
Reliable Communication Across Ad Hoc Networks
Francois N. Daniels and William D. Tucker

Department of Computer Science, University of the Western Cape, Private Bag X17 Bellville, 7535, South Africa
Telephone: +(27) 21 959-2461, Fax: +(27) 21 959-3006, Email: {fndaniels, btucker}@uwc.ac.za

Abstract—This paper presents a fully decentralised peer-to-
peer voice communication tool intended for use across mobile
ad hoc networks (MANET) by distributed groups who desired
collaboration. We examined the synergy between MANETs and
peer-to-peer virtual overlay networks which allowed the creation
of ad hoc applications. One style of communication considered
suitable for task oriented distributed group collaboration
was push-to-talk. This research was focused on providing a
push-to-talk communication platform suitable for deployment
across MANETs. The research methodology employed was
a proof of concept approach within a classical experimental
computer science paradigm. We developed a prototype which
used JXTA, a peer-to-peer virtual overlay network, to provide
push-to-talk functionality across MANETs. Guaranteed delivery
of messages was provided via a peer-to-peer voicemail delivery
system. While the system did what intended we show that JXTA
had a problem with the efficient delivery of voice samples.

SATNAC Classification—The Intelligent IP Edge: Packetised
voice (VoATM, VoIP)

Index Terms—ad hoc applications, mobile IP, peer-to-peer,
voice over IP, multimedia, instant messaging

I. INTRODUCTION

HAVING the means to communicate anytime, anywhere
is valued by many. This is especially so for distributed

groups who need a way to collaborate. Two way radio commu-
nication has been around for a long time. These public shared
communication channels allow multiple parties to participate
in distributed conversations. These systems function on a Push-
to-Talk premise. Audio is only transmitted while the “talk”
button is depressed, and audio transmissions are only received
while the button is not depressed. This is a half duplex form
of communication – one can either transmit audio or one can
receive audio, but not both simultaneously. With the advent
of digital trunked-radio networks came the ability of cellular
providers to provide similar services to their subscribers [24].
This also introduced a new form of communication, one-to-
one private push to talk.

A problem facing mobile half-duplex transceivers, such as
walkie talkies, is the fact their range is limited due to the
laws which govern their power output levels. Mobile Ad
Hoc Networks (MANET) solved this limitation by allowing
nodes to forward signals on behalf of each other. This enables
the network reach to grow as the number of mobile nodes
attached to the network increases. We developed a Push-to-
Talk system intended for deployment across MANETs in order
to provide the type of “anytime, anywhere” communication
afforded by technologies such as walkie-talkies. It offered

one-to-one private push-to-talk, public channel push-to-talk, as
well as private multiparty push-to-talk sessions. Additionally
it provided text mode conversations transport for low network
capacity scenarios as well as a voicemail feature for use when
a path to the recipient could not be established.

Section II examines the relationship between mobile ad hoc
networks and peer-to-peer architectures. Section III we provide
some insight into related work. The research questions and
experimental design is then covered in Section IV. Section V
justifies the research methodology. Section VI examines the
design and implementation of the prototype application. In
Section VII we discuss our findings and Section presents our
conclusions.VIII .Section IX mentions future work.

II. BACKGROUND

Traditional wireless network installations have fixed net-
work topologies. Ad hoc wireless networks, on the other hand,
are dynamically reconfigurable and do not depend on a static
infrastructure or a central point of control such as an access
point. A MANET is an ad hoc network in which the nodes are
free to roam about arbitrarily. In these ad hoc networks, each
node acts both as a peer as well as a router. Wireless routers
have limited ranges, so allowing nodes to forward packets on
behalf of each other increases the reach of the network and
creates multi-hop paths to a destination if required, as shown
in Figure 1.

MANETs can easily and quickly be deployed since they
are self-organising and do not rely on any fixed infrastructure.
The hardware required for wireless ad hoc networks are cost
priced due to a competitive global market this makes setting
up MANETs not only fast, but cheap as well. These networks
are therefore desirable in situations where there is no time to
set up a fixed network such in disaster response scenarios, or
when it would be too costly to set up a fixed network.

