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Abstract  

Sorghum bicolor, a drought tolerant cereal crop, is not only an important food source in the 

semi arid/arid regions but also a potential model for studying and gaining a better 

understanding of the molecular mechanisms of drought and salt stress tolerance in cereals. 

In this study, seeds of a sweet sorghum variety, MN1618, were planted and grown on solid 

MS growth medium with or without 100 mM NaCl. Heat shock protein expression 

immunoblotting assays demonstrated that this salt treatment induced stress within natural 

physiological parameters for our experimental material. 2D PAGE in combination with 

MS/MS proteomics techniques were used to separate, visualise and identify salinity stress 

responsive proteins in young sorghum leaves. Out of 281 Coomassie stainable spots, 118 

showed statistically significant responses (p<0.05) to salt stress treatments. Of the 118 

spots, 79 were selected for tandem mass spectrometric identification, owing to their good 

resolution and abundance levels, and of these, 55 were positively identified. Identified 

proteins were divided into six functional categories including both known and 

novel/putative stress responsive proteins. Molecular and physiological functions of some of 

our proteins of interest are currently under investigation via bioinformatic and molecular 

biology approaches.  

Introduction  

Abiotic stresses such as salinity and drought affect plant growth, development and 

productivity by imposing hyperosmotic and oxidative stresses, ion toxicity and nutrient 

deficiency [1-3]. These environmental stresses are more prevalent in arid and semi-arid 

areas. Although irrigation is often used as a remedy to supplement inadequate rainfall in 

drought prone areas, over-irrigation of arable lands may increase soil salinity in the long 
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term, thus worsening the situation [4]. Agriculturally important cereals such as rice and 

maize, like many other food crops, are sensitive to hyperosmotic stresses [5-7]; and thus 

show reduced productivities when cultivated in saline soils. With the increasing soil 

salinisation that is projected to affect more than 50% of all arable lands by the year 2050 

[8], as well as the growing world population, there is increasing need to develop crops that 

are well adapted to salt stress. The cultivation of salt tolerant crops on saline soils would aid 

towards the full utilisation and reclamation of salt affected soils, which would otherwise be 

non-productive.  

The physiological impact of salt stress at both tissue and cellular levels in plants has been 

shown to resemble that of other hyperosmotic stresses such as drought, cold and freezing 

[9, 10].  In addition to causing tissue and cellular dehydration, salt stress imposes ionic 

stress in plants [1, 11]. Some of the biological processes and metabolic pathways that are 

involved in salt stress response and tolerance, or those that are affected by salt stress, have 

been identified in gene expression studies. This is in line with the knowledge that salt stress, 

like all abiotic stresses, causes changes in gene expression [12, 13], which ultimately affects 

the expression of gene products, the proteins [9, 12-16].  

Proteomics, the large-scale analysis of proteins from a particular organism, tissue or cell at 

a given time [17-19] has been used to study salt stress responsive protein expression in 

crops such as rice (Oryza sativa; [20]), potato (Solanum tuberosum; [21]) and foxtail millet 

(Setaria italica L. cv Prasad; [22]) amongst others. Sobhanian and co-workers reviewed 

some of these studies, giving a description of unique proteome changes of several other 

economically important food crops under salt stress [7]. Despite these reported proteomics 

advances in food crops under salt stress, comparable studies on sorghum, one of the most 

stress tolerant commercial grain crops are still limited. Kumar Swami and co-workers 

reported on the first attempt in cataloging differential proteome expression changes in 

sorghum leaf tissue in response to salt stress [23].  

Sorghum is considered to be moderately tolerant to salt, being particularly more tolerant 

than maize [24], the most widely produced grain crop worldwide. As such, sorghum offers 

great potential as a food source in both dry and relatively more saline regions. Several 

studies have been reported on the large scale screening of sorghum varieties for salt 

tolerance [24], transcriptome changes in response to dehydration and high salinity [25], the 

evaluation of growth parameters and ion accumulation [26], and soluble carbohydrate 

contents [27, 28] among various cultivars of sorghum. Although these studies provide 

valuable information on the effect of salt stress on gene expression, plant growth and the 

accumulation of soluble sugars which may function as osmoprotectants, there is need to 

identify specific proteins that contribute to sorghum’s salt tolerance mechanisms. The 

measurement of protein expression using proteomics tools would therefore provide a better 

indication of cellular activities under salt stress. Sorghum proteomics is further encouraged 

by the published sorghum genome sequence [29], which will help in downstream protein 

identification steps by mass spectrometry analysis.  The current study aims at identifying 

salt stress responsive proteins in sorghum leaf extracts using 2-DE and MS. The data 

obtained will be useful in understanding how sorghum, a potential fail-safe crop grown in 

arid regions, copes with salinity stress when cultivated on saline soils.  
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2 Materials and methods  

2.1 Plant growth and salt treatment  

The MN1618 sorghum seed variety used in this study was obtained from Dr Pangirai 

Tongoona, University of KwaZulu-Natal, Pietermaritzburg, South Africa. The seeds were 

first surface decontaminated with 70% (v/v) ethanol for a minute followed by absolute 

commercial bleach (12% sodium hypochlorite solution) for 20 min before plating in 175 ml 

capacity plant tissue culture vessels (Sigma-Aldrich, Saint Louis, MO., USA) containing 50 

ml of sorghum seed growth media [2.2g/l Murashige and Skoog basal medium (MS; 1% 

(w/v) sucrose, 5 mM MES and 0.8% (w/v) agar, pH 5.8]. The media was supplemented with 

either 100 mM NaCl (salt stressed treatment group) or without NaCl (unstressed treatment 

group). Both treatment experiments were performed in triplicate. Culture vessels were 

incubated at 25ºC under a 16 h light/8 h dark regime for 14 days after which leaf material 

was excised from the seedlings and immediately flash frozen in liquid nitrogen.  

