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MULTIPLICATION OF CROWNS

P. J. WITBOOI

Abstract. It is known that the only finite topological spaces that are H-

spaces are the discrete spaces. For a finite poset which is weakly equivalent

to an H-space, a generalized multiplication may be found after suitable sub-
division. In this paper we construct minimal models of the k-fold generalised

multiplications of circles in the category of relational structures, including

poset models. In particular, we obtain higher dimensional analogues of a cer-
tain ternary multiplication of crowns [Hardie and Witbooi, Topology Appl.

154 (2007), no. 10, 2073–2080].

1. Introduction

A categorical equivalence between the category of finite posets and the category
of finite T0 spaces is discussed in the paper [8] of McCord. Results from [8] imply
that for a suitable topological space, in particular for a compact polyhedron, there
exists a finite poset model in the sense of weak homotopy equivalence. For the
relevant basic notions of algebraic topology we refer the reader to the textbook [7]
of J. P. May. Thus for instance, crowns are poset models of the circle. A poset
model of (a generalized version of) circle multiplication appears in [3] and is used to
produce a finite model of the Hopf map S3 → S2. A ternary multiplication with the
relevant associativity property appears in [4]. In view of the result of Stong [9] on
homotopical triviality of a finite topological space that admits a multiplication, it
turns out that some subdivision on the domain side is necessary. Thus for instance
in [3] the multiplication is a poset map from the product of two 8-point crowns to
a 4-point crown.

For a given topological space, we may also want to find a finite model of least
cardinality, i.e., a minimal poset model. See the paper [1] of Barmak and Minian
in this regard. Modeling of topological spaces is possible in the bigger category R
of relational structures, defined in the sequel. Such models have been described in
[5] and in [2] for instance.

2010 Mathematics Subject Classification. 06A06; 18B10.
Key words and phrases. poset; relational structure; locally finite space; barycentric subdivi-

sion; finite model.
The author acknowledges a research grant from the South African National Research

Foundation.

29

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of the Western Cape Research Repository

https://core.ac.uk/display/62636338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


30 P. J. WITBOOI

In this article we shall consistently use N to denote the set of all non-negative
integers, i.e.,

N = N ∪ {0} .
We show how a certain sequence of functions µk : Nk → N give rise to finite
poset models of k-fold circle multiplications. In Section 2 we define the functions
µk and observe how they induce the functions mk : Zk

4k → Z4. In Section 4 we
prove that each mk turns out to be a poset map from a product of (4k)-point
crowns to a 4-point crown. In this way we obtain poset models of k-fold circle
multiplication. Also in Section 4, we obtain some further relational models of
the said circle multiplication. The basic structures and models are presented in
Section 3.

2. Defining the function

Notation 2.1. Recall, N = N ∪ {0}. For k ∈ N we define the following:

(a) For each x ∈ Nk, we write

x∗ = min {x1, x2, x3, . . . , xk} and x∗ = max {x1, x2, x3, . . . , xk} .

(b) We use the notation, for x ∈ Rk, that ‖x‖ denotes the Euclidean norm, and
‖x‖0 = max {|x1| , |x2| , . . . , |xk|}.

(c) Let M(k) =
{
x ∈ Nk : x1 ≥ x2 ≥ x3 ≥ · · · ≥ xk

}
.

(d) For x ∈ Nk and d ∈ N we can form a point x× d ∈ Nk+1 in an obvious way.
(e) Note that for every x ∈ Nk, it is possible to permute the coordinates of x so

as to obtain an element x̄ ∈M(k).

Now we define a sequence of functions µk : Nk → N inductively as follows:

Item 2.2. For x ∈ N we let µ1(x) = min{x, 4}. Given any x ∈ Nk, let y = x̄. We
define λ1, and then inductively the λi for each i ∈ {2, 3, 4, . . . , k}, and finally µk as
follows:

λ1(x) = min{4, y1 − y2},
λi(x) = min{4i, λi−1(x) + yi − yi+1},
µk(x) = λk(x) = min{4k, λk−1(x) + yk}.

Immediately we note that if x ∈ Nk and every coordinate of x is even, then
µk(x) is even. Note also that if x ∈ Nk and y ∈ Nk+1 is obtained by inserting 0
as an additional coordinate into x (any position), then µk+1(y) = µk(x). Figure 1
is a diagrammatical representation of µ2. We form it by starting with a grid
representing a subset of N2 and then we replace each point x of N2 by the number
µ2(x). For better clarity we suppress some occurrences of 5 and 7.

