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ABSTRACT
Possible deviations from linearity of the Large Magellanic Cloud Cepheid period–luminosity

(PL) and period–luminosity–colour (PLC) relations are investigated. Two data sets are stud-

ied, respectively from the Optical Gravitational Lensing Experiment (OGLE) and MACHO

projects. A non-parametric test, based on linear regression residuals, suggests that neither

PL relation is linear. If colour dependence is allowed for, then the MACHO PL relation is

found to deviate more significantly from the linear, while the OGLE PL relation is consis-

tent with linearity. These findings are confirmed by fitting ‘Generalized Additive Models’

(non-parametric regression functions) to the two data sets. Colour dependence is shown to

be non-linear in both data sets, distinctly so in the case of the MACHO Cepheids. It is also

shown that there is interaction between the period and the colour functions in the MACHO

data.
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1 I N T RO D U C T I O N

Cepheids are important objects in Astrophysics because of both

their use in the extragalactic distance scale and their role in stellar

evolution. Their regularly repeating light curves offer an impor-

tant opportunity to test theories of stellar evolution against stellar

pulsation: mass–luminosity (ML) relations mandated from evolu-

tionary calculations can be used as input to full linear and non-linear

hydrodynamic models of Cepheids and compared to observations.

These ML relations contain input about evolutionary physics such

as the amount of convective overshoot. Constraining theoretical

models with observations can be used to gain considerable insight

into evolutionary/pulsation physics. On the other hand, the Cepheid

period–luminosity (PL) relation has played an important role in es-

tablishing the extragalactic distance scale and the subsequent esti-

mation of Hubble’s constant, H0. The Hubble Space Telescope (HST)

key project (Freedman et al. 2001) has used HST observations of

Cepheids in a number of galaxies to estimate H0 to within 10 per

cent accuracy. The crucial step in this work has been the Cepheid PL

relation in the Large Magellanic Cloud (LMC) which has been used

to characterize a Cepheid PL relation template. This PL template

has traditionally been thought to be linear; however, there has also

been recent work implying a variation of the slope with period in the

LMC (Tammann & Reindl 2002; Kanbur & Ngeow 2004; Sandage,

Tammann & Reindl 2004; Ngeow et al. 2005; Ngeow & Kanbur

2006a,b; Kanbur et al. 2007a).

�E-mail: ckoen@uwc.ac.za

Ngeow & Kanbur (2006c) estimate the error in estimating H0, if a

linear Cepheid PL relation is assumed and the underlying relation is

‘non-linear’ at a period of 10 d, and find this can lead to an error of

about 1–2 per cent. Such an error seems small but with significant

work being carried out to reduce zero point errors (Macri et al.

2006), it is important to construct as accurate a distance scale as

possible that is independent of the cosmic microwave background

(CMB). Further, table 2 of Spergel et al. (2007) points to the fact

that an independent estimate of H0, accurate to less than 5 per cent,

will help to break the degeneracy between �matter and H0 present

from WMAP CMB studies. An independent estimate of H0 accurate

to 1 per cent will result in a reduction of the 65 per cent confidence

interval on �matter by almost a factor of 2 over that with WMAP data

alone.

In previous studies, a rigorous statistical test, the F test, was ap-

plied to the LMC Cepheids to test for the linear versus non-linear PL

relation. Here, by ‘non-linear’ we mean two lines of significantly

differing slope which are continuous at a period of 10 d. The F-test

results that were obtained from the Optical Gravitational Lensing

Experiment (OGLE; Udalski et al. 1999) and MACHO Cepheid

data, in Kanbur & Ngeow (2004, 2006) and Ngeow et al. (2005),

respectively, strongly imply that the LMC period–colour (PC)/PL

relations are non-linear. It is important to note that several other

statistical tests, such as the χ 2 tests, least absolute deviation, robust

estimation and loess procedures, were also applied to the MACHO

data, and these results also point to a non-linear LMC PL rela-

tion (Ngeow et al. 2005). Recently, Kanbur et al. (2007a) devel-

oped the use of testimators and a likelihood-based method using

the Schwarz Information Criterion to study non-linearities in the
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LMC PL relation (using both OGLE and MACHO Cepheid data)

