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Abstract.  Fuel cells, as devices for direct conversion of the chemical energy of a fuel into 

electricity by electrochemical reactions, are among the key enabling technologies for the 

transition to a hydrogen-based economy. Among the various types of fuel cells, polymer 

electrolyte membrane fuel cells (PEMFCs) are considered to be at the forefront for 

commercialization for portable and transportation applications because of their high energy 

conversion efficiency and low pollutant emission. Cost and durability of PEMFCs are the 

two major challenges that need to be addressed to facilitate their commercialization. The 

properties of the membrane electrode assembly (MEA) have a direct impact on both cost 

and durability of a PEMFC.  

An overview is presented on the key components of the PEMFC MEA.. The success of the 

MEA and thereby PEMFC technology is believed to depend largely on two key materials: 

the membrane and the electro-catalyst. These two key materials are directly linked to the 

major challenges faced in PEMFC, namely, the performance, and cost. Concerted efforts are 

conducted globally for the past couple of decades to address these challenges. This chapter 

aims to provide the reader an overview of the major research findings to date on the key 

components of a PEMFC MEA.  
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1 Introduction 

In response to the pressing global issues pertaining to sustainable energy generation and 

increasing pollution, a strong research drive globally is to develop environmentally clean and 

efficient alternatives to fossil fuels. The hydrogen economy, where hydrogen produced 

through renewable sources, is used as an energy carrier is believed by many as the ideal 

future energy scenario. The conversion of hydrogen to energy can be achieved through many 

means including combustion but the most efficient method will be to use a fuel cell, where 

the chemical energy of hydrogen is directly converted into electrical energy. Among the 

various types of fuel cells, the proton exchange membrane fuel cells (PEMFCs) are currently 

leading the commercial front for its advantages such as low temperature operation, quick 

startup time and dynamic operation capabilities.  Significant advancements in fundamental, 

engineering and technological aspects have been achieved for PEMFCs, leading to a wide 

range of portable, automotive and stationary applications. PEMFCs operate at low 

temperature (below 100°C) and generate a specific power (W kg-1) and power density (g/W) 

higher than any other type of fuel cell.  

 The drive for zero emission vehicles has led to great technological strides in the 

development of PEMFC. Several demonstrations in cars, buses as well as highly publicized 

investment by leading car manufacturers have given the technology a high media profile. 

Most of the world's largest automotive manufacturers including GM, Daimler Chrysler, 

Ford, Toyota, Nissan, Hyundai and Honda have also recognized the importance of early fuel 

cell commercialization and are also involved in the development of stationary fuel cells as a 

means of building their overall capacity in automotive fuel cell applications for the longer 

term. Large established manufacturers, such as DuPont, Gore, SGL, 3M and Johnson 

Matthey, are positioning themselves to become world suppliers of PEMFC components. 

The commercialization of PEMFCs is hampered by two key aspects, longevity or durability 

of some key components like membranes and electrodes and also the high cost of fuel cell 

systems. The durability of a PEM fuel cell relies mainly on the characteristics of the 

membrane electrode assembly (MEA), while the reduction in cost critically depends on 

enhancing the performance of the MEAs while minimizing the Pt content. The lowering of 

the platinum loading on the electrodes has become the subject of much research [2-4]. 

Platinum comprises a large portion of the PEMFC‟s cost due to its high price and limited 

supply. The catalyst accounts for 55% of the total stack cost (not including the balance of 

plant), while 7% belongs to membrane, 10% to bipolar plates, and 10% to gas diffusion 

layers [5]. Developing high-performance, cost-effective and durable electrocatalysts is the 

number one priority for PEMFC research and development. 

The cost targets of the US Department of Energy (DOE) for PEM fuel cell stack is 30 $ per 

kW by 2015 which is way down from the current value of 110 $ per kW [6]. Most of this 

reduction has to be from the Pt catalyst, bipolar plate and PEM although total elimination of 

Pt for oxygen reduction reaction (ORR) has been recently indicated as a tangible possibility 
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[7, 8]. Cost effectiveness can be obtained by using alternative materials, i.e. less noble metal 

catalysts, cheaper materials for the electrodes, cheaper and thinner membranes, and also by 

reducing the need for peripheral equipment, such as a gas humidification section and 

compressors.     The latter aspects will also reduce the weight of the system.    Of course, the 

advantages of cheaper materials and simpler systems must not outweigh the disadvantages of 

any reduction of the power density. A better understanding of components and operating 

conditions in PEM fuel cell is essential to the development and optimization of fuel cells, 

leading to the introduction of cheaper materials, better fabrication techniques, improved 

design and development of novel architectures. In order to address the above challenges, 

extensive studies are being carried out the results are being published, with a huge increase in 

the number of articles on catalysts, membranes, MEAs etc. This chapter is aimed to provide 

an overview of the R&D on PEMFC MEA components, highlighting the developments in 

this area. 

2 Components of PEMFC 

A basic schematic of a PEMFC is provided in Fig. 1. Hydrogen gas is fed to the fuel cell 

anode, which travels through the gas diffusion layer (GDL) to the anodic catalytic layer 

where it is oxidized, resulting in proton transfer through the proton exchange membrane 

(PEM) and electron transfer through an external electrical circuit. At the same time, oxygen 

gas is fed to the cathode and upon diffusion to the cathodic catalytic layer, it combines with 

the protons and is reduced to water. The anodic and cathodic reactions as well as the overall 

cell reaction are shown in Equation 1-2.     

 

Fig. 1. Basic schematic of a Proton exchange membrane fuel cell. 
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H2  →  2H+  +  2e-     (1) 

½ O2  +  2e-  +  2H+    →     H2O   (2) 

The transport of gases, charged species and water can be better understood by taking a 

closer look at the electrode structure. A schematic of the cathode electrode is illustrated in 

Fig. 2.     An effective electrode is one that optimally balances the transport processes 

required for an operational fuel cell. The four transport processes required are the transport 

of: 

1. The reactant and product gases between the catalyst layer and the gas channels 

respectively. 

2. Electrons between the current collector and the catalyst layer through the gas 

diffusion layer 

3. Protons from/to the membrane and the catalyst layer  

4. Protons through  the membrane from the anode to the cathode 

 

 

Fig. 2. Transport of gases, protons, and electrons in a PEM fuel cell electrode. 

The reactant gases, the solid catalysts and the electrolyte are often referred to as the three 

phases found in a catalyst layer. Part of the optimization of an electrode design is the attempt 

to distribute the appropriate amount of catalyst layer and the volume between the transport 

media for each of the three phases to reduce transport losses.    In addition, an intimate 

intersection of these transport processes at the catalyst particles is vital for effective 
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operation of a PEM fuel cell. Therefore the assembly of the electrode and the membrane 

with optimum three-phase reaction structure termed as the membrane electrode assembly 

(MEA), is crucial for the success of this technology and is rightly called “the core of the fuel 

cell”.  

The main components of a PEMFC MEA are: (i) Proton conducting membranes, (ii) 

electro-catalysts (anode and cathode), (iii) porous gas diffusion electrodes, and (iv) the 

assembly of membrane and electrodes 

2.1 Proton conducting membranes 

The proton conducting membrane (PCM) is one of the vital components of the MEA, 

conducting only protons through them and acting as a barrier between the reactants and 

electrons and thereby making the PEMFC possible to attain high power densities. 

The desired properties for a membrane to be used as a proton conductor in a fuel cell are 

listed in the following: 

1. Good chemical, mechanical and electrochemical stability in fuel cell operating conditions 

2. Elevated proton conductivity to support high currents with minimal resistive losses and 

zero electronic conductivity 

3. Thermal and hydrolytic stability 

4. Chemical properties compatible with the bonding requirements of membrane with the 

electrodes 

5. No permeability to reactant species to maximize efficiency 

6. High durability and low costs membranes  

 A number of polymer materials have be studied as PCMs for PEMFC applications. Fig. 3 

gives the classification of the membrane materials studied so far. The results from these 

studies are highlighted and described in detail below. 
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Fig. 3. Classification of PCMs. 

 2.1.1 Perfluorinated membranes 

A remarkable advancement in the PEMFC technology, was when the polystyrene sulfonic 

acid membrane (the electrolyte in the general electric 1 kW solid polymer electrolyte fuel cell 

(SPEFC), used as an auxiliary power source in every one of NASA's Gemini flights in the 

1960s, was replaced by Du Pont's perfluorosulfonic acid membrane (Nafion®) in the 1970s 

[11]. Perfluorosulfonic acid membranes are highly conductive to protons and their stability 

in acid environment is much better as compared to polystyrene sulfonic acid membranes. 

Nafion, the commercially available Perfluorosulfonic acid membrane is widely used in 

PEMFCs due to their high proton conductivity and moderate swelling in water. 

Perfluorosulfonic acid membrane (PFSA) consists of three functional regions: (1) a 

polytetrafluoroethylene (PTFE, DuPont's Teflon™)-like backbone, (2) side chains of ---  

fluorinated carbon which connect the molecular backbone to the third region, and (3) ion 

clusters in the third region consisting of sulfonic acid ions. When the membrane becomes 

hydrated, the hydrogen ions in the third region become mobile by bonding to the water 

molecules and move between sulfonic acid sites (Fig 4).    There are two advantages to use 

PFSA membranes in PEM fuel cells.     First, because the structure is based on PTFE 

backbone, PFSA membranes are relatively strong and stable in both oxidative and reductive 

environments.     In fact, durability of 60,000 h has already been reported [12].   Second, the 

protonic conductivities achieved in a well-humidified PFSA membrane can be as high as 

0.2 S/cm at PEM fuel cell operating temperatures.    The high electronegativity (i.e. electron 

affinity) of the fluorine atom, bonded to the same carbon atom as the SO3H group makes 

the sulfonic acid a superacid (e.g. like the trifluoromethane sulfonic acid).     Thus, there is at 

least a two-fold increase in the specific conductivity of this membrane material as compared 
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with the polystyrene sulfonic acids , which translates to a cell resistance as low as 0.21 Ω cm2 

for a 100 μm thick membrane with voltage loss of only 50 mV at 1 A/cm2
 (Table 1).        

 

 

Fig. 4. Chemical structure of Nafion 

The proton conductivity in Nafion is strongly dependent upon its water content. At high 

humidity, proton transport through the membrane is based on non-classical mechanisms 

such as Grotthuss transport or structural diffusion in which protons transfer along the 

hydrogen bond network [14-16]. At lower humidity, the proton transport is based on the 

surface mechanism in which protons move under the electrostatic effects provided by the 

sulfonate groups. Proton dynamics can be characterized mostly as proton motion around a 

sulfonate group, with occasional movement to a neighboring sulfonate group [17]. 

Various types of Nafion membranes, such as Nafion 117, 115, 112 and 105, were tested as 

electrolyte within the single cell and at different temperatures, among which Nafion 112 gave 

the optimal result.   Table 1 Shows the electrode kinetic parameters at 50ºC, calculated from 

the polarization curves for the PEMFC single cell with different Nafion electrolyte 

membranes [18].     

Table 1. Electrode kinetic parameters at 50ºC, calculated from the polarization curves for a 

PEMFC single cell. 

