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ABSTRACT
It is assumed that O − C (‘observed minus calculated’) values of periodic variable stars are
determined by three processes, namely measurement errors, random cycle-to-cycle jitter in
the period, and possibly long-term changes in the mean period. By modelling the latter as a
random walk, the covariances of all O − C values can be calculated. The covariances can then
be used to estimate unknown model parameters, and to choose between alternative models.
Pseudo-residuals which could be used in model fit assessment are also defined. The theory is
illustrated by four applications to spotted stars in eclipsing binaries.
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1 I N T RO D U C T I O N

Koen (2005) recently presented a very brief review of the literature
on rapid, non-evolutionary changes in the periods of variable stars.
Examples included the effects of small abundance gradient changes
on the the periods of pulsating stars, and of the ‘Applegate effect’
(e.g. Applegate 1992) on binary periods. Of course, convection is a
well-known stochastic process, which has also been mentioned as a
possible driver of small period changes in variable stars (e.g. Deasy
& Wayman 1985; Wolff et al. 2002).

The type of period fluctuation described above could manifest
itself in at least two different ways: as cycle-to-cycle ‘jitter’ in the
period, or, if the effects are cumulative, as a systematic change in
the period. The latter would not necessarily resemble the usually
assumed sinusoids or low-order polynomials, but would rather be
stochastic trends. This line of thinking was explored in some detail
by Koen (1996); he found that good model fits to many O − C (‘ob-
served minus calculated’) data sets could be obtained with purely
stochastic models.

The present paper is concerned with test statistics which can be
used to decide which phenomena (measurement error, period jit-
ter and/or systematic period changes) best explain a set of O −
C observations. This contrasts with the typical approach in which
regression techniques are used to try to ascertain the precise time
evolution of the period.

The statistical model formulation is dealt with in Section 2; the
test procedure is covered in Section 3; the model fit evaluation is
discussed in Section 4; analysis of a few data sets is presented in
Section 5; and conclusions are given in Section 6. Some of the
necessary algebra is presented in the Appendix.

�E-mail: ckoen@uwc.ac.za

2 T H E S TAT I S T I C A L M O D E L

The ‘instantaneous’ period at epoch j is assumed to be composed of
two components: a slowly, and relatively smoothly, varying part µ(j)
(which could be a constant); and a stochastic part which fluctuates
randomly from cycle to cycle. The random fluctuation at epoch j will
be modelled by the zero mean uncorrelated random variables η j ,
which are assumed to have constant variance σ 2

η. Such fluctuations
have been referred to in the literature as ‘period jitter’ or ‘intrinsic
period scatter’.

For most types of variable star σ 2
η may be very small, but this does

not necessarily imply that its effects on O − C diagrams will be
negligible. The point is easily demonstrated using simulated data.
Assuming a measurement error standard deviation of 5 × 10−4 of
the period, and 100 observations uniformly distributed over 10 000
cycles, the top panel of Fig. 1 shows the flat O − C for a constant
period and σ η = 0. In the next panel period jitter with σ η = 2 ×
10−5 of the period has been added: the result (for this particular
simulation) is an apparent sinusoidal modulation of the O − C .
Clearly, since the period jitter is at the level of 4 per cent of the
measurement error, it would be undetectable from individual cycles
of variation of the star.

The third and last panels of Fig. 1 respectively demonstrate the
effects of increasing σ η and decreasing the level of measurement
error. Furthermore, since the effects of period jitter on the O −
C values are cumulative, a longer baseline of observations would
generally give a larger apparent period change.

There are therefore at least two reasons for including intrinsic
random variability in the period in the formulation. The first is the
fact that the effects of non-zero σ η could mimic those of systematic
changes in the mean period [i.e. in µ(t)], or bias estimates of µ(t) if
both systematic and random changes are present. The second reason
is that it may be possible to learn something about the level of period
jitter despite the fact that it is inaccessible to direct measurement.
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Figure 1. Simulated O − C diagrams for a constant mean period. From
top to bottom (σ e = 5 × 10−4, σ η = 0), (σ e = 5 × 10−4, σ η = 2 × 10−5),
(σ e = 5 × 10−4, σ η = 5 × 10−5), (σ e = 2 × 10−4, σ η = 2 × 10−5).

