
Performance Evaluation of a Wireless Network using a
VoIP Traffic Generator on a Mobile Device.

Ghislaine L. Ngangom Tiemeni Isabella M. Venter William D. Tucker
Department of Computer Science Department of Computer Science Department of Computer Science
 University of the Western Cape University of the Western Cape University of the Western Cape
 Private Bag X17 Private Bag X17 Private Bag X17
 Bellville, 7535 South Africa Bellville, 7535 South Africa Belville, 7535 South Africa
 +27 21 959 3010 +27 21 959 3010 +27 21 959 3010

3261404@myuwc.ac.za iventer@uwc.ac.za btucker@uwc.ac.za

ABSTRACT
The problem of generating different patterns of traffic to
emulate real user behaviour is receiving considerable attention
with the construction of new and more complex network
architectures. The theoretical modelling of waveforms or
signals that flow through networks is valuable in a variety of
scenarios including performance analysis and the design of
communication systems. In the literature, many computer-based
performance evaluation tools have been discussed. However,
these tools lack the ability to run on affordable technologies
such as mobile phones. The fundamental contribution of this
work is the design of a traffic generating tool called MTGawn
which is able to run on a mobile device. Design Science
Research was the research methodology used for the design and
deployment of a prototype of the proposed system. VoIP traffic
was emulated using an implementation of well-known real time
transport protocols such as RTP and cRTP, and
parameterization was defined by using three codecs namely:
G.711, G.723, and G.729. An evaluation was performed in a
laboratory wireless network testbed and preliminary results
were collected and analysed. The results of the experiments
show that such a measuring instrument can be deployed on a
mobile phone. More experiments are being done to ensure the
accuracy of the data and also to compare the results with that of
computer-based systems. Furthermore additional functionalities,
similar to the functionality found on the computer-based open
source tools, are being added to the mobile tool.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability] Performance Analysis
and Design Aids; C.4 [Performance of Systems] Measurement
techniques, Performance attributes

General Terms
Measurement, Performance, Experimentation

Keywords
Traffic generator, VoIP emulation, Mobile application,
performance evaluation.

1. INTRODUCTION
Wireless packet-switched networks have grown exponentially
since sending data through the Internet rather than through the
Public Switched Telephone Network (PSTN) has become a
better option in terms of cost for both users and service
providers. This reduction of telephony cost over Internet
protocol (IP) networks added to the dramatic increase of mobile
phone usage and has created a huge demand for voice
applications over IP networks [12]. Consequently, the load on
IP networks has increased dramatically with the result that
bandwidth has become a real problem. Lack of bandwidth
prevents users from generating and sharing content and affects
the quality of service (QoS) of real time applications such as
voice over IP (VoIP), which are very sensitive to delay. A high
packet loss ratio and network delay also has a negative impact
on the quality of multimedia transmission. Network traffic
generation is useful when performing the measurement of
traffic load to improve throughput and to limit delay for
services such as VoIP, in order to optimize end-user experience.

In the literature, researchers rely on both passive and active
monitoring techniques for the evaluation of networks. While
passive monitoring consists of packet capture and classification,
the active approaches generate and inject test packets into the
network or send packets across the network and extract
performance metrics at the reception of the packets [3, 9, 11,
17].

The performance monitoring tools presented in the literature are
all PC-based. This paper investigates the design of a framework
capable of generating network traffic representative of a wide
range of traffic conditions on a mobile device. The aim of this
research is to make a mobile tool available to evaluate the
performance of wireless networks in remote areas where the
deployment of computers or dedicated traffic generators would
be difficult and impractical. For this purpose, a mobile tool
namely MTGawn (Mobile Traffic Generator For Analysis of a
Wireless Network) is proposed to ease feasibility testing and
monitoring in the field. The proposed application monitors
mobile phone transmission statistics within any network
interface and emulates real user behavior by generating VoIP
traffic. Furthermore, the generated traffic is captured at the
receiving end of the network for extracting performance metrics
such as delay and jitter.