2.2 Protein extraction from sorghum leaf tissue and quantification  

Sorghum leaf protein extracts were prepared from an average of ten, 14 day old sorghum 

seedlings. The leaf material was ground in liquid nitrogen using a mortar and pestle, and 

precipitated with 10% (w/v) TCA. The homogenate was centrifuged at 13,400 x g for 10 min 

at room temperature and the resultant pellet was washed three times with ice-cold 80% 

(v/v) acetone by centrifuging at 13,400 x g for 10 min per wash. The pellet was air dried for 

5 min at room temperature and resuspended in urea buffer (9 M urea, 2 M thiourea and 4% 

CHAPS) for at least 1 h with vigorous vortexing at room temperature. After vortexing, the 

homogenate was centrifuged at 15,700 x g for 10 min and the supernatant containing 

soluble leaf proteins was collected and stored at -20C. Extracted leaf proteins were 

quantified using a modified Bradford assay [30] as previously described [31] using BSA as a 

standard.  

2.3 1-DE and 2-DE  

One-dimensional gel electrophoresis of approximately 10 µg of leaf protein extracts was 

carried out to evaluate both the quality and loading quantities of the extracts prior to 2-DE. 

For 2-DE, mini format SDS-PAGE gels [10.1 cm (width) x 8.3 cm (height)] were run for use 

in comparative gel analysis, while the large format gels [27.6 cm (width) x 21.6 cm (height)] 

were run for spot picking. For mini gels, 100 µg of the leaf protein extracts were 

isoelectrophoresed on 7 cm IPG strips of pH range 4-7 (Bio-Rad, Hercules, CA, USA), 

equilibrated in SDS-containing buffers and run on 12 % (w/v) SDS polyacrylamide gels as 

previously described [32]. For large format gels, 750 µg leaf protein extracts were 

isoelectrophoresed on 18 cm IPG strips of pH range 4-7 (Bio-Rad), equilibrated in SDS-

containing buffers and run on 12 % (w/v) SDS polyacrylamide gels as previously described 

[33]. Isoelectric focusing of both the 7 and 18 cm strips were separately performed on an 

Ettan™ IPGphor II™ (GE Healthcare, Amersham, UK) using stepwise programmes as 

described below. For 7 cm strips; 250 V for 15 min, followed by 4 000 V for 1 h and finally, 4 

000 V until it reached 12 000 Vh. For 18 cm strips; 250 V for 15 min, followed by 8 000 V 
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for 2 h and finally, 8 000 V until it reached 60 000 Vh. The 2-DE gels were stained with 

CBB R-250 and imaged using the Molecular Imager
® 
PharosFX™ Plus System (Bio-Rad).  

2.4 Immunoblotting for Heat shock protein 70 (Hsp70)  

Immunoblotting analysis for Hsp70 on sorghum leaf protein extracts separated on 1DE gels 

was performed as previously described [34].  

2.5 Comparative analysis of 2-DE gels  

Comparative analysis of protein expression on 2-DE gels between stressed and unstressed 

treatment groups was carried out using the PDQuest
TM 

Advanced 2D Analysis Software 

version 8.0.1 build 055 (Bio-Rad) according to the user manual. Each treatment group had 

three biological replicates. Gels were normalised using the local regression model and spots 

were manually edited using the group consensus tool. Differentially expressed protein spots 

were statistically significant using the Student’s t-test at a 95% significance level. Protein 

spots of interest were picked from large format CBB stained gels using the ExQuest
TM 

spot 

cutter (Bio-Rad) for identification by MS/MS.  

2.6 Protein identification by MALDI-TOF-TOF MS  

The protein spots were destained with 30% ACN in aqueous ammonium bicarbonate (70 

mM final concentration), reduced with DTT, alkylated with iodoacetamide and digested 

with sequencing grade trypsin (Promega, Madison, USA) according to Shevshenko et al. 

[35]. The tryptic peptides were either spotted directly on the MALDI target as a dried 

droplet preparation with 10 mg/ml CHCA or, in cases where MS signals of dried droplet 

preparations were low, concentrated and desalted on hand held C18 microcolumns and 

eluted with 10 mg/ml CHCA in 50% ACN, 0.1% TFA. The MS and MS/MS mass spectra 

were recorded on an ABI 4800 plus (Applied Biosystems, Foster City, CA) MALDI-

TOF/TOF mass spectrometer in the positive ion mode with internal calibration of the MS 

spectra employing masses of commonly observed trypsin peaks. The 10 most abundant 

peptide ions from each spot were selected for CID (gas pressure of  

 1 × 10
−6 

Torr) TOF/TOF MS/MS. In cases where commonly observed keratin, trypsin or 

project specific contaminants dominated the MS spectra, these were excluded from analysis 

by an exclusion list, which was built by PeakErazor [36] after the first round of analysis.  

The spectra were annotated and analyzed using Data Explorer v. 4.5 (Applied Biosystems) 

without smoothing or noise reduction. The MS and MS/MS data from each gel band was 

combined into a single mass list (.mgf file) using an in-house developed script (Jakob 

Bunkenborg, Department of Biochemistry and Molecular Biology, University of Southern 

Denmark, Denmark).  

