound II is formed from compound I by the addition of 33
JlM ferrocyanide (plus 5 mM ethanol).
C) Compound II decays back to the native enzyme over a period of
60 minutes after the addition of ethanol.
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Figure 13. Spectra of HPII wild-type and mutants N201D and
N201Q.

Absolute spectra of HPII wild-type (black), HPII N201 D (dark
gray) and HPII N201 Q (light gray). The spectra were obtained on
the diode array spectrophotometer at pH 5.0 in 100 mM potassium
phosphate buffer at 23°C.
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Figure 14. The rate of BLe compound I formation with peracetic
acid.

The rate of compound I formation was followed at 660 nm on the
stopped flow spectrophotometer at pH 5.0 in 100 mM potassium
phosphate buffer at 23°C. A) The change in absorbance is followed
at 660 nm for various sequential additions of peracetate up to
200 JlM. B) The exponential fits are plotted against peracetate
concentration. C) the maximum change in absorbance at 660 nm is
plotted against peracetate concentration and fitted to a
Michaelis-Menten equation to determine Kd.
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Reduction of Compound I

Compounds such as ethanol and formate accelerate the 2-electron

reduction of compound I to the ferric enzyme. The reduction of

catalase compounds I formed with hydrogen peroxide and with

peracetate was investigated. Assays were performed at pH 7.4

which is favorable for the formation of compound I. Typical

traces of compound I (pera) reduction by formate are shown in

Figure 15A. The first-order rates were plotted with respect to

formate concentration and fitted to a straight line as shown in

Figure 158. The second-order rate constant k4 of 161 M-1 S-1 was

determined for compound1(pera) decay. The maximum rate of

compound (pera) decay in the presence of formate was estimated

to be 0.07 s-1 with a spontaneous decay k~ of 0.007 s-1

estimated from the y-axis intercept.

Typical traces of compound (H20 2) reduction by formate are

demonstrated in Figure 16A The reaction rates were plotted

against formate concentration. The linear dependence of the decay

rate on formate concentration is shown in Figure 168. The

second-order rate constant of compound I (H202) reduction by

formate k4 was calculated as 237 M-1 S-1, and the maximum rate

of decay in the presence of formate was estimated to be 3.5 S-1.

The spontaneous decay k~ of 0.1 S-1 was estimated from the y-

axis intercept, suggesting that compound (H202) decay proceeds at

an appreciable rate in the absence of added donors. Compound I
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(pera) is ~1 00 times more stable than compound I formed with

hydrogen peroxide.

HPJJ wild-type

The kinetics of HPII compound I formation with hydrogen peroxide

were investigated. Typical traces of the decrease in optical

density at 405 nm in the presence of increasing amounts of

hydrogen peroxide are shown in Figure 17A. Figure 178 shows the

corresponding reaction rates plotted against hydrogen peroxide

concentration. The linear fit of the data allows for an estimation

of the second-order rate 'constant of 2.8 x 106 M-1 S-1. A first

order decomposition rate of less than 10 S-1 was estimated from

the ordinate intercept. The first-order rates at higher hydrogen

peroxide concentrations shown in brackets, which do not appear

to be linearly dependent on peroxide concentration, are attributed

to rates approaching the upper limit detectability of the stopped

flow spectrophotometer.

The decomposition of compound I can proceed through one of three

paths, catalytic turnover, one electron or two electron reduction.

Since compound I of HPII does not undergo the one electron

reduction to form the inactive compound II (Hillar et al. 1993),

the decomposition of compound I can occur either through

reaction with a second molecule of hydrogen peroxide, or via

reaction with hydrogen donors such as ethanol (i.e. peroxidatic
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reaction). The disappearance of compound I in the presence of

increasing amounts of ethanol was followed at 405 nm. Typical

traces are shown in Figure 18A. A second-order rate constant k4

of 3.5 M-1s-1 was estimated from the slope of the line as shown

in Figure 188. A spontaneous rate of compound I decay not greater

than 0.02 S-1 was estimated from the intercept in the absence of

ethanol. The second-order rate constant of the peroxidatic

reaction for HPII wild-type compound I and ethanol is 100 times

lower than that reported in the literature for mammalian

catalase.
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Figure 15. Formation of peracetate compound I and its reduction
by formate.

The formation and reduction of compound I (formed with
peracetate) were monitored on the DW-2 spectrophotometer at pH
7.4 in 50 mM potassium phosphate buffer at 23°C. Compound I was
also formed by the addition of 200 J.LM peracetate to 7 J.LM beef
liver catalase.
A) Typical traces of the formation and decay of compound I (405
425 nm) in the presence of increasing amounts of formate are
shown. The reaction curves were fitted exponentially to give
rates.
B) The rates of reduction are plotted against formate
concentration to give the apparent rate constants for spontaneous
and formate catalysed decays.
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Figure 16. The formation of hydrogen peroxide compound I and its
reduction by formate.

The formation and reduction of beef liver catalase compound I
were monitored at 405 nm on the stopped-flow
spectrophotometer at pH 7.4 in 50 mM potassium phosphate buffer
at 22°C. Compound I was generated by the addition of 10 JiM
hydrogen peroxide to 3 JiM enzyme.
A) Compound I reduction by formate in concentrations ranging
from 0.5-15 mM. The reaction curves were fitted exponentially to
give rates.
B) The rates of reduction are plotted against formate
concentration to give apparent rate constants for spontaneous and
formate catalysed decays.
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Figure 17. The formation of HPII wild-type compound I with
hydrogen peroxide.

The reaction of 3 JlM HPII wild-type catalase compound I
formation with hydrogen peroxide is monitored on the stopped
flow spectrophotometer at pH 7.0 in 100 mM potassium phosphate
buffer at 23°C. A) The reaction is followed at 405 nm for various
sequential additions of hydrogen peroxide up to 300 JlM. The
reaction curves were fitted exponentially to give rates. B) The
reaction rates are plotted against [H202] to give the rate constant
of compound I formation.
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Figure 18. The decay of HPII compound I.

The reaction of HPII wild-type catalase compound I reduction by
ethanol is monitored on the stopped-flow spectrophotom'eter at
pH 7.0 in 100 mM potassium phosphate buffer at 23°C. A)
Compound I reduction is followed at 405 nm for various step
wise additions of ethanol (10-267 mM) to a reaction mixture of
3 J.!M HPII enzyme and 100 flM hydrogen peroxide. The reaction
curves were fitted exponentially. B) The reaction rates of decay
are plotted against ethanol concentration to give the rate of
compound I decay.
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Fluoride

Spectral modifications of catalase upon binding fluoride

The binding of fluoride by catalase is pH dependent, and the pK of

hydrofluoric acid is 3.45 (Linde, 1990a). The binding of fluoride

alters the absorbance spectrum of the catalases. Absorbance

spectra of catalase/fluoride complexes are shown in Figure 19.

The a-band of the beef liver enzyme , which is due to metal to

ligand charge transfer, is blue shifted (Figure 20A) and the Soret

band is slightly red-shifted, indicative of high-spin ligand

binding. Upon binding fluoride, the Soret band of the HPII catalase

is red-shifted 4 nm from that of the resting enzyme. HPII wild

type and N201 Q catalases (Figures 20B and D) show a blue-shift

in the a-band from ~71 0 to ~670 nm. The a-band of the N201 D

(Figure 20C) mutant is blue-shifted from 695 to 665 nm. The

magnitude of the 670 nm absorbance band is not as pronounced for

the N201 D mutant as seen for the a-band of wild-type and N201 Q

enzymes suggesting that full complex formation with fluoride

may not have been attained for the N201 D enzyme (Figure 20C).

The HPII catalases show the formation of additional bands at 550

and 625 nm. Analogous absorbance bands are not seen for the

fluoride complex of mammalian catalase. A summary of

absorbance data for the catalase/fluoride complexes are shown in

table 3.
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Table 3. Absorption bands of Catalase/fluoride complexes

Spectral analysis performed at pH 5.0 in 100 mM potassium phosphate buffer at
23°C. Spectral peaks were obtained from data collected in Figure 19.

Catalase Soret region (nm) visible region (nm)

BLC 407 596

HPII wild-type 410 551, 628, 671

N201D 411 540, 612, 665

N201Q 409 549, 625, 670

Table 4. Dissociation constants for HPII catalase/fluoride complexes.

Spectral analysis performed at pH 5.0 in 100 mM potassium phosphate buffer at
23°C. Dissociation constants were obtained from fitted data collected from Figures
21 (pH 5.0) and 220 (pH 5.8). Equations and fits used to determine dissociation
constants are shown in appendix D table D-1.

Catalase Dissociation constants (mM)

pH 5.0 pH 5.8

BLC 3.5 23

HPII wild-type 0.2 -

N201D 4.0 -

N201Q 0.9 -
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Catalase/fluoride equilibria

Difference spectra for sequential additions of fluoride to

catalases are shown in Figure 20. The change in the absorbance

spectrum of catalase upon the addition of fluoride was used to

determine the dissociation constant for catalase/fluoride. The

absorbance changes at appropriate wavelength pairs were plotted

against the log of fluoride concentration (Figure 21). The

secondary plot for the beef liver enzyme shows a sigmoidal curve

for the data collected in both the visible and Soret regions

(Figure 21 A). To determine the catalase affinity for fluoride, the

sigmoidal curves were fitted to the equation:

1- Y = exp(2.303 *(logF -logKd )) (14)
1+ exp(2.303 * (logF -logKd )))

where Y is the fraction of free enzyme, 1-Y is the absorbance of the complexed
enzyme, Kd is the dissociation constant and F is the concentration of fluoride.
Derivation of equation 14 is shown in appendix D.

The Kd fluoride for the beef liver enzyme at pH 5.0 is calculated as

4.0 mM. The HPII enzymes show a double sigmoidal curve for the

data collected at wavelength pairs in the Soret region suggesting

a heterogeneous population. However the HPII catalases show a

single sigmoidal relationship in the visible region. Data collected

in the visible region (Figure 21 B, C and D) were fitted to equation

14. The fluoride dissociation constants for HPII wild-type and

mutants N201 D and N201 Q are calculated to be 0.22 mM, 4.0 mM

and 0.93 mM respectively. The dissociation constant for the ND
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mutant may have been underestimated as full complex formation

with fluoride may not have occurred (cf. Figure 20C). A summary

of dissociation constants for catalase/fluoride complexes are

shown in table 4.

Rate of fluoride binding to Beef liver catalase

The kinetics of fluoride binding to beef liver catalase were

investigated. The rate of fluoride complex formation was

monitored at 595 and 634 nm. Typical traces collected on the

stopped-flow spectrophotometer at a milli-second time scale are

shown in Figure 22A. The first order rates at both wavelengths

were plotted against fluoride concentration (Figure 228) to give

second-order rate and dissociation constants of 5000 M-1 S-1 and

23 mM respectively and a koff constant of 120 S-1 at pH 5.8.

The formation and decomposition of Beef liver catalase

compounds I and II in the presence of fluoride

The transitions of compound I to II and compound II to the native

enzyme are accelerated by fluoride suggesting that fluoride

complexes with heme group intermediates as well as the ferric

form. This hypothesis was tested by comparing the effect of

fluoride on the ferric enzyme and on compounds I and II at pH 5.0.

The change in absorbance of the ferric enzyme upon the addition

of fluoride was plotted against fluoride concentration (Figure
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23A). The dissociation constant of the native enzyme with

fluoride is 6.5 mM at this pH in both the visible and Soret regions.