Membrane 

 

 

Dry 

thickness 

(μm) 

Equivalent 

weight 

E0 (V) 

 

R (Ωcm2) 

 

Exchange 

current density 

( i0, mV dec-1) 

Nafion 112 50 1100 0.99 0.11 56.0 

Nafion 115 125 1100 1.01 0.26 62.0 

Nafion 117 175 1100 1.02 0.33 68.0 
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The Dow Chemical Company and Asahi Chemical Company synthesized advanced 

perfluorosulfonic acid membranes with shorter side chains and a higher ratio of SO3H to 

CF2 groups [12]. The most widely used class of membrane materials today for the PEFC are 

of the perfluorinated sulfonic acid (PFSA) type, e.g., Nafion® (Dupont, USA), Flemion® 

(Asahi Glass, Japan), Aciplex® (Asahi Kasei, Japan), and derivatives thereof, such as the 

GORE-SELECT® membranes (W.L. Gore, USA). The thickness of the Gore membranes is 

25–35 μm. Table 2 provides a comparison of the properties of known commercial cation-

exchange membranes for PEMFCs [13]. The lower equivalent weights of these membranes 

compared to Nafion account for their higher specific conductivities, which enabled 

significant improvements in PEMFC performance [12] i.e. about 50¯100 mV increase in cell 

potential at 1 A cm-2 over that of Nafion® 115, with about the same thickness (~100 μm).  

Table 2. Properties of commercial cation-exchange membranes [13]. 

Manufacturer Membrane type Trade name 

IEC 

(mequiv./

g) 

Thicknes

s 

(μm) 

Conductivi

ty 

 (S/cm)* 

Asahi 

Chemical  

Sulfonated 

polyarylene 

K 101 1⋅4 240 0⋅0114 

 

Asahi Glass 

CMV 2.4 150 0.0051 

DMV N/A 150 0.0071 

Perfluorinated Flemion N/A 150 0.14 

Ionac 

Chemical 

company 

N/A 

MC 3470 1.4 600 0.0075 

MC 3142 1.1 800 0.0114 

BALLARD Perfluorinated BAM  3G N/A 140 N/A 

 

Ionics  
N/A 

61AZL386 2.3 500 0.0081 

61AZL389 2.6 1200 N/A 

61CZL386 2.7 600 0.0067 

 

 

 

 

Du Pont 

 

 

Perfluorinated 

Nafion®105 N/A 125 N/A 

Nafion®112 N/A 50 0.065 

Nafion®1135 N/A 89 0.11 

Nafion®115 N/A 127 0.09 

Nafion®117 0.9 183 0.08 

Nafion® 1110 N/A 254 N/A 

Nafion901 1.1 400 0.01053 

Perfluro 

sulfonic 

acid/PTFE 

copolymer 

NRE-211 N/A 25.4 0.1 

NRE2®12 N/A 50.8 0.1 

Dow Chemical Perfluorinated Dow  N/A 125 0.114 
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company 

 

 

Pall Gelman 

sciences 

Tetra-

fluoroethylene 

grafted 

poly(styrene 

sulfonic acid) 

IonClad® R 

1010 
N/A 40 0.07 

Tetrafluoroethyle

ne/ 

perfluoropropyle

ne 

copolymer 

 

IonClad® R 

1010 

 

N/A 

 

20 

 

0.08 

David Fuel 

Cell 

Components 

Perflurosulfonic 

acid 
Sterion® L180 N/A 180 N/A 

Gore Select 
Perflurosulfonic 

acid 
Gore N/A 5-20 0.028-0.096 

 

 

Solvay 

Polyethylene- 

Tetrafluoroethyle

ne grafted 

sulphonyls 

CRA N/A 160 0.045 

Tetra 

fluoroethylene 

with poly(styrene 

sulfonic acid) 

CRS N/A 160 0.05 

3M Perfluorinated 3M N/A 30 
0.17 [70-80 
oC] 

Fumatech 
Perfluorinated/n

on-perfluorinated 
Fumapem N/A 30 - 60 N/A 

*at 30°C and 100 % relative humidity. 

 

In spite of the advantages which lead to a number of commercial entities marketing PFSA 

membranes, there are some disadvantages of using PFSA membranes in PEM fuel cells. One 

major disadvantage with perfluorosulfonic-acid (PFSA) membranes has been, and still is, is 

their high cost (approx US$ 700 m−2). This is due to the expensive fluorination step and 

lengthy preparation period required for manufacture of PFSA membranes [19]. 

Substantial efforts are made by both academia and industry to develop novel fuel cell 

membrane materials, mainly driven by the need for cheaper membranes with improved 

functionality (e.g., conductivity, robustness) and. Promising alternatives are partially 

fluorinated or non-fluorinated ionomer containing aromatic units with–SO3H groupsin the 

main polymer chain, or in the side chain. 
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2.1.2 Modified PFSA Membranes 

Considerable efforts are being made to modify the PFSA membranes to reduce the costs and 

to achieve high temperature operation. One approach is to replace water with low volatile 

non aqueous solvent that serves the same function as water, facilitate proton transfer. Two 

salient examples of such „water replacements‟ are phosphoric acid and imidazole. This 

approach has met with limited success. The other approach is to develop methods to 

improve water management. As the water generated within the fuel cell is not sufficient 

enough to hydrate the membrane, usually the PFSA membranes are supplied with water 

along with reactants (humidification) increasing the complexity of PEMFC systems [20]. 

Accordingly, approaches have been to develop PEMFC systems operating with low 

humidification at both low (80°C) and high (above 100°C) temperatures. These approaches 

include reducing the thickness of membranes, impregnating the membranes with 

hygroscopic oxide nanoparticles, and introducing solid inorganic proton conductors. This 

approach might lead to better fuel cell performance if the composition and morphology of 

the additive and composite are well-designed. 

Two common methods that are employed to prepare nafion modified composite 

membranes are: (i) direct addition of particles to a solution of Nafion, followed by casting; 

and (ii) sol gel approach to incorporate inorganic oxide nanoparticles within the pores of 

Nafion membrane. The membranes synthesized by sol gel approach were completely 

transparent and homogenous as compared to membranes prepared by alternate casting 

methods which were cloudy due to large particle size of the additives. The fuel cell 

performance of several modified PFSA membranes are summarized in Table 3. 

On analyzing the table, it can be concluded that nafion-silica composite is among the 

extensively studied membranes in the modified PFSA category [21-24]. The conductivity of 

nafion-silica composite membrane decreases with increasing SiO2 content and is lower than 

the conductivity of nafion. However, at elevated temperatures (above 80°C), modified 

nafion-silica membranes exhibit a higher conductivity than nafion, reaching 10-4 to10-7 Scm-1 

at 100oC [23]. Further, hybrid nafion-silica membranes doped with heteropolyacids have also 

been reported. The performance of nafion-silica composite membranes in the PEMFC 

operated at 110 °C and 70 % RH is better than that of nafion and is found to be in the order 

of nafion/SiO2/PWA > Nafion/SiO2 > Nafion/WO3 > Nafion/TiO2 [31]. 

The ZrO2-Nafion membrane showed higher proton conductivity and better water uptake as 

compared to Nafion at the same temperature and humidity. ZrO2-Nafion composites have 

strong acid sites and higher bulk to surface water ratio, which is critical for higher proton 

conductivity and better fuel cell performance. ZrO2-Nafion membranes have showed better 

fuel cell performance at 80 °C as compared to other membranes [26].  

Nafion-ZrP composite membrane based on a commercial Nafion-115 membrane exhibited a 

performance of 1000 mA cm−2 at 0.45 V [24], whereas an unmodified membrane exhibited a 

performance of 250 mA cm−2 for an H2/O2 PEMFC at 130 °C and at 3 bars. With the same 
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operating conditions, the cell performance was 1.5 A cm−2 for the recast composite 

membrane [34]. The recast composite membranes showed a stable behavior when 

maintained at 130 °C, while non-composite membranes show irreversible degradation. The 

proton conductivity of recast composite membrane was found to be similar to that of pure 

Nafion and Nafion-ZrP. 

Keggin-type heteropolyacids, like phosphotungstic acid (PTA) and silicotungstic acid (STA), 

with high water content exhibits high conductivity at room-temperature. Nafion-

heteropolyacid exhibits higher proton conductivity at temperatures above 100°C at low 

humidity [33]. Zeolites and mineral clays are good prospective materials for such 

modification of Nafion membranes. High surface acidity of zeolites and clays affords a high 

level of proton conductivity. Moreover, embedded zeolites can maintain a high water uptake 

even at  temperatures above 100oC [38]. Carbon nanotubes were also used to improve the 

mechanical properties of Nafion and the transport characteristics of 50 μm composite 

membranes containing 1% nanotubes were close to that of Nafion NRE-212, but the 

mechanical characteristics were better [43,44]. 

Table 3 also summarizes modified Nafion with different inorganic additives/fillers to allow 

PEMFC operation at higher temperatures and low relative humidity values [25]. Solid-acid 

proton conductors like zirconium phosphate, titanium phosphate, cesium phosphates and 

heteropoly acids have also been explored as additives to Nafion, to facilitate proton 

transport at reduced or zero hydration levels in the matrix. 

Nafion–inorganic composite membranes exhibit lower resistance and hence PEMFCs with 

such membranes sustain higher load current-densities particularly under low relative 

humidity conditions in relation to the pristine-Nafion membranes. These membranes help 

PEMFCs to sustain periods of inlet-stream draught without excessive loss in membrane 

conductivity. Consequently, the challenges associated with humidification requirements for 

PEMFCs in an operating system are partly mitigated, which helps cutting system complexity 

and hence it‟s cost [27]. 

Blending Nafion with other polymeric materials has also been tried by some researchers with 

limited success. 
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Table 3. Summary of modified PFSA membranes. 