The .mgf files of each spot were searched against protein sequences from Viridiplantae 

(green plants) (846849 sequences) in the NCBI non-redundant database, release NCBInr 

20101126. The peptide MS and MS/MS tolerances were set to 15 ppm and 0.6 Da, 

respectively. The MASCOT search engine located on an in-house server (version 2.2.06, 
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Matrix Science, London, UK) was used for searching and scoring the identified proteins. 

The search parameters were as follows: Specificity of protease digestion was set to trypsin 

with one missed trypsin site allowed. Oxidation of Met and deamidation of Asn and Gln 

were set as variable modification for all Mascot searches, and carbamidomethyl on Cys was 

set as a fixed modification. Individual peptides with a MASCOT score >35 (probability value 

of p < 0.05) were accepted as identified. Using these parameters, a false discovery rate of 

0.00% was obtained as judged by MASCOT’s decoy database searching.  

2.7 Bioinformatic analysis  

Theoretical Mr and pI of MS identified proteins were estimated using the Compute pI/MW 

tool available on ExPASy (http://expasy.org). Proteins were grouped into functional 

categories [37] using data available on the UniProt database (www.uniprot.org) as well as 

literature sources. Hypothetical proteins were annotated with function by extracting 

information from the Conserved Domain Database (CDD) entries of the NCBI protein 

database.  

3 Results and discussion  

3.1 Choice of salt concentration for stress treatment and its effect on Hsp70 

protein expression.  

A preliminary experiment was conducted to establish the appropriate salt concentration for 

use in this study. In the experiment, surface decontaminated white sorghum seeds 

(purchased from Agricol, Brackenfell, South Africa) were plated and grown on sorghum 

seed growth media supplemented with 0 mM (control), 50, 100, 150 and 200 mM NaCl for 

14 days. As illustrated in Figure 1, the seeds were able to germinate and grow albeit at 

different degrees across the treatment regime. However, from 150 mM NaCl, the efficiency 

of seed germination and seedling growth was greatly reduced. On the basis of this 

preliminary experiment, 100 mM NaCl was selected as the concentration for use in 

subsequent salt treatment experiments.  
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Fig. 1 – Effects of different levels of salt stress on the germination and growth of sorghum. Surface decontaminated white 

sorghum seeds were germinated on MS medium supplemented with 0–200mM NaCl for a total of 14 days. The picture 

was taken on day 10 post planting. 

 
In order to adapt to and/or tolerate salt stress, plant cells may alter their gene expression 

resulting in an increase, decrease, induction or total suppression of some stress responsive 

proteins [13-16]. To establish whether or not our salt stress treatment regime of 100 mM 

NaCl for 14 days was within the physiological range of our experimental system, we 

investigated its effect on the expression of Hsp70 protein, a known stress responsive 

protein, using immunoblotting analysis. Immunoblotting was conducted on protein extracts 

from both salt stressed (100 mM NaCl) and unstressed (0 mM NaCl; control) MN1618 

leaves using a human HeLa cells anti-Hsp70/Hsc70 monoclonal antibody. Figure 2 

illustrates that the levels of Hsp70 were enhanced in the salt stressed samples in 

comparison with the control. Heat shock protein 70 is a known stress responsive protein 

[38], and is expressed in response to abiotic stresses such as heat, cold, drought, salinity 

and oxidative stress [39]. The protein prevents aggregation of stress-denatured proteins and 

facilitates the refolding of proteins in order to restore their native biological functions [39, 

40]. As such, Hsp70s are broadly known to function as molecular chaperones [41]. Overall, 

the Hsp70 immunoblotting experiment on salt stressed sorghum material demonstrates 

that our stress treatment conditions were within the physiological parameters of our 

experimental system, inducing known stress responses. This observation was indicative of 

the fact that our system was sufficient for application in further experimentation 

procedures. 
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Fig. 2 – Immunoblotting analysis of Hsp70 expression patterns on salt stressed MN1618 sorghum leaf protein extracts. 

Three biological replicates of control (0 mM NaCl) and salt stressed (100mM NaCl) treatment are shown. 

 
3.2 2-DE image analysis and annotation of stress-responsive protein spots.  

One dimensional gel electrophoresis of the protein extracts showed that protein expression, 

abundance and loading across biological replicates was relatively uniform in both the 

control and salt stressed treatment groups (results not shown). To determine salt stress 

responsive sorghum leaf proteins, 2-DE expression profiles of leaf protein extracts from 

stressed (100 mM NaCl) and unstressed (control) 14-day old plants were compared. One 

hundred micrograms of protein extracts from three independent biological replicates of 

stressed and unstressed sorghum plant leaves were resolved on 7 cm IPG strips of pH range 

4-7 and 12% (v/v) SDS PAGE gels. Gel electrophoresed proteins were visualised after CBB 

staining and imaged. The inclusion of biological replicates in comparative proteomic studies 

is important for accounting for the normal biological variation expected within each 

treatment group as well as for reducing chances of detecting non-reproducible protein 

expression differences between experiments. For this reason, all spots included in the 

analysis were reproducibly expressed amongst the three biological replicates of each 

treatment group. Differential protein expression between the two treatment groups was 

assessed using PDQuest
TM 

software. This resulted in the visualisation of 233 and 281 CBB 

stainable leaf protein spots in the control and salt stressed treatment groups, respectively. 

