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Abstract
In any repair of a tooth with permanent restorative materials, 

the interface is always a sensitive region. The appearance of adhesive 
materials was a great step forward in dealing with the problems of 
this region and improving the overall performance of the restorations. 
However, contemporary adhesive materials do have a major 
disadvantage, namely that their durability is limited, a limitation 
which often arises due to their inadequate marginal adaptation.
Restorative materials in the new era aim to be “bio-active” and long-
lasting. 

As part of our continuous interest in developing the novel bio-
active containing restorative materials, we evaluated the effect of the 
additional bio-actives (such as chitosan, β-carotene, guar gum resin 
and the combination of the materials) to the commercially available 
flowable restorative materials such as Premise on the volumetric 
shrinkage, flexural strength, compressive strength, the surface 
hardness of the “bio-active” containing composite.

Materials and Methods:   The bioactive modified restorative 
materials were prepared by dispersion of the corresponding 
component with the addition of commercially available flowable 
restorative material. The surface morphology (SEM) of the freshly 
prepared restorative materials as well as reactive surface of the 
material after 24 hours and 3 months storage in artificial saliva has 
been performed. The physicochemical properties such volumetric 
shrinkage, Vickers Hardness and flexural strength of the bio-active 
restorative materials have been measured and are reported. The 
effect of the bioactive additionto the commercially available flowable 
restorative materials such as Premise on the shear bond strength of 
dentin has been evaluated. 

Results: The SEM images were obtained to characterize the 
microstructure of the freeze-dried modified restorative material as 
well as evaluated the durability of the bioactive restorative materials 
after 24 hours and 3 month exposure to artificial saliva.All bioactive 
containing flowable restorative materials gave significantly (P< 0.05; 
non-parametric ANOVA test) higher shear bond values (P< 0.05) 
than dentin treated or not treated with phosphoric acid.Volumetric 
changesdue to polymerization in modified composites have been 
explored using an electronic mercury dilatometer. The average 

Received: June 04, 2015; Accepted: July 15, 2015; Published: August 04, 2015

*Corresponding author: V. Tamara Perchyonok,VTPCHEM PTY LTD, Glenhuntly, Melbourne, 3163, Australia, E-Mail:tamaraperchyonok@gmail.com

volumetric change reached a plato at about 20 seconds for the samples 
tested and the total volumetric changes were reached at 25 seconds. 
The average for the control Premise samples had a total volumetric 
change of 2.74%. Guar/Premise had the largest volumetric change 
from all the modified Premise samples (2.41%). The Chitosan/Premise 
(1.07%) had the least volumetric change, followed by β−Carotene/
Chitosan/Premise (1.63%) andβ Carotene/Premise (1.75%).
The volumetric change starts at different time intervals for all the 
materials. The Turkey-Kramer multiple comparison test on the rate of 
shrinkage slopes has confirmed the statements (p<0.05).TheVickers 
Hardnessof the bio-active composites such as β-carotene/chitosan/
Premise (37.4VH), Guar Gum/Premise (36.2VH), β-carotene/
Premise (36VH), Chitosan/Premise (5.2 VH) versus Premise control 
(37.6VH) were measured and relevant clinical applications have been 
elaborated.

All modified bio-active flowable composites, which an exception 
of chitosan and β-carotene containing materials have shown 
comparable compressive and flexural strength to the commercially 
available Premise material which makes the newly modified bioactive 
composites ideal candidates for further evaluation and development 
is bio-functional restorative materials.

Conclusion: The materials were tested using effective in-vitro 
development of “dual function restorative materials”. We quantified 
the effects of functional designer biomaterials on the dentin 
bond strength of composite, measure volumetric changes due to 
polymerization in dental resins as well as Vickers hardness and % 
of water uptake by the modified composites. Within the limitations 
of the study design chitosan based hydrogels are suitable materials 
for functional restorative applications in vitro. Cytotoxicity data is 
currently being evaluated in our laboratory.The clinical significance 
is that the decrease in volumetric change will have a positive effect on 
the stress formation on the tooth/adhesive/restoration interface.The 
additional therapeutic benefits of addition of the bioactive materials 
such as chitosan, beta-carotene, guar gum resin as well as combination 
are described.

