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In this paper a direct integration of second-order Ordinary Differential Equations (ODEs) of the form 

),()( yxfxy  , 
0)( yay  , 

0)( yay  ,
 using the Explicit Runge-Kutta-Nyström method with higher derivatives 

is presented. Various numerical schemes are derived and tested on standard problems. The higher-
order explicit Runge-Kutta-Nyström (HERKN) method given in this paper is compared with the 
conventional Explicit Runge Kutta (ERK) schemes. Due to the limitation of ERK schemes in handling 
stiff problems, the extension to higher order derivative is considered. The results obtained show an 
improvement on ERK schemes. 
 
Key words: Runge–Kutta–Nyström method, HERKN method, higher-order derivatives, second order ordinary 
differential equations. 

 
 
INTRODUCTION 
 
Runge-Kutta-Nyström method is a powerful numerical 
technique for the direct integration of second order 
Ordinary Differential Equations (ODEs) numerically. 
Second order ODEs usually arise from models in celestial 
mechanics, science and engineering. Many of such 
problems cannot be easily solved analytically. In this 
paper we consider second ODEs of the form: 
 

),()( yxfxy  , 00 )( yxy  , 00 )( yxy 
          (1) 

 

Where ),( yxf  is smooth. 
 

In some cases, Equation 1 is always reduced to system 
of two ODEs and numerical methods for first order ODEs 
are used to solve them. In the literature, Sharp and Fine 
(1992), Sommeijer (1987), Dormand et al. (1987), 
Papageorgiou et al. (1998), El-Mikkawy and El-Desouky  
 
 
 

*Corresponding author. E-mail: akanbima@gmail.com. Tel: 
+27(0)733433891, +234(0)8035769060. 

(2003) and Fudziah (2009) discussed the general 
techniques for solving (1) directly. It was shown that 
these methods have a greater advantage over reducing 
(1) to systems of first order ODEs with substantial gain in 
efficiency and lower storage requirements. 

In this paper, we try to improve the Runge-Kutta-
Nyström (RKN) methods by the techniques of Goeken 
(1999) and Akanbi et al. (2005,  2008) in which they used 
the method of higher derivatives as a multistep in stage 
evaluations to increase the order of a Runge-Kutta (R-K) 
method. The order condition obtained in this paper is up 
to order five (5) as shown in Table 1, which ordinarily 
should not exceed 4 for a 2-stage method. This is an 
improvement to the work done by earlier authors. 
(Fatunla, 1988; Papageorgiou et al., 1998; Fudziah, 
2009). 

In Materials and Methods, we give the theoretical 
procedure for the general theory of Higher-Order Explicit 
Runge-Kutta-Nyström (HERKN) methods. The steps to 
the derivation of these new methods are presented in 
derivation of 2-Stage HERKN methods, while the stability 
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Table 1. Order conditions for y . 
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120

1
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of the new methods is analyzed in stability analysis of the 
HERKN method. The new methods were afterwards 
implemented on some standard problems in this study; 
then we give a concluding remark. 
 
 
MATERIALS AND METHODS 

 
Here, the materials and methods needed for the derivation of the 
Higher Order Runge Explicit Runge-Kutta-Nyström is presented. 

 
 
Theory of higher order derivative method 

 
One of the major aims of this paper is to derive a new set of 
numerical schemes based on higher order derivative Runge-Kutta-
Nyström technique. Consider Explicit Runge-Kutta-Nyström 

methods which produce approximation 1ny   and 1ny 
  to 

1( )ny x   and 1( )ny x 
  respectively: 
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where; 
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Introducing a multistep term 1jd  in jk  as a higher order 

derivatives, we re-write (4) as: 
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The coefficients jc , ija , jb , 1jd  and jb  of the RKN method are 

assumed to be real and s  is the number of stages of the method. It 

is customary to represent R-K schemes in Butcher’s array. In the 
same vein, the RKN methods in this paper will be presented in the 
Butcher’s tableau which is in the form: 
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Table 2. Order conditions for y . 
 

n  ( )nO h  

1 
1 2 1b b      (13) 
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1. Correct the duplication of equation "(10)" and re-number “(11)” to the last equation 
 

2. On pg 3 column1 correct  
T

T

b

b

dAc



 to  
T
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

 

 
      

Here ],,,,0[ 32 scccc  , ],,,[ 21 s

T bbbb  , 

],,,[ 21 s

T bbbb   , ],,,,0[ 13121 sdddd   and 

[ ]ijA a  is  s s matrix respectively, where ][ ija  for ij  , 

0ija  specially for the Higher-Order Explicit Runge-Kutta-

Nyström (HERKN) method.     
 