There is an inherent congruency between peer-to-peer appli-
cations and ad hoc networks. In peer-to-peer applications the
arrangement of peers are ad hoc, and in ad hoc networks all
nodes are peers. Self organisation and the idea of decentralisa-
tion are key attributes of both ad hoc networks as well peer-to-
peer virtual overlay networks. The goal of ad hoc computing,
which can be realised by the union of ad hoc networks and
peer-to-peer overlay networks, is to make distinct types of
information available to peers “anytime and anywhere”.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of the Western Cape Research Repository

https://core.ac.uk/display/62633463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. This figure illustrates multi-hop paths in MANETs. In conventional
wireless networks node A and B, and node B and C would be able to
communicate, but node A and C would not because they were not within
radio distance of each other. In MANETs, node B would forward signals on
behalf of A if C was the recipient, and vice versa. This cooperation of nodes
in this manner increased the size of the network.

III. RELATED WORK

A. Service Delivery

Konark [8] was a service discovery and delivery protocol
designed for ad hoc networks. It used the underlying network
infrastructure for peer naming and routing. With the help
of Konark researchers designed a system to deploy generic
peer-to-peer systems across ad hoc networks. Garbinato and
Rupp [10] developed a mobile peer-to-peer communication
framework. The key feature of their system was that it was
not dependant on the underlying network technology. This
work was similar to Proem [14], a computing platform built by
the University of Oregon for use in mobile ad hoc networks.
The main purpose of Proem was to provide a framework for
the development of applications for mobile ad-hoc network
environments. The most mature publicly available virtual
overlay network infrastructure was Sun Microsystem’s JXTA
(Juxtapose) [11]. Originally pioneered by Sun, it is now an
open-source project that is still supported by them. JXTA
defines a set of protocols and APIs for general-purpose peer-
to-peer communication in a fully decentralised environment.

Researchers at the Communications Law Centre [20] devel-
oped a prototype application called vuCRN, based on JXTA
technology, which enabled effective control over who could
upload content in a peer-to-peer network by using existing
user authentication. A framework for synchronised distributed
group collaboration and knowledge sharing was developed by
researchers from the National University of Singapore [22].
It was aimed at distributed collaborating environments such
as e-Sharing and e-Learning, it contributed technologies such
as shared white boards and threaded discussion groups. Siri
Birgitte Uldal from the University of University of Tromsø
developed a prototype [23] application capable of sharing
resources across ad hoc networks. This prototype was only

capable of file transfers. The main contribution was that of
a shared virtual folder from which peers shared resources.
A peer-to-peer forum was developed at the University of
Saskatchewan [12]. This was an example of software with a
client-server architecture redesigned as a peer-to-peer solution.

B. Distributed Audio

Impromptu [19] was a distributed mobile audio framework.
It allowed for the deployment of network-centric applications
and services. Various applications such as a baby monitor,
a chat application, and an mp3 player was implemented
using this framework. TattleTrail [13] was a multiparty VoIP
application created using the Impromptu framework. It allowed
for three modes of operation. The first mode, called “catch up”
mode, sent a user a review of the current conversation when
they joined the chat room. This was accomplished by sending
them a high-speed version of the recorded audio. The second
mode called “push to talk” mode was activated once the user
was caught up. Users pushed a button to talk and released
it to receive audio. The final mode of operation was called
“background” mode, which was activated once a user left a
chat. Once in this mode a user only received alerts of new
messages. The above projects were all client-server based.

C. Push-to-Talk

Woodruff and Aoki performed a qualitative analysis on a
group of young adults using push-to-talk handsets over the
period of one week [24]. It was discovered that the half-
duplex nature of push-to-talk afforded participants with several
conversational styles ranging from sustained turn taking, to
bursts of conversational activity, to occasional responses fol-
lowed by periods of silence. They went on to note that while
half-duplex was often seen as being low quality and offering
limited functionality, the “reduced interactional commitment”
was seen as desirable as it gave users alternative commu-
nication mechanisms. Users were released from the need
to respond immediately because audio was only transmitted
while a button was explicitly pressed (pushed) [2], which gave
recipients a feeling of “plausible deniability”. [24] concluded
by saying that push-to-talk offered an unique balance between
availability and obligation to participate in conversations.

