
Usability of an Authoring Tool for Generalised Scenario
Creation for SignSupport

Lindokuhle S. Duma1, Prangnat Chininthorn2, Meryl Glaser3 and William D. Tucker4

1,2,3,4Department of Computer Science, University of the Western Cape

Robert Sobukwe Road, Bellville 7535 South Africa
Tel: +27 21 959 3010, Fax: +27 21 959 1274

13063344@myuwc.ac.za
2pchininthorn@uwc.ac.za
3merylglaser@gmail.com

4btucker@uwc.ac.za

Abstract— This paper presents the usability testing results for an
authoring tool that generalises scenario creation for a tool called
SignSupport. SignSupport is a mobile communication tool for
Deaf people that currently runs on an Android smartphone. The
authoring tool is computer-based software that helps a domain
expert, with little or no programming skills, design and populate
a limited domain conversation scenario between a Deaf person
and a hearing person, e.g., when a Deaf patient collects
medication at a hospital pharmacy or when a Deaf learner is
taking a computer literacy course. SignSupport provides
instructions to the Deaf person in signed language videos on a
mobile device. The authoring tool enables the creation and
population of such scenarios on a computer for subsequent
'playback' on a mobile device. The output of this authoring tool
is an XML script, alongside a repository of media files that can
be used to render the SignSupport mobile app on any platform.
Our concern now is to iteratively develop the user interface for
the authoring tool, focusing on the domain experts who create
the overall flow and content for a given scenario. The current
authoring tool was evaluated for usability; for both pharmacy
and ICDL course scenarios with purposive sampling. The
findings suggest that the authoring tool can generalise
SignSupport for multiple limited domain scenarios, mobile
platforms and signed languages.

Keywords— Mobile Apps, Software Design, XML

I. INTRODUCTION

The authoring tool for generalised scenario creation
described in the paper is a computer-based application that
helps a domain expert with little or no programming skills to
design a front-end interface for a communication flow
between a Deaf and a hearing person. The end result is a
mobile communication tool called SignSupport that helps a
Deaf person with a given communication scenario; with
pertinent information relayed to the Deaf user in signed
language [1]. The authoring tool produces an Extensible
Markup Language (XML) script as an output after the flow of
a given scenario is designed by a domain expert. This XML
file is consumed by an XML parser to render a mobile
application on any given mobile platform [1]. The current
version of SignSupport is a mobile application that helps a
pharmacist to give comprehensible medical instructions to a
Deaf patient during medicine dispensing in the form of pre-
recorded South African Sign Language (SASL) videos [2].
These medical instructions are stored on a mobile phone’s
memory card for the patient to view at any time. The
limitations of the SignSupport mobile app are that it only

caters for the pharmacy setting scenario, and runs only on an
Android mobile platform. Therefore, this authoring tool is
aimed at generalising SignSupport to accommodate multiple
domain scenarios; for multiple mobile platforms and that can
be populated by any language for low literacy end users.

This paper uses Deaf with a capital ‘D’ to refer to a
linguistic and cultural group of people with hearing loss who
mainly use SASL as a mother tongue [3]. Deaf people often
experience communication barriers while communicating
with a hearing person who cannot sign. While many
technologies, especially mobile, support voice and text
communication, this presents usability difficulties for Deaf
people with low functional text literacy. SASL interpreters
are very expensive for Deaf people as they are very scarce,
and Deaf people battle significantly to communicate with
hearing people in the absence of an interpreter. SignSupport
is an assistive technology meant to bridge such gaps for a
given scenario, and the authoring tool is meant to support
scenario designers.

The authoring tool was evaluated for usability with
participants who were recruited through an applied purposive
sampling method. This is because the scenarios were defined
prior to usability testing. Participants who were specialised in
these domains or have worked with Deaf people before were
recruited. The results show that the authoring tool is capable
of creating multiple limited domain scenarios and that it
supports a domain expert with little or no programing skills.