The rest of the paper is organized as follows. Section 2 gives
some background information about VoIP. In Section 3, some
of the prominent computer-based network analysis tools are
reviewed; Section 4 describes the research methodology—
Design Science Research (DSR)—and methods used to design a
prototype for the mobile traffic generator with analysis
capabilities. Section 5 and 6 describe the setup of the
experiments and the results obtained while using the tool to
evaluate the performance of a wireless test-bed mesh network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

SAICSIT2014, September 29 - October 01 2014, Centurion, South Africa
Copyright 2014 ACM 978-1-4503-3246-0/14/09…$15.00
http://dx.doi.org/10.1145/2664591.2664626

297

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of the Western Cape Research Repository

https://core.ac.uk/display/62635325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

deployed in a laboratory. Finally, Section 7 draws conclusions
and identifies future work.

2. VOICE OVER IP BACKGROUND
VoIP refers to real-time delivery of voice packets across
networks using Internet Protocol. The conversion of an
analogue waveform to a digital form is carried out by a codec.
The voice is divided into data packets and transmitted over the
network. The data is moved between endpoints using a media
protocol called the Real-time Transport Protocol (RTP). VoIP
can use either H.323 and SIP (Session Initial Protocol), or some
other protocol, for voice calls. It can be transported across the
network using one of the common transport protocols such as
User Datagram Protocol (UDP) or Transmission Control
Protocol (TCP). However, the UDP protocol is primarily used
for voice transport so as to decrease overhead and increase
speed and efficiency [22].

In recent years, VoIP technologies have emerged that has led to
voice application becoming one of the hottest trends in
telecommunications. However, as with many other
technologies, VoIP introduced both opportunities and problems
[22]. Although it offers lower cost, greater flexibility and more
features than traditional telephony infrastructures [22], one of
the typical concerns with VoIP is the delay and loss in packet
delivery, which are two important concepts of voice QoS
requirements.

2.1 Real-time Transport Protocol (RTP)
The payload of a voice packet is wrapped in successive layers
of information in order to deliver it to its destination. These
layers are: IP, UDP, and RTP. UDP adds 8 octets, and routes
the data to the correct destination port. It is a connectionless
protocol and does not provide any sequence information or
guarantee of delivery. IP adds 20 octets, and is responsible for
delivering the data to the destination host. It is connectionless
and does not guarantee delivery or that packets will arrive in the
same order they were sent. RTP adds an extra 12 octets to the
payload. In total, the IP/UDP/RTP headers add a fixed 40 octets
to the payload [16].

RTP is an application level protocol, which provides the
transport of real-time data packets. RTP is flexible and provides
the information required by a particular application and will
often be integrated into the application processing rather than
being implemented as a separate layer. A RTP packet format
header contains useful information such as the payload type, the
sequence number and timestamp.

The payload type specifies the format of the payload in the RTP
packet. An RTP sender emits a single RTP payload type at any
given time. An RTP packet can contain portions of either audio
or video data streams. To differentiate between these streams,
the sending application includes a payload type identifier within
the RTP header. This identifier indicates the specific encoding
scheme used to create the payload [14].

The sequence number is a value that is randomly initialized and
incremented by one for each RTP data packet sent. This value is
used at the receiver side to reorder packets and detect losses.

A timestamp is a 32 bytes random initial value used to represent
the sampling instant (or creation time) of the first audio/video
byte in each packet. This value does not represent the actual
time of day when the packet was generated. It is incremented
monotonically and linearly and the resolution of the timer

depends on the desired synchronization accuracy required by
the application [14].

A variant of RTP is compressed RTP (cRTP), which eliminates
much of the overall packet’s header. A cRTP packet has only 2-
4 Bytes of IP/UDP/RTP header. Therefore, the network is more
efficient and the user can place approximately twice as many
calls as compared to a system running standard RTP [13].

2.2 Voice Codecs
VoIP relies on codecs (coder/decoder) to convert analog voice
signals into digital data packets suitable for transmission over a
digital network and reverses the process when the digitized
voice reaches its destination. The primary goal of a voice codec
and transmission process is to accurately reproduce the original
speech. The codec ensures that the quality of the voice is as
good as the quality of a call made over a traditional PSTN [15].
The codec determines the actual amount of bandwidth that the
voice data will occupy. It also determines the rate at which the
voice is sampled [16].