The next result follows readily, and we omit the proof.

Proposition 2.3. Let k > 1, consider any x ∈ Nk and let y = x̄ ∈M(k). Suppose
that for each i ∈ {2, 3, 4, . . . , k} we have y1−yi ≤ 4(i−1). Then λk−1(x) = y1−yk.
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4 6 8 8 8 8 8 8
4 6 8 8 8 8 8 8
4 6 7 8 8
4 6 6 6 6 6 8 8
4 5 6 8 8
4 4 4 4 4 6 8 8
3 3 3 3 4 6
2 2 2 3 4 6 6 6 6
1 1 2 3 4
0 1 2 3 4 4 4 4 4 4

Figure 1.

Proposition 2.4. Consider a pair of points x, x′ ∈ Nk. Suppose that for some
j ∈ {1, 2, . . . , k} we have xj = x′j + 1 > 4k and xi = x′i ≤ x′j for each i 6= j. Then
µk(x) = µk(x′).

Proof. The case k = 1 is clearly true. We assume now that k > 1. Consider
such x, x′ ∈ Nk and let y = x̄ and let y′ = x̄′. First note that if y1 − y2 > 4,
then y′1 − y′2 ≥ 4. Therefore, λ1(x) = 4 = λ1(x′) and then it easily follows that
µ(x) = µ(x′). Thus henceforth we assume that y1−y2 ≤ 4. We consider two cases.

Case 1 : Suppose that for every i ∈ {1, 2, 3, . . . , k − 1} we have that y1−yi ≤ 4(i−1).
Then by Proposition 2.3,

λk−1(x) = y1 − yk and λk−1(x′) = y′1 − yk.

Therefore

µk(x′) = min {4k, λk−1(x′) + yk} = min {4k, yk} = 4k.

Similarly, µk(x) = 4k.

Case 2 : Suppose that for some t ∈ {1, 2, 3, . . . , k − 1} we have that y1 − yt >
4(t− 1), and choose i to be the smallest among such t. Then λi(x) = 4(i− 1) and
λi(x

′) = 4(i− 1). Thus it turns out that µk(x) = µk(x′). �

We set the notation for the pivotal result, Theorem 2.5 below. Let Fk = {x ∈
Nk : xi ≤ 4k, for each i = 1, 2, . . . , k}. From Fk we can form a new object Gk

by identifying certain pairs of points. These pairs are all those of the form {x, y}
such that for some index j we have xj = 0 while yj = 4k, and whenever i 6= j
then xi = yi. The set Gk can be regarded as Zk

4k. Here Zn denotes, of course, the
integers modulo n.

Theorem 2.5. The function µk induces a (well-defined) function

mk : Zk
4k → Z4.
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Proof. We need to prove that whenever a pair of points x and y are identified
towards formation of Gk, then

µk(x) ≡ µk(y) mod 4.

Since µ1(0) = 0 and µ1(4) = 4, it follows that the case k = 1 of the proposition
is true. For higher dimensions it suffices to show that the statement below is true:

If x ∈ Nk and l ∈ N with l ≥ 4(k + 1) ≥ x∗, then

µk+1 (x× l) = µk+1 (x× 0) + 4.

Now consider any x ∈ Nk and suppose that l ≥ 4(k + 1) ≥ x∗. By repeated
application of Proposition 2.4 we observe that for any x ∈ Nk,

µk+1(x× (4k + 4)) = µk+1(x× (4k + 5)) = µk+1(x× (4k + 6)) = . . . .

Thus it suffices to assume that l = 4k + 8, in which case λ1(x × l) = 4. Then for
every i ∈ {1, 2, 3, . . . , k} we have that

λi+1(x× l) = 4 + λi(x× 0),

and in particular then,

µk+1 (x× l) = λk+1(x× l) = 4 + λk(x× 0) = 4 + µk+1(x× 0).

�

3. Relational structures

Definition 3.1. (See Larose and Tardif [6]). A reflexive binary relational structure
X = (X, θ) is a set X equipped with a reflexive binary relation

θ ⊆ X ×X.