Research has been done on implementing push-to-talk
across various networks. The Open Mobile Alliance (OMA)
[16] was in the process of standardising push-to-talk as an
IP Multimedia Subsystem (IMS) application. This ensured
that push-to-talk implementations was interoperable between
complying cellular providers [6]. By using candidate releases
of the OMA Push to Talk across Cellular (PoC) specifications,
Burman [7] created a prototype of PoC for a Personal Digital
Cellular (PDC) network. The performance of push-to-talk
across General Packet Radio Service (GPRS) [3] and High
Speed Downlink Packet Access (HSDPA) [1] was investi-
gated in two separate studies. While Akerfeldt found that
HSDPA had enough capacity for 65 concurrent users, Balazs
showed that GPRS supported significantly less. The OMA
PoC standard specified a client-server architecture, which



the aforementioned studies all followed. One project which
attempted to deviate from this specification was [18]. They
designed a framework for deploying PoC across bluetooth
scatternets – which were peer-to-peer networks. Some PoC
functionality was truncated in the process.

IV. RESEARCH QUESTIONS

Group communication allows for rapid information ex-
change, helping to increase the productivity of distributed
members performing a group related task [21]. Group col-
laboration across MANETs is one way of providing this
functionality. This need led us to the following research
questions:

• How can one provide group communication in a volatile
network topology where access to a centralised control
point can not be guaranteed?

• How does one deal with peer discovery and network
fragmentation?

• Which communication paradigm best fits such network
conditions?

One style of communication was considered the most suit-
able for task oriented group collaboration, Push-to-Talk [24],
[19]. We were interested in providing push-to-talk function-
ality across MANETs but the dynamic nature of the network
topology meant that a client-server based solution would be
not appropriate, so a peer-to-peer solution was necessary. In
order for two or more peers to communicate they needed a
way to discover each other’s location, and be informed of
any change of their online presence. Network fragmentation
meant that a path to the destination could not be guaranteed
and conversations could be prematurely disconnected. We
also needed a way to provide communication even when the
network experienced capacity issues.

V. METHODOLOGY AND EXPERIMENTAL DESIGN

We employed a proof of concept approach within a classical
experimental computer science paradigm in order to explore
those research questions. According to [4], experimentation
was of central importance to any science or engineering field
of study. This methodology associated experimentation both
with laboratory as well as field experimentation [17]. It was
argued in [9] that experimentation has a place in the real world,
just as it does in the natural sciences. They go on to claim that
scientific method should be employed so that the experiment
was repeatable and the results were reproducible. We used an
iterative approach of prototyping with experimental phases of
qualitative and quantitative data collection.

Prototypes were constructed using the requirements specifi-
cations obtained from the research questions covered in section
IV. The prototypes were designed for desktop computers run-
ning a Java virtual machine. At each iteration of development
we evaluated the capabilities not only of the prototype, but
on the paradigms and frameworks they were based upon. The
prototype needed an efficient presence implementation capable
of functioning in a peer-to-peer environment, it required a way
of handling network fragmentation and a way of storing audio

and forwarding it when a path to the recipient was available,
and lastly it needed a means of communicating under varying
network load scenarios.

Initial prototypes were based on hybrid peer-to-peer design
principals. This, however, did not resolve the problem of
continuity of communication after network fragmentation.
Later, a switch to the JXTA virtual overlay network put us
in a position to start answering the research questions. Small-
scale experimentation took place in the computer laboratory.
A private wireless network was created for several machines
running the prototype application. This enabled us to evaluate
functionality such as peer discovery and the one-to-one and
group communication modes. Network fragmentation was
tested by running another instance of the prototype on a virtual
machine. When the WiFi adapter of the host machine was
turned off, the ability of the host to communicate with the
virtual client was evaluated. Larger scale experimentation is
planned using the NS-2 network simulator in conjunction with
AgentJ, a Java interface to NS-2.

