
 

Abstract−Hand-tracking is fundamental to translating 

sign language to a spoken language. Accurate and 

reliable sign language translation depends on effective 

and accurate hand-tracking. This paper proposes an 

improved hand-tracking framework that includes a 

tracking recovery algorithm optimising a previous 

framework to better handle occlusion. It integrates the 

tracking recovery algorithm to improve the 

discrimination between hands and the tracking of hands. 

The framework was evaluated on 30 South African Sign 

Language phrases that use: a single hand; both hands 

without occlusion; and both hands with occlusion. Ten 

individuals in constrained and unconstrained 

environments performed the gestures. Overall, the 

proposed framework achieved an average success rate of 

91.8% compared to an average success rate of 81.1% 

using the previous framework. The results show an 

improved tracking accuracy across all signs in 

constrained and unconstrained environments.  

 

Index terms: hand-tracking, occlusion handling, Scale 

Invariant Features Transform (SIFT), sign language 

recognition  

I. INTRODUCTION 

In recent years, the importance of communication has 

been symbolised by the social and socio-economic 

opportunities it provides [2]. The advancement in mobile 

technology enables millions of people to benefit from this 

rich form of social communication and information 

exchange. Unfortunately, the hearing impaired or Deaf
1
, 

who use sign language as their primary means of 

communication, are unable to interact socially or convey 

information with the hearing population [2]. To bridge this 

communication gap, an automated translation system is 

required. Such a system is complex and encompasses a 

multidisciplinary research area that involves natural 

language processing, linguistics, image processing and 

artificial intelligence. One of the components of the system 

is concerned with the recognition of South African Sign 

Language (SASL) and translating it to English or any other 

spoken language. The recognition of SASL is challenging 

due to the complexities involved in the visual interpretation 

of signed gestures. SASL gestures are collectively 

represented by facial expressions, hand shapes, hand 

 
1 Deaf refers to people that use South African Sign Language as 

their primary language.  

movements and hand location. Recognising hand 

movements and locations fall under the broad term hand-

tracking. In SASL, the right and left hands have individual 

characteristics that convey different meanings. Therefore, to 

accurately translate from SASL to a spoken language, it is 

necessary to identify and track each hand independently. 

When distinguishing between the hands while tracking, 

three additional challenges should be addressed: (1) dealing 

with occlusion factors; (2) identifying the right and left 

hands during and after occlusion has occurred; and (3) 

recovering from a failure while tracking. 

In this paper, a tracking recovery algorithm is proposed 

that builds on an independent hand-tracking framework 

presented in our previous research [1], which will be 

referred here forth as the initial framework. The research 

involves optimising the initial framework to better handle 

occlusion. It integrates the tracking recovery algorithm to 

improve the discrimination between and tracking of the 

hands. The optimised framework, referred to hereafter as the 

proposed framework, identifies skin clusters that are likely 

to be the hands or face using connected components 

labelling, thereby reducing noisy areas. Each cluster is 

assigned a unique label to identify a hand as either right or 

left. These clusters are associated temporally in a non-

Bayesian framework and are tracked throughout an image 

sequence.  

When tracking the hands, many strong features exists that 

links the hand to the arm, clothes, watch or any other object 

that is in close proximity to the hand. These features are 

referred to as support features and are collectively used to 

assign a “confidence” vote to skin clusters identified in an 

image. The skin clusters with the highest votes are used to 

automatically identify and relocate the hands associated with 

their respective support features. Support features that 

belong to the set of foreground keypoints are given a higher 

vote than those that belong to the set of background 

keypoints. Overall, an average tracking success rate of 

81.1% and 91.8% was obtained using the initial and 

proposed framework, respectively.  

The rest of the paper is organised as follows:  section II 

discusses the related work; section III presents the optimised 

framework and integration of a novel tracking recovery 

algorithm; the experiments and results are analysed in 

section IV; and section V concludes the paper and proposes 

future work. 
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II. RELATED WORK 

The process that continuously estimates the hand location 

and movements throughout an image sequence is referred to 

as hand-tracking [5]. A number of hand-tracking approaches 

have been proposed and vary from those using an auxiliary 

means to those using a purely passive means.  