and again came to the same conclusion: the LMC Cepheid PL re-

lation is non-linear in the sense described above. The F test also

suggested that the LMC PC relation is non-linear, in contrast to the

Galactic and Small Magellanic Cloud (SMC) PC relations (Kanbur

& Ngeow 2004). Since the question of the non-linearity of the LMC

PL relation is important in distance scale and stellar studies, it is vital

to establish this as firmly as possible; this is one of the motivations

for this paper.

In addition to investigating the non-linearity of the LMC PL

relation, we also study the LMC period–luminosity–colour (PLC)

relation. A number of authors, including Sandage (1958) and

Madore & Freeman (1991), have derived the PLC relation and shown

how it arises from the period–mean density theorem, the Stefan–

Boltzmann law and the existence of an instability strip. These au-

thors also point out that the PL/PC relations are obtained from the

PLC relation by averaging over the variable not included in the

relation.

In Section 2, we briefly describe the data used in our study. In

Section 3, we apply a simple test statistic in a preliminary study of

the LMC PL relation. This is followed by more detailed analysis

in Section 4 based on a non-parametric model-fitting procedure.

An extension of the PLC relation is presented in Section 5. The

conclusion and discussion of our results are given in Section 6.

We add a few sentences on the use of non-parametric methods in

what follows. The term ‘non-parametric’ is actually used in three

slightly different senses. First, the major innovation (Sections 4 and

5) in this paper is the use of ‘non-parametric regression’. The mean-

ing is not necessarily the usual one of ‘distribution-free’: rather, it

means that the form of the regression is not specified – the regres-

sion function is ‘unstructured’, being dictated by the data itself. Of

course, this flexibility allows one to detect subtleties which may oth-

erwise be overlooked. Secondly, in the next section of the paper, we

use a well-known distribution-free statistic, the ‘Wald–Wolfowitz

runs test’. This non-parametric statistic uses only data ranks, and

hence typically is not very powerful. Thirdly, also in the next sec-

tion use is made of a permutation method. This avoids distributional

assumptions about the data by using re-orderings of the data itself

to establish significance levels.

2 T H E DATA

We use two sets of LMC Cepheid data in our study. The first data

set is the extinction corrected V-band mean magnitudes and (V − I)

colours for the OGLE LMC Cepheids taken from Kanbur & Ngeow

(2006), supplemented with additional Cepheids from Sebo et al.

(2002), and referred as ‘OGLE’ data in this paper. The second data

set is the MACHO Cepheids data, with extinction corrected V mean

magnitudes and (V − R) colours, adopted from Ngeow & Kanbur

(2005). Using these two data sets allows us to compare the results,

particularly for the different photometric filters used.

A possible complication is that any apparent non-linearity in PL

or PLC relations could be caused by extinction errors which are

functions of colour or period. Arguments against extinction errors

as a cause of observed non-linear LMC PL and PC relations were

presented by Kanbur & Ngeow (2004, 2006), Kanbur, Ngeow &

Feiden (2007b), Ngeow et al. (2005), Ngeow & Kanbur (2006) and

Sandage et al. (2004), and will therefore not be repeated in detail

here. In particular, a possible period dependence of extinction errors

has been investigated in Ngeow & Kanbur (2006b). If such extinc-

tion errors were present, then the PC relations at maximum light

would be such that LMC Cepheids would get hotter at maximum

light as the pulsation period increases: a fact which would be hard

to reconcile with pulsation theory especially as Galactic Cepheids,

in common with LMC Cepheids, display a flat PC relation at maxi-

mum light (Kanbur & Ngeow 2004, 2006). Further, the dependence

of extinction error on colour would need to be very complicated to

explain both the non-linearity at mean light whilst preserving the

flatness at maximum light.