A codec is characterized by the number of bits produced per
second and the sample period, which define how often samples
are transmitted. These two parameters determine the size of the
frame [16]. Larger frames allow for more efficient encoding but
introduce larger delays and higher sensitivity to packet loss.
Therefore the choice of a good frame size is equally important
as the choice of codec [6]. The codec samples the waveform at
regular intervals and generates a value for each sample. These
samples are typically taken 8,000 times a second, or 8KHz [16].
These individual values are accumulated for a fixed period
(sample period) to create a frame of data. A packet can contain
one or many frames of data. For example, the G.729a codec
works with a 10 ms sample period and produces a very small
frame (10 bytes). It is more efficient to place two frames in each
packet. This decreases the packet transmission overhead
without increasing the latency excessively [16].

2.3 Voice Quality
Voice quality is affected by both the choice of the codec and
compression methods together with QoS of the network such as
packet transmission delay, jitter, and packet loss caused by
network congestion [15].

The main issue of VoIP is a greater potential for degraded voice
quality due to packet latency when the underlying network links
experience heavy traffic load. When a VoIP media server is
streaming voice traffic, audio data is periodically processed and
sent out over the network. The user then receives packets at
regular intervals. During the process, delayed packets may need
to be dropped so as not to disrupt real-time playback [10].
Packets that contain voice data can be lost for several reasons
including: insufficient bandwidth due to poor capacity planning;
packets arriving at their destination too late; and network
outages. Since voice quality is very sensitive to packet loss
(even 1% packet loss can affect voice quality), such packet
drops caused by delayed packet delivery, can result in degraded
voice quality. Therefore, timely processing and delivery of
audio data is critically important to VoIP services [10].
Voice-carrying packets should not excessively be dropped,
delayed or be subjected to high variation in delay to ensure an
intelligible audio reception [4]. Delay can have a considerable
impact on conversational quality. Delay leads to conversational
interaction problems. For example, it can lead to call
participants interrupting each other (doubletalk) or to excessive
pause in speech. Frequent interruptions can be annoying and
excessive silence periods might be confused with delays in
response, which can change the apparent emotional content of
speech [20].

298

The variation in delay is called jitter, which also causes damage
to voice quality. If the delay variation is too high, packets arrive
too late to be of any use, and are discarded. A jitter buffer helps
reduce the impact of this effect by buffering the packets for a
short while before playing them back. The jitter buffer will also
fix any out-of-order errors by looking at the sequence number in
the RTP frames. This has the effect of smoothing the packet
flow, increasing the resiliency of the codec to packet loss,
delayed packets and other transmission effects. Even though
this technique effectively reduces packet loss, the downside of
the jitter buffer is that it can add a higher delay [1, 2].
Monitoring jitter and packet loss in a network can be achieved
by monitoring the media stream by using Real-time Transport
Control Protocol (RTCP).

3. LITERATURE REVIEW
Network analysis can be phrased as the process of capturing or
monitoring network traffic and inspecting it closely to
determine what is happening on the network [17]. For the
network performance analysis, the purpose is to evaluate a
statistic of a metric related to the performance of the system. In
communication networks, it is very important for network
administrators to be aware of and having to handle the different
types of traffic that are traversing their networks. Traffic
monitoring and analysis is essential in order to more effectively
troubleshoot and resolve issues when they occur [5]. A
performance monitoring system generate or capture
representative packet or flow in real or emulated network
environments and create representative workloads in a
simulation environment. An active or passive monitoring
approach is used to measure performance characteristics of the
traffic.

Numerous network-monitoring tools apply passive techniques
to analyze the performance of networks. Some of the
prominent passive tools include Wireshark and Tcpdump. A
passive approach uses devices or packet sniffers to watch and
capture the traffic flowing on the network. Passive methods
simply perform an analysis of the traffic that flows through the
network, without changing it. They help to determine the
characteristics of the traffic that flows through the measurement
point, like the average rate, the mean packet size or the duration
of the connections [21]. Passive monitoring compute traffic
statistics that are helpful to identify the type of protocols
involved the communication problems and the bandwidth usage
[8].

Initially developed in 1997 by Gerald Combs, Wireshark [17],
previously called Ethereal, has become one of the most popular
tools for network monitoring and performance evaluation.
Wireshark is a network protocol analyzer which can be used to
read and capture files from a variety number of sources
including others sniffers (such as Tcpdump), routers and
network utilities. It works on Windows and UNIX. It uses the
well-known library “libpcap”-based capture format but also has
the ability to read captures in a variety of other formats. It
currently supports over 750 protocols including VoIP.
Wireshark has the ability to read packets and display the ASCII
in an easy to read format. It provides a graphical user interface
to browse the captured data, viewing summary and detail
information for each packet. It implements a filter which helps
to find a desired packet without sifting through all of them.
Wireshark uses both capture and display filters. The capture
filter allows capturing certain types of traffic and the display
filter provides a powerful syntax to sort the captured traffic.