The first-order rates of both the 1-electron reduction of

compound I and the 1-electron reduction of compound II in the

presence of fluoride were collected on a diode array

spectrophotometer and plotted against fluoride concentration

(Figure 238). These rates were fitted to an equation of the

Michaelis-Menten type (eqn. 13). The dissociation constants were

estimated from the fitted data, Kd = 1.1 mM with kmax of

0.25 S-1 for compound I and Kd =4.6 mM with kmax of 0.08 S-1

for compound II. The spontaneous first-order rates of compound II

formation and decay were obtained from the intercepts for the

reaction occurring in the absence of fluoride, 0.03 s-1 and 0.003

s-1 respectively. A summary of fluoride reactions with ferric

beef liver catalase and intermediates are shown in table 5.
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Table 5. The reactions of ferric beef liver catalase and intermediates
with fluoride

Spectral analysis performed at pH 5.0 in 100 mM potassium phosphate buffer at
23°C. Dissociation constants were obtained from data collected from Figures 23A and
B fitted to eqn. 13.

Catalase k min (s -1) kmax (S-1) Kd (mM)

BLC - - 6.5

camp I 0.03 0.25 3.1

camp II 0.003 0.08 4.6
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Figure 19. Absolute spectra of catalase/fluoride complexes

The absolute spectra of catalase/fluoride complexes for beef
liver (black), HPII wild-type (dark gray), HPII N201 D (medium
gray) and HPII N201 Q (light gray) were recorded on the diode
array spectrophotometer at pH 5.0 in 100 mM potassium
phosphate buffer at 23°C.
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Figure 20. Difference spectra of catalase/fluoride complexes

Difference spectra were derived from the spectra of catalases
upon the sequential additions of fluoride additions to catalase.
The spectra of catalase/fluoride complexes were recorded on the
diode array spectrophotometer at pH 5.0 in 100 mM potassium
phosphate buffer at 23°C. A) 10 fJ-M beef liver catalase, fluoride
additions from 0.18-19 mM; B) 4 fJ-M HPII wild-type, fluoride
additions from 0.005-19 mM; C) 5 fJ-M HPII N201 D, fluoride
additions from 0.045-4.3 mM; D) 7 fJ-M HPII N201 Q, fluoride
additions from 0.005-24 mM.
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Figure 21. Fluoride binding by catalase

The assay conditions were as described in the legend of Figure 20.
The absorbance changes are plotted against the log of fluoride
concentrations for A) beef liver catalase, wavelength pairs
445-399nm (II) and 596-636 (e); B) HPII wild-type, wavelength
pairs 470-400nm (II) and 670-710nm (e); C) HPII N2010,
wavelength pairs 450-400 (II) and 655-700nm (e); 0) HPII N201Q,
wavelength pairs 470-400nm (II) and 670-710nm (e). The
equations used to fit the data is shown in appendix 0, table 0-1.
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Figure 21.
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Figure 22. The kinetics of fluoride binding to Beef liver catalase

The exponential rate of fluoride binding to 9 J.1M catalase was
monitored at 595 (II) and 634 nm (e) on the stopped flow
spectrophotometer at pH 5.8 in 50 mM potassium phosphate buffer
at 23°C. A) The reaction curves at 595 nm with step-wise
fluoride additions from 1-100 mM; B) The reaction rates are
plotted against fluoride concentration.
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Figure 23. The formation and decomposition of BLe compounds I
and II in the presence of fluoride.

The experiments were performed on the diode array
spectrophotometer at pH 5.0 in 100 mM potassium phosphate
buffer at 24°C with 10 J.lM BLC. A) Fluoride binding to native
enzyme. The maximum spectral changes upon the step-wise
additions of fluoride (0.5-10 mM) are plotted against fluoride
concentrations for the wavelength pairs 445-399 nm (Soret, II)
and 596-636 nm (visible, e). B) The rates of fluoride binding to
compounds I and II rates are plotted against fluoride
concentration. Compound I was generated by the addition of 200
J.lM peracetate. The transition of compound I to compound II was
monitored at the wavelength pairs 434-408 nm (.. ) and 570-602
nm (+) for a range of fluoride concentrations from 0.1-10 mM. The
reaction rates were plotted against fluoride concentration. The
decomposition of compound II back to the native enzyme was
followed at the wavelength pairs 434-405 nm (II) and 570-622
nm (e) for a range of fluoride concentrations from 0.5-8 mM. The
reaction rates were plotted against fluoride concentration.
Compound II was generated by the addition of 200 J.lM peracetate,
100 J.lM ferrocyanide and 4 mM ethanol.
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Formate

Spectral modifications and equilibria constants of formate
binding to catalases

Beef liver catalase

The reaction of catalase with formate is pH dependent. The pK of

formate is 3.75 (Linde, 199·0b). Formate binding alters the

absorbance spectrum of catalase as shown in Figure 24A. Upon

complexing with formate, the a-band is slightly blue-shifted and

the Soret band is slightly red-shifted, indicative of high-spin

ligand binding. Difference spectra for sequential additions of

formate to catalase are shown in Figure 248. The changes in

absorbance at wavelength pairs in both the Soret (418-380 nm)

and visible (612-648 nm) regions were plotted against formate

concentration (Figure 24C) to determine a catalase/formate

dissociation constant (Kd) at pH 6.8 equal to 3.9 mM.

HPII catalase

Absolute spectra of HPII wild-type, N201 D and N201 Q enzymes

complexed with formate are shown in Figure 25A, B, and C. The

a-band of each of the three enzymes is blue shifted 10 nm and

each Soret band is red shifted by about 1 nm upon complexing

with formate. The absorbance peaks of ferric N201 D and the

formate complex are broader than their wild-type and N201 Q

counterparts, perhaps indicating a heterogeneous population of
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hemes (cf. results page 50). A summary of the absorption peaks

for the catalase/formate complexes are shown in table 6.

Difference spectra for sequential additions of formate to

catalases at pH 6.8 are shown in Figures 26A, Band C. Using data

determined from the difference spectra, the changes of

absorbance at wavelength pairs in the Soret region (420-400 nm)

and in the visible region (580-600 nm) were plotted against

formate concentration (Figure 27A, B and C).

In order to determine dissociation constants for the

catalase/formate complexes, the data were fitted to equation 13

(results of all fitted data are presented in the appendix tables

D-1 and 0-2). HPII wild-type enzyme binding of formate (Figure

27A), like that of the beef liver enzyme, followed typical

high-spin ligand type binding, with a dissociation constant of 7.7

mM at pH 6.8. Data for formate binding to HPII mutant enzymes

could not be fitted to a simple equation. In order to fit the data,

it was assumed that mutant enzyme samples contained at least

two populations, each with a different binding affinity.

The data collected for the mutant enzymes in both the Soret and

visible regions (Figures 278 and C) could then be fitted to the

equation:
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where A is the absorbance, Amax1 and Amax2 are the maximum change of absorption
for populations 1 and 2, F is the concentration of formate and Kd1 and Kd2 are the
apparent dissociation constants for populations 1 and 2 respectively.

Based on the fitted data (cf. appendix table D-1), the contribution

of population 1, for both N201 D and N201 a, was less than 15%

overall absorbance change upon binding formate. Therefore, the

dissociation constants for the majority population, population 2

were used for comparative purposes. Data collected in the Soret

and visible regions for each of the mutants enzyme failed to give

similar dissociation constants. The dissociation constants at pH

6.8 for N201 D/formate complex in the Soret region were 134 mM

and 57 mM in the visible region. The dissociation constants for

the N201 a/formate complex at pH 6.8 were 57 mM in the Soret

region and 13.5 in the visible.

Cyanide binding by HPII catalase/formate complexes

The low-spin ligand cyanide was chosen for competitive binding

with formate as BLC, HPII wild-type, N201 D and N201 a all have

similar affinities for cyanide (ref. to M. Maj B. Sc. thesis and Maj

et al. 1996). The differences between the heme and the heme

pocket environments among these catalases have little effect on

their affinity for cyanide. The HPII catalase/formate complexes

were titrated by step-wise additions of cyanide. Difference

spectra for sequential additions of cyanide to catalase/formate

complexes at pH 6.8 are shown in Figures 28A, Band C. The

changes in absorbance for appropriate wavelength pairs were
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plotted against cyanide concentration (Figure 298 and C). The

competitive cyanide dissociation constants for HPII wild-type,

N201 D and N201 Q at pH 6.8 are 46f.!M, 47.6f.!M and 57.3 f.!M

respectively.

Cyanide binding by HPII catalase and site-directed mutant forms

The HPII enzymes were also titrated with cyanide in the absence

of formate as described by Maj et al. 1996. Difference spectra for

HPII catalase/cyanide complexes at pH 6.8 are shown in Figures

30A, Band C. The change in absorbance at appropriate wavelength

pairs were plotted as a function of cyanide concentration (Figure

31 A, B and C). Kd (cyanide) for HPII wild-type, N201 D and N201 Q at

pH 6.8 are 4.5 f.!M, 16 JlM and 18 JlM respectively.

Formate binding by HPII catalase and site-directed mutant forms

Summary Dixon-type plots were constructed for each of the HPII

enzymes (Figure 32A, B and C). The apparent Kd values for cyanide

binding as well as competitive cyanide binding of HPII wild-type

catalase were plotted as a function of formate concentration. The

linear dependence of Kd (cyanide) on formate concentration is shown

in Figure 32A. The linear fits were extrapolated through the

origin to give apparent dissociation constants for formate at zero

cyanide. The -Kd (formate) estimated from the x-axis intercept
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reflect those determined experimentally (Figures for experiments

performed at pH 5.8 are presented in appendix C).

The experimental values of Kd (cyanide) in the presence and absence

of formate were plotted as a function of formate concentration

and fit to a 'straight line. Experimentally determined Kd (formate)

for data collected in the Soret region and visible region were

p~otted at zero cyanide ,along the negative x-axis. Extrapolation of

the fitted line indicate the probable Kd (formate) for the N201 D

enzyme (Figure 328) is 137 mM at pH 6.8 and for the N201 Q

enzyme is 9mM at pH 5.8 (Figure C-28)and 57 mM at pH 6.8 (Figure

32C). A summary of catalase equilibria constants are summarized

in table 7.
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Table 6. Absorption peaks of Catalase/formate complexes

Spectral peaks were obtained from data collected in Figures 24 & 25. Spectral
analysis of BLC was performed at pH 5.8 in 100 mM potassium phosphate buffer at
23°C. Spectral analysis of HPII enzymes were performed at pH 6.8 in 100 mM
potassium phosphate buffer at 23°C.

Catalase Soret region (nm) visible region (nm)

BLC 406 612

HPII wild-type 407 550, 630, 701

N201D 409 565, 610, 685

N201Q 406 582, 630, 700

Table 7. Summary of catalase equilibria constants with formate:
Eukaryotic and E. coli enzymes

Data for dissociation constants for the beef liver enzyme at pH 6.8 from Figure 24C.
Data for the HPII enzymes at pH 6.8 from Figure 32. Experiments at pH 5.8 are
shown the appendix Figure C-1. Data fitting shown in appendix table 0-1.