Membranes 

[Ref] 

Water 

uptake 

(%) 

 

Conductivity σ 

(S/cm) 

{Temp in ºC} 

[RH %] 

Comments on 

Ionic conductivity 

Fuel cell performance 

Nafion®–SiO2 

[23,31] 
34 1.07 × 10−2 

Conductivity slightly lower 

to Nafion, improved 

conductivity than nafion at 

elevated temperatures  

i 0.4 V = 320 mA /cm2  

 

 

 

Nafion/SiO2/

PWA [31] 
38 2.6 × 10−2 

Higher conductivity  than 

nafion at lower  RH   
i 0.4 V = 540 mA /cm2 

Nafion®/ 

ZrO
2
[28]

 
 

24 2 × 10−2  

Conductivity slightly lower 

to Nafion, improved 

conductivity at elevated 

temperatures  

i0.6  V = 604 mW /cm2 (110◦C, 100 % 

RH) 

i0.6  V = 387 mW /cm2 (130◦C, 85 % 

RH) 

 

Nafion®/ 

sulfated  ZrO2  

[29] 

27 2.3 × 10−1 

Higher conductivity  than 

nafion at  elevated 

temperatures 

Nafion/ S-ZrO2= 1.35 W /cm2 (80◦C) 

Nafion/ S-ZrO2= 0.99 W /cm2 

(120◦C) 

Nafion = 1.28 W /cm2 (80◦C) 

Nafion = 0.75 W /cm2 (120◦C) 

Nafion®/TiO2 

[30] 

 

(29 

{ 

0.15–0.18  (85)  

[100] 

 

Conductivity slightly lower 

to Nafion, improved 

conductivity at elevated 

temperatures  

i0.56  V = 514 mW /cm2 (110◦C) 

i0.56  V = 256 mW /cm2 (130◦C) 

 

Nafion®/ WO3 

[31, 32] 

 

(37) 

 

10−2 (100) 

 

Lower resistance than 

Nafion due to spillover 

effect 

Better performance than Nafion 112 

i 0.4 V = 300 mA /cm2 

 

Nafion®/PTA, 

PMA, STA, 

SMA [33] 

(8) 

 

0.06-0.08 (70)  

[100] 

Improved conductivity over 

Nafion. But suffers leaching 

of HPA 

i0.6  V = 0.1-0.9 A/cm2 (80◦C, 75 %RH) 

 

Nafion®/ ZrP  

[34,24] 
N/A 

0.025 [92] 

 

Conductivity similar to 

Nafion, improved 

conductivity at elevated 

temperatures  

i 0.45 V = 1000 mA /cm2 [24] 

Nafion®/PTF

E/zirconium 

phosphate [35, 

36] 

N/A 
2.38 x10-3 (70-

80) 
N/A Contradicting performances reported 

Nafion®/ZrSP

P [37] 
N/A 10-1 (110) [98] N/A 

High performance- 

  i0.4 V = 700 mA  /cm2 (100◦C) 
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 RH = Relative Humidity 

 

 

2.1.3 Partially fluorinated Membranes 

The high cost of perfluoro sulfonic acid membranes, as mentioned earlier, is mainly due to 

the expensive fluorination step. Thus, partially-fluorinated and non-fluorinated ionomer 

membranes are currently under study to address the cost issues of the PCMs. Also there are 

safety concerns associated with fluorinated membranes, where toxic and corrosive gases are 

liberated at temperatures above 423 K [46, 47].   

As a low-cost synthesis technique for Nafion-alternative PCMs, a radiation-induced grafting 

method has attracted much attention. Radiation-grafted membranes, with varying amounts 

of fluoride containing aliphatic backbone and poly (styrene sulfonic acid) side chains, can 

belong to either of these groups depending on the composition of the polymer backbone. 

Radiation-grafted membranes have been shown to have interesting properties for fuel cell 

applications. In particular, conductivities and gas permeabilities comparable to those of the 

Nafion® 

/Zeolite [38] 

(30) 

 

0.14 (RT) 

 
N/A N/A 

Nafion®/mord

enite [39] 

(38.6) 

 

0.01 (70) [100] 

 

Very small conductivity 

improvements at high 

temperatures only 

i0.5  V = 400 mA  /cm2 (100◦C) 

Nafion®/cesiu

m  

phosphate[40] 

N/A N/A 

Conductivity similar to 

Nafion, improved 

conductivity at elevated  

temperatures  

N/A 

Nafion®/SiO2-

Cs2.5H0.5PWO4

0 [41] 

(34) 

 
N/A N/A 

 Better performance than Nafion® 

NRE-212  membrane under fully 

humidified and dry conditions 

Nafion®/imida

zole [42] 
N/A N/A 

Very good conductivity 

results however imidazole 

poisoned Pt 

catalyst 

N/A 

Nafion®/CNT 

[43, 44] 
(22.18) N/A 

Enhanced proton 

conductivity and mechanical 

strength leading to better 

PEFC performance 

Better performance than Nafion ® 

NRE-212 membrane 

Nafion®/PAN

I [45] 
N/A N/A 

Higher conductivity  than 

nafion at lower  RH   

Better performance than Nafion 112 

membrane at low humidity 
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commercial Nafion membranes can be obtained. The major problem currently appears to be 

the durability in the fuel cell as very varying lifetimes have been reported [48,49]. 

Several research groups have investigated this type of membrane with their own starting 

materials and preparation methods and studied their properties as a function of degree of 

grafting or the ion exchange capacity. Poly (vinylidene fluoride), PVDF [50, 51], Poly 

(ethylene-alttetrafluoroethylene), ETFE [51], and poly (tetrafluoroethylene-co-

perfluorovinylether), PFA [52], have been used as the starting polymer matrix for radiation 

grafting membranes. However, as the preparation conditions are expected to affect the 

membrane properties [53], comparing the results reported by different groups will be futile.  

Li et al. performed fuel-cell tests with H2–O2, using crosslinked-PTFE based radiation-

grafted PEMs, and then reported that their cell performance exceeded that of Nafion [54]. 

Partially fluorinated polymers are listed in Table 5 and a detailed review by Gubler et al [55] 

is available on radiation grafted membranes for polymer electrolyte fuel cells. According to 

Gubler et al. [55], membranes with high grafting levels have a poor long-term stability. 

Another issue is to transform well-conducting grafted membranes into well-performing 

MEAs as the surface of grafted membranes appears to be quite hydrophobic, leading to poor 

contact with Nafion impregnated gas diffusion electrodes. 

2.1.4 Non fluorinated Membranes 

Non fluorinated hydrocarbon polymer membranes (Table 4), principally motivated to lower 

the material cost of commercial perfluorinated membranes are also being developed to 

facilitate high temperature operation. A large amount of literature is available on alternative 

Non fluorinated membranes to perfluorinated materials which includes: (a) polysulfones 

(PSF) (b) poly ethersulfone (PES) (c) polyetheretherketone (PEEK) (d) acid functionalized 

or doped poly (benzimidazole) (e) poly(phynelene oxides) (f) poly(phosphazenes) etc  

Besides improved water retention at high temperatures, attempts were made to improve the 

morphology of these ionomer-based membranes. The chemical structure and the membrane 

morphology are important for the fuel cell performance, and is linked to the nature of the 

ionomer and the membrane formation process. The morphology depends strongly on the 

water content, and on the concentration and distribution of the acidic moieties [61-63]. 

During the last couple of decades, many researchers have focused on the synthesis of 

various sulfonated aromatic polymers that have high thermal, chemical and oxidative stability 

coupled with good mechanical properties and low cost. Usually they are prepared either by 

post-sulfonation of commercial polymers or by direct synthesis of sulfonated polymer via 

copolymerization of sulfonated monomers. The latter approach might be a better approach 

to control the polymer homogeneity and the degree of sulfonation. 

Aromatic polyimides show high levels of conductivity, but the hydrolytic stability is reported 

to be very sensitive to the chemical structure of the polyimide main-chain [66-68]. The fuel 

cell performance of sulfonated polyimide (SPI) at 70-80 °C was found to be similar to 
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Nafion. The durability of sulfonated polyimides were also investigated. Mercier‟s group 

operated a fuel cell using a sulfonated naphthalene dianhydride base polyimide at 60 °C and 

250 mA/cm2 for 3,000 h in hydrogen/oxygen (3 bar each) [82].  One possible explanation 

for the long lifetime of hydrocarbon membranes is their lower gas permeability. SPI is 40 

times less permeable to H2 and 10 times less permeable to O2 compared with Nafion. The 

reduced gas crossover rate may be responsible for the low degradation rate in fuel cell tests. 

Long-term durability has been demonstrated on SPI and sulfonated polyarylene ether 

membranes. Both types of membranes successfully sustained 5,000 h of operation under 

moderate conditions (0.2 A cm−2, 80°C, more than 90% RH, ambient pressure, and no 

frequent startup/shutdown). Both membranes showed no changes in ion-exchange capacity 

over time, which indicates that there is no loss of sulfonic acid groups [63, 64]. 

Aged sulfonated polyarylenes after fuel cell life testing have shown almost no change in 

membrane thickness, while similar results using Nafion have shown significant thinning 

[64].Poly (aryloxyphosphazenes) functionalized with phenyl phosphonic acid units have been 

developed for use in direct methanol fuel cells [71]. Poly aryloxyphosphazenes) having 

sulfonimide units are also known [72]. Blending and radiation cross linking have been 

investigated as means to reduce water swelling and methanol permeation of poly 

(aryloxyphosphazene) ionomers [73].  

sPEEK is made up of highly branched, narrow channels for proton conduction and have 

more dead-end components than the wider, less-branched channels of Nafion. The more 

extensive hydrophobic–hydrophilic interface region in sPEEK results in greater separation 

between sulfonic acid functional groups [61].In sulfonated hydrocarbon polymers, the 

hydrocarbon backbones are less hydrophobic and the sulfonic acid functional groups are less 

acidic and polar. As a result, the water molecules of hydration may be completely dispersed 

in the nanostructure of the sulfonated hydrocarbon polymers. Both PFSA and sulfonated 

hydrocarbon membranes have similar water uptakes at low water activities, whereas at high 

relative humidity (100%). PFSA membranes have a much higher water uptake due to the 

more polar character of sulfonic acid functional groups. Sulfonated aromatic polymers have 

different microstructures from those of PFSA membranes [74]. Detailed discussion on 

synthesis of hydrocarbon ionomers can be found in a review [75]. 

Sulfonated PEEK-WC membranes with a degree of sulphonation of 15-40% have been 

employed in PEM fuel cells. The membranes exhibit electrochemical performances 

comparable to Nafion membranes [92]. 

Phosphonic acid and carboxylic acid groups are much weaker acids than sulfonic acid and do 

not provide protons easily under normal fuel cell operating conditions. The carboxylated 

polymers, as one would expect showed lower water uptake and lower conductivity in 

comparison with the sulfonated polymers. Sulfonated high performance polymer systems 

based on arylene ether, sulfone, and thioether linkages in the backbone have been 

synthesized and described in literature [70]. These polymer systems are potential candidates 
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for fuel cell applications as they exhibit good thermal and chemical stability and high proton 

conductivity. 

Polybenzimidazole (PBI) based proton exchange membranes are successful Non fluorinated 

Membranes for fuel cell applications.PBI has excellent thermal and mechanical stability 

Phosphoric acid doped PBI membranes have been extensively studied at Case Western 

University, USA for high temperature DMFC applications. Phosphoric acid doped PBI 

membranes high proton conductivity, low electro-osmotic drag, capable of operating at high 

temperature (T = 200 °C) and low gas humidification, low MCO and low cost in comparison 

with Nafion/perfluorinated ionomers. The major disadvantage is leaching of phosphoric 

acid is a major concern for H3PO4–PBI. [65].The performance of an MEA from PEMEAS, 

containing H3PO4–PBI is even at 160°C quite low. At 0.7 V, power density is 0.07 W/cm2; at 

0.6 V, it is 0.25 W/cm2 [69]. 

 

Table 4. Partially fluorinated and Non fluorinated Membranes for PEMFC [76]. 