 
Derivation of 2-stage HERKN methods  

 

For a 2 stage method, we set 2s , so that: 

 
2

1 ( , ; )n n n HERKN n ny y hy h x y h
                             (20) 

 

1 ( , ; )n n D HERKN n ny y h x y h
               (21) 
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j
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Where; 
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We substitute 1k  and 2k  as its multivariate Taylor’s expansion in 

(8), and also compared coefficients with the multivariate Taylor’s 

series expansion of 1( )ny x   and 1( )ny x 
  as an approximation 

to the methods (5) for 1ny   and 1ny 
  respectively. Then the 

following algebraic equations are obtained as order conditions for 
the HERKN methods and are presented in the Tables 1 and 2. For 
solvability of the aforementioned equations, simplifying assumption 

was used. Five of the order conditions for y  were selected such 

that two of the equations having the variable 2b  and 2c  only and 

one of the equations having variable 21a  were selected together 

with the remaining two order conditions to generate a method. We 
combined and solved these order conditions in such a special 
manner to generate various methods.  

For instance solving equations 6, 7, 8, 9 and 10 yields the 

HERKN1 method. 

 
From 13 and 14: 
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Hence:  

 

   iiii bcbb    (From Tables 1 and 2). 

 
Factorizing: 
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Hence,  

2

2
2

1 c

b
b


  is used as a simplifying condition to 

obtain 2b . This follows generally from the first order condition of y  

and the first two order conditions of y  in the generalized order 

condition listed by Dormand et al. (1987). A more general proof of 
simplifying assumptions is discussed in Hairer and Wanner (1987). 
 
These equations are solved by maple software to obtain the 
following results as presented in the Butcher’s array highlighted for 
respective families of HERKN methods. Eight methods are 
generated from Tables 1 and 2 and are labeled as HERKN1 – 8: 
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Stability analysis of the HERKN method 

 
Stability of a numerical method is a property that determines the 
manner in which the error is propagated as the numerical 
computation proceeds (Sharp and Fine, 1988). Hence, it would be 
necessary to investigate the stability properties of the newly 
developed method. We consider the usual test problem: 
 

yy                 (26) 
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Subject to initial 

conditions,  bxxyxyyxy ,,)(,)( 00000  , where   

is a real number. We shall discuss cases when 0  and 

2k .  

 
For this method, that is applying (19) and (20) on (26): 
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Representing (27) and (28) in matrix form gives: 
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and substituting the order conditions in Tables 1 and 2, (29) 
becomes: 
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Case ( 0 ) 

 

We test for consistency, for 0 , it is easily seen that: 
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Such that, (30) becomes: 
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that is, 
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n AYY  . The eigenvalues 21, of the matrix A  

are the roots of the characteristics equation of matrix A . The 
eigenvalues: 
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Substituting 
2k  in 22211211 ,,, aaaa , (8) becomes: 
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The eigenvalues obtained must be such that the roots have unit 

modulus for the method to be R Stable. Hence, we have that, 

 226 kh  and this implies that the method is R stable  

and this interval is called the interval of periodicity. The order of the 
methods is given as order five since the derived HERKN were 
compared with the Taylors series up to order five, thereby letting 

the coefficients of 
)(viy  in the expansion of the HERKN method not 

to be equal to zero. 
 
 
NUMERICAL RESULTS 
 

Problem 1 
 

Consider the test problem, yy  ,

 1)0()0(  yy , 100  x . The exact 

solution for 1  is given by; 

xxxy sincos)(  . Numerical Solution to the problem 

using steplenght 1.0h and 05.0h  are analyzed 

(Tables 3 to 6) using Maximun Norm. That is, 

)( nn xyyMax  (Table 7). 
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Table 3. Theoretical result of problem 1 for 1.0h . 