The category of which the objects are the binary reflexive relational structures and
the morphisms are the functions f : (X, θX) → (Y, θY ) satisfying the condition:
(x1, x2) ∈ θX ⇒ (fx1, fx2) ∈ θY , will be denoted by R. For short we shall refer to
R as the category of relational structures.

The category Poset of partially ordered sets (or simply posets) is a full sub-
category of R, and provides an important connection between R and the category
Top of topological spaces and continuous functions.

For any finite poset X and any x ∈ X, let Ux = {y ∈ X : (y, x) ∈ θX}. Let
T (X) be the topology generated by the subbase U = {Ux : x ∈ X}. If V is any
finite topological space that satisfies the T0 separation axiom, then we can form
an R-object R(V ). We define a relation θV on V as follows: (x, y) ∈ θV if and only
if y belongs to the closure of the set {x}. In this way we obtain functors T and
R which constitute an equivalence between the categories of finite posets and the
finite T0-spaces. Therefore we can refer to a finite poset as a topological space.
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Definition 3.2. (See [6]). The product of two relational structures (X, θX) and
(Y, θY ) is defined to be the relational structure (X × Y, θX×Y ), where θX×Y is the
relation on X × Y described as follows:

For x, x1 ∈ X and y, y1 ∈ Y ,

((x, y), (x1, y1)) ∈ θX×Y if and only if (x, x1) ∈ θX and (y, y1) ∈ θY .

Example 3.3. We consider three different relational structures on Z:

(a) Let X0 = (Z, θ0) have the poset relation, or partial order, given by

(k, l) ∈ θ0 ⇔ l = k or |k − l| = 1 and k is even.

(b) Let X1 = (Z, θ1) be the (antisymmetric) relational structure on the set Z, for
which we consider (n,m) ∈ θ1 if and only if m− n ∈ {0, 1}.

(c) Let X2 = (Z, θ2) be the (symmetric) relational structure on the set Z, for which
we consider (n,m) ∈ θ2 if and only if |m− n| ≤ 1.

Notation 3.4. (a) For any of the relational structures θt defined in Example 3.3,
there is an induced structure on subsets and products of subsets. Thus we have
induced relational structures on Nk. These induced relational structures will be
denoted by the same symbol.

(b) In the rest of the paper, for x, y ∈ Nk the statement (x, y) ∈ (Nk, θ0) will
be denoted by x → y. Likewise the relations of θ1 and θ2 will be denoted by ⇀
and 
 respectively. By ≤ we shall denote the usual order on R.

(c) For k ∈ N and t = 0, 1, 2, let Xt(4k) denote the sub-relational structure
determined by the subset {0, 1, 2, . . . , 4k} of Xt and let Ct(4k) be the set obtained
from Xt(4k) by identifying the points 0 and 4k, together with the structure θt.
The poset C0(4k) is called the 4k-point crown.

We record the following observations for easy reference.

Remark 3.5. Consider any x, y ∈ Nk. Then,

x ⇀ y if and only if for each i we have 0 ≤ yi − xi ≤ 1,

x
 y if and only if for each i we have |yi − xi| ≤ 1,

x→ y if and only if (‖x− y‖0 ≤ 1 and xi = yi whenever xi is odd).

Definition 3.6. (See [6]). Let us fix an R-morphism g : X → Y . A finite subset
{x1, x2, . . . , xk} of X is said to be a chain in X if for every i, j ∈ {1, 2, . . . , k} with
i < j, we have (xi, xj) ∈ θX . Let X ′ be the collection of all finite chains in X.
Then X ′ is a poset (under subset inclusion), called the barycentric subdivision of
X. For a chain C in X, the subset g(C) is a chain in Y , and so there is a poset
morphism g′ : X ′ → Y ′ making barycentric subdivision to be a functor from R to
Poset.

Definition 3.7. Recall that a morphism g : X → Y in Top is said to be a weak
equivalence or more precisely a weak homotopy equivalence if the induced morphism
g∗ : π0(X)→ π0(Y ) is a bijection and g∗ : πi(X,x)→ πi(Y, g(x)) is an isomorphism
of groups for each i ∈ N and each x ∈ X.
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Two morphisms g1 : X1 → Y1 and g2 : X2 → Y2 in Top are said to be weakly
homotopy equivalent if there is a homotopy commutative diagram such as given
below, in which the horizontal arrows are weak homotopy equivalences.