Partially fluorinated Polymers IEC 

(mequiv  

g-1) 

Membrane 

Thickness  

(μm) 

Conductivity 

(S/cm) 

[RH 100%] 

Current 

density  

(mA cm-2) 

Life 

Time 

(h) 

Poly(ethylene-co-tetrafluoroethylene) 

grafted with poly(styrene sulfonic acid) 

[56] 

3.22 N/A 0.19 190 (at 0.6 

V) 

N/A 

Poly(tetrafluoroethylene-co-

perfluoropropyl vinyl ether) grafted with 

poly(styrene sulfonic acid)+10%DVB)[57] 

N/A N/A 0.040 305-665 (at 

0.6 V) 

>4150 

Poly(tetrafluoroethylene-co-

perfluoropropyl vinyl ether) grafted with 

poly(styrene sulfonic acid) +9%DVB)[58] 

N/A N/A 0.1 450(at 0.6 

V) 

1400 

Poly(vinylidene fluoride) grafted with 

poly(styrene sulfonic acid)  [59,60] 

1.83 N/A 0.050 135(at 0.7 

V) 

130-

150 

 

Non fluorinated Polymers 

Sulfonated (styrene/ ethylene-

butylene/styrene) [77] 

1.78 60 0.04 135(at 0.7 

V) 

N/A 

Sulfonated (butadiene styrene) [78] 1.85 60 N/A 327(at 0.5 

V) 

N/A 

Sulfonated trifluorostyrene–

trifluorostyrene copolymer [79] 

2.5 N/A N/A 730(at 0.6 

V) 

14 000 

Sulfonated polystyrene-block-(ethylene-

co-butylene) 

block-sulfonated polystyrene[80] 

1.78 60 N/A 135(at 0.7 

V) 

N/A 

Sulfonated polyimide [81,82, 83] 1.26 70 0.004-0.02 500(at 0.7 

V) 

3000 
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2.1.5 Polymer blends 

Polymer blend technology might represent a more versatile approach for the development of 

new membrane materials, where the material properties of blends can be varied over a wide 

1.98 N/A 0.13 225(at 0.6 

V) 

N/A 

1.98 N/A N/A 500(at 0.6 

V) 

N/A 

 

Sulfonated poly sulfone [85, 86,40,64] 

1.1 20-100 0.01(80oC) 400(at 0.7 

V) 

N/A 

04-2.2 N/A 0.08-0.17 200(at 0.7 

V) 

500 

N/A 30 0.09 730 ( at 

0.6 V) 

N/A 

1.6 50 N/A 200 (ocv) 5000 

Disulfonated biphenol based poly(arylene 

ether sulfone) copolymer [87] 

1.3 N/A 0.03 840(at 0.6 

V) 

>800 

 

Sulfonated poly (aryl ether ketones)  

S-PEEK[88][16,89][90] 

1.55 18 0.05 730(at 0.7 

V) 

N/A 

N/A 50 N/A 410 (at 

0.7V) 

4300 

1.6 70 0.04 600(at 0.7 

V) 

N/A 

1.6 40 N/A 410(at 0.7 

V) 

4300 

Sulfonated poly (4-phenoxybenzoyl1,4-

phenylene) [91] 

2.0 25-50 0.01 N/A 200 

 poly(oxa-p-phenylene-3,3-phthalido-p-

phenylene-oxa-pphenylene- oxy-p-

phenylene) S-PEEK-WC [92] 

0.76 40 0.017 606 N/A 

Sulfonamide functionalized Poly 

phosphazenes [93] 

0.99 100 0.06(80oC) 220(at 0.7 

V) 

N/A 

Polymer Blends 

Sulfonated PEEK- aminated polysulfone 

blend  [94] 

1.58 29 0.03 600(at 0.7 

V) 

N/A 

Sulfonated PEEK-  poly benzimidazole 

blend [94] 

1.26 37 0.03 400(at 0.7 

V) 

N/A 

Phosphoric acid-doped sulfonated  

polysulfone [95] 

0.81 80-110 0.02-0.2 50-150(at 

0.7 V) 

N/A 

PES-  poly benzimidazole blend [279] N/A 70 0.072 (25oC) 800(at 0.541 

V) 

N/A 
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range. Relative to a single-component polymeric material, a blend enjoys several degrees of 

freedom that allow tailoring of the material to meet the membrane requirements. The 

obvious source of flexibility is the presence of two materials that can have quite different 

properties, e.g., good mechanical properties and good proton transport. 

Polymer blend membranes have been synthesized by combining polymeric nitrogen-

containing bases (N bases) with polymeric sulfonic acids. The sulfonic acid groups interact 

with the N-base either to form hydrogen bonds or by protonating the basic N-sites [96, 97]. 

The most advanced acid-base polymer blends are those based on sulfonated poly 

(etheretherketone) (S-PEEK) or ortho-sulfonesulfonated poly (ethersulfone) (SPSU) as the 

acidic component, and poly (benzimidazole) (PBI) as the basic component. SPEEK based 

blends are explored to obtain good mechanical properties, high proton conductivity, and 

optimized membrane properties. These membranes show excellent thermal stabilities 

(decomposition temperatures ranging between 270 and 350°C) and good proton 

conductivities. Their performance in direct hydrogen fuel cells at 70°C is similar to that of 

Nafion 112, however, only limited durability has been demonstrated. In addition to direct 

hydrogen testing, preliminary studies in DMFCs have shown their suitability for this 

application and it is reported that their methanol permeability is significantly lower than that 

of Nafion [98]. Quantitatively, the methanol crossover rate is reduced by a factor of about 8 

and 15, respectively, for S-PSU/PBI and S-PEEK/PBI membranes.  

3 Electro-catalysts for PEMFC 

Platinum is considered as the best catalyst for both anode and cathode fuel cell reactions 

despite a large difference between the ORR and the hydrogen oxidation reaction (HOR). 

The oxygen reduction reaction (ORR) at the cathode is a sluggish and complicated two/four 

electron reaction [100, 101]. However, even on pure Pt, the overpotential for ORR is in 

excess of 300 mV. A great deal of effort has been made by many researchers toward 

developing appropriate catalyst materials, especially for the ORR. On the anode catalyst, 

most of the studies have focused on addressing the CO poisoning issues of the Pt catalyst. 

In the subsequent sections we will discuss in detail on the anode and cathode catalysts, with 

more emphasis on ORR catalysts. 

3.1 Anode catalyst 

Platinum is an excellent catalyst for the hydrogen oxidation reaction and has a very high 

exchange current density but is susceptible for CO poisoning. Unfortunately, for many 

practical applications, the presence of trace levels of carbon monoxide (CO) impurities in the 

hydrogen-rich gas mixture produced by reforming of hydrocarbon fuels is inevitable. CO 

can strongly adsorb on the Pt catalyst and even mere traces (10 ppm) blocks the catalytically 

active area, thereby significantly decreasing its reactivity. This is termed as “CO poisoning” 

of the catalysts. The search for CO-tolerant catalysts has been a challenging task in the 

successful development of more efficient PEMFC systems [102, 103]. 
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3.1.1 CO tolerant catalysts 

The development of an anode catalyst with significantly lower affinity for carbon monoxide, 

either under steady state operation or under conditions of high CO transient content is the 

challenge for low temperature PEMFC systems. Platinum-ruthenium catalysts appear to 

tolerate CO better than platinum catalysts and an increase in cell temperature improves 

tolerance. CO tolerant catalyst research, as from its name, is based on improving the CO 

tolerance of Platinum catalysts by incorporating secondary metals, which might either reduce 

the Pt-CO bond strength or to supply hydroxyl ions easily to the Pt surface and aid 

oxidation of CO. 

In this context, several approaches have been attempted to reduce the CO poisoning [104-

106]. A number of platinum alloys or mixtures of platinum with a noble or non-noble 

constituent have been proposed to address the CO poisoning issues, such as Pt–Ru [107-

110], Pt-Sn [111] Pt–Fe [112], Pt–Mo [113], Pt-Co [114], Pt-Ni [115] and Pt–W [112] and Pt-

WO3 [117]. The high CO tolerance of these materials is usually explained by two distinct 

mechanisms: the so-called bi-functional and electronic mechanisms. In the first, the presence 

of a second metal promotes the electro-oxidation of CO to CO2 after a spillover process of 

the OH-species formed on the oxophilic sites of the second metal to the Pt–CO [119]. On 

the other hand, the electronic effect [120, 121] postulates that the presence of the second 

metal modifies the Pt properties for the H2 and CO chemisorptions, reducing the CO 

coverage and leaving more free Pt sites available for the H2 oxidation. 

Pt–Ru has shown promising performance for HOR in the presence of CO [122] and is one 

of the most extensively studied anode catalyst, but the origin of this effect (bifunctional or 

electronic) remains an open question. In this direction, one of the most widely discussed 

topics is the question of whether alloy formation in the binary Pt–Ru system is a prerequisite 

for a better electro-catalytic activity when in the presence of CO [123–125]. Some of the 

results even appear to be in contrast to the structures required for a bifunctional mechanism 

or electronic modifications, which involves intermixing and intimate contact between Pt and 

Ru.  

Okada et al. have reported that Pt–VO(salen)/C and Pt–Ni(mqph)/C proved very promising 

performances and very high CO tolerances when compared with Pt/C and Pt–Ru/C alloy 

catalysts [114,115]. It is expected that the Ni in the complex interacts with CO and the 

complex oxidizes CO due to the negative potential of anode where the HOR occurs. It is 

assumed that the catalytic activity of Pt–VO(salen)/C links to the higher valence states of 

vanadium. When CO molecule coordinates to the central metal of chelate in a higher 

oxidation state, CO is activated resulting in a reduced back donation from the metal, which 

in turn induces a nucleophilic attack by H2O. Another mechanism reported is that the 

organic complexes may provide CO spillover sites near the platinum particle and increase 

the mobility of CO so that free active sites are available for HOR on Pt 
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Another promising material is based on Pt–Fe. Pt–Fe exhibit excellent CO tolerance for the 

HOR, similar to that of the Pt–Ru alloy. The CO tolerance is due to a positive shift in the 

binding energy of the Pt 4f or 4d orbitals. The positive shift of the binding energies indicates 

an increased d-vacancy at the valence band (5d orbital), resulting in a lower electron back-

donation to the CO molecules and thereby reducing the CO coverage [126]. CO tolerance of 

PdPt catalysts was examined and reported as exhibiting enhanced CO tolerance compared to 

Pt [118].  

Since the electronic density states of tungsten carbides (near Fermi level) resembles that of 

noble metal, platinum tungsten carbides might have many of the desired catalytic properties 

with respect to HOR [127,128]. Pt supported on mesoporous tungsten carbide (WC-phase) 

might serve as an effective CO tolerant electro-catalyst for hydrogen than a commercial 

Pt/C catalyst [129]. Pt/WO3-C, Pt–Ru/WO3 and Pt–Ru–W2C show improved activity in a 

CO containing H2 stream [130-132]. 

Ternary Pt-based catalysts have also been investigated in which an additional oxophilic 

component such as Sn, Ir, Rh, Os, Mo, W, WO3 or Re is added to Pt-Ru to promote CO 

oxidation at lower potentials [116,133,]. Some studies on ternary catalysts without Ru has 

also been reported, for example Au and Fe additives to Pt was reported to enhance the CO-

tolerant HOR activity as compared to Pt alone [134]. The summary of the CO tolerant 

anodes is given in Table 5.  

In addition, efforts to develop Pt-free electrocatalysts such as PdAu/C have been 

undertaken [137] but only few studies are reported so far. The study on molybdenum–

tungsten carbide (MoWC) revealed that increase in the catalytic performance was dependant 

on the catalyst dispersion on carbon and activation by a water vapor treatment. The 

performance of nickel–tungsten carbides (NiWC) and cobalt–molybdenum carbides 

(CoMoC) were reported to be about 10% of that of a Pt/C catalyst in a single cell fuel cell 

[138,139]. Critical reviews on this topic have been published by some groups [140-142]. 

 

Table 5:  Summary of data on CO tolerant anodes. 