It is also noted that the reddening values adopted here are the

same as those used in many distance scale studies (Freedman et al.

2001).

3 A P R E L I M I NA RY I N V E S T I G AT I O N BA S E D
O N A T E S T P RO C E D U R E

Figs 1 and 2 show the MACHO and OGLE PL data, with least-

squares linear fits of the form

V = a + b log P + error. (1)
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Figure 1. MACHO PL data for LMC Cepheids. The line is a linear least-

squares fit to the data.
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Figure 2. OGLE PL data for LMC Cepheids. The line is a linear least-

squares fit to the data.
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For the sake of completeness,

V = 17.08 (0.026) − 2.70 (0.039) log P (MACHO)

V = 17.05 (0.020) − 2.69 (0.028) log P (OGLE), (2)

where standard errors of coefficient estimates are given in brackets.

Although both fits are excellent, it is none the less of some interest

whether there may be subtle deviations from the strictly linear re-

lations between V and log P shown by the lines: although this may

have little importance for prediction of luminosity given the period,

it could, for example, have an important bearing on the modelling

of Cepheid pulsations.

A simple procedure which provides some insight into the problem

is to study partial sums of the residuals of the least-squares fits.

First arrange the data so that the period values are in ascending

order:

P1 < P2 < P3 < · · · < PN

where N is the sample size. Then,

C( j) =
j∑

k=1

[Vk − a − b log Pk] =
j∑

k=1

rk (3)

are the partial sums of the residuals rk . If there are no deviations

from linearity, then C(j) is the sum of uncorrelated random numbers

and hence a simple random walk. However, if there are deviations

from linearity successive residuals may be correlated, and hence

C(j) will not be a simple random walk. Partials sums of the rk can

be seen in Figs 3 and 4.

A statistic which can be used for testing whether the partial sum

is a pure random walk is its vertical range

R = max
j

C( j) − min
j

C( j) :

this may be expected to be inflated by positively correlated residu-

als. Significance levels for the values of R are readily obtained by

permutation, as follows.

(i) Permute the rk ; this will randomize the residuals by destroying

any possible trends.

(ii) The partial sums of the permuted rk will be true random walks

– find the statistic R for the permutation.

(iii) Repeat Steps (i) and (ii) a large number of times, noting the

values of R.
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Figure 3. Partial sums of the residuals from the fit in Fig. 1.
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Figure 4. Partial sums of the residuals from the fit in Fig. 2.

(iv) Determine the fraction of permutation R values which exceed

the observed value – this estimates the significance level of the

observed R.

Applying 10 000 permutations, significance levels of 3 and

4 per cent were obtained for the MACHO and the OGLE data, re-

spectively, suggesting meaningful deviation of the observed rk from

randomness. The implication is therefore that the PL relation is not

perfectly linear.

Study of Figs 3 and 4 shows that there is an excess of positive

residuals for log P ∼ 0.5 and log P > 1, and an excess of negative

values for 0.8 < log P < 1.

Interestingly, application of the standard Wald–Wolfowitz runs

test (e.g. Conover 1971) for randomness of the residuals gives con-

flicting results for the two data sets – significance levels of 45 and

0.9 per cent for the OGLE and the MACHO data, respectively. Of

course, the procedure uses only the signs, and not the sizes, of the

rk .

It is known that Cepheids follow a PLC, rather than simply a PL,

relation. It may therefore be prudent to replace (3) by

C( j) =
j∑

k=1

[Vk − a − b log Pk − c(CI)k] (4)

where (CI) indicates a colour index, with regression coefficient c.

This has a substantial influence on the significance levels of the

statistic R: for the OGLE data increase to 33 per cent, while the level

for the MACHO data is reduced to 0.7 per cent. The corresponding

Wald–Wolfowitz test levels are 43 and 1.5 per cent.

To summarize, there is strong evidence of non-randomness in the

residuals of the MACHO data, both for the PL and for the PLC

relations. For the OGLE data the results are ambiguous.