From the analysis of differential protein expression between the control and salt treatment 

groups, a total of 118 protein spots were statistically significant using the Student’s t-test at 

a 95% significance level. Some examples of the differentially expressed proteins as predicted 

by the PDQuest
TM 

software are shown in Figure 3. The expression patterns of these spots 

amongst the three biological replicates per treatment also showed a consistent pattern 

(Figure 3). Representative control and salt treated sorghum leaf proteomes are shown in 

Figure 4A and 4B respectively.  
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Fig. 3 – Zoomed in gel sections of representative spots showing differential expression patterns following salt treatment. 

Responsive spots were either up-regulated (A and B), down-regulated (C and D) or induced (E and F) following salt 

stress. The overall expression patterns of these representative spots amongst the three biological replicates used in the 

analysis are also shown in PDQuest™ software generated bar graphs. 

 
Overall, most protein spots were confined between the Mr range of 10-110 kDa with an 

experimental IEF pH restriction of 4-7. Protein separation by 2-DE is known to have 

physical limitation in separating proteins, where proteins of extreme pIs and Mr are 

excluded from the 2-DE profiles [42, 43]. Limited Mr range of 2-DE electrophoresed spots 

has also been reported in other studies of the proteome of maize (Zea mays) leaves [44] and 

cell suspension cultures [45] as well as different tissues  
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[46] of barrel medic (Medicago truncatula), amongst others. The IEF pH restriction of 4-7 

in sorghum leaf proteome has also been previously reported [23].  

 

Fig. 4 – Coomassie brilliant blue R-250 stained 2-DEgels of MN1618 sorghum leaf proteins. Representative mini format 

gels of control (A) and salt stressed (B) sorghum leaf proteome showing the general protein expression within the two 

treatment groups. The large format gel (C) shows a total of 79 annotated sorghum salt stress responsive proteins that 

were selected for MS/MS analysis. 

 

3.3 Mass spectrometric identification of salt stress-regulated sorghum proteins  

From the 118 statistically significant differentially expressed protein spots as determined by 

PDQuest
TM 

software (p<0.05), a total of 79 abundant, well-resolved and reproducible spots 

(numbered spots; Figure 4C) were selected from large format CBB stained gels for 

trypsinisation and identification by MALDI TOF/TOF MS. Of these 79 statistically 

significant spots, 17 (spots 1; 4-6; 8-10; 17; 20; 29; 33; 38; 65; 69; 71; 78; 83; Figure 4C) 

were only present in the salt stressed treatment group, suggesting that they were only 

synthesised in response to salt stress. In comparison with a similar study conducted in 

abiotic-stress sensitive rice plants [47], only two such proteins were observed. Salinity 

induced proteins might possibly contribute towards a plant’s tolerance mechanism to salt 
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and thus could be useful candidates for further investigation of their molecular mechanisms 

of action.  

The 79 protein spots (Figure 4C) whose abundance changed with a ≥ 95% statistical 

confidence (Student’s t-test) were picked from CBB stained gels, trypsinised and analysed 

using MALDI TOF-TOF MS. MS and MS/MS spectra were searched by MASCOT against 

NCBInr protein database [taxonomy: Viridiplantae (green plants)] to identify the proteins 

according to the criteria stated in the “Materials and Methods” section.  

Out of the 79 salt stress responsive protein spots that were selected for identification by MS  

(Figure 4C), 55 gave positive hits in the searched sequence database, matching those from 

sorghum (S. bicolor) and orthologs from other monocots such as sugarcane (Saccharum 

officinarum), maize (Z. mays), rice (Oryza sativa), wheat (Triticum aestivum), barley 

(Hordeum vulgare) amongst others. Table 1 illustrates spot numbers, their protein 

identities, number of matching peptides, theoretical/experimental Mr/pI as well as their 

abundance changes. Refer to supplementary material, Table SM1 for quantity values of all 

differentially expressed spots annotated in Figure 4C, and Table SM2 for detailed 

information on the peptide identification summary of all the 55 positively identified protein 

spots.  

[Table 1: at end of document] 

Out of the 55 positively identified proteins, 22 matched S. bicolor hypothetical proteins 

(Table 1). Following the completion of the sorghum genome-sequencing project [29], most 

predicted sorghum gene products remain experimentally uncharacterised and are 

submitted as hypothetical proteins. By definition, hypothetical proteins are proteins 

predicted from genome sequences but whose existence has not been experimentally proven 

at the protein level [48]. As such, sorghum proteomic studies such as the current one and 

others [23] have been confronted with incomplete sorghum sequencing data that awaits full 

characterisation. If proteomic technologies are to be fully utilised in unravelling the array of 

proteins, and thus genes and biological processes at work in sorghum under a range of 

abiotic stresses, the scientific community worldwide is encouraged to begin viewing 

sorghum as a potential model plant of cereals, and thus investing resources in further 

characterising sorghum proteins.  

The remaining 33 (55-22=33) positively identified proteins represented 19 unique protein 

identities due to the occurrence of similar proteins in multiple spots on the gel, differing in 

Mr, pI or both. Such observed spotting patterns have been reported in previous studies [32, 

38, 49, 50]. Multiple spotting of the same protein in different locations on a 2-DE gel may 

be a reflection of protein isoforms due to PTMs or multigene families, products of 

proteolytic activities, the presence of multiple subunits of a single protein and/or the 

chemical modification of proteins during sample preparation [51]. Examples of possible 

protein isoforms in our sorghum leaf proteome, which appeared in multiple spots with 

similar Mr but different pIs (Figure 4C, Table 1), include cyanogenic beta-glucosidase 

dhurrinase-2 (spots 8 and 9), ATP synthase CF1 alpha subunit (spots 13 and 14) and 

hydroxynitrile lyase (spots 77 and 78). Components of the ATP synthase protein complex, 

namely the alpha (spots 7, 13 and 14), beta (spot 22) and gamma (spot 21 and 40) subunits 
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were also identified in the current study. Such component subunits of protein complexes 

have also been previously reported in Brassica napus stem proteome [51].  