Catalyst 
Preparation 

method 

Specific 

Activity 

(mAcm−2) 

 

Mass 

specific 

activity 

(mA/mg) 

Measurement 

conditions 

 

 

Comments 

 

 

 

20% Pt/C (E-Tek) [129] N/A 
28.3 ( 0.0 

V) 
71( 0.0 V) 

1 M H2SO4 

(without 1% 

CO) 

N/A 

20% Pt/C (E-Tek) [129] N/A 
28.3 ( 0.0 

V) 
59( 0.0 V) 

1 M H2SO4 

with 1% CO 

and 99% H2 

N/A 

 

7.5% Pt/WC [129] Borohydride 20.5 ( 0.0 136( 0.0 1 M H2SO4 N/A 
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reduction V) V) (without 1% 

CO) 

 

7.5% Pt/WC [129] 

Borohydride 

reduction 

19.3 ( 0.0 

V) 

128( 0.0 

V) 

1 M H2SO4 

with 1% CO 

and 99% H2 

Pt/WC shows 

higher CO 

tolerance than 

Pt/C 

Pt-WOx/C[130] Impregnation N/A N/A 
H2 + 100 ppm 

CO 

Comparable 

CO-tolerance 

than 20 wt% 

Pt-Ru/C  at 

short times (t 

< 3000 s) 

Pt-

Rucolloid,Pt0.5Ru0.5N(oct)4Cl/C 

[110] 

Colloid N/A N/A 
H2 + 100 ppm 

CO 

Better 

performance 

than Pt-Ru/C 

Pt0.5Ru0.5N(oct)4Cl/HOPG 

[110] 
Colloid N/A N/A 

H2 + 100 ppm 

CO 

Better 

performance 

than Pt-Ru/C 

Pt-Ru [116] Impregnation N/A N/A 
H2 + 150ppm 

CO 

Better 

performance 

thanPt-W and 

Pt-Mo 

Pt-Ru/CNT [108] Impregnation N/A N/A 
H2 + 100 ppm 

of CO 

Performance 

similar to that 

of PtRu/C 

Pt–VO(salen)/Cb [114] 
Organic metal 

complex 
N/A 

4770( 

0.1V) 

 

Half-cell at 70 

◦C- Pure H2 

 

Better CO-

tolerance than 

20 wt% 

Pt-Ru/C 

Pt–VO(salen)/Cb [114] 
Organic metal 

complex 
N/A 

1974( 

0.1V) 

Half-cell at 70 

◦C- 

100ppmCO/H2 

Better  CO-

tolerance than 

20 wt% 

Pt-Ru/C 

20 wt.%Pt–Ni(mqph)/defect-

free CNTsc [115] 

Organic metal 

complex 
N/A 

4230( 

0.1V) 

 

Half-cell at 70 

◦C- Pure H2 

 

High  CO-

tolerance than 

20 wt% 

Pt-Ru/C 

20 wt.%Pt–Ni(mqph)/defect-

free CNTsc [115] 

Organic metal 

complex 
N/A 

3170( 

0.1V) 

Half-cell at 70 

◦C- 

100ppmCO/H2 

High  CO-

tolerance than 

20 wt% 

Pt-Ru/C 

 

20 wt.%Pt–

Ni(mqph)/defectiveCNTsc 

[115] 

Organic metal 

complex 
N/A 

2720( 

0.1V) 

Half-cell at 70 

◦C- Pure H2 

Better  CO-

tolerance than 

20 wt% 

Pt-Ru/C 



 

 

Page | 22  

 

 

20 wt.%Pt–

Ni(mqph)/defectiveCNTsc 

[115] 

Organic metal 

complex 
N/A 820( 0.1V) 

Half-cell at 70 

◦C- 

100ppmCO/H2 

Better  CO-

tolerance than 

20 wt% 

Pt-Ru/C 

20 wt.%Pt–

Ni(mqph)/VulcanXC-72R[115] 

Organic metal 

complex 
N/A 

448 0( 

0.1V) 

Half-cell at 70 

◦C- Pure H2 

 

Better  CO-

tolerance than 

20 wt% 

Pt-Ru/C 

20 wt.%Pt–

Ni(mqph)/VulcanXC-72R[115] 

Organic metal 

complex 
N/A 

2120( 

0.1V) 

Half-cell at 70 

◦C- 

100ppmCO/H2 

Better  CO-

tolerance than 

20 wt% 

Pt-Ru/C 

commercial 20%Pt-

10%Ru/VulcanXC- 

72R (ElectroChem. Inc.)[115] 

N/A N/A 
3440( 

0.1V) 

Half-cell at 70 

◦C- Pure H2 

 

N/A 

commercial 20%Pt-

10%Ru/VulcanXC- 

72R (ElectroChem. Inc.)[115] 

N/A N/A 880( 0.1V) 

Half-cell at 70 

◦C- 

100ppmCO/H2 

N/A 

PtSn/C [111] 

Surface 

organometallic 

chemistry 

N/A N/A 
H2 + 100ppm 

CO 

Enhanced 

activity with a 

larger 

decrease in 

the onset 

potential of 

CO oxidation 

compared 

with Pt/C 

PtMo [113] 
Chemical co 

reduction 
N/A N/A 

0.5 M 

H2SO4,1000 

ppm of CO 

Pt0.8Mo0.2 alloy 

starts at a 

higher 

potential than 

the 

MoOx@Pt 

catalysts 

MoOx@Pt Core-Shell [113] 

Sequential 

chemical 

reduction 

N/A N/A 

0.5 M 

H2SO4,1000 

ppm of CO 

MoOx@Pt 

catalysts 

shows 

superior CO 

tolerance 

compared 

to Pt and 

PtRu catalysts 

Pt-W [116] Impregnation N/A N/A 
H2 + 150ppm 

CO 

Less 

performance 

than Pt-Ru 

Pt-WOx/C[117] Impregnation N/A N/A 
CO saturated  

1M H2SO4 

Better CO-

tolerance for 
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electrolyte Pt-WOx/C 

than Pt-Ru/C 

PdAu/C [137] 

Deposition of 

bimetallic 

colloidal 

precursors 

N/A N/A 

1000 ppm 

CO:H260°C, 

2500 rpm, 0.5 

M H2SO4 

PdAu/C 

seems to be 

more CO 

tolerant than 

PtRu/C at 60 

◦C 

Pd60Pt40/C [118] 
Formic acid 

reduction 
N/A N/A 

PEMFC at 85 

◦C, fed with H2 

+ 100 ppm CO 

PdPt/C and 

PdPtRu/C 

shows similar 

performance 

Pd-Pt-Ru /C [118] 

Formic acid 

reduction 

method 

N/A N/A 

PEMFC at 85 

◦C, fed with H2 

+ 100 ppm CO 

Higher CO 

tolerance than 

Pt/C 

Pt-Ru-Sn [116] 
Boennemann's 

method 
N/A N/A 

H2/150 ppm 

CO 

Exhibits 

higher 

performance 

at higher 

current 

densities 

Pt-Ru-Mo [116] 
Boennemann's 

method 
N/A N/A 

H2/150 ppm 

CO 

Nearly same 

performance 

as ETEK 

Pt/Ru 

catalyst. 

Pt-Ru-W/C [116] 
Boennemann's 

method 
N/A N/A 

H2/150 ppm 

CO 

Pt/Ru/W is 

the most 

active  

than E-TEK 

Pt/Ru catalyst 

PtRuIr/C [133] 

Microwave-

irradiated 

polyol  plus 

annealing 

N/A N/A 
H2/100 ppm 

CO 

Enhanced 

activity for 

COads 

electro-

oxidation,even 

higher than 

that of the E-

TEK PtRu/C 

catalyst. 

Pt-Ru-Co/C [134] 

Urea 

combustion 

synthesis 

N/A N/A N/A 

Similar  

performance 

to Pt-Ru/C 

PtAuFe/C [135] 

Microwave 

irradiated 

polyol process 

200 (0.803 

V)d 
N/A 

single cell tests, 

pure 

H2 and 100 

ppm CO 

High CO-

tolerant 

performance 

than Pt/C 
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a. Highly oriented pyrolytic graphite 
b. salen: N,N-bis(salicylidene)ethylenediamine  
c. mqph: N,N-mono-8-quinolyl-o-phenylenediamine. 
d. Fuel cell performance 

 

3.2 Cathode catalyst 

The cathode accounts for about one third of the performance losses in a PEMFC, mainly 

due to the limitations of the ORR catalyst. The ORR is a challenging reaction to catalyze, in 

the sense that the catalyst material must be (i) stable under the extremely corrosive 

conditions at a PEMFC cathode, (ii) chemically active to be able to activate O2 and (iii) noble 

enough to be able to release the oxygen from the surface in the form of H2O.  

O2 activation typically involves the adsorption of O2 on the catalytically active sites through a 

proton and electron transfer to form adsorbed OOH before the O–O bond is broken, hence 

the catalyst must be able to stabilize OOH moderately. After dissociation, adsorbed O and 

OH are formed on the catalyst surface, and the catalyst must not bind these species too 

strongly in order for H2O desorption to be fast [143,144]. 

Both noble and non-noble metal based electrodes were studied for oxygen reduction, 

however, platinum seems to be the best single metal catalyst. In the case of noble metal 

catalysts, the activity of palladium based materials appears to close to that of platinum, 

whereas in the case of non-noble metal electrocatalysts, transition metal chalcogenides and 

pyrolysed macrocylcic compounds have been widely studied [144].  

Pt-Ru-Mo [102] Colloid N/A N/A 
H2 + 100ppm 

CO 
N/A 

Pt-Ru-W [102] Colloid N/A N/A 
H2 + 100ppm 

CO 
N/A 

Pt4M/C1 (M = Mo, Nb & Ta) 

[136] 
Degussa  N/A N/A 

H2 + 100ppm 

CO 

carbon 

supported 

PtMo 

(4:1) exhibit 

enhanced CO 

tolerance 

compared to 

Pt/C 

and the other 

binary systems 

tested, but do 

not 

outperform 

PtRu/C. 
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3.2.1 ORR catalyzed by noble metal electrodes  

The most promising catalyst for ORR is platinum, since it exhibits good activity and stability 

under the operating conditions of the PEMFC. However, platinum is expensive and scarce 

and thereby the focus is to reduce the Pt loading or to find an alternative non noble metal 

catalyst. Efforts have been made to reduce Pt loading through (i) increasing the Pt catalytic 

activity be incorporating transition metals and (ii) improving the Pt utilization by increasing 

the surface area and dispersion of Pt nanoparticles using high surface area supports. Other 

approaches include developing Pt-free catalysts and non-noble metal catalysts for ORR. 

Table 6 shows some of the noble metal based catalysts studied for ORR. 

Several Pt alloys, including late transition metals such as Ni, Co, Cr and Fe, together with 

partially dealloyed core-shell catalysts derived from Pt-Cu nanoparticles, are considerably 

more active than Pt and have been studied intensively [145-155]. The reasons for the higher 

catalytic activity of Pt based binary catalysts have been reported to be due to (i) an increase 

in the resistance to particle sintering, (ii) surface roughening due to removal of some base 

metal, increasing the Pt surface area (iii) preferred crystallographic orientation (iv) geometric 

factors (decreased Pt–Pt bond distance)[156], (v) dissolution of the more oxidisable  alloying 

component[157], (vi) change in surface structure [158] or electronic factors (increased Pt d-

band electron vacancy of the Pt skin layer originating from the bulk alloys) (vii) oxygen 

adsorption differences due to modified anion and water adsorption [159,160] . 