This could further understanding of the levels of stability of periodic
variability.

A very general model for the relatively smooth long-term varia-
tions in the period denoted by µ(t) is

µ(t) = µ0 +
t∑

j=1

ξ j , (1)

where the ξ j are zero mean uncorrelated random variables with vari-
ance σ 2

ξ . Simulation examples of the efficacy of modelling smooth
functions (typically resembling low-order polynomials) by the ran-
dom walk model (1) can be found in Koen (1996); in a more general
context see e.g. Harvey (1989).

The full model for the instantaneous period Pj is then

Pj = µ j + η j = µ0 +
j∑

k=1

ξk + η j . (2)

Assume that there are K + 2 observations (timings) available, t 0,
t 1, t 2, · · · , tK , t K+1. Let the corresponding cumulative cycle numbers
be N 0 = 0, N 1, N 2, N 3, · · · , N K+1 ≡ N , i.e. there are nj = Nj −
N j−1 cycles between tj and t j−1. The jth O − C value is then

Z j ≡ (O − C) j = t j − t0 − N j P, j = 1, 2, · · · , K . (3)

In (3) P is the mean period over the N = N K+1 cycles:

P = tK+1 − t0

N
. (4)

Note that given the definition (3), (O − C)0 ≡ (O − C)K+1 ≡ 0.
The model specification is completed by noting that the tj are

subject to zero mean measurement errors ej with constant variance
σ 2

e :

t j = Tj + e j , j = 0, 1, 2, · · · , K + 1, (5)

where the Tj are the true, error-free values of the timings.
The expected values of all the Zj are zero, while the entries in

their covariance matrix Σ are derived in Appendix A.

Consider first the case where there is no long-term variation in the
period, i.e. µ(t) = µ0 in (1). Setting σ ξ = 0 in (A6) and (A7) then
leaves terms in σ 2

e and σ 2
η only. Examination of the two equations

shows that these terms are of order unity and Nj respectively. The
implication is that the effects of period jitter, as modelled by the η j ,
become comparable to those of measurement error in the O − C
observations for cumulative cycle numbers

N �
(

σe

ση

)2

. (6)

To illustrate, in the example in the second panel of Fig. 1, σ e/σ η =
25, hence the the effects of random intrinsic variations in the period
could start making an impact for N in excess of about 625.

By contrast, if the systematic period change can be modelled as
in (1), its long-term effects grow much more rapidly (∝ N 3) with
increasing cycle count.

3 T E S T I N G

Within the framework of the model formulated in Section 2, there
are four possibilities:

M1: the mean period is constant and there are no random cycle-
to-cycle period variations (σ η = 0, σ ξ = 0);

M2: the mean period is constant but there are random cycle-to-
cycle period variations (σ η �= 0, σ ξ = 0);

M3: the mean period is variable but there are no random cycle-
to-cycle period variations (σ η = 0, σ ξ �= 0);

M4: the mean period is variable and there are random cycle-to-
cycle period variations (σ η �= 0, σ ξ �= 0).

One way of proceeding is to compare the four models by pair-
wise hypothesis testing. A possible test statistic is then the standard
likelihood ratio

�i j = 2(Li − L j ), (7)

where the Gaussian log likelihood is given by

L = −1

2

(
K log 2π + log |Σ| + ZtΣ−1 Z

)
. (8)

In (8), Z is the vector consisting of the K observed O − C values, and
|Σ| is the determinant of the covariance matrix Σ. The likelihoods
Li and L j in (7) are calculated by setting the appropriate variances
(σ 2

η and/or σ 2
ξ ) in Σ equal to zero, and then maximizing with respect

to σ 2
e and the remaining variances (if any).