Catalase Dissociation Constants (mM)
pH 5.8 pH 6.8

BLC 0.53 3.9
HPII wild-type 0.9 7.7

N201D - 134
N201Q 4.1 57
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Figure 24. Formate binding by Beef liver catalase

Spectra of beef liver catalase upon the addition of formate were
collected on the DU-7 spectrophotometer at pH 6.8 in 100 mM
potassium phosphate buffer at 30°C. A) The absolute spectra of
7 JlM beef liver catalase and 95 mM formate. B) Difference
spectra were derived for the formate complexes. Increasing
amounts of formate were added in a step-wise fashion up to
95 mM. C) The absorbance changes were plotted against formate·
concentrations for wavelength pairs 418-380 nm (II) and 612
648 nm (e).
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Figure 25. Absolute spectra of HPII enzymes complexed with
formate.

The absolute spectra of HPII catalase/formate complexes (grey)
for (A) HPII wild-type (black), (8) HPII N201 Q (black) and (C) HPII
N201D (black) were recorded on the DU-7 spectrophotometer at
pH 6.8 in 100 mM potassium phosphate buffer at 30°C.
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Figure 26. Difference spectra of HPII catalase/formate
complexes.

Experiments were performed on the DU-7 spectrophotometer at
pH 6.8 in 100 mM potassium phosphate buffer at 30°C. Increasing
amounts of formate were added in a step-wise fashion. A) 5 J.lM
HPII wild-type, formate concentrations from 0.1-75 mM; B) 3 J1,M
N201 D, formate concentrations from 1-335 mM; C) 7 J.lM N201 Q,
formate concentrations from 0.1-75 mM.
(HPII experiments performed at pH 5.8 are presented in appendix C).
*note: Due to the limited availability of the NO mutant, a low concentration of
enzyme was used, resulting in light-scattering effects and baseline shifts at high
formate concentrations. Difference spectra for NO/formate complex in the presence
of 335 mM formate is not shown.
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Figure 27. Formate binding by HPJJ cataJases

The assay conditions are as described in the legend of Figure 26.
The absorbance changes were plotted against formate
concentrations for wavelength pairs 420-400 nm (II) and 580
600 nm (e): A) HPII wild-type; B) HPII N201 D; C) HPII N201 Q. The
data was fitted to determine Kd. The equations used to fit data
are shown in appendix D, table 0-1.
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Figure 28. Difference spectra of HPII catalase/formate
complexes titrated with cyanide

Difference spectra were derived for HPII enzymes fully
complexed with formate upon the addition of increasing amounts
of cyanide. Experiments were performed on the DU-7
spectrophotometer at pH 6.8 in 100 mM potassium phosphate
buffer at 30°C. A) 5 IJ,M HPII wild-type complexed with 75 mM
formate. Cyanide was added up to a concentration of 450 IJ,M; B)
3 IJ,M N201 D complexed with 335 mM formate. Cyanide was added
up to a concentration of 950 IJ,M; C) 7 IJ,M N201 Q complexed with
75 mM formate. Cyanide was added up to a concentration of
1950 IJ,M.
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Figure 29. Cyanide binding by HPII catalase/formate complexes

The assay conditions are as described in the legend of Figure 26.
The absorbance changes were plotted against cyanide
concentrations for wavelength pairs 430-400 nm (II) and 630
580 nm (e). A) HPII wild-type; B) HPII N2010; C) HPII N201 Q. The
data was fitted to determine competitive dissociation constants
for cyanide. The equations used to fit data are shown in appendix
0, table 0-2.
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Figure 30. Difference spectra of HPII Catalase cyanide complexes

Difference spectra were derived for HPII enzymes upon the
addition of increasing amounts of cyanide. Experiments were
performed on the DU-7 spectrophotometer at pH 6.8 in 100 mM
potassium phosphate buffer at 30°C. A) step-wise additions of
cyanide up to 140 JlM was added to 5 JlM wild-type enzyme; B)
step-wise additions of cyanide up to 1150 JlM were added to 3 JlM
N201 D enzyme; C) step-wise additions of cyanide up to 1650 JiM
was added to 7 JiM N201 Q enzyme.
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Figure 31. Cyanide binding by HPJJ cataJases

The assay conditions are as described in the legend of Figure 30.
The absorbance changes were plotted against cyanide
concentrations for wavelength pairs 420-406 nm (II) and 630
590 nm (e). A) HPII wild-type; B) HPII N2010; C) HPII N201 Q. The
data was fitted to determine the dissociation constants for
cyanide. The equations used to fit data are shown in appendix 0,
table 0-2.
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Rate of formate binding to Beef liver catalase

The rate of formate complex formation with beef liver catalase

was monitored at 380, 417, 612 and 647 nm. Typical traces of

complex formation are shown in Figure 32A. The reaction rates at

380-417nm and 647-612 nm were plotted as a function of

formate concentration (Figure 338) to give second-order rate and

dissociation constants of 160 M-1 S-1 and 18 mM respectively.

Table 7 summarizes catalase affinities for formate.

Compound II reduction by formate

Formate prevents the formation of compound II by keeping a low

steady state concentration of compound I (cf. Figure 15 and 16)

Formate also accelerates the reduction of compound II.

Compound II was formed by incubating the beef liver enzyme

with peracetate and ferrocyanide. The assay was performed at pH

5.8 which is favorable to the formation of compound II.

Representative traces of compound II reduction upon the addition

of formate are shown in Figure 34A. The rates were plotted as a

function of formate concentration and fitted to equation 13

(Figure 348). The dissociation constant for compound II/formate

complex at pH 5.8 is 6 mM. The maximum rate of compound II

decay in the presence of formate was estimated to be 0.06 S-1

with a spontaneous decay rate of 0.0005 S-1. Table 8 summarizes

the catalase reactions with formate.
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Table 8. Summary of catalase rate and equilibria constants with
formate.

Rate and equilibria constants of formate binding at pH 7.4 from Figure 338 & C. Data
for rate of comp I reduction by formate and spontaneous reduction of comp I from
Figures 15 & 16 at pH 7.4, data for compound II reactions from Figure 34A & 8 at
pH 5.8.

Catalase pH 7.4 pH 5.8
Species

reaction kmin * ~ Kd

rate (s -1) (mM) (m M)

Ferric 160 M-1s-1 23 0.53
Comp I (H20 2) 237 M-1s-1 0.1
Comp I (pera) 161 M-1s-1 0.007
Comp II 0.06 S-1¥ 0.0005 6.0**
(perac&FeCN)

*kmin=rate of peroxide compound reduction by endogenous donor.
**The affinity of compound II for formate is reduced due to interaction with the
endogenous donor.
¥This is a maximal rate (s-1) as compound II does not oxidize formate directly.
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Figure 32. Summary plots of formate and cyanide dissociation
constants.

The dissociation constants for cyanide by HPII catalases and their
formate complexes were plotted against formate concentration.
These Dixon-type plots were used to determine the formate
dissociation constants of the mutant enzymes.
(Data for the wild-type and N201 Q enzymes at pH 5.8 are presented in appendix C,
curve fitting in appendix D).
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Figure 33. The kinetics of formate binding by beef liver catalase

The rate of formate binding to 3 JlM catalase was monitored on
the stopped-flow spectrophotometer at pH 7.4 in 50 mM
potassium phosphate buffer at 30°C. A) The reaction of formate
binding was monitored at 380 (a), 647 (b), 612 (c) and 4l7nm (d)
for formate concentrations ranging from 5-125 mM; B) the
reaction rate at 380-417 nm (Soret, II) and 647-612 nm (visible,
e) were plotted against formate concentration. C) Formate was
added to 18 JlM BLC in a step-wise fashion with concentrations
ranging from 2.7-53.4 mM. The experiment was performed on the
DU-7. The absorbance change at 612-645 nm were plotted against
formate concentration.
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Figure 33.
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Figure 34. Formate reduction of compound II.

A) The rates of compound II decay in the presence of increasing
amounts of formate (0.4-13.3 mM) were monitored on the DW-2
spectrophotometer at 435-405 nm. Compound II was generated by
the addition of 400 JiM peracetate and 33 JlM ferrocyanide to
11 JlM beef liver enzyme at pH 5.8 in 100 mM potassium phosphate
buffer at 30°C. B) The reaction rates were plotted against
formate concentration.
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Structural comparisons

Structural analysis of four catalase enzymes was performed.

The channel and active sites for the beef liver, Micrococcus,

Penicillium and HPII enzymes show 80-90% homology (Figures 35

A, B, C and D). The active site channel for all four enzymes is

lined mainly with hydrophobic residues. Their heme group is

located some 20-30A from the surface of the protein. All four

enzymes contain the distal residues histidine (blue) and

asparagine (red) at similar orientations within the active site.

The residues are also at similar distances from the heme iron,

histidine 4-5 A and asparagine 5.5-6 A. These distal residues are·

important for the binding and stabilization of substrate at the

active site. The proximal ligand is tyrosine for all four proteins.

Both beef liver and Micrococcus catalases contain protoheme

(Figures 35A and B) and contain an alanine residue - 2A below

pyrrole ring III. The analogous residue for HPII and Penicillium

catalase is serine, also located - 2A below pyrrole ring III

(Figure C and D). This serine residue may assist in the

hydroxylation of ring III to produce heme d. HPII and Penicillium

enzymes originally associate with protoheme as the prosthetic

group which is converted to heme d during the catalytic reaction.

The details of the heme modification are still unknown. A

summary of proximal and distal residues for the four enzymes are

shown in table 9.
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The channel stereochemistry of the four enzymes is compared in

Figures 36 and 37. The beef liver enzyme is the most accessible

to solvent. The channel of the Micrococcus enzyme is obstructed

by a stretch of protein backbone shown in pink in Figure 368. This

protein moiety is located one third of the way from the channel

entrance. Interestingly, the activity of the Micrococcus enzyme is

nearly twice that of the beef liver. The channels of penicillium

(37A) and HPII (378) catalases are also obstructed by a stretch of

protein backbone. Both the Penicillium and HPII enzymes contain

residues which may block the channel entrance, gln308 (yellow),

trp304 (green) and phe529 (orange) in HPII and gln243 (yellow),

trp239 (green) and his464 (orange) in Penicillium. The HPII

enzyme has 10-15% the activity of the beef liver protein. A

summary of the structural information concerning the active site

channel is shown in table 10 and 11.
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Table 9. Comparison of heme pocket residues

Distal residue histidine is located :::::4.8 A from the heme iron for all enzymes. The
distal residue asparagine is located :::::6 A from the heme iron for all enzymes. A
tyrosine residue occupies the 5th coordination site for typical catalases. The residue
proximal to the 3rd pyrrole ring for all four enzymes is indicated below at distances
~2.4 A from porphyrin.

Catalase distal residues proximal residues
His Asn Tyr 3 rd pyrrole

BLC 74 147 357 ala 356

MLC 57 129 399 ala 338

PVC 63 136 350 ser 349

HPII 128 201 415 ser 414

Table 10. Comparison of residues found at the entrance of the heme
channel

·The entrance of the heme channel for the heme d enzymes is partially occluded by
large residues. The residues are listed below as well as analogous residues for the
protoheme enzymes.

Catalase Heme Channel
BLC Gly 464 Val 246 Ala 250

MLC Gly 448 Asn 228 Thr 232

PVC His 464* Trp 239* Glu 243*

HPII Phe 529* Trp 304* Gin 308*

Table 11. Protein backbone obstruction of the channel

The protein backbone moieties which obstruct solvent access are located :::::17A from
the heme iron in the active site channel.