Auxiliary hand-tracking makes use of devices such as 

data suits, gloves or position markers to measure the spatial 

positions and joint angles of the hands [11]. Although the 

hardware used in these approaches usually offer near to real-

time performance and more accurate information, it is an 

impractical and inconvenient solution to sign language 

recognition. Furthermore, it would require calibrating the 

equipment to suit each individual’s needs.  

Passive hand-tracking approaches are able to determine 

the spatial positions of the hands by using various image 

processing algorithms in non-invasive ways. These 

approaches offer more practical solutions and have the 

capabilities of achieving near to real-time performance.  

Roussos et al. [15] proposed a framework for the 

recognition of sign language videos. They applied skin 

colour modelling along with morphological filtering to 

detect and segment the hands. They handled occlusion by 

tracking the hands and face using a forward-backward 

prediction based on statistical prior information. They 

further extracted hand-shape features using affine modelling 

of hand-shape appearance images to determine the hand 

pose. Their framework was evaluated on the BU400 dataset
2
 

and obtained a sign recognition accuracy of 83% and 82% 

based on 26 and 40 sign language gestures respectively.  

In Liu and Zhang [12], a particle filter framework 

combined with local binary patterns and colour cues was 

used to track the hands. They showed that by combining 

local binary patterns with colour cues, a more robust hand-

tracking method can be achieved than with either cue alone. 

Similarly, Spruyt et al. [16] used a particle filter framework; 

they however combined it with colour and motion cues to 

track the hands. They suggest that by combining skin colour, 

edge detection, colour clustering and motion detection, it 

increases their framework against illumination invariance. 

They furthermore suggest that by combining the colour and 

motion cues in their particle filter framework, their system 

would automatically recover from failure and would not 

need an initialisation phase. Their results were visually 

presented.  

The advantage of following a passive approach to sign 

language recognition compared to auxiliary approaches is 

that it is inexpensive and has the capabilities of achieving 

near to real-time performance. This research therefore 

follows a passive approach as it would be more applicable to 

hand-tracking in unconstrained environments.  

Many researchers, who proposed passive methods to 

detect and track the hands, do not make provision for a 

recovery phase in their tracking algorithm. Although Spruyt 

et al. [16] suggest their particle filter framework 

automatically recovers from failure, it can be argued that 

particle filters alone cannot be used as a tracking recovery 

mechanism, since particle filters largely depend on its 

likelihood function to make a decision on which object to 

track. This is further complicated when the hand shape 

changes.  

 
2 Boston University American Sign Language dataset. 

When attempting to recover from tracking failure, one 

needs to consider that objects surrounding the tracked object 

may possess as much information as the tracked object 

itself. Therefore, instead of explicitly finding the tracked 

object, the surrounding objects can be used to assist in 

locating the tracked object. Using surrounding objects is 

very useful especially in cases where the appearance of the 

tracked object changes considerably.  

Cerman et al. [4] applied this concept to the general 

object tracking case. They proposed a tracker, based on 

foreground and background appearance cues, that identifies 

which image regions move coherently with a tracked object. 

Their tracker is characterised by an object model, 

comparison model and the object location. The object model 

refers to the appearance of the tracked object and the 

companion model refers to the image regions used to assist 

tracking where it is adapted on-line in each step of tracking. 

They suggest the size of the companion model should cover 

an area larger than the tracked object. They subjectively 

evaluated their tracker on four video sequences and showed 

a positive result.  

In order to recover from tracking failure, the same 

concept was used in this research and a novel tracking 

recovery algorithm is proposed, largely inspired by work of 

Cerman et al. [4]. 

III. IMPROVED HAND-TRACKING FRAMEWORK 

In the following sub-sections, the optimised framework 

will be discussed. The discussion will deal with the 

improved data association of skin identified clusters to 

better handle occlusion. It will also discuss the tracking 

recovery algorithm and how it is integrated into the 

framework. 

A. Cluster Selection 

In this research, the method to select skin clusters in a 

frame is similar to the approach discussed in [1]. In order to 

identify skin-coloured pixels in an image, some researchers 

employ a trained model [8]. These models rely on the skin-

colour range on which it was trained and need to be re-

trained if small changes should occur or it would easily fail 

if large changes should occur. The proposed research 

method employs a more efficient means to directly identify 

skin-colour distribution of an individual in an image and 

adaptively changes the colour distribution throughout an 

image sequence. The skin-colour distribution is determined 

by using the area around the nose to determine the skin-

colour of an individual in every frame [1]. This ensures that 

the optimal colour distribution can be extracted without 

being negatively affected by any eyes, lips or facial hair. By 

back projecting the colour distribution, the skin identified 

areas such as the hands and face, would be highlighted. To 

extract these regions of interest as clusters, connected-

components labelling is used. 