3.4 Functional classification of identified sorghum salt stress responsive 

proteins  

The 55 positively identified proteins were grouped into functional categories as previously 

described [37] using a combination of similarity searches on UniProt, literature sources and 

information available on the CDD entries of the NCBI protein database for hypothetical 

proteins. This functional classification remains putative until the actual biological roles of 

the identified proteins are experimentally proven under similar experimental conditions. 

The proteins in each functional category are listed in Table 1, while a graphical 

representation of this distribution is illustrated in Figure 5. Below, a brief account of the 

possible biological roles of some of these proteins in response to salt stress in sorghum 

leaves is given.  

 

 

Fig. 5 – Functional characterisation of the positively identified MN1618 sorghum salt stress responsive leaf proteins. 

 

3.4.1 Energy  

The majority of the identified salt stress responsive sorghum leaf proteins (28 spots) were 

energy related proteins (50.9%; Figure 5). These included photosynthesis associated 

proteins such as Rubisco (spots 16-19), sedoheptulose bisphosphatase (spots 30 and 31), 

phosphoribulokinase (spot 28), ribulose 5-phosphate isomerase (spot 53) and the oxygen-

evolving enhancer protein 1 (spot 53). Malate dehydrogenase (spots 26, 27 and 39), which is 

involved in the malate/oxaloacetate shuttling system, was also identified. Rubisco, 

sedoheptulose bisphosphatase and phosphoribulokinase proteins are all involved in the 

carboxylation, reduction and regeneration phases of the Calvin’s cycle, a metabolic pathway 

that produces pentose sugars [52]. Rubisco which catalyses the carbon fixation reaction in 

photosynthetic plants [52] has an increased abundance in all four spots (spots 16-19; Table 

1) in response to salt stress. In contrast, increased degradation of Rubisco was reported in 

the proteomic analysis of potato under salt stress [21], sugar beet under drought stress [53], 
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rice under chilling stress [54], and maritime pine seedlings under water stress [55]. 

However, in another proteomic study involving sorghum leaf under salt stress, the 

expression of Rubisco was not shown to be altered in response to salt stress [23].  

This observed contrast in salt stress responsiveness of a single protein in two different 

sorghum varieties might confirm the wide genetic variation in salt tolerance amongst 

different sorghum varieties as previously reported [24]. The increased levels of Rubisco in 

our plant system might be indicative of sorghum MN1618 varietal needs for increased 

carbon fixation as well as increased energy needs under periods of salt stress. However, this 

speculation is complicated by the observation that proteins that are involved in the 

regeneration phase of the Calvin’s cycle (which include sedoheptulose bisphosphatase and 

phosphoribulokinase) have reduced abundances following salt stress (Table 1). The 

observed different protein expression pattern of proteins involved in different phases of the 

same metabolic pathway may point out to differential effects of salt stress at different 

phases of a pathway and its regulatory systems. However, these speculations are yet to be 

proven experimentally.  

A total of six proteins, all being subunit components of the ATP synthase chloroplastic 

protein complex that is involved in ATP synthesis, were identified in this study. These 

included the alpha (spots 7, 13, 14), gamma (spots 21 and 40) and beta (spot 22) subunits 

(Table 1). Of these, spots 7, 21, 22 and 40 had increased abundance levels, while spots 13 

and 14 had reduced abundance levels following salt stress. The upregulation of protein 

expression observed here has also being documented in other studies on the proteomic 

analysis of potato shoots [21] and rice leaf lamina [20] under salt stress. The ATP synthase 

complex produces ATP from ADP in the presence of a proton gradient across the thylakoid 

membrane [56, 57], which is in turn used for various energy demanding activities during 

periods of stress. It is unclear, however, why two of the six subunits identified had 

contradictory expression levels from the rest.  

3.4.2 Disease/defence  

It is known that abiotic stresses such as drought, salinity, cold and heat are interconnected 

and all produce secondary stresses such as osmotic and oxidative stresses [8]. In turn, the 

plant responds to these primary and secondary stresses in a complex manner, resulting in 

similar proteins being responsive to different stresses [58]. Some abiotic stress inducible 

genes include those that directly protect the plant cell against stresses such as chaperones as 

well as enzymes involved in detoxification systems and the synthesis of osmoprotectants 

[13, 16]. In the current study, 10 (18.2%; Figure 5) disease/defence related proteins were 

identified as being salt stress responsive in the sorghum leaf proteome.  

Salt stress induces oxidative stress, which is characterised by the accumulation of ROS that 

are toxic to cells, damaging membranes and macromolecules. To scavenge for and eliminate 

these ROS, plants under stress express antioxidant enzymes such as GST, superoxide 

dismutase, catalase and ascorbate peroxidase [8, 53, 59]. In the current sorghum study, 

GST (spots 68; 69;) and ascorbate peroxidase (spots 64; 66) showed an increased 

abundance following salt stress (Table 1; Figure 4C). Similar expression patterns have also 

been reported in Arabidopsis [38, 60] and sorghum [23, 61] for GST, and in Arabidopsis for 
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ascorbate peroxidase [60]. The increased accumulation of these enzymes in plants is 

thought to be a part of the cell’s detoxification system for scavenging excess ROS during 

oxidative stress, a secondary stress to most abiotic stresses.  