VI. DESIGN AND IMPLEMENTATION

The latest version of the prototype used the JXTA overlay
network to form an ad hoc peer-to-peer network across which
computer mediated communication could take place. To re-
duce development time we decided to extend the open-source
myJXTA project by means of writing several plugins for it.
myJXTA was a peer-to-peer collaboration application based
on JXTA technology. We extended upon the work done by
Schmandt et al. [19] by allowing multiple simultaneous groups
to collaborate on discrete “open channels” across an ad hoc
IP network. The following sections will describe the overall
system architecture, as well as the implementation details of
the coded plugins.

A. Simple Presence Implementation

Using JXTA propagation pipes we implemented a simple
presence notifier. Presence is normally handled by a central
server (or server cluster), but having static servers on ad hoc
networks is impractical. We realised that there were three
solutions to this problem. Firstly we could assign a dynamic
server selected from one of the current online peers. The
complication with this solution was that new server(s) would
have to be selected as the ad hoc network fragments and
merges. The second solution involved the peers registering
their presence with every online peer. This meant that each
peer would be a server for every other peer. While this solution
was simpler, it also meant that a lot more precious bandwidth
would be wasted on presence updates and other control
messages. We decided to use a fully distributed approach in
which propagate pipes were used to send periodic presence
updates to multiple peers simultaneously. The program flow
for the presence plugin is illustrated in Figure 2.

Propagate pipes allowed for many-to-many message trans-
port. They were similar in function to the Internet Group
Management Protocol (IGMP) in that only peers listening on
a specific pipe (or IP address in the case of IGMP) received



Fig. 2. This is a representation of the four main events which occurred in our
implementation of presence. When a peer joined a group, their own presence
was set to “online”, this presence was then sent to every other peer on the
network. Unless a peer received periodic presence updates, it would flag the
expected sender’s presence to “unreachable”

the message. It was, however, superior to simple multicasting
in that it used multicasting where possible, and one-to-one
message forwarding via rendezvous peers otherwise.

When a peer joined a group it sent the entire group
an “online” presence update. It repeated this status update
periodically. This model still allowed the user to change their
status to “away” or “busy”. An “offline” status update was
propagated to all peers in the group when a peer resigned
from that group. This behaviour also illustrates the fact that the
presence status was group dependent and not global. If a peer
did not receive a presence update from another peer for longer
than a minute, that peer’s presence was set to “unreachable”
– the presence was reset the moment a presence update was
received. This allowed the system the keep tabs on who it
was still available to communicate with. Implementing it in
this fashion also meant that no ACK messages needed to be
transmitted by peers who received presence updates.

B. Open Channel Push-to-Talk

Fig. 3. A simplified model of the voice data flow in the prototype is
illustrated in this figure. Encoded voice samples were stored in a voice buffer
and periodically transmitted to the recipient. The recipient stored the received
samples in their buffer until enough samples were collected for playback. This
value was depended on voice quality and jitter compensation.

Figure 3 shows a simplified version of the data flow of
voice through the application. Once some voice chunks had
been read from the microphone it was encoded with the speex
codec, which reduced the number of bits used to represent the
stream. The encoded data was then stored in a data buffer.
Once enough data had been stored in order to fill a packet it
will be dispatched across the network. The receiver then stored
the data into its data buffer. Once enough voice data (the size
depended on the encode quality – higher quality meant more
bytes) had been buffered it was decoded and played back.

Voice data was transported via propagation pipes. This
meant that every peer listening on this propagation pipe
received the voice data. The operational mode of this module
was push-to-talk. A peer only transmitted audio while the
user held down the push-to-talk button. While the push-to-talk
button was depressed no audio would be processed or stored
by the peer. This meant that a peer could only transmit or
receive voice data at any instant, but not both simultaneously.

C. Multimodal One-to-One

In addition to open channel communication we were also in-
terested in exploring one-to-one communication across volatile
networks. In ad hoc networks there were no guarantees of
either connectivity or capacity which led us to examine which
counter measures could be taken in order to provide a commu-
nication platform which was stable under such unpredictable
conditions. The result of our research was the multimodal one-
to-one module.