Connected-components labelling is a sequential two-pass 

algorithm that assigns a set of pixels into components using 

the level of its pixel connectivity and thereafter labels each 

pixel accordingly. The algorithm passes through each two-

dimensional (2D) binary image twice, and can use either 4-

connectivity or 8-connectivity labelling [6]. 

This research uses the 8-connectivity labelling mask since 

connected pixels will be searched for in each direction. In 

the first pass, the mask moves from the top-left to the 



 

bottom-right of an image where each skin-coloured pixel is 

assigned a temporary label based on the values of 

neighbouring pixels that have been processed. If none of the 

top-left four neighbouring pixels is a skin-coloured pixel, 

then the current pixel would be assigned a new label; 

however, if there is only one neighbouring skin-coloured 

pixel, then its label is assigned to the current pixel. 

Furthermore, if a skin-coloured pixel contains two or more 

neighbouring skin-coloured pixels with different labels, then 

these neighbouring pixels’ labels would be stored as being 

equivalent. After the first pass, the equivalences are used to 

determine equivalence classes where each class is assigned a 

unique label. During the second pass, the label of its 

corresponding equivalence class would replace each 

temporary label [1]. 

After applying the connected-components labelling 

algorithm, the skin coloured regions of interest are extracted 

as clusters. This is followed by the analysis of each skin-

coloured region, where regions larger than a face or smaller 

that the fist are discarded. This analysis allows the amount 

of noise in a frame to be reduced [1].  

B. Dealing with Occlusion 

Tracking the right and left hands of an individual is a 

challenging task since the hands are similar and the 

differences cannot be distinguished easily. Moreover, the 

colours of the hand and face are almost identical, which 

further complicates the task. It therefore becomes even more 

challenging when tracking a hand as the tracking may easily 

fail when the tracked hands crosses the opposite hand or 

face. 

To deal with the tracking of multiple objects, such as hands, 

that share similar characteristics, this paper proposes a more 

effective method compared to the previous method [1]. 

The proposed method extends the work of Argyros and 

Lourakis [3]. Their method, to handle and track multiple 

skin-coloured objects, is based on a static background 

environment and treats each object as a separate entity. This 

research extends their method to track multiple objects in 

unconstrained environments. It identifies each object and 

distinguishes it from other objects: the right hand is 

identified and distinguished from the left and the hands are 

distinguished from the face. 

The method operates by associating each skin cluster with 

an object hypothesis and then associating it with time. The 

correspondence between each cluster and object is however 

not necessarily one-to-one. It is assumed that an object may 

be associated with only one cluster and that a cluster may be 

associated with one or many objects [3]. It is also assumed 

that the pixels of a cluster can be approximated by an 

ellipse, which is valid for objects such as hands [3]. Let   

be the numbers of clusters present in a scene at time   and 

  ,      , be the set of skin pixels that image the  -th 

object [3]. Furthermore,           
    

           denotes 

the ellipse of an object where (   
,    

) is its centroid, while 

      and    is the length of the major and minor axis of the 

ellipse and its orientation on the image plane respectively 

[3]. Moreover, let       
   ,       

    and       
   , 

denote the union of skin-coloured pixels, object pixels and 

ellipses respectively. Therefore by associating the ellipses 

with a cluster across time, multiple clusters can be tracked 

even when occlusion occurs.  

C. Associating hands with object hypothesis 

After applying the connected-components labelling 

algorithm, the skin clusters are identified in a 2D binary 

image. To identify only the skin clusters that are of interest, 

such as the hands, a background subtraction algorithm is 

applied to the image sequence. The background subtraction 

algorithm is based on a mixture of Gaussians that constantly 

updates the background model in every frame. This results 

in a foreground mask. This mask is logically AND-ed with 

the skin detected image to produce a combined image that 

only highlights skin clusters that have moved, as seen in 

Figure 1. 

 

 
Figure 1: Logically AND-ed motion and skin image to form the 

motion-skin image. 