Aside from the erosion of significance levels due to multiple hy-
pothesis testing, the �i j have non-standard distributions due to the
fact that the hypotheses involve parameter values that lie on the
boundaries of their domains (e.g. Andrews 2001). These and other
complications are easily avoided by resorting to the use of model
selection statistics: for our purposes useful forms are the Akaike and
Bayes information criteria, defined by

AI C = −2 logL + 2p + 2p(p + 1)

K − p − 1
,

B I C = −2 logL + p log K (9)

(e.g. Harvey 1989; Burnham & Anderson 2004). The symbol p de-
notes the number of model parameters (p = 1, 2, 2, 3 for models
M1–M4 respectively). The two criteria essentially contrast a mea-
sure of how well the models fit the data (the likelihood term) with
a penalty term for the number of fitted parameters (2p and p log K
respectively). The last term in the expression for the AIC is a small
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sample bias correction (e.g. Burnham & Anderson 2004). The maxi-
mum value of the likelihood is calculated for each of the four models,
the results substituted into (9), and the model giving the minimum
value of the information criteria selected.

Let AIC(i) be the Akaike information criterion for model Mi, and
AICmin the minimum value of AIC(i) (i = 1, 2, 3, 4). Then

pA(i) = exp{−[AI C(i) − AI Cmin]/2}∑
j exp{−[AI C( j) − AI Cmin]/2} (10)

can be interpreted as the probability that model i is appropriate
(Burnham & Anderson 2004). The case of the Bayes information
criterion is analogous: probabilities based on the BIC(i) will be
denoted by pB (i).

4 F I T E VA L UAT I O N

Once the optimal model has been selected, it is possible to investigate
its fit to the data, similarly to the evaluation of regression residuals.
The covariance matrix of the O − C values is

cov(Z, Z) = EZZt = Σ (11)

(E is the expectation operator). The covariance matrix Σ is positive-
definite and symmetric, and can therefore be written as

Σ = LLt (12)

where L is lower triangular. This ‘Cholesky decomposition’ is dis-
cussed in, for example, Healy (1986). Defining

u = L−1 Z, (13)

it follows from (11)–(13) that

Su = cov(u,u) = E
{

L−1 ZZt
[
L−1

]t
}

= L−1
[
EZZt

] [
L−1

]t

= L−1Σ
[
L−1

]t

= L−1
[
LLt

] [
Lt

]−1

= I,
(14)

where I is the identity matrix.
A critical point is that (11), and hence all the equations follow-

ing it, only applies if the model is appropriate: covariance matrices
calculated on the basis of incorrect models will not reflect the covari-
ances of the components of Z. The implication is that the covariance
matrix Su of u is an identity matrix only if Σ is calculated for the
correct model. Clearly, the components of u can be interpreted as
model residuals; these have zero mean and unit variance, and are
uncorrelated only if they are associated with the correct model. The
uj will be referred to as ‘pseudo-residuals’ in what follows, since
they are not derived from a detailed model fit as in e.g. Koen (1996).

Of course, if none of M1–M4 is appropriate, then in general
Su �= I.

A few fairly elementary procedures can be applied to the pseudo-
residuals in order to see whether these are indeed approximately
identically distributed and uncorrelated. A simple plot of uj against
j is often sufficient; it can be supplemented by the autocorrelation
function (acf) r(k) of the uj:

r (k) = 1

K

K−k∑
j=1

u j u j+k, k = 1, 2, · · · , J , (15)

usually calculated at lags k up to J = 10 or 15. A rough 5 per
cent significance level for individual values of |r (k)| is 2/

√
K . An

overall significance level for the entire acf can be found from the
portmanteau statistic

Q = K
J∑

k=1

[r (k)]2 (16)

which is approximately chi-squared distributed with J − p degrees
of freedom, where p is the number of model parameters (see e.g.
Chatfield 2004).