The rest of the paper is organised as follows. Section II
covers the history of SignSupport. Section III covers the
related work. Section IV describes the authoring tool
prototype. Section V defines the research methods that guide
the research and the prototype implementation. Sections VI
presents and discusses the results obtained from the prototype
usability testing. Section VII concludes and outlines the next
research steps and future work.

II. HISTORY OF SIGNSUPPORT
Since 2009, there have been several versions of

SignSupport produced through an iterative research process.

1) Version 1 was an internet browser-based mock-up
design [3]. The main objective of this mock-up was to help
the doctor understand the symptoms of a Deaf patient so that
s/he could prescribe medication for the patient. The mock-up
presented a set of questions in SASL which the Deaf patient

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of the Western Cape Research Repository

https://core.ac.uk/display/62635717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

answered before seeing the doctor. The doctor then viewed
the summary of the patient’s answers in English text.

2) Version 2 was for the same scenario as version one
and was developed as a Symbian mobile app with XHTML
[4]. This mock-up required only a mobile phone with a data
connection running a browser that supported Small web
format. However, the doctor and Deaf patient scenario was
found to be too wide and complicated to be constructed as an
application [5].

3) Version 3 was then shifted into a more constrained
communication domain between a pharmacist and a Deaf
patient [5]. Its aim was to help the Deaf patient understand
the medical instructions as prescribed by a pharmacist. This
mock-up was designed with two types of interfaces: one for
the Deaf patient to input background information prompted
by SASL videos and icons and one for the pharmacist to view
the Deaf patient’s background information and dispense
medication. The Deaf interface also relayed that information
in pre-recorded SASL videos.

4) Version 4 was a redesign by a multi-disciplinary and
trans-university team and then implemented as an Android
app [6]. The construction of this version is now in the process
of usability testing in a public hospital pharmacy.

The SignSupport approach was also used to create a
prototype to aid with self-paced learning for an International
Computer Driving License (ICDL) course. That prototype
was developed in parallel with the more recent pharmacy
prototypes. Our research team sees the potential of
SignSupport for additional contexts, i.e. other limited domain
communication scenarios. Therefore, this paper proposes that
an authoring tool for SignSupport can provide a solution to
assist domain experts to design a communication flow that
can meet specific needs for Deaf end users.

III. LITERATURE REVIEW
This section discusses the literature review that has been

consulted in order to formulate this study. We used the ideas
and techniques that that were found in this literature review,
as references when building and evaluating the authoring tool.
This ensured that the authoring tool suits the needs of the
domain experts and that it provides the greatest user
experience when in use.

A. Authoring tools in general
An authoring tool allows a user with little or no

programming experience to design and implement complex
applications, mainly web applications [7]. Authors can create
these complex and attractive applications by merely clicking
and defining relationships between objects, e.g., text, pictures
and videos. An authoring tool also allows an author to
preview a design to see how it will look when it is a complete
app. Examples of well known authoring tools include
Dreamweaver and Microsoft Front Page. The structure and
the features of the existing authoring tools were used as a
reference to inform the interface design of the SignSupport
authoring tool. One typical similarity amongst authoring tools
is that they have multiple distinct templates that authors can
customise directly or by changing the templates’ source code.
Templates help authors to work faster as they are generic and
can be adapted to any form within the intended use of that
authoring tool.

B. Language independence
Language independent techniques involve developing

applications that accommodate different human languages.
This means that software assets (text, icons and videos) can
be easily changed or replaced. Language independent
software accommodates different data formats and conforms
to software engineering principles such as software reuse [8].
The SignSupport authoring tool will have screen templates
that can be modified and reused limitlessly with different data
assets. Pictures and videos have different data types so this
authoring tool will use generic libraries that can read most
popular data formats.