X1

g1

��

X0
oo //

g0

��

X2

g2

��
Y1 Y0

oo // Y2

Definition 3.8. An R-morphism g : X → Y is an R-model for the Top-morphism
f : A→ B if the barycentric subdivision g′ : X ′ → Y ′ (which can be regarded as a
Top-morphism) is weakly homotopy equivalent to f .

4. The main theorem

In this section we use the notation u to denote the element of Nk for which
every coordinate is 1. Also, when unambiguous, we write µk as µ.

Proposition 4.1. Suppose that x, y ∈ Nk and for some j we have yj = xj + 1
while yi = xi for i 6= j. Then µ(x) ≤ µ(y) ≤ µ(x) + 1.

Proof. Without loss of generality we can assume that k ≥ 2 and x, y ∈ M(k). It
is just interesting to note that λj−1(y) ≤ λj−1(x) ≤ λj−1(y) + 1. Nevertheless,
if j = k it follows immediately that µk(x) ≤ µk(y) ≤ µk(x) + 1. If j ≤ k,
then λj(x) ≤ λj(y) ≤ λj(x) + 1 and from this eventually it turns out again that
µk(x) ≤ µk(y) ≤ µk(x) + 1. �

Theorem 4.2. Consider any t = 0, 1, 2 and k ∈ N. Given the relational structure
θt on N , the function µk is an R-morphism and induces an R-morphism m :
Ct(4k)k → Ct(4).

Proof. We first prove the case t = 1. It suffices to show that if x, y ∈ Nk and
x ⇀ y, then

µ(x) ≤ µ(y) ≤ µ(x) + 1.

Clearly, µ(x) ≤ µ(x+u) ≤ µ(x)+1. We can find a sequence as below, with y = x(r)

for some r,

x = x(1) ⇀ x(2) ⇀ x(3) ⇀ · · ·⇀ x(r) = x+ u,

such that in view of Proposition 4.1 we have

µ(x(r)) ≤ µ(x(r+1)) ≤ µ(x(r)) + 1.

Then we have µ(x) ≤ µ(y) ≤ µ(x+ u) ≤ µ(x) + 1. This settles the (t = 1)-case.
Now we prove the (t = 0)-case. Consider any x, y ∈ Nk with x → y. From the

(t = 1)-case it follows that |µ(y) − µ(x)| ≤ 1. Now we need to prove that it is
impossible to have:

µ(x) being odd while µ(y) is even. (1)

Let y◦ be the point with

y◦i = xi if yi > xi, and y◦i = yi otherwise.
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There exist xev, y
ev ∈ Nk such that xev and yev have no odd coordinates and with

the following relations:

xev ⇀ x ⇀ xev + u, and y ⇀ y◦ ⇀ yev.

Furthermore, µ(xev) and µ(yev) are even integers. Now using the latter fact
together with the aforegoing relations, it can be shown that the situation (1) above
can never arise. This completes the proof of the (t = 0)-case.

Finally, the proof of the (t = 2)-case leans on the (t = 1)-case, with arguments
similar to (but simpler than) the proof of the (t = 0)-case, and we omit the detail.

�

The restriction of the map m to any of the axes of Ck
t (4k), for any of the

relational structures θt, yields a model of a degree 1 selfmap of the circle, as is the
case for k-fold circle multiplication. Also the diagonal D = {(z, z, . . . , z) ∈ Sk}
is homeomorphic to a circle and the k-fold circle multiplication, when restricted
to D, yields a circle map of degree k. In the discrete case, for each t = 0, 1, 2,
the diagonal Dt of Ck

t (4k) is isomorphic in R to the crown Ct(4k). Furthermore,
the morphism m|Dt is a model of a circle map of degree k. Also note that any
sub-relational structure of Ct(4) having fewer than 4 points, will fail to be a model
of the circle.

Now let us focus on m in the poset case (and note that the same argument works
for the other two relational structures covered in Theorem 4.2). Given that the
codomain of the multiplication is a crown with 4 points, and requiring the domain
to be a k-fold cartesian power Ck

t (l) with the induced map from the diagonal of
Ck

0 (l) to C0(4) to be a degree k circle map, we can ask how small we can choose l.
Simple arithmetic shows that l cannot be chosen any smaller than 4k. Our map m
does in fact realize a multiplication in this minimal case l = 4k.
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