Fig. 4. A view of the multimodal one-to-one user interface. This interface
allowed for simultaneous voice and text transmission. The voice transmission
could be switched from hands-free to push-to-talk mode. This allowed a user
to both conserve bandwidth as well as gain some privacy. Additionally the
interface allowed a user to lower the quality of incoming audio, thus allowing
a user to trade quality for latency.

Voice was the primary form of communication used in this
module as it allowed for a richer communication environment
than text alone could provide. The transportation of the voice
data is illustrated by Figure 3. During times of network
congestion voice packets may be dropped, which resulted
in poor Quality of Service (QoS). By lowering the quality
slider a user could reduce the quality of the audio session in
order to reduce the size of the voice chunks (see Figure 4).



This only reduced the size of the incoming packets, which
meant that the other peer would still receive audio at their
preferred quality setting. The quality of the conversation was
thus asymmetrical, much like the network conditions on ad
hoc networks. Furthermore a user could switch into push-to-
talk mode. This too was asymmetrical, allowing one party to
be in live VoIP mode, while the other was in push-to-talk
mode. Push-to-talk mode was useful both as a mechanism
for conserving bandwidth usage, as well as for activating
“privacy” mode.

In addition to voice, it was also possible to communicate
via text. Text was included due to its lightweight nature and
was there to complement the voice. The text feature was used
during periods of network congestion as well as to facilitate
call co-ordination during dual push-to-talk mode (while both
parties had push to talk activated). If the conversation was pre-
maturely terminated the voicemail feature would automatically
be activated.

D. Voicemail

Asynchronous reliable VoIP was made possible by the
voicemail plugin. When network conditions were turbulent,
and synchronous communication was not possible one had to
resort to fully asynchronous communication.

There were two ways in which the voicemail module
was used within the prototype. Firstly when two peers were
disconnected mid-conversation, the voicemail plugin would
be activated. This will allowed parties to get their “last say”
across. Upon activation the voicemail plugin recorded a voice
message up to 20 seconds in length. The second instance
in which the plugin was activated was when a user wanted
to leave another party a message without engaging in a
transactional conversation. A peer could do this whether or
not the other party was online. The message was dispatched
once the recipient of the messages came back online, in other
words once there was once again a path between the sender
and receiver. The delivery of these voicemail messages were
guaranteed as the file transfer was capable of resuming from
where it last got cut off if the process was interrupted due to
network failure or fragmentation.

Fig. 5. Voicemail allowed users to leave messages for both offline as well
as online peers. If the recipient is offline, the mail would be delivery as soon
as a path to the destination is available. Online users received their mail
immediately. The outgoing mail folder was polled every twenty seconds, at
which point the system would try and deliver any undelivered messages.

The logic behind the voicemail module is illustrated by
Figure 5. The system checked the voicemail directory for any
outgoing voicemail messages. If undelivered messages were
found and the recipients were online, qualifying messages
would be dispatched.

VII. DISCUSSION

Presence was especially important within mobile ad hoc
networks, as it allowed peers to know which other peers were
reachable. Presence updates were wrapped within a single
packet that was periodically propagated across the network.
Receipt of these messages was not acknowledged. It was,
however, the receipt of these messages that allowed the system
to determine which peers were still able to communicate with
each other, either directly or via multi-hop paths.

Providing push-to-talk functionality within a peer-to-peer
framework meant that greedy floor control had to be im-
plemented. That is, the users of the system handled the
floor control. Private and public shared push-to-talk channels
allowed groups of peers to communicate. The private shared
channels could be password protected to limit access, while
the open channel push-to-talk allowed any peer to join the
channel (group). This too was implemented using propagation
pipes, which allowed for the relatively efficient delivery of
voice to multiple distributed peers.

Private communication between two peers was provided
via a one-to-one multimodal communication channel. The
interface allowed for a mixed text-voice communication en-
vironment. For low network capacity conditions adjustable
quality sliders were provided to reduce or increase the quality
of the incoming voice. This allowed users to adjust the
amount of traffic passing through their node and thereby adjust
the amount of latency due to anti-jitter buffering while still
transmitting audio at a quality desired by the recipient. This
was especially useful for asymmetrical MANET topologies.
Additionally the interface provided a method to switch from
hands-free voice over IP to push-to-talk mode. These different
communication mechanisms provided different ways of com-
municating depending of the level of interactional commitment
desired by users.