4 P L R E L AT I O N

An alternative to the imposition of a fully specified parametric model

such as (1) is to allow the form of the regression to be dictated by

the data. The idea is conveniently illustrated by a technique known

as ‘loess’ (see e.g. Cleveland & Devlin 1988). Ngeow et al. (2005)

initially used this method on MACHO data and found a similar

result to that reported here. Here, we study it in more detail and

apply it to both MACHO and OGLE Cepheid data. The method
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Figure 5. An illustrative loess regression on the OGLE PL data. The window

width is 0.05, that is, 5 per cent of the range of log P.

entails fitting a low-order polynomial (in the present case a straight

line) over restricted sections (‘windows’) of the data by weighted

least squares. In the implementation here, the only free parameter is

the width α of the window, which is usually given as a fraction of the

range of the independent variable (i.e. 0 < α � 1). The smaller the

α the more ‘local’ the estimated regression, and the more detail it

shows. Fig. 5 shows a loess regression of the OGLE data, using α =
0.05; if α is increased towards unity the loess regression resembles

the linear fit of Fig. 2.

A key element is then obviously the choice of window width α,

and it is desirable to use an objective method to find it. This is readily

done by ‘cross-validation’.

(i) Choose a value of the window width α.

(ii) Leave out the first data point and obtain a loess estimate V̂1

of the magnitude V1 by fitting the regression to the remaining data.

(iii) Note the discrepancy

�1 = V1 − V̂1

between the true and the predicted values.

(iv) Repeat Steps (ii)–(iii) for the second, third, . . . , last data

points, giving the set �1, �2, . . . , �N of discrepancies.

(v) The value of the cross-validation criterion for the value of α

from (i) is defined as

CV (α) = 1

N

N∑
j=1

�2
j = 1

N

N∑
j=1

(Vj − V̂ j )
2. (5)

Clearly, it evaluates the predictive power over all the observations

of the loess fit based on the particular value of α.

(vi) Repeat Steps (i)–(v) for all candidate values of α.

(vii) The optimal α is that which minimizes CV(α).

The cross-validation functions for the two data sets are plotted

in Fig. 6; optimal window widths are 0.36 and 0.20, respectively,

for the MACHO and the OGLE observations. In Figs 7 and 8, the

resultant loess functions are compared to the regression lines from

(1). A small difference between the curves over the approximate

interval 0.8 < log P < 1 is visible in both diagrams. There is also

a substantial disagreement at the longest periods for the MACHO

results in Fig. 7: this is clearly due to the systematic difference

0.066

0.067

0 0.2 0.4 0.6 0.8 1

0.038

0.039

Window width α

C
V

(α
)

Figure 6. Cross-validation functions for the loess window width α, for the

MACHO (top) and OGLE (bottom) data.

0.4 0.6 0.8 1 1.2 1.4

13

14

15

16

Log P

P
re

d
ic

te
d

 V

Figure 7. A comparison of the optimal loess fit to the MACHO data, and

the linear regression from (1).

between the data and the linear regression line for log P > 1.25 (see

Fig. 1). Similarly, the slight divergence between the loess and the

linear regression lines at the longest periods in Fig. 8 can be traced

to the influence of the two OGLE data points with log P > 1.7 (see

Fig. 2).

The question arises as to whether the discrepancies between the

loess curves and the straight line fits are at all meaningful. In order

to address this issue, confidence intervals for the loess curves are

estimated by bootstrapping (e.g. Efron & Tibshirani 1993). The re-

sults, based on 5000 bootstrap samples, are plotted in Figs 9 and 10.

Rather than showing the linear regression line and the 95 per cent

upper and lower limits, the difference between the linear fit and the

confidence limits are plotted, in order to more clearly display the

deviations. It is notable that the linear fits lie outside the confidence

intervals for the loess functions for 0.8< log P<1 roughly. This sup-

ports previous work which has suggested a ‘break’ around a period

log P ≈ 1 (Kanbur & Ngeow 2004; Ngeow et al. 2005; Kanbur et al.