Combinatorial studies of a series of Pt-based bimetallic alloy thin film catalysts have revealed 

significant increase of activities for ORR with certain bimetallic catalysts (e.g. PtFe, PtNi, 

and PtV thin films).The introduction of a third metal to the alloy is expected to produce a 

combination of effects such as the reduction of the Pt–Pt lattice distance, the addition of 

surface sites for the formation of metal–oxygen bonds and adsorption of OH−
, and the 

modification of the d-band center. Among the various carbon-supported trimetallic 

nanoparticle catalysts, PtVFe/C and PtNiFe/C alloy nanoparticle catalysts were shown to be 

highly active for ORR [175]. 

While great progress have been made in recent years, the Pt area-specific ORR activity is still 

far below the value that has been demonstrated for the Pt3Ni (111) single crystal  surface, 

which is 90 times that of Pt/C [146]. A 9-fold enhancement in area-specific activity has been 

achieved by changing from the (100) to the (111) Pt3Ni crystal surface. What is apparent 

from the table is that the order of ORR activity of the catalysts, Monometallic < Bimetallic 

≤ Trimetallic, which indicates that the addition of additional metals to platinum has 

definitely a positive effect on its catalytic activity. 

Table 6:  Summary of data on Pt based cathodes. 
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Catalyst 

ECSA 

[m2g-1 

Pt] 

Potential 

for 

measuring 

MA/V 

vs. RHE 

MA/ 

A g-1 Pt 

Measurement 

conditions 

Monometallic 

6.2–11.6% Pt/HSAG 300  

graphite [161] 
N/A 0.85V 20–25 

O2 saturated 0.1 M H2SO4 , 

200 C 

20% Pt/C[162] N/A 0.85V 289 Nafion 117 

20% Pt/C[163] N/A 0.85V 55.3 O2 saturated 0.1 M HClO4 

30 wt% Pt/C [164] 79 0.9 V 160 O2 saturated 0.1 M HClO4 

45 wt% Pt/C [164] 62 0.9 V 100 O2 saturated 0.1 M HClO4 

Pt/C [171] 65 0.9 V 140 
O2 saturated 0.1 M 

HClO4,RT 

Pt/C [173] N/A 0.9 V 130 O2 saturated Nafion 112 

Commercial Pt/C[166] N/A 0.9 V N/A O2 saturated 0.1 M HClO4 

33% Pt/ordered nanoporous 

carbon [168] 
N/A 0.9 V 100 

O2 saturated 0.1 M 

HClO4,RT 

Pt/CNx [174] 54.9 MPCD 126.7 O2-saturated 0.5 M H2SO4 

Pt/C [174] 49.5 MPCD 103.0 O2-saturated 0.5 M H2SO4 

Bare Pt nanocube [166] N/A  0.9 V 40 O2 saturated 0.1 M HClO4 

Pt  nanotubes [172] N/A 0.85V 80 O2-saturated 0.5 M H2SO4 

Bimetallic 

Pt-Co/C [173] N/A 0.9 V 300 Nafion 112 

Pt25Co75/C [164] 70 0.9 V 340 O2 saturated 0.1 M HClO4 

20% Pt–Co (1 : 7)/C [169] N/A 0.77 V 217 
O2 saturated 0.5 M H2SO4 at  

900 C 

Pt3Co/CNx [174] 41.4 MPCD 303.4 O2-saturated 0.5 M H2SO4 

Pt3Co2/CNx  [174] 38.3 MPCD 222.8 O2-saturated 0.5 M H2SO4 

PtCo/CNx [174] 34.3 MPCD 216.3 O2-saturated 0.5 M H2SO4 

Pt3Ni [171] 62.4 0.9 V 530 
O2 saturated 0.1 M HClO4, 

RT 

Bare Pt3Ni nanoctahedra [166] N/A 0.9 V 280 O2 saturated 0.1 M HClO4 

Bare Pt3Ni  [166] N/A  0.9 V 55 O2 saturated 0.1 M HClO4 

Pt3Ni nanoctahedra/C [166] N/A  0.9 V 300 O2 saturated 0.1 M HClO4 

Pt-Au/C [177] 82.5 a 0.75 V 130 a O2-saturated 0.5 M H2SO4 

Au23Pt77/C(15%Pt) [ 175] N/A 0.858  V 420 O2-saturated 0.5 M H2SO4 

14% Pt20Cu80/DMC-2000 [170] 83 0.9 V 450 O2 saturated 0.1 M HClO4 

Pd-Pt nanodendrites [165] 57.1 0.9 V 204a 
O2-saturated 0.1 M 

HClO4,RT 

Pt-Pd nanotubes [172] N/A 0.85V 120 O2-saturated 0.5 M H2SO4 

Trimetallic 

Pd3Fe@Pt/C [167] 86.11 0.8 V 5a O2-saturated 0.5 M H2SO4 

Pt20Cu20Co60/C [164] 111 0.9 V 490 O2 saturated 0.1 M HClO4 

Pd45Pt5Sn50 [176] N/A N/A N/A Nafion 115 

31% Pt32V14Fe54/C [175] N/A 0.858  V 380 O2-saturated 0.5 M H2SO4 

30% Pt31Ni34Fe35/C [175] N/A 0.858  V 480 O2-saturated 0.5 M H2SO4 
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              a Total mass of  metal 

          MPCD= Maximum peak current density 

          DMC=   Highly graphitic disordered mesoporous carbons 

 

3.2.2 Non Pt catalyst or Pt Free catalyst 

Among various noble metals studied, Pd possesses ORR activity close to that of Pt [178]. 

Platinum-free Pd and Pd-alloy catalysts have been studied as cathode materials for ORR in 

acid medium [179,180]. As palladium is cheaper than platinum, Pd based ORR catalysts 

might address the cost issues of platinum to some extent. But the less ORR activity of Pd 

than pt and poor stability of Pd at higher potentials, about +0.8 V vs NHE, hinders it 

commercial application. The challenge is to develop appropriate Pd-alloys with specific 

compositions, with good activity for oxygen reduction (or atleast the same as platinum) and 

better stability in acid medium for PEFC applications. This is quite important as Pd is at 

least 50 times more available/distributed globally than Pt, and each of the alloying elements 

are more available than Pd itself [179]. To improve the catalytic activity of Pd, various 

bimetallic Pd alloys such as Pd-Co, Pd-Au, Pd-Ni has been employed [180]. The activity for 

oxygen reduction of ternary Pd–Co-based catalysts has also been investigated. Raghuveer et 

al. [182] reported the effect of Au addition to a Pd–Co catalyst. The resulting Pd–Co–Au 

presented ORR activity comparable or better, depending on the preparation method, than 

that of a commercial Pt/C catalyst. In a similar work, Raghuveer et al. found that a Pd–Co–

Mo catalyst with a Pd: Co: Mo atomic ratio of 70: 20: 10 exhibited higher catalytic activity, 

more like the Pd–Co–Au catalyst, than the commercial Pt catalyst, but with excellent 

chemical stability unlike the Pd–Co–Au catalyst [183]. The ORR activity of Pd–Fe catalysts 

has also been extensively investigated [153–156]. In all cases the highest ORR activity was 

presented by the catalyst with a Pd/Fe atomic ratio of 3:1. Furthermore, the activity of 

Pd3Fe/C is higher than that of the state of- the-art commercial Pt/C electrocatalysts [204]. 

Binary Pd–M and ternary Pd–Co–M catalysts, in particular Pd–Co–Au and Pd–Co–Mo, are 

promising materials when used as cathode material in fuel cells. Indeed, these catalysts 

possess a similar/higher ORR activity than Pt. In this case Pd could fully substitute Pt as 

cathode material in fuel cells. An understanding of the origin of their high activities may help 

us in designing inexpensive and more active catalysts. 

 

Table 7:  Summary of the data on Non-Pt based cathodes. 

 

Catalyst 
Preparation 

method 

Specific 

Activity 

(mAcm−2) 

 

 

MA/ 

A g-1 Pt 

Catalytic 

activity 

towards O2 

reduction 

Vs Pt 

(no of 

Measurement 

conditions 
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electrons 

transferred) 

Monometallic  

Pd /C [195] 
Borohydride 

Reduction 
N/A N/A less 

O2-saturated 0.5 M 

H2SO4 

 

 

Pd–WO3/C [195] 
Borohydride 

Reduction 
N/A N/A Comparable 

O2-saturated 0.5 M 

H2SO4 

Pd/TiO2 nanotubes 

[196] 

Electrochemical  

Deposition 
N/A N/A 

 

Pd/TiO2  < 

Pt 

 

O2-saturated 0.5 M 

H2SO4 

Au/TiO2  nanotube 

[197] 
N/A N/A N/A N/A 

O2 saturated 0.1 M 

HClO4 +  0.01 M 

NaClO4 

Au/PDDA-MWCNT 

[198] 

Electrostatic 

layer-by-layer 

technique 

1.6(at 

0.05V) 
N/A 

N/A 

(n = 2e-) 

O2-saturated 0.5 M 

H2SO4 

 

Pd/HPW-PDDA-

MWCNTs [199] 

Impregnation N/A N/A Comparable 
O2-saturated 0.5 M 

H2SO4 

Bimetallic 

Pd70Co30/C [181] 
Modified Polyol  

reduction 
N/A 

300 (0.9 

V) 
N/A 

Nafion 112 

 

 

Pd4Co/C [184] 
Modified Polyol  

reduction 
N/A N/A N/A 

O2-saturated 0.5 M 

H2SO4 

 

PdCo/C [200] Polyol  reduction N/A N/A 
Comparable 

(n = 4e-) 

O2-saturated 0.5 M 

H2SO4 

 

Pd75Co25  [201] Electrodeposition  N/A N/A Comparable 

O2-saturated 0.5 M 

H2SO4 

 

PdCo/C [202] 

Formalehyde, 

Borohydride 

and Polyol  

Reduction 

N/A N/A less 

O2-saturated 0.5 M 

H2SO4 

 

 

 

 

Pd–Co dendrites [203] 
Electrodeposition 

and dealloying 
N/A N/A N/A 

O2-saturated 0.5 M 

H2SO4 30 °C. 