3.4.3 Secondary metabolism  

Cyanogenic beta-glucosidase dhurrinase-2 (spots 8 and 9), p-(S)hydroxymandelonitrile 

lyase (spot 52) and hydroxynitrile lyases (spots 77 and 78) all showed increased abundance 

levels following salt stress in the current study (Table 1). Cyanogenic beta-glucosidases and 

hydroxynitrile lyases are both involved in the catabolism of cyanogenic glycosides [62], 

secondary metabolites, which play a role in the chemical defense system in plants and may 

also serve as nitrogen storage compounds [63, 64]. During their catabolism, cyanogenic 

glycosides are hydrolysed by beta-glucosidases into alpha-hydroxynitrile, which are further 

broken down by alpha-hydroxynitrile lyases at low pH into keto compounds and hydrogen 

cyanide [62, 65, 66]. Hydrogen cyanide is toxic and its production (cyanogenesis) acts as a 

defence mechanism against herbivores and microbial attack. It is however unclear at this 

point what role cyanogenic glycoside catabolism plays in sorghum leaves under salt stress 

and none of these proteins have been reported in a similar study [23]. A question that 

warrants further investigation would be whether or not the levels of both the cyanogenic 

glucosides and hydrogen cyanide increase in the sorghum tissues under salt stress.  

3.4.4 Protein synthesis  

Chloroplast translational elongation factor Tu (spot 24), cysteine synthase (spot 38), 

elongation factor 1-delta (spots 56 and 58) and a ribosomal protein (spot 82) were all 

identified as upregulated proteins in the current study (Table 1). These proteins are all 

involved in protein synthesis. Abiotic stresses including salt stress cause protein damage 

and/or degradation either due to oxidative damage or proteolytic activities. Increased levels 

of protein synthesis are therefore important in order to restore the damaged proteins for 

full restoration of the plant cell’s metabolic activities and general growth. Increased levels of 

some of these protein synthesis related proteins have also been reported in Arabidopsis cell 

cultures under salt stress [38].  

3.4.5 Other functional categories  

Other identified salt stress responsive proteins in this study were classified as having 

functions in primary metabolism (spots 20, 67, 41, 61-63) and signal transduction (spot 81). 

Protein spot 81, containing a forkhead associated domain showed reduced abundance levels 

following salt stress. In prokaryotes and eukaryotes, a range of proteins involved in 

processes such as signal transduction, protein transport and degradation, transcription and 

DNA repair are known to contain this domain [67]. In this study, this protein was loosely 

grouped as a signal transduction related protein although further research work would need 

to be conducted to find out its molecular function in plants under salt stress.  
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4. Conclusion  

The negative impact of adverse environmental stresses, such as salinity and drought on the 

planet is now well known and poses serious threats to societies, particularly to the resource 

poor rural farmers in the developing world. Sorghum, despite its well-known natural stress 

tolerance qualities, remains understudied at molecular level. This work is a part of our long-

term vision that seeks to elevate this African crop as an important model plant to study 

stress avoidance and tolerance mechanisms in grain crops.  

Our Hsp70 expression assays showed that our experimental setup and system mimicked 

expected physiological response and that plant growth, stress treatments and protein 

extraction and staining methods gave reproducible and high quality 1-and 2-dimensional 

SDS PAGE results. Our proteins of interest, identified here were found to belong to a 

number of important functional categories that include stress (abiotic/biotic) defence, 

energy metabolism, protein synthesis, primary and secondary metabolism as well as signal 

transduction. As expected, most of these proteins have also been identified in other “omics” 

studies, thus validating our experimental approach, while others such as cyanogenic beta-

glucosidase dhurrinase and hydroxynitrile lyases have not been previously reported as being 

salt stress responsive. Current and future work is aimed at further understanding the 

molecular functional interactions of our protein candidates, particularly those that show 

sorghum unique features, and towards evaluating the mechanisms that make this crop more 

stress tolerant in comparison to other grain crops.  
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Table 1: Sorghum leaf salt stress responsive proteins identified by MALDI-TOF-TOF mass spectrometry. 

 
Spot 

No.a) 

Protein Name and Species gi|b) Accession c) Scored) Theo. 

Mr 

(kDa)/pIe) 

Exp. 

Mr 

(kDa)/pIf) 

Expression 

change g) 

Matching 

peptides 

         

 Primary Metabolism        

20 GDP-mannose 3,5-epimerase 1 [Zea mays] 195620882 ACG32271 105 42.96/5.94 52.0/6.42 up* 1 

67 Unknown [Zea mays] 

Ribulose- 5-phosphate 3-epimerase 

223945381 ACN26774 82 26.26/6.59 26.5/5.85 down (64%) 1 

41 Adenosine kinase [Zea mays] 4582787 CAB40376 273 36.03/5.23 38.5/5.74 up (101%) 4 

61 Hypothetical protein SORBIDRAFT_07g000980 [Sorghum bicolor] 

Adenylate kinase 

242080247 XP_002444892 302 31.06/7.72 27.5/5.19 up (67%) 3 

62 Hypothetical protein SORBIDRAFT_07g000980 [Sorghum bicolor] 

Adenylate kinase 

242080247 XP_002444892 349 31.06/7.72 27.0/5.19 up (67%) 4 

63 

 