Catalase Blocking Backbone Sections
MLC Val 491, Gly 490, Pro 489, lie 488, Gly 487

PVC Ala 167, Ala 168, Val 169

HPII Gly 232, Gin 233, Ser 234
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Figure 35. Active site residues

The heme environment for A) beef liver, B) Micrococcus
Iysodektus , C) Penicillium vitale and D) Escherichia coli HPII
catalases. The distal histidines and asparagines are colored in
blue and red respectively. Most of the hydrophobic residues which
line the channel are conserved. The protoheme enzymes (A&B)
contain an alanine residue on the distal side of the heme directly
below pyrrole ring d. The analogous residues for both of heme d
enzymes (C&D) is a serine residue. This slight modification in the
heme pocket environment of the heme d enzymes is thought to
assist in the conversion of protoheme to heme d (Murshudov et al.
1996). Structural coordinates (in pdb format) courtesy of PL and
GM (see acknowledgments).
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Figure 36. The heme pocket configurations of protoheme catalases

The channel stereochemistry of (A) beef liver & B) M.
Iysodeikticus enzymes. Distal histidines are colored blue., distal
asparagines are in red. Proximal tyrosines are not shown. The
active site channel for MLC is partially occluded by a short
stretch of backbone compared to BLC (shown in pink). Structural
coordinates as in Figure 35.
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Figure 37. The heme pocket configurations of hemed catalases

The channel stereochemistry of A) P. vitale and B) E. coli.H PII
enzymes. Distal histidines are colored blue, distal asparagines
are in red. Proximal tyrosines are not shown. The active site
channel for PVC and HPII enzymes are partially occluded by a
short stretch of backbone (shown in pink). PVC and HPII channels
are further occluded by aromatic residues at the entrance of the
channel (green and orange residues). Structural coordinates as in
Figure 35.

123



~PVC

. HPII

124

I·



Discussion

pH effects

This work confirmed the classical finding that affinities of

formate and fluoride for catalases increase as the pH is lowered;

and I have extended this observation to include the reactions of E.

coli enzyme HPII. In contrast, the Kd values for cyanide

interaction with catalase, whether from beef liver or E. coli,

varied only slightly between pH 5.8 and 6.8.

Low-spin ligand binding by catalases with different heme pocket

environments

Cyanide is a low-spin ligand which inhibits both prokaryotic and

eukaryotic catalases. Protoheme, heme d and mutant enzymes

have similar affinities for cyanide (Figure 38). However, cyanide

has a much lower affinity for the peroxide intermediates than for

the ferric enzyme (Nicholls 1961) and the heme d enzymes bind

cyanide much more slowly than beef liver. These findings

suggests that catalase affinity for cyanide is governed by the

oxidation state of the heme iron and not by the heme pocket

environment.

Resonance Raman investigation of. cyanide ligated beef liver and

A. niger catalases provides evidence that cyanide can bind with
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two geometries, one a linear and the other a bent conformer. The

observed heterogeneity can be attributed to H-bonding to two

alternative distal residues (AI-Mustafa et al. 1995). Hydrogen

bonding to the distal histidine gives rise to a linear conformer

with stretching and bending frequencies at 434 and 413 cm-1.

The bent conformer gives stretching and bending frequencies at

445 and 456 cm-1. The percentage of bent conformer is

proportional to the percentage deprotonation of the distal

histidine which becomes pronounced above pH 8. Cyanide ligation

with two conformers has also been reported for horse radish

peroxidase (AI-Mustafa and Kincaid 1994, Han et al. 1989).

High-spin ligand binding by catalases with different heme pocket

environments

Fluoride binding

Fluoride binding to catalases with different heme pocket

environments was explored. HPII (wild type) has a ten-fold higher

affinity for fluoride than does beef liver enzyme (Figure 38). The

heme d environment may provide a more polar environment

favorable to the binding of fluoride. Plots of fluoride binding to

the ferric forms of the bacterial catalases all show biphasic

characteristics in the Soret region. Absorbance changes in the

visible spectra upon binding fluoride show a single sigmoidal

curve. Mutation of asparagine to glutamine decreases the affinity
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of HPII for fluoride probably due to steric effects. The negative

environment provided by the mutation of asparagine to aspartic

acid further decreases the high-spin ligand binding affinity, with

an equilibrium constant of the N201 Difluoride complex similar to

that of the mammalian enzyme.

Formate binding

The structure of formic acid, in contrast to the structure of

hydrofluoric acid, more closely resembles the structure of

hydrogen peroxide. The affinity of the HPII wild-type enzyme for

formate is less than that of the mammalian enzyme. The

occlusion of the heme channel by bulky side chains may contribute

to this lower formate affinity of the E coli enzyme. This may be

compared with the ten-fold reduction of HPII activity compared

to that of beef liver enzyme. As seen with fluoride, the glutamine

and aspartic acid HPII mutants also demonstrate a decrease in

their affinity for formate. The affinity of the N201 D enzyme for

formate is only 3% that of BLC. Equilibrium experiments

performed with the bacterial mutants N201 D and N201 Q yielded

different dissociation constants in the Soret and visible regions.

The equilibrium constants in the visible region were

approximately one third of those estimated from absorbance

changes in the Soret region suggesting that formate is more

dependent on hydrogen bonding interactions with asparagine than

is fluoride.
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Catalase complexes with high-spin ligands, like those with

cyanide, may have two binding geometries which cannot be

differentiated through absorption spectroscopy. The putative

'secondary binding conformation' appears to be spectroscopically

silent with protoheme catalases and involves a 'bent ligan·d

conformer' which is stabilized by hydrogen bonding to the distal

residue asparagine (AI-Mustafa et al. 1995). The bent ligand

conformer may no longer be spectroscopically silent with the

HPII enzymes due to partial saturation of the pyrrole ring d

affecting the 1t-1t* transitions. The primary and secondary ligand

conformers may then be resolvable in the Soret but not the

visible region, as shown experimentally.

Ligand competition

Cyanide induced spectral changes of the catalase/formate

complex support the idea that formate and cyanide are competing

for a common binding site at the heme. The more cyanide present,

the higher the apparent Kd for formate (cf. figure 32). Mutation of

the distal asparagine residue does not affect the catalase

affinity for cyanide. However it does affect the enzyme affinity

for high-spin ligands. The affinity for formate is more sensitive

to mutation of the distal asparagine than is that of fluoride (see

Figure 38) suggesting that the stabilization of formate at the

active site is more dependent on the distal asparagine residue.
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Cyanide data at pH 6.8 is presented in table D-2, formate at pH 6.8 from table 6 and
fluoride data at pH 5.0 is from table 4.

The dissociation constants of catalase complexes with cyanide,

fluoride and formate are presented in Figure 38. All catalases

show similar affinities for the high-spin ligand cyanide, though

the bacterial enzymes bind cyanide approximately 1000 times

more slowly. Amino acids distal to the heme govern high-spin

ligand complex formation as shown as shown for the reduced

affinity the mutant enzymes have for fluoride and formate. Both

fluoride and formate binding are more sensitive to changes of the

electrostatic environment than to steric modifications of the

active site.



High-spin ligand binding by catalase peroxide compounds

Fluoride binding

It is shown here that ferric catalase, compound I and compound II

all have the same affinity for fluoride, in agreement with the

observations of Nicholls (1961) on the horse liver enzyme.

Though fluoride is thermodynamically incapable of directly

reducing compound I or II, it accelerates the rate of the

endogenous 1-electron reductions of the compound I and compound

II approximately ten and 100-fold respectively (cf. Nicholls,

1961). Similar affinities of the various oxidation states of

catalase for fluoride suggest that fluoride binding is governed by

the heme pocket environment and stabilized by distal residues.

Because of their closeness to the heme iron, and their importance

in the stabilization of substrate at the active site, the distal

residues involved are probably his-74 and asn-147.

The spontaneous accumulation of compound II, accelerated by

ligand anions, leads to inactivation of the enzyme. Bound

NADPH may play a protective role in preventing the accumulation

of compound II and associated enzyme inactivation (Kirkman

et al. 1987, Hillar et aI., 1994). The electron tunneling pathway

from NADPH to the porphyrin ring has been the topic of

much debate. Almarsson and co-workers (1993) have

130



proposed an electron tunneling path from NADPH through the

protein to the heme porphyrin using the x-ray geometry of BLC

and probable functional groups which could play the role required.

They suggest that an electron will jump from NADPH to pr0150

and transfer to thr149. An electron will jump from thr-149 to the

distal residue asn147. The electron will then jump to the vinyl

substituent of pyrole ring c.

If the binding of fluoride tightens the bonding network and

increases the order of interactions upon forming a complex, then

the binding of HF will assist in shortening of the pathway of

electron tunneling, thereby increasing the rate of compound I and

II reduction. This pro-thr-asn region is conserved in NADPH

binding catalases which have been sequenced (cf. appendix A). and

the spatial organization of this region for BLC, MLC and PMC

enzymes are the same.

Formate binding

Not only does formate act as a high-spin ligand for the ferric

enzyme, it also can act as both a two electron donor to compound

I as well as a catalyst for the decomposition of compound II. In

contrast to reported values by Nicholls 1961, compound II showed

10X lower affinity for formate than did catalase in the ferric

state. Compound II does not directly oxidize formate as does

compound I. The limiting step for formate association with and
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subsequent reduction of compound II must involve interaction

with the endogenous donor.

Comparisons with cytochrome c peroxidase

Thermodynamic investigation of cyanide and fluoride binding to

cytochrome c peroxidase (CcP) by Delauder and coworkers (1994)

indicate that the binding enthalpy is significantly more positive

for HCN (-48.6+-1.8 at pH 5.0) than for HF (-67.0+-1.9 at pH 5.0).

They propose that the more negative values for fluoride reflect a

stronger interaction between the distal residue arg-48 and

fluoride in the HF-CcP complex. Crystallographic studies by

Edwards and Poulos (1990) which compared the crystal

structures of CcP complexes with cyanide and with fluoride

demonstrated that the distal residue arg-48 moves towards the

bound fluoride to form a strong interaction as contrasted with

the movement of this side chain away from bound HCN. This

suggests that there is a tight binding network and stronger, more

ordered interactions in the HF-CcP complex than with the HCN

CcP complex . By analogy, the asn-147 residue of beef liver

catalase may also form tight binding and strong more ordered

interactions in the HF/catalase complex which may assist the

electron tunneling pathway in the endogenous donor reaction.
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Conclusions

1. High-spin ligand binding and site-directed mutagenesis can

be used to probe active sites in beef liver (protoheme) and E. coli

HPII (heme d) catalases.

2. The conjugated porphyrin ring of heme d HPII is more

saturated than the protoheme of beef liver catalase. This saturation

of the porphyrin ring may lead to different energies between the t2g

and eg d-orbitals of the high-spin heme iron, leading to high-spin

ligand affinities of HPII being different from those of the beef liver

enzyme.

3. HPII has a higher affinity for fluoride than does beef liver

catalase. The heme d pocket may provide a more polar environment

favorable to fluoride binding.

4. Formic acid, unlike fluoride, structurally resembles

hydrogen peroxide. HPII wild-type and mutants have lower affinities

for HCOOH than the mammalian enzyme. The occlusion of the heme

channel by bulky side chains may contribute to a lower activity and

formate affinity of the E. coli enzymes.