 

x ANALYTICAL HERKN1 HERKN2 HERKN3 HERKN4 

1.0 1.3817732907 1.3860546124 1.3851021003 1.3922161994 1.3858623475 

2.0 0.4931505903 0.4945744769 0.4941087603 0.4977357419 0.4944653255 

3.0 -0.8488724885 -0.8700148730 -0.8656950748 -0.8979736574 -0.8684714541 

4.0 -1.4104461162 -1.4515232238 -1.4427202403 -1.5092902666 -1.4482331688 

5.0 -0.6752620892 -0.6981254221 -0.6928905336 -0.7331235863 -0.6959667891 

6.0 0.6807547885 0.7146310902 0.7077525045 0.7597477999 0.7122735286 

7.0 1.4108888531 1.4890580149 1.4722492868 1.6013974951 1.4826615731 

8.0 0.8438582128 0.8970420954 0.8850546363 0.9785794559 0.8920748091 

9.0 -0.4990117766 -0.5358982928 -0.5285513071 -0.5844413571 -0.5335794791 

10 -1.3830926400 -1.4964212795 -1.4719387638 -1.6630218120 -1.4871049775 

 
 
 

Table 4. Theoretical result of problem 1 for 1.0h . 

 

x HERKN5 HERKN6 HERKN7 HERKN8 

1.0 1.3861481011 1.3851509052 1.3922161994 1.3838012555 

2.0 0.4948742381 0.4942660797 0.4977357419 0.4934826446 

3.0 -0.8697037419 -0.8655311273 -0.8979736574 -0.8597967573 

4.0 -1.4516033813 -1.4427608863 -1.5092902666 -1.4307526960 

5.0 -0.6987348345 -0.6932085641 -0.7331235863 -0.6858152979 

6.0 0.7139403600 0.7073908507 0.7597477999 0.6984012201 

7.0 1.4890161010 1.4722253053 1.6013974951 1.4495306580 

8.0 0.8979081592 0.8855039976 0.9785794559 0.8689406769 

9.0 -0.5347760684 -0.5279673186 -0.5844413571 -0.5185892502 

10 -1.4961436621 -1.4717920909 -1.6630218120 -1.4390368724 

 
 
 

Table 5.  Theoretical result of problem 1 for 05.0h . 

 

x ANALYTICAL HERKN1 HERKN2 HERKN3 HERKN4 

1.0 1.3817732907 1.3839724299 1.3834953184 1.3870475191 1.3838287306 

2.0 0.4931505903 0.4936682799 0.4935173920 0.4946757633 0.4936262544 

3.0 -0.8488724885 -0.8597665255 -0.8575011400 -0.8743767870 -0.8589102231 

4.0 -1.4104461162 -1.4309054474 -1.4265517627 -1.4591625092 -1.4292272579 

5.0 -0.6752620892 -0.6860111783 -0.6836415114 -0.7015243515 -0.6850496800 

6.0 0.6807547885 0.6983414388 0.6946916932 0.7220687981 0.6969847757 

7.0 1.4108888531 1.4496615821 1.4413967209 1.5038049701 1.4464479563 

8.0 0.8438582128 0.8691424213 0.863620687 0.9055895561 0.8668988549 

9.0 -0.4990117766 -0.5185012702 -0.5144848139 -0.5447837282 -0.5170524343 

10 -1.3830926400 -1.4391430501 -1.4271659741 -1.5183374614 -1.4344856394 

 
 

 
Problem 2 

 
We also consider a system of second order ordinary  
differential equations: 
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Table 6. Theoretical result of problem 1 for 05.0h . 

 

x HERKN5 HERKN6 HERKN7 HERKN8 

1.0 1.3839960222 1.3835076996 1.3870475191 1.3828429681 

2.0 0.4937428565 0.4935566344 0.4946757633 0.4933134408 

3.0 -0.8596908273 -0.8574612204 -0.8743767870 -0.8544043540 

4.0 -1.4309277413 -1.4265633060 -1.4591625092 -1.4206122273 

5.0 -0.6861621548 -0.6837207264 -0.7015243515 -0.6804174788 

6.0 0.6981748024 0.6946040969 0.7220687981 0.6897152905 

7.0 1.4496564244 1.4413937220 1.5038049701 1.4301547047 

8.0 0.8693557823 0.8637322976 0.9055895561 0.8561277085 

9.0 -0.5182328836 -0.5143441648 -0.5447837282 -0.5090200192 

10 -1.4390839457 -1.4271346649 -1.5183374614 -1.4109225938 

 
 
 

Table 7. Maximun Norm. 