 

When associating an object hypothesis or ellipse with a 

cluster, the distance of a pixel to an ellipse is used to 

determine if the ellipse belongs to the cluster or not.   

The distance,       , from a point          to an ellipse 

               is defined as follows [3]: 
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]  

    

 
 
    

 
  

 

If the distance,       , is less than one, equal to one or 

greater than one, then the given pixel exists within, on or 

outside the ellipse respectively. In the initial frame of the 

image sequence, the two-object hypothesis or ellipses are 

assigned to the hands, one for the right hand and one for the 

left. This assumption is valid since individuals begin signing 

in the neutral pose, with the arms and hands on the side of 

the body. 

The parameters for these initial ellipses are directly 

derived from the statistics of the distribution of pixels 

belonging to a cluster, where the center of the ellipse is 

equal to the center of the cluster and the rest of the 

parameters are computed from the covariance matrix of the 

bivariate distribution of the location of the clusters’ pixels 

[3]. Therefore, it can be shown that if the distribution is 

represented by   *
      

      
+ then the rest of the ellipse 

parameters can be defined by [3]: 

  √   ,   √   ,        (
    

      
) 

where, 
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D. Tracking the hands 

When tracking the hands, there are two rules that govern 

the association of a cluster’s pixels to an ellipse, as stated by 

Argyros and Lourakis [3]: 



 

1) If a skin-coloured pixel of a cluster is located 

within an ellipse then that pixel is considered to 

belong to that ellipse. 

2) If a skin-coloured pixel is located outside both 

ellipses, then it is assigned to the ellipse that is 

closest to it. 

To handle cases where an ellipse belongs to more than 

one cluster, the following third rule is applied [3]: 

3) If there exists only one cluster that is assigned to an 

ellipse and, at the same time, not assigned to any 

other ellipse, then the ellipse is assigned to that 

cluster. Otherwise the ellipse is assigned to the 

cluster with which it shares the largest number of 

skin-coloured pixels. 

After assigning the skin-coloured pixels to the ellipses, 

the parameters for the ellipses are re-estimated based on the 

statistics of the pixels assigned to them. 

E. Predicting hand locations 

In order to handle occlusion, pixel data from the third 

frame onwards are associated and based on the ellipses that 

have been formed in the previous two frames. Based on the 

assumption that the immediate past can be used to predict 

the immediate future, a simple linear rule is used to predict 

the location of an ellipse at time  , based on their locations 

at time     and    . Therefore, by only using the center 

point of an ellipse in the previous two frames while keeping 

all other parameters the same, the location of the current 

ellipse can be predicted. This can be formally stated as  

  ̂        
̂    

̂           

where 

(   
̂       

̂   )                     

This equation therefore asserts that by keeping all other 

parameters the same, the predicted ellipse will maintain the 

same direction and magnitude of translation on the image 

plane. These parameters are however updated when the 

skin-coloured pixels in an image are assigned to the 

predicted ellipse. The updated parameters can therefore be 

used as a good indication of the size and angle of each in the 

current frame. Examples of the tracking process output are 

shown in Figure 2. 

 

 
Figure 2: The tracking process output. 

F. Handling stationary cases 

In sign language, gestures are made up of movement-hold 

sequences. In cases where the hands become stationary (a 

hold position), it would begin to form part of the 

background model and therefore not be highlighted in the 

combined motion-skin image. To deal with such cases, each 

current ellipse is checked for the number of skin pixels that 

are located in the ellipse. If the number of skin pixels is less 

than half of the size of the ellipse, the combined motion-skin 

image is updated using the parameters of the ellipse in the 

previous time step. Given these parameters, the distance of 

each skin pixel in the skin detected image is computed to 

determine if it is located in the ellipse. All skin pixels in the 

skin detected image that exist in the ellipse are then stored in 

a new image, referred to as updated skin image. This image 

is logically OR-ed with the motion-skin image to form an 

updated motion-skin image. Finally the updated motion-skin 

image is used to update the parameters for the current ellipse 

and used to predict the ellipse for the next frame. 

G. Recovering hand-tracking from failure 

Tracking hands in unconstrained environments is a non-

trivial task since objects in the background may negatively 

affect the tracking process. This, in many cases, leads to 

tracking failure [10]. In order to recover from such failures, 

a tracking recovery algorithm is proposed. This algorithm is 

based on the concept that objects surrounding the tracked 

object may possess as much information about the tracked 

object as the tracked object itself.  