Keywords: antioxidants; functional biomaterials; dentin bonding; 
volumetric changes; dialometer
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Introduction
In any repair of a tooth with permanent restorative materials, 

the interface is always a sensitive region. The appearance of 
adhesive materials was a great step forward in dealing with the 
problems of this region and improving the overall performance of 
the restorations [1]. However, contemporary adhesive materials 
do have a major disadvantage, namely that their durability is 
limited, a limitation which often arises due to their inadequate 
marginal adaptation. The factors that are most commonly 
attributed to failure are the harsh conditions of the oral 
environment, such as temperature change, the fatigue of the bond 
owing to tooth flexure, the presence of bacterial enzymes, and the 
aqueous environment [2]. Good marginal adaptation decreases 
microleakage considerably and also reduces the postoperative 
sensitivity and the occurrence of secondary caries [3]. It thus 
improves the longevity of the fillings. Restorative materials 
in the new era aim to be “bio-active”, bio-functional and long-
lasting by maintaining appropriate mechanical, physical, and 
adhesive properties. The current trend in restorative dentistry 
has been greatly influenced by better understanding of the caries 
process, advances in the dental materials science and increased 
demand for bioactive restorations, which prevent the recurrence 
of carious lesions. Recurrent dental caries has been associated 
with deteriorating restorative materials, providing a potential 
pathway to the cariogenic microbes.

For last 20 years, the development of resin based dental 
material has been more focused to get minimum polymerization 
shrinkage with maximum degree of conversion along with better 
mechanical, thermal, optical properties by the advancement in 
filler technology [4]. The properties of dental composites are 
highly dependent on the characteristics of the fillers like the 
shape, size, surface area and porosity. Volumetric change of dental 
resins has been extensively researched in the literature[1-3]. 
The 2mm layering technique has been the increment thickness 
of choice in order to overcome the negative effects of volumetric 
change and the resultant stresses that develop in the bonded 
surfaces of the tooth structure[4-7].

The increase of the molecular weight of the organic component 
of a dental resin has been shown as a method of decreasing the 
volumetric change and improving some physical properties [8,9]. 

To pursue our continuous interest in developing and 
functionalizing dual function restorative materials we decided 
to investigate the effects of the addition of chitosan, β-carotene, 
guar gum resin and the combination of the chitosan/β-carotene 
as functional additives to commercially available flowable 
restorative materials in order to evaluate its effects on the 
performance.

Materials

Chitosan (Aldrich, Australia), glycerol (Sigma, USA), glacial 
acetic acid (E. Merck, Germany) were used as received. The 
degree of de-acetylation of typical commercial chitosan used in 
this study is 87%.  Chitosan with molecular weight 2.5x 103KD 
was used in the study. The isoelectric point is 4.0–5.0.β-carotene 

(Biovea, Australia) and Guar Gum ( Guar Gum Australia) were 
used as received. 

The flowable composite Premise by Kerr (California, USA) 
Lot: 4485575 exp 2014-02 shade A3 was used as the standard 
control material. Experiments were repeated  5 timesfor each 
group, including control samples.  Furthermore, the volumetric 
change of the Premise (control) and Premise modified composites 
with the following bioadditives such as  Chitosan (10%w/w), 
Chitosan/β-Carotene (5:1 10 %w/w), Guar Gum Resin (10% 
w/w), or β-Carotene (10%w/w) respectively. Volumetric change 
was measured with an electronic mercury dilatometer [3,6].

Experimental

Morphology of the “bioactive restorative materials”: The 
samples were prepared by freezing in liquid nitrogen for 10 min, 
and then were freeze-dried for 24 h. The prepared samples were 
fractured in liquid nitrogen using a razor blade. The fractured 
samples were dried under vacuum, attached to metal stubs, 
and sputter coated with gold under vacuum for the SEM study. 
The interior and the surface morphology were observed under 
scanning electron microscope (SEM, Hitachi S4800, Japan).