Pd-Ti/C [182] 
Reverse 

Microemulsion 
N/A N/A Comparable 

O2-saturated 0.5 M 

H2SO4 
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                            a total mass of  metal 

 

 

 

Pd- Mo  alloy [189] 
Organometallic 

decomposition 
N/A N/A 

PdMo < Pt 

Comparable 

O2-saturated 0.5 M 

H2SO4 

 

Pd-Fe nanorods [193] 

Organic phase 

reaction and 

Thermal 

decomposition 

N/A 
284 (0.85 

V) 

Excellent 

Pd-Fe 

nanorods > 

Pt 

O2-saturated 0.1 M 

HClO4 

Pd3-Fe/C [204] 
Thermal 

decomposition 

0.791 

(0.85 V) 
N/A 

Excellent 

Pd3-Fe /C  

> Pt/C  

O2-saturated 0.1 M 

HClO4 

PdFe/C [194] 
Pulse  microwave 

assisted polyol 
N/A N/A 

Comparable 

(n = 4e-) 

O2-saturated 0.5 M 

H2SO4 

 

Pd80Ni20 [187] Modified Polyol N/A 
100 a (0.7 

V) 
N/A 

O2-saturated 0.5 M 

H2SO4 

Pd-W alloy [188] 
Organometallic 

decomposition 
N/A N/A 

PdW <  Pt 

Comparable 

O2-saturated 0.5 M 

H2SO4 

Nanotubular 

mesoporous  

Pd-Cu [205] 

Galvanic 

replacement 

reaction 

N/A N/A N/A 
O2-saturated 0.1 M 

HClO4 

Trimetallic  

PdCoAu/C [182] 
Reverse 

Microemulsion 
N/A N/A 

Comparable 
N/A 

Pd70Co20Au10/C [183] 
Borohydride 

Reduction  
N/A N/A 

Comparable 
Nafion 115 

Pd70Co20Mo10/C [184] N/A N/A N/A N/A 

O2-saturated 0.5 M 

H2SO4 

 

PdCoMo/C [192] 
Borohydride 

Reduction 
N/A N/A 

Comparable O2-saturated 0.5 M 

H2SO4 

 

Pd–Co–

Mo(7:2:1)/CDX975 

[190] 

Reverse 

Microemulsion 
4.1(0.7 V) N/A 

Comparable 
O2-saturated 0.5 M 

H2SO4 

Pd0.5NixSe(0.5Lx) [206] 
Borohydride 

Reduction 
N/A N/A 

N/A 

(n = 4e-) 

O2-saturated 0.5 M 

H2SO4 

Pd3Fe1Ir1/C [191] colloidal N/A N/A Comparable 
O2-saturated 0.5 M 

H2SO4 

Pd/Ag/Au 

nanosponges [208] 

self-regulated 

reduction 
N/A N/A 

N/A 

(n = 2e-) 

O2-saturated 1 M 

H2SO4 
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3.2.3 Non-Noble metal catalysts 

Great efforts have been made in recent years to reduce catalyst costs and improve the 

activity of non-noble-metal catalysts for ORR [209,210]. A Pt-free catalyst that has attracted 

most attention over the years is the transition metal chalcogenide/s [211, 212]. Two major 

transition metal chalcogenides based on structure have been explored as electrocatalysts for 

ORR: chevrel phase-type compounds (e.g., Mo4Ru2Se8 [211]) and amorphous phase 

compounds (e.g., RuxMoySez, RuxSy [213-216]).Chalcogenides can catalyze both 2-electron 

and 4-electron O2 reduction, depending on the catalysts used. For example, Mo4Ru2Se8, 

Ru1.92Mo0.08SeO4, RuxSy (CO)n, RuxSey, etc. catalyze 4-electron transfer [210–216], while W-

Co-Se catalyzes a 2-electron O2 reduction reaction [217]. Further, a recent study on 

chalcogen-free RuNx chelate compounds [218, 219] has demonstrated comparable catalytic 

activity and selectivity to Pt-based catalysts for four-electron oxygen reduction in acidic 

media.  Detailed reviews on non-noble metal ORR catalysts are reported [220, 221]. 

Transition metal macrocyles 

The catalytic nature of cobalt pthalocyanine was discovered by Jasinski [222], who reported 

high electrocatalytic activity of cobalt pthalocyanines towards ORR. Subsequently, catalysts 

were produced by pyrolyzing metal-N4 macrocycles adsorbed on carbon black in inert 

atmosphere and the effect of thermal treatment was studied. The studies suggest that, rather 

than being directly part of the nitrogen active sites, metal particles may act as the catalysts for 

active site formation during high-temperature heat treatment [223]. It was also reported that 

the heat treatment can destroy the ligand structure and form surface Fe-Nx or Co-Nx 

species which are active towards ORR [224, 225]. In particular, the presence of Fe or Co 

may facilitate the incorporation of pyridinic-N and quaternary-N into the carbon matrix with 

a strong Lewis base, which can increase electron-donor property of the N-doped carbon. 

Thus, it will weaken the O–O bond via the bonding between oxygen and nitrogen and/or 

the adjacent carbon atom and increase the catalytic activity of the N-doped carbon-based 

catalysts toward the ORR [210]. 

Cobalt and iron-based nitrogen-containing catalysts (i.e., Co-N/C and Fe-N/C) are among 

the most promising substitutes for Pt/C, owing to their comparable catalytic activities 

toward ORR at much lower cost. It has been shown that the nitrogen content and surface 

morphology in these catalysts are of great importance for catalytic activity toward ORR. 

Heat treatments of these transition metal macrocycles seem to have a positive effect on its 

catalytic activity in strong acid electrolytes [224,225]. Although the transition metal 

macrocycles show comparable activity to those of Pt-based catalysts for ORR in acidic media, 

their level of stability is a major drawback when they are employed as PEM fuel cell catalysts. 

At this stage, the priority for fuel cell catalyst development is to explore new catalysts with 

enhanced catalytic activity 

Zelenay et al. [100] explored Co-polypyrrole (CoPPy) material as a PEM fuel cell cathode 

catalyst. The composite CoPPy catalyst, even without heat treatment, could generate a power 
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density of ~0.15 Wcm-2 in a H2-O2 fuel cell and displayed no signs of performance 

degradation for more than 100 hrs. They reported that hetero-atomic polymers can be used 

not only to stabilize the non-noble metals in a PEM fuel cell environment but also to 

generate active sites for ORR. The interaction between the catalyst and oxygen also 

demonstrates that CoPPy forms stable end-on, side-on, and bridged oxygen adducts. 

Furthermore, the side-on and bridged oxygen adducts were found to be more stable than 

end-on adducts. Since side-on and bridged oxygen adducts greatly elongate O-O bond 

lengths, they generally lead to 4-electron reduction products. Thereby, they differ from Co 

macrocyclic catalysts, which cannot form these types of oxygen adducts and generally yield 

2-electron reduction products. The increase of N content, a key factor for catalytic activity of 

Co- and Fe-based N-containing catalysts, is the main reason for enhanced electro-catalytic 

activity of Co-PPy-TsOH/C toward ORR as compared to that of Co-PPy/C. Doping Co-

PPy/C with TsOH is a valuable way to improve the catalytic activity of Co-PPy/C toward 

ORR [228]. The MWCNT supported Co-PPy electrocatalysts promise to deliver high ORR 

activity without any noticeable loss in performance over long PEMFC operating times [229].  

Another class of non noble metals, perovskite-type and spinel-type oxides and tungsten 

carbides has also been explored as alternative electrocatalysts to platinum. They show 

promising catalytic activities towards the oxygen reduction and hydrogen oxidation 

reactions. However, most of these catalysts demonstrate activity and stability in alkaline 

solutions. In a PEM fuel cell, which uses strong acidic electrolytes, these catalysts are not 

favorable [230-235]. 

4 Catalyst Supports 

Carbon is the typical catalyst support material for fuel cell applications due to its large 

surface area, high electrical conductivity and well-developed pore structure. However, the 

carbon support, especially at the cathode, is subjected to severe corrosion in the presence of 

water, according to the following reaction [242-247]: 

C + 2 H2O → CO2 + 4 H+ + 4 e-   

Agglomeration of Pt catalyst on the carbon surface is inevitable as carbon corrosion 

becomes more severe. This effect causes the performance of catalysts to degrade quickly, 

resulting in short lifetime of PEMFC which is not adequate for most of its projected 

applications. Therefore, highly stable catalyst supports are required to enhance catalyst 

lifetime. Some of the alternative supports studied include conducting metal oxides and 

conducting polymers. 

Vulcan has been extensively studied and used as supports for fuel cell catalysts. Apart from 

Vulcan, several carbon materials have been investigated as catalyst supports for PEMFCs. 

Carbon nanotubes (CNTs) have been employed to improve catalyst durability, where 

Pt/CNTs showed a lower electrochemical surface area loss, a higher ORR activity and better 

corrosion resistance as compared to Pt/C [239, 241]. Carbon aerogel increases the contact 
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area between Pt and electrolyte because of its high pore size distributions [236], and 

accordingly, the catalytic surface area of Pt on carbon aerogel is higher as compared to 

Vulcan XC-72. However, the chemical stability of the catalyst is limited due to the 

amorphous property of carbon aerogel. Graphene sheets, a two-dimensional carbon material 

has high surface area and conductivity. Pt catalysts on functionalized graphene sheets 

exhibits enhanced activity and stability for oxygen reduction [256]. 

Semiconductor ceramics in particular, Ti4O7 exhibits a high electrical conductivity of 1000 S 

cm-1 at room temperature, which is considerably higher than the graphitized carbon 

(conductivity of 727 S cm-1) [254]. Accordingly, the Ti4O7 support would be applicable to 

PEMFC electrocatalysts without degrading the intrinsic catalytic activity of Pt, so that 

Pt/Ti4O7 would be a potentially durable catalyst material for PEMFCs. 

Tungsten carbide (WC) has also attracted attention and the thermal and electrochemical 

stability of WC catalyst supports have been investigated. WC was found to be more 

thermally and electrochemically stable than carbon supports. However, its stability in acid 

electrolyte is not ideal because WC can be corroded in sulfuric acid, which decreases the 

catalyst‟s stability [260].  

Recently, it was also reported that titanium nitride (TiN) supported Pt for PEM fuel cells 

showed higher catalytic performance than conventional Pt/C catalysts [264], but the 

durability of TiN as the support material is not clear yet. Further studies are necessary to 

understand TiN as a catalyst support and especially evaluate its durability properties. 

Titanium diboride (TiB2) exhibits many superior properties, including high melting point, 

great hardness, good electrical, high thermal conductivity, excellent thermal stability and 

corrosion resistance in acidic medium. The stability of Pt/TiB2 is approximately 4 times 

better than that of the commercial Pt/C [265]. 

 

Table 8.  Summary of the data on catalyst supports. 

 

Carbon support 

 

Metal oxide 

support 

 

Metal 

carbide 

and nitride 

support 

 

Polymer support 

Carbon xerogel [236] 

Ordered mesoporous 

carbon [237] 

Carbon Nanotube (CNT) 

[238] 

Graphene [256] 

Nitrogen-Doped Carbon 

Nanotube [241,242] 

Nitrogen -Doped carbon 

Pd/WO3/C [249] 

Pt/SnO2/C  [250] 

Pt/SiO2 [251] 

Pt/S–ZrO2 [253] 

Pt/ Ti4O7 [254] 

 Pt/Nb-TiO2 [255] 

Pt/TiO2/C[258] 

Pt/TiO2 nanotube 

[257] 

Pt/CrN 

[259] 

Pt/W2C 

[260] 

Pt-W2C/C 

[261] 

Pt/SiC [262] 

Pt/TiC 

[263] 

Pt/TiN 

Pt/Polypyrrole [266,267] 

Pt/Polyaniline [268] 

Pt/Polypyrrole-C2[269] 

Pt/ poly(o-phenylenediamine) [270] 

Pt/ poly-1,5-diaminoanthraquinone 

[271] 

Pt/poly(3,4ethylenedioxythiophene)/ 

poly(styrene 4-sulfonate)3 [248] 

Pd /poly( N -acetylaniline) nanorods 
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Among conducting polymers, conductive polypyrrole (PPy) can be considered as a 

promising catalyst support, for its good electrical conductivity, high environmental stability, 

and the merit of simple preparation by both chemical and electrochemical processes [266]. 