This information can be retrieved from the features of the 

surrounding objects. In this algorithm, these features are 

extracted using Scale Invariant Features Transform (SIFT) 

[13] and matched using the Fast Approximate Nearest 

Neighbour Search Library (FLANN) [14]. SIFT has been 

developed to extract highly distinctive invariant features of 

objects that can later be used to perform reliable matching of 

the same object between images. These features possess 

attractive properties such as being invariant to rotation and 

scaling in images as well as being partially invariant to 

changes in illumination and camera viewpoints. To match 

these features, FLANN is used. This library has been 

developed to automatically select the best nearest neighbour 

algorithm and parameters for any given dataset using a cross 

validation approach, thereby minimising the predicted 

search cost while maintaining a high accuracy. 

The proposed algorithm is embedded in the hand-tracking 

framework and operates as follows. While tracking each 

hand, the parameters of the hand are used to set a region of 

interest (ROI) around the hand that is twice the width and 

height of the hand. This region is estimated to be large 

enough to contain any significant object(s) that may link its 

existence to a hand. For each frame, keypoints within this 

ROI are set and its descriptors are extracted using SIFT. 

Descriptors for the right and left hand are then stored in two 

separate databases. This allows features for the right and left 

hand to be matched separately.  

From the second frame onwards in the image sequence, 

keypoints are set and their descriptors are extracted for each 

cluster that exists in the motion-skin image. For each of 

these clusters, the descriptors are matched to the descriptors 

in the respective database. For every successful match, the 

cluster to which the descriptor belongs, will be given a vote 

based on two rules: (1) if the keypoint of the given 

descriptor belongs to a pixel that exists in the motion image, 

then the cluster to which the descriptor belongs, will be 

given a vote equal to two. (2) If the keypoint of the given 

descriptor does not exist in the motion image, then it will be 

given a vote equal to one. This voting strategy is based on 

the fact that objects that move with the hand, support the 

existence of the hand more than objects that are stationary.      

For each cluster, the votes for all the descriptors that have 

successfully been matched are added. Given the total votes 

for each cluster, the cluster with the most votes is assigned 

as the respective hand. This process is illustrated in Figure 

4. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Overview of the algorithm to recover from tracking 

failure. 

IV. EXPERIMENTAL ANALYSIS 

This section describes and analyses the experiments used 

to evaluate the improved hand-tracking framework and 

shows whether the recovery algorithm assists in recovering 

from tracking failure. In the experimental setup, a notebook 

and a single Logitech webcam was used to capture sign 

language video sequences in constrained and unconstrained 

environments with varying levels of illumination. These 

video sequences were captured at approximately 15-20 

frames per second with a resolution of 640X480 pixels and 

an average of 80 frames per video. 

The framework was evaluated (as part of a sign language 

recognition prototype) based on 30 SASL isolated gestures 

that were each carefully selected from the “Fulton School 

for the Deaf SASL Dictionary” [9]. The selected set of 

gestures consists of signs that involve the use of a single 

hand (signs 1 - 10), both hands without occlusion (signs 11 - 

20) and both hands with occlusion (signs 21 - 30). Ten 

individuals with different body types and skin-colour tones, 

ranging from fair skin-colour tones to very dark tones, 

performed the SASL gestures. Each individual performed 

the gestures, in a constrained environment as well as in an 

unconstrained environment. The constrained environment 

consisted of a plain static background so that no background 

objects may interfere with the tracking process. The 

unconstrained environment consisted of a busy background 

with several objects of different shapes and colours that may 

affect the tracking process. The aim of evaluating the 

framework on different environments was to determine 

whether objects moving in the background would negatively 

affect the tracking process. Furthermore, different 

individuals were used to determine how well the tracking 

process performs on the different skin colour tones and body 

types.  

In the evaluation of the framework, the tracking process 

was applied to each video. In each video, the hands are 

located next to the body of the signer in the initial frames 

where the right hand will be on the right side of the body 

and left hand will be on the left side of the body. 

After labelling each hand as either right or left, the hands 

are tracked through consecutive frames in the image 

sequence. While tracking the hands, an enclosed red square 

indicates the hand being tracked is the right hand and an 

enclosed blue square indicates the hand being tracked is the 

left hand, as shown in Figure 2. 