C. Design for all
This method is also known as universal design, as it entails

creating software that can be used by all people effectively,
without the need for adaptation or specialised resources [9].
Principles of this method include creating useful designs that
accommodate a wide range of individual preferences and
abilities, error tolerance and low physical effort [9]. The aim
is also to accommodate Deaf domain experts, with low text
and functional literacy, as authoring tool users in the future.
The techniques that are used to achieve this goal include
direct manipulation via drag-and-drop of objects in a
WYSIWYG editor [10]. The authoring tool has tooltips, help
options and a user guide for novice users. This enables any
author to learn to use the authoring tool quickly and also to
have assistance within the authoring tool in case s/he needs it.
These helper options can also be adapted to in signed
language videos, as tutorials that demonstrate certain
functions for Deaf authors.

IV. THE AUTHORING TOOL FOR SIGNSUPPORT
This section describes the features available in the

authoring tool. The authoring tool helps a domain expert to
design an interface for a limited domain conversation flow
between a Deaf and a hearing person. The software presents
the domain expert with screen templates. These screen
templates can be populated with text, icons and/or signed
language videos (that would be provided by native signed
language speakers, not the domain experts, unless they are
Deaf, of course). The screens can also be linked to each other
in a graph structure. The link between each screen indicates
the user interaction on the real mobile app i.e. which screen
will show next when the end user clicks a given button.
Figure 1 presents a screenshot of the authoring tool interface
while a domain expert is using it. The interface of the
authoring tool is divided into four areas:

1) The button area contains four buttons, namely ‘Add
template’, ‘Clear all’, ‘Add video’ and ‘Export to XML’.
When the domain expert clicks on the ‘Add template’ button,
a window pops up and presents all the default screen
templates of the authoring tool. The user then chooses the
template that s/he would like to add to the canvas by clicking
the checkbox on the left side of the preferred template and
then clicks the ‘OK’ button at the bottom of the window. The
selected screen template then appears on the canvas as active.
The ‘Clear all’ button clears all the screen templates from the
canvas. The ‘Add video’ button helps the domain expert add
videos from the computer as an asset within the authoring

tool. The videos line up vertically as they are being added
from the computer to the video area. The ‘Export to XML’
button invokes a method that reads all the screen templates,
their assets and connections to each other; and then produces
an XML file that includes all of this information. Since the
XML file contains only text, it only stores an asset's
information such as filename and relative path, in text. An
XML parser on a target device consumes the XML file in
order to render a platform-specific mobile app.

2) The video area contains a series of sign language
videos that are added by the domain expert from the computer.
The sign language videos can be recorded before or after the
scenario based conversation flow is designed. Then each
video is given an English tag/filename in a way to help the
scenario domain expert include the correct video in the right
place [11]. Videos in this area can be played (and paused) by
clicking on them. They can also be dragged and dropped to
other screens.

3) The icons tab area contains icons in various
categories. The domain expert can also add new tabs of icons.
The icons can be dragged and dropped to the screens, and
linked to other screens and/or actions.

4) The Canvas area is where the selected screen
templates appear when added. The domain expert populates a
screen by typing in the intended message and dragging and
dropping icons or a video to the indicated areas in the screen.
If the domain expert drops an icon into a wrong area, s/he can
right click on that area and select the ‘remove icon’ option
and the icon will be removed. To connect the screen to
another, the domain expert clicks on the icon that represents a
button from one screen, confirms that s/he wants to connect
that icon to another screen at a prompt dialog pop-up, then
selects the screen to connect with. A blue link line will appear
in the Canvas, between these two screens. This link gets

updated and redrawn as the screens are moved from one
position to another.

The authoring tool is built using the Java programming
language, and the output of the authoring tool is an XML file.
The XML file serves as a database that stores the design
information in text. XML is supported by a variety of
technologies in various platforms [12]. This in turn helps us
to achieve platform independence for scenarios designed from
the authoring tool.