Another prominent passive monitoring tool is Tcpdump.
Tcpdump [9] is a powerful Unix-based command-line packet
analyzer. It also uses libpcap, a portable C/C++ library for

network traffic capture. It has the ability to intercept and display
packets being transmitted or received over a network. Tcpdump
uses a program called Tcptrace to analyze network behavior,
performance of applications that generate or receive network
traffic. Tcptrace [19] is a tool written by Shawn Ostermann at
Ohio University, for analysis of Tcpdump files. It has the ability
to read and analyze a variety of other files generated by several
popular packet-capture programs such as Windump (Windump
is the Windows version of Tcpdump) and can produce several
different types of output containing information on each
connection seen, such as elapsed time, bytes and segments sent
and received, retransmissions, round trip times, window
advertisements, throughput, and more. It can also produce a
number of graphs for further analysis.

Contrary to passive monitoring, which mainly consists of
packet capturing and classification, the active approach injects
test packets into the network or sends packets to servers and
applications, following them and measuring services obtained
from the network. The active approach provides explicit control
of the generation of packets for measurement scenarios. This
includes control of the nature of traffic generation, the sampling
techniques, the timing, frequency, scheduling, packet sizes and
types (to emulate various applications), statistical quality, the
path and function chosen to be monitored [7].

Some of the commonly used performance evaluation tools that
apply the active strategy include Iperf and D-ITG. Iperf [11] is a
tool to measure the maximum TCP and UDP bandwidth
performance and the quality of a network link. It creates TCP
and UDP data streams and utilizes the client/server architecture
to send a select amount of data from an Iperf client to a
listening Iperf server, and measures the time that it takes to
transmit/receive the data. Iperf allows the tuning of various
parameters and UDP characteristics. Iperf reports bandwidth,
delay jitter, datagram loss. Iperf enables an Iperf client to run
multiple simultaneous connections to the server as well as both
sending and receiving of data at the same time.

Avallone et al. developed D-ITG that allows generation of
transport layer traffic (TCP and UDP) and other types of traffic
including VoIP and Video. D-ITG [3] has additional
functionality such as using different network loads or different
network configurations to study scalability problems. It allows
the generation of complex and various traffic sources, and
offers the possibility to repeat many times exactly the same
traffic pattern (not only its mean value) and get information
about both received and transmitted packets. D-ITG enables the
measurement of both the round trip time and one-way delay.

Both passive and active monitoring offers benefits but both
have drawbacks as well. Active techniques create extra traffic
on the network, and the traffic or its parameters are synthetic
(the traffic is either simulated or emulated). However, the
volume and other parameters of the introduced traffic are fully
adjustable and small traffic volumes are enough to obtain
significant measurements. Passive techniques do not have the
overhead that active monitoring has. However, the amount of
data gathered can be extensive especially if one is doing flow
analysis or trying to capture information on all packets. With
passive monitoring, measurements can only be analyzed off-line
and not as they are collected. This creates another problem with
processing the huge data sets that are collected [5]. Yet, the
combination of both techniques can be applied in order to
provide useful results.

4. DESIGN AND METHODS
This section briefly describes the methodology and strategy
used during the research process to design a prototype for the
proposed system as well as the architecture of the proposed

299

system. The methodology used was Design Science Research
(DSR). We follow the approach proposed by Peffers et al. They
suggest six phases (DSRM activities) in the DSR iterative
process [18] (see Figure 1). The knowledgebase of theories and
existing artifacts—collected through document analysis and
literature surveys—feeds into the design of the prototype.

Figure 1: Design science research methodology (DSRM)
Source: adapted from Peffers, Tuunanen, Rothenberger and

Chatterjee (2008)

The first phase, the problem identification was done through
document analysis and a literature survey. We identified the
problem as being the inability of existing performance analysis
tools to run on a mobile device. The objective of this research
was to design a new tool that will ease feasibility testing and
monitoring in the field.