5. Beef liver catalase and its peroxide compounds I and II have

similar affinities for fluoride. Fluoride cannot directly reduce

compound I or II, but accelerates the endogenous 1-electron

reduction rates of the compounds approximately 10- and 1DO-fold
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respectively. Similar affinities of the various oxidation states of

the beef liver enzyme for fluoride suggest that fluoride binding is

determined by residues in the heme pocket rather than the redox

state of the heme iron.

6. Formate, a high-spin ligand for ferric beef liver catalase, is

a 2-electron donor to compound I and a catalyst for compound II

decomposition. The rates of formate association with and

subsequent reduction of compounds I and II are also controlled by

heme pocket residues rather than by the oxidation state of the heme

iron.
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Appendix A Sequence alignment of 30 catalases 148
Table A-1. Aligned sequences of 30 catalases.

PORYSA
PPEA
PPHAAU
PSOYBN
PGOSH1
PLYCES
PMAIZ1
PGOSH2
PMAIZ2
PMAIZ3
PARATH
ABOVIN
ADROME
AHUMAN
ARAT
AMOUSE
FHANPO
FCANTR
FPENJA
FYEASA
FYEAST
BVBACS
BBACFI
BPROMI
BSTRVE
BLACSK
BLISSE
BMICLU
BECOLI

10 20 30 40 50 60 70 80 90
* h

TTTTNAGAPV WNDNEALTVG PRGPILLEDY HLIEKVAHFA RERIPERVVH,ARGASAKGFF ECTHDVTDIT CADFLRSPGA QTPVIVRFST
FWTTNSGAPV WNNNSSLTVG SRGPILLEDY HLVEKLAQFD RERIPERVVH ARGASAKGFF EVTHDISHLT CADFLRAPGV QTPVIVRFST
FWTTNSGAPV WNNNNSLTVG TRGPILLEDY HLVEKLANFD RERIPERVVH ARGASAKGFF EVTHDVSHLT CADFLRAPGV QTPVIVRFST
FWTTNSGAPI WNNNSSLTVG SRGPILLEDY HLVEKLANFD RERIPERVVH ARGASAKGFF EVTHDISHLT CADFLRAPGV QTPLIVRFST
---------- -NNNSSLTVG PRGQYLLEDY HLVEKLANFD RERIPERVVH ARGASAKGFF DVTHDISHLT CADFLRAPGV QTPVIVRFST
---------- -NNVSSLTVG PRGPVLLEDY YLIEKLATFD REKIPERVVH ARGASAKGFF EVTHDISHLT CADFLRAPGA QTPVICRFST
---------- -NNNSALTVG QRGPILLEDY HLIEKLAQFD RERIPERVVH ARGASAKGFF EVTHDVSHLT CADFLRAPGV QTPVIVRFST
---------- -NNNSSLTVG ARGPILLEDY HLVEKLANFD RERIPERVVH ARGASAKGFF EVTHDISQLT CADFLRAPGV QTPLIVRFST
---------- -NNDSSLTVG ARGPILLEDY H-CEKLANFD RERIPERVVH ARGASAKGFF EVTHDITHLT CADFLRAPGV QTPVIVRFST
---------- -NDNEALTVG PRGPILLEDY HLIEKVAHFD RERIPERVVH ARGASAKGFF ESTHDVTSLT CADFLRAPGV RTPVIVRFSQ
---------- -NNNSSMTVG PRGLILLEDY HLVEKLANFD RERIPERVVH ARGASAKGFF EVTHDISNLT CADFLRAPGV QTPVIVRFST
---------- -DKLNSLTVG PRGPLLVQDV VFTDEMAHFD RERIPERVVH AKGAGAFGYF EVTHDITRYS KAKVFEHIGK RTPIAVRFST
---------- -IKDASQTVG PRGPILLQDV NFLDEMSHFD RERIPERVVH AKGAGAFGYF EVTHDITQYC AAKIFDKVKK RTPLAVRFST
VLTTGAGNPV GDKLNVITVG PRGPLLVQDV VFTDEMAHFD RERIPERVVH AKGAGAFGYF EVTHDITKYS KAKVFEHIGK KTPIAVRFST
VLTTGGGNPI GDKLNIMTAG PRGPLLVQDV VFTDEMAHFD RERIPERVVH AKGAGAFGYF EVTHDITRYS KAKVFEHIGK RTPIAVRFST
VLTTGGGNPI GDKLNIMTAG SRGPLLVQDV VFTDEMAHFD RERIPERVVH AKGAGAFGYF EVTHDITRYS KAKVFEHIGK RTPIAVRFST
---------- -DSTGYKYAP PIGPLLLQDF KLIDTLSHFD RERIPERVVH AKGAGAYGVF EVTDDITDVC SAKFLDTVGK KTRIFTRFST
---------- -EPFATQRVG QHGPLLLQDF NLIDSLAHFD RERIPERVVH AKGSGAYGVF EVTDDITDVC AAKFLDTVGK KTRIFTRFST
---------- -ESESSLTDG DAGALLLQDI SEWDEVFRFD RLEAVERAAH AAAAAAFGAF VARGDWTASA AA-AFQAAGK QIAFMAAFST
VVTNSTGNPI NEPFVTQRIG EHGPLLLQDY NLIDSLAHFN RENIPQRNPH AHGSGAFGYF EVTDDITDIC GSAMFSKIGK RTKCLTRFST
---------- -HPYASQYSR PDGPILLQDF HLLENIASFD RERVPERVVH AKGGGCRLEF ELTDSLSDIT YAAPYQNVGY KCPGLVRFST
KLTTSWGAPV GDNQNSMTAG SRGPTLIQDV HLLEKLAHFN RERVPERVVH AKGAGAHGYF EVTNDVTKYT KAAFLSEVGK RTPLFIRFST
KLTTNQGLKV SEDEFSLKAG ERGPTLMEDF HFREKMTHFD HERIPERIVH ARGFAAHGEF QVYDSMKEFT KAKFLQDPSV KTPVFVRFST
KLTTAAGAPV VDNNNVITAG PRGPMLLQDV WFLEKLAHFD REVIPERRMH AKGSGAFGTF TVTHDITKYT RAKIFSEVGK KTEMFARFST
---------- -DNQNSETAG VGGPVLVQDQ LLLEKLAHFN RERIPERVVH ARGAGAYGTF TLTRDVSRWT RAAFLSEVGK RTETFLRFST
QLTTNEGQPW ADNQHSQTAA NAAPSLIQDY QLLEKLAHFN RERIPERVVH AKGAGRKGYF KVTKDMSAYT KAAVFSGVGK KTPLITRFSQ
NLTTNQGVPI GDNQNSMTAG LKGPTLLEDY VLIEKLAHFD RERVPERVVH ARGAGAHGKF VTKKSMKKYT KAQFLQEEGT ETEVFARFST
---------- -SDRESLTVG SEGPIVLHDV HLLETHQHFD RMNIPERRPH AKGSGAFGVF EVTEDVSSYT KA-LVFEPGV ETEVLLRFST
ALTTNQGVRI ADDQNSLRAG SRGPTLLEDF ILREKITHFD HERIPERIVH ARGSAAHGYF QPYKSLSDIT KADFLSDPNK ITPVFVRFST

100 110 120 130 140 150 160 170 180

PIPOBA
PORYSA
PPEA
PPHAAU
PSOYBN
PGOSH1
PLYCES
PMAIZ1
PGOSH2
PMAIZ2
PMAIZ3
PARATH
ABOVIN
ADROME
AHUMAN
ARAT
AMOUSE
FHANPO
FCANTR
FPENJA
FYEASA
FYEAST
BVBACS
BBACFI
BPROMI
BSTRVE
BLACSK
BLISSE
BMICLU
BECOLI