V. METHODS
This research follows an action research methodology [13].

This approach is cyclic in nature and involves an iterative
series of problem definition, planning, implementation,
observation and reflection phases. The aim of action research
is to improve or change both technological and social systems
for the better [13]. We hope the SignSupport mobile app
proves to be a useful communication tool for both Deaf
people and pharmacists. Deaf people also feel that they need
communication tools for other scenarios which they can
install on their various mobile phones, hence the need for an
authoring tool. The development of the authoring tool is
based on an iterative prototyping and usability testing
method. The first step is to iteratively implement core
features of the authoring tool and then evaluate them through
usability testing before adding more features. Testing our
prototype for usability helps us to confirm user requirements,
uncover software bugs and to accommodate new features that
end users may suggest after trying out the prototype. The
domain experts are the main drivers of the authoring tool
implementation. Since the whole research is guided by action
research methodology, it is important that they are included
throughout the research process.

User-based testing was employed for the usability
experiment [14]. The goal of the experiment was to evaluate
how effective the authoring tool can be, in enabling a domain

Figure 1: A screen shot of the Authoring tool’s interface while a ‘user’ (domain expert participant) is testing it.

expert with little or no programming skills, to create a limited
domain conversation scenario. The main focus is how the
domain expert searches for icons from the icon tabs, adds and
removes icons and videos from the screen templates, recovers
from errors; reuses screen templates in the same scenario and
reuses the same icons in different screen templates are also
observed. The domain expert was also be encouraged to give
suggestions on how the prototype can be improved to better
suit their needs.

A. Sampling
Participants were selected through a purposive sampling

method. Purposive sampling is purposefully selecting
participants in terms of the qualities/skills they have [15].
The communication flow design scenarios for the experiment
had already been defined, as for the medication dispensing
process and the (ICDL) course. The pilot session of the
authoring tool was evaluated with the aid of an industrial
design engineer. Participants recruited were a pharmacist for
the pharmacy setting scenario, a Deaf educator and a
computer science researcher for the ICDL course scenario for
the actual usability testing sessions. All participants have
unique work experience with Deaf people. The industrial
design engineer designed the SignSupport mobile app and the
pharmacist is involved in the co-design and co-testing of the
previous and current versions of the SignSupport mobile app
with Deaf users. The Deaf educator gives ICDL lessons in
SASL every Thursday at a local Deaf community; and the
Computer science researcher works on another authoring tool
for creating ICDL lessons only. All our participants are the
potential users of this authoring tool and hence ideal
candidates for the experiment.

B. Testing procedure

The testing was divided into three stages, namely training,
testing and gaining user feedback. One participant attended
the usability test at a time. During the training stage, the
participant was introduced to the authoring tool prototype and
all the features were demonstrated. The researcher then
encouraged the participant to try out the features on their own
e.g. add screens to the canvas area, drag and drop icons and
videos to the indicated area, and link icon labels with other
screens. Afterwards a training exercise was given to the
participant to design an HIV counselling scenario. This
applied to all participants. This scenario was given to the
participants as a decision flow graph diagram, as shown in
Fig 2.

During the testing stage, participants were first asked to
design and populate a limited scenario that was specific to
their domain. The participants from the pharmacy scenario
were asked to design a few screens from the familiar
SignSupport mobile app for medicine dispensing. The
participants from the ICDL course scenario were asked to
design a specific lesson from the ICDL course book, which
can be populated with SASL video instructions. The
participants were assigned the tasks specific to their domain
to give them a feeling of how they would use the authoring
tool to best suit their needs. Each participant was asked to
speak out about everything they see, think, and act while
using the authoring tool. All the ‘think-out-loud’ [13]

messages were accounted as part of their feedback. This
process was then followed for the HIV scenario for all of the
participants.

During the feedback stage, additional questions regarding
the available features and the use of the authoring tool were
asked to the individual participants for additional clarification.