 

Method 

h=0.1 h=0.05 

)( nn xyyMax   )( nn xyyMax   

HERKN1 1.13 (-01) 5.61 (-02) 

HERKN2 8.88 (-02) 4.41 (-02) 

HERKN3 2.80 (-01) 1.35 (-01) 

HERKN4 1.04 (-01) 5.14 (-02) 

HERKN5 1.13 (-01) 5.60 (-02) 

HERKN6 8.87 (-02) 4.40 (-02) 

HERKN7 2.80 (-01) 1.35 (-01) 

HERKN8 5.59 (-02) 2.78 (-02) 

 
 
 

10
2

 x


 

 
This problem was considered by Sharp and Fine (1992). 
The exact solution is given by: 
 

)(sin)(),(cos)( 2

2

2

1 xxyxxy   

 
This problem is solved using the newly derived HERKN 

schemes with steplenghts ,001.0,01.0h  and 0001.0 . 

Their table of errors is presented in Table 8. Usually, the 
implementation of ERK methods on higher ODEs 
requires that they are first reduced to system of first 
order. However, the new HERKN methods are well able 
to handle second order ODEs directly and even systems 
of second order ODEs without reducing them to first 
order. The results are presented in Table 8. 

From Table 8, HERKN8 gave the best results amongst 
the HERKN methods. Thus, the graph of solution using 
HERKN8 is hereby presented. 

Problem 3 
 

The linear scale problem with slowly varying frequency 

was also considered using steplenght 01.0h . The  

problem which is given as: 
 

0,)2(log  xyxy e    

 

50,1)0(,0)0(  fxyy  

 

has no closed form solution and was solved with the new 
methods. The result is presented for some stepnumbers  
as displayed in Table 9. 
 
 

DISCUSSION 
 

In Problem 1 it is observed that HERKN methods gave 
convergent solution to the problem with maximum error 
given in Table 7, unlike the usual ERK method which will 
require reducing the system to a system of first order 
differential equations before implementation. The results 
obtained using the best method which is the HERKN8 is
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Table 8. Table of errors for problem 2. 
 

Method x  
h=0.01 h=0.001 h=0.0001 

1y  2y  1y  2y  1y  2y  

HERKN1 
h

2

  
2.01E-11 5.30E-11 1.20E-07 1.12E-07 1.32E-08 1.23E-08 

10 1.09E+00 1.24E+00 7.61E-02 6.50E-02 7.32E-03 6.13E-03 

HERKN2 
h

2

  
2.49E-09 3.52E-10 9.46E-08 8.84E-08 1.04E-08 9.73E-09 

10 7.86E-01 8.39E-01 5.94E-02 5.06E-02 5.77E-03 4.83E-03 

HERKN3 
h

2

  
5.50E-08 6.81E-09 2.82E-07 2.64E-07 3.11E-08 2.90E-08 

10 4.59E+00 7.99E+00 1.91E-01 1.65E-01 1.73E-02 1.45E-02 

HERKN4 
h

2

  
4.37E-07 4.18E-07 1.14E-07 1.07E-07 1.21E-08 1.13E-08 

10 9.84E-01 1.06E+00 6.95E-02 5.92E-02 6.71E-03 5.62E-03 

HERKN5 
h

2

  
1.04E-09 2.92E-09 1.20E-07 1.12E-07 1.32E-08 1.23E-08 

10 1.06E+00 1.27E+00 7.60E-02 6.51E-02 7.32E-03 6.14E-03 

HERKN6 
h

2

  
3.00E-09 1.07E-09 9.46E-08 8.85E-08 1.04E-08 9.73E-09 

10 7.72E-01 8.52E-01 5.94E-02 5.07E-02 5.77E-03 4.83E-03 

HERKN7 
h

2

  
5.50E-08 6.81E-09 2.82E-07 2.64E-07 3.11E-08 2.90E-08 

10 4.59E+00 7.99E+00 1.91E-01 1.65E-01 1.73E-02 1.45E-02 

HERKN8 
h

2

  
5.25E-09 6.77E-10 6.00E-08 5.60E-08 6.60E-09 6.16E-09 

10 4.49E-01 4.27E-01 3.72E-02 3.15E-02 3.65E-03 3.06E-03 

 
 
 

Table 9.  Numerical result of problem 3. 