A
VIHERGSPET IRDPRGFAVK MYTRGGNWDL VGNNFPVFFI RDGTQ----- ---------- -------LDY LSHLPESLNT FAWFYDDVGI
VIHERGSQET IRDPRGFAVK FYTREGNWDL LGNNFPVFFI RDGIK----- ---------- -------FDF LSHHPESLHT FFFLFDDVGI
VIHERGSPET LRDPRGFAVK FYTREGNYDL VGNNFPVFFV HDGMN----- ---------- -------LDF FYNFPESLHM FSFLFDDVGV
VIHERGSPET LRDPRGFAVK FYTREGNFDL VGNNLPVFFV RDGMK----- ---------- -------LDF FSHFPESLHM FSFLFDDLGV
VIHERGSPET LRDPRGFAVK FYTREGNFDL VGNNFPVFFV RDGLK----- ---------- -------LDF FSHHPESLHM FSFLFDDVGI
VIHERGSPET LRDPRGFAVK FYTREGNFDL VGNNFPVFFI RDGMK----- ---------- -------LDF FSHHPESLHM FTFLFDDLGV
VVHERGSPES IRDIRGFAVK FYTREGNFDL VGNNVPVFFN RDAKS----- ---------- -------LDF FSFLPESLHT FAFFYDDVCL
VVHERGSPET LRDPRGFAVK FYTREGNFDL VGNNMPVFFI RDGMKFPDMV HAFKPNPKTN LQENWRIVDF FSHHPESLHM FTFLFDDVGI
VIHERGSPET LRDPRGFAVK FYTREGNFDL VGNNFPVFFI RDGMK----- ---------- -------LDF FSHHPESLHM FTFLFDDIGV
VIHERGSPET LRDPRGFAVK FYTREGNWDL VGNNFPVFFI RDGIK----- ---------- -------LDF FSHHPESLHM FSFLFDDVGI
VIPEPGSGRT IRDARGFAVK FYTREGNWDL LGNNFPVFFI RDGIK----- ---------- -------FDF LSHLPESLHT FFFLFDHVGV
VIHARGSPET LRDPRGFAVK FYTREGNFDL VGNNFPVFFI RDGMK----- ---------- -------LDF FSHHPESLNM FTFLFDDIGI
VAGESGSADT VRDPRGFAVK FYTEDGNWDL VGNNTPIFFI RDALL----- ---------- -------WDF WSLRPESLHQ VSFLFSDRGI
VGGESGSADT ARDPRGFAVK FYTEDGVWDL VGNNTPVFFI RDPIL----- ---------- -------WDF LTLRPESAHQ VCILFSDRGT
VAGESGSADT VRDPRGFAVK FYTEDGNWDL VGNNTPIFFI RDPIL----- ---------- -------WDF WSLRPESLHQ VSFLFSDRGI
VAGESGSADT VRDPRGFAVK FYTEDGNWDL VGNNTPIFFI RDAML----- ---------- -------WDF WSLCPESLHQ VTFLFSDRGI
VAGESGSADT VRDPRGFAVK FYTEDGNWDL VGNNTPIFFI RDAIL----- ---------- -------WDF WSLRPESLHQ VSFLFSDRGI
VGGEKGSADT ARDPRGFATK FYTEDGNLDL VYNNTPIFFI RDPIK----- ---------- -------WDY LTANDESLHQ VMYLFSNRGT
VGGELGSADT ARDPRGFATK FYTEEGNLDL VYNNTPVFFI RDPSK----- ---------- -------WDY LTTNEESVHQ VMVLFSDRGT
VAGAKGSA-T VRDADAFAAK FASAAALQEL VGNNSPISFF IFDLL----- ---------- -------ESL FVRLPSLHQV SFFALAGFAA
VGGDKGSADT VRDPRGFATK FYTEEGNLDW VYNNTPVFFI RDPSK----- ---------- ---------- ---NQVAIHQ VMILFSDRGT
VGGESGTPDT ARDPRGVSFK FYTEWGNHDW VFNNTPVFFL RDAIK----- ---------- -------WDY LTLNPESIHQ ITYMFGDRGT
VAGELGSADT VRDPRGFAVK FYTEEGNYDI VGNNTPVFFI RDAIK----- ---------- -------WDF WSLSPESLHQ VTILMSDRGI
VAGSKGSAET VRDARGFATK FYTEEGNYDL VGNNIPVFFI QDAIK----- ---------- -------WDF IANNQESAHM VMWAMSDRSI
VAGERGAADA ERDIRGFALK FYTEEGNWDM VGNNTPVFYL RDPLKFPDLN HIVKRDPRTN MRNMAYKWDF FSHLPESLHQ LTIDMSDRGL
VAGSLGAADA VRDPRGWALK FYTEEGNYDL VGNNTPVFFI KDAIK----- ---------- -------WDF WGLSPESTHQ VTWLFGDRGI
VAGEAGYPDT YRDVRGFAVK FYTEEGNYDI VGNNTPVFFV NDPLK----- ---------- -------WDF WSLSPESVHQ VTILMSDRGI
VIHGQHSPET LRDPRGFSVK FYTEEGNYDF VGNNLPVFFI RDAIK----- ---------- -------WDF FSLTPEATTM ITYLFSDEGT
VAGENGSPDT WRDTRGFALR FYTSEGNYDL VGNNTPIFFL RDPMK----- ---------- -------WDF WTNNPESAHQ VTYLMGPRGL
VQGGAGSADT VRDIRGFATK FYTEEGIFDL VGNNTPIFFI QDAHK----- ---------- -------WDY VSLQPETLHN VMWAMSDRGI
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PTDYRHMEGF GVHTFTMINK EGKANYVKFH WKPTCGVKCL LEEEAIRIGG ENHSHATQDL YESIAA-GNY PEWKLYIQVM DPDHEDR-FD
PTDYRHMDGF GVNTYTFVTR DAKARYVKFH WKPTCGVSCL MDDEATLVGG KNHSHATQDL YDSIAA-GNF PEWKLFVQVI DPEEEER-FD
PQDYRHMDGF GVNTYTLINK AGKSVYVKFH WKPTCGVKCL LEEEAIQVGG SNHSHATKDL YDSIAA-GNY PEWKLYIQTI DPAHEDR-FE
PQDYRHMDGF GVNTYTLINK AGKAVYVKFH WKTTSGVKCL LEEEAIKVGG ANHSHATQDL HDSlAA-GNY PEWKLFIQTI DPEHEDK-FD
PQDYRHMDGF GVNTYTLINK AGKALYVKFH WKTTSGEKSL LDDEAIRVGG SNHSHATQDL YDSlAA-GNY PEWKLYIQTL DPENEDR-LD
PQDYRHMEGS GVNTYTLINK AGKAHYVKFH WKPTCGVKCL LEDEAIKVGG ANHSHATQDL YDSIAA-GNY PEWKLFIQTI DPDHEDK-FD
PTDYRHMEGF GVHAYQLINK EGKAHYVKFH WKPTCGVKCM SEEEAIRVGG TNHSHATKDL YDSIAA-GNY PEWKLFIQTM DPEDVDK-FD
PLNYRHMEGF GVNTYSLINR DGKPHLVKFH WKPTCGVKCL LDNEAVTVGG TCHSHATKDL YDSIAA-GNY PEWKLYIQTI DLDHEDK-FD
PQDYRHMDGS GVHTYTLINK AGKSHYVKFH WKPTCGVKSL LEDEAIRVGG ANHSHATQDL YDSIAA-GNY PEWKLFIQIM DPLHEDR-FD
PADYRHMDGS GVHTYTLVSR AGTVTYVKFH WRPTCGVRSL MDDEAVR-CG ANHSHATKDL TDAIAA-GNF PEWTLYIQTM DPEMEDRLDD
PSDYRHMEGF GVNTYTFVSA AGKAQYVKFH WKPTCGERSI LTDEEARVGG RNHSH-TQDL YDSIAAEGSF PEWTLYVQVM DPAQQEQ-YD
PQDYRHMDGS GVNTYMLINK AGKAHYVKFH WKPTCGVKSL LEEDAIRLGG TNHSHATQDL YDSIAA-GNY PEWKLFIQII DPADEDK-FD
PDGHRHMDGY GSHTFKLVNA DGEAVYCKFH YKTDQGIKNL SVEDAARLAH EDPDYGLRDL FNAIAT-GNY PSWTLYIQVM TFSEAEI-FP
PDGYCHMNGY GSHTFKLINA KGEPIYAKFH FKTDQGIKNL DVKTADQLAS TDPDYSIRDL YNRIKT-CKF PSWTMYIQVM TYEQAKK-FK
PDGHRHMNGY GSHTFKLVNA NGEAVYCKFH YKTDQGIKNL SVEDAARLSQ EDPDYGIRDL FNAIAT-GKY PSWTFYIQVM TFNQAET-FP
PDGHRHMNGY GSHTFKLVNA NGEAVYCKFH YKTDQGIKNL PVEEAGRLAQ EDPDYGLRDL FNAIAS-GNY PSWTFYIQVM TFKEAET-FP
PDGHRHMNGY GSHTFKLVNA DGEAVYCKFH YKTDQGIKNL PVGEAGRLAQ EDPDYGLRDL FNAIAN-GNY PSWTFYIQVM TFKEAET-FP
PASYRTMNGY SGHTYKWYNS KGEWVYVQVH FIANQGVHNL LDEEAGRLAG EDPDHSTRDL WEAIEK-GDY PSWECYIQTM TLEQSKK-LP
PASYREMNGY SGHTYKWSNN KGEWFYVQVH FISDQGIKTL TNEEAGSLAG SNPDYAQEDL FKNIAA-GNY PSWTCYIQTM TEAQAKE-AE
VAAHRHMNGY GSHTFKLVAK DGSVYCSKFW YKADQGQAAE VWKDAEEVAA EDVDYFRDLN FQAEAA-GRY PLWELASQVM TFSDFEI-DP
PANYRSMHGY SGHTYKWSNK NGDWHYVQVH IKTDQGIKNL TIEEATKIAG SNPDYCQQDL FEAIQN-GNY PSWTVYIQTM TERDAKK-LP
PASWASMNAY SGHSFIMVNK EGKDTYVQFH VLSDTGFETL TGDKAAELSG SHPDYNQAKL FTQLQN-GEK PKFNCYVQTM TPEQATK-FR
PATLRHMHGF GSHTFKWTNA EPEGVWIKYH FKTEQGVKNL DVNTAAKIAG ENPDYHTEDL FNAIEN-GDY PAWKLYVQIM PLEDANT-YR
PRSFRMMEGF GVHTFRFVNE EGKAHFVKFH WKPVLGIHSL VWDEAQKIAG KDPDFHRRDL WESIEN-GDY PEYELGVQLI SEEDEFN-FD
PLSYRFVHGF GSHTYSFINK DNERFWVKFH FRCQQGIKNL MDDEAEALVG KDRESSQRDL FEAIER-GDY PRWKLQIQIM PEKEAST-VP
PASYRHMNGY GSHTYQWNNE AGEVFWVKYH FKTDQGIKNL TQDEANRLAG EDPDSHQRDL REAIER-GDF PTWTVQVQIM PAADAAG-YR
PASYRMMHGF GSHTFKWVNA QGEQFWVIFH FKTNQGIHNL SNELADELAG KDTDYLQNDL FDAIET-GDY PSWTVAVQLV LMKMAEL-SP
PASYREIRGS SVHAFKWINE EGKTVYVKLR WVPKAGIVNL STDQAAQIQA KEFNHASRDL YEAIEN-GDY PEWDLYVQVL DPKDLDN-YD
PRTWREMDGY GSHTYLWVNA EGAKHWVKYH FISQEGVHNL SNDEATQIAG ENADFHRQDL FEVIAK-GVF PKWNLYIQAI PYSQGKT-YR
PRSYRTMEGF GIHTFRLINA EGKATFVRFH WKPLAGKASL VWDEAQKLTG RDPDFHRREL WEAIEA-GDF PEYELGFQLI PEEDEFK-FD