2007a).
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Figure 8. A comparison of the optimal loess fit to the OGLE data, and the

linear regression from (1).
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Figure 9. The positions (with respect to the linear regression line) of the

upper and the lower 95 per cent confidence limits on the loess fit to the

MACHO data.

The R software add-on package ‘MCGV’ contains an alternative

non-parametric regression facility in the form of thin plate regression

splines (TPRS) (e.g. Wood 2006). The form of cross-validation used

is based on a balance between the sum of squared model residuals

(which measures the goodness of the model fit) and a smoothness

term. Cross-validation in MCGV is automated.

The loess and TPRS results are compared for the MACHO and

OGLE data, respectively, in Figs 11 and 12. The agreement is very

good – in particular, the deviations from linearity for 0.8 < log P < 1

are also evident in the TPRS results. Despite the fact that more effec-

tive degrees of freedom are required for the non-parametric fits (6.41

and 8.71 for the TPRS fits to the MACHO and the OGLE data, re-

spectively) than for linear regression (3 degrees of freedom), the for-

mer fits follow the data considerably more closely. Model-selection

tools such as the ‘Akaike Information Criterion’ (AIC; e.g. Burn-

ham & Anderson 2002) can be used to test whether the improved

model fit warrants the additional degrees of freedom expended. In

this case, the TPRS fits are both preferred by very wide margins.
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Figure 10. The positions (with respect to the linear regression line) of the

upper and the lower 95 per cent confidence limits on the loess fit to the

OGLE data.
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Figure 11. Differences between the linear fit and the loess (black, less

smooth) and thin plate regression spline (red, smooth) results for the

MACHO data.

5 P L C R E L AT I O N

Unusual data points can have substantial, often somewhat distorting,

influences on regression surfaces. It is therefore worthwhile examin-

ing the data sets carefully in order to identify such data. This is most

easily done using ordinary multiple linear least-squares regression.

Fitting PLC relations to the two data sets gives the results

V = 16.23(0.026) − 3.30(0.029) log P

+ 3.95(0.093)(V − R) (MACHO)

V = 15.97(0.025) − 3.23(0.018) log P

+ 2.30(0.049)(V − I ) (OGLE)

(6)

with residual standard deviations 0.164 and 0.097 mag. Regression

diagnostics were examined in order to identify observations which

gave rise to large residuals and/or were unduly influential on param-

eter estimates. ‘Cooks’s D’ statistic was used for the latter purpose

(see e.g. Montgomery, Peck & Vining 2001, or almost any other

modern text devoted to linear regression theory). Three points were
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Figure 12. Differences between the linear fit and the loess (black, less

smooth) and thin plate regression spline (red, smooth) results for the OGLE

data.
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Figure 13. The 1216 observations constituting the MACHO data set. Filled

squares mark the three points selected for deletion on the basis of residual

diagnostics.

eliminated from the MACHO data, and four from the OGLE data,

on the basis of these diagnostics. The PLC relations were then re-

estimated for the reduced data sets, and the new sets of diagnostics

examined. This led to a further two deletions from the OGLE data.

The final results, replacing (6), are

V = 16.23(0.026) − 3.32(0.029) log P

+ 4.00(0.092)(V − R) (MACHO)

V = 15.89(0.021) − 3.29(0.015) log P

+ 2.48(0.041)(V − I ) (OGLE)

(7)

with residual standard deviations of 0.162 and 0.074 mag. The sub-

stantial reduction in residual variance and large changes in regres-

sion coefficients for the OGLE results are particularly striking.

