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Is there evolution in the infrared Tully–Fisher relation? Comparing two
linear regressions
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ABSTRACT
In a recent paper, Puech and co-workers compared K-band Tully–Fisher relations derived
for nearby and distant galaxies, respectively. They concluded that the two relations differ,
and deduced that there is evolution in the Tully–Fisher relations. The statistical comparison
between the two regression lines is re-examined, and it is shown that the statistical test used
gives non-significant results. It is argued that better results can be obtained by comparing
the ‘inverse’ Tully–Fisher relations, and it is demonstrated by two different methods that the
nearby- and distant-sample relations do indeed differ at a very high significance level. One
of the statistical methods described is non-parametric, and can be applied very generally to
compare linear regressions from two different samples.

Key words: methods: statistical – galaxies: evolution – galaxies: fundamental parameters –
galaxies: high-redshift.

1 IN T RO D U C T I O N

Observationally, there is a linear relation between the rotation ve-
locity V and the luminosity of galaxies; this is known as the Tully–
Fisher relation (TFR; Tully & Fisher 1977). Puech et al. (2008)
(hereafter referred to as P2008) discussed evolution in the infrared
(K-band) TFR

M = A + B log V + e (1)

(M, V and e denoting the K-band magnitude, the rotation velocity
and the residual error, respectively) and found evidence for evolution
with redshift. In particular, the authors compared the TFR fit (1) of
a local galaxy sample (taken from Hammer et al. 2007) with a fit
to a sample of distant (z ≈ 0.6) galaxies. They found that the data
were consistent with the assumption that the slopes BL and BD are
the same (where subscripts L and D refer to the ‘local’ and ‘distant’
samples respectively). On the other hand, the authors concluded that
the estimated intercepts AL and AD of the two fits differ significantly.

The statistical test used by P2008, ‘Welch’s t-test’ (Welch 1947;
Kendall & Stuart 1979), is usually used to compare the mean values
of two independent (normally distributed) samples with unequal
variances. In the present context, it takes the form

W = AL − AD√
var(AL) + var(AD)

,

where var(A) denotes the estimated variance of A. The Welch statis-
tic has a Student’s t distribution with approximate degrees of free-
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dom given by (the nearest integer to)

ν = [var(AL) + var(AD)]2

/ {
[var(AL)]2

fL + 2
+ [var(AD)]2

fL + 2

}
− 2,

where f L and f D are the degrees of freedom associated with the cal-
culation of the two variances (Welch 1947). The required numerical
values can be retrieved from table 2 in P2008: for the local sample,
AL = −6.54, var(AL) = 1.332 and f L = NL − 2 = 77 (both slope
and intercept are estimated). For the distant galaxy ‘rotating disc’
(RD) sample, AD = −5.88, var(AD) = 0.092 and f D = ND − 1 =
15 (the slope is fixed at the local value, and only the intercept is
estimated). These numbers give W = −0.50, ν = 78; the signifi-
cance level of the statistic is p = 0.62. A slightly expanded sample
of distant galaxies denoted ‘RD+’ in P2008, has AD = −5.92,
var(AD) = 0.102 and fD = 18 − 1 = 17. The results W = −0.46,
ν = 78 follow, and the significance level of W is p = 0.65. The con-
clusion is that the intercepts AL and AD do not differ significantly. It
is not clear how P2008 arrived at their result of a highly significant
(p � 0.01) difference between the two intercepts.

The residual scatter of the distant TFR is sD = 0.31 (P2008),
while sL = 0.38 for the local sample (Hammer et al. 2007). The
hypothesis of equal variances can be tested by noting that s2

D/s2
L

has an F (ND − 2, NL − 2) = F (14, 77) distribution under H0. The
equal variance hypothesis is comfortably accepted. This suggests
simpler, standard, test procedures for comparing the distant and
local regression lines – these are discussed in Section 3 of this
paper. Section 4 introduces a non-parametric procedure, which –
in contrast to the other methods discussed – does not require any
distributional assumptions to be made. The next section of the paper
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gives a brief motivation for working with the ‘inverse’, rather than
the ‘direct’ TFR. Conclusions are given in the final section of the
paper.