5 S O M E R E S U LT S

As examples, the four data sets discussed by Sowell et al. (2001) are
re-analysed. The timings are eclipse minima of four spotted stars in
binary systems.

(i) UV Psc. The O − C diagram of the photoelectric data is
plotted in Fig. 2, using P = 0.861 047 53 d. The results of fitting
the four models, with and without the outlier visible in Fig. 2, are
given in Table 1. The best model, according to both AIC and BIC,
is M2 (period jitter only – no systematic change in period).

The solutions for σ ξ in M4 are so small that the model essentially
reduces to M2. By implication M4 should be properly be excluded
from the calculation of the pA and pB, making M2 even more dom-
inant.

The pseudo-residuals are plotted in Fig. 3; all three sets are statis-
tically uncorrelated. (Due to the fact that σ ξ ≈ 0 in M4, its pseudo-
residuals are very close to those of M2, and are therefore not plotted.)

Figure 2. The O − C diagram of the photoelectric photometry of UV Psc,
as tabulated by Sowell et al. (2001). The scale on the vertical axis is in units
of 0.001 d.

Table 1. Results of fitting each of the four models to the UV Psc data.
The estimated standard deviations are given in units of days. The last two
columns are the Akaike and Bayes model probabilities [see equation (10)].

Model σ e σ η σ ξ pA pB

All data

M1 2.9 × 10−3 0 0 0.00 0.00
M2 3.8 × 10−4 1.7 × 10−4 0 0.79 0.82
M3 2.6 × 10−3 0 1.5 × 10−8 0.00 0.00
M4 3.8 × 10−4 1.7 × 10−4 1.0 × 10−14 0.21 0.18

Excluding the outlier at Epoch 1194
M1 1.7 × 10−3 0 0 0.13 0.17
M2 6.7 × 10−4 9.5 × 10−5 0 0.55 0.54
M3 1.5 × 10−3 0 1.0 × 10−8 0.18 0.17
M4 6.7 × 10−4 9.5 × 10−5 3.1 × 10−15 0.14 0.12
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Figure 3. The pseudo-residuals of the UV Psc data, after fitting models
M1 (top panel), M2 (middle panel) and M3 (bottom panel). The model M4
pseudo-residuals are indistinguishable from those of the M2 model.

Figure 4. The O − C diagram based on all observations of YY Gem, as
tabulated by Sowell et al. (2001). The scale on the vertical axis is in units of
0.001 d.

Table 2. Results of fitting each of the four models to the YY Gem data.
The estimated standard deviations are given in units of days. The last two
columns are the Akaike and Bayes model probabilities [see equation (10)].

Model σ e σ η σ ξ pA pB

All data

M1 2.5 × 10−3 0 0 0.04 0.05
M2 1.6 × 10−4 4.4 × 10−5 0 0.39 0.39
M3 1.8 × 10−3 0 5.3 × 10−9 0.45 0.45
M4 1.6 × 10−4 2.9 × 10−5 4.8 × 10−9 0.12 0.12

(ii) YY Gem. The O − C plot, based on P = 0.814 282 20 d,
is shown in Fig. 4, and the model-fitting results are summarized in
Table 2. There is not much to choose between M2 and M3, but M4
is less likely. There are only N = 20 data points, so the lack of a
clear choice is perhaps not surprising.

The pseudo-residuals of all the models are consistent with being
white noise.

(iii) CG Cyg. A period of 0.631 143 12 d was used to calculate
the O − C values in Fig. 5. Properties of the fitted models are sum-
marized in Table 3: the model with both a systematic period change
and intrinsic period scatter is preferred. The pseudo-residuals for
models M2–M4 are plotted in Fig. 6, and their acfs are shown in
Fig. 7. Somewhat surprisingly, the level of residual autocorrelation

Figure 5. The O − C diagram based on the photoelectric photometry of
CG Cyg, as tabulated by Sowell et al. (2001). The scale on the vertical axis
is in units of 0.001 d.