Volumetric Shrinkage: Three samples from each material 
groups were light cured for 25.0 seconds at 800mW/cm2 

(Dentsply/Caulk Spectrum 800 halogen).The curing output 
was monitored with a Caulk (Milford, Germany) radiometer to 
ensure an output of 800mW/cm2± 50mW/cm2. Calibration of the 
electronic mercury dilatometer was done as described previously 
prior to every specimen test[6]. The Teflon specimen holder has 
a hole with a diameter of 5.0mm and a height of 2.5mm resulting 
in the specimen volume of 49.087mm3. The dilatometer was kept 
in a temperature controlled incubator at the 25°C± 1°C. The room 
temperature was kept constant at 25°C±1 during dilatometry 
testing [10, 11-15].

Vickers Hardness: The surface micro-hardness 
was determined with a Vickers Hardness tester (Zwick-
Roelldurometer, ZHV1/2 Micro-Vickers, Italy) using a Vickers 
diamond indenter HV0.5 (500gf) load with a dwell time of 15 
seconds (Ramp, 2006).Five samples were prepared for each as  
Premise (control), Chitosan (10%w/w), Chitosan/β-Carotene 
(5:1 10 %w/w), Guar Gum Resin (10% w/w), or  β-Carotene 
(10%w/w) under laboratory conditions for the Vickers Hardness. 
A standard Teflon mould was used with diameter of 5.0mm and a 
height of 2.5mm resulting in the specimen volume of 49.087mm3. 
The light cured samples were placed in the specimen holders 
on a moist paper towel and kept T 34°C±1 for 48 hours in a 
temperature controlled incubator. The surface of the sample was 
prepared with 1000 grit silicon carbide paper and then 2000 grit 
(3M, Massachusets, USA) until about 100µm has been removed 
from the surface layer. The five indentations of the five samples 
were taken and an average was calculated for each material.

Five indentations were made in accordance with ASTM 
E384: Standard Test Method for Knoop and Vickers Hardness 
of Materials. The distance between indentations were 2.5 the 
indentation size. The distance from the centre of the indentation 
to the edge of the specimen was also 2.5 the indentation size.
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Shear bond strength tests for dentin bonding: Fifty six 
teeth samples were divided into 7 groups of 8 each and prepared 
using the methodology summarized in (TABLE 1) for the 
corresponding groups A-G and stored in a solution of artificial 
saliva. Extracted non-carious, intact, human molars stored in 
water containing a few crystals of thymolat 4°Cwere used within 
two months using protocol previously described by us.

These groups were then treated as outlined in TABLE 1. 
After 24 hours one stud of the two of each tooth was tested 
for shear bond strength. An Instron Universal Testing Machine 
at a crosshead speed of 0.5 mm/minute was used to test the 
de-bonding strength. All data were analyzed for statistical 
significance using theKruskal-Wallis test, p<0.05.

Flexural strength properties: The flexural strength 
properties of “bio-active” modified light-cured composite resins. 

The specimens were fabricated according to the 
manufacturers’ instructions, ISO 404913 and ANSI/ADA 
specification n.27.

For the three-point flexural strength test, 10 bar-shaped 
specimens were fabricated from each composite resin, following 
the manufacturer‘s instructions and ISO4049[16]. The composite 
resin was packed inside a stainless steel mold positioned on a 
glass slab. A thin glass slab was positioned on the mold containing 
the material, which was light-cured (XL1500, 3M Dental Products, 
light intensity> 450 mW/cm2) for 20 s at each third of the upper 
and lower surfaces of the specimen (25± 2mm x 2 ± 0.1 mm x 
2 ± 0.1 mm). All specimens were removed from the mold and 
polished using a 600gritSiC paper to remove excess material. The 
dimensions of specimens were checked using a digital caliper 
(Digimatic caliper, Mitutoyo Corp., Tokyo, Japan). The specimens 
were then stored in distilled water at 37oC for 24 h.Specimens 
were submitted to the three-point bending test in a universal 
testing machine (Instron, Australia) at a crosshead speed of 0.5 
mm/min until fracture [15-19].