In the case of occlusion, where the one hand completely 

covers the opposite hand, the colour of the enclosed square 

should be either blue or red depending on which hand is in 

front. In the case of partial occlusion, each hand will be 

enclosed with their respective coloured square. If either the 

blue or red square does not surround a hand, then the hand 

to which the square belongs, is lost. By integrating the 

recovery algorithm in the tracking framework, it then 

becomes possible to recover the “lost” hand and continue to 

track the hands independently. 

Subjective evaluation was used for analysis similar to 

other researchers in this field [7, 12]. After applying the 

tracking process to each video, the output was analysed by 

an individual not related to the research. A frame was 

deemed correct only if both the right and left hands were 

tracked correctly, i.e. the red or blue square enclosed the 

right or left hand, respectively. Otherwise, the frame would 

be labelled as incorrect. To calculate the average tracking 

success rate per signed gesture, the number of correct 

frames was divided by the total number of frames in the 

video. A summary of the tracking success rates for each 

framework in constrained and unconstrained environments 

is shown in Figure 3. 

In Figure 3, the results indicate the tracking success rate 

obtained for signs using a single hand (signs 1-10), both 

hands without occlusion (signs 11-20) and both hands with 

occlusion (signs 21-30), respectively. The results also show 

the difference in the average tracking success rate when 

including the recovery algorithm in the framework. From 

the results it is seen that in each group of signs, the recovery 

algorithm has improved the tracking success rate. It also 

shows that when using the initial framework, each sign 

obtains an average success rate greater than 60%. However, 

by using the proposed framework, each sign obtains an 

average success rate greater than 80% in a constrained 

environment and 70% in an unconstrained environment.  

Furthermore, using the initial framework, the average 

success rate across all signs is 83.7% and 78.4% in a 

constrained and unconstrained environment, while using the 

proposed framework results in an average success rate of 

94.6% and 89.0% across all signs in a constrained and 

unconstrained environment, respectively. These results 

suggest that in both frameworks, a higher result is obtained 

 
Figure 3: A summary of the comparison between the initial and the proposed framework in constrained and unconstrained environments. 

 



 

when tracking hands in constrained environments as 

opposed to unconstrained environments; however, by using 

the proposed framework, a higher success rate (89.0%) can 

be achieved in an unconstrained environment when 

compared to using the initial framework in a constrained 

environment (83.7%) and an even higher success rate 

compared to using the initial framework in an unconstrained 

environment (78.4%). Based on these results, the proposed 

framework is well suited for unconstrained environments. 

When analysing the tracking accuracy according to each 

individual signer using the proposed framework, the 

majority of signers obtained an average tracking accuracy 

greater than 84% with a median of 98.4% across all signs in 

a constrained environment and a median of 89.6% across all 

signs in an unconstrained environment. This indicates the 

proposed framework performed well across the different 

skin-colour tones and body types. Overall, the initial and 

proposed framework achieved an average success rate of 

81.1% and 91.8%, respectively. 

V. CONCLUSION 

To provide accurate and reliable hand-tracking, this paper 

proposed an improved hand-tracking framework that 

included a tracking recovery algorithm. It involved 

optimising the framework to increase the effectiveness of 

dealing with occlusion and integrated the tracking recovery 

algorithm to recover from tracking failure and to continue 

distinguishing between the hands. The proposed framework 

uses connected components analysis to identify skin 

clusters, which are likely to be the hands or face. These 

clusters are then assigned unique labels to identify a hand as 

either right or left. While tracking, many strong features 

exists that links a hand to an object that is in close proximity 

to the hand. These features are used to develop a tracking 

recovery algorithm that helps identify and relocate the hands 

in cases where tracking failure may occur.  

This improved framework was evaluated on 30 SASL 

phrases performed by ten individuals in constrained and 

unconstrained environments. Overall, the proposed 

framework obtained an average tracking success rate of 

91.8% compared to an average tracking success rate of 

81.1% using the initial framework. The results show that the 

proposed framework improved the tracking accuracy across 

all signs in both environments.  

To further improve the framework, as future work, an 

explicitly defined hand-detection algorithm could be 

integrated to decrease the search space in each frame. 
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