It is interesting to examine the positions of the rejected obser-

vations in three-dimensional data plots. The plots in Figs 13 and

14 were obtained by selecting perspectives which clearly show the

positions of all questionable data. It is clear the observations for

each data set lie close to a plane, and that points with unsatisfac-

tory regression diagnostics (marked by squares) all deviate from the
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Figure 14. The 723 observations constituting the OGLE data set. Filled

squares mark the six points selected for deletion on the basis of residual

diagnostics.

plane. The fact that the plane in Fig. 14 (OGLE data) is so well-

defined explains why removal of the outlying points made such a

substantial difference to the estimated coefficients. In the remainder

of this paper, we work with the reduced data sets (N = 1213, 717

for the MACHO and the OGLE data, respectively). Note that one

high-influence datum in the OGLE data is retained (for the brightest

Cepheid – see Fig. 12), since its associated residual is very small,

and since its omission has very little influence on the values of the

three estimated parameters.

An obvious extension of the linear PLC relation to the non-

parametric case is the so-called ‘Generalized Additive Model’

V = α + fP (log P) + fC (CI) + error, (8)

where α is a constant; CI denotes a colour index; and f P and fC

are non-parametric regression functions such as loess or TPRS fits.

Due to the several attractive features (automated cross-validation,

to mention but one) the R add-on package is once again used to

perform TPRS fits of (8) to the data.

The results can be seen in Figs 15 and 16. The estimated f P for

the OGLE data is linear: the effective degrees of freedom, 1.00,

confirms this. By implication, the model (8) reduces to

V = α + β log P + fC (CI) + error. (9)

Not surprisingly, the AICs of models (8) and (9) are exactly equal

for the OGLE data.

The function f P for the MACHO data shows the familiar deviation

from linearity in the range 0.8 < log P < 1; this is more clearly

demonstrated in Fig. 17, where a linear fit to f P has been subtracted.

Inspection of the fC functions in Fig. 16 shows that both are

distinctly non-linear.

It is of obvious interest to investigate why f P reduces to the per-

fectly linear form in the case of the OGLE data, when the depen-

dence of V on log P in the PL relation is non-linear. Examining the

relationship between log P and the colour index (V − I) gives some

insight into this question. The results of a loess regression of (V −
I) on log P for the OGLE data are displayed in Fig. 18. The 95 per

cent confidence intervals, obtained from 5000 bootstrap samples,

are also shown. Calculations were done using a smoothing window

of width 0.20, as indicated by cross-validation. The analogous plot

for the MACHO data, based on a smoothing window width of 0.33,
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Figure 15. The regression functions f P (see equation 8) for the OGLE (top)

and MACHO (bottom) data. The ±2 standard error confidence limits are

plotted as solid lines: these are indistinguishable from the functions except

for the longer period MACHO data.
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Figure 16. The regression functions fC (see equation 8) for the MACHO

(left-hand side) and OGLE (right-hand side) data. The ± 2 standard error

confidence limits are plotted as solid lines.

is given in Fig. 19. In the case of the OGLE data, there is a clear

change in the relationship between log P and (V − I) in the neigh-

bourhood 0.8 < log P < 1. It appears that small deviations from

linearity in the PL relation in Fig. 8 are compensated by the colour

dependence. In the case of the MACHO data, the kink in the PC
plot (Fig. 19) is of similar size to that in Fig. 18, but the deviation

from linearity in the PL plot is larger (Fig. 7). This may explain why

the f P function remains non-linear in the case of the MACHO PLC

relation. These results support similar work presented in Kanbur &

Ngeow (2004) and Ngeow & Kanbur (2005) on the non-linearity of

the LMC PC relation using F tests, and on the linearity of the LMC

Wessenheit function.

Non-parametric regression lends itself to much more flexible

forms than ordinary multiple regression. Two possible alternatives

to (8) are

V = α + fP (log P) + fC (CI) + fPC (log P, CI) + error (10)
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Figure 17. The regression functions f P for the MACHO data (see Fig. 15,

bottom plot) pre-whitened by a linear fit in order to show more clearly the

deviations from linearity. The ±2 standard error bounds are also plotted.
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Figure 18. A loess regression function fitted to the log P–(V − I) data

from the OGLE observations. The solid lines are the 95 per cent confidence

envelopes, obtained by bootstrapping.

and

V = α + fPC (log P, CI) + error, (11)

which allow for interaction between the two independent

variables.