During the design and the development phase of the prototype,
one of the main challenges was to find a way to design an easy
to use interface to allow users to generate VoIP traffic using
various configurations. For instance, the user is required to
define the number of voice packets to send as well as the codecs
used to emulate the voice (G.711, G.723, G.729) and the voice
transport protocol (RTP or cRTP). Afterward, we had to create
a model capable to represent relevant features of real-life VoIP
traffic flows. To create a successful model, it is very important
to classify the network activities because different user
activities produce different traffic patterns and each traffic
pattern can be characterized by various parameters. Two
significant parameters were taken into consideration: the size of
each transmitted packet and the elapsed time between packet
transmissions (the rate at which packets are transmitted over the
network). Those parameters vary depending on the codecs. The
protocol used to transport real time data affects the size of
packets as well since RTP adds a 12 bytes header to the payload
while cRTP compressed RTP header adds to 2-4 bytes.

Having chosen a type of codec and a protocol for the transport
of voice, the next step was to emulate VoIP traffic in an
Android environment. The emulation used the implementation
of the UDP transport protocol to emulate UDP packets and send
them over a wireless network through an Android
DatagramSocket. This class implements a UDP socket for
sending and receiving DatagramPackets. A DatagramSocket
object can be used for both endpoints of a connection for a
packet delivery service.

The system was divided in four modules with different roles. In
the first module, a UDP DatagramPacket is used to emulate
voice traffic. RTP packets are created and encapsulated in the
data area of a UDP packet and is subject to the same constraints
as UDP. Then, the second module is in charge of generating and
sending the RTP packet over the wireless network through the
UDP socket. At the receiver’s side, the flows are captured by
another UDP socket and finally proceed by extracting properties
such as packet loss, delay and delay jitter, which are of critical
importance for interactive or streaming multimedia. Figure 2
depicts the architecture of the MTGawn tool.

Figure 2: Architecture of the proposed system.

Once the design and development of a prototype was achieved
throughout the previous phase, the demonstration phase in this
case focused on running the prototype on a wireless laboratory
testbed environment. This test was done to demonstrate that the
prototype was indeed able to generate VoIP traffic on an
Android device over a wireless interface. As a real time
application is very sensitive to delay, the testing was to evaluate
how well and how fast the voice was transmitted. Thus the
following performance metrics were selected: delay and jitter as
being the appropriate evaluation metrics.

The evaluation was carried out by analyzing the log files of
both sender and receiver. Both files contained detailed
information—such as the flow identifier, the packet identifier,
the time sent, the time received and the payload size of the
packet—for each packet sent and received during the generation
process.

5. EXPERIMENTAL SETUP
The experiments for this paper were performed in a testbed
environment deployed in a laboratory. We designed and
configured a small wireless network, which consisted of a Mesh
Potato device acting as wireless access point. We then connect
two Android phones to the wireless network and configured one
as a sender and the other as a receiver. The MTGawn tool was
installed on both phones to send and receive VoIP traffic.

In the experiments, the two Android phones used were identical
in term of hardware and software. Both phones were running
an Android version 4.1.2 with 1GHz Dual core processor and
8GB internal memory. The Mesh Potato (MP) device used is an
Atheros AR2317 system on a Chip (SoC) running Asterisk
1.4.11 Firmware with MIPS 4k processor 180 MHz and 16
MByte RAM. Figure 3 illustrates the network setup.

300

Figure 3: Wireless testbed network setup.

To simulate the VoIP flows, three types of codecs were taken
into consideration: G.711, G.723 and G.729. As mentioned
above, voice quality is affected by packet loss, delay and
variation in delay (jitter). However, for this research
performance metrics of interest were delay and jitter. These
performance metrics were computed as follow:

1. Delay (1): If Si is time transmitted at the sender for packet
i, Ri is the time of arrival at the receiver for packet i, then
for two consecutive packets sent i and j, Delay Di is to be
expressed as:

The variation in delay is defined as the difference D in
packet spacing at the receiver R compared to the sender S
for a pair of packets. For two packets (i and j), D is
expressed as:

D (i, j) = (Rj – Ri) – (Sj – Si) = (Rj – Sj) – (Ri – Si)

2. Jitter (2): Jitter is computed as the signed maximum
difference in one-way delay of the packets over a
particular time interval [12]. n represents the number total
of packets transmitted.