The maximum fracture load (F, in N) of each specimen was 
recorded, and the flexural strength (σf), in MPa, was calculated 
as follows:

σf=3Fl/2bh2 (2) where:

l: distance between the supporting rollers (20 mm);

b: specimen width (~2 mm); 

h: specimen height (~2 mm)

Results were statistically analyzed using analysis of variance 
(ANOVA) and Post Hoc multiple comparison test at a significance 
level of 5%.

Results and Discussion
Characterization of prepared flowable composite 
materials

Scanning electron microscope characterization of the 
bio-active restorative materials: The SEM images were 
obtained to characterize the microstructure of the freeze-dried 

gels and are presented in (Figure 1). The ‘skin’ of the prepared 
modified flowable composites can be seen, and the collapse of the 
surface pores may be due to artifacts (freeze-drying process).

The SEM images of the tooth surfaces exposed to the modified 
Premise composites are summarized in (Figure 2a) after 24 hours 
and (Figure 2b) after 6 month of bonding to the dentin.

Volumetric shrinkage of the bioactive restorative 
materials: Volumetric changes due to polymerization in modified 
composites have been explored using an electronic mercury 
dilatometer and results are summarized in (Figures 3 and 4). 

The average volumetric change reached a plato at about 20 
seconds for the samples tested and the total volumetric changes 
were reached at 25 seconds. The average for the control Premise 
samples had a total volumetric change of 2.74%. Guar/Premise 
had the largest volumetric change from all the modified Premise 
samples (2.41%). The Chitosan/Premise (1.07%) had the least 
volumetric change, followed by β−Carotene/Chitosan/Premise 
(1.63%) and β-Carotene/Premise (1.75%).

The volumetric change starts at different time intervals for 

Table 1: Groups tested (8 teeth per groups).

Group A 37% of phosphoric acid +primer+ Bonding immediately 
(negative control)

Group B Self-etching primer + Bonding immediately (positive control)

Group C Self-etching primer + Bonding immediately (Composite)
Group 
D

Self-etching primer + Bonding immediately (Composite/
Chitosan)

Group E Self-etching primer + Bonding immediately (Composite/β-
carotene)

Group F Self-etching primer + Bonding immediately (Comp/β-
carotene/Chitosan)

Group G Self-etching primer + Bonding immediately (Comp/Guar 
Gum)

a. Chitosan/Premise flowable control material b. Chitosan: β-carotene /Premise

c. Premise/β-carotene d. Premise/Guar Gum Res

Figure 1: SEM- surfaces of the materials after polymerization where a) 
Chitosan/Premise flowable control material b) Chitosan: β-carotene /
Premise   c) Premise/β-carotene d) Premise/Guar Gum Res.
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all the materials. The Premise control and Guar/Premise started 
to show volumetric change at second 1.0 followed β-carotene/
Premise, β-carotene/Chitosan/Premise, Chitosan/Premise at 
second 0.5. The Turkey-Kramer multiple comparison test on the 
rate of shrinkage slopes has confirmed the statements (p<0.05).

Vickers Hardness of the bioactive restorative materials: 
The fact that the average Vickers Hardness between the samples 
of the average of β carotene/chitosan/Premise (37.4VH), Guar 
Gum/Premise (36.2VH), β-carotene/Premise (36VH) were so 
close to the Premise control (37.6VH) it can be deduced that 
the decrease volumetric change was not due to a decreased 
conversion rate but rather the larger methacrylate molecule that 
was present in the Premise combinations. It is well documented 
that it is insoluble under alkaline and neutral conditions,but can 
react with inorganic and organic acids such as hydrochloric acid, 
lactic acid,acetic acid and glutamic acid under acidic conditions.
It has OH and NH2groups that give rise to hydrogen bonding 
and these groups could act as nucleophilic agent to initiate the 
polymerization of methyl methacrylate leading to an irreversible 
attachment between chitosan and methyl methacrylate through 
different multipoint linkages [20].

The Chitosan/Premise however was influenced 
significantly since the Vickers Hardness was only 5.2. When 
the Premiseflowable/Chitosan samples were removed from the 
specimen holder it was noted that a layer of about 0.5mm was not 
cured and still soft.This would suggest that possibly more free 
radical inhibition occurs or the slower rate of shrinkage would 
result in a greater bond strength and possibly lower stress within 
the restoration and tooth interface. 