Hypothetical protein SORBIDRAFT_09g001130 [Sorghum bicolor] 

Atypical (a) short-chain dehydrogenase/reductase (SDRs) NAD(P) binding 

242086601 XP_002439133 127 31.77/6.98 29.5/5.38 down (34%) 1 

         

 Energy        

1 Pyruvate phosphate dikinase [Sorghum bicolor] 30385668 AAP23874 234 102.29/5.68 101.0/5.15 up* 4 

16 Unnamed protein product [Hordeum vulgare] 

Ribulose-1.5-bisphosphate carboxylase/oxygenase large subunit  

11587 CAA25265 165 53.08/6.22 58.0/6.64 up (124%) 3 

17 Ribulose-1.5-bisphosphate carboxylase large subunit [Saccharum hybrid cultivar  SP-

08-3280] 

48478779 YP_024387 215 52.73/6.33 58.0/6.58 up* 3 

18 Ribulose-1.5-bisphosphate carboxylase/oxygenase large subunit [Pharus parvifolius] 131984 P28428 160 51.72/5.83 58.0/6.53 up (110%) 1 

19 Unnamed protein product [Hordeum vulgare] 

Ribulose-1.5-bisphosphate carboxylase large chain  

11587 CAA25265 126 53.08/6.22 60.0/6.53 up (278%) 1 

28 Phosphoribulokinase [Zea mays] 195645472 ACG42204 91 45.71/5.75 41.5/5.25 down (18%) 1 

26 Malate dehydrogenase (NADP(+))[Sorghum bicolor] 755781 CAA37531 207 46.46/5.77 44.0/5.26 up (134%) 2 

Table



27 Hypothetical protein SORBIDRAFT 01g019280 

[Sorghum bicolor] Malate dehydrogenase 

242039369 XP_002467079 328 35.46/5.76 44.0/5.18 up (107%) 4 

39 Malate dehydrogenase (NADP(+))[Sorghum bicolor] 755781 CAA37531 360 46.46/5.77 41.0/6.00 

 

up (39%) 4 

30 Sedoheptulose-1,7-bisphosphatase [Triticum aestivum] 1173347 P46285 49 42.06/6.04 40.5/5.07 down (30%) 1 

31 Sedoheptulose-1,7-bisphosphatase, chloroplastic [Triticum aestivum] 1173347 P46285 172 42.06/6.04 40.5/4.98 down (52%) 1 

34 Hypothetical protein SORBIDRAFT_10g000720 [Sorghum bicolor] 

Ferredoxin-NADP+ reductase 

242094386 XP_002437683 217 39.96/8.31 38.5/6.68 up (229%) 3 

35 Os06g0107700 [Oryza sativa Japonica group] 

Ferredoxin-NADP+ reductase 

115465942 NP_001056570 81 40.01/8.72 36.0/6.23 up (318%) 1 

42 Hypothetical protein SORBIDRAFT_ 08g004500 [Sorghum bicolor] 

Fructose-1,6-biphosphate aldolase 

242084936 XP_002442893 918 41.87/6.39 38.5/5.66 down (18%) 10 

44 Hypothetical protein SORBIDRAFT_08g004500 [Sorghum bicolor] 

Fructose-1,6-biphosphate aldolase 

242084936 XP_002442893 472 41.87/6.39 38.5/5.54 down (45%) 7 

43 Hypothetical protein SORBIDRAFT_10g031120 [Sorghum bicolor] 

Photosystem II stability/assembly factor 

242097170 XP_002439075 336 43.15/8.67 39.0/5.54 down (45%) 4 

45 Hypothetical protein SORBIDRAFT_05g027870 [Sorghum bicolor] 

Ribulose bisphosphate carboxylase/oxygenase activase, chloroplastic precursor 

242072103 XP_002451328 243 48.47/6.98 43.0/5.49 down (56%) 3 

49 Oxygen-evolving enhancer protein 1 [Zea mays] 195619530 ACG31595 322 34.52/5.59 31.0/5.19 down (13%) 4 

53 LOC100284771 ribose-5-phosphate isomerase [Zea mays] 226506270 NP_001151138 146 28.78/5.53 28.0/4.83 down (61%) 2 

75 Hypothetical protein SORBIDRAFT_02g002690 [Sorghum bicolor] 

Required for photosystem II activity (PspB) 

242047384 XP_002461438 248 27.56/8.64 24.5/5.57 down (26%) 4 

76 Hypothetical protein SORBIDRAFT_03g037420 [Sorghum bicolor] 

Required for photosystem II activity (PspB) 

242054707 XP_002456499 259 28.00/8.94 25.0/5.40 down (40%) 3 

79 Os08g0504500 [Oryza sativa japonica group] 

Required for photosystem II activity (PspB) 

115477166 NP_001062179 87 25.51/6.85 22.5/4.96 down (74%) 1 

7 ATP synthase CF1 alpha subunit [Saccharum hybrid cultivar SP-08-3280] 48478769 YP_024377 189 55.75/5.87 64.0/5.28 up (95%) 2 

13 ATP synthase CF1 alpha subunit [Saccharum hybrid cultivar  SP-08-3280] 48478769 

 

YP_024377 154 55.75/5.87 65.0/5.93 down (26%) 2 

14 ATP synthase CF1 alpha subunit [Saccharum hybrid cultivar  SP-08-3280] 48478769 

 