Jitter (Ri – Ri-1) – (Si – Si-1)] (i, i-1)]

The experiments involved the sending of several flows for
every codec type. Each flow contained 1000 packets of a codec
equivalent to a VoIP call. Each codec has its own standard
parameters as depicted in Table 1.

Table 1: Parameters for each codec [16].

Codecs G.711 G.723 G.729

Sample period (ms) 20 30 20

Frame size
(payload)

160 20/24 20

Rate (Packets/s) 50 33 50

Bandwidth (Kbps) 64 5.3/6.4 8

The higher the bit-rate (bandwidth) used for the codec, the
better the voice quality. However, higher bit rate codecs take up
more space on the network and also allow for fewer total calls

on the network [13]. So it is required for a codec to use low
bandwidth.
Long sample periods produce high latency, which can affect the
perceived quality of the call. Long delays make interactive
conversations difficult, with the two parties often talking over
each other. Based on this fact, the shorter the sample period, the
better the perceived quality of the call. However, the shorter the
sample period, the smaller the frames and the more significant
the packet headers become. For the smallest packets, the packet
headers take up over half of the bandwidth used; which is not an
advantageous case [16].

6. RESULTS
Experiments, as described in the previous section, were
executed in order to evaluate the performance of a wireless
network testbed by means of generating VoIP traffic on an
Android device.

Two iterations of the DSR cycle were executed. In the first DSR
cycle, the focus was on creating an easy to use interface on an
Android device. This task was very challenging due to the
screen size limitation together with the limited computing
power of the Android mobile device. Figure 4 and Figure 5
present some screen shots of the user interface of the MTGawn
traffic generator on an Android device.

Figure 4: Flow sender interface

301

Figure 5: Flow modelling interface

During the second DSR cycle, voice traffic was emulated
according to the parameterization defined by each codec and a
RTP packet was created and encapsulated in a UDP packet to
carry the voice. At the sender side, a total number of 10 flows
(1000 packets per flow) were generated and transported over
the network using UDP sockets to minimize delay. At the
receiver side, the packets were captured and performances
metrics such as delay and jitter were extracted. Figure 6, Figure
7 and Figure 8 illustrate the jitter variation in milliseconds
(depicted on the y-axis) for 10 flows (depicted on the x-axis)
obtained for each codec, respectively.

Figure 6: Jitter variation for G.711 codec

Figure 7: Jitter variation for G.723 codec

Figure 8: Jitter variation for G.729 codec

As can be seen from these figures that the MTGawn tool
effectively shows the jitter variation for the three codes: for the
G.711 codec, we observed that the jitter vary between 0,25 ms
and 0,56 ms for each flow sent: and we observed a jitter
variation from 0,27 ms to 0,42 ms for the G.723 codec and a
jitter variation from 0,17 to 0,38 for the G.729. From these
graphs it appears that the network is stable and the jitter is
within a specific range for all three codecs.

7. CONCLUSION AND FUTURE
WORK

In this paper, we proposed MTGawn, a tool for a mobile device
to evaluate the performance of any wireless network in terms of
delay and jitter by emulating and generating VoIP traffic. The
tool can emulate both RTP and cRTP packets according to the
parameterization defined by three different codecs (G.711,
G.723 and G.729). The fundamental contribution of our work
was the design of a traffic generator that is able to run on a
mobile device. An evaluation was performed in a laboratory
with a wireless network testbed and preliminary results were
collected and analysed. This research reports on a limited
number of experiments. Currently more experiments are being
done to ensure the accuracy of the data and also to add
additional functionality to the mobile tool similar to the
functionality found in common open source tools.

Future work includes:

 Sending a large amount of flow and repeating the
same experiments several times in order to achieve
more accurate results by including more samples for
each codec;

 Emulating voice traffic using other types of codecs;

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Jitter
(ms)

Number of flows

G.711

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

Jitter
(ms)

Number of flows

G.723

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

1 2 3 4 5 6 7 8 9 10

Jitter
(ms)

Number		of	flows

G.729

302

 Collecting further performance metrics such as the
round trip time (RTT), packet loss and throughput;

 Sending multiple flows simultaneously;

 Testing the tool on an actual rural wireless network;
and

 Comparing the results against a standard PC-based
performance tool such as D-ITG.