The two Generalized Additive Models (10) and (11) were also

fitted to both data sets. For the OGLE data, the AIC-preferred model

is (10), but a more detailed analysis (ANOVA) shows that the con-

tribution from the interaction function f PC is not significant – hence

the model effectively reduces to (8). For the MACHO data, the pure

interaction model (11) is preferred, with (10) the second choice.

According to the AIC, the additive model (8) is a very distant third

choice. A contour plot of the fit of the model (11) can be seen in

Fig. 20 – this demonstrates why (8) is inadequate. Of course, in

practice (11) would be more tedious to work with than the simpler

additive form (8).
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Figure 19. A loess regression function fitted to the log P–(V − R) data from

the MACHO observations. The solid lines are the 95 per cent confidence

envelopes, obtained by bootstrapping.
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Figure 20. A contour plot of the function f PC in (11) fitted to the MACHO

data. The contour values decrease from +1.5 at the top left, in steps of 0.5

to −2 at the extreme right. The ±1 standard error bounds for each contour

line are also shown.

A few words of explanation of Fig. 20 may be in order. The form

of a purely linear PLC relation would of course be

V = a + b log P + cCI + error.

One way of displaying this graphically would be to draw the lines

V = constant

in the log P–CI plane, for various values of the constant. The equa-

tions describing these contour lines are

CI = (V − b log P − constant)/c + error,

that is, straight lines with slope −b/c. Fig. 20, the equivalent for

the non-parametric function f PC , shows not only that the relations

are non-linear, but also that there is ‘interaction’ – the form of the

relation depends on the region of the log P–(V − R) plane it inhabits.

6 C O N C L U S I O N S A N D D I S C U S S I O N

It should perhaps come as no surprise that with the acquizition of

large amounts of new data, finer detail in the relationships between

astrophysical observables are uncovered. The best-fitting models of

the two data sets are given by (11) (MACHO) and (9) (OGLE),

respectively, both of which are non-linear.

Estimates of the effect of such small non-linearities on the

Cepheid distance scale and on Hubble’s constant are given in Ngeow

& Kanbur (2006c) and amount to 1–2 per cent. Such an error seems

small but in the era of ‘precision cosmology’ with a drive towards a

distance scale accurate to 5 per cent, such an effect is important. Per-

haps just as important, a proper characterization of the precise detail

in the observed phenomena will assist in placing improved con-

straints on pulsation models of Cepheids and, in particular, on their

ML relations, and hence on details of stellar evolutionary physics

such as the amount of convective core overshoot.

A possible physical explanation for this non-linearity is outlined

in the papers by Kanbur, Ngeow & Buchler (2004), Kanbur &

Ngeow (2006) and Kanbur et al. (2007b), which studied Galactic,

LMC and SMC Cepheid models, respectively. Briefly, these papers

suggest the non-linearity is caused by the interaction of the hydrogen

ionization front (HIF) and photosphere and the way this interaction

varies with period. At low densities, if the HIF and photosphere are

engaged (i.e. the photosphere lies at the base of the HIF) then the

temperature of the photosphere, and hence the colour of the star is

almost independent of global stellar properties such as the period.

Since the relative location of the photosphere and HIF varies with the

L/M ratio, and since this varies with period, modelling has implied

that for LMC Cepheids with a period greater than 10 d, the photo-

sphere and HIF are not engaged. Thus, these stars have a different PC

relation than their shorter period counterparts, Because the PC and

the PL relations are really forms of the PLC relation, then a change

in the PC relation results in a change in the PL relation. Galactic

Cepheids are such that the HIF–photosphere interaction only really

occurs at maximum light at low densities. LMC Cepheids are such

that this HIF–photosphere interaction starts to occur at low densities

only for Cepheids with periods greater than 10 d. SMC Cepheids

are such that this HIF–photosphere interaction always occurs at high

densities (Kanbur et al. 2004; Kanbur & Ngeow 2006; Kanbur et al.

2007b).
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