YP_024377 170 55.75/5.87 65.0/6.00 down (39%) 2 



21 ATP synthase subunit, gamma, chloroplastic precursor [Zea mays] 226533016 NP_001150872 120 39.79/8.44 46.0/5.87 up (47%) 1 

22 ATPase, beta subunit [Hordeum vulgare] 11583 CAA25114 70 53.87/5.17 58.0/5.60 up (26%) 1 

40 ATP synthase subunit gamma, chloroplastic precursor [Zea mays] 226533016 NP_001150872 260 39.79/8.44 40.0/5.83 up (156%) 4 

         

 Protein Synthesis        

24 Hypothetical protein SORBIDRAFT_04g024850 [Sorghum bicolor] 

Chloroplast translational elongation factor Tu 

242062202 XP_002452390 177 50.72/6.06 48.0/5.51 up (329%) 2 

38 Cysteine synthase precursor [Zea mays] 162458737 NP_001105469 302 34.21/5.91 37.0/6.07 up* 3 

56 Elongation factor 1-delta 1 [Zea mays] 226505926 NP_001149753 153 24.78/4.39 30.0/4.74 up (118%) 3 

58 Elongation factor 1- delta [Zea mays] 195605696 ACG24678 137 24.88/4.39 31.0/4.58 up (26%) 2 

82 Hypothetical protein SORBIDRAFT_03g030270 [Sorghum bicolor] 

Ribosomal protein L7/L12 

242053887 XP_002456089 413 18.75/5.55 18.5/4.70 up (77%) 4 

         

 Secondary Metabolism        

8 Cyanogenic beta-glucosidase dhurrinase-2 [Sorghum bicolor] 13924741 AAK49119 97 64.66/6.22 68.0/6.01 up* 1 

9 Cyanogenic beta-glucosidase dhurrinase-2 [Sorghum bicolor] 13924741 AAK49119 165 64.66/6.22 68.0/5.94 up* 2 

52 p-(S)-hydroxymandelonitrile lyase [Sorghum bicolor] 666089 CAA58876 234 56.32/4.97 29.0/4.89 up (97%) 4 

77 Hydroxynitrile lyase [Sorghum bicolor] 24987267 1GXS_B 265 17.70/5.12 22.0/5.29 up (26%) 3 

78 Hydroxynitrile lyase [Sorghum bicolor] 24987267 1GXS_B 312 17.70/5.12 22.0/5.15 up* 5 

         

 Disease/defence        

36 Aldo-keto reductase/oxidoreductase [Zea mays] 226528361 NP_001149144 129 40.88/7.55 41.5/6.11 up (62%) 3 

46 Hypothetical protein SORBIDRAFT_02g004000 [Sorghum bicolor] 

Contains tetratricopeptide repeat domain (TTR) 

242043050 XP_002459396 191 38.13/6.03 38.5/5.37 down (65%) 3 

50 Hypothetical protein SORBIDRAFT_05g023220 [Sorghum bicolor] 

Plastid lipid-associated protein/fibrillin 

242069013 XP_002449783 155 30.50/8.84 31.5/4.94 down (29%) 2 

64 Hypothetical protein SORBIDRAFT_02g044060 [Sorghum bicolor] 

Ascorbate peroxidase 

242051414 XP_002463451 228 27.16/5.18 28.5/5.43 up (61%) 4 

66 Hypothetical protein SORBIDRAFT_01g038760 [Sorghum bicolor] 

Ascorbate peroxidase 

242041317 XP_002468053 225 27.22/5.55 27.0/5.70 up (37%) 3 



68 Hypothetical protein SORBIDRAFT_03g035420 [Sorghum bicolor] 

Glutathione S-transferase 

242058791 XP_002458541 543 23.88/5.62 27.5/6.07 up (61%) 7 

69 Hypothetical protein SORBIDRAFT_01g005990 [Sorghum bicolor] 

Glutathione S-transferase 

242032767 XP_002463778 354 25.47/6.02 26.0/6.13 up*  5 

74 Hypothetical protein SORBIDRAFT_09g004970 [Sorghum bicolor] 

Cupin 

242087035 

 

XP_002439350 163 22.75/6.02 22.0/5.62 down (40%) 2 

80 Os02g0537700 [Oryza sativa japonica group] 

Peroxiredoxin 

115446541 NP_0010470 103 28.10/5.67 23.0/4.87 down (23%) 2 

83 Hypothetical protein SORBIDRAFT_04g021590 [Sorghum bicolor] 

contains heavy metal-associated domain (HMA) 

242065280 XP_002453929 209 11.48/4.71 19.0/4.62 up* 3 

         

 Signal transduction        

81 Hypothetical protein SORBIDRAFT_08g001890 [Sorghum bicolor] 

contains Forkhead associated (FHA) domain 

242084608 XP_002442729 226 24.48/8.31 19.5/4.83 down (24%) 3 

 

Proteins were grouped into functional categories according to Bevan et al. [37].  

a) Spot numbers as illustrated in Figure 4C. 

b) Gene identification number. 

c) NCBI protein accession numbers. 

d) Mascot score. 

e) Theoretical Mr and pI as calculated using Compute pI/Mw tool available on ExPASy (http://web.expasy.org/compute_pi). 

f) Experimental Mr and pI of the proteins we estimated from the 2D gel images (Figure 4C). 

g) Expression changes of protein spots as measured by PDQuest software. Values in brackets indicate the percentage change of protein expression after salt treatment relative to the control group. * Indicates that spot 

under review was only present in the salt treated group. All reported changes were statistically significant using Student’s t-test (p<0.05). 