§t
FDPLDTTKIW PEELIPLQPV GRMVLNKNID NFFAENEMLA MDP-AHIVPG IYFSDDKMLQ ARVFAYADTH RHRLG-PNYM LLPVNAP-K
FDPLDDTKTW PEDEVPLRPV GRLVLNRNVD NFFNENEQLA FGP-GLVVPG IYYSDDKMLQ CRVFAYADTQ RYRLG-PNYL MLPVNAP-K
FDPLDVTKTW PEDIIPLQPV GRMVLNKNID NFFAENEQLA FCP-AIMLPG IYYSDDKMLQ TRVFSYADSQ RHRLG-PNYL QLPVNAP-K
FDPLDVTKTW PEDIIPLQPV GRLVLNKNID NFFAENEQLA FCP-AIIVPG VYYSDDKMLQ TRIFSYADSQ RHRLG-PNYL LLPANAP-K
FDPLDVTKTW PEDVLPLQPV GRMVLNKNID NFFAENEQLA FCP-AIIVPG VYYSDDKLLQ TRVFSYADTQ RHRLG-PNYL QLPANAP-K
FDPLDVTKTW PEDILPLQPV GRLVLNKNID NFFAENEQLA FCP-AIVVPG IYYSDDKLLQ TRIFSYSDTQ RHRLG-QTYL QLPANAP-K
FDPLDVTKTW PEDLLPLIPV GRLVLNRNID NFFAENEQLA FNP-GHIVPG IYYSEDKLLQ TRIFAYADTQ RHRIG-PNYM QLPVNAP-K
FDPLDVTKTW PEDIIPLQPV GRMVLNKNVD NFFAENEQIA FCP-AISVPA IHYSDDKLLQ TRIFSYADTQ RHRLG-PNYL MLPVNAP-K
FDPLDVTKTW PEDIFPLQPM GRMVLNKNID NFFAENEQLA FCP-SLIVPG IYYSDDKLLQ TRIFSYSDTQ RHRLG-PNYL QLPANAP-K
LDPLDVTKTW PEDTFPLQPV GRLVLNRNID NFFAENEQLA FCP-GLIVPG IYYSDDKLLQ TRIFSYSDTQ RHRLG-PNYL LLPANAP-K
FDPLDDTKTW PEDLLPLRPV GRLVLDRNVD NFLNENEQLA FGP-GLVVPG IYYSDDKMLQ CRVFAYADTQ RYRLG-PNYL MLPVNAP-R
FDPLDVTKTW PEDILPLQPV GRMVLNKNID NFFAENEQLA FCP-AIIVPG IHYSDDKLLQ TRVFSYADTQ RHRLG-PNYL QLPVNAP-K
FNPFDLTKVW PHGDYPLIPV GKLVLNRNPV NYFAEVEQLA FDP-SNMPPG IEPSPDKMLQ GRLFAYPDTH RHRLG-PNYL QIPVNCPYR
YNPFDVTKVW SQKEYPLIPV GKMVLDRNPK NYFAEVEQIA FSP-AHLVPG VEPSPDKMLH GRLFSYSDTH RHRLG-PNYL QIPVNCPYK
FNPFDLTKVW PHKDYPLIPV GKLVLNRNpV NYFAEVEQIA FDP-SNMPPG lEASPDKMLQ GRLFAYPDTH RHRLG-PNYL HIPVNCPYR
FNPFDLTKVW PHKDYPLIPV GKLVLNRNPA NYFAEVEQMA FDP-SNMPPG IEPSPDKMLQ GRLFAYPDTH RHRLG-PNYL QIPVNCPYR
FNPFDLTKVW PHKDYPLIPV GKLVLNKNPV NYFAEVEQMA FDP-SNMPPG IEPSPDKMLQ GRLFAYPDTH RHRLG-PNYL QIPVNCPYR
FSVFDLTKVW PHKDFPLRHF GRFTLNENPK NYYAETEQIA FSP-SHTVPG MEPSNDPVLQ SRLFSYPDTH RHRLG-PNYH QIPVNCPLKS
FSVFDLTKVW PHGKYPMRRF GKFTLNENPK NYFAEVEQAA FSP-AHTVPH MEPSADPVLQ SRLFSYADTH RHRLG-TNYT QIPVNCPVTG
FNENIPTKVV PRESVPLIVD AELLLNRNPL NMFAEVEQVF MDV-AAASKG ADEVEDPLIQ -RQFAYIDTH LSEL--TASY GIPVCRPYAT
FSVFDLTKVW PQGQFPLRRV GKIVLNENPL NFFAQVEQAA FAP-STTVPY QEASADPVLQ ARLFSYADAH RYRLG-PNFH QIPVNCPYAS
YSVNDLTKIW PHKEFPLRKF GTITLTENVD NYFQEIEQVA FSPTNTCIPG IKPSNDSVLQ ARLFSYPDTQ RHRLGA-NYQ QLPVNRP
FDPFDVTKVW SQKDYPLIEV GRMVLDRNPE NYFAEVEQAT FSP-GTLVPG IDVSPDKMLQ GRLFAYHDAH RYRVGA-NHQ ALPINRA-RN
FDVLDPTKIW PEEEVPVKII GKMTLNRNVD NVFAETEQVA FHP-GHVVPG IDFTNDPLLQ GRLFSYTDTQ LIRLGGPNFH ELPINRP-VC
YNPFDLTKVW PHADYPLMDV GYFELNRNPD NYFSDVEQAA FSP-ANIVPG ISFSPDKMLQ GRLFSYGDAH RYRLGV-NHH QIPVNAP-KC
FNPFDLTKVW PHEDYPPVEI GTLELNRNPE NIFAEVEQSI FSP-AHFVPG IGPSPDKMLQ GRLFAYGDAH RYRVG-INAD HLPVNRPHAT
KDIFDVTKVI SQKDYPLIEI GQMVLDENPT NNFEDIQELA FSP-ANLVPG IEASPDKLLQ GRLFGYKDAE RYRLGA-NYE QLPVNRP-KV
FNPLDATKDW FEDVFPYEHV GTMTLNRNPD NIFAETESVG FNP-GVLVPG MLPSEDRVLQ GRLFSYSDTQ RHRVG-PNYL QLPINSP-KT
FNPFDLTKTI SQANYPRIKV GVNTLNRNPK NFFAEIESAA FSP-SNTVPG IGLSPDRMLL GRAFAYHDAQ LYRVGA-HVN QLPVNSP-DD
FDLLDPTKLI PEELVPVQRV GKMVLNRNPD NFFAENEQAA FHP-GHIVPG LDFTNDPLLQ GRLFSYTDTQ ISRLGGPNFH EIPINRP-TC
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CAHHNNSYDG YMNFVHRDEE VDYFPSKFDN TRNAERFPT- PLRIVTGQRD KCVIEKENNF KQPGDRYRSW APDRQDRFI
CAHHNNHYDG AMNFMHRDEE VDYYPSRHAP LRHAPPT-PI TPRPVVGRRQ KATIHKQNDF KQPGERYRSW APDRQERFI
WSHHNNHHEG FMNAIHRDEE VNYFPSRHDT VRHAERV-PI PTTHLSARRE KCNIPKQNHF KQAGERYRTW APDRQERFL
SAHHNNHHEG FMNFIHRDEE VNYFPSRYDP VRHAEKF-PI PPAVFSGRRE KIAIEKENNF KQAGERFRSW APDRQDRFI
CAHHNNHHDG FMNFMHRDEE VNYFPSRYDP VRHAEKV-PV PPRILGGKRE KCMIEKENNF KQPGERYRSW PSDRQERFV
CAHHNNHHEG FMNFMHRDEE INY-FPSRYD PVRHAEMFPI PPAVCTGRRE KCIIEKENNF KQPGERYRSW AADRQERFI
CGHHNNHRDG AMNMTHRDEE VDY-LPSRFD PCRPAEQYPI PSCVLNGRRT NCVIPKENNF KQAGERYRSW EPDRQDRYI
CAHHNNHHDG FMNFMHRDEE VNY-FPSRFD PARHAEKVPI PPRVLTRCRE KCIIQKENNF KQAGERYRSF DPARQDRFI
CAHHNNHHEG FMNFMHRDEE VNY-FPSRYD PVRHAEKHPI PSTVLSGKRE KCIIGKENNF KQPGERYRSF SADRQERFI
CAHHNNHYDG SMNFMHRHEE VDYFPSRYDA VRNAPRY-PI PTAHIAGRRE KTVISKENNF KQPGERYRAM DPARQERFI
CGTHNNHYDG AMNLMHRDEE VDY---HARR CGRAAPT-PL PPRPVAGRRE KATIRKPNDF KQPGERYRSW DADRQDRFV
CAHHNNHHEG FMNFMHRDEE VNY-FPSRYD QVRHAEKYPT PPAVCSGKRE RCIIEKENNF KEPGERYRTF TPERQERFI
ARVANYQRDG PMCMMDNQGG APNYYPNSFS APEHQPSALE HRTHFSGDVQ RFNSANDDNV TQVRTFYLKV LNEEQRKRLC ENIAGHLKDA
VKIENFQRDG AMNVTDNQDG APNYFPNSFN GPQECP---- ---------- -------DNF GQVTDFWVHV LDKCAKKRLV QNIAGHLSNA
ARVA-YQRDG PMCMQDNQGG APNYYPNSFG APEQQPSALE HSIQYSGEVR RFNTANDDNV TQVRAFYVNV LNEEQRKRLC ENIAGHLKDA
ARVANYQRDG PMCMHDNQGG APNYYPNSFS APEQQG---- ---------- -------DNV TQVRTFYTKV LNEEERKRLC ENIANHLKDA
ARVANYQRDG PMCMHDNQGG APNYYPNSFS APEQQRSALE HSVQCAVDVK RFNSANEDNV TQVRTFYTKV LNEEERKRLC ENIAGHLKDA
GSFNPINRDG PMCVDGNLGG TP
AVFNPHMRDG AMNVNGNLGN HP
-VLN
KFFNPAIRDG PMNVNGNFGS EP

KV-NNYQRDG QMRFDDNGGG SVYYEPNSFG GPKESPEDKQ AAYPVQGIA DSVSYDHYDHY TQAGDLYRLM SEDERTRLVE NIVNAMKPVE
KV-NN-QRDG YGRQTINKGQ V-SY
PFHN-YHRDG AMRVDGNSGN GITYEPNS-G GVFQEQPDFK EPPLSIEGA ADHWNHREDED YFSQPRALYE LLSDDEHQRM FARIAGELSQ
EARTH-SRDG FLYDGRHKGA K-NYEPNSFG GPVQTDRPL- --------- ----------D DFTQAGDLYR LMSEDEKGRL IDNLSGFIAK
PVHNY-ERDG AMAQNQATGV --NYE----- ---------- --------- ----------D YYSAAGKLYR LLSADEQTRL IENIRMNLGQ
PVDNN-QRDG QMPFKQQTS- SINYEPNSYD TEPKENPA-- --------- ---------PN NFGHAKEVWK RYSDAERAAL VKNIVDDWEG
ATHN-YAFEG EMWEDHTGNR S-TYVPNSDG NSWSNEVGPT --------- ----------N NFGEAGTLTR EVFSNEERNN FVQTVAGALK
PYHNF-QRDG -MHRMGIDTN PANY

*

distal asparagine, h = distal histidine, t = proximal tyrosine, §

residues which may contribute to the orientation of the heme
serine of HPII and PVC



Comparison and Alignment of Sequences

The sequences of 30 catalases were imported from PIR and

Swissprot data banks. Preliminary multiple sequence alignment

was performed through the ECOCYC data base. The aligned

sequences were imported into MacClade™ version 3.04 software

for manual adjustment. For phylogenetic analysis, the variable

carboxy terminus was not considered.

Catalase Sequence Legend

PIPOBA = IPOMOEA BATATAS (SWEET POTATO) (BATATE) EUKARYOTA; PLANTA; EMBRYOPHYTA;
ANGIOSPERMAE; DICOTYLEDONEAE;SOLANALES; CONVOLVULACEAE.

PORYSA = ORYZA SATIVA (RICE) EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERMAE;
MONOCOTYLEDONEAE; CYPERALES; GRAMINEAE.

PPEA = PISUM SATIVUM (GARDEN PEA) EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERMAE;
DICOTYLEDONEAE; FABALES; FABACEAE.

PPHAAU =PHASEOLUS AUREUS (MUNG BEAN) (VIGNARADIATA) EUKARYOTA; PLANTA;
EMBRYOPHYTA; ANGIOSPERMAE; DICOTYLEDONEAE; FABALES; FABACEAE.

PSOYBN =GLYCINE MAX (SOYBEAN) EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERMAE;
DICOTYLEDONEAE; FABALES; FABACEAE.

PGOSHl = GOSSYPIUM HIRSUTUM (UPLAND COTTON) EUKARYOTA; PLANTA; EMBRYOPHYTA;
ANGIOSPERMAE; DICOTYLEDONEAE.

PLYCES = LYCOPERSICON ESCULENTUM (TOMATO) EUKARYOTA; PLANTA; EMBRYOPHYTA;
ANGIOSPERMAE; DICOTYLEDONEAE; SOLANALES; SOLANACEAE.

PMAIZl = ZEA MAYS (MAIZE) EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERMAE;
MONOCOTYLEDONEAE; CYPERALES; GRAMINEAE.

PGOSH2 = ISOZYME 2.

PMAIZ2 = ISOZYME 2.

PMAIZ3 = ISOZYME 3.
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PARATH =ARABIDOPSIS THALIANA (MOUSE-EARCRESS) EUKARYOTA; PLANTA; EMBRYOPHYTA;
ANGIOSPERMAE; DICOTYLEDONEAE; CAPPARALES; CRUCIFERAE.

ABOVIN =BOS TAURUS (BOVINE) EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA;
MAMMALIA; EUTHERIA; ARTIODACTYLA. NADPH.

ADROME = DROSOPHILA MELANOGASTER (FRUITFLV).
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AHUMAN = HOMO SAPIENS (HUMAN) EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA;
MAMMALIA; NADPH.

ARAT = RATTUS NORVEGICUS (RAT) EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA;
TETRAPODA; MAMMALIA; EUTHERIA; RODENTIA. NADPH.

AMOUSE =MUS MUSCULUS (MOUSE) EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA;
TETRAPODA; MAMMALIA; EUTHERIA; RODENTIA. NADPH.