Table 3. Results of fitting each of the four models to the CG Cyg data.
The estimated standard deviations are given in units of days. The last two
columns are the Akaike and Bayes model probabilities [see equation (10)].

Model σ e σ η σ ξ pA pB

All data

M1 2.9 × 10−3 0 0 0.00 0.00
M2 2.1 × 10−4 5.2 × 10−5 0 0.11 0.14
M3 4.7 × 10−4 0 2.2 × 10−8 0.13 0.18
M4 2.7 × 10−4 3.1 × 10−5 1.9 × 10−8 0.76 0.67

Figure 6. The pseudo-residuals of the CG Cyg data, after fitting models
M1–M4 (from top to bottom).

in M4 is higher than in M2 and M3: the portmanteau Q statistics
are 16.7, 10.1 and 21.6 for M2, M3 and M4 respectively [using
J = 10 lags in equation (16)]. The Q-value for M4 is highly sig-
nificant, meaning that there is considerable autocorrelation in the
residuals. The result is due to the presence of the large residuals
with alternating signs visible in the central section of the residual
time series.

(iv) XY UMa. Fig. 8 is the O − C diagram, calculated using P =
0.478 995 01 d. The model selection results in Table 4 are similar to
those for UV Psc given in Table 1: M4 is essentially equivalent to
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Figure 7. The autocorrelation functions of the pseudo-residuals of models
M2–M4 from Fig. 6. The broken lines are the approximate 95 per cent
confidence bounds for zero correlation [see the text after equation (15)].

Figure 8. The O − C diagram of the photoelectric photometry of XY UMa,
as tabulated by Sowell et al. (2001). The scale on the vertical axis is in units
of 0.001 d.

Table 4. Results of fitting each of the four models to the XY UMa data.
The estimated standard deviations are given in units of days. The last two
columns are the Akaike and Bayes model probabilities [see equation (10)].

Model σ e σ η σ ξ pA pB

All data

M1 4.4 × 10−3 0 0 0.00 0.00
M2 6.6 × 10−4 1.5 × 10−4 0 0.75 0.88
M3 1.7 × 10−3 0 4.5 × 10−8 0.00 0.00
M4 6.6 × 10−4 1.5 × 10−4 4.0 × 10−15 0.25 0.12

M2. The acfs of the pseudo-residuals of M2 and M4 are consistent
with white noise, while the Q-statistic for model M3 is marginally
significant.

Sowell et al. (2001) concluded that there are no period changes
in UV Psc and YY Gem, whereas the periods of both CG Cyg and
XY UMa were subject to changes. The results in Tables 1–4 are
more detailed, in that models 2 and 4 are also entertained. Indeed,
in this paper it is found that M2 (intrinsic period jitter) is a much
more likely explanation of the O − C diagram of XY UMa than M3
(a systematic period change). The UV Psc and CG Cyg data also
show the presence of random period fluctuations, superimposed on

a systematic period change in the case of CG Cyg. In the case of
YY Gem it is not possible to choose unambiguously between M2
and M3.

6 C O N C L U S I O N S

A brief summary of the steps in an analysis follows.

(1) Determine the mean period as in (4). Using this value of P ,
find the cumulative cycle numbers Nj and hence the Zj = (O − C) j

values [as in (3)].
(2) For each of the models M1–M4, the log likelihood function

is maximized with respect to its unknown parameters. The entries
in the appropriate covariance matrix Σ are calculated using the
formulae (A6) and (A7).

(3) The information criteria AIC and BIC follow from (9), and the
corresponding probabilities from (10) [and an analogous equation
for the pB(i)].

(4) Calculate pseudo-residuals as in (13), where L is defined in
(12). Plot these.

(5) The residuals can be further assessed using (15) and (16).