C. Data collection
Qualitative methods were used to collect data. The

usability session was video recorded. The video recorder was
directed to the computer screen to record how the participant
interacted with the authoring tool. Participants were asked to
use the think aloud strategy to voice out what they were doing
and all the thoughts that came to their mind as a result of
using the tool. After the testing stage, the researcher
conducted a semi structured interview with each participant.
The main questions asked in the interview were:
• What did you like/dislike about the authoring tool?
• What did you find easy to use when building the

scenarios?
• What did you find confusing or difficult?
• Any features you would like to be changed or added to

the authoring tool?

D. Data analysis
Data collected from the trial was summarised and

organised according to the four areas of the authoring tool
interface, which are stated and discussed in the section below.

VI. RESULTS AND DISCUSSION
All participants finished the training scenario successfully

and with no difficulties. They all repeatedly used one screen
template with the same icons for the training scenario design.
All of them also managed to create and populate the testing
scenario design. The participants’ feedback from both the
pilot and the actual usability test session is described in
accordance with the aforementioned four areas of the
authoring tool interface features.

A. Buttons area
Here is the description of feedback from all the participants

regarding the available buttons in the button area. All
participants understood the use of each button on the interface.

Figure 2. HIV pre-counselling scenario used for the training stage
for all participants

1) ‘Add screen’: All participants praised the interface
and notification designed for the ‘add screen’ and its process.
The selecting process was easy to understand, the background
colour of the selected screen template changed as it was
clicked, and this assured the participants that the template was
indeed selected.

2) The canvas was cleared immediately after clicking
the “Clear all” button; and the XML output was created and
saved to a file after clicking the “Export to XML” button.
Two participants were also interested in seeing what the XML
output looked like.

3) Suggestion on the additional button: Two
participants said that there should be an ‘Add picture’ button
that they can use to add pictures to the screens, which works
similarly to the ‘Add video’ for adding videos to the screen.

B. Video Area
This section describes feedback obtained about the video

area.

1) Adding video to the video area: All participants
found the video addition process to the video area easy to do.

2) Suggestion of a scrollbar: One participant suggested
that there should be a scrollbar in the video area, so that
multiple videos which will be added to the video area can be
seen.

3) Suggestion of video controls: One participant
suggested that there should be ‘video control buttons’ that
show on each video in the video area, when the mouse is
hovered over them, so that he could click on these video
controls to play each video.

C. Icon tabs area
All participants could navigate through the icon tabs easily.

Names of all the icons appeared when the participants moved
the mouse over them. Two participants commented that the
tooltip assured them that they were choosing the icon with the
correct semantic meaning to drag to the screens. Two
participants struggled to find the ‘home’ and the ‘exit’ icons
as they expected to find these icons under the navigation icon
tab instead.

D. Canvas Area
This section presents the feedback regarding the screen’s
components when the screens were already added to the
canvas area.

1) Adjustment of the screen and its component sizes:
All participants disliked that the components of the screen
remained in the same size and position when the screen was
resized. They then had to resize and position each of them
one by one. So, two participants suggested that the whole
screen and its components should be proportionally resized
all at once.

2) The design of the default screen templates: One
participant found the default screen templates limited in terms
of design. Most of the component areas were fixed in their
position, which did not allow the user to modify the default
design. One participant mentioned placing the ‘next’ and

‘back’ buttons on the sides of the screen, whereby the default
screen template did not match this need. Therefore she
suggested having a blank screen template available for users
to customize to their own screen design(s).

3) Screen links: All participants found the screen
linking option easy to understand and use; however, they
preferred that the linking process be done with fewer mouse
clicks. The linking line should go around the screens which
lie between the two indicated screens instead of going
underneath them. With the suggested linking line, it would be
easier for the user to trace back and recheck each link. In
addition, one participant suggested that the line indicating the
link should have a message that indicates its origin and the
destination of linking.

4) Drag and drop option: All participants said that they
liked the drag and drop options for adding icons and videos to
the screen. It was observed that all participants missed the
icon drop area several times when they were populating the
screens with icons. However they tried again even though the
authoring tool did not give them any warning/notification

The table below lists features that the participants
suggested the authoring tool should have. Participants made
these suggestions during the feedback session, when they
were asked about what they would add to the authoring tool.
These features will be added to the authoring tool and will
also be evaluated for usability in the next iteration.