FHANPO = HANSENULA POLYMORPHA (YEAST) EUKARYOTA; FUNGI; ASCOMYCOTINA;
HEMIASCOMYCETES.

FCANTR = CANDIDA TROPICALIS (YEAST) EUKARYOTA; FUNGI; DEUTEROMYCOTINA (IMPERFECT FUNGI).

FPENJA =PENICILLIUM JANTHINELLUM (PENICILLIUM VITALE) EUKARYOTA; FUNGI; ASCOMYCOTINA;
PLECTOMYCETES; EUROTIALES. FLAVODOXIN TYPE BINDING DOMAIN.

FYEASA = SACCHAROMYCES CEREVISIAE (BAKER'S YEAST) EUKARYOTA; FUNGI; ASCOMYCOTINA;
HEMIASCOMYCETES. A FORM.

FYEAST = T FORM.

BVBACS =BACILLUS SUBTILIS PROKARYOTA; FIRMICUTES; ENDOSPORE-FORMING RODS AND COCCI;
BACILLACEAE. CYTOPLASMIC (PROBABLE). GRAM POSITIVE.

BBACFI = BACILLUS FIRMUS PROKARYOTA; FIRMICUTES; ENDOSPORE-FORMING RODS AND COCCI;
BACILLACEAE. GRAM NEGATIVE.

BPROMI = PROTEUS MIRABILIS.PROKARYOTA; GRACILICUTES; SCOTOBACTERIA; FACULTATIVELY
ANAEROBIC RODS; ENTEROBACTERIACEAE. NADPH, CYTOPLASMIC. GRAM NEGATIVE.

BSTRVE = STREPTOMYCES VIOLACEUS PROKARYOTA; FIRMICUTES; ACTINOMYCETALES;
STREPTOMYCETACEAE. GRAM POSITIVE.

BLACSK =LACTOBACILLUS SAKE PROKARYOTA; FIRMICUTES; REGULAR ASPOROGENOUS ROD
PROKARYOTA; FIRMICUTES; REGULAR ASPOROGENOUS ROD; LACTOBACILLACEAE.
CYTOPLASMIC (PROBABLE). GRAM POSITIVE.

BLISSE = LISTERIA SEELIGERI PROKARYOTA; FIRMICUTES; REGULAR ASPOROGENOUS ROD;
UNCERTAIN.CYTOPLASMIC (PROBABLE). GRAM POSITIVE.

BMICLU = MICROCOCCUS LUTEUS (MICROCOCCUS LYSODEIKTICUS) PROKARYOTA; FIRMICUTES;
COCCI; MICROCOCCACEAE. NADPH. GRAM POSITIVE.

BECOLI = HPII ESCHERICHIA COLI PROKARYOTA; GRACILICUTES; SCOTOBACTERIA; FACULTATIVELY
ANAEROBIC RODS; ENTEROBACTERIACEAE. CYTOPLASMIC (PROBABLE). FLAVODOXIN TYPE BINDING
DOMAIN. GRAM NEGATIVE.



Appendix B

Phylogenetic Analysis

From the set of 30 aligned sequences 100 bootstrap replicates

were obtained for a 50% majority-rule consensus tree with

heuristic search in the program PAUpTM version 3.1.1 (Smithsinian

Institution 1993) at CLBRR Agriculture Canada. The tree construction

with the corresponding distance matrix was unrooted. The bootstrap

sampling was over non-excluded and non-ignored characters only and

one tree was held at each step during stepwise addition. Tree-bisection

reconnection branch swapping was also in effect.

Results

The bootstrap consensus tree (figure B-1) had a length of 2074.

Random trees of the sequences gave lengths between 4000 and

5000, suggesting that the results of the bootstrapped consensus

tree is significant. 1000/0 of the bootstrap replicates show a clear

divergence pattern for plants and a minimum of 90% divergence

for bacteria. 88% of the bootstrap replicates show a divergence

between animals and fungi with Penicillium vitale being the

only exception.
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Figure B-1. Phylogenetic analysis of 30 catalase sequences.
Unrooted phylogenetic tree based on the amino acid sequences as constructed by 50% consensus of
100 bootstrap replicates with a heuristic search method. The numbers represent the level of
confidence for the major branches which have been determined by bootstrap analysis.
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Figure C-1. Formate binding of HPJJ cataJases at pH 5.8

Experiments were performed on the DU-7 spectrophotometer at pH 5.8 in 100
mM potassium phosphate buffer at 23°C. Increasing amounts of formate were
added in a step-wise fashion. The change in absorbance at wavelength pairs
420-400 nm (II) and 580-600 nm (e) were plotted against formate
concentrations up to 30 mM for A) 5JlM HPII wild-type and B) 7JlM N201 Q
enzymes. C) 7JlM BLC. The changes in absorbance at wavelength pairs 418
380 nm (II) and 612-648 nm (e) were plotted against formate concentrations
up to 3.5 mM. The data was fitted to determine dissociation constants for
catalase/formate complexes. Equations are shown in appendix D, table D-1.
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Figure C-2
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Figure C-2. Cyanide binding by HPII catalase/formate complexes at pH 5.8

Experiments were performed on the DU-7 spectrophotometer at pH 5.8 in 100
mM potassium phosphate buffer at 23°C. Increasing amounts of cyanide were
added in a step-wise fashion to catalase/formate complexes. The change in
absorbance at wavelength pairs 430-400 nm (II) and 630-580 nm (e) were
plotted against cyanide concentrations up to 2 mM for A) 5J.lM HPII wild-type
and B) 7J.lM N201 Q enzymes. The data was fitted to determine competative
dissociation constants for catalase/formate complexes with cyanide
Equations are shown in appendix D, table 0-2.
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Figure C-3. Cyanide binding of HPJJ cataJases at pH 5.8

Experiments were performed on the OU-7 spectrophotometer at pH 5.8 in 100
mM potassium phosphate buffer at 23°C. Increasing amounts of cyanide were
added in a step-wise fashion. The change in absorbance at wavelength pairs
420-406 nm (II) and 630-590 nm (e) were plotted against cyanide
concentrations up to 1.2 mM for A) 5JlM HPII wild-type and B) 7J.lM N201 Q
enzymes. The data was fitted to determine dissociation constants for
catalase/cyanide complexes. Equations are shown in appendix 0, table 0-2.
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Table D-1. Curve fitting equations and data for secondary plots of formate
and fluoride binding to ferric catalases presented in results section.

Catalase sigmoidal curve fitting
for data which plots
~ Absorbance vs log

fluoride
pH 5.8

curve fitting for data which plots
~ Absorbance vs formate

pH 6.8

Beef liver
Soret region

visible region

HPII
Wild-type
soret region

visible region

N201D
soret region

visible region

y=Exp(2.303*(x
0.67))/(1 +Exp(2.303*(x
0.67)))
RI\2 = 0.99
445-399nm
y= Exp (2.303* (x
0.52))/(1 +Exp(2.303*(x
0.52)))+-0.061
RI\2 = 0.99
596-636nm

Y=Exp(2.303*(x
2.43))/(1 +Exp(2.303*(x
2.43)));
RI\2 = 0.99
670-710nm

Y=Exp(2.303*(x
3.59))/(1 +Exp(2.303*(x
3.59)));
RI\2 = 0.99
670-710nm

y=O. 39 *x/ (0.5 5+x) +0.22;
RI\2 =0.99
418-380nm

y=O. 076 *x/ (0.52 +x) +
0.057;
RI\2 = 0.99
612-648nm

Y=0.060*X/(0.91 +X);
RI\2 = 0.99
420-400 nm

Y=0. 029*X/(0. 92+X);
RI\2 = 0.99
580-600nm

y=0.11 x/(3.9+x)
RI\2 =0.99
418-380nm

y=O. 024 *x/ (3.8 +x)
RI\2 = 0.99
612-648nm

Y=O .062*X/(7. 7+X);
RI\2 = 0.99
420-400nm

Y=0. 033*X/( 8. 4+X);
RI\2 = 0.99
580-600 nm

Y=0.0032*X/(1.1 +X)+
0.019*X/(133.9+X);
RI\2 = 0.99
420-400nm

Y=0.0002*X/(1 +X)+0.0027
*X/(56.6+X);
RI\2 = 0.96 580-600 nm

N201Q
soret region -

Y=Exp(2.303*(x-
visible region 3.03))/(1 +Exp(2.303*(x

3.03)))+0.030;
RI\2 = 0.99 NO
670-710nm

Y=0.017*X/(0.80+X)+0.02 Y=0.0089*X/(1.1 +X)+
*X/(5.68+X); 0.035*X/(57.2+X);
RI\2 = 0.99 RI\2 = 0.99

420-400 nm 420-400nm

Y=- Y=-0.0085*X/(2+X)
0.004 *X/( 0.27+X) +0.024* +0.025 *X/( 13. 5+X)+0 .00 1
X/(3.45+X)+0.0015; RI\2 = 0.99
RI\2 = 0.99 580-600nm
580-600nm



Table D-2. Curve fitting equations and data for secondary plots of cyanid~ 59
and competative cyanide binding to ferric HPII catalases presented in results
section.

HPII Data fits: cyanide back titration Data fits: cyanide control
catalase

pH 5.8 pH 6.8 pH 5.8 pH 6.8

Wild-Type Y=0. 40*X/( 59+X); Y=0 .40*X/(45. 8+X) Y=0.29*X/(8.43+X) Y=0.27*X/(4.78+X)
Soret region R"2 = 0.99 R"2 = 0.99 R"2 = 0.99 RI\2 = 0.99

430-400nm 430-400nm 420-406 nm 420-406nm

Y=0.08*X/(61 +X)R Y=0.08 *X/( 46 .2+X) Y=0. 069*X/(7. 7+X) Y=0.07*X/(4.32+X)
visible region "2 = 0.97 R"2 = 0.97 R"2 = 0.97 R"2 = 0.97

630-580nm 630-580nm 630-590 nm 630-590nm

N201D Y=0.14*X/(49.6+X) Y=0.098*X/(17+X)
Soret region - R"2 = 0.99 - R"2 = 0.99

430-400nm 420-406 nm

Y=0. 02*X/( 45. 6+X) Y=0.02*X/(14+X);
visible region - R"2 = 0.99 - R"2 = 0.99

630-580nm 630-590nm

N201Q Y=0.43 *X/( 65+X); Y=0.37*X/(56.7+X) Y=0.28*X/(15.1 +X) Y=0.28*X/(17.6+X)
Soret region R"2 = 0.99 R"2 = 0.99 R"2 = 0.99 R"2 = 9.91

430-400nm 430-400nm 420-406 nm 420-406 nm

Y=0.1 *X/(67+X); Y=0.08 *X/( 57. 8+X) Y=0.09*X/(15.6+X) Y=0.09*X/(18.3+X)
visible region R"2 = 0.99 R"2 = 0.99 R"2 = 0.99 R"2 = 0.99

630-580nm 630-580nm 630-590nm 630-590nm

Derivation of equation 14.

1.

2.

3.

4.

5.

K = [F][Y]
d [1- Y]

Kd *C~Y)=F

(l-Y)logKd + log Y = logF

(l-Y)log y = logF -logKd

1- Y = expe2.303 *((logF -logKd )))

1+ exp(2.303 * (logF -logKd )))

where Y=the fraction of free enzyme, 1-Y = fraction of fluoride complex = the absorbance of the fluoride
complex, F is the concentration of fluoride and Kd is the dissociation constant.
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