Equation (8) is based on the assumption that the O − C values
have a joint normal distribution. Provided that the measurement
errors ei are Gaussian, the assumption can be justified by referring
to equation (A4) in the appendix:

Z j = e j +
(

N j

N
− 1

)
e0 − N j

N
eK+1

+
N j∑

k=1

(
ηk +

k∑
i=1

ξi

)
− N j

N

N∑
k=1

(
ηk +

k∑
i=1

ξi

)
. (17)

For reasonably large cumulative cycle numbers Nj, the sums over
terms in ηk and ξ i will each be normally distributed, by the cen-
tral limit theorem (e.g. Mood, Graybill & Boes 1974). Therefore,
provided that the ei are Gaussian, Zj in (17) is a sum over nor-
mally distributed variates, which is again Gaussian (e.g. Mood et al.
1974).
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A P P E N D I X A : T H E C OVA R I A N C E S O F T H E O − C VA L U E S

The jth O − C value, denoted by Zj, is

Z j = t j − (t0 + N j P), j = 1, 2, · · · , K (A1)

[see equation (3)], where the mean period is given by (4). For the model of equations (1), (2) and (5) it follows that

t j = Tj + e j = T0 +
N j∑

k=1

Pk + e j

= T0 +
N j∑

k=1

(ηk + µk) + e j

= T0 + N jµ0 +
N j∑

k=1

(
ηk +

k∑
i=1

ξi

)
+ e j . (A2)

Therefore

P = 1

N

[
eK+1 − e0 + Nµ0 +

N∑
k=1

(
ηk +

k∑
i=1

ξi

)]
. (A3)

Substituting (A2) and (A3) into (A1),

Z j = e j − e0 + N jµ0 +
N j∑

k=1

(
ηk +

k∑
i=1

ξi

)
− N j

N

[
eK+1 − e0 + Nµ0 +

N∑
k=1

(
ηk +

k∑
i=1

ξi

)]

= e j +
(

N j

N
− 1

)
e0 − N j

N
eK+1 +

N j∑
k=1

(
ηk +

k∑
i=1

ξi

)
− N j

N

N∑
k=1

(
ηk +

k∑
i=1

ξi

)
. (A4)

The expected value of all the Zj is zero. Evaluation of the covariances is straightforward, except for those involving terms in

Uk =
(

Nk∑
j=1

j∑
i=1

ξi

)
=

Nk∑
j=1

(Nk − j + 1)ξ j ,

and these are dealt with in detail. Assuming k � �,

cov(Uk, U�) = cov

[
Nk∑
j=1

(Nk − j + 1)ξ j ,

N�∑
i=1

(N� − i + 1)ξi

]

= cov

[
Nk∑
j=1

(Nk − j + 1)ξ j ,

Nk∑
i=1

(N� − i + 1)ξi

]

= σ 2
ξ

Nk∑
j=1

(Nk − j + 1)(N� − j + 1),

which is easily shown to reduce to

cov(Uk, U�) = 1

6
Nk(Nk + 1)σ 2

ξ (3N� − Nk + 1) . (A5)

It follows from (A4) and (A5) that

var(Z j ) = 2

[(
N j

N

)2

− N j

N
+ 1

]
σ 2

e + N j

(
1 − N j

N

)
σ 2

η

+ N j

6

[
(N j + 1)(2N j + 1) − 2

N j

N
(N j + 1)(3N − N j + 1) + N j

N
(N + 1)(2N + 1)

]
σ 2

ξ . (A6)
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Similarly,

cov(Zk, Z�) =
[(

1 − Nk

N

)(
1 − N�

N

)
+ Nk N�

N 2

]
σ 2

e + Nk

(
1 − N�

N

)
σ 2

η

+ Nk

6

[
(Nk + 1)(3N� − Nk + 1) − N�

N
(Nk + 1)(3N − Nk + 1) − N�

N
(N� + 1)(3N − N� + 1) + N�

N
(N + 1)(2N + 1)

]
σ 2

ξ

(A7)

for k < �.
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