8. ACKNOWLEGEMENTS
We thank Carlos Rey-Moreno and Antoine Bagula for their
input. We also thank Telkom, Cisco, Aria Technologies and
THRIP (Technology and Human Resources for Industry
Partnership) for their financial support via the Telkom Center of
Excellence (CoE). This work is based on the research supported
in part by the National Research Foundation of South Africa
(Grant number (UID) 75191). Any opinion findings and
conclusion or recommendations expressed in this material are
those of the authors and therefore the NFR does not accept any
liability in this regard.

9. REFERENCES
[1] Aktas, I., Schmidt, F., Weingärtner, E., Schnelke, C.-J.,

& Wehrle, K. (2012). An Adaptive Codec Switching
Scheme for SIP-based VoIP. Internet of Things, Smart
Spaces, and Next Generation Networking, 347-358.

[2] Alvarion. (2006). Implementing VoIP Service Over
Wireless Network. Alvarion Technologies.

[3] Avallone, S., Pescape, A., & Ventre, G. (2003).
Distributed Internet Traffic Generator (D-ITG): analysis
and experimentation over heterogeneous networks.
International Conference on Network Protocols (ICNP
2003 Poster Proceedings). Atlanta, Georgia.

[4] Barbosa, R., Kamienski, C., Mariz, D., Callado, A.,
Fernandes, S., & Sadok, D. (2007). Performance
evaluation of P2P VoIP applications. ACM NOSSDAV,
7.

[5] Cecil, A. (2012). A Summary of Network Traffic
Monitoring and Analysis Techniques. Conference on
Instruction & Technology (CIT), (pp. 10-25).

[6] Christiansen, T., Giotis, I., & Mathur, S. (n.d.).
Performance Evaluation of VoIP in Different Settings.

[7] Cottrell, L. (2001, March 11). Passive vs Active
Monitoring. Retrieved June 20, 2014, from
http://www.slac.stanford.edu/comp/net/wan-
mon/passive-vs-active.html

[8] Deri, L. (2004). Improving passive packet capture:
Beyond device polling. Fourth International System

Administration and Network Engineering Conference
(SANE 2004), (pp. 85-93). Amsterdam.

[9] Garcia, L. M. (2010). TCPDump & LIBPCAP.
Retrieved 06 20, 2014, from http://www.tcpdump.org/

[10] Heo, J. (2011). Voice over IP (VoIP) Performance
Evaluation on VMware vSphere®5 . Palo Alto CA:
VMware.

[11] Iperf. (n.d.). Retrieved from http://iperf.sourceforge.net/

[12] Jadhav, S., Zhang, H., & Huang, Z. (2011).
Performance Evaluation of Quality of VoIP in WiMAX
and UMTS. 12th International Conference on Parallel
and Distributed Computing, Applications and
Technologies (PDCAT), (pp. 375-380). Gwangju,
Korea.

[13] JSDU. (2006). VoIP overview. JSDU uniphase
corporation.

[14] Marsic, I. (2010). computer networks:performance and
quality of service. New Jersey: Rutgers University (The
State University of New Jersey).

[15] Mundra, S., & Hernandez, C. E. (2004). Patent No.
20040032860. USA.

[16] Newport Networks . (2005). VoIP Bandwidth
Calculation. Newport Networks Ltd .

[17] Orebaugh, A., Ramirez, G., Burke, J., Morris, G., Pesce,
L., & Wright, J. (2007). Wireshark & Ethereal Network
Protocol Analyzer Toolkit. Canada: Syngress
Publishing.

[18] Peffers, K., Tuunanen, T., Rothenberger, M. A., &
Chatterjee, S. (2008). A design science research
methodology for information systems research. Journal
of Management Information Systems , 24(3), 45-78.

[19] tcptrace. (n.d.). Retrieved from http://www.tcptrace.org/

[20] Telchemy. (2006). VoIP Performance
Managemen:Impact of Delay in Voice over IP Services.
Telchemy.

[21] Veiga, H., Pinho, T., Oliveira, J. L., Valadas, R.,
Salvador, P., & Nogueira, A. (2005). Active traffic
monitoring for heterogeneous environments. Fourth
International Conference on Networking (ICN 2005)
(pp. 603-610). Springer-verlag Berlin Heidelberg.

[22] Walsh, T. J., & Kuhn, R. D. (2005). Challenges in
Securing Voice over IP. IEEE SECURITY & PRIVACY,
44-49.

303