It should be noted that much of the theory dealt with below is
generally applicable to the comparison of two regression relations.

2 W H I C H R E G R E S S I O N ?

Since the question being addressed is whether the TFR is the same
for local and distant galaxies, we have the luxury of choosing be-
tween the ‘direct’ and ‘inverse’ TFRs. The choice can be guided by
the estimation bias expected in the case of the distant TFR.

An important point considered by P2008 is the influence of mea-
surement errors. It is well known that substantial errors in the in-
dependent variable cause the usual least squares estimate of the
slope to be biased (e.g. Fuller 1987). Denoting the independent and
dependent variables by x and y, the ordinary least squares slope
estimator is

B =
∑

i(xi − x)(yi − y)∑
i(x − x)2

= Cxy

Cxx

, (2)

where

Cxy = 1

N

∑
i

(xi − x)(yi − y) Cxx = 1

N

∑
i

(x − x)2 .

If the measurement errors on x all have the same variance σ 2
x , then

the amended estimator

B ′ = Cxy

Cxx − σ 2
x

(3)

is unbiased. If the error variances differ, then

B ′ = Cxy

Cxx − σ 2
x

(4)

replaces (2) (Fuller 1987).
The implications for the subsamples of RD and RD+ galaxies

from the ‘distant galaxy’ sample of P2008 are now considered. If
x = log10 V , then, in terms of V and the error σ V in V , the error in
x is given roughly by

σx ≈ 0.4343
σV

V
.

Using the data in table 1 of P2008, Cxx = 0.00850 and σ 2
x = 0.00817

for the RD sample, and Cxx = 0.00986 and σ 2
x = 0.00828 for the

RD+ sample. It is clear the bias corrections are enormous – in fact
they appear to be grossly overstated. This is not too surprising, as
the simple corrections are really intended for large sample sizes.
Although Fuller (1987) also provides more involved corrections for
smaller samples, the point remains that the amendments to the slope
are highly uncertain. This makes the direct TFR unattractive.

Fortunately, the situation with the indirect TFR is considerably
better. P2008 quote uncertainties of 0.2 mag in M: it follows that
if x = M,Cxx = 0.537, σ 2

x = 0.04 (RD sample) and Cxx =
0.503, σ 2

x = 0.04 (RD+ sample). The slope corrections implied by
this choice of dependent variable are of the order of 8–9 per cent.
For the Hammer et al. (2007) Sloan Digital Sky Survey (SDSS)
data, Cxx = 0.778 if galaxies brighter than MK = −20 are included,
and Cxx = 0.528 if the cut-off is MK = −21. If the same photometric
errors are assumed (σ 2

x = 0.04), the slope corrections are 5.4 and
8.2 per cent, respectively.

Only the inverse TFR

log V = A + BM + e (5)

–24–23–22–21–20–19

1.8

2

2.2

2.4

2.6

M
K

L
o

g
1

0
  

V

Figure 1. The Hammer et al. (2007) SDSS data (solid dots) and the P2008
RD (squares) and RD+ (circles) data. The solid lines are the distant (top) and
local (bottom) inverse TFRs. Application of the bias correction described in
Section 2 leads to the two broken lines.

will be used below. Since the slope corrections for the local and
distant galaxy samples are very similar and small, they will not
be applied in the calculations in Section 3. This has the virtue of
simplicity, at the cost of a slight loss of accuracy.

The local and distant data sets are plotted in Fig. 1, for the choice
of dependent and independent variables just motivated. Also shown
are the two linear regressions without (solid lines) and with (broken
lines) the slope bias corrections.

3 STANDARD STATI STI CAL TESTS

A convenient description of the necessary statistical theory can be
found in section 7.5 of Seber (1977). In a nutshell, the residual sums
of squares calculated under competing hypotheses are compared
using F-tests.

Consider the hypotheses

H0: the two regression lines are completely unconstrained (BD

and BL may differ; AD and AL may differ);
H1: the slopes are the same (BD = BL = B), intercepts may differ

(AD �= AL);
H2: the slopes are the same (BD = BL = B) and the intercepts

are the same (AD = AL = A);
H3: the slopes may differ (BD �= BL), the intercepts are the same

(AD = AL = A).

The sums of squared residuals are calculated under each of these
hypotheses. Under H1, for example, the slope is calculated from the
combined data sets (since the two slopes are postulated to be the
same), but intercepts are estimated separately. The residual sums of
squares are

RSS0 =
NL∑
i=1

(yLi − AL − BLxLi)
2 +

ND∑
j=1

(yDj − AD − BDxDj )2

RSS1 =
NL∑
i=1

(yLi − AL − BxLi)
2 +

ND∑
j=1

(yDj − AD − BxDj )2
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RSS2 =
NL∑
i=1

(yLi − A − BxLi)
2 +

ND∑
j=1

(yDj − A − BxDj )2

RSS3 =
NL∑
i=1

(yLi − A − BLxLi)
2 +

ND∑
j=1

(yDj − A − BDxDj )2 .

(6)

In these equations, subscripts Li and Dj refer to the ith value from
the local sample (i = 1, 2, . . . , NL) and the jth value from the distant
galaxy sample (j = 1, 2, . . . , ND). Parameter estimation under H0

and H2 is straightforward. Under H1,

B =
∑NL

i=1(yLi − yL)(xLi − xL) + ∑ND
j=1(yDj − yD)(xDj − xD)∑NL

i=1(xLi − xL)2 + ∑ND
j=1(xDj − xD)2

AL = yL − BxL

AD = yD − BxD (7)

and under H3,

A = T1

T2

T1 =
⎡
⎣ ∑

i

yLi +
∑

j

yDj −
(∑

i xLi

) ( ∑
j yLj xLj

)
∑

i(xLi)2

−
(∑

i xDi

) (∑
j yDj xDj

)
∑

i(xDi)2

⎤
⎦

T2 =
[
NL + ND −

(∑
i xLi

)2∑
i(xLi)2

−
(∑

i xDi

)2∑
i(xDi)2

]

BL =
∑

i(yLi − A)xLi∑
i(xLi)2

BD =
∑

i(yDi − A)xDi∑
i(xDi)2

, (8)

where bars, as usual, indicate mean values (e.g. Seber 1977).
Estimated parameters and residual sums of squares are given in

Table 1. The residual sum of squares associated with H0 is smallest
– since the largest number of parameters (four) is used to describe
the data. It is closely matched by the models corresponding to H1

and H3 (either intercepts or slopes differ), while the sums of squared

residuals associated with H2 is rather larger. The last column shows
the degrees of freedom, NL + ND − p, where p is the number of
distinct parameters fitted.

The F statistic for comparing hypothesis b to hypothesis a is

Fba = (RSSb − RSSa)/(fb − fa)

RSSa/fa

,

distributed as F (fb − fa, fa). Hypothesis b is rejected in favour of
a if Fba is significantly large.

Comparing H2 to H0, we find F 20 = 20.16, which has a signifi-
cance level of p < 10−6 [F (2, 113) distribution]; the RSS associated
with two distinct regressions is greatly superior to that of a single
regression for both data sets. The statistics F 21 = 40.18 and F 23 =
39.88 are also highly significant, meaning that both the equal slopes,
and equal intercepts, models are significantly better than the equal
regressions postulated by H2. Next, F 10 = 0.29 and F 30 = 0.59,
both are non-significant. This means that H0 cannot be favoured
over either H1 or H3. The conclusion is that either equal slopes or
equal intercepts, but not both, is the preferred model.

Similar results are obtained if the RD sample is expanded to the
RD+ sample, or if the completeness limit for the local sample is
changed to MK < −21.

Understanding of the results above is improved by noting that the
correlation between the intercept and slope estimates is larger than
0.999. This correlation can be reduced by the simple expedient of
centring the independent variable, i.e. subtracting x from all xLi and
xDi. The regression relation is transformed to

y = A′ + B(x − x) + e A′ = A + Bx. (9)

In order to obtain consistent results across all four hypotheses, a
single centring operation – subtraction of the combined sample
mean – is carried out. The results are given in Table 2.

As is evident from inspection of the table, the major effect, as
far as hypothesis testing is concerned, is the increased residual sum
of squares associated with the equal intercepts hypothesis H3. The
statistic F 30 = 23.41 is highly significant, meaning that model A′

L =
A′

D corresponding to H3 is rejected: the uniquely best model is that
of equal slopes but distinct intercepts (H1).

The F distributions of the test statistics rest on the assumption
that the data are Gaussian. The impact of non-normality has been
discussed by, for example, Box & Watson (1962). In the present

Table 1. The results of fitting the models implied by the four hypotheses, to the local and distant galaxy
samples. The last two columns give the residual sum of squares, and the associated degrees of freedom,
for each of the hypotheses. The completeness limit for the local sample is MK < −20 (NL = 101) and the
distant sample is the ND = 16 ‘RD’ galaxies (P2008).

Model (hypothesis number) AL AD BL BD RSS f

0 −0.46 −0.12 −0.123 −0.112 0.3578 113
1 −0.43 −0.33 −0.122 −0.122 0.3587 114
2 −0.19 −0.19 −0.111 −0.111 0.4855 115
3 −0.42 −0.42 −0.121 −0.126 0.3597 114

Table 2. As for Table 1, but with the independent variable (i.e. M) centred. Note in particular that for H3

the residual sum of squares is substantially different from the value in Table 1.

Model (hypothesis number) AL AD BL BD RSS f

0 2.264 −0.12 2.36 −0.112 0.3578 113
1 2.264 2.364 −0.122 −0.122 0.3587 114
2 2.278 2.278 −0.111 −0.111 0.4855 115
3 2.272 2.272 −0.122 −0.054 0.4319 114
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case, the data are close to Gaussian, so that the significance levels
should be reliable. More generally, the test described in the next
section is completely distribution-free.

4 A PER M U TATION TEST

Consider the null hypothesis that the two regression lines are equal.
If this hypothesis is true, then differences in slope and intercept are
due to chance fluctuations. To decide whether the observed intercept
and slope differences are consistent with the null hypothesis, it is
necessary to study the extent of the statistical fluctuations under the
null hypothesis. This can be done without making any distributional
assumptions, by use of a permutation test.

Under the null hypothesis that the two regression lines are equal,
the two samples can be combined into a single sample of size M =
NL + ND. The permutation test is then performed as follows.

(i) The combined sample is randomly subdivided into two new
samples of respective sizes NL and ND.

(ii) A straight-line regression is fitted to each of the two samples
from (i) and the two intercepts and slopes are noted.

(iii) Steps (i) and (ii) are repeated many times (typically a few
thousand).

(iv) The results of steps (i)–(iii) are used to calculate, for each
permutation, a statistic T which measures the difference between
the regression lines fitted to the two samples.

(v) The observed value T∗ of the statistic T , i.e. as calculated from
the nearby and distant samples, is compared to the distribution of
T-values from step (iv). If T∗ is unusual compared to the bulk of
permutation T-values (i.e. if it lies in the tail of the distribution),
then T∗ is declared ‘significant’.

The method is illustrated using the MK < −20 local sample
and the RD+ distant sample. The results of 5000 permutations
are plotted in Fig. 2, in the form of the difference between the
two intercepts (horizontal axis) and the difference between the two
slopes (vertical axis). The pair of observed differences is shown by
the plus sign – it is located near the middle of the narrow cloud of
pairs resulting from the permutation experiment. Its location does
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Figure 2. Each of the 5000 points plotted was calculated from two permu-
tation samples of sizes 79 and 16, respectively, randomly drawn from the
combined nearby (Hammer et al. 2007) and distant (P2008) samples. Each
point shows the differences between the intercepts and the slopes estimated
from the larger and smaller samples. The observed difference is denoted by
the plus sign.
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Figure 3. As for Fig. 2, but after centring the magnitude data (i.e. subtracting
the mean magnitude of the combined sample).

not look particularly remarkable, although it is a little removed from
the bulk of the points.

Fig. 3, based on 5000 permutations of the data, after centring
the independent variable, gives a much clearer picture. The strong
correlation (r = 0.9993) between the slope and intercept differences,
which is clearly visible in Fig. 2, has been reduced to r = 0.27. The
uniqueness of the observed pair of differences is clearly revealed –
in particular, it is the difference between the transformed intercepts
which is exceptionally large.

In view of Fig. 3, it does not appear necessary to continue with
steps (iv) and (v) of the recipe above, unless a quantitative measure
of the deviation of the observed TFRs from the null hypothesis is
required. A possible statistic is the distance of each of the points in
the plot from the data centroid (two dimensional mean value). More
generally, let

uj = (AL − AD)j vj = (BL − BD)j ,

where j indexes the permutation samples. Then, the Mahalanobis
distances from the centroid are, aside from a scale factor,

Tj =
[ (

uj − u

σu

)2

+
(

vj − v

σv

)2

− 2ρ

(
uj − u

σu

) (
vj − v

σv

) ]1/2

,

where u, v are the means; σ u, σ v the standard deviations and ρ the
correlation between u and v.

The significance level of the Mahalanobis distance T∗ for the
RD+ distant sample, and the MK < −20 local sample, is p =
0.00014 (50 000 permutations).

5 C O N C L U S I O N S

We confirm that the infrared TFRs of the local galaxy sample
of Hammer et al. (2007) and the distant sample of P2008 differ.
Whereas the slopes of the two TFRs are statistically similar, the
transformed intercepts A′

L = AL + BLM and A′
D = AD + BDM are

very significantly different.
The permutation test described in Section 5 is simple, and free

from any distributional assumptions. It is also straightforward to
incorporate the slope corrections (3) or (4) into the permutation
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procedure. This was done for the data discussed in this paper: a
significance level of p = 0.0001 (50 000 permutations) for the
Mahalanobis statistic was obtained, i.e. very similar to that found
with the uncorrected slopes.

The permutation method can also be used to compare either only
slopes or only intercepts of two regression lines. Consider, for ex-
ample, the case in which it is assumed that the two intercepts are
the same, and it is desired to test for equality of the slopes. A sen-
sible procedure would then be to determine the shared value of the
intercept from the combined sample, and the two slopes from the in-
dividual samples. In implementing the permutation test, the value of
the (joint) intercept would then be kept fixed, and the two individual
slopes would be determined from the two permutation samples. An
obvious test statistic is the absolute value of the difference between
the two slopes.

It should be explicitly acknowledged that the discussion above
dealt only with the effects of random measurement errors. P2008
also discuss the possible presence of systematic errors, in particu-
lar those due to lack of spatial resolution in determining velocity
profiles. Since these errors cannot be fully quantified, their precise
effect on TFRs is unknown, and this should be borne in mind by the
reader. It should be noted that such errors would affect both direct
and inverse TFRs.

Note that if the rotational velocities, or the luminosities, of the
distant sample galaxies have been systematically underestimated,
then the true intercept difference is even larger. If the rotational
velocities are biased upwards by 0.031 dex, then the intercepts
would still differ at the 1 per cent level (p = 0.05 if the system-
atic error is 0.044 dex). Similarly, systematic biases as large as
−0.26 mag (−0.37 mag) in the distant sample K magnitudes would
still leave the intercepts differing at the 1 per cent (5 per cent) level.

It is worth remarking on the additional uncertainty introduced
by the slope bias correction. A more careful analysis should take
account of the possibility that corrections for the nearby and distant
samples may be different. Furthermore, although the slope correc-

tions are evidently small, the impact on the estimated intercept

A = y − Bx

may be substantial, since x may be large. (This applies, of course,
to all TFRs, not only that discussed by P2008). Note though that
differences between AD and AL are, to some extent, academic, since
these intercepts refer to MK = 0 which is very far removed from the
domain of the observations. Differences between the transformed
intercepts A′

L and A′
D (i.e. with the magnitude zero-point reset to the

mean of the observed magnitudes) are of more practical relevance.
A glance at Fig. 1 shows that A′

L − A′
D will be very little affected

by the slope bias corrections.
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