TABLE 1

SUGGESTIONS OF ADDITIONAL FEATURES OBTAINED FROM THE PARTICIPANTS

Feature(s) Motivation
Zoom in and out Helps authors to their whole

scenario design outline without
having to scroll up or down. This
feature will also enable the author
to focus on one screen or part of
the screen at a time

Copy and paste To duplicate screens that are
already populated; and modify
them for a similar purpose so that
there won’t be a need to start
over all the time.

User guide and help function To enable the author to learn to
use the authoring tool
independently and to get
assistance in the absence of the
researcher.

Tooltip text on buttons and
mouse-hovers

Tooltip text on a button or
mouse-hover option reminds the
author what each button or option
is used for.

Scenario design simulation This gives authors an idea of how
the scenario would look like as a
real app and also to confirm that
the links have been defined
correctly.

Undo and redo This option helps to recover from
errors or to repeat recent events.

Despite all the recommendations for improvement, all
participants felt that the authoring tool could assist and
empower their capacity greatly to create a communication
flow to use with a Deaf counterpart. All participants praised
the authoring tool, saying that it was easy to use and it saved

a lot of time since most of the usability session tasks were
completed within few minutes, by just clicking and dragging
items to the screens in the canvas. They also mentioned that
they would like to use it in the future.

VII. CONCLUSION AND FUTURE WORK

The results indicate that there are several additional
features required from the authoring tool to improve its
usability. The robustness of the authoring tool needs to be
thoroughly evaluated before the taking it to its potential users
for usability testing of the next iteration. The creation of the
three limited domain scenarios (HIV pre-counselling, ICDL
course lessons and rebuilding a thread of the SignSupport
pharmacy app) demonstrates that the authoring tool can
generalise SignSupport scenario creation for limited domain
communication between Deaf and hearing people. The reuse
of screen templates and data assets (icons and videos),
combined with the production of an XML file representing a
given scenario, appear to indicate that the authoring tool can
generalise the SignSupport mobile app for multiple signed
languages and mobile platforms.

The next step is to improve the authoring tool by fixing its
errors and adding features recommended by the participants.
Another usability testing exercise will then be conducted with
more participants and more limited domain scenarios.
Thereafter, one complete limited domain scenario will be
built using the authoring tool, with recorded SASL videos
with the help of a Deaf person and a SASL interpreter. Then
that scenario can be evaluated with Deaf participants. That
requires a fully functioning XML parser. The XML parser
will enable the authoring tool to produce a mobile app that
can be run on a mobile phone. Note that signed language
videos will have to be recorded separately, then integrated
into the scenario. Another possible future effort would be that
the authoring tool connects to a webcam. The webcam could
be used to record sign language videos while a scenario is
being designed. A Deaf person or any person that can sign
fluently could do this. The recorded sign language videos
could also be edited within the authoring tool and then added
to the scenario being created. Once the scenario is complete,
it can be installed to a mobile phone, together with the
recorded signed language videos, and be made available for
use immediately.

ACKNOWLEDGMENT
We thank the Deaf Community of Cape Town for their
involvement. Thanks also to George Ng’ethe, Marshalan
Reddy, and Edwin Blake at UCT for their collaboration on
this project. We also thank Telkom, Cisco, Aria Technologies
and the THRIP (Technology and Human Resources for
Industry Partnership) initiative of the South African
Department of Trade and Industry for financial support via
the Telkom Centre of Excellence (CoE) programme. THRIP
funding (project TP13072623839) is managed by the National
Research Foundation (NRF). Any opinion, findings and
conclusions or recommendations expressed in this material
are those of the authors and therefore the NRF/THRIP does
not accept any liability in regard thereto.