 

n  x  HERKN1 HERKN2 HERKN3 HERKN4 

0 0.00 0.0000000000000 0.0000000000000 0.0000000000000 0.0000000000000 

500 5.00 -1.0162926474094 -1.0162926474094 -1.0162926474094 -1.0162926474094 

1000 10.00 0.6070376099226 0.6070376099226 0.6070376099226 0.6070376099226 

1500 15.00 1.2387518215344 1.2387518215344 1.2387518215344 1.2387518215344 

2000 20.00 1.1381933458202 1.1381933458202 1.1381933458202 1.1381933458202 

2500 25.00 0.8544308165754 0.8544308165754 0.8544308165754 0.8544308165754 

3000 30.00 0.6346869445968 0.6346869445968 0.6346869445968 0.6346869445968 

3500 35.00 0.5463705407451 0.5463705407451 0.5463705407451 0.5463705407451 

4000 40.00 0.5916889962126 0.5916889962126 0.5916889962126 0.5916889962126 

4500 45.00 0.7505546705521 0.7505546705521 0.7505546705521 0.7505546705521 

5000 50.00 0.9838889466474 0.9838889466474 0.9838889466474 0.9838889466474 
 

 
 

shown in Figures 1 to 3. It was observed that as the step 
size reduces the numerical results generated conforms to 
the analytical result as shown in Figure 3. 
 

 

Conclusion 
 

A 2-Stage Explicit Runge-Kutta Nyström method with 
higher order derivatives has been derived and 

implemented. This method has shown that the usual 
practise of reduction of second order ODEs to a systems 
of two first order ODEs can be avoided and the problem 
solved directly. Also, for a reduced stage evaluation we 
have a method with a higher order of convergence as 
seen from the order conditions obtained. The paper also 
shows that HERKN8 is the most accurate of all the 
methods:
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Table 9. Contd. 
 

n  x  HERKN5 HERKN6 HERKN7 HERKN8 

0 0.00 0.0000000000000 0.0000000000000 0.0000000000000 0.0000000000000 

500 5.00 -1.0162926474094 -1.0162926474094 -1.0162926474094 -1.0162926474094 

1000 10.00 0.6070376099226 0.6070376099226 0.6070376099226 0.6070376099226 

1500 15.00 1.2387518215344 1.2387518215344 1.2387518215344 1.2387518215344 

2000 20.00 1.1381933458202 1.1381933458202 1.1381933458202 1.1381933458202 

2500 25.00 0.8544308165754 0.8544308165754 0.8544308165754 0.8544308165754 

3000 30.00 0.6346869445968 0.6346869445968 0.6346869445968 0.6346869445968 

3500 35.00 0.5463705407451 0.5463705407451 0.5463705407451 0.5463705407451 

4000 40.00 0.5916889962126 0.5916889962126 0.5916889962126 0.5916889962126 

4500 45.00 0.7505546705521 0.7505546705521 0.7505546705521 0.7505546705521 

5000 50.00 0.9838889466474 0.9838889466474 0.9838889466474 0.9838889466474 
 
 
 

 
 

Figure 1a. Graph of Solution (h=0.01):  HERKN8_ 1y . Notice the difference between the analytical solution and the HERKN8 

method. See that the result start failing from 05.4x . 

 
 
 

 
 

Figure 1b. Graph of Solution (h=0.01): HERKN8_ 2y . Notice the difference between the analytical 

solution and the HERKN8 method. See that the result start failing from 26.4x . 
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Figure 2a. Graph of Solution (h = 0.001): HERKN8_ 1y . Notice the improvement in the difference between 

the analytical solution and the HERKN8 method here. See that the result start failing from 27.8x . 

 

 
 

 
 

Figure 2b. Graph of Solution (h = 0.001): HERKN8_ 2y .  Notice the improvement in the difference between 

the analytical solution and the HERKN8 method here. See that the result start failing from 22.8x . 

 
 

 

 
 

Figure 3a. Graph of solution (h = 0.0001): HERKN8_ 1y . The graph shows a good approximation of the 

analytical Solution, see that the error is not visible. The graph was generated for 1065.7  x . 
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Figure 3b. Graph of Solution (h = 0.0001):  HERKN8_ 2y . The graph shows a good approximation of the analytical 

solution, see that the error is not visible. The graph was generated for 1065.7  x . 
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