For the guaranteed delivery of messages, the prototype
provided a voicemail delivery system. Voicemail could be
recorded and sent to peers even if they were offline. This
was accomplished by caching voicemail messages locally. As
soon as a path was available to the recipient, the message
would be transferred. The system also provided automatic
voicemail recording. When two users participating in a one-to-
one communication were disconnected due to a network error,
the automatic voicemail module would be activated to allow
users to get their “last word” across. The recording could be
cancelled at the user’s discretion.

VIII. CONCLUSION

The main outcome of this research was a push-to-talk
communication application that supported public open chan-
nel, private shared channel as well as one-to-one commu-



nication. JXTA was designed for wired infrastructure mode
network topologies [15], and thus was not ideal for use within
MANETs. A problem of efficient delivery existed within the
JXTA framework. Each JXTA message was wrapped in XML
messages that assisted the framework to accomplish certain
tasks such as NAT and firewall traversal. As pointed out
in [5], when delivering small payloads such as compressed
voice samples using JXTA, the bulk of a message was in
fact composed of JXTA XML headers. They demonstrated that
these headers increased the size of packets by more than 10
fold.

IX. FUTURE WORK

We propose a hybrid delivery scheme for JXTA in order
to adapt it for use across MANETs. Whenever possible de-
liver packets in a peer-to-peer manner using raw UDP/TCP
protocols, bypassing extraneous XML headers. In the case
of MANETs, allow MAC level protocols to do any needed
routing when possible, otherwise fall back to JXTA transport
mechanisms. This is still being implemented as part of the
next prototyping cycle.

We are currently working on making JXTA more suitable
for MANETs, while still retaining interoperability with vanilla
JXTA distributions. In the future we hope to port a solution
to mobile devices such as cellular phones and PDAs.

ACKNOWLEDGMENTS

The authors thank Telkom, Cisco and THRIP for financial
support via the Telkom Centre of Excellence (CoE) pro-
gramme.

REFERENCES

[1] E. Akerfeldt, “Push-to-talk over cellular over high speed downlink
packet access - a performance evaluation,” Master’s thesis, KTH Signals
Sensors and Systems, January 2005.

[2] P. M. Aoki and A. Woodruff, “Making space for stories: Ambiguity
in the design of personal communication system,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI
’05). New York, NY, USA: ACM Press, April 2005, pp. 181–190.

[3] A. Balazs, “Push-to-talk performance over GPRS,” in Proceedings of
the 7th ACM international Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM ’04). New York,
NY, USA: ACM Press, October 2004, pp. 182–187.

[4] V. R. Basili and M. V. Zelkowitz, “Empirical studies to build a science
of computer science,” Communications of the ACM, vol. 50, no. 11, pp.
33–37, 2007.

[5] L. Bernardo, R. Oliveira, S. Gaspar, D. Paulino, and P. Pinto,
“A telephony application for manets,” Online. Available at
http://tele1.dee.fct.unl.pt/papers/winsys2006.pdf, 2006.

[6] N. Blum and T. Magedanz, “PTT + IMS = PTM - towards
community/presence-based ims multimedia services.” Los Alamitos,
CA, USA: IEEE Computer Society, 2005, pp. 337–344. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/ISM.2005.93

[7] O. Burman, “Push-to-talk in PDC packet data network,” Master’s thesis,
Umeå University, October 2004.

[8] N. Desai, V. Verma, and S. Helal, “Infrastructure for Peer-to-Peer Appli-
cations in Ad-Hoc Networks,” in Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS’03), Berkeley, CA, USA,
February 2003.

[9] D. G. Feitelson, “Experimental computer science,” Communications of
the ACM, vol. 50, no. 11, pp. 24–26, 2007.