The PPy support is highly resistive towards oxidation at potentials as high as 1.8 V and the 

Pt/PPy catalyst exhibited ORR activity twice as high as that of Pt black catalyst. The fuel cell 

polarization curves for the Pt/PPy catalysts are comparable with that of commercial E-TEK 

Pt/C catalyst and demonstrated good ORR kinetics [267]. 

5 Gas diffusion layer (GDL) 

 

The GDLs are directly adjacent to the bipolar plates and typically consist of two layers, the 

macroporous substrate layer and a microporous layer (MPL). The porous gas diffusion layer 

in PEM fuel cells ensures that reactants effectively diffuse to the catalyst layer and minimize 

mass transport overpotential. Typically, gas diffusion layers are constructed from porous 

carbon paper, or carbon cloth, with a thickness in the range of 100–300 μm. The GDLs are 

gas permeable and help distribute gases to the catalyst layer, conduct electrical current, and 

also provide a network of paths for liquid water to move from the MEA to the flow channel. 

The gas diffusion layer also assists in water management by allowing an appropriate amount 

of water to reach, and be held at, the membrane for hydration. In addition, gas diffusion 

layers are typically wet-proofed with a PTFE (Teflon) coating to ensure that the pores of the 

gas diffusion layer do not become congested with liquid water [18]. The macroporous 

substrate layer consists of a carbon fibre matrix with a large void volume, typically 75-85%, 

and a primarily hydrophobic MPL consisting of carbon black mixed with fluoropolymer. 

The cathode GDL normally has an attached MPL; the anode GDL may or may not have a 

MPL. 

Application of the carbon/PTFE mixture flattens out any roughness of the cloth or paper 

and improves the gas and water transport properties.  An optimum GDL is one that allows 

an appropriate amount of water vapor to reach the membrane/electrode interface, keeping 

the membrane humidified and thereby improving the cell efficiency. It allows the liquid 

water produced at the cathode to leave the cell and avoids flooding. The GDL is typically 

wet-proofed to ensure that at least some, and hopefully most, of the pores in the carbon 

[240] 

 

 

[264] 

Pt/TiB2 

[265] 

 

 

[272] 
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cloth or paper do not become clogged with water, which would prevent the rapid gas 

diffusion necessary for a good rate of reaction to occur at the electrodes. 

The PTFE amount used in the microporous carbon layer, the types of coating used, and the 

Nafion and catalyst amounts used in the catalyst layer affects the cell performance. As PTFE 

content increases, the pore size decreases, resulting in higher mass transport resistance, while 

if the PTFE content gets too low, the water removal capability drops, resulting in electrode 

flooding. Williams et al. [54] suggested that the optimal PTFE content in an MPL for near-

saturated operation is between 15 and 20 wt%. Extensive review on GDL has recently been 

published [275]. 

6 Membrane electrode assembly (MEA) 

Membrane electrode assembly (MEA), as termed, is the assembly of the membrane and 

electrodes. As all the reactions within the fuel cell occur in the MEA, it is widely referred as 

the heart of the fuel cell. The MEA consists of a proton exchange membrane, catalyst layers 

and gas diffusion layers (GDL). Typically, these components are fabricated individually and 

then pressed together at high temperatures and pressures.     Hence, the design and 

fabrication method of MEA is highly critical as it directly affects performance of the PEM 

fuel cell. In this section we will look at the methods used for assembling the membranes and 

electrodes and the methods studied to apply the catalyst layer. 

There are two general modes of MEA assembly [276], as represented by a schematic in 

Figure 6: 

(1) The most common and widely used mode is the application of the catalyst layer (CL) to 

the GDL, termed as the catalyst coated substrate (CCS), followed by membrane addition 

(2) The other mode is to directly apply the CL to the membrane, catalyst coated membrane 

(CCM), followed by GDL addition. 

The primary focus in the assembly of MEAs is to achieve good contact between the 

membrane, the GDL, and the catalyst layers. CCM mode has several advantages over CCS 

mode.  Good contact in CCM mode maximizes better catalyst utilization, reduced loadings 

and improved transport properties during cell operation.  

No matter the mode of MEA assembly, the catalyst layer can be prepared and applied in two 

separate steps (catalyst ink preparation and application) or using a single sputtering process. 

The catalyst ink is a mixture made of ionomer, supported catalyst and a solvent. Glycerol is 

often added to adjust the viscosity of the ink. Pore forming materials, e.g. ammonium salts, 

and sparingly soluble fillers such as lithium carbonate are added to adjust the fine and coarse 

porosities respectively. The catalyst layer is formed by either coating the catalyst ink to the 

membrane or most commonly onto the GDL, which is then hot pressed onto the 

membrane. A number of methods have been developed for the application of the ink. 

Various methods for catalyst layer fabrication applicable to both modes (CCS&CCM) are 

summarized in Figure 6. The most common methods for the application of catalyst layer 



 

 

Page | 35  

 

 

include spreading, spraying, painting, catalyst decaling, screen printing and   inkjet printing. 

These methods are simple, scalable and can be used by industries for manufacturing. On the 

other-hand,  alternate methods for catalyst layer fabrication such as    impregnation 

reduction, dry spraying, catalyst powder deposition, electrodeposition, sputtering and pulsed 

laser deposition have the potential to minimize the catalyst loading and also minimizes the 

wastages during application processes and thereby should be investigated further. Other 

methods that have attached the interests of researchers are colloidal method, controlled self 

assembly, graded catalyst deposition, multiple layer sputtering, electrophoretic deposition 

and electrospray Technique. While performance comparisons between these MEA 

fabrication methods have been shown to be important, changes to processing conditions 

using the same MEA fabrication method such as hot pressing temperature, time, catalyst ink 

composition or ink processing will have a large effect on resulting PEMFC performance. 

The appropriateness and effectiveness of these methods are not understood yet and is 

currently as a research curiosity. 

 

 

  

 

Fig. 5. The MEA preparation techniques for (a) Mode 1: CL on GDL mode and (b) Mode 

2:CL on membrane mode. 
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Fig. 6. Methods for catalyst layer fabrication 

 

7 HT-PEMFC 

Recently, there has been an increased interest globally on PEMFCs that operate above 120oC 

and are termed as high temperature PEMFCs (HT-PEMFCs). The advantages of HT-

PEMFC over the traditional PEMFCs are 

 high tolerance to CO impurities 

 improved reaction kinetics due to increase in the operating temperature 

 minimum water management issues as the membrane does not require hydration 

 useful heat which can be used in co-generation applications 

 small cooling unit is sufficient due to larger temperature difference between the stack 

and the atmosphere 

 overall minimize the balance o plant requirements 

The performance of PEMFC will be enhanced by operating above 120 oC through improved 

kinetics of the cathode and anode reactions. The operating temperature will also increase the 

tolerance towards poisoning species such as CO. Although considerable effort has been 

expended to develop liquid-fueled PEMFC for transportation applications, most 

practitioners believe that onboard storage of hydrogen will be necessary for practical 
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vehicles. HT-PEMFCs can be ideal in this case which minimises the system complexity with 

improved cooling system and reduced balance of plant components. 

In order to achieve higher operating temperatures, many new modified membranes have 

been studied in recent years. Among them, poly [2,2-(m-phenylene)-5,5-bibenzimidazole] 

(polybenzimidazole, PBI) and poly(2,5-benzimidazole) (ABPBI) are most promising 

membranes for high temperature. These membranes are less expensive than Nafion®, no 

humidification in PEMFC application, and working temperature reaches almost 200 ◦C [277].  

A candidate membrane material is polybenzimidazole (PBI) and ABPBI shown in Fig 7. 

 

 
Fig. 7. Chemical structure of poly (2,2‟-m-(phenylene)-5,5‟-bibenzimidzole) and ABPBI 

 

PBI is a relatively low cost polymer which, when doped with acid (e.g. phosphoric) has good 

proton conductivity and mechanical flexibility at elevated temperature along with excellent 

stability in reducing and oxidizing environments. PBI is a basic polymer (pKa. 6.0) which 

readily sorbs acid and helps to further stabilize the polymer. The PBI membranes are 

conductive above 100 oC even when dry. Acid doping of 50% by weight can be achieved 

without adverse effects to its mechanical properties. The conductivity of PBI can approach 

the target of 10 S/cm set for high temperature membranes. One of the main attractions of 

PBI is that the solution form of the polymer can be used to cast membranes and be used as 

an ionomer ink in the preparation of bonded catalytic electrodes. However, the cost of PBI 

is still high and ABPBI membranes (ηinh = 2.4 dl g−1) were completely dissolved in 

concentrated 85% phosphoric acid [277]. 

Development of high-temperature proton exchange membranes and catalysts for HT-

PEMFCs are equally important in terms of the long-term sustainability of fuel cell 

technology and commercialization. Some of the typically studied components are provided 

in Figure 8. There are several challenges, which are yet to be addressed, in terms of 

component development to further HT-PEMFC technology. The main challenge is the 

durability of the catalysts, supports and membranes at higher temperatures. High 

temperature PEMFC operation requires the development of catalysts with proper resilience 

to sintering and corrosion under working conditions. It is general opinion that corrosion 
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resistant catalyst supports need to be selected for high temperature operation as well as 

proper anchoring of the metal phase on the support is necessary to improve stability [278]. 

Based on a review of the literature as well as our understanding, we would like to suggest 

several future research topics for high-temperature catalyst development: 

(1) Development of highly durable catalyst supports, such as carbon with more graphitic 

components, ceramic, and carbon-ceramic composite materials, which could survive in a 

high-temperature environment. 

(2) Enhancement of the interaction between the supports and the catalysts to stabilize Pt 

nanoparticles and improve catalytic activity. 

(3) Development of new catalysts such as highly durable non-noble catalysts. For long-term 

sustainable PEMFC commercialization, non-noble catalysts are the solution because of the 

limited supply and high cost of Pt. 

(4) Optimization of HT-PEMFC catalyst and catalyst layer composition and structure 

through innovative design, evaluation, as well as fundamental understanding. 

(5) Improved GDL structure and GDL materials, taking into account of higher operating 

temperature and non-humidified gases. 

(6) Membranes with better conductivity and stability 

(7) Better phosphoric acid distribution in the membrane and the electrode to improve the 

performance 

 

 
Fig. 8. Components of HTPEMFCs 
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8 Conclusions 

The PEMFC membrane electrode assembly components: catalysts, GDLs, supports and the 

membranes, have been studied extensively over the years and have resulted in a huge 

amount of literature. A concise report on the R&D progress over the years on the MEA 

components is provided, highlighting the challenges that need to be addressed. In spite of 

dedicated research over the years, there are no real breakthroughs that address the challenges. 

Despite huge efforts targeting cost challenges associated with the components, substitute for 

Nafion or platinum based catalyst is yet to be identified. PtRu has established as the best 

anode catalyst whereas there is still some discrepancy over the best cathode catalyst, however, 

all platinum based binary catalysts appear to perform better than Pt/C for ORR. Recently, 

there is an increased interest in HTPEMFCs and although recent developments seem 

promising, it brings along significant challenges in terms of material appropriateness and 

durability. 
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