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ABSTRACT
It is assumed that K blocks (e.g. seasons) of observations are available, and the parameters
characterizing a fixed-frequency sinusoidal variability (mean light level, amplitude, phase)
are constant within each of the blocks. The paper is concerned with estimation when any
combination of these parameters varies between blocks of observations. This allows observa-
tions subject to changes in mean light level, spot sizes and/or spot locations to be modelled.
Objective choices between competing models, and the calculation of the standard errors of
model parameters, are also dealt with. Illustrative applications to simulated and real data are
given.
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1 I N T RO D U C T I O N

The presence of large dark (or bright) areas on rotating stars can be manifested by sinusoidal modulations of the stellar brightness. Such
spots are not necessarily fixed features, but may change in size and/or position. Consequently, the amplitude and/or phase of the luminosity
modulation could change over time. A further potential complicating factor is variability in the mean brightness level, due, for example, to
the influence of circumstellar material.

It is assumed that the observations consist of K blocks of fairly closely spaced observations. Each block is short enough that the amplitude,
phase and mean brightness level may be considered constant for the duration of the block. Individual measurements yjk are then described by
the model

y jk = µk + ck cos(ωt jk + φk) + e jk, j = 1, 2, . . . , Nk, k = 1, 2, . . . , K , (1)

where k indexes the particular block of observations, and j indexes the measurements within each block. The amplitude, phase and mean
brightness level associated with block k are ck , φk and µk , respectively. The time points of observation are tjk ; ejk are zero-mean measurement
errors; and Nk is the number of observations making up block k. The angular frequency ω = 2π/P, where P is the rotation period of the
star, may also be unknown. For convenience, t1,1 ≡ 0 will be assumed below, i.e. phase is measured with respect to the time of the first
observation.

It is assumed that the errors ejk are uncorrelated and their statistical characteristics (in particular, their variances) are constant with time:
these assumptions are not critical, and can be relaxed at the expense of a slightly more involved formulation. Note that the ejk may include
sources of variability other than measurement errors.

The paper is concerned with estimation of the unknown parameters and with calculating their approximate standard errors. Relatively
simple solutions to the estimation problem are described in Sections 2 and 3: the focus is on reduction of dimensionality from ∼K to
the order of unity. This is accomplished by obtaining (effectively) explicit solutions for most parameters in terms of a few remaining
unknowns.

Of course, there may be applications where some or all of the µk , ck and φk do not depend on k, so that the model simplifies. It is therefore
also necessary to consider techniques for selecting the appropriate submodel from the general formulation (equation 1). This is dealt with in
Section 4. Section 5 contains a brief discussion of the calculation of standard errors of the estimated parameters. A few simulation results are
detailed in Section 6, and a ‘real-life’ example analysed in Section 7. A brief discussion of possible extensions of this work concludes the
paper (Section 8).

The eight different models considered in Sections 2 and 3 are numbered to facilitate reference; a summary is provided at the start of
Section 6.
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2 PA R A M E T E R E S T I M AT I O N I N T H E M O S T D E TA I L E D C A S E ( M O D E L 1 )

The sum of squared errors is

Q =
K∑

k=1

Nk∑
j=1

[y jk − µk − ck cos(ωt jk + φk)]2

≡
K∑

k=1

Nk∑
j=1

[y jk − µk − ak cos(ωt jk) − bk sin(ωt jk)]2, (2)

where

ck =
√

a2
k + b2

k φk = tan−1

(
− bk

ak

)
. (3)

Use of the transformation from the parameters (ck , φk) to (ak , bk) can lead to substantial simplifications.
Non-parametric estimates are obtainable from equation (2) by minimizing Q with respect to the unknowns. This can be done by applying

brute force global optimization methods, but much more efficient strategies can be devised, as is now demonstrated.
Consider initially the case in which the frequency ω is known. The minimum of the function S is then found by setting the partial

derivatives with respect to the 3K remaining parameters equal to zero:

∂Q

∂µk
= ∂Q

∂ak
= ∂Q

∂bk
= 0 (4)

(k = 1, 2, . . . , K). The result is a set of 3K simultaneous linear equations:

Nk∑
j=1

y jk − Nkµ̂k − âk

Nk∑
j=1

cos(ωt jk) − b̂k

Nk∑
j=1

sin(ωt jk) = 0

Nk∑
j=1

y jk cos(ωt jk) − µ̂k

Nk∑
j=1

cos(ωt jk) − âk

Nk∑
j=1

cos2(ωt jk) − b̂k

Nk∑
j=1

cos(ωt jk) sin(ωt jk) = 0

Nk∑
j=1

y jk sin(ωt jk) − µ̂k

Nk∑
j=1

sin(ωt jk) − âk

Nk∑
j=1

sin(ωt jk) cos(ωt jk) − b̂k

Nk∑
j=1

sin2(ωt jk) = 0, (5)

where the notation x̂ indicates an estimate of the true value of the parameter x.
Inspection of equation (5) reveals that equations for a given value of k are decoupled from those for other values of k. Solutions for the

different blocks of observations can therefore be obtained independently. In matrix formNk Ck Sk