[10] B. Garbinato and P. Rupp, “From ad hoc networks to ad hoc ap-
plications,” in Proceedings of the 7th International Conference on
Telecommunications (ConTEL 2003), vol. 1, 2003, pp. 145–149.

[11] L. Gong, “Jxta: A network programming environment,” IEEE Internet
Computing, vol. 5, no. 3, pp. 88–95, May 2001.

[12] E. Halepovic and R. Deters, “Building a p2p forum system with jxta,”
Proceedings of the Second International Conference on Peer-to-Peer
Computing, 2002.

[13] J. S. Kim, “Tattletrail: An archiving voice chat systems for mobile
users over internet protocol,” Master’s thesis, Massachusetts Institute
of Technology, June 2002.

[14] G. Kortuem, J. Schneider, D. Preuitt, T. G. C. Thompson, S. Fickas, and
Z. Segall, “When peer-to-peer comes face-to-face: Collaborative peer-to-
peer computing in mobile ad hoc networks,” in Proceedings of the First
International Conference on Peer-to-Peer Computing. Los Alamitos,
CA, USA: IEEE Computer Society, 2001, p. 75.

[15] R. Oliveira, L. Bernardo, N. Ruivo, and P. Pinto, “Searching for pi
resources on manets using jxta,” in Advanced Industrial Conference
on Telecommunications/Service Assurance with Partial and Intermittent
Resources Conference/E-Learning on Telecommunications Workshop
(AICT-SAPIR-ELETE’05). IEEE Press, July 2005, pp. 371–376.

[16] OMA, Enabler Release Definition for Push-to-Talk over Cellular, ap-
proved version 1.0.1 ed., Open Mobile Alliance (OMA), November
2006.

[17] L. Peterson and V. S. Pai, “Experience-driven experimental systems
research,” Communications of the ACM, vol. 50, no. 11, pp. 38–44,
2007.

[18] V. Rönnholm, “Push-to-talk over bluetooth,” in Proceedings of the
39th Annual Hawaii International Conference on System Sciences
(HICSS’06) Track 9, vol. 9. Los Alamitos, CA, USA: IEEE Computer
Society, 2006, p. 232c.

[19] C. Schmandt, K. H. Lee, J. Kim, and M. Ackerman, “Impromptu: Man-
aging networked audio applications for mobile users,” in Proceedings of
the 2nd international Conference on Mobile Systems, Applications, and
Services (MobiSys ’04). New York, NY, USA: ACM Press, June 2004,
pp. 59–69.

[20] H. Shi, Y. Zhang, J. Zhang, E. Beal, and N. Moustakas, “Collaborative
Peer-to-Peer Service for Information Sharing Using JXTA,” Proceedings
of the First International Multi-Symposiums on Computer and Computa-
tional Sciences-Volume 1 (IMSCCS’06)-Volume 01, pp. 552–559, 2006.

[21] R. Shtykh, G. Zhang, and Q. Jin, “Peer-to-peer solution to support
group collaboration and information sharing,” International Journal
of Pervasive Computing and Communications, vol. 1, no. 3, p. 187,
September 2005.

[22] J.-Y. Tham, S.-L. Lee, C.-E. Tan, Roger, and L.-C. Tee, “A distributed
peer-to-peer platform for synchronized group collaboration and knowl-
edge sharing,” in Proceedings of the 2004 International Symposium on
Distributed Computing and Applications to Business, Engineering and
Science (DCABES), Wuhan, Hubei, China, September 2004.

[23] S. B. Uldal, “Casual resource sharing with shared virtual folders,”
Master’s thesis, University of Tromsø, June 2007.

[24] A. Woodruff and P. M. Aoki, “How push-to-talk makes talk less pushy,”
in Proceedings of the 2003 international ACM SIGGROUP Conference
on Supporting Group Work (GROUP ’03). New York, NY, USA: ACM
Press, November 2003, pp. 170–179.

Francois Daniels is a Telkom Centre of Excellence M.Sc student at the
University of the Western Cape. Currently he is doing research on peer-to-peer
applications over ad hoc networks.

William D. Tucker is the director of the Broadband Applications and
Networks Group (BANG) research group at the University of the Western
Cape.