REFERENCES
[1] Blake, E., Tucker, W., & Glaser, M. (2014). Towards communication

and information access for Deaf people. SACJ, (54), 10–19
[2] Motlhabi, M. B., Glaser, M., Parker, M., & Tucker, W. D. (2013).

SignSupport: A Limited Communication Domain Mobile Aid for a
Deaf patient at the Pharmacy. In R. Volkwyn (Ed.), Proc. SATNAC (pp.
173–178). Stellenbosch, South Africa; Pretoria: Telkom.

[3] Looijesteijn, K. (2009). The design of a Deaf-to-hearing
communication aid for South Africans. MSc thesis, Delft University of
Technology, The Netherlands.

[4] Mutemwa, M., & Tucker, W. D. (2010). A mobile Deaf-to-hearing
communication aid for medical diagnosis. In D. Browne (Ed.), Proc.
SATNAC (pp. 379–384). Stellenbosch, South Africa; Pretoria: Telkom.

[5] Chininthorn, P., Glaser, M., Freudenthal, A., & Tucker, W. D. (2012).
Mobile Communication Tools for a South African Deaf Patient in a
Pharmacy Context. In P. Cunningham & M. Cunningham (Eds.), Proc.
ST-Africa. Dar es Salaam, Tanzania; Dublin: IIMC International
Information Management Corporation.

[6] Motlhabi, M. B., Glaser, M., Parker, M., & Tucker, W. D. (2013).
SignSupport: A Limited Communication Domain Mobile Aid for a
Deaf patient at the Pharmacy. In R. Volkwyn (Ed.), Proc. SATNAC (pp.
173–178). Stellenbosch, South Africa; Pretoria: Telkom .

[7] Gorman, W., Kniffin, B., & Oster, S. (2001) Web page authoring tool.
U.S. Patent Application 09/917,435.

[8] Pressman, R. S. (2005). Software engineering: a practitioner’s
approach. McGraw Hill, 306-307.

[9] Mace, R. (1997). What is universal design. The Center for Universal
Design at North Carolina State University. Retrieved Retrieved
November, 19, 2004.

[10] Shneiderman, B. (2003) Designing the user interface. Pearson
Education.

[11] Motlhabi, M. B., Tucker, W. D., Parker, M. B., & Glaser, M. (2013,
December). Improving usability and correctness of a mobile tool to
help a deaf person with pharmaceutical instruction. In Proc. DEV
(Article 13). ACM.

[12] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau,
F. (1998). Extensible markup language (XML). World Wide Web
Consortium Recommendation REC-xml-19980210. http://www. w3.
org/TR/1998/REC-xml-19980210, 16.

[13] Hayes, G. R. (2012). Taking action in your research. Interactions,
19(4), 50–53.

[14] Jaspers, M. W. (2009). A comparison of usability methods for testing
interactive health technologies: methodological aspects and empirical
evidence. International journal of medical informatics, 78(5), 340-353.

[15] Tongco, M. D. C. (2007). Purposive sampling as a tool for informant
selection. A Journal of Plants, People, and Applied Research, Vol. 5,
pp. 147-158.

Lindokuhle S. Duma received a BSc Honours in Computer Science
in 2013 from the University of the Western Cape (UWC) and is
presently studying towards an MSc with Bridging Applications and
Network Group (BANG) at the same institution. His research
interests include Deaf communication tools, authoring tools and
cross-platform solutions. Duma is a Telkom bursar.

Prangnat Chininthorn received her Master’s in 2011. She carries
on her work to improve communication problems between Deaf and
hearing people in health context through her PhD studies in the
collaboration of Delft University of Technology and University of
the Western Cape.

Meryl Glaser has an MSc in Human Communication specializing in
Deaf People from the City University in London. Her research
interests include Deaf education, communication, SASL and Deaf
adult literacy, both text and ICT.

William D. Tucker is an Associate Prof. in Computer Science at
UWC and leads the BANG research team there. His main research
interests include community-based ICT4D projects and network
technologies.