Bond strength testing: The shear bond strength values 
(MPa) of the composite restorative materials were given after 24 
hours (Figure 5) as well as after 6 months (figure 6).

a. Chitosan/Premise b. Chitosan/Premise/β-carotene

c. Premise/β-carotene d. Premise/Guar Gum Resin

Figure 2a: Surface of materials after 24 hours in artificial saliva where 
a) Chitosan/Premise, b)Chitosan/Premise/β-carotene, c)Premise/β-
carotene and d) Premise/Guar Gum Resin.

a. Chitosan/Premise b. Chitosan/Premise/β-carotene

c. Premise/β-carotene d. Premise/Guar Gum Resin

Figure 2b: Surface of materials after 3 month in artificial saliva a) Chito-
san/Premise b) Chitosan/Premise/β-carotene, c) Premise/β-carotene 
and d) Premise/Guar Gum Resin.
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Mean shear bond strength values and difference between the 
groups are summarized in Figure 3 for bonding to dentin after 
24 hours and Figure 4 after 6 month. In general there was an 
increase in bond strength of the dentin treated with the “bioactive 
restorative materials complex containing bio-adhesive chitosan 
and the combination of the chitosan/beta-carotene or guar 
gum resin compared to the bond strength of the conventionally 
bonded teeth. 

The results of this study suggests that the optimum results 
for the strengthening of dentin can be achieved throughout the 
immediate interaction with collagen fibers of dentin:chitosana 
well as interaction of chitosan:organic core of the flowable 
material complex with the increase of dentin bond strength. 

Therefore the newly developed chitosan derivatized systems, 
are supporting our earlier reported results be able to address 
the shortfalls affecting the long-term bonding performance of 
modern adhesives and addresses the current perspectives for 
improving bond durability of conventional adhesive systems as 
demonstrated in our “in vitro” model system.

Flexural strength of the modified restorative materials: 
The mean and standard deviation values (MPa) for the flexural 
strength are summarized in  (Figure 7).

All modified bio-active flowable composites, which an 
exception of chitosan and β-carotene containing materials 
have shown comparable compressive and flexural strength 
to the commercially available Premise material which makes 
the newly modified bioactive composites ideal candidates for 
further evaluation and development is bio-functional restorative 
materials.

Studies of equilibrium swelling in modified bio-active 
composites and Premise flowable material as a standard were 
measured.The “bioactive restorative materials” remain in 
the cylindrical form after swelling. Compared with dry state 
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Figure 5: Shear bond strength of modified composites after 24 hours 
of bonding to dentin of the Premise (Standard) versus modified “bioac-
tive” composites. The Turkey-Kramer multiple comparison test on the 
rate of shrinkage slopes has confirmed the statements (p<0.05).
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Figure 6: Shear bond strength of modified composites after 6 month 
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tive” composites. The Turkey-Kramer multiple comparison test on the 
rate of shrinkage slopes has confirmed the statements (p<0.05).
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Figure 7: Flexural strength of the modified restorative materials of 
modified composites of Premise (Control) versus modified “bioactive” 
composites such as (GuarPremise, ChitosanPremise, β-carotenePremise 
and Chitosan/β-carotene/Premise) respectively. Post Hoc multiple 
comparison test at a significance level of 5%.

composites, the volume of the swollen state hydrogel does not 
display a significant increase as summarized in (Figure 8).

Conclusions
The materials were tested using effective in-vitro 

development of “dual function restorative materials”. We 
quantified the effects of functional designer biomaterials on the 
dentin bond strength of a composite, measure volumetric change 
due to polymerization in dental resins as well as Vickers hardness 
and % of water uptake by the modified composites. Within the 
limitations of the study design chitosan based hydrogels are 
suitable materials for functional restorative applications in vitro. 
Cytotoxicity data is currently being evaluated in our laboratory.
The clinical significance is that the decrease in volumetric change 
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will have a positive effect on the stress formation on the tooth/
adhesive/restoration interface.
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