Ck CCk C Sk

Sk SCk SSk


µ̂k

âk

b̂k

 =

 Yk

Y Ck

Y Sk

, (6)

where

Ck =
Nk∑
j=1

cos(ωt jk), CCk =
Nk∑
j=1

cos2(ωt jk), Y Ck =
Nk∑
j=1

y jk cos(ωt jk),

Sk =
Nk∑
j=1

sin(ωt jk), SSk =
Nk∑
j=1

sin2(ωt jk), Y Sk =
Nk∑
j=1

y jk sin(ωt jk),

Yk =
Nk∑
j=1

y jk, C Sk = SCk =
Nk∑
j=1

cos(ωt jk) sin(ωt jk). (7)

Equation (6) can be written in the conveniently concise form

Mk zk = dk, (8)

where the entries in the matrices Mk and vectors dk are known (for known ω), and zk is a vector of unknowns.
Note that the simple linear form (equation 8) is a consequence of the transformation from (ck , φk) to (ak , bk). Its solution is

zk = M−1
k dk . (9)

The estimates zk for the different k can be substituted into equation (2) to obtain the value of Q∗ = Q∗(ω), i.e. the sum of squared errors
is then a function of ω only. An optimal estimate of ω follows by minimizing Q∗ with respect to ω.
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In summary:

(i) choose a realistic range [ω1, ω2] within which ω is expected to lie;
(ii) for each value of ω in this range, estimate (µk , ak , bk) (k = 1, 2, . . . , K) using equation (9);
(iii) substitute (µ̂k, âk, b̂k) (k = 1, 2, . . . , K ) from the previous step into the expression for the sum of squares (equation 2) to obtain Q∗ =

Q∗(ω);
(iv) it is convenient to plot Q∗ against ω – this is a ‘least-squares periodogram’, from which the best estimate ω̂ is easily determined.

We proceed to examine a number of cases in which some of the parameters are constant over all blocks, i.e. independent of k. Paradoxically,
solutions are usually more difficult than in the case of the full complement of 3K + 1 unknown parameters above.

3 S P E C I A L C A S E S

3.1 Constant mean light level (Model 2)

In the event that µ1 = µ2 = · · · = µK = µ, the condition

∂Q

∂µ
= 0

leads to the single equation

K∑
k=1

Nk∑
j=1

y jk − N µ̂k −
K∑

k=1

âk

Nk∑
j=1

cos(ωt jk) −
K∑

k=1

b̂k

Nk∑
j=1

sin(ωt jk) = 0 (10)

(N ≡ ∑
k Nk) which replaces the K equations of the first form in equation (5).

If there is a sufficiently large number of observations, then the sums over sinusoids in equation (10) will be small compared to the other
terms and

µ̂ ≈ 1

N

K∑
k=1

Nk∑
j=1

y jk ≡ y (11)

which is certainly a reasonable result. If this estimate is substituted into the remaining two equations in (5), two simultaneous equations for
the two unknowns âk and b̂k result.

For smaller numbers of observations, the K blocks are no longer decoupled as in the case discussed in Section 2: instead, there are
2K + 1 simultaneous equations which can be written in the matrix form as

N C1 C2 C3 · · · CK S1 S2 S3 · · · SK

C1 CC1 0 0 · · · 0 C S1 0 0 · · · 0

C2 0 CC2 0 · · · 0 0 C S2 0 · · · 0
...

... 0
. . .

...
... 0

. . . 0

CK 0
... 0 · · · CCK 0

... 0 · · · C SK

S1 SC1 0 0 · · · 0 SS1 0 0 · · · 0

S2 0 SC2 0 · · · 0 0 SS2 0 · · · 0
...

... 0
. . .

...
... 0

. . . 0

SK 0
... 0 · · · SCK 0

... 0 · · · SSK





µ̂

â1

...

âK

b̂1

...

b̂K


=



∑
k Yk

Y C1

...

Y CK

Y S1

...

Y SK


. (12)

The structure of the square matrix in equation (12) is simple: it is

M =

N C t St

C diag(CC) diag(C S)

S diag(SC) diag(SS)

, (13)

where C and S are column vectors with entries Ck and Sk ; and diag (CC), diag (SS) and diag (SC) = diag (CS) are diagonal matrices with
elements CCk , SSk and CSk ≡ SCk , respectively. Equation (12) is of the same form as equation (8):

Mz = d, (14)

with solution

z = M−1d. (15)
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Given ω, equation (15) provides simultaneous estimates for all 2K + 1 unknowns. As described in Section 2, these can be substituted
into Q to give Q∗(ω). Estimation can then proceed exactly as for the case dealt with in Section 2, i.e. the recipe at the end of that section can
be followed.

3.2 Constant amplitude and phase (Model 3)

If c1 = c2 = · · · = cK = c and φ1 = φ2 = · · · = φK = φ, then

diag(Nk) C S

C t
∑

k CCk

∑
k C S

St
∑

k SCk

∑
k SS




µ̂1

...

µ̂K

â

b̂


=



Y1

...

YK∑
k Y Ck∑
k Y Sk

 . (16)

This is of the same form as equation (14), with a solution similar to equation (15).

3.3 Constant amplitude, phase and mean luminosity (Model 4)

The case µk = µ, ak = a, bk = b, for all k, is tantamount to having a single block of N = N1 + N2 + · · · + NK observations. For given ω,
estimates of the three parameters of interest follow from the equation N

∑
k Ck

∑
k Sk∑

k Ck

∑
k CCk

∑
k C Sk∑

k Sk

∑
k SCk

∑
k SSk


µ̂

â

b̂

 =


∑

k Yk∑
k Y Ck∑
k Y Sk

 (17)

[cf. equation (6)].

3.4 Constant phase (Model 5)

The case φ1 = φ2 = · · · = φK = φ is dealt with in this section. The transformation (ck , φk) → (ak , bk) is a hindrance rather than a help if
the phase is constant, hence we revert to the first form in equation (2). Assume initially that both ω and φ are given, i.e. parameters to be
estimated are the 2K unknowns µ1, µ2, . . . , µK and c1, c2, . . . , cK . Proceeding as for the two previous cases, the matrix equation

[
diag(Nk) diag

(
C (1)

)
diag

(
C (1)

)
diag

(
CC (1)

)]


µ̂1

...

µ̂K

ĉ1

...

ĉK


=



Y1

...

YK

Y C (1)
1

...

Y C (1)
K


(18)

is obtained, where the entries in the diagonal matrices are Nk and

C (1)
k =

Nk∑
j=1

cos(ωt jk + φ), CC (1)
k =

Nk∑
j=1

cos2(ωt jk + φ), Y C (1)
k =

Nk∑
j=1

y jk cos(ωt jk + φ). (19)

Before giving a recipe for the full solution, two practical issues need to be pointed out. First, in order to obtain a unique solution for φ,
it is necessary to impose a restriction on its domain: we use φ ∈ [−π, π]. (The same applies to the remainder of the special cases dealt with
below.) Secondly, all estimated amplitudes should be either positive or negative. In the latter case, all amplitudes are multiplied by −1, and
either +π or −π added to the phase (such that the final value lies in the interval [−π, π]). Solutions with a mixture of positive and negative
amplitudes are not physically realistic: simulation experiments show that these are obtained when the phase is in fact variable.

In general, for unknown ω and φ, we then proceed as follows.

(i) Choose a realistic range [ω1, ω2] within which ω is expected to lie.
(ii) For each value of ω in this range, assume a starting value for φ. This is conveniently obtained by fitting the constant amplitude and

constant phase model (Section 3.2) to the data.
(iii) Estimate (µk , ck) (k = 1, 2, . . . , K) using equation (18).
(iv) Substitute the estimates from the previous step into the expression for the sum of squares (equation 2) to obtain Q∗∗ = Q∗∗(ω, φ).
(v) Repeat steps (iii) and (iv) for different φ, obtaining

Q∗(ω) = max
φ

Q∗∗(ω, φ).

(vi) Repeat steps (iii)–(v) for all ω.
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Fitting sinusoids to spotted star data 237

(vii) Obtain ω̂ as the frequency at which the least-squares periodogram Q∗(ω) reaches a minimum.
(viii) Ensure that all ĉk � 0. If there is a mixture of positive and negative amplitudes, then the model is not appropriate.

3.5 Constant mean and phase (Model 6)

If µ1 = µ2 = · · · = µK = µ and φ1 = φ2 = · · · = φK = φ, equation (18) reduces to

[
N [C (1)]t

C (1) diag
(

CC (1)
)]


µ̂

ĉ1

...

ĉK

 =


∑

k Yk

Y C (1)
1

...

Y C (1)
K

. (20)

The solution method is otherwise unchanged from that outlined in Section 3.4. As for the model of Section 3.4, a mixture of positive and
negative amplitudes is obtained for simulated data in which the phase is variable.

3.6 Constant amplitude (Model 7)

If c1 = c2 = · · · = cK = c, the sum of squared errors is

Q =
K∑

k=1

Nk∑
j=1

[y jk − µk − c cos(ωt jk + φk)]2. (21)

Setting partial derivatives with respect to µk(k = 1, 2, . . . , K) and c equals to zero,

[
diag(Nk) C (2)

C (2)t
∑

k CC (2)
k

]
µ̂1

...

µ̂K

ĉ

 =


Y1

...

YK∑
k Y C (2)

k

, (22)

where

C (2)
k =

Nk∑
j=1

cos(ωt jk + φk), CC (2)
k =

Nk∑
j=1

cos2(ωt jk + φk), Y C (2)
k =

Nk∑
j=1

y jk cos(ωt jk + φk). (23)

Solution proceeds as for the case of constant phase (Section 3.4), but steps (ii)–(v) involve maximizing over K phase values instead of
one. In step (ii), good starting values for the phases can be obtained by fitting the all-parameters-variable model (Section 2) to the data.

Since there is only one amplitude, the problem of unphysical solutions (Sections 3.4 and 3.5) does not arise: negative ĉ is simply multiplied
by −1, with accompanying transformation of all phases.

3.7 Constant mean and amplitude (Model 8)

This is a special case of the situation dealt with in the previous section: now µ1 = µ2 = · · · = µK = µ. Equation (22) reduces to[
N

∑
k C (2)

k∑
k C (2)

k

∑
k CC (2)

k

][
µ̂

ĉ

]
=

[ ∑
k Yk∑

k Y C (2)
k

]
. (24)

If ĉ < 0, it should be multiplied by −1, and all phases transformed accordingly.

4 W H I C H M O D E L I S A P P RO P R I AT E ?

The simplest, or null model, is that given in Section 3.3. If a specific alternative (H1) to the null (H0) is considered, then a hypothesis test can
be performed. This can be done by comparing the Gaussian log likelihoods

log L = − N

2
log 2π − N log σ − 1

2σ 2
Q (25)

calculated, respectively, under the null and alternative hypotheses. If the error variance σ 2 is known, then the likelihood ratio statistic is


 = 2 {max[log L(H1)] − max[log L(H0)]}

= 1

σ 2
{min[Q(H0)] − min[Q(H1)]}

≡ 1

σ 2
[Q0 − Q1]. (26)
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If σ 2 is unknown, it can be estimated by

σ̂ 2 = 1

N
Q; (27)

substitution into equation (25) then gives

log L ≈ − N

2
[log 2π + log σ̂ 2 + 1], (28)

and the likelihood ratio statistic reduces to


 ≈ N [log Q0 − log Q1]. (29)

Inspection of equations (26) and (29) shows that 
 compares the values of Q obtained under the null and under the alternative hypotheses.
The likelihood ratio statistic has an asymptotic chi-squared distribution with degrees of freedom equal to the number of parameter

constraints required by H0 over that required by H1. For example, in the models

H0 : µk = µ, ck = c, φk = φ, k = 1, 2, . . . , K ,

H1 : µk = µ, ck = c, φk unspecified, k = 1, 2, . . . , K , (30)

H0 requires the K − 1 specifications

φ2 = φ1, φ3 = φ1, . . . , φk = φ1

over and above the restrictions imposed by H1: in this case 
 ∼ χ2(K − 1).
In general, though, hypothesis testing cannot easily be used to choose between models, as they may be non-nested, i.e. one model is not

necessarily a special case of the other. (To name but one example, the models of Sections 3.4 and 3.6 are non-nested.) Furthermore, it may be
desirable to consider an array of models and to select one which is, in some sense, optimal. We turn therefore to information criteria: these
are generally two-term expressions, one of which reflects the goodness-of-fit of the model to the data, while the other is a penalty term for the
number of parameters needed to accomplish the fit. The two specific forms used in the paper are

AIC = N log Q + 2M + 2M(M + 1)

N − M − 1
,

BIC = N log Q + M log N , (31)

the Akaike and Bayes information criteria. The goodness-of-fit is described by Q, while the terms proportional to M, the number of fitted
parameters, are the ‘penalty’. The last term in the expression for the AIC is a bias correction (Burnham & Anderson 2004). Since small values
of both Q and M are desirable, the ‘best’ model is that which minimizes the information criterion.

The numerical values of the information criteria are not amenable to direct interpretation, but

pA( j) = 1

WA
exp −1

2
[AIC( j) − AIC(min)],

pB( j) = 1

WB
exp −1

2
[BIC( j) − BIC(min)], (32)

can be interpreted as the probability of model j. The normalizing constants WA and WB in equation (32) are chosen such that
∑

j pA( j) =∑
j pB( j) = 1.

5 S TA N DA R D E R RO R S O F T H E E S T I M AT E S

Bootstrapping is a general computer-intensive method for obtaining standard errors and/or confidence intervals for estimated parameters
(e.g. Efron & Tibshirani 1993; Davison & Hinkley 1997). The essence of the method is the production of many (typically several thousand)
synthetic data sets which resemble the original observations. The same estimation procedure is carried out for each of the synthetic data sets,
and the standard deviations of the estimates are used to approximate the required standard errors.

In the present context, the synthetic data sets are constructed by (i) fitting the model to the observations; (ii) estimating the N residuals
by subtracting the fitted model from the observations; (iii) drawing N pseudo-residuals from the estimated residuals; and finally (iv) adding
the pseudo-residuals to the fitted model. A distinguishing feature of the bootstrapping algorithm is that the pseudo-residuals are drawn from
the original residuals with replacement, i.e. repeated values are allowed.

6 E X A M P L E A NA LY S E S O F S I M U L AT E D DATA

For convenience, the different models are summarized in Table 1.
The simulation model was designed to resemble the type of data which may be encountered when observing very low mass stars with

rapidly (time-scales of hours or days) evolving periodicities (e.g. Koen 2006). The model has K = 3, with N1 = 60, N2 = 73, N3 = 53. The
starting times for the blocks are 0.013, 2.054 and 3.039; the time interval between successive observations is 0.004 units. The frequency is
15 cycles per time unit. In the constant-parameter model amplitudes are unity, phases −2 and mean levels 7. The (Gaussian) error standard
deviation is 0.3 units, i.e. the signal-to-noise ratio is 3.3. A typical simulated data set is plotted in Fig. 1.
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Fitting sinusoids to spotted star data 239

Table 1. A summary of the models discussed in
Sections 2 and 3

Model Variable parameters

1 Level, amplitude, phase
2 Amplitude, phase
3 Level
4 None
5 Level, amplitude
6 Amplitude
7 Level, phase
8 Phase

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

6

8

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35

6

8

M
ag

ni
tu

de

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35

6

8

Time

Figure 1. The basic synthetic data – see the text for a description of the parameters used in the simulation.

The sums of squares Q∗(f ), minimized over all parameters except the frequency f, are plotted in Figs 2–4 for various models. The most
striking feature is the marked difference in frequency resolution between Models 1, 2, 7 and 8 (Fig. 2) on the one hand, and the remainder of
the models on the other. Inspection of Table 1 shows that the distinguishing feature is whether the phase is considered variable or fixed.

This result may seem surprising at a first glance. However, a little thought shows that if the phases of the different blocks can be adjusted
independently their combination does not provide any improvement in the frequency resolution. Instead, it is effectively only required that
the frequency fits the data from each block reasonably well. The situation is therefore akin to having several replications of a time-series –
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Figure 2. Least-squares spectra of the basic simulated data, plotted for the Models (1, 2, 7, 8) which allow for phase changes.
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Figure 3. Least-squares spectrum of the basic simulated data for Model 3. The spectrum for Model 4 is virtually identical. Both models assume that the
amplitudes and phases are constant.
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Figure 4. Least-squares spectrum of the basic simulated data for Model 5. The spectrum for Model 6 is virtually identical. Both models assume that the phases
are constant, but allow for variability in the amplitude.

the improvement in the accuracy with which the frequency can be estimated is determined by the lengths and numbers of the blocks, not
by the total time interval spanned.

All eight models in Table 1 were fitted to the data. Parameter estimates, and other relevant information, are given in Table 2. Both the
AIC and the BIC assign the highest probability to Model 4, which is correct. The parameter estimates are also all very close to the true values.

Standard errors of the parameter estimates, calculated according to the prescription in Section 5, are given in Table 3. It can be seen that
the upper and lower boundaries of the 95 per cent confidence intervals are close to ±2 standard errors from the means of the 5000 bootstrap
samples. Also, the mean values are close to the estimates in Table 2, suggesting that the estimation method does not suffer from any notable
bias.

Simulation experiments were conducted to test the efficacy of the information criteria. Seven variations on the model described above
were created by changing various combinations of µ2(7 → 6.6), c2 (1 → 1.4) and φ2(−2 → −1). In all cases but two, the BIC model
probabilities of the correct model are 0.97 or larger; the corresponding AIC probabilities range from 0.55 to 0.89. The two exceptions are
the data sets defined by (c2 = 1.4, φ2 = −1) and (µ2 = 6.6, c2 = 1.4, φ2 = −1). Details of the estimated models for the latter data set are
given in Table 4; the corresponding least-squares spectra are in Figs 5–7. Both the BIC and AIC select the correct model, but the associated
probabilities are unusually low for the BIC, and high for the AIC. Inspection of the Table shows that the low value of pB for Model 1 can
be traced to competition from Model 5, which has pB = 0.36. However, Models 5 and 6 should be disregarded, since the estimated values
of c1 are negative. If these are discounted, then pB ≈ 1 for Model 1. The high value of pA for Model 1 has an entirely different origin: it is
well known that the AIC is generally more generous than the BIC as regards model complexity, i.e. it allows for more model parameters. In
Table 4, Model 1 is not only the most complex, but also the correct one, hence its high probability according to the AIC.
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Table 2. Estimated parameters for each of the eight models fitted to the simulated data plotted in Fig. 1. The number of
parameters M associated with each model is given in the second line of the table; pB and pA are the model probabilities
according to the Bayes and Akaike criteria, respectively; f is the best-fitting frequency; and σ e is the standard deviation
of the measurement error.

Model 1 2 3 4 5 6 7 8

M 10 8 6 4 8 6 8 6
pA 0.00 0.03 0.07 0.56 0.03 0.24 0.01 0.07
pB 0.00 0.00 0.01 0.97 0.00 0.02 0.00 0.01
f 15.00 15.01 15.00 15.00 15.00 15.00 15.00 15.00

µ1 6.97 6.99 6.97 6.99 6.97 6.99 6.97 6.99
µ2 6.99 6.99 6.99 6.99 6.99 6.99 6.99 6.99
µ3 6.99 6.99 6.99 6.99 6.99 6.99 6.99 6.99

c1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
c2 0.95 0.95 1.00 1.00 0.95 0.95 1.00 1.00
c3 1.07 1.07 1.00 1.00 1.06 1.07 1.00 1.00

φ1 −2.04 −2.04 −2.04 −2.04 −2.04 −2.04 −2.04 −2.04
φ2 −2.09 −2.12 −2.04 −2.04 −2.04 −2.04 −2.04 −2.07
φ3 −2.08 −2.13 −2.04 −2.04 −2.04 −2.04 −2.01 −2.05

σ e 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

Table 3. The results of bootstrapping the optimal model from Table 2.

Parameter Mean 95 per cent confidence interval Standard error

f 15.0011 (14.9933, 15.0087) 0.0039
µ 6.986 (6.945, 7.027) 0.021
c 0.999 (0.942, 1.059) 0.030
φ −2.042 (−2.145, −1.936) 0.053
σ e 0.283 (0.252, 0.314) 0.016

Table 4. Same as Table 2, but for the data set containing changes in mean level, amplitude and phase in the second block
of observations. Note that the solutions for Models 5 and 6 are unphysical, and should therefore be disregarded.

Model 1 2 3 4 5 6 7 8

M 10 8 6 4 8 6 8 6
pA 0.64 0.00 0.00 0.00 0.36 0.00 0.00 0.00
pB 0.97 0.00 0.00 0.00 0.03 0.00 0.00 0.00
f 15.04 15.05 14.65 14.65 14.84 14.84 15.06 15.06

µ1 6.97 6.83 6.97 6.83 6.97 6.83 6.95 6.82
µ2 6.60 6.83 6.60 6.83 6.59 6.83 6.59 6.82
µ3 6.99 6.83 7.00 6.83 7.00 6.83 6.98 6.82

c1 1.00 1.02 1.06 1.07 −1.00 −1.02 1.22 1.24
c2 1.51 1.53 1.06 1.07 1.51 1.52 1.22 1.24
c3 1.07 1.08 1.06 1.07 1.06 1.07 1.22 1.24

φ1 −2.07 −2.07 −2.06 −2.04 1.22 1.24 −2.07 −2.07
φ2 −1.58 −1.66 −2.06 −2.04 1.22 1.24 −1.77 −1.77
φ3 −2.87 −3.03 −2.06 −2.04 1.22 1.24 3.14 3.10

σ e 0.38 0.42 0.59 0.61 0.39 0.43 0.41 0.45

Results for the data set with amplitude and phase changes in the second block of observations (c2 = 1.4, φ2 = −1) were comparable
to those given in Tables 3 and 4. Model 2 was (correctly) selected by both information criteria (pA = 0.87, pB = 0.65). The nearest rival of
Model 2, namely Model 6 (pB = 0.34), again had a negative amplitude solution.

The reader’s attention is drawn to the apparently very poor frequency solutions obtained when fitting Models 3 and 4 to the data. The
tabled results are somewhat deceptive, as these are due to the marginal selection of the incorrect alias – there are secondary minima at f =
15.02 in both instances.

Given that the optimal model in Table 4 has 10 parameters, whereas the best model in Table 2 only has four, it is hardly surpris-
ing that the standard errors of the estimated parameters in the former are generally about 2–3 times larger (compare Tables 5 and 3). None
the less, the errors in the frequency, and in φ2 and φ3, seem exaggerated. The large frequency error is in fact due to the poor frequency resolution
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Figure 5. Least-squares spectra of the simulated data with variable parameters. The figure shows the results for Models 1, 7 (bottom two lines, blue and black)
and 2, 8 (top two lines, red and green). The ragged appearance of the Model 8 spectrum at very low frequencies is due to the slow convergence of the phase
solutions in that regime.
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Figure 6. Least-squares spectrum of the simulated data with variable parameters for Model 3. The Model 4 spectrum is very similar, but is offset to slightly
(∼10 units) larger sums of squares.
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Figure 7. Least-squares spectrum of the simulated data with variable parameters, for Model 6. The Model 5 spectrum is similar over most of the frequency
range, but is offset to lower sums of squares (6–11 units). Note though that the Model 5 solution is unphysical.
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Table 5. The results of bootstrapping the optimal model from Table 4. Alter-
native confidence intervals and standard errors for φ2 and φ3, after correction
for ambiguity in the definition of the phase, are also given – see the text for
further discussion.

Parameter Mean 95 per cent confidence interval Standard error

f 15.044 (14.896, 15.190) 0.075
µ1 6.972 (6.857, 7.082) 0.058
µ2 6.595 (6.493, 6.696) 0.052
µ3 6.991 (6.871, 7.107) 0.060

c1 1.006 (0.847, 1.168) 0.082
c2 1.515 (1.370, 1.659) 0.074
c3 1.067 (0.905, 1.236) 0.085

φ1 −2.067 (−2.26, −1.88) 0.097
φ2 −1.184 (−2.98, 2.91) 1.34

(−2.06, 2.00) 1.01
φ3 −0.200 (−3.05, 3.05) 2.13

(−2.71, 2.76) 1.39

σ e 0.441 (0.390, 0.493) 0.027
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Figure 8. The distributions of the estimated phases for the optimal model (number 1) fitted to the simulated data with all parameters variable. Distributions of
φ̂1, φ̂2 and φ̂3 are shown from top to bottom.

engendered by the phase change (see the discussion of Figs 2–4). In the case of the phase errors, there are two contributory factors, which are
now discussed.

The distributions of the three sets of bootstrap phase estimates can be seen in Fig. 8. The spread in φ2 is much larger than that in φ1,
and the spread in φ3 is even more. Clearly, this is to some extent due to the ambiguity in the definition of the phase: Fig. 9 shows the scatter
with respect to the parameter estimates (φ̂2 = −1.58, φ̂3 = −2.87, respectively), again restricted to the interval [−π, π]. The standard
deviations are 1.01 and 1.39 rad, respectively; these constitute more realistic error estimates than the directly calculated standard errors. The
corresponding 95 per cent confidence intervals are also narrower – see Table 5.

Although redefining the phases improved the standard errors of φ̂2 and φ̂3, the values are still considerably larger than the corresponding
value for φ̂1. The explanation lies in the interrelation between the frequency and the phase: the quantity of importance is the argument

� jk = 2π f t jk + φk (33)

of the cosine function in equation (1). A small error in the frequency can, to some extent, be compensated for by a change in the phase. Note
though that the frequency is weighted by tjk , which increases with k; this implies that the impact of small frequency errors on φk will increase
with k.

Some support for these ideas can be found in the correlation coefficients of the frequency estimate f̂ with the phase estimates; the
coefficients are −0.55, −0.20 and 0.45 for φ̂1, φ̂2 and φ̂3, respectively.

The 95 per cent confidence intervals for the various parameters are once again close to a±2 standard error interval around the corresponding
estimate given in Table 4. The exception is the error standard deviation: the difference between the entry in Table 4 (σ e = 0.38) and that in
Table 5 (σ e = 0.44), which is about two standard errors in size, shows that σ̂e is biased.
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Figure 9. The distributions of φ̂2 and φ̂3 (see Fig. 8) adjusted for the ambiguity in the definition of phase.

It is noted in passing that in the case of the fixed-phase models, errors in the phases can be reduced by suitably redefining the time
zero-point (see e.g. Montgomery & O’Donoghue 1999). As an example, if tjk is replaced by t jk − t jk in the first example data set analysed
above, the estimated phase is 2.336, with standard error 0.029. The width of the 95 per cent phase confidence interval is correspondingly
reduced from 0.21 to 0.11 rad. Of course, the phase is defined with respect to t , rather than the time of the first observation, which may not
be convenient.

It also seems plausible that in the case of variable phases, the time zero-point for each block of observations could be set independently
to minimize the errors in the estimated phases.

7 E X A M P L E A NA LY S I S O F R E A L DATA

The ultracool nature of the object 2MASS J06050196−2342270 (hereafter 2M 0605−2342) was discovered by Cruz et al. (2007). Its spectral
classification is L0. Koen (2006) obtained a little over 11 h of IC band photometry of 2M 0605−2342, spread over three consecutive nights
(Fig. 10). The three blocks of observations consist of 33, 98 and 37 measurements, respectively. According to Koen (2006), there is a sinusoidal
variation with frequency 9.8 d−1 in the data, the amplitude of which declined over the three nights of monitoring.

Figs 11–13 show the least-squares spectra of the data, for each of the eight models. Substantial aliasing can be seen in the latter two
diagrams; different one cycle per day aliases are, in fact, selected by Models 3 and 4. The full model fitting results are given in Table 6: Models 3
(changes in mean levels only) and 1 (changes in mean levels, phases and amplitudes) are selected by the BIC and AIC, respectively.

Bootstrap estimates of 95 per cent confidence intervals and standard errors of the parameter estimates can be found in Tables 7 (Model 3)
and 8 (Model 1). Perhaps the most noteworthy feature of Table 7 is the large standard error of the estimated phase. Redefining the phase to
avoid ±2π ambiguities reduces this from 0.44 to 0.18, which is also more in line with the width of the 95 per cent confidence interval.

As far as Table 8 is concerned, shifting the phase zero-points to the values in Table 6 and restriction to [−π, π] lead to standard errors
of 0.21, 1.68 and 1.82 for φ̂1, φ̂2 and φ̂3, respectively. The latter two values are very close to those given in Table 8: in the case of the second
block this follows because φ̂2 is close to zero, so that few bootstrap solutions for φ2 are ambiguous. In the case of φ̂3, the distribution of its
bootstrap distribution is close to uniform, hence the assumed value of the centroid makes little difference to the spread.
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Figure 10. Photometry of the ultracool object 2M 0605−2342 obtained over three successive nights.
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Figure 11. Same as Fig. 5, but for the observations of 2M 0605−2342 shown in Fig. 10.
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Figure 12. The sum of squares spectra for Models 3 (bottom curve) and 4 (top curve), fitted to the observations of 2M 0605−2342. The Model 4 curve has
been offset by +0.015. Note that the different frequency aliases are selected by the two models.

Careful consideration of the results above leads to the conclusion that there is good evidence for a change in the mean brightness level;
in particular, although µ̂2 ≈ µ̂1, the star/brown dwarf was brighter on the third night. The situation as regards the amplitudes is, however,
not clear-cut. The fact that the second-string model according to both information criteria is number 5, which involves both mean level and
amplitude changes, constitutes some evidence in favour of amplitude changes.

8 C O N C L U S I O N S

It is not possible to draw general conclusions from the very limited studies presented in Sections 6 and 7. None the less, it seems that the
information criteria can fruitfully be used for detecting large model parameter changes, at least in high signal-to-noise ratio data.

The author is grateful to the referee of the paper for drawing attention to the fact that the methodology is not restricted to rotating spotted
stars, but can also be applied to other types of periodic variables. In particular, pulsation amplitudes and phases may be wavelength-dependent,
and this should be taken into account when combining data blocks obtained using different photometric filters.

In the above it was assumed that the errors were white noise with constant variance. In principle, it is straightforward to extend this to
the case where the errors within each block are stationary. The following scheme is suggested.

(i) First fit models as above, and obtain the residuals.
(ii) If the autocorrelation of the errors within a block is non-zero, fit a time-series model to those residuals. Otherwise, calculate the variance

of the errors in the block.
(iii) Use the information from step (ii) to calculate the covariance matrices 
k of the errors in each block.
(iv) The sum of squares in equation (2) is replaced by
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Figure 13. The sum of squares spectra for Models 5 (bottom curve) and 6 (top curve) fitted to the observations of 2M 0605−2342. The Model 6 curve has
been offset by +0.0075.

Table 6. Estimated model parameters for the eight models, fitted to the three blocks of observations of 2M 0605−2342 (Fig. 10). The
discrepancy between optimal models selected by the AIC (Model 1) and BIC (Model 3) is noteworthy.

Model 1 2 3 4 5 6 7 8

M 10 8 6 4 8 6 8 6
pA 0.6069 0.0000 0.0310 0.0000 0.3501 0.0000 0.0120 0.0000
pB 0.0350 0.0000 0.5947 0.0000 0.3580 0.0000 0.0123 0.0000
f 10.1751 10.3766 9.7967 10.8004 10.8037 10.7874 10.1295 10.5708

µ1 17.2331 17.2259 17.2316 17.2256 17.2330 17.2259 17.2315 17.2254
µ2 17.2281 17.2259 17.2284 17.2256 17.2279 17.2259 17.2282 17.2254
µ3 17.2142 17.2259 17.2124 17.2256 17.2151 17.2259 17.2129 17.2254

c1 0.0270 0.0243 0.0188 0.0172 0.0264 0.0238 0.0188 0.0173
c2 0.0188 0.0184 0.0188 0.0172 0.0187 0.0184 0.0188 0.0173
c3 0.0106 0.0074 0.0188 0.0172 0.0095 0.0077 0.0188 0.0173

φ1 2.5740 2.5505 2.6641 2.2808 2.2582 2.3343 2.5952 2.4594
φ2 0.0998 −1.2669 2.6641 2.2808 2.2582 2.3343 0.4006 −2.5593
φ3 −2.0992 1.4890 2.6641 2.2808 2.2582 2.3343 −1.4715 −0.8872

σ e 0.0132 0.0147 0.0136 0.0150 0.0134 0.0146 0.0136 0.0151

Table 7. The results of bootstrapping the BIC optimal model from
Table 6.

Parameter Mean 95 per cent confidence interval Standard deviation

f 9.80 (9.75, 9.84) 0.022

µ1 17.232 (17.227, 17.237) 0.0026
µ2 17.228 (17.225, 17.232) 0.0015
µ3 17.212 (17.207, 17.217) 0.0025

c 0.019 (0.016, 0.022) 0.0016
φ 2.6372 (2.31, 3.00) 0.44
σ e 0.015 (0.013, 0.017) 0.0011

Q =
K∑

k=1

Nk∑
i, j=1

(

−1

k

)
i j

[yik − µk − ck cos(ωtik + φk)][y jk − µk − ck cos(ωt jk + φk)].

(v) Repeat the model fitting described in Sections 2 and/or 3, minimizing Q as defined in step (iv).

The methodology in Sections 2 and 3 does not lend itself to the case in which each block is characterized by a different period. In
practice, it seems likely that large period changes will be accompanied by changes in other parameters, so that treating blocks independently
is indicated in such cases.
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Table 8. The results of bootstrapping the AIC optimal model from
Table 6.

Parameter Mean 95 per cent confidence interval Standard deviation

f 10.18 (9.54, 10.82) 0.32

µ1 17.233 (17.228, 17.238) 0.0027
µ2 17.228 (17.225, 17.231) 0.0016
µ3 17.214 (17.209, 17.219) 0.0025

c1 0.027 (0.020, 0.035) 0.0038
c2 0.019 (0.015, 0.023) 0.0021
c3 0.011 (0.004, 0.018) 0.0035

φ1 2.56 (2.16, 2.96) 0.39
φ2 0.00 (−2.96, 2.94) 1.68
φ3 0.01 (−2.98, 2.99) 1.81

σ e 0.015 (0.013, 0.017) 0.0011

A MATLAB implementation of the algorithms